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PART III

GAUGE FIELDS IN SOLIDS

Denique quae nobis durata ac spissa videntur 
haec magis hamatis inter sese esse necesset et 
quasi ramosis alte compacta teneri.

(Things which seem to us hard
Must needs be made o f particles more hooked,
One to another, and be held in union,
Welded throughout by branch-like elements.)

Lucretius, De Rerum Natura, Rome, 57 B.C.
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The description of superfluid 4He in terms of a disorder field theory 
developed in Part II can serve as a prototype for the treatm ent of many 
other physical systems. For this to be true, these systems have to possess 
the following fundamental properties.

1 . There exists an ordered ground state.
2. The important fundamental exitations are of two types, namely,

a) soft long-wavelength exitations which only slightly disturb the 
order, and

b) line-like disturbances which drastically disturb the order in their 
immediate neighbourhood.

3. There exists a phase transition where the line-like disturbances 
condense and completely destroy the order everywhere in the system.

In superfluid 4He the long-wavelength exitations were the fluctuations of 
the phase angle, the line-like disturbances were the vortex lines, and the 
order which was destroyed in the phase transition was the superfluid order.

We shall now discuss the second important physical system of this type: 
the crystalline solid. In thermal equilibrium at low tem perature, this 
consists of a regular array of atoms which form the ordered ground state. If 
the crystal is perturbed weakly, the atoms perform long-wavelength 
oscillations. These are observable in the form of sound waves. If the crystal 
is perturbed strongly, for example via local external forces, one obtains 
what is called a plastically deformed state. To a good approximation such 
a state can be described by means of line-like defects. The most important 
ones are of two types called dislocations and disclinations. These are the 
crystalline analogues of the vortex lines in superfluid 4 He. We shall 
develop a disorder field theory for these fundamental exitations in close 
analogy with the vortex lines in superfluid 4 He. The phase transition in 
which defect lines condense and destroy the crystalline order will be 
identified with the melting process. The melting process is a first order 
transition and thus of a nature different from the superfluid transition. 
Still, we shall see that a number of quasi-universal features of this process 
can be understood by means of this disorder field theory.



CHAPTER ONE

T H E  ID E A L  C R Y S T A L

1.1. DISPLACEM ENT AND STRAIN

Consider an ideal simple crystal which consists of a periodic array of 
identical atoms situated on lattice points

x„ =  « ia 1 +  я 2 а2 + лзаз> (L I)

where a, are the fundamental lattice vectors and n( are integers. The 
simplest example is that of a simple cubic (s.c.) lattice with atoms at

=  a(nx, n2, n3), ( 1 .2 )

where a is the lattice spacing. Such a crystal is not very physical since, 
with the usual dominance of central forces, it is unstable against shear 
deformations. This is why there are only very few s.c. crystals in nature 
(e.g., solid polonium). For much of the development to come this aspect 
will, however, not be relevant. More stable configurations of identical 
atoms are the face-centered cubic (f.c.c.) crystal with

a i =  а (г> 3> 0)> a2 =  я (0 , 2> I)» аз =  д(г» 2) 

and the body-centered cubic (b.c.c.) crystal with
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a! =  a{ 1 , 0 , 0 ), a 2 =  я(£, |) ,  a 3 =  a{0 , 0 , 1 ).

If forces are applied, the crystal undergoes some distortion and the 
atomic positions change from xn to, say,

x; = xn + un. (1.3)

T here are a num ber of important phenom ena which are smooth over 
many atomic distances. For these, it is sufficient to study the crystal in the 
continuum limit in which the lattice spacing a tends to zero. This has the 
advantage that the positional changes can be described by a displacement 
field  u(x) which is defined on every space point,

x' = x +  u(x). (1.4)

After the distortion, the distance vector between two infinitesimally 
spaced neighboring material points at x and у is changed from dx  =  x — у 
to

dx- = dxi +  dj Uj dxj, (1.5)

and its length from d t  =  V d i?  to

d f  =  (d t2 + 2 и/у dxj dxj) 1/2. ( 1 .6 )

The symmetric matrix

M x) “  К d>uj +  di ui +  djU€djUe) (1.7)

is called the strain tensor. To linear approximation, this tensor is just

u ij( \ ) - \ { d i u j +  d jU i) .  ( 1 .8 )

1.2. ELASTIC ENERGY

In elastic media with short-range forces between pointlike constituents, 
the elastic energy density can only depend on the differences d t ' — d i  and 
thus only on the strain. To lowest approximation we may write
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e (\)  \ C j j w,y (x) M/fC (x). (1.9)

There is no linear term since, in equilibrum, all m,(x) vanish by definition. 
With this energy, the thermal partition function of elastic fluctuations 
reads

Z  =  j & u , ( x ) e x p ^ - j ; J  d3x e ( x ) j .  (1.10)

The elastic tensor cijkl is symmetric under the exchanges i ^  j, к 
Л ij <r* k£. Thus it has 21 independent coefficients which may be 
displayed in the form of a symmetric 6 x 6  matrix

Cijkl -

c 1 111 c 11 22 c 11 33 CII23 Cl 131 CI1 12

c 2 2  22 c2233 c22 23 c2231 C22 12

c3333 c3323 c333l c33 12

c23 23 c2331 c23 12
C3I 31 C31 12

CI212

Q//>'

where a = 1, . . 6  denotes the / , /p a irs  11, 22, 33, 23, 31, 12. Let us also 
introduce corresponding strain components as follows,

ua — (Mll* w2 2 i w3 3 » 2^23» 2 «3 j, 2U\o). (1.11)

Then the energy (1.9) may be viewed as a quadratic form in a six
dimensional vector space

\cahu„uh. (1.9')

The elastic constants c„b are not completely arbitrary. In order to 
guarantee stability under elastic fluctuations the energy has to be positive 
definite, e > 0 ,  for all non-zero strains. This implies that all subdeter
minants of the quadratic form are strictly positive, i.e.,

Сц >  0 ,

C, j . .  . C | 6

CI1 C\2 ОA *

c2\ c22 Cm  • ■ • Q>6
> 0 . ( 1. 12)

Usually, only a few of the coefficients саъ are really independent, due
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to crystal symmetries. A single plane of reflection symmetry, for instance, 
removes 8  coefficients. If the xy  plane is a plane of reflection symmetry, 
the matrix с has the form

Cn C\2 C13 

C22  c 23 

C33

0  0  Cj6

О О C2 6  

О О C3 6

(1.13)

An additional symmetry about one orthogonal reflection plane leaves us 
with only

C<ib

c \ \  c \ 2  C I3

c 22 c 23 0

c 33

c 44 0  0

0 C5 5  0

c 66

(1.14)

Exploiting such symmetry elements as well as the invariance under 
discrete rotations, the 32 crystallographic point groups give rise to 9 
different classes of с matrices. These are listed in Appendix 1A. The 
number of independent elements c„/, is shown in Table 1.1 and Fig. 1.1.

We shall consider mostly crystals of cubic symmetry which have the 
smallest number of independent elastic constants, i.e ., 3: c lb  c I2, c44,

Cab

Cll C12 C 12

C 11 C12 0

Cll

00rt<1

0 C4 4  0
C44

(1.15)

For these crystals, the energy density reads



I. THE IDEAL CRYSTAL 749

TABLE 1.1. The seven crystal systems with their 32 crystallographic point groups and 
numbers of quadratic and cubic elastic constants.

System
Hermann-Mauguin

symbols
Schoenflies

notation ujj couplings и* couplings

a 23, - 3 T, T„ 8
Cubic m

3

b 43m, 432, ~ 3 ~ Ttl, 0 , 0„ 6m rn

a
Tetragonal

b

4, 4, -  
m

4m m, 42m, 422, — —— 
m m m

C4, 54, C4/,

Cje,, ^ 2,/, Д». D4/i

7

6

16

12

a
Hexagonal

b

6 , 6 , -  m

6 mm, 6 w2 , 622, ——— 
m m m

C<s, CyM Cf,/, 

CftD» 0 V(, DW;
5

12

10

a
Trigonal

b

3, 3

3/?i,3 — • 32 m

C„ 56

Di,/, D 4

7

6

2 0

14

Orthorhombic 2  ? 2
2mm. 2 2 2 , ~ ~ ~  m m m

Ci^, D i. От/, 9 2 0

Monoclinic 2 . m, ~  m
Ci, C|/,, C21, 13 32

Triclinic I. I C„ S, 21 56

e(x) = ^c l l ( w M +  u 22 +  m|3) +  Ci2(w,|W 22 +  u \\ W3 3  4- W2 2 W3 3 )

4- 2044( 1/73 W31 +  ^Гз)
2

= V  2 . - C , 2 V* 
^44 Zj W/> “1" Zj

z  i
(1-16)

The stability condition (1.12) implies cn > 0 ,  C n > C i2, (cH -  c 12) 2  

x  (C| | + 2c,2) >  О, C4 4  >  0 and hence

£ц O’ C44 >  0, Сц >  C\2, Cu +  2c,2 0. (1.17)

A further reduction occurs for isotropic systems. In general, one axis of
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FIG. 1.1. The graphical representation of the symmetry elements in the given crystal 
systems with their 32 crystallographic point groups of Table 1.1. The notation is abbreviated. 
Boxes indicate centrosymmetric systems. The numbers on the lower right corners give the 
number of independent elastic constants in each case.

rotational symmetry reduces the 21 components to 5 independent ones. If 
this axis coincides with the z axis, the matrix cab becomes

Cab

С11 с 12 С i3

C 11 c 13 0

C33

С44 0  0

0 C44 0

K CU  ~  C\2)

(1.18)
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Symmetries about two orthogonal axes lead to com plete isotropy, in 
which case we find the cubic shape but with the third constant, c44, being 
related to cn , c 12 by

C4 4  =  ( C u - C 12)/2. (1.19)

Then the energy can be expressed in terms of the two rotational 
invariants, ujj and un , as

ф )  =  f iu f j  +  | m « ,  ( 1 -2 0 )

where

^  =  c44, Л =  с 12, (1.21a)

Here /x is called the shear modulus and A the Lame constant. For these, 
the stability conditions (1.17) read

fx>  0, 2/a + ЗА >  0. (1.22)

In some materials, the deviation,

C |2  >  0 , ( 1 .2 1 b) 
ZC 44

from the isotropic value 1 can be considerable. A list of experimental 
data is given in Table 1.2. As an example, silver at 300 К has c M =  1.240, 
C| 2  =  0.937, and c4 4  = 0.511 in units of 1012 dynes/cm 2 so that £ =  0.33. 
Nevertheless we shall continue the discussion first for isotropic media, for 
simplicity, then generalize the theory to cubic systems, and give some 
remarks concerning the general case only from time to time.

In isotropic media it is convenient to stay with the notation (1.9) in 
which Ujj and с^кС are tensors and have simple properties under rotations. 
In terms of the elastic constants /a, A, we can write

Cijke — № (8ik 8jc +  8/e fyk) +  A 8k€. (1.23)

As far as the total energy,
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E = J d 3xe(x), (1.24)

is concerned, we can perform partial intergrations and bring the energy 
density ( 1 .2 0 ) to the equivalent form

e(x) = | ( diUj)2 +  |(A  + fi)(diUi)2. (1.25)

The difference between (1.20) and (1.25) is a pure divergence, i.e., 
surface term in the energy E. It will be useful to separate the strain into 
rotational invariants consisting of the traceless part of u,y,

U<? = uv -  \b ,jukk (1.26)

of spin 2  and the trace itself,

n j p - i t y » »  (1-27)

of spin 0. The projection matrices into these channels are

P %  =  \{SikSjC +  8i t 8,k ) -  \8,,8ке, P $e  =  \8„8ке. (1.28) 

They are orthonormal in the sense that

/ p(2 )2 \ =  p(2 ) p(2 ) _  p(2 ) / p(<>)2 \ =  p(U) p(0 ), _  p«>)
{• )ijk f — * ijntn * mnkt ~  * ijk t ' \ r  fijk t ~  r ijmn r nmkf r ijkf->

(P r-'P m ),W  -  Рф!ш C r  =  (Pm P(2)h,ke -  P i l l  P S L ,  =  o, (1.29)

so that we can write in abbreviated form: р <2)2 =  f t 0 *2  =  p (° \  
p(2)p(0) _  p(0)p{2) _  wj1Cre multiplication amounts to contraction of 
adjacent index pairs. When added together, these projections span the 
space of symmetric tensors, resulting in the unit matrix in this space,

(P (2 ) +  pio))ijk( = ц к( m ±{dik8je +  ^  (i.30)

Therefore, the decomposition of м,у can be written as

Щ = 1W  =  ( P (2) +  />(0V « «  =  4 2) +  “ f  • d ' 3 1 )
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By using these matrices, the elastic tensor may be decomposed into spin-2 
and spin - 0  parts,

bike =  c™ P $ e + c ™ P %  (1.32)

with

c(2) =  2 /i., c<°> =  3(A + \tx) -  Зк (1.33)

T he spin-0 combination к is called the modulus o f  compression for 
reasons to be seen shortly. On inserting the decomposition (1.32) into the 
energy (1.9) and using the projection property (1.29) we can write

e(x) =  1 W(c<2 >P<2> +  c ^ ) u  =  ic (2 )w( 2 )2  +  1 с(0 )и ( 0 ) 2  =  рш<2 >2 +  и(0)2.
'  (1.34)

H ere , we can verify once more the stability conditions (1.22) according to 
which /X and к have to be positive.

1.3. STRESS

If a certain configuration is changed by a small increment 8 w,y, the 
energy density changes by

= Cijkeuk€8uij. (1.35)

The quantity

8e
-  ^ 7  =  cijke uk€ (1.36)

is called stress. For isotropic media, we may insert (1.33) and obtain

<Tii =  c(2)4 2> +  с<°Ц°> =  2 м 4 2> + З к и ^  =  2fiUjj +  \S jj ukk. (1.37)

In the terms of strain, the energy change has the simple form

8e = crij8Uij. (1.38)

The orthonormality properties of the projective matrices (1.29) make it 
easy to invert the stress strain relation (1.37) with the result
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«.)• =  (c V %  =  (c<2>><2> +  + c<°>"<4 0)

П ,  1 /  A \
=  d - 39)

The ratio Л/3 к is usually expressed in terms of the Poisson ratio

A
2(A +  fx)

Зк 1 + v (1.41)

so that

d - 42)

With this relation, the energy may be written in terms of stresses as 
follows:

e =  ^м (с (2 )Р (2) +  c(0)P (0))u  =  ~ or(c(2)-l/ >(2) +  c(o r'P(0 ) ) < 7

=  7 ~  +  2 ~  <J^°) =  ~—  f  cr,'j — ~  Sjj +  — — o i k  4/x 6k 4 /x \  4 3 " /  18/c

=  i ( ^ - T T ^ ^ ) -  (14 3 )

The manipulations leading to this expression can be used to find 
another formulation of the thermal partition function of elastic fluctua
tions which involves both the strain and the stress tensor. Starting with 
( 1 . 1 0 ) we write in the isotropic case

“Notice that in D  dimensions A//i =  2v/(l -  (D  -  l)v ) and Dk =  2/x + DA = 2/x(l + v)/ 
(I -  (£> -  l)v )) >  0. Therefore, i>has to satisfy the stability condition - 1  <  v <  1/(D -  1). In 
practice, v is usually larger than zero. An exception for D =  2 is the triangle lattice of 
magnetic flux lines in a typc-II superconductor (see Part II. Fig. 3.5). For 0  = 3, see Kittinger 
el я/., Phys. Rev. Leu. 47 (1981) 712. More relations between the different elastic constants 
are given in Table 1.3.
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Z = J  @Uj(x) е-(^^х(\/2)и(с^Р^ + с^Р^)и

and introduce integrations over auxiliary variables cr/y-,

Г f  <3 (T,7 (x)

x e x p ( - j ; f d 3x  | ^ o - ^ P < 2) +  о- +  i<r0u j |  j

f  f  ®  0 7 , (x)
=  J ® « , ( x ) J  - J i i

x  exp J d 3x  ôr? -  Y ^ <Tfcj +  5°)A*iui +  э/" ') |  j • ( 1 4 4 )

In this formula we recognize the Hamiltonian form of the path integral of 
linear elasticity [recall Eq. (1.88), Part I) for the general field theoretic 
Hamiltonian path integral]. The field variables are now w,(x) and the 
stress fields 0 7 , play the role of the canonical field m om enta, so that (1.45) 
just fits into the general canonical form,

Z = f  £> и (t) J

The role of the “ time" variable г is now played by the space coordinates
X / .

In the Hamiltonian form, the path integral over w,(x) can be perform ed 
after rewriting J d*x сгц(d, Uj -1- d; u, )/2 as -  j  d*x Э,- ay, . This leads to the 
divergenceless condition for the stress, д,сгfj = 0 , in the absence of 
external forces, and the path integral (1.44) becomes

Z =  J ® <7>Дх) 8[Э,<7y] exp J Y ^ o - r , j | .  (1.45)

Let us now generalize these considerations to the anisotropic case. The 
stress-strain relation (1.36) reads, using the pair indices a, b,
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Its inversion is, in general, quite difficult. For cubic crystals, however, 
one finds from (1.15),

Cub

1

( 2 / x f l - 1

( 2  M f ) ' 1
Л

i  A

/ 1 1 1  

1 1 1 
1 1 1

° \

0

M  1

M - 1

I  6 ц { к

I  0
0  /

" 7
L \

jab

(1.46)

where £ is defined in ( 1 .2 1 b) and

к =  + A.

Thus the energy can be expressed in terms of stresses as 

_  1

= ^ ( f | 2  +  <rh + <*3l) +  + cr22 + -  12^ K (^l I + °~22 + V n f  ■

(1.47)

Introducing the param eter

у  =  З£к/Л - зг( И Н ' (1.48)

this can be rewritten, in close analogy with (1.43), as

(1.49)

and the Hamiltonian version of the elastic partition function now reads
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In isotropic systems, f  =  1, у =  (1 +  v)/v and Z  reduces to (1.46). Notice 
that in terms of д , А, к, the positivity conditions (1.17) are

The param eter у  can, in principle, be negative. In practice, however, 
у  5: 1  (just as v ^  0  in most isotropic materials).

1.4. EX TERN A L BODY FORCES

The linear elastic behavior of a solid under the influence of an external 
force density //(x ) can be studied by adding to the energy a source term 
for the external work acting on each volume element,

The equilibrium distortion can now be obtained by minimizing the total 
energy

/x >  0, f  >  0, 2/xf +  A >  0, к >  0. (1.51)

:(*) =  “ “Л *)/}  (*)• (1.52)

(1.53)

with respect to variations in биДх). This gives

A partial integration leads to

The last term becomes, by Gauss’ theorem, a surface integral
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J  dSjdUjCTij.
If the force is applied to a finite region of the solid, Sw, vanishes at infinity 
and we can discard the surface integral. Taking 5 m, ( x )  to vanish every
where except for a sharp 6 -function singularity at an arbitrary but 
fixed place x we find the Euler-Lagrange equation for linear elasticity,

-djO-ijix) = (1.54)

This formula gives a physical meaning to the strain components. Inte
grating over a small volume element, say of the form of a cube with faces 
along the x, y, z directions, we obtain

-  J  <13хд,<т ц  =  -  J  d S i V j j  =  J  d 3x f j .  ( 1 .5 5 )

Thus GT, b (7 /2 , ct/3  are three components of the force per unit area acting 
on the surface element dSf . With this physical meaning, the stress-strain 
relation (1.36) becomes the physical law discovered in a simplified form 
by Robert Hooke in 1678 in his work De Potentia Restitutiva (“ut tensio 
sic vis”).

The two elastic constants /л and A can be measured in a simple 
experiment. Suspending a weight F on a cylindrical wire of radius R and 
area A  = ttR 2 leads to a stress crn = F/A with all other components 
vanishing. From (1.42), this results in the strains

U \\= —  cru , U22 =  w3 3  = ~ v u n . (1.56)2fl 1 +  V

The diagonal strains ии (no sum over /) are observable as relative 
changes in the longitudinal and transversal length scales

« ,, = A €/€, u22 = « 3 3  =  A RfR-  (1*57)

From (1.56) we see that the Poisson ratio v is the ratio between the two. 
Usually, elongations lead to transverse contractions and v > 0 (see foot
note a). The constant [not to be confused with (1.24)]

E  =  2/a(1 + v) (1.58)
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in the relation between o-n and мп is called Young's modulus and is 
extracted from the experimental ratio

The shear modulus is experimentally accessible by taking a cube of size a 
and pushing the upper face with the force F per area A  = a2 into one 
transverse direction (say +x), the lower face with the same force into 
the opposite direction (say -x ) .  As a consequence, the right angle in the 
xz  plane distorts to W2 + 0. This may be identified with d3 w, or 2w31 

(since d] М3  =  0), to linear approximation. The stress is then <r31 = Fla2. 
From (1.39) we see that

An alternative simple experiment subjects an elastic body to hydro
static pressure p. Then the stress on every surface element points along 
the normal, i.e.,

(1.59)

2 u M  =  -  СГ3 1

К
(1.60)

so that we can measure ц  directly from

( 1 .6 1 )

<?\ 1 =  cr22  =  СГ3 3  =  - p (1.62)

or

p  =  -  W - (1.63)

From (1.37) we see thatb

P -  ” K 2M + ЗЛ )и„= - к и и =  - к д к ик . (1.64)

bIn anisoiropic cubic media the role of K^is'^-played'-b.y к =  A +  (2/3)f/u =  +  
(2 /3 )£ c 4 4 , since ort l  =  cn м и  +  с , 2 (м 22 +  u3y)/*  ^ 2 4and hence a , ( =  - 3 p
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But dk uk is readily identified with the relative volume change of the body 
since [recall (1.5)]

d3x ' -  d 3x  dx\ dx^dx'i dx,•
------^ ~  1 =  d e <—  “  1d x  d x{dx2dx3 dx,

= det(5,y 4- djUj) -  1 = dk uk + 0 ((d u )2). (1.65) 

Thus we see that к is directly measurable from

which explains the name modulus of compression for к. In Table 1.3 we 
summarize the connection of к with the different elastic constants.

TABLE 1.3. Relations between isotropic elastic constants (e s  V E 2 + 2AE +  9Л2).

in
t e r m s  o f A E V к

A. м  

A, E  

A. v 

А. к

г

M(3A +  2/x) A ЗА +  2 м

f  +  ( E  — З а ) 
4

A( 1 - 2 i > )  

2 v  
3 ( k -  A)

A +  м  

A(1 +  w)( l -  2 v )
V

9 k ( k -  A)

2(A +  m )
л '  -  ( E  +  A) 

4A

A

3
e  +  (ЗА +  E )  

6
A(1 +  v)

3 v

M(2 M - E )

2 Зк  — A З к  -  A 

E - 2 m HE
/х. E

/X. V

E - - V  

2/xp 

1 - 2 v  
Зк  -  2m

2/x(  I +  v)

9  k/x

2/x 

З к - 2 m

3 ( 3 m - E )  

2 m (1 +  p ) 
3 (1  -  2 m)

/х. к 

E .  i* 

к . E  

V. к

3

p E E
З к  +  м 2 ( 3 k +  m )

E

(1 + v ) ( \ - 2 v )  
3 к ( 3 к  -  E )

2(1  +  v)  
З Е к 3 k - E

3 ( 1 - 2 » )

9  к -  E  
3 ki»

1 +  i»

9 к -  E  
3 k ( 1 -  2i>) 

2(1 +  v)
З к (  1 - 2 v )

6 k
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1.5. ELA STIC  G R EEN  FUNCTION

The Euler-Lagrange equation (1.54) can be used to calculate the distor
tion under an arbitrary external force field /)(x). Inserting the stress-strain 
relation (1.36), the displacements are seen to obey the second order 
differential equation

-Cijkedjd(Uk (x )= fi(x ) .  (1.67)

For isotropic media we insert (1.23) and have the rotationally invariant 
equation,

[ - / J .d 2s i] -  (A +  f i ) 3,d; ]u,(x) = / ,(x ) .  (1.68)

This equation is easy to solve. First, we exploit translational invariance 
via the Fourier transformation

« / ( * )  =  O - 6 9 )

with

«/(q) =  J  d3x e4 '*  и,(х) (1.70)

and a similar relation between /,(x ) and /)-(q). Then (1.68) becomes a 
3 x 3  matrix equation,

[M 2Sij +  (A +  it)q,qj}Uj( q) =  / , ( q). (1.71)

The matrix can be inverted easily by introducing spin projection matrices, 
one with transversal and one with longitudinal character,

P T( i =  (1-72)

= (1-73)

where

q =  q/|q| (1.74)
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is the direction in which the q vector points. These matrices are 
orthonormal, just as P (2), P (0) were in (1.29), only that matrix multi
plication now involves just one index. If we now write (1.71) in the form

q \ f i P T + (X  + 2/л) P L ) i j U j ( < \ )  = / f(q) 

we can immediately invert this as

“ / ( q )  =  G i j ( q ) f j ( q )

with

(1.75)

(1.76)

1  V  + _ L _ pl =_ l
q 2\ f i  \  + Zfi Jij Atq4

„2 s  _  л +  M 
4 ,y A +  2/x <?/<?/

q %  - 4i4i
2 ( 1 - v )

Going back to x space, (1.76) becomes

«/(*) =  J d y G ij(x  -  x ') /,(x ') ,

(1.77)

(1.78)

where

(q ) (1.79)

is called the Green function of the source equation (1.68), since it satisfies 
the differential equation

C/jk€ Gkn (x x )  8jn 8 (x X ) . (1.80)

The Fourier integral can easily be performed. First of all, we recall that

(s' x) =  7 P y i  f  d(I I  dcosd , J (2тг) q~ (2 тг) J„ J _ ,
, iqRcos В

1 ^ d q  . 
2 'irR Jo  q SI

sin qR -
AitR (1.81)
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is the standard Coulomb G reen’s function [see Eq. (3.30), Part I] where 
R denotes again the distance between x and x ',

д  =  |К| =  | х - х ' | .  (1.82)

In addition, we need

/ (2W)3 ?4 (1.83)
» 4

This can formally be written as

.......... ° - 8 4 )

and the integral is just

J  ( 2 n ) 3 q 4 2 t t 2R J 0 q
ysin qR, (1.85)

which unfortunately cannot be performed due to the divergence at the 
origin. In fact, this divergence is not really there since a physical crystal 
always has a finite size so that the momentum integration does not go all 
the way down to q =  0. The Green function should not, however, depend 
on the crystal size. Indeed, it does not. In order to see this we separate 
out the divergent part by performing a subtraction,

f  ^ f s in q R =  f  ^ f ( s in q R - q R ) +  Г (1.86)
Jo Я Jo Я Jo Я

The first, finite, integral is related to | — sinqR = тг!2 appearing in the
Jo Я

Coulomb Green function (1.81) by two differentiations with respect to R. 
It vanishes at R  = 0 together with its first derivative (which is all 
contained in the second part). Thus we can integrate (-тг12) twice in R 
and find for the entire expression ( 1 .8 6 )

[  ^ f ( s in qR -  qR) = ~ R r .  
Jo Я 4

(1.87)
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which implies that

f  (1 .88) 
J  (27t) <7 8 7 т 2тг Jo q

Inserting this into (1.84) we see that the divergent part does indeed cancel 
out and we obtain

/ _L.
<L89>

Therefore, the elastic Green function is

-  * ' >  -  s ^ : ( * ' v 2 R  -  г ^ й э <а - я )  ■ < 1 9 0 >

where we may insert V2R = 2//?, djdjR = 5/;/Я -  RjRj/R \  if we want to 
be more explicit.

The full anisotropic equation (1.67) can, in principle, be solved in the 
following way. Denote the 3 x 3 matrix multiplying uk (\)  by

Z M - / V ) - - c # f dy3,. (1.91)

In momentum space, the coefficients have the form

=  С\ \ Я \  +  Cf^ ql +  c55q l  +  2 c l6 q { q 2 +  2c 56q 2q 3 +  2  Ci5q 3q iy 

D u  — C \e q ]  +  ^26 q \  +  с45<?з +  ( c i2 +  c6t)  q  1 q i  +  ( c 2 5 +  C46) q 2q 3

+  (Cl4 +  C56) ^ 3 <7b

0 1 3  =  c \sq2\ +  c46q2 +  c35ql +  ( c 14 +  c56) q l q2 +  (c3 6  +  c45)q 2q3 

+ (<43 +  css)q ^q \ ,

^ 2 2  =  ^ 6 6  <71 +  c2 2 ^ 2  +  c44^  + 2 c2 6 ^ i ^ 2  +  2c24q2qy +  2c46q3q u

£> 23  =  C5 6 <?1 +  C2 4 <72 +  ° 3 4 ^  +  ( C25 +  С4 б ) ^ 1 ^ 2  +  ( c 23 +  О ^ Я з

+ {c3b + c45)q 3q u

0 33 = c55q\ +  c ^ q l  +  c33q\ +  2c4 5 ^ ! ^ 2 +  2c34q2q3 + 2c35q3q x. (1.92) 

The inverse of £>/,(q) is given by
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where M,y(q) are the cofactors of the 3 x 3  matrix associated with the 
elements Dij4 i.e.,

M,y(q) — ĵpq &inw ̂ /ми(я) ^<7«(Ч)* 0-94)

The determinant is a polynomial of sixth order in q. In the isotropic case 

D{q) = M2(A + 2/x)tf6,

Л#,Дч) =  м(А + 2ix)q2[q28,j -  ((A + /л)/(А +  2/t))<M,]- (1-95) 

Consider now the vector

< 1 9 3 >

« 1( 4 ) = — ^— / / ( 4 )
i>(q)

From it, the displacements are found to be

“ / ( 4 )  =  M,y( q ) " i ( q )  = W ,j(q)— 7 —/;(q )
| 0 ( q ) | (1.96)

so that M/;(q)/|D (q)| is the desired Green function in momentum space. 
For a general discussion see Every's paper quoted in the Notes and 
References. Due to the complexity of the expression (1.96) it is, in 
general, very difficult to go back to x space. One would have to calculate

G ( x - x ' ) =  f  — -—  (1.97a)
V ’ J  (2 ir) i D f a l l  V

and find w,(x) from

и,(х) =  f d 3x ' G ( \  -  (1.97b)

Only for cubic and hexagonal symmetry is the solution relatively sim
ple. In the isotropic case,
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G(\ — =  ______-______ f  ■ ^ ■ g »q-u -  x*)_L
C ( X  X )  M - ( A  +  2M) J  (2тг)-,е

1 ‘ 'x - x ' l - ’. (1.98)
/x-(A -f 2ц) 96tt 

In the cubic case, the equations in momentum space,

Dikuk (q ) = f , i q ) .  (1.99)

take the form

Dik" k (q) =  (M + A)<7/(q • u) + (/xq2 + £<7,2)((,(q)

= / ( q ) .  (no sum over /). ( 1 . 1 0 0 )

where we have introduced another anisotropy parameter

e = C\| — C|2  — 2 c4 4 , ( 1 . 1 0 1 )

which is related to the previous £ via

е  =  2 ц { £ - I) . ( 1 . 1 0 2 )

From (1.100) we see that

« / ( q )  =  — т -J-— ? ( / ;  -  (м  +  A)<?/( q  • u ))- ( 1 .Ю З)
Mq + eqj

On the other hand, dividing (1.100) by q: and summing over / gives
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Reinserting this into (1.103) yields

u,(q) =  j  OjSij -  s q ^ d /  /[3 +  е /(ц  + A) -  yuq2 £  ak] U (q )

where

a ,=  l/(/xq2 +  eq}). (1.104)

The right-hand side displays the desired inverse matrix G /y (q) =  D - l (q),y. 
In the isotropic limit it reduces to ( 1 .7 7 ). If the anistropy is small, one 
may use the approximate expression [compare (1.98)]

Actually, the external force problem will not be of direct interest in our 
further discussion and was presented here mainly in order to give some 
insight into the structure of the differential equations associated with the 
stress problem. From now on, we shall only be concerned with the 
so-called internal stress problem in which there are no external body 
forces, i.e ., /;(x) =  0. As a consequence, the stress tensor is always 
divergenceless,

1.6. TW O-DIM ENSIONAL ELASTICITY

It will sometimes be useful to study the simplified situation of a two- 
dimensional crystal. In nature, such crystals do not really exist. It is 
nevertheless possible to prepare certain limiting systems which, to a 
certain approximation, behave like two-dimensional systems. Examples 
are monolayers of helium, xenon, argon, krypton, or methane on smooth 
graphite surfaces. We shall give more details about such systems later in 
Chapters 7 and 14.

In two dimensions, there are only three strain components wn , u22 , w12 

and six elastic constants cab with a, b running through, say, I, 2, 4. For 
square lattices, there are again three independent cah's (с1Ь c12, C4 4 ) and 
the elastic energy density has the form [compare (1.16)]

(1.105)

=  d /07,- =  0 . (1.106)
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Ф )= 4 с ц (и ? 1  + U 2 2 ) + C|2 «llM2 2 +  2C44M?2. (1.107)

In the isotropic case this reduces to

e(x) = fjLujj + ^ufi. (1.108)

The stress tensor is given by

I =  c ll wl I + c 1 2 w2 2 » ^ 2 2  =  c 1 2 wl 1 + C2 2 M2 2 > <^12 =  ^ 4 4 Mj2 , (1.109) 

so that

e ( x ) = j ! -
4 m

2(^12 +  | ( o n  +  O22) -  ^ (o ’n +  o-22)2 I , ( 1 . 110 )
‘I -

where у  =  £ ( 2 f ( c 44/ c i 2) + 2 ) [in D dimensions, у =  £ (2 £ (c 44/ c i 2) + £>) 
=  D£k/A]. In the isotropic case [when f  =  (cn -  c l2 )/2c44 = 1, c4 4  =  /a, 

C12 =  A, Cn — 2/a + A]

cr,y = 2/jiUjj +  \8jjUcc ( 1 -1 1 1 )

and

( f e e  =  ( 2 / a  “Ь 2 A )M ( '£  =  2 k u c c , 

so that the modulus of compression is

к = /а 4 - A (1.112)

[in D dimensions, k = (2/a + D\)/D ]. The inverse relation of (1.111) is

(1Л13)

and we find the Poisson ratio, as in (1.56), by setting only о-и  Ф 0 and 
calculating

Wl
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Hence

_  w22 _

Mu 2 k  — A 2fx 4- A (1.115)

[in D dimensions v =  A/(2/x + (D -  1) A)]. With this v, A/2 к =  v/(l + v) 
and the energy has the same stress form (1.43) as in three dimensions.

Since (1.68) is the same in all dimensions, the elastic G reen 's function 
in momentum space for isotropic materials is always

С /Д ч )  =  Лf iq

7 * A +  /x

v **-7Zb.q,qr (1 .И 6)

Let us study this function in x space. First we form the Fourier transform 
of 1 /q 4

»4( * ) = J (2 tt) q*
(1.117)

This integral is even more divergent than the three-dimensional case 
(1.88). Since the infinities are due to the small q region of 1 tqA, we 
introduce a small regulator mass 8 and express u4 (x) in terms of the 
two-dimensional Yukawa potential [recall (6.105), (6.119) of Part I]

» « (* ) - / т & ^ т х г я - ^ к М х ! ) ,  ( 1 4 8 )(27t)2 q2 4- 62 2iт

namely,

i>4 (x )=  lim ( - ~ 2  0 e (x)J = -  
6 —* 0  \  00 J 25d(S |x |) 25 d(S [x|) 2 -7Г

K0 |5 |x|).

(1.119)

For small |x|, K(l(S|x|) can be expanded, using the well-known series

* « W  =  “ lo g z 4* ...

И + 0 (z4  logz).

4
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Hence

K i ( z )  = lo g y \ -z  z
+ -  +2 4 (1.120)

and

t \ 1 Iх !
M X )  =  - ^ 2 S ■ i R - ? ( log|x| + log( r Tj - I

(U 21)

The first two terms diverge for 5 —> 0. For some purposes it will be useful 
to introduce the subtracted potential

(X) =  V4 (x )  -  i>4 (0) =  k L  f log ( | e - ») -  0  +  ^  log IX I .

which has no quadratic divergence, and a further subtracted version

*SM  = »J(x) -  W 4 ( l )  =  J l o g W ,  ( 1 . 1 2 2 )

which is completely finite.
From (1.121) it is easy to derive the longitudinal Green function0

" f w  ■ ! ' - , I  " ( ? r w  ■ _ a ' s' ”' w  

- й ( - й 8 * Ч И ) + S ) -  < 1 1 2 3 >

as well as the transverse one

cNotice that

y<-(x) + 52 у4(х) = - 2^ ( l° g ( |^ y) + l°gfxl) = J = =
as it should. Also vj(x) =  t’,y (x).
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i)f[ (x)  =  l im [ -  
5 -> 0  J

1 / .  18 A  . A  ~ 1  I - . .

^ r = - ( s ^ v 2 - a , a y)« 4 (x)(2 тг) 2  (< ?2 +  s 2y

“ ~ ^ ,0 g ( f eT)  +  -7 T ?  )•  ( 1 1 2 4 )

Then the Green function is

0 ,y(x) =  ^ [ ( x ) + r ^ 4 (x)

1 J _
f i A tt

A + 3ц (  ( .  - 8 \  l \  Л + /x / 1
8« г г Д 4 |хИ +2 —

A +  M / l -  _ * /* Л  
A + 2/t \2  '  x2  /

(1.125)

APPENDIX 1A. TH E SYMMETRY CLASSES O F T H E  ELASTIC 
M ATRIX

The 32 crystal classes associated with the different point groups are given 
in Table 1.2. For these, the matrices cab fall into the following 9 symmetry 
classes.

1 . Cubic, all five classes:

Cab

c ll C12 1̂2
0Cll c12

c Il

0
c 44

С 44
C44

, 3 constants. (1A.1)

2a. Tetragonal 4 , 4 , — : 
m

c ll c 12 c 13

C 11 c 13

C33

Cab

0  0  Ci6  

0  0  Cj6  

0 0 0

C44

, 7 constants. (1A.2)
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4 2 2
2b. Tetragonal 42m, 4mm, 4 2 2 ,----------- :

m m m

Cab

С11 C\2 С13
C11 c 13 0

СЗЗ

С44

0 С44

C66

3. Hexagonal, all seven classes:

Cab

С11 C J2 C13

C 11 c13 0

C33

С44
0 c44

2 ( C t 1 “  C12)

4a. Trigonal, J ,  5:

6  constants.

(1A.3)

5 constants.

(1A.4)

Cab

^11 c 12 c I3 C14 ~  C25 0  ^

C 11 c13 ~ C \4  C25 0

c33 0  0  0

C44 0  c 25

0 C44 С14

K c u  ”  с  12),

- Л
4b. Trigonal, 3m t, 3 2 t , 3 — t:

m

C 11 C\2 Ci3 

C\\  c 13 
c33

Cab

0

С и 0  

— C14 0  

0  0

C44 0  

С44

0

C\4

K cu ~  c]2)

7 constants.

(1A.5)

6  constants.

(1A.6)
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5. Orthorombic, all three classes:

Cab

C l l  C \ 2  C l 3

0C22 c 23

СЗЗ

с  44 0 0

0 c 55 0

c 66

, 9 constants.

(1A.7)

6 . Monoclinic, all three classes:

C \ \  c \ 2  c 13

^22 C23 

C33

^ab

0

0  C |5  0  

0 C2 5 0

О C3 5  0
13 constants.

(1A.8)

7. Triclinic, both classes:
All 21 elements of the matrix cnb are independent. In a crystal lattice in 
which all atoms interact with central force only, and every atom is a 
center of symmetry, elastic constants satisfy Cauchy’s relations cijki = cikji:

с 23 = C4 4 , C31  = C5 5 , с [2 =  c(>6,
C I4 =  c56* c25 =  c64’ C l6 =  C45.

They reduce the 21 independent constants to 15.
Just as in the isotropic case, the elastic constants can be measured 

by looking at the response to certain mechanical deformations. In the 
absence of symmetry, the crystal has to be subjected to a large number of 
different stresses in orders to measure all independent matrix elements 
cab. The most accurate information on the elastic constants comes from 
the measurements of sound velocities in different directions. The 
equation of motion of sound waves are obtained by equating f i{ \)  in
(1.54) with the inertial force —pw,(x, /) where p is the mass density. Then 
(1.91) becomes
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(1A.9)

With the ansatz и ,(х )« е‘{я'х~ "f), the sound velocity i>(q) is given by

For cubic symmetry and sound waves in the (1,0,0) direction this gives

for the one longitudinal and the two transverse polarizations. In the 
( 1 ,1 ,0 ) direction,

Pu? =  K C 11 +  c , 2  +  2 c44), p v l = c M, pv l  = L(cn - c l2). ( 1 A .1 2 )

In the (1,1,1) direction,

pu? =  Kc ii +  2ci2 +  4c44), Р < ; =  К С Ц -С , 2  +  С44). (1A.13)

If only nearest and next nearest neighbours interact with harmonic 
springs of potential (a xH ) x 2, (a 2 /2 )jc2, respectively, the elastic constants 
are

NOTES AND REFERENCES

For an introduction into linear elasticity see any standard textbook on elasticity, for 
example,
L.D. Landau and E.M. Lifshitz, Theory o f  Elasticity (Pergamon Press, New York, 1970), 
W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928), and also 
A. Reuss. Z. Angew. Math. Mech. 9 (1929) 49.
J.P. Hirth and J. Lothc. Theory o f Dislocations (McGraw-Hill. New York. 1968).

det(pqV S,y -  Djj(q)) =  0. (1A.10)

рв? =  с „ , pvJl2 = cM, (1A.11)

(1A.14)

C44 — C I2 ~  ’ C \ l  ~  c \ 2 ~  C44  ~ f.c.c., (1A.15)
a a
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The anisotropic case is also treated in 
W.P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, 
New York, 1950).
See also the discussion of
E. Kroner, in The Physics o f  Defects, eds. R. Balian et al. (North-Holland, Amsterdam, 
1981) p. 264.
The elastic Green function for arbitrary symmetry classes was given by 
A.G . Every, Phys. Rev. B22 (1980) 1746.
For a derivation of Cauchy’s relations see M. Born and K. Huang. Dynamical Theory o f  
Crystal Lattices (Clarendon, Oxford, 1954).



CHAPTER TWO

LINE-LIKE DEFECTS IN CRYSTALS

2.1 . G E N E R A L  R E M A R K S

The question arises whether there can exist nontrivial distortions of a 
crystal if we remove all external body forces. At first sight, Eq. (1.54) is 
solved uniquely by m, ( x ) =  0  and the discussion is apparently finished. 
This conclusion would be correct if we were to allow only for smooth field 
configurations. Such a requirement would be too restrictive, however, 
and could not account for many of the phenomena observed in actual 
crystals.

No crystal produced in the laboratory is perfect. It always contains a 
great number of defects. These may be chemical, electrical, or structural 
in character, i.e., there may be foreign atoms, excess or missing 
electrons, or the crystal symmetry may be destroyed locally.

In the present context we shall be interested only in the structural 
defects of the intrinsic type, i.e., with no foreign atoms involved. They 
may be classified according to their space dimensionality. The simplest 
type of defect is the point defect. It is characterized by the fact that within 
a certain finite neighbourhood only one cell shows a drastic deviation 
from the perfect crystal symmetry. The most frequent origin of such point 
defects is irradiation or an isotropic mechanical deformation under strong 
shear stresses. We have noted in the Introduction that there are two types 
of intrinsic point defects. Either an atom may be missing from its regular 
lattice site (vacancy) or there may be an excess atom (interstitial) (see

777



778 III. GAUGE FIELDS IN SOLIDS

FIG. 2.1. Intrinsic point defects in a crystal. An atom may become interstitial, leaving 
behind a vacancy. It may perform random motion via interstitial places until it reaches 
another vacancy where it recombines. The exterior of the crystal may be seen as a reservoir 
of vacancies.

o o o o o o  о  о  о о  о  о
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О О ч О О О  О О  -^ O V ) о
о  о  о  о J o  о  о о о о о о
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о - ----
о о о о о о  о о о о о о

Fig. 2.1). Vacancies and interstitials are mobile defects. A vacancy can 
move if a neighboring atom moves into its place, leaving a vacancy at its 
own former position. An interstitial atom can move in two ways. It may 
hop directly from one interstitial site to another. This happens in strongly 
anisotropic materials such as graphite but also in some cubic materials 
like Si or Ge. Or it may move in a way more similar to the vacancies by 
replacing atoms, i.e., by pushing a regular atom out of its place into an 
interstitial position which, in turn, affects the same change on its 
neighbor, etc.

The thermal creation of point defects is suppressed by their large 
activation energies. For vacancies this is lower than for interstitials, with 
the following typical values:

Cu : 0.8 — 1.0 eV,
Ag : 0.6 — 0.9 eV,
A u : 0.6 — 0.8eV ,
Li : 0.55 eV,
Cs : 0 .26eV.

The concentration с =  nIN  of point defects per regular atoms is governed 
by Boltzmann’s law c = e~EIT. Since le V  corresponds to 11600 K, there 
are about 1 % vacancies at 1 0 0 0  К .

For interstitial atoms, the formation energies lie in the range of 
3 — 6 eV which makes them even rarer. In practical terms this means that 
in thermal equilibrium a crystal contains at most some vacancies. If 
interstitial atoms are found they are usually remnants of irradiation or 
mechanical deformation which have not had time to return to an 
equilibrium position.

Point defects have the property that if a number of them move close 
together, the total energy becomes smaller than the sum of the individual 
energies. The reason for this is easily seen. If two vacancies in a simple
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FIG. 2.2. Formation of a dislocation line (of the edge type) from a disc of missing atoms. 
The atoms above and below the missing ones have moved together and repaired the defect, 
except at the boundary.

cubic lattice come to lie side by side, there are only 1 0  broken valencies 
compared to 12 when they are separated. If a larger set of vacancies 
comes to lie side by side forming an entire disc of missing atoms, the 
crystal planes can move together and make the disc disappear (see Fig. 
2.2). In this way, the crystal structure is repaired. Only close to the 
boundary line is such a repair impossible. The boundary line forms a 
line-like defect.

Certainly, line-like defects can arise also in the opposite process of 
clustering of interstitial atoms. If they accumulate side by side forming 
an interstitial disc, the crystal planes move apart and accommodate the 
additional atoms in a regular atomic array, again with the exception of the 
boundary line. Line-like defects of this type are called dislocation lines.

It is obvious that a dislocation line need not only consist of a single disc 
of missing or excessive atoms. There can be several discs stacked on top 
of each other. Their boundary forms a dislocation line of higher strength. 
The energy of such a higher dislocation line increases roughly with the 
square of the strength. Dislocations are created and set into motion if 
stresses exceed certain critical values. This is why they were first seen in 
plastic deformation experiments of the nineteenth century in the form of 
slip bands. The grounds for their theoretical understanding were laid 
much later by Frenkel who postulated the existence of crystalline defects 
in order to explain theoretically why materials yield to plastic shear about 
a thousand times more easily than one might expect on the basis of a 
naive estimate.
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FIG. 2.3. A naive argument concerning the maximal stress supported by a crystal under 
shear stress as indicated by the arrows. The two halves tend to slip against each other. 
Assuming a periodic behavior a  =  <7m;ix sin(27rx7a), this reduces to cr~  a m.dX2rr(xla) ~  ц(х1 
a). Hence <rmilx = f illn . Experimentally, however, crmax -  10~ V  to 10-4 ft.

along the arrows in Fig. 2.3. We may imagine the material to consist of 
two continuous halves touching each other along a periodically undulated 
surface, to account for the crystal structure. The resistance to shear can 
then be parametrized by some periodic function in the displacement x  of 
the top half against the bottom half since, if x  is a multiple of the lattice 
spacing a, the pieces fit perfectly and there is no stress. If we choose to 
parametrize this periodic behaviour in a sinusoidal way, for simplicity, we 
may write roughly

<*** O'max sin 27T X ld ,

where o-max is the maximal stress which the intertwined surfaces can 
support. For x  «  a,

(r~ crmax2irx/a.

But x/a corresponds to the strain of this deformation so that by H ooke’s 
law the maximal stress is related to the shear modulus by

^Ynax ~  М/2 ТГ.

Experimentally, however, o-max is much smaller, i.e.,
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FIG. 2.4. A dislocation line permits the two crystal pieces to move across each other in the 
same way as a caterpillar moves through the ground. The bonds can flip direction 
successively which is a rather easy process.

(a)

(b)

£Tm,, ~  К Г 3 -  1 0 -“ ,

Thus something in the argument must be wrong and Frenkel concluded 
that the plastic slip must proceed not by the two halves moving against 
each other as a whole but stepwise, by means of defects. In 1934, 
Orowan, Polanyi and Taylor recognized these defects as dislocation lines. 
The presence of a single moving edge dislocation allows for a plastic shear 
movement' of the one crystal half against the other. The movement 
proceeds in the same way as that of a caterpiller. This is pictured in Fig.
2.4. One leg is always in the air breaking translational invariance and this 
is exchanged against the one in front of it, etc. In the crystal shown in the 
lower part of Fig 2.4, the single leg corresponds to the lattice plane of 
excess atoms. Under stress along the arrows, this moves to the right.
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FIG. 2.5. Formation of a disclination from a stack of layers of missing atoms (cf. Fig. 2.2). 
Equivalently, one may cut out an entire section of the crystal. In a real crystal, the section 
has to conform with the symmetry angles. In the continuum approximation, the angle П is 
meant to be very small.

After a complete sweep across the crystal, the upper half is shifted against 
the lower by precisely one lattice spacing.

If many discs of missing or excess atoms come to lie close together 
there exists a further cooperative phenomenon. This is illustrated in Fig.
2.5. On the left-hand side, an infinite number of atomic half planes (discs 
of semi-infinite size) has been removed from an ideal crystal. If the half 
planes themselves form a regular crystalline array, they can fit smoothly 
into the original crystal. Only at the origin is there a breakdown of 
crystal symmetry. Everywhere else, the crystal is only slightly distorted. 
W hat has been formed is again a line-like defect called a disclination. 
Dislocations and disclinations will play a central role in our further 
discussion.

Before coming to this let us complete the dimensional classification of 
two-dimensional defects. They are of three types. There are grain 
boundaries where two regular lattice parts meet, with the lattice 
orientations being different on both sides of the interface (see Fig 2.6). 
They may be considered as arrays of dislocation lines in which half planes 
of point defects are stacked on top of each other with some spacing, 
having completely regular lattice planes between them. The second type 
of planar defects are stacking faults. They contain again completely 
regular crystal pieces on both sides of the plane, but instead of being 
oriented differently they are shifted one with respect to the other (see Fig 
2.7). The third unavoidable type is the surface of the crystal.

From now on we shall focus attention upon the line-like defects.

2.2. DISLOCATION LINES AND BURGERS VECTOR

Let us first see how a dislocation line can be characterized m athem a
tically. For this we look at Fig. 2.8 in which a closed circuit in the ideal
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FIG. 2.7. Two typical stacking faults. The first is called growth-stacking fault or twin 
boundary, the second deformation-stacking fault.

twin boundary stacking fault
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FIG. 2.8. The definition of the Burgers vector b. In the presence of a dislocation line the 
image of a circuit which is closed in the ideal crystal fails to close in the defected crystal. The 
opposite is also true. The failure to close is measured by a lattice vector, called Burgers 
vector. The dislocation line in the figure is of the edge type and the Burgers vector points 
orthogonally to the line.

edge dislocation

crystal is mapped into the disturbed crystal. The orientation is chosen 
arbitrarily to be anticlockwise. The prescription for the mapping is that 
for each step along a lattice direction, a corresponding step is made in the 
disturbed crystal. If the original lattice sites are denoted by x „ , the image 
points are given by x„ +  u ( x „ ) ,  where u (x „ )  is the displacement amount 
field: At each step, the image point moves in a slightly different original 
point. After the original point has completed a closed circuit, call it # (b 
the image point will not have arrived at the point of departure. The image 
of the closed contour B0 is no longer closed. This failure to close 
is given precisely by a lattice vector b ( x )  called a local Burgers vector,
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which points from the beginning to the end of the circuit. 3 Thus the 
dislocation line is characterized by the following equation,

where Дм,(х„) are the increments of the displacement vector from step 
to step. Equivalently, we can consider a closed circuit in the disturbed 
crystal, call it £ , and find that its counter image in the ideal crystal does 
not close by a vector b called the true Burgers vector which now points 
from the end to the beginning of the circuit. 3

If we consider the same process in the continuum limit, we can write

The closed circuit В is called Burgers circuit. The two Burgers vectors 
are the same if both circuits are so large that they lie deep in the ideal 
crystal. Otherwise they differ by an elastic distortion.

A few remarks are necessary concerning the convention employed in 
defining the Burgers vector. The singular line L is in principle without 
orientation. We may abitrarily assign a direction to it. The Burgers 
circuit is then taken to encircle this chosen direction in the right-handed 
way. If we choose the opposite direction. Burgers vector changes sign. 
However, the products b, d xj, where dxj is the infinitesimal tangent vector 
to L, are invariant under this change. Notice that this is similar to the 
magnetic case discussed in Part II. There one defined the direction of the 
current by the flow of positive charge. The Burgers circuit gives j>du = /. 
One could, however, also reverse this convention referring to the 
negative charge. Then j>du would give - / .  Again, I ■ dx, is an invariant. 
Only these products can appear in physical observables such as the 
Biot-Savart law.

The invariance of bt dx} under reversal of the orientation has a simple 
physical meaning. In order to see this, consider once more the above 
dislocation line which was created by removing a layer of atoms. We can 
see in Fig. 2.8 that in this case Ъ x  dx points inwards, namely, towards

§  Ди,(х„) =  bh (2 . 1 a)

(2 . 1 b)

aOur sign convention is the opposite of Bilby el al. and the same as Read s (sec Notes and 
References). Notice that in contrast to the local Burgers vector, the true Burgers vector is 
defined on a perfect lattice.
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FIG. 2.9. A scrcw disclination which arises when tearing a crystal. The Burgers vector is 
parallel to the vertical line.

screw dislocation

the vacancies. Consider now the opposite case in which a layer of new 
atoms is inserted between the crystal planes, forcing the planes apart to 
relax the local stress. If we now calculate j>BdUj(x) =  we find that 
b x  dx points outwards, i.e ., away from the inserted atoms. This is again 
the direction in which there are fewer atoms. Both statem ents are 
independent of the choice of the orientation of the Burgers circuit. Since 
the second case has extra atoms inside the circle, where the previous one 
had vacancies, the two can be considered as antidefects of one another. 
If the boundary lines happen to fall on top of each other, they can 
annihilate each other and re-establish a perfect crystal. This can happen 
only piece-wise in which case the parts where the lines differ remain as 
dislocation lines. In both of the examples, the Burgers vectors are every
where orthogonal to the dislocation line and one speaks of a pure edge 
dislocation (Fig. 2.2).

There is no difficulty in constructing another type of dislocation by 
cutting a crystal along a lattice half-plane up to some straight line L, and 
translating one of the lips against the other along the direction of L. In 
this way one arrives at the so-called screw dislocation shown in Fig. 2.9 in 
which the Burgers vector points parallel to the line L.

When drawing crystals out of a melt, it always contains a certain 
fraction of dislocations. Even in clean samples, at least one in 106 atoms 
is dislocated. Their boundaries run in all directions through space. We 
shall see very soon that their Burgers vector is a topological invariant 
for any closed dislocation loop. Therefore, the character “edge” versus 
“screw” of a dislocation line is not an invariant. It changes according to 
the direction of the line with respect to the invariant Burgers vector b;. It
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is obvious from the Figs 2.2 to 2.9 that a dislocation line destroys the 
translational invariance of the crystal by multiples of the lattice vectors. If 
there are only a few lines this destruction is not very drastic. Locally, i.e., 
in any small subspecimen which does not lie too close to the dislocation 
line, the crystal can still be described by a periodic array of atoms whose 
order is disturbed only slightly by a smooth displacement field u,(x).

2.3. DISCLINATIONS AND THE FRANK VECTOR

Since the crystal is not only invariant under discrete translations but also 
under certain discrete rotations we expect the existence of another type of 
defect which is capable of destroying the global rotational order, while 
maintaining it locally. These are the disclination lines of which one 
example was given in Fig. 2.5. It arose as a superposition of stacks of 
layers of missing atoms. In the present context, it is useful to construct it 
by means of the following Gedanken experiment. Take a regular crystal 
in the form of cheese and remove a section subtending an angle П (see 
Fig. 2.10). The free surfaces can be forced together. For large П this 
requires considerable energy. Still, if the atomic layers on the free sur
faces match together perfectly, the crystal can re-establish locally its 
periodic structure. This happens for all symmetries of the crystal. In a 
simple cubic crystal, П can be 90°, 180°, 270°. The 90° case is displayed in 
Fig. 2.11.

In Fig. 2.11 we can imagine also the opposite procedure going from the 
right in Fig. 2.10 to the left. We may cut the crystal, force the lips open 
by П and insert new undistorted crystalline matter to match the atoms in

FIG. 2.10. The Volterra cutting and welding process leading to a wedge disclination.
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FIG. 2.11. The lattice structure at a wedge disclination in a simple cubic lattice. The Frank 
angle П is equal to the symmetry angles 90° or -9 0 ° . The crystal is locally perfect except 
close to the disclination line.

the free surfaces. These are the disclinations of negative angles. The case 
for ft =  -90° is shown in Fig. 2.11.

The local crystal structure is destroyed only along the singular line 
along the axis of the cheese. The rotation which has to be imposed upon 
the free surfaces in order to force them together may be represented by a 
rotation vector f t which, in the present example, points parallel to L  and 
to the cut. This is called a wedge disclination. It is not difficult to 
construct other rotational defects. The three possibilities are shown in 
Figs. 2.12. Each case is characterized by a vector. In the first case, ft 
pointed parallel to the line L  and the cut. Now, in the second case, it is 
orthogonal to the line L  and ft points parallel to the cut. This is a splay 
disclination. In the third case, ft points orthogonal to the line and cut. 
This is a twist disclination.

The vector f t  is referred to as the Frank vector of the disclination. Just 
as in the construction of dislocations, the interface at which the material 
is joined together does not have any physical reality. For example, in Fig. 
2 . 1 2 a we could have cut out the piece along any other direction which is 
merely rotated with respect to the first around L by a discrete symmetry 
angle. Moreover, instead of a straight cut, we could have chosen an 
irregular piece as long as the faces fit together smoothly (recall Fig. 2 .10). 
Only the singular line is a physical object.

The Gedanken experiments of cutting a crystal, removing or inserting 
slices or sections, and joining the free faces smoothly together were first 
performed by Volterra in 1907. For this reason one speaks of the creation 
of a defect line as a Volterra process and calls the cutting surfaces, where 
the free faces are joined together, Volterra surfaces.
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FIG. 2 .12.(a-c). Three different possibilities of constructing disclinations: (a) wedge, (b) 
splay, and (c) twist disclinations.
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2.4. IN TERD EPEN D EN CE OF D ISLO C A TIO N S A ND 
DISCLINATIONS

It must be pointed out that dislocation and disclination lines are not 
completely independent. We have seen before in Fig. 2.5 that a dis
clination line was created by removing stacks of atomic layers from a 
crystal. But each layer can be considered as a dislocation line running 
along the boundary. Thus a disclination line is apparently indis
tinguishable from a stack of dislocation lines, placed with equal spacing 
on top of each other.

Conversely, a dislocation line is very similar to a pair of disclination 
lines running in opposite directions close to each other. This is illustrated 
in Fig. 2.13. What we have here is a pair of opposite V olterra processes 
of disclination lines. We have cut out a section of angle f t , but instead of 
removing it completely we have displaced it merely by one lattice spacing 
a. This is equivalent to generating a disclination of the Frank vector ft 
and another one with the opposite Frank vector —ft whose rotation axis 
is displaced by a . It is obvious from the figure that the result is a 
dislocation line with Burgers vector b.

Because of this interdependence between dislocations and disclinations, 
the defect lines occurring in a real crystal will, in general, be of a mixed 
nature. It must be pointed out that disclinations were first observed and 
classified by F.C. Frank in 1958 in the context of liquid crystals. Liquid 
crystals are mesophases. They are liquids consisting of rod-like molecules. 
Thus, they cannot be described by a displacement field w,(x) alone but 
require an additional orientational field л,(х) for their description. This 
orientation is independent of the rotational field <t>,(x) =  \ e ijkbjUk {\). 
The disclination lines defined by Frank are the rotational defect lines with 
respect to this independent orientational degree of freedom. Thus, they

FIG. 2.13. The generation of a dislocation line from a pair of disclination lines running in 
opposite directions at a fixed distance b. The Volterra process amounts to cutting out a 
section and reinserting it, hut shifted by the amount b.
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are a priori unrelated to the disclination lines in the rotation field 
u)j(x) = \eiikdjUk(x). In fact, the liquid is filled with dislocations and 
cu-disclinations even if the orientation field n,(x) is com pletely ordered.

Friedel in his book on dislocations (see the references at the end) calls 
the «/-disclinations, rotation dislocations. But later the name disclinations 
became customary (see K leman’s article cited in the Notes and 
References). In general, there is little danger of confusion, if one knows 
what system and phase one is talking about.

2.5. DEFECT LINES WITH INFINITESIMAL DISCONTINUITIES 
IN CONTINUOUS MEDIA

The question arises as to how one can properly describe the wide variety 
of line-like defects which can exist in a crystal. In general, this is a rather 
difficult task due to the many possible different crystal sym metries. For 
the sake of gathering some insight it is useful to restrict oneself to 
continuous isotropic media. Then defects may be created with arb itrarily 
small Burgers and Frank vectors. Such infinitesimal defects have the 
great advantage of being accessible to differential analysis. This is 
essential for a simple treatm ent of rotational defects. It permits a charac
terization of disclinations in a way which is very sim ilar to that of dis
locations via a Burgers circuit integral. Consider, for exam ple, the wedge 
disclination along the line L (shown in Figs. 2 .5 , 2.10, 2.11 or 2 .12a), and 
form an integral over a closed circuit В enclosing L.

Just as in the case of dislocations this measures the thickness of the 
m aterial section removed in the V olterra process. Unlike the situation for 
dislocations, this thickness increases with distance from the line. If ft is 
very sm all, the displacement field across the cut has a discontinuity which 
can be calculated from an infinitesimal rotation

where x is the vector pointing to the place where the integral starts and 
ends. In order to turn this statem ent into a circuit integral it is useful to 
remove the explicit dependence on x and consider not the displacement 
field W/(x) but the local rotation field accompanying the displacement 
instead. This is given by the antisym m etric tensor field

Д и/ = (ft x  x)/, (2.2)

M x ) =  4 (d / « y (x )  -  djUj(x)). (2.3)
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The rotational character of this tensor field is obvious by looking at the 
change of an infinitesimal distance vector under a distortion

dxj -  dxj = (djUj)dxj

= UijdXj-(DjjdXj. (2.4)

The tensor field w,y is associated with a vector field w, as follows:

*>/,•(*) — £jjk (*>k(x) (2*5)

i.e . ,

W/(x) = \ £ijk (Ojk (x) = | (V x  u)/,

In terms of a>,-, the change of distance (2 .4) takes the form

dx- -  dxi = M,y(x) dxj + (oj(x) x  d x ) , , (2 .6)

with a transparent separation into a local change of shape and a local 
rotation. Now, when looking at the wedge disclination we see that due to 
(2 .2 ), the field co,(x) has a constant discontinuity П across the cut. This 
can be formulated as a circuit integral

Да>, = <j) do)j = П/. (2 .7)

The value of this integral is the same for any choice of the circuit В as 
long as it encloses the disclination line L.

Notice the way in which this simple characterization depends essen tia lly  
on the infinitesimal size of the defect. If П were finite, the d ifferential 
expression (2 .2 ) would not be a rotation and the discontinuity across the 
cut could not be given in the form (2 .7) without specifying the circuit B. 
The difficulties for finite angles are a consequence of the non-A belian na
ture of the rotation group. Only infinitesimal local rotations have additive 
rotation angles with only quadratic corrections, which can be neglected .

2.6. MULTIVALUEDNESS OF THE DISPLACEM ENT FIELD

As soon as a crystal contains a few dislocations, it is realized  that the 
definition of displacement field is intrinsically non-unique. The d isp lace
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ment field is really  multivalued. In a perfect crystal, in which the atoms 
deviate little from their equilibrium  positions x, it is natural to draw the 
displacem ent vector from the lattice places x to the nearest atom. In 
principle, however, the identity of the atoms makes such a specific assign
ment impossible. Due to thermal fluctuations, the atoms exchange 
positions from time to time by a process called self-diffusion. A fter a very 
long tim e, the displacement vector, even in a regular crystal, will run 
through the entire lattice. Thus, if we describe a regular crystal initially 
by very small displacement vectors w ,(x), then, after a very long time, 
these will have changed to a permutation of lattice vectors, each of them 
occurring precisely once, plus some small fluctuations around them. 
Hence the displacement vectors are intrinsically m ultivalued, with w,(x) 
being indistinguishable from m,(x) + fliV,(x), where /V,(x) are integer 
numbers and a is the lattice spacing.

It is interesting to realize that this property puts the displacement 
fields on the same footing with the phase variable y (x ) of superfluid 4He. 
There the indistinguishability of y (x ) and y (x ) 4- 2ttN(x) had an entirely 
different reason. It followed directly from the fact that only the com
plex field ф(х) = \ф(х)\е'у{х\ the wave function of the condensate, was 
physically observable.

Thus, in spite of the different physics described by the variab les y (x ) , 
w ,(x), they both share this characteristic multivaluedness. It is just as if 
the rescaled u,(x) variab les, y ,(x ) = (27r/a)Uj(x) were phases of three 
complex fields,

Ф,(х) = l</'i(x)|e'y'w,

which describe the positions of the atoms.
In a regu lar crystal, this m ultivaluedness of m, ( x) has no important 

physical consequences. The atoms are strongly localized and the exchange 
of positions occurs very rarely. The exchange is made irrelevant by the 
identity of the atoms and symmetry of the many-body wave function. This 
is why the natural assignment of m,(x) to the nearest equilibrium  position 
x presents no problems. As soon as defects are present, however, the full 
am biguity of the assignment comes up: When removing a layer of atoms, 
the result is a dislocation line along the boundary of the layer. Across the 
layer, the positions u,(x) jum p by a lattice spacing. This means that the 
atoms on both sides are interpreted as having moved towards each other. 
F igure 2.14 shows that the same dislocation line could have been con
structed by removing a com pletely different layer of atoms, say S ',  just as
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FIG. 2.14. The figure shows that in the presence of a dislocation line, the displacement 
field is defined only modulo lattice vectors. This is due to the fact that the surface 5 on 
which the atoms have been removed is arbitrary as long as the boundary line stays fixed. 
Shifting S implies shifting of the reference positions, from which to count the displacements 
ы,(х).
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long as it has the same boundary line. The jum p of the disp lacem ent field 
across the shifted layer S’ corresponds to the neighbouring atom s of this 
layer having moved together and closed the gap. Physically , there is no 
difference. There is only a difference in the descriptions which am ounts to 
a difference in the assignment of the equilibrium  positions from w here to 
count the displacement field w,(x). In contrast to regu lar crysta ls there 
now exists no natural choice of the nearest equilibrium  point. It is this 
m ultivaluedness which will form the basis for the gauge field description 
of the solid.

2.7. SMOOTHNESS PROPERTIES OF THE D ISPLACEM EN T 
FIELD AND W EINGARTEN’S THEOREM

In order to be able to classify a general defect line we must first give a 
characterization of the smoothness properties of the d isplacem ent field 
aw ay from the singularity. In physical terms, we have to m ake sure that 
the crystal matches properly together when cutting and re jo in ing the free 
faces.

In the scalar representation of magnetism and vortex lines described in 
Part II, Sections 1.5, 1.7, 1.8, this condition was given by the in tegrab ility 
condition [recall (1 .79), Part II]

(did; -  djdi)y(x) = 0 , (2 .8 )

which really amounts to the M axwell equation,
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(V X H), = (V x  V-y), = eijkdjdky = i i , (2 .9)

with j,- = 0 aw ay from the current loop. As long as the cutting faces are 
avoided, Eq. (2.8) was trivial since then the function y(x ) was smooth. 
Close to the V olterra surface S at which the free faces jo in , however, 
there was danger. Due to the jum p of y(x ) across S , the gradient a, у  had 
a 5-function singularity on S. Nevertheless, the gradient was supposed to 
be the same on both sides of S and it was this condition from which we 
derived that fact that the jump A y(x) across the sheet had to be a 
constant which, in turn implied, via Stokes’ theorem, that y (x ) satisfied 
the integrability condition (2 .8) over the whole space including the sur
face 5 , except for the singular current line.

Let us now study the corresponding situation for the displacement field 
m, ( x ). A w ay from the cutting surface 5 , m, ( x ) is perfectly smooth and 
triv ially satisfies the integrability condition

Across the surface, w,(x) is discontinuous. However, the open faces of the 
crystalline m aterial fit properly to each other. This implies that the strain 
as well as its first derivatives should have the same values on both sides of 
the cutting surface S:

This severely restricts the discontinuities of w,(x) across S. In order to see 
this let x ( l ) ,  x (2 ) be two different crystal points slightly above and below 
S and C +, C~ be two curves connecting the two points. (See Fig. 2 .15 .) 
We can then calculate the difference of the discontinuities as follows:

( М / - э уэ , ) М х )  = 0 . (2.10)

Aw,у = 0 , (2 . 1 1 a)

Ad*uiy = 0. (2 .1 1b)

A n ,( l)  -  Ди,-(2) = M l " )  -  и ,(1+)] -  M 2 - )  -  u ,(2+)]

(2.12)

C+ C~

Using the local rotation field o>,y(x) we can rewrite this as
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FIG. 2.15. This figure defines the geometry used in the derviation of Weingarten’s 
theorem [Eqs. (2 .12)-(2.21)).

Дм,(1) -  Дм,(2) = J  dxjiua -  a>,y) -  J '  dx,(uH -  to,/). (2.13) 

C+ С '

The a)jj pieces may be integrated by parts:

-  (ху - * Д Г ) ) < о /у +  f  d xk( x j -  Х ; { \ + ) ) д к Ши
l * J r

+  ( X j - X j ( \  ) ) o J  -  dxk(xj  - X j ( \  ) ) д к шц 
j i- J  I»

“ (*/(2 +) “  *Д 1 +))о>/;(2 +) + f "  dxk( x j-x j(  1 +
J i +

))dko)j

(2.14)

Since

Xj(1+) = X/(1~)> Xj(2+)=Xj{2n,

we arrive at the relation

Ди,(1) -  Дм,(2) = —(jf/(l) — Xj(2))(wtj(2~) -  ш/;(2+))

+ j>c dxk{uik + (х / -ф ))д кЩ1)  • (2.15)
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where C+~ is the closed contour consisting of C+ followed by — C~. 
Since C+ and ~C~ are running back and forth on top of each other, the 
closed contour integral can be rewritten as a single integral along — C " 
with uik and d*ct>,y replaced by their discontinuities across the sheet 5 . 
M oreover, the discontinuity of дкш can be decomposed in the following 
manner:

=kdk(d,Uj -  djUi)(x~) -  ( x -  - *  x + )

=  diUkj(x~) -  djUki{x~) +  ^ ( д * Э , -  djdk)U j(x-)

-  К dkd j - d jd k)Ui(x~) + didj)uk(x~) -  ( x ~ - >  x + ).
(2.16)

Since above and below the sheet, the displacement field is smooth, the 
two derivatives in front of u (x±) commute. Hence the integral in (2.15) 
becomes

This expression vanishes due to the physical requirem ent (2 .11). As a 
result we find that the discontinuities between two arb itrary points 1 and 
2 on the sheet have the simple relation

c-
dxk{Auik + (Xj -  Xj)(\)A(d,uk, -  djuki)}. (2.17)

Дм,(2) = Ди,(1) -  П,,(x y(2) -  •*/(!)), (2.18)

where ft,y is a fixed infinitesimal rotation matrix given by 

= Да»,у(2) = а>,у(2- ) -  ft>,y(2+). (2-19)

W e now define the rotation vector

ft*  -  2 £ijk & ij (2 .20)

in terms of which (2.18) takes the form

Au(2) = Au(l) + (I x (x(2) -  x( 1)). (2 .21)

This forms the content of Weingarten’s theorem: The discontinuity of 
the displacement field across the cutting surface can only be a constant 
vector plus a fixed rotation.
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Notice that these are precisely the sym m etry elem ents of a solid con
tinuum. When looking back at the particu lar dislocation and disclination 
lines in Figs. 2 .2 - 2 .1 2  we see that a ll the d iscontinuities obey this 
theorem , as they should. The vector Cl is the Frank vector of the dis
clination lines. For a pure disclination lin e , П = 0 and A u (l)  = Au(2) = b 
is the Burgers vector.

2.8. INTEGRABILITY CONSIDERATIONS

For vortex lines, the smoothness of the superflow velocity t\ (x), ~ d ,y (x ) 
implied that the jum p of y (x ) was a constant and this, in turn , led to the 
integrability condition

(d id ,  -  d jd j )  у (x )  =  0

away from any vortex line [recall Eq. (1 .78 ), Part II]. H ere we can derive 
something quite sim ilar for the rotation field o>/y(x ). T ak ing W eingarten ’s 
theorem (2.18) and forming derivatives, we see that the jum p of the 
w,y(x) field is necessarily a constant, nam ely П;,-. Hence шк1 also satisfies 
the integrability condition

(dj dj  -  d j d j )  a>k( =  0, (2.22)

everywhere except on the defect line. The argum ent is the sam e as that 
for the vortex lines. We simply observe that the contour integral over a 
Burgers circuit

Aco/y = (j) dojij = <j) dxk dk toy (2 .23)

can be cast, by Stokes' theorem , in the form

A(x>jj = I dS,„ tmkl dk d( (2 .24)
J sB

where SB is some surface enclosed by the Burgers circuit. Since the result 
is independent of the size, shape, and position of the Burgers circuit as 
long as it encloses the defect line L , this implies

(2 .25)
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everywhere aw ay from L , which is what we wanted to show.
In fact, the constancy of the jump in w,y could have been derived 

somewhat more d irectly, without going through (2 .22 ) -  (2 .25), by taking 
again the curves C +, C~ on Fig. 2.15 and calculating

Aw,y( l )  -  До),у(2 ) = j  dxk dk (O/j -  j  dxk dk <D,y = -  J dxkA(dk cotj).

C+ C~ C~ (2.26)

From the assumption (2.11) together with (2.16) we see that <*>,y(x) does 
not jum p across the Volterra surface S. But then (2.26) shows us that Aa>,y 
is a constant.

Let us now consider the displacement field itself. As a result of 
W eingarten ’s theorem , the integral over the Burgers circuit B2 in Fig. 
2.15 gives

Ли,(2 ) = du, = Aw(l) -  П/у(*/(2 ) -  дгу(1)) . (2.27)
J B2

By treating the integral over B2 in the same way as those over C +, C~ in 
(2 .13 )—(2.15), we arrive at the equation

Aw/(1) ~ 2 ) ~ Jf/(1)) = ^  dxk{uik + (х, -  х;{2))дк<о0). (2 .
J  /?,

28)

Here we observe that the factors of jc, ( 2) can be dropped on both sides by
(2.23) and Aw/y = n,y. By Stokes' theorem , the remaining equation then 
becomes an equation for the surface integral over S B\

Дн/(1) + П,уЛгД1)= dS( £(„,kd„,{ulk+xj dka>ij}
J  5®-’

=  I d S (  S (mk { ( Э ш Ujk +  dk (Ojm ) +  X jd ,„  dk <x)jj} . (2.29) 
J  S°2

This must hold for any size, shape, and position of the circuit B2 as 
long as it encircles the defect line L. For all these different configurations, 
the left-hand side of (2.29) is a constant. We can therefore conclude that

dS( {£(ttlk[d,„lijk +  dk &>//>,] "f" Xj S( llfk dk (x)jj } 0 (2.30)
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for any surfaces 5 ' which does not enclose L. M oreover, from (2.22) we 
see that the last term cannot contribute. The first two term s, on the other 
hand, can be rewritten, using the sam e decom position of dk(oim as in
(2.16), in the form

^  dS{ Ecmk {Skmi ~ $mik $ikm) = j  £emk S,t,ki > (2.31)

where we have abbreviated

Skini{x) =\{dkdm -  dmdk) Ui(x). (2.32)

Since this has to vanish for any S ',  we conclude that aw ay from the defect 
line, the displacement field w,(x) also satisfies the in tegrab ility  condition

(д*ат - Э шд*)м/(х) = 0. (2.33)

On the line L , the integrability conditions for u, and a re , in genera l, 
both violated. Let us first consider c*>/y. In order to give the constant result 
Дсо/Дх) = П,у in (2.24) the integrability condition must be vio lated by a 
singularity in the form of a б-function along the line L ,

6,(L) = d s ^ ~ S ^ \ x  -  x(s)) (2.34)

[shorthand for 5( (x, L ), Eq. (II. 1.76)] nam ely,

Ciink д,м дк (Оу = ft,y8 ( (L). (2 .35 )

Then (2.25) gives Aco,-y- = via the formula

I dSl 8( {L) = l. (2-36)
J sB

In order to see how the integrability condition is violated for w,-(x), 
consider now the integral (2.29) and insert the result (2 .31). This g ives

Ai4r-(1) + CljjXj(\) = j dS( еСтк (Smki + Xj д„, дк щ ). (2 .37 ) 
J s*z

The right hand side is a constant independent of the position of th e 
surface SBz. This implies that the singularity along L is of the form
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£Cmk (dm dk Hi ■+• Xj д/п дк (Ojj) — bj 81 (/>), (2.38)

where we have introduced the quantity

6 , ^  AW/(1) -h n ,yjcy( l ) .  (2.39)

Inserting (2.35) into (2.38) leads to the following violation of the 
integrability condition for w,(x) along L ,

ttmk dm дк Щ = (6 ,- -  ClgXj) 8€{L). (2.40)

2.9. DISLOCATION AND DISCLINATION DENSITIES

In the last section we saw that the most general defect line L is charac
terized by a violation of the integrability condition for displacement and 
rotation fields which had the form of a 5-function along the line L. In 
analogy with the current density of magnetism and the vortex density у  in 
Part II, (1.78)

л (* )  = e.y* Sj dk y(\) = / S,(L), (2 .41)

we introduce densities for dislocations and disclinations, respectively, as 
follows:

a ,y(x) = ем с dk dt My(x ), (2 .42a)

0 ,y(x) = eiki dk d( u)j{x), (2.42b)

where we have used the vector form of the rotation field a>, = \ е̂ к u)jk , in 
order to save one index. For the general defect line along L , these 
densities have the form

^ ( x )  = 8j{L)(bj -  С1;кхк), (2 .43a)

0 /y(x) = 6(( L ) a y, (2.43b)

where П, = \ £,jk Cljk is the Frank vector.
In (2.43) the rotation by ft is performed around the origin. Obviously, 

the position of the rotation axis can be changed to any other point xq by a 
simple shift in the constant bj —> bj = bj 4- (ft x  xo)y-. Then or,y(x) = 
8j(L){bj + (f t x  (x -  x0)y>. Notice that due to the identity
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d ,S ,(L ) = 0 (2.44)

for closed lines L , the disclination density satisfies the conservation law

Э, 0 /; = 0 , (2.45)

which implies that disclination lines are a lw ays closed. This is not true for 
media with a directional field, e .g .,  nem atic liquid  crysta l. Such media are 
not considered here since they cannot be described by a displacement 
field alone. D ifferentiating (2 .43a) we find the conservation law  for dis
clination lines dj(Xjj= -Cljidi(L) which, in turn , can be expressed  in the 
form

д, ац= - e jk( <dk ( . (2.46)

From the linearity of the relation (2.42) in uf and o>; it is obvious that 
these conservation laws remain true for any ensem ble of infinitesim al 
defect lines.

The conservation law (2.46) m ay, in fact, be derived by purely 
differential techniques from the first smoothness assum ption (2 . 1 1 a). 
Using Stokes’ theorem , Aw/y- can be expressed in the sam e w ay as Aa>/y- in
(2 .24), and by the same argument as the one used for a>fy we conclude that 
the strain is an integrable function in all space and satisfies

(d/d* -  dkdj) u€j(x) = 0. (2.47)

If we then look at in the general definition (2 .42a), rew rite it as

a ij =  eikcdkdcUj = eik( dk (U£j + (Oy)

-  Eike dk uej + djj dk (Dk — dj щ , (2 .48)

and apply the derivative 3 ,, this gives directly (2 .46).
In a sim ilar w ay, the conservation law (2 .45 ) can be derived by 

combining both smoothness assumptions (2 .11a) and (2 .11b). The first 
can be stated, via Stokes’ theorem, as an integrab ility condition for the 
derivative of strain , i .e . ,

d„ -  дп де) дк = 0. (2 .49)

Let us recall that from the first assumption (2.11a) we have concluded 
in (2.16) that dk(Ojj(x) is also a completely smooth function across the 
surface 5. Hence, дка)у must also satisfy the integrability condition
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(df d„ -  d„ dc) dk(Djj(x) = 0 .

Together with (2.49) this implies that дк 3,-ыДх) is integrable:

(дсд „ -д „ д с)Вкд,и;(х) = 0. (2.50)

If we write down this relation three times, each time with n , к 
exchanged cyclically , we find

&C Rnkij + RkCij “1" dk Rfnij 0»

where Rnkij is an abbreviation for the expression,

R/ikij = (d« dk dk d,t) dj Uj (x ) . (2.51)

Contracting к with i and i  with j  gives us

djR-niij + dnRjjjj 4" djRjnij 0 .

Now we observe that because of (2 .47), R„kij is anti-symm etric not only in 
n and к but also in i and j  so that

2dj Rinji ~ dn Ryji — 0 .

This, however, is the same as

2dj{̂ £jPqe„k( Rpqkc) = 0» (2.52)

as can be verified using the identity

£ jp q  £ n k C  =  & jn  й р к  +  8 j k  $ p (  8 ^ , ,  +  8 j (  8 p n  8 ( jk

~ fyn &pC &qk ~~ fyk &pn dql' “  $jC &pk &qn • (2.53)

R ecalling , now the definition (2.51) and (*)„ = %£nkedkU€, Eq. (2.52) 
becomes

2eil,4diBllB,lo>l, = 0, (2.54)

and this is precisely the conservation law for disclinations (2.45)
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FIG. 2.16. Illustration of Volterra process in which an entire volume piece is moved with 
the vector bh

2.10. MNEMONIC PRO CED URE FO R CO N STRUCTING 
DEFECT DENSITIES

There exists a simple mnemonic procedure for constructing the defect 
densities and their conservation laws. This we now exp lain .

Suppose we perform the V olterra cutting procedure on a closed surface 
S , dividing it m entally in two parts, jo ined along some line L (see Fig.
2.16). On one part of 5 , say S +, we remove m aterial of th ickness bj and 
on the other we add the same m aterial. This corresponds to a sim ple 
translational movement of crystalline m aterial by b ,, i .e . ,  to a d isp lace
ment field

wf (x) = - S ( V ) 6 ft (2 .55)

where the б-function on a volume V was defined in Eq. (8 .21), Part II. By 
this transformation the elastic properties of the m aterial are unchanged. 

Consider now the distortion field dyii,(x). Under (2 .55) ,  it changes by

dkue{x)^> dku€(x) -  dk8(V)b€. (2 .56)

The derivative of the 6-function is singular only on the surface of the 
volume V. In fact, in (8 .20), Part II, we already derived the form ula 
—dk8(V) = 8k(S) so that (2.56) reads
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dkue(x)-> dkue(x) + 8k(S)be. (2 .57)

From this trivial transformation we can now construct a proper 
dislocation line by assuming S to be no longer a closed surface but an 
open one, i .e . ,  we may restrict S to the shell S + with a boundary L. Then 
we can form the dislocation density

a,e(x) = £ijk dj dk u€(x) = eijk Эу 8k (S) be . (2.58)

The superscript + was dropped. Using Stokes’ theorem on the 6* (5)- 
function, as derived in (8 .17), Part II, this becomes simply

a it(x) = 8i(L)be. (2.59)

For a closed surface, this vanishes.
For a general defect line, the starting point is the trivial V olterra 

operation of translating and rotating a piece of crystalline volume. This 
corresponds to a displacement field

ue(x) = -8(V )(b i + Eeqra qxr). (2.60)

If we now form the distortion, we find

(x) = 8k{S){b( + ScqrClqXr) — 5 (V ) S(qkCiq.

In this expression it is still impossible to assume S to be an open surface. 
If we, however, form the symmetric combination, the strain

uki = }(d*«£ + d(uk) = \[8k(S)(be + e eq r C l q x r )  + (/:€)], (2.61)

is well defined for an open surface, in which case we shall refer to uk( as 
the plastic strain and denote it by upkt. The field

Ppk< = 8k(S)(b€ + eeqrClqXr) (2.62)

plays the role of a dipole density of the defect line across the surface S. It 
is usually called a plastic distortion. It is a single valued field ( i .e .,  
derivatives in front of it com mute). In terms of ppk (, the plastic strain is 
simply
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H 5 f - i ( « r  + « f ) ’ (2 -63)

The full displacement field (2.60) is not defined for an open surface due 
to the 6 (K ) term. It is m ultiple valued . The d islocation  density , how
ever, is single valued. Indeed, we can eas ily  ca lcu la te

<*/< = е,у*Э; Э*и{(х) = Bijkdj[Sk(S)(b€ + eeqrClqxr) -  8{V) eCqk£lq)

= §/(L )(b t + e e, rn ^ r ) , (2.64)

and see that this is the same as (2 .43a).
Let us now turn to the disclination density ©,,/ = epmnBmHna>; . From

(2.60) we find the gradient of the rotation field

= 2eikt^n^kli(

= {sjkcd„[5k{S)(be + eeqrClqxr) -  S(V) eeqk€lq)

= U ikcd„Pb + 8„(S)Cli . (2 .65)

This is defined for an open surface S in which case it is called  the plastic 
bend-twist and denoted by It is useful to define the plastic
rotation

<*>;;, ^ a „ ( S )  f t , ,  (2 .6 6 )

which plays the role of a dipole density for disclinations. W ith this, the 
plastic gradient of o>, is given by

+ (2 -67> 

We can now easily calculate the disclination density:

— Epmn ft m X!nj — \Ejkf Ертп^т^п 4* Epnmftm<ftnj •

In front of /3iV, the derivatives commute [see (2.62)] so that the first term  
vanishes. Use of Stokes' theorem on the second term gives

%  = e„mn 8m Vni = S„(L) ft,-. (2 .6 8 )

in agreement with (2 .44 ).
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Notice that according to the second line of (2.64), the dislocation 
density can also he expressed in terms of and ФЧ, as

a n = e,ik dj f t ,  + 8ir ф% -  ФЪ. (2.69)

In fact, this is a direct consequence of the decomposition (2 .48). which 
can be written in terms of plastic strain and bend-twist as

a#y = Eikrdku,)fj + b.jX1;,', -  x '; (2.70)

Expressing u,}fj in terms of /37/, and xj’ in terms of ф(’ [see (2.63) and
(2.67)] we find

a ij = fakrdiiPfy + ВцФф1 ~ ФЦ + {{Ъкгй-кЩ* + 8а £<1кг<}(1Ркг ~ GikrdjPkr)-

But the quantity inside the parentheses is equal to as can be
seen from applying the identity

£(jk t + ĵk̂ ifq + ĵf̂ it/k

to dqpkt. Thus a-,, takes again the form (2.69).

2.11. BRANCHING DEFECT LINES

W e recall that from the geom etric point of view, the conservation laws 
state that disclination lines never end and dislocations end at most at a 
disclination line. Consider, for exam ple, a configuration of three lines 
shown in Part II, Figs. 1.11, 1.12. Assign an orientation to each line and 
suppose that their disclination density is

0„(x) = n,a,(L) + n;s,(L') + n;'sy(L"), (2.71)

with their dislocation density being

a,y(x) = St(L){bj + [ft x  (x -  x„)]; } + Si{L'){b'i + [f t ' x  (x -  x'„)]( }

+ 8AL’){b"j + [ft" x  (x -  xi',)],}. (2.72)

The conservation law d,(-)„ = 0 then implies that the Frank vectors satisfy 
the equivalent of Kirchhoff’s law for currents
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a  + a ?  = a ; .  (2 .73)

This follows directly from the identity [see Eq. [II. 1.83)] for open lines

dML) = J ds^8™ (x -  x(3)) = 5<3>(x -  x ,) -  S(3>(x -  х Д

where x, and Xy are the initial and final points of the curve L. The 
conservation law d,ar,y = £,**©**, on the other hand, gives

^  -  (f t x  (x -  x„)), + b'l -  (ft" x  (x  -  хШ ,- = b\ -  (f t  x  (x ' -  xf,))/.
(2.74)

If the same position is chosen for all rotation axes, the B urgers vectors b, 
satisfy again a Kirchhoff-like law:

bi + b 'l^ b ’j. (2 .75)

But Burgers vectors can be compensated for by different rotation axes, 
for exam ple, L' and L" could be pure disclination lines with different axes 
through Xq, x'o and L' a pure dislocation line with b7 = —ft ' x  (xo -  x'o) 
which ends on L \ L". Equation (2.73) renders different choices 
equivalent.

2.12. DEFECT DENSITY AND INCO M PATIBILITY

As far as classical linear elasticity is concerned, the information contained 
in oiij and 0 /y can be combined into a single sym metric tensor, called the 
defect density t7,v(x) [In higher gradient elasticity this is no longer true ; 
see chapter 18.]. It is defined as the double curl of the strain tensor

i?//(x) = Bikeejmndkdmu(n(x). (2 .76)

In order to see its relation with a /y and 0,y, we take (2 .42a) and contract 
the indices i and /, obtaining

a (7 = 2 djtoj. (2 .77)

Using this, (2.48) can be written in the form

EikidkUtn -  dno)j ~ ( “ « ,,, + akk). (2 .78)
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The expression in parentheses was first introduced by Nye and called 
contortionb

~ &in • (2.79a)

The inverse relation is

cLij^-Kjj + bijKu. (2.79b)

M ultip lying (2.78) by we find with (2.42b)

Vij ~ £jmn £ike d,n d* U(n = £jmn дт  d„ 0>, — £jm„ dm Kni-

= ©,, - e inmbmKni. (2.80a)

The final expression is not manifestly symmetric. Let us verify that it is, 
nevertheless. Contracting it with the antisymmetric tensor £tij , we find 

+ д< Кц -  й,Кг, = £tij®<j + d/»//-- But this vanishes due to the 
conservation law (2.46) for the dislocation density. Thus tj,, is symmetric.

There is yet another version of the decomposition (2.80a) which is 
obtained after applying the identity eijn8mq + eimtt8iq + emi„8/q = еЦт8„ч
^  n̂t&qn giving Enjin (o!r/] = — ((/) &ijn &niri) ■
Hence

Vo =  в , ,  -  ^ m(emi„ a in +  ( i j ) -  £ , » « ■ ) ■  (2 .8 0 b )

This type of decomposition will be encountered in the context of general 
re lativ ity later in Part IV.

The double curl operation is a useful generalization of the curl 
operation on vector fields to symmetric tensor fields. Recall that the 
vanishing of a curl everywhere in space implies that a vector field can be 
written as the gradient of a scalar potential which satisfies the integrability 
condition (djdj -  djdj) у  = 0 everywhere in space:

V x H  = 0 ^ W ,  = a,7. (2.81)

hln terms of the plastic quantities introduced in the last section the plastic part of K„ reads

k% = -tikfUkWi + + K-
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The double curl operation im plies a sim ilar property for the symmetric 
tensor, as was shown a century ago by R iem ann and by C hristoffel. If the 
double curl of a symmetric tensor field vanishes everyw here in space, this 
field can be written as the strain of some disp lacem ent field m , ( x ) which is 
integrable in all space [ i .e .,  it satisfies (2 .33 )]. W e m ay state this con
clusion briefly as follows:

= 0 —> Ui, = |(Э,и, + d,u,). (2.82)

If the double curl of м(п(х) is zero one says that u€„(x) is compatible with 
a displacement field and calls the double curl the incompatibility, i .e . ,

(inc u)ij =  elkc sjm„ dk d,„ u(n. (2.83)

The proof of statement (2.82) follows from (2 .81) for a vector field: we 
simply observe that every vector field V*(x) vanish ing at infinity and 
satisfying the integrability condition (Э,ду- -  d; df) Vk(x) = 0 can be decom 
posed into transverse and longitudinal p ieces, nam ely , a grad ien t whose 
curl vanishes and a curl whose gradient vanishes,

Vi = d,-(p + eijk djAk , (2 .84)

both fields (p and A k being integrable. Explicitly these are given by

<P“ p a,V „  (2.85)

A k = ~2 ek€m df V,„ + дк С , (2 .86)
— a

where

( -Э 2) - 1 = 1/(4тг|х-х'|) (2 .87)

is the Coulomb Green function. Notice that the field A k is determ ined 
only up to an arb itrary pure gradient dkC.

By repeated application of this formula, we find the decompositions of 
an arb itrary not necessarily symmetric tensor uu:

M/e -  dj<p'€ + SijkdjAk€ -  dj(p’e + eijkdj{be(pk + eemndmA kn). (2 .88)
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Setting

<Pi = £ijk dj <fk , (2.89)

this may be cast as

Uj( = dj <p( + dc<p" + eijkeCmndjdmAkn. (2.90)

For the special case that uu is symmetric we can symmetrize this result 
and decompose it as

and A kn is the sym metric part of Akn, both being integrable fields. The 
first term in (2.91) has zero incompatibility, the second has zero 
divergence when applied to either index.

In the general case, i .e . ,  when there is no sym m etry, we can use the 
formulas (2 .85), (2.86) twice and determ ine the fields <p'( , <p", A kn as 
follows:

Uif djUj ■+■ djUj + £/jk S(mn djdmA kn, (2.91)

where

«# = 4 («P/ + r f ) . (2.92)

<Pc -  ~3 .dkukc, (2.93)

A k{ — 2 £kpq dp UqC + Bk Cf , a
(2.94)

<Pk = —U  £ k p q  dp d( Uqe + ~ 2 dk d( Cc, a d
(2.95)

^ q2 enjcdjC( + d„Dk , (2.96)

so that from (2.88)

<iPi —  ^ 4 d j d p d q U p q  +  d (  u i€  ■ (2.97)
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Reinserting this into decomposition (2 .90) we find the identity 

Uji — ^{didkUffC + d<’d*w,fc) — "^djdi (dpdqup(])

+ T4 £ijk £Cmn dj dm kpr £nqs &p &q wrs ) » (2.98)О

which is valid for any tensor of rank two. This m ay be verified by working 
out the contractions of the e tensors.0

W hile the statem ents (2.81) and (2 .82) for vector and tensor fields are 
completely analogous to each other, it is im portant to rea lize that there 
exists an important difference between the two cases. For a vector field 
with no curl, the potential can be calcu lated  un iquely (up to boundary 
conditions) from

<P = j 2S,Hi . (2 .99)

This is no longer true, however, for the com patible tensor field ui€. The 
point of departure is the fact that the functions <р'е and <p" in the decom 
position (2.90) are not unique. They are determ ined only m odulo a 
common arb itrary local rotation field <of(x ). In order to see this we 
introduce the replacem ents

di<p'e( x ) -* d i<p((x) + e,(q<oq(x), (2.100) 

de<p'!(x)^>de<p"(x) + eelqo)4 (x), (2 .1 0 1 )

and see that (2.90) is still true. The field (2.92) is only a particular 
example of a displacement field which has the strain tensor equal to the 
given uke,

cLater, starting with Chapter 4, we shall introduce an efficient technique for handling such 
involved derivative expressions using helicity projections. For the reader who is already 
familiar with this technique let us mention that (2.98) can be derived from two identities:

c/my Stnt'PmPn = P\Р^Л) + I*2' ~2) -  PL + Р°*0))/Л/.Г ,
PjPj-Ьц- + PiPt-Sjj- - PjPtPjPf = р2(/*2л) + P<2 _,> + P<l l> + pU--‘> + PL'),t.rr

The first will be derived in a footnote to Eq. (5.19). The second is a direct consequence of 
(4.127) and (5.14). If we square the first identity and add the second we obtain a decom
position of the identity which coincides with (2.98).
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ute — i(dkUe + deuk) — uk(. (2.102)

This displacem ent field may not, however, be the true displacement field 
мДх) which is actually present in the crystal which also satisfies

\{dku€ + deuk) = uke. (2.103)

In order to find this true displacement field we would need additional 
inform ation, nam ely, the rotation field

<*>ke ~ 2 (dk ue “  de uk) • (2.104)

Only if we know both uke(x) and (oke{x) can we calculate

dkue(x) = uk€(x) + (i)ke(x) (2.105)

and solve this for u( (x).
In order to m ake use of this observation we have to be sure that 

o)j = \ ejjk uJk can, in fact, be written as the curl of a displacement field 
Mf (x ). This is possible if

д'Щ = eijkdidjUk = 0, (2.106)

which im plies that [see (2.77)]

Ofii(x) = 0. (2.107)

In later discussions we shall be confronted with the situation in which uki 
and dfcjj are given. In order to obtain w, from the latter we would have to 
m ake sure that <w, is an integrable field, which is assured by the constraint

0,y = dkd(a)j = 0. (2.108)

Thus we can state the following important result: Given a crystal with a 
strain uke(x) and a specific rotational distortion coke(x). If we want to find 
from these field quantities a single valued displacement field ыДх), the 
crystal has to have a vanishing defect density *>7,у(х), a vanishing dis
clination density 0/y(x), and a vanishing a„  = 0, i .e . ,

7},y(x) = 0, 0 , ,(x )  = 0 , a „ (x )  = 0. (2.109)



8 1 4 111. GAUGE FIELDS IN SOLIDS

The relation (2.80b) implies that for this to be true it is sufficient to have 

7ty(x) = 0, <*//(x) = 0 , (2.110a)

0/Дх) = 0, сг/Дх) = 0. (2.110b)

Notice that it is possible to introduce, into a given e lastica lly  distorted 
crystal, nonzero rotational and translational defects in such a w ay that 0,y 
and ajj in (2.80b) cancel each o ther.d Then the elastic distortions do in 
fact remain unchanged. The local rotation field, how ever, can be changed 
drastically. In particular it may no longer be in tegrab le.

2.13. DEFECTS IN TWO DIMENSIONS

At some places we shall consider defects in two-dim ensional system s. It is 
useful to imagine such systems as lying in the XY  p lane of some three- 
dimensional space. Then dislocation lines degenerate into points and the 
dislocation density is a vector which coincides with the 3, / com ponents of 
the three-dimensional density

“;(x) = a,,(x) = epqdpdqu,=  (Э,Э2 -  Э2д,)ин (2.111)

where epq = epq3t. The local rotation vector has only one com ponent, i .e . ,

ш = щ ^ \ ерчшм  = \epqdpuq = \(d\u2 -  d2Ui) (2 . 112 )

so that the disclination density becomes a scalar quantity

© = ©33 = £pqBpdq(a = (d jd 2 -  d2di)<*>. (2 .113)

By writing the dislocation density as

«/ = M u ,f + £<i) (2.114)

dFor an accurate counting of the defect degrees of freedom see the discussion accompanying 
Eqs. (16 .14)-( 16.28).
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and inserting (oei = eei(o we find the following two-dimensional version of 
(2 .48),

<*i = £kedkuei ~ dj(o. (2.115)

A s was true with 0 ,y , the defect density Tj,y(x) also has only a 33 
component

V(*) = т?зз(х) = екеетпдкдт иеп (2.116)

and applying e,„„d„ to (2.115) we find the two-dimensional analogue of 
(2 .80b),

V(x) = 0 (x )  + e„„, d„,atl (x). (2.117)

A contortion vector K„ may be introduced as K„ = -a „  but since there is 
only a sign difference with respect to a„ there is no real use this.

For com pleteness, let us also introduce the plastic distortions and 
rotations p'ki, which were defined in three dimensions in Section
2.10. Here they follow from the trivial Volterra operation [compare
(2.60)]

ue(x) = -8(V )(be -  Cle€rxr)

as

02, = Sk(S)(b€ -  CleerXr) -  8(У)Пеке, Щ = 5 , (5 )Л , (2.118)

where S is now the line along which the V olterra cut has been performed. 
The б-function 8k(S) is defined to point along the normal of this line, i .e . ,  
it is given by

8k(S) = e*ef^dxe8(2)(x -  x). (2.119)

It satisfies the two-dimensional version of Stokes’ formula (II .8.17):

c ,* W S )  = eikektdi f^ d s ^ 6 (2>(x-x(s)) = -  j^ d s^ d jS i2\x-x(s))

= f  ds^-8(2)(x-x(s)) = 8(2)(x -x /) - 8 (2)(x -x l), (2.120) 
J s ds
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FIG. 2.17. Illustration of SK(L) in two dimensions, defined in Eqs. (2 .121), (2.122), which 
is singular only at the points where L pierces the xxx2 plane.

* 3

where x, and are the in itial and final points of the line S. The right-hand 
side is the 2-dimensional version of 8k(L). It can be thought of as being 
the third component of the three-dim ensional б-function for a closed line
u

5*(L ) = £ d S ^ S < 3> (x -x (S ) ) ,  (2 .121)

which picks up the two points where L  pierces the xy-p lane (see F ig.
2.17)

5э(Ь)|х, = о = j> dx3 5 (x3 -  x3) S (2)( x j l  -  x x )U; = о

= S(2)(x -  x/) -  5<2)(x  -  x,)|Xj = 0 (2 .122)

Using (2.118) and the notation (2 .122), the dislocation and d isclination  
densities read explicitly

a * = ek,dk Ph - ф ? =  83(L)\X)=u(bj -  Cleirxr),

e  = e*f a*<*>? = S ,(L )| ,(=0f t . (2 1 2 3 )

The first is the i3 component of the three-dim ensional density a ,y (x ), the 
second the 33 component of ©,y(x), both restricted to the 12 p lane.
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CHAPTER THREE

ENERGETICS OF DISLOCATION LINES

3.1 . STRAIN AND STRESS ARO UN D  DISLOCATIO N LINES

W e are now in a position to study the elastic  properties of a solid with 
defects. For a start, let us restrict ourselves to pure dislocation lines which 
are characterized by a constant discontinuity across some surface S with 
Burgers vectors b:

This specification is sufficient to calculate a displacem ent field иДх) over 
all space. Notice that the relation

with /Дх') = 0 cannot be used since it holds only for smooth field 
configuration u ,(x).

The appropriate method to deal with singular surfaces is, how ever, w ell 
known in potential theory. There, one uses G reen’s theorem which is a 
simple consequence of Gauss’ law for a vector field [recall Part II, Eq. 
(1.151)]. Here we have to generalize this to an arb itrary tensor field,

(3 .1 )

(3 .2 )

8 1 8
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1 ^ 3х в ,П ,...К = 1 dSj TVc, (3.3)

where S is the surface enclosing V with dS,• directed outward. Applying 
this to the tensors

n  = « ,(x ')3 iC ,„ „ (x '-x ) , r ,2 = (a ;u ,(x '))G ,„„(x '-x ), (3.4)

we have

[  d3x 'df (м,-(х')d'kGm„(x' - \ ) ) =  f  dS(Uj(x') dkGm„(x' -  x),
J  V J s

J^ d 3x'dk(deU,(x'))G,n„(x' -  x)) = J^dSk(d'eU,(x')) G,„„(x' -  x). (3.5)

Subtracting these equations from each other, we obtain a generalized 
version of G reen’s theorem ,

[  r fV [u ,(x ')d'ca’kGmn(x' -  x) -  (d'cd'kUi(x'))Gmll(x‘ -  x)]
J v

— J" dS'cUj(x ') dkGmn(x ' — x) — J  dSk{d(Ui(\ )) Gmn(x — x). (3 .6)

Contracting this equation with the elasticity tensor —c(ikm, the left-hand 
side becom es, by ( 1 .68 ) and (1 .80),

• u„(x) — Jd x ' Gnm(x — x')/OT(x'). (3.7)

The right-hand side becomes

- J ^ c eikmu,(x')d'kGmn(x' -  x) + J s dSi<rkm(x')G„„(x‘ -  x) (3.8)

so that we rem ain, in the absence of local body forces /w (x ') , with

u„(x) = — J  dS(CakmUj(x ) dkGmn(x — x) + J  dSk<rkm(x )C7w/1(x x).

(3 .9)
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FIG. 3.1. The infinitcsimally thin ellipsoid enclosing the Volterra cutting surface S of a  
dislocation line along L. The thickness is greatly exaggerated to allow for a better 
representation.

Consider now an infinite crystal with a single dislocation loop which is 
constructed by removing one or more layers of atoms from the lattice 
thus causing the discontinuity Ди, = j>Bdu{ = 6 , (recall Fig. 2 .2 ). The 
whole space outside the plane m ay be considered as V such that S 
becomes the surface of a very thin ellipsoid enclosing the surface of 
discontinuity (see Fig. 3 .1). Let S+ be the upper surface whose norm al 
points downward and S~ the lower surface with the norm al pointing 
upward. The integral (3.9) may then be transformed into a surface 
integral running only over S~ *  5 if the integrands are replaced by their 
discontinuity across S. We may assume that x lies outside the surface S 
for otherwise we would be able to move S to another place. Since the 
stress as well as the Green function are the same on both sides of 5 , the 
second term in the integral disappears and we arrive at

м„(х) = -Ь ; J dS(ciik„td'kGmn(x' -  x). (3 .10)

In the isotropic case, we may insert (1.23) and the explicit result (1 .90 ) 
for G,„„ and arrive at
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w/»(x) — f  + bm8(nR kk,„) + Ab( R kkn

~ T ^ [2*bkRj,ik + ХЬ( * AA" ]} ’ (ЗЛ1)

where we have introduced the notation

d,R = R j, dkdnd(R = RJnk................... (3.12)

for brevity. This expression can be rearranged in the form

И//(х ) = ~ g ^ |  J b„R kk( + J  [dS'„bi R kkt — dS\ b( R kk( ]

+ 2 dS', (b, R.kk„ -  bk R.„lk ) J • (3.13)

The integral still runs over the surface. The construction procedure a la 
Volterra however, has taught us that the position of this surface is 
irrelevant and only the boundary L can have a physical reality. T here
fore, we may use Stokes' theorem to arrive at a contour integral over L. 
The most convenient form for the application needed here is

 ̂dx'k £k(m . . .  = J  dS/ Ejjk £k(„, dj ТП(„2 .
= j  (dS'l d'mTni„: ...-dS ;„d 'l Tl, (3.14)

where . . .  denotes more possible tensor indices. In particular, we obtain 
the formulas
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where we have used the fact that B„R = ~d'nR. W ith these form ulas, we 
can bring (3.13) to the alternative form

m„(x) =  j^dS[bnR,ppe +  —  j>^dx- ein€bcRM

+ 7~ W  Sii k b( R k"4тг A + 2f i j  L

b С R, 1 f  b 1 I  dx' X R

= d  ¥  ~ d Ldx' x  r -
(3.16)

where R, = x, — x,' and where we have w orked out the derivatives,

R j  = R,IR. R jj  = 5,yIR -  R/RjlR3, R,,p = 2 IR , R.ppk = - 2 R kIR3.

The first integral.

is recognized as the solid angle through which the positive side of 5  is 
seen from x. It appeared in the vortex formula (1 .157), Part I. Thus we 
have simply

r n - 4 7 Г

This is the only term in (3.16) which keeps track of the surface of 
discontinuity 5 over which u„ jum ps by bn. If we change S\ to S2, 
solid angle as defined by

n (x )=fds ;§<  (3.17)
-J S |

changes by

f t2( x ) - f t , ( x )  = f  dS',%- 
J 5, - S ,  K*

In order to describe the same dislocation loop, S j and S2 must have the
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same boundary line so that S2 — S\ is a closed surface around some 
volume elem ent V. Hence we can use Gauss’ formula and write

f t2(x) - f t , ( x )  = %  = - \ v dix' dc%  = J v d*x ' B*\

- 4 . ^ Л ' 8 » ( х - Ю - 4 “ I :  (3 1 8 )

Thus the solid angle is unchanged for observation points x which lie 
outside the volume enclosed by the two surfaces S2, while it changes 
by the discontinuity 4tt if x lies inside.

The constancy of this change is what permits us to define strain and 
stress tensors which are independent of the surface 5. W riting

a ,f i(x )  = j  = - J  dstd.dt j-

= dr( f  dS'tdljj- JdSie'c^ j  -  JdS,d}±

= e<u d/J /dxl± + 4nS,(S), (3.19)

the first term is the same as the magnetic field of a unit current along the 
boundary line L of 5. Only the second term depends on 5. It corresponds 
to a m agnetic field due to a layer of magnetic dipoles placed on 5. The 
derivatives of the displacement field д,м; (х) are smooth everywhere in 
space as long as x does not fall onto 5. If x is to pass the surface S, we 
may simply shift S to another position 5 '.  Then the derivatives can be 
continued smoothly through 5. The whole procedure is recognized as the 
three-dim ensional generalization of the continuation of an analytic 
function through a cut in the complex plane.

Since the dipole layer is an unphysical artefact of the Volterra con
struction, only the smooth part of the gradient of the displacement field

(d .w.)smooth(x) = (a/W/(x) -  S, (S ) bj)

is a physical observable. This combination is invariant under changes of 
the surface S from S to S\  under which

Uj(x) -> Uj(x) -  8 ( У) bj, 8f (S) -> 8j(S) -  djS(V).



824 III. G A U G E  FIELDS IN SO LID S

as the plastic distortion. The distortion Э,иДх) which still contains jumps 
in Uj is called the total distortion [som etim es w ritten with a superscript T 
as in (Э ,иДх))г ].

Notice that w hile д,*иДх) is not un iquely defined, depending on the 
position of the jum ping surface S , the smooth part of the gradient 
(6/My)smoolh is unique. In fact, its sym m etric composition

is an observable quantity , being proportional to the stresses of the 
system . The subtracted piece

is recognized as the plastic strain tensor of a pure dislocation line [defined 
in (2 .61)].

In the theory of linear elastic ity of defects one often finds calcu lations 
of physical strains and stresses without this explicit subtraction. In that 
case, all formulas are understood as being evaluated  away from the 
jum ping surface S. For a w hile, we shall also adhere to this som ewhat 
sloppy convention. Only later shall we be more careful and uncover the 
interesting gauge structures inherent in this subtraction procedure.

Forgetting the jum ping surface 5 , we can find the strain tensor asso
ciated with a given dislocation line by using (3.16) and forming the 
derivative

(smooth -  K (a .“, r oo'h + m  = -  i(M S ) Ь, + 07)).smooth

+ («/))

after which the strain and stress can be expressed as follows:

'} 877- ^ ^ *  SikdbjRj; ^ike^eRj £jkcb(R,i\pp
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+ j  _ у dXfc Skmn . mij &ij R .mpp ) • (3.21)

As a check in our calculation we may verify that the stress is divergence- 
less, d/Oiy = 0 , as it should.

3.2. ELASTIC INTERACTION ENERGY BETWEEN TWO 
DISLOCATION LINES

Suppose a crystal contains two dislocation lines. Let us calculate their 
interaction energy. The stress field of the first line <rj(x) is given by
(3 .21). If a second line is introduced into the crystal, the atoms are 
displaced by an additional amount u}1 (x) which can be calculated from
(3.16). This is independent of the presence of the first dislocation line 
since, in the approximation of linear elasticity, all displacements are 
additive. Correspondingly, the change 8E in elastic energy is simply 
obtained from the integral

This can be evaluated in complete analogy with the magnetic energy of 
the current loops or the stress energy of the vortex loops [see (2.137), 
Part II].

First we use d,cr,y = 0 to rewrite (3.22) in the form

as

(3.22)

(3.23)

Then we transform this into a surface integral,
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Eu l = dS}l da}juJ\ (3 .24)
J s x+s-+s+

w here the part over the surface at infinity 5*  vanishes and S +, S~ form a 
thin ellipsoid enclosing 5  (see Fig. 3 .1 ). For a dislocation line along L , u}1 
has the discontinuity u)l\s_ — u}l\s+ — bj across the thin ellipso id  S~ + S+ 
enclosing it and the energy becomes

E"l = b j j  dS}1*},. (3.25)

This differs from the m agnetic form ula in (1 .146), Part II by the 
additional index j .  It looks as though there were three “ m agnetic fields” 
cr/b a !2, or}з, each being divergenceless, d/ofi = 0 , d,-o/2 = 0 , д,аг}3 = 0, 
and associated with three “currents” by, b2, b3. T herefore, we can 
proceed as in the magnetic case and introduce three gauge fields A}\, A)2, 
А /з in terms of which the stresses can be written as a curl,

V ij— eikC^kA\j. (3.26)

The properties of the gauge field A\j w ill be discussed in detail in Section
4.1. Here will only make use of the fact that with (3.26) we can apply 
Stokes’ theorem and bring the interaction energy into the local form

Elll = b)l Cf dx'fAfj. (3 .27)
J L11

It is straightforward to find A\j. Using the stress formula (3.21), we can 
directly read off:

A cj — ^   ̂£ikp £jmn R.km ^&(pdxn + SnpdX( + “ _ ^8(„dxjj^  . (3.28)

Inserting this into (3.27) we obtain the analogue of B iot-Savart’s law for 
dislocation loops, first found by B lin,
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X ( Ь1 ' Лх'Ьм • dxu b 'xW ' dx 'xdx"
477 J  /JJ 1̂ 4 \ R R

+ Y T ^(b‘ x dx'lfb"  x dx'^Sid/Rj . (3.29)

Of course, this can be generalized to an arbitrary number of loops just as 
the magnetic formulas (1.162) to (1.163) of Part II. A lso, the generaliza
tion to a continuous distribution is straightforward: all we have to do is 
replace

Ь'Ь'.'Ф Ф dx'fdx" (3.30)
J  L ' J  Ln

d3xd3x' ctei( x ) a „ j ( x ' ) ,  (3.31)

where a<,(x) is the dislocation (pseudo-current) density (2 .59) [compare 
(1.164) of Part I].

NOTES AND REFERENCES

The contents of this chapter are standard and can be found in most books on this subject 
(see the references at the end of Chapter 2) and in the review article of 
R. De Wit, Solid St. Phys. 10 (1960) 249.



CHAPTER FOUR

LOCAL FIELD DESCRIPTION OF 
INTERACTING DISLOCATIONS

4.1. ELASTIC PARTITION FUNCTION

In the case of superfluid 4He we have seen that it was possible to describe 
the long-range interactions between vortex lines in term s of a local field 
theory. We simply had to express the bending energy in terms of a gauge 
field and couple this locally to the random chains of vortex lines. Their 
ensem ble, in turn, followed a disorder field theory, thereby perm itting a 
simple discussion of the superfluid phase transition.

In this section, we shall prepare the ground for a sim ilar treatm ent of 
defect lines in crystals. As a first step we shall derive a partition function 
for the therm ally fluctuating stress gauge field A^(\) which was defined in 
Eq. (3 .26). This yields the stress tensor via the curl operation applied to 
the first index:

Vij = SiktdkA*)'

This decomposition is invariant under the local gauge transformations

А гД х)—»i4<y(x) + d(Aj(x). (4 .1 )

The symmetry of cr/y imposes the constraint [which is com patible with 
(4 .1)]

828
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diAu{\) = diAjjix). (4.2)

This follows directly from the condition е^ауД х) = djAnj-  д„Аи = 0.
As a consequence of (4.1) and (4 .2 ), A ej has only three physical 

components, as was the case with the symmetric divergenceless stress 
tensor a /у. If we insert cr,y= eik(dkAq  into the elastic energy in the form 
(1 .43), we obtain a rather complicated looking expression,

Ecl = — J d 3x — deA a de'Ar j —  ̂ _  ^ (dkAfjdkA e,

~ dkAkidrAfj  + dfAtjdjAjj  + д,Ас,дкА к1- — д ( А а д ( А ц  — д/Л^дуЛ^у)

(4.3)

According to (3 .27), the local interaction with a single dislocation line 
running along L was

Hence we expect the elastic partition function of the dislocation density 
a< j ( x )  to be given, in analogy with the vortex lines in superfluid 4He, by

The 6-functional enforces the constraint (4 .2). The factor Ф[Л*у] fixes the 
gauge in a convenient w ay which will be explained later. When inte
grating out the fluctuating gauge field, this partition function has to give

(4-4)

For a general distribution a (y(x) of dislocations this becomes

(4.5)

Z = J  S>A^(x)S(d/A f/ -  дИ ,у)Ф [Л<у]ехр{(£с, + iEIM)IT} . (4 .6)

(4.7)

where £ Bi»n is B lin ’s energy formula (3 .29)—(3.31). As was true for vortex
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lines, a factor i in front of £ im is necessary in o rder to obtain the correct 
sign of this energy.

When looking at the com plicated gauge field energy (4 .3 ), the inte
gration looks, at first sight, som ewhat difficult; in particu lar , since we 
have to respect the constraint (4 .2 ) and the gauge-fix ing factor Ф [Л 0 ]. 
The problem can be simplified considerably by transform ing the field 
componentes Л<Дх) to a more convenient basis in which the energy is 
diagonal.

As far as the spatial variab les x are concerned, the energy diagonalizes 
by going to Fourier (= momentum) space and expanding

Л г,(х) = J  ( ^ p c 'P M f ' ( p)-

A fter this, the 3 x  3 index space can be d iagonalized by finding another 
p dependent, basis known as the helicity basis. Since not every reader 
may be fam iliar with this concept, let us interrupt the discussion for a 
moment and give a brief, general description of the helic ity decom 
position of vector and tensor fields.

4.2. HELICITY DECOMPOSITION OF A VECTO R FIELD 

U nder a rotation of coordinates

x! = RyXj, (4 .9)

a vector field r ,(x ) is defined by the transformation property [see (3 .116). 
Part I]

r - (x ')  = RjjVj{x). (4 .10)

The rotation matrix can be expressed in terms of the rotation vector a  
whose direction points along the axis and whose length gives the angle of 
rotation, i .e . ,

(4 .11)

where the matrices Sk form the adjoint (spin-one) representation of the 
Lie algebra of the rotation group.
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OS* )iy = -***/,• (4.12)

For infinitesimal angles this gives the well-known formula [see (3.138), 
Part I]

8x/ = x'j -  Xj = akekijXj = - ( a  x  x ) , . (4.13)

Inserting this into (4 .10), the local change of the vector r ,(x ) is, up to 
terms 0 ( (6лг)2),

dVf(x) в  v'j (x ) -  u ,(x ) «  i> /(x ')  -  v ,(x ')  =  v f (x ')  -  Vj(x) +  vf(x) -  v ,(x ' )  

= -  SxjdjVjix) = ia k(Sk)fjVf (x) + akektJx t djVi(x)

= i<xk(Sk)ijVj(x) + iakLkVi(x)t (4.14)

where we have introduced in the second term the generator of orbital 
rotations,

Lk i £kjjXj dj. (4 .15)

In momentum space, the transformation laws are found sim ilarly ,

Pi ~ RijPj *

»/(p') = V>(p)’
Si>,(p) ■  y/(p) -  U/(p) =  t>/(p') -  i>,-(p')

-  iak(Sk)ifOjlp) + iakLkVi(p),

with

Lk = - iekljP i j - ' (4.19)dpj

The latter fields r ,(p ) have the advantage of diagonalizing the translation 
group generated by the differential operators

(4.16)

(4.17)

(4.18)

P i =  - i d , - . (4.20)
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These, together with (4 .19 ), form the inhom ogeneous rotation group 
(also called the Euclidean group £ (3 )) which is characterized  by the 
commutation relations

[p.-. Pi] = 0, (4.21)

[Lh pj ] = ieijlcpk, (4.22)

[L,, L,] = ieiikLk. (4.23)

The helicity basis is now introduced in the follow ing two steps:
1. W e choose an orthogonal set of three basis vectors e) (p), ef(p), 

ef(\)) in the subspace of a fixed momentum in such a w ay that e](p) 
coincides with the unit vector along the momentum d irection ,

p = p/|p|. (4.24)

2. W e form combinations of these, called the spherical components,

e(+1)(£) =  ^ | ( e ‘ +  ie2)(p) =  e(p),

e'-'HP) -  ~ <e2)(p) -  - e ‘ (p), 

e""(p) s  e ’(p) = p. (4.25)

The vectors e(/,)(p) for h = ±1, 0 constitute the desired helicity basis.
They have the following properties. First they are an orthonorm al set 

of vectors with respect to the complex scalar product,

e]ll)\ p )ep (p )  = 8hh\ (4 .26)

Hence they also form a complete basis in three-dim ensional space. This 
property can be expressed in terms of a completeness relation,

E  е!л)( р ) е Г ( р )  = V  (4 .27)
/i = 0. ±1

The different terms in this sum, i .e . .
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n " ’(P ) s ^ ' ( p ) e!">‘ (p ), (4.28)

for h = ± 1 , 0 have the products

^ ( р ) Щ р )  = Р Ш  8* (4.29)

and are , therefore, projection matrices. With these, the completeness 
relation (4.27) reads

E  P‘l1\p) = Sir (4.30)
/; = 0. ± 1

This result makes it straightforward to expand an arb itrary vector 
function v, (p) in terms of the new basis: We only have to multiply uy (p) 
by (4.30) and obtain

tf/(p)= E  /’!/',(p)«/(p)= S  еП рИ "'*(рН (р)=  S  W*'(P)^(A)(P)*
/r = 0. ±1 /1=0. ±1 /1 = 0, ±1

(4.31)

The components *>(Л)(р) are called helicity components of the vector field 
*>/(p)-

Let us now come to the second characteristic property of the vectors 
e)/0(p). Under rotations they transform as a vector field [recall (4 .17)]. In 
order to see this we perform a rotation which changes p, to p\ = RjjPj. 
Then the vectors е}Л)(р) change according to

e f ( p ' )  = p; = RiiPi = R ,,ef(p), « « * » • » ')  = M * " ® ) -  (4.32)

As a consequence, the components tf(/,)(p) have very simple trans
formation properties with respect to the basis eJA)(p). W hile the old 
Cartesian components of v(p) were mixed with each other under rotations 
[see (4 .17)], the new components t>(/,)(p) remain inert. They transform 
like a scalar field,

»<"> V ) = »(/,)(p)- (4-33)

Infinitesim ally, this amounts to the transformation law

5 y(/°(p) = i>(/,)'(p) -  1>(Л)(Р) = ia kLkvu'\p ), (4.34)



8 3 4 III. G A U G E  FIELDS IN SO LID S

where L is the d ifferential operator (4 .19 ).
The third property (which is actually  not un re lated  to the second) of 

the basis vectors e};,)(p) is that they d iagonalize the generato r of spin 
rotations projected along the direction of m om entum , i .e . ,  the so-called 
helicity matrix

H(p) = p kSk , (4.35)

and h are its eigenvalues. This can be shown d irectly . Let us first take p 
to point in the 3-direction so that H is the m atrix

I 0 l 0 \H{z) = S i = - i  - 1  0 0 . (4.36)
\ 0  0 0 /

while e};,)(z) are the vectors

<?!"'(z) =  ̂0 j  , e !5”(z) = ± ^=   ̂±i j  . (4 .37)

Then we find, triv ia lly ,

H,y(z) ej''\z) = h e}h)(z). (4 .38)

For an arb itrary direction of p we may obtain the three vectors ?,(/,)(p) by
(4.32)

<f°(p) = Rij(9)e}h)(%)% (4 .39)

where Rjj(p) is a rotation matrix which brings the z-axis in the direction 
p, i .e . ,

Pi = R ij№ j-  (4 .40)

A pplying (4.35) to (4.39) we can verify that ej;,)(p) is an eigenvector of 
# (p). First we note that

«/Др)еГ(р) = Я,7(р)/?А.(р)е1'"(г)

= « „ (  P) К*' ® ) ( ? A )* r  Л « .(Р ) «£?(*)• (4 -41)
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But the spin matrix Sr is a vector operator and satisfies

ЛД' (S rh 'R m  = RrASs),,, = (S , (4.42)

so that

я „ (р И '" (р )  = л 1У(р)(51)/>„(/ г(р )-, р ,)е ',';'(2).

By (4.40) this becomes

R„mSs)i,n = й,; (р) H(z)inlei!?(z). (4.43)

Then we may use (4.38) and (4.39) to obtain

Я/АРИ 'ЧР) = hR'jifteXXz) = /ie<'j>(p). (4.44)

Thus e}A)(p) are indeed eigenvectors of the helicity matrix # ,y(p), with 
eigenvalue h.

It turns out that what we have just shown could have been obtained 
more directly from the general relation

tf'(p ') = RikRj'Hkt( p) = (R H{ p) R -% ,  (4.45)

where R is a matrix connecting p' and p. Equation (4.44) is a 
consequence of the fact that the helicity operator is a rotational tensor 
field [compare (4.10)). It is really for this reason that the helicity 
am plitudes defined in (4.31) do have the simple transformation law
(4.33).

4.3. HELICITY DECOMPOSITION OF A TENSOR FIELD

The result obtained above can be generalized to tensor fields. In the 
present context, we shall be dealing only with tensors of second rank, say 
/,,(p). These transform as

'tt(p') = R<,nRij‘m,i Р). (4 -46)

or infinitesim ally,

8tu(p) = - i a k(Sk)€mtmi(p) -  ia k(Sk)ijtfj(p) -  ia kLktei(p). (4.47)
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It is easy to find the helicity basis tensors e $ h)(p) which span the sp ace  
of tensors and have the sam e transform ation p roperties as these. T h ey  
can be constructed from appropriate com binations of products of e)y,)(p)» 
which diagonalize H. In the present case , the e igen value h of H is not 
sufficient to specify the basis tensors un iquely ; an add itiona l quantum  
number is needed. This is supplied by the total angu lar mom entum  s. It is 
well known that in order to span the whole 9 -d im ensional tensorial space, 
the products of vectors е(Л)(р) e);,)(p) have be coupled to form objects of 
total angular momenta 5 = 0 , 1 , 2 , the dim ensions of these spaces being 1 ,
3, and 5, respectively. The coupling can be found exp lic ity by noting that 
H may be considered as the third component of the three generators of a 
helicity rotation (or little) group,

H(v) = W3(p) = ejt3l(p )S * , Н ,.2 ( р ) - 4 1 2 ' ( р ) 5 , .  (4 .48)

By (4.35) and (4.40) we may write

Я ,(р ) = Я ,Д р)5у. (4-49)

These m atrices satisfy the same commutation rules as the generators L, 
[recall (4 .23)], nam ely,

[H ,(P ), tf ,(p )] = ieilkHk(p). (4 .50)

This follows directly from (4.23) and the invariance of the e,y* tensor 
under the rotation group,

&ijk Rii' Rjj' Rkk' k' •

T herefore, we can define helicity raising and lowering operators

H+(p) -  (H , + Ш2)(р ) = V 2 « f  (p )S b

H _(p) = (H , -  Ш2)(р ) = -V 2 e '- '> (p )S f, (4 .51)

which commute according to the rules

[ « з ,  H±] = ±H±i [H+y Я _ ] = 2Я 3. (4 .52)

Since e{,0(p) are orthonormal, the total spin is measured by
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H(p)2 = s 2. (4.53)

The same algebraic relations remain valid if the spin-one matrices (S*)/y 
are replaced by any higher dimensional representation. The possible 
eigenvalues of H2 are 5(5 + 1) for s = 0, 1 ,2 ,  . . .  Here we shall look at 
the tensor representation

{Sk)(hmj ~ + (Sk)(m&ij • (4-54)

It is straightforward to construct linear combinations in the 3 x 3  
dimensional product space of all ej;,)(p) ej;,)(p) with h, h' = 0, ±1,

«I *’(?)= E C £K"’(P)<f':'(P). (4-55) h\ +h2=h

which diagonalize H and have total spins 5 = 0, 1, 2, i .e . ,

H(p)a.n,jeti"\p) = h e£  '"(p), h = - s ...........5,

H2(p)a.mie%"\p) = Ф  + l)e&'"(p). s = 0, 1 ,2 ,  . . .  (4.56)

W e simply use the well-known vector addition or Clebsch-Gordan 
coefficients (sih\ s2h2\sh) and write

e\‘: « (p )  = E <l*i 1*2 |JA> 4 '" ’( p ) !":’(P) = ( - 1 ) " 4 Г ‘ ’*(Р ). (4.57) 
/l, +/b=/l

In particular

e £ 2>=<U 11|22)e(’ е ’1) = e< e, = ~2)*, 

eff 11 = (11  10|2 1 >еУ’ е Г  + (10  ll| 2 1 )  e f e ,'0

= ^ ( e<P' + P tei) = - e «  ’ 1>*'

e £ 0)= < ll  l- l| 2 0 )4 " e { - ,)+ ( l - l  ll| 2 0 > 4 -'4 ! , ,+ <10 10|20>efe}01 

= ~ ^ ( e' e* + e* e<)+ = (4 -58)
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W e now em ploy the com pleteness re lation  (4 .27) of the three basic 
vectors e, e*, p in the form

eeef + e*ee, + p cpi = 5 « ,  (4.59)

to rewrite the (2 , 0 ) basis tensor as

^ 0) = V f ( 4. 60)  

For total spin one we obtain

eg-11 = (11 10|ll)e(tV >  + (10 11|11> ef'eW

=  Pi ~ P t* t)  =  - e («

ей0)= (11 1-1|10)е</)4""+ (1-1 ll|10)e(f"1)eSl'+ <10 10|10) е(/У0)

= -  e*t ei) = e(«-0)*. (4 .61)

These formulas can be rewritten, using 

^  (eC Pi ~ P(Cj) = £dk CCmn emPn

= ^ ( e (l) X p + ;e (2) x p ) , = ^ Ecik̂ ( e (1) + i'em)* 

_ i

et ef -  e*cfii = J(e?> + ief)(ef>  -  ie?) -  c .c . = -  e ? e jl))

= -istikekr re P e P  = - ie « * (e (1> x  e(2>)* = - i e m pk,

as

*8-0 = = - « *  4 ! 0) = (4.62)

Finally, the spin-zero tensor is
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ei';-'” = ( l l  1—1100> е\"е]~п + < 1 -1  1 1|00 ) !" + <10 10|00 ) e '/ V ” 

'= + «*«/) + = ^ 5 S« -  (4.63)

The fact that

H2(p) A)(p) = s(s + 1) Л)(р) (4.64)

follows d irectly from the matrix elements

W+(p) e{s- *>(p) = V ( j  -  /i)(i + h + l ) e <J ', + l)(p ),

W_(p)e<s '"(p) = V ( i  + A)(s -  A +

Я 3(р)е<*А>(р) = Ле(**>(р), (4.65)

as can be verified by direct calculation:

H2e(s.h ) = [ ^ ( я +Я _ + Я _ Я +) + H23]e(s'h)

= [*((* + h)(s -  Л + 1) + (j -  *)(* + Л + 1)) + A2] ^ A)

= s(s + l ) e (5/,). (4.66)

Because eis' /0(p) are all eigenvectors of the hermitian matrices H2 and 
#з with different eigenvalues, the eigenvectors are necessarily ortho
gonal. The Clebsch-Gordan coefficients autom atically normalize their 
scalar products to

= «*'«/,/,• (4.67)

For this reason the matrices

/ В Д ( Й - « & * ’№ )«& 4 * » )  (4 68 )

satisfy

p ?;%( p) p^/U p ) = П-.пЛР) (4 -69>

and are projection operators into the s, h subspaces. The polarization 
tensors efe A)(p) are com plete, a fact which may be expressed in terms of 
projection matrices as
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E F%%  = (4.70)
sjl

One may verify this by inserting the explicit expressions, (4 .68 ), (4 .5 8 )- 
(4 .63), and using the com pleteness relation  (4 .27) for the basis vectors. 

T herefore, given an arb itrary tensor field Л^Др), we can expand it as

A u (p )= T 1 Pi«X {f> )A mi{p) (4.71)
s.h

= E e & 'rt( p M , , '')(p ), (4-72)
s.h

the helicity am plitudes being

Л (’Л Р ) ( PM, , ( P) .  (4.73)

4.4. HELICITY FORM OF THE M AGNETIC ENERGY

In order to illustrate the use of the helicity decom positions let us recall 
the fam iliar magnetic situation to which we apply this form alism . By 
Fourier transforming the fields, i .e . ,

A(x) = (4-74)

the magnetic field energy took the form [compare Part I, (3 .10)]

^ mae = 2f l\  X = 2fx J  (27t)3^1 ( ~Ч)(q2 /̂/ — <7/(Jj) A (q ) . (4 .75)

Using the completeness relation, the matrix q28jj — qflj can now be 
expressed in terms of projection matrices (4.28) as

4 %  -  q,qi = q2(5/y -  q.qj) = q2(e( e/ + ef e}) = q2(P (1)(p) + P{~1\p )). 

Therefore, £ mag diagonalizes as

£mag =  J ̂ э Ч 2А ( —q )(P (1)(3 ) +  P <_l)(q )) A (q)
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= i / ( 0 q2(|A‘l,(4)|2+ <4 -76) 

Here we have used the fact that for a real field

A(q) = J  d'xe-"1" A (x) = A (-q )*  (4.77)

and thus

A ( - q ) e ‘">(q)* = A *(q )e ''"(q )* = (e ‘"'(q) A (q))* = A>">(p)*. (4.78)

The gauge invariance of the magnetic energy manifests itself in the 
absence of the longitudinal helicity v4(U)(q) in the expression for energy. 
That this has to happen follows im m ediately by considering the gauge 
transformation

Л, (x) A,(x) 4- d ,A (x), (4.79)

which reads, in momentum space,

^ , ( q )^ / 4 , (q )  + i<7,A (q ). (4.80)

On going to the helicity basis we see that while the h = ±1 components, 
whose spin is transverse to their momentum, remain unaffected, i .e . ,

(4.81)

the longitudinal component on the other hand, for which the spin is 
parallel to q , changes by

/4(0>(q )—» /4(0,(q) + (|q| A (q). (4.82)

C learly , the energy can remain invariant under this gauge change only if 
the longitudinal component does not appear at all. This component is 
unphysical.

Consider now the interacting part of the energy

£ini =  J d 3xj i ( x )A i (x ) .  (4.83)
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This is also diagonalized in the helic ity basis. L et us Fourier transform 
and decompose the current in the sam e w ay as the field Л ,(х ) :

hi q) = E ejh\q)jm (q) = y.(-q)*. (4-84)
ft

with the helicity components

/<ft)(q) = ew *(q)/,(q). (4.85)

The condition for zero divergence,

<7.7 , (q) = 0, (4 .86)

elim inates the longitudinal h = 0 component so that

Ш )  = e(1'(q)/(l)(q) + e ,“l)(q )/ (_l)(q ). (4 .87)

This decomposition shows that the current is purely transverse.
In the helicity decomposition therefore, the total m agnetic field energy 

now has the simple diagonal form,

+/0’*(qM"’(q) + /'"■(q)̂ '""(q)| • (4-88)

The advantage of this form is obvious: The field equations are tr iv ia l, i .e . ,

<?l4(I1,(q ) = A4 (II)(q)- (4 .89)

Only the two transverse components appear. The helicity form ulation no 
longer requires invoking gauge invariance since it perm its working only 
with physical field variables.

4.5. HELICITY FORM OF THE STRESS ENERGY

After this exercise we are ready to apply the same type of decomposition 
to the stress energy in (4 .3). Let us first see how the constraints (4 .2 ) 
manifest themselves in the helicity expansion,
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^ f . (p )=  £  4 ; ',)(P )^ “'")(P)- (4.90)
J = 0, 1.2

Contracting pi with the helicity basis gives

P , e « i2) = 0, (4.91)

P A 0) = 0, (4.92)

р Л ° ' = у Ц р е ,  (4.93)

р Л 0) = ^ р е, (4 .94)

Furtherm ore,

Pie% ') = ^ \ p \ et = Pieti'\ P / e « 'n = “ ^ jIp I  e? = P/e« _1>. (4 -95) 

so that

(4-96)

A lso , since all ê j h\ except e flH) = л/З, are traceless we see that only the 
six components

e(1- *2\ e" °\ ^ = (е (2 г|)- е ' , ±|»), ^ = (V 2 e ,20> + e<00>),

satisfy the three constraints (4 .2). The three orthogonal components 
(\/V2) (e{2' ~l) + e{L ±n), ( l/ V 3 ) ( - e (20) 4- V2e{0-0)) do not. In the follow
ing it w ill be useful to have an abbreviation for these combinations of 
polarization vectors; we shall call



4 - ^ ( - e <2 0) + V 2 e <0' °>)„ = i = ( S fi -  p ep,),

e h 's  ^ ( V 2 e<20> + e ,0'% -  = p t p (4.98) 

Then A ei can be expanded as follows

* « ( P )  = e%2)(pM<2' 2>(p) + ~2)( p M <2' - 2, (P) + 4 ' 0)( p M (i' »

+ e^ +(p) Л - +(р) + е « _ (р )Л  (p ) + е\1 (p ) A *  fa). (4 .99)

Let us now form the stresses
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aij — eikfdkAtj — i\ p| S  EikePkeej^ Â Sh\p) (4 .100)
s,h

and expand them again in the helicity basis. For th is, let us first consider

eikCPk {̂j ^(p).

Using (4 .58), (4 .62), (4 .97), (4.98) and the relations

i p x e  = e, - i p  x  e* = e*, (4.101)

we calculate directly:

*eikePk e?i ±2> = ± e f  ±г\ (4 .102)

‘ W * 4 y  = ie ,* fp * ^ = (8f, - p ep,) = -e j}~0), (4 .103)

i e.ktPk eij = i eike pkpePj = 0 , (4 .104)

>eikePketj+ = I(p X e),pj = eiPj = e++, (4 .105)

ielk(pketj~ = -« '(P  x  e*),P ;- = ef Pj = - e j " ,  (4 .106)

i eikepk ejj+ = i(p  x  p), e, = 0, (4 .107)

‘ eikepk ej~  = - i ( p  x  p), ef = 0, (4 .108)
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‘ £ikePk4 / 0> = ~ ^ [ ( P  x  е),е/ -  (p x e*),e; ] = -^ = (e,e*  -  ef e,)

= - ^ ( % - M )  = - ^ ( - « ,20) + V 2 e (00)),y 

= ~etj- (4.109)

This leads to the formula

0|) = £ik€ dk A q

= |p|{e,f 2)A ™ - e ?  -* A a-* -e \ jA "  '» + e 1 ;+ A + + -e t-A + -  

-e f j,0>A L}. (4.110)

Since the A ei have only the six nonzero components shown in (4 .99), we 
obtain the decomposition

°V/(p) = IpI { 4  2,(P) Â 2' 2,(p) -  e f  - 21(р )Л '2- ~2,(q) -  e\j($)A{1' > ) L}.
(4.111)

which displays the three physical components of the 3 x 3  matrix A ei. 
They correspond to two transverse and one longitudinal phonon, 
respectively. Using the orthonormality of the polarization tensors we see 
that

Ы р )1 2 = Р2{И ‘2' 2,(Р)12 + И ‘2- - 2>(р)|2 + 

k e e (p )|2 = 2р2|Л(|0,(р)|2. (4.112)

Thus the stress energy [which we now can take directly from (1.43)] has 
the helicity form

£=.=/  Ц з р 2( и <2' 2,(р)12 + И (2- - 2)(р)12 + ^ И " ' » 1 2) .  (4.113)

That only three of the six components of Л (5*Л)(я ) in (4.99) survive is, 
of course, a direct manifestation of the gauge invariance of the decom
position (4.100) under local transformations,

A Cj{x)-+A ty(x) + Э* Л y(x). (4.114)
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In Fourier space, ЛДр) may be expressed in term s of longitud inal and 
transverse parts, as defined in (4 .31),

а, Л, = <(p< е,л<» -  p ( e* A(_,) + p ,p ,A (0),

where Л(г,\ A(0) are arb itrary functions of mom enta. In term s of helicity 
components (4 .97), (4.98) this amounts to

d, A;- = / |p|(e,--+ A(,) + еГГ Л(" П + еОА(0)У (4 ■115)

Thus gauge transformations modify precisely the last three com ponents of 
the helicity expansion (4.99) and this is why they cannot occur in the 
gauge invariant energy (4.113).

In the helicity formalism the partition function (4 .6 ) must contain only 
the three fluctuating physical gauge field components as integration 
variables,

Z = J  @ A 12' 2 ) @ A {2 ' -2)^)Д(1.0)е-(1/Л(£с1 + .̂«)̂  (4.116)

The three physical components satisfy the specific gauge condition

df/4fy = 0, (4.117)

as can be seen directly from (4.91), (4 .92). The gauge-fixing factor in the 
formulation (4 .6) is therefore

ФИ1 = П  S(af A ei) = 5(3 ,A „ ) .  (4 .118)
x.j

Notice that this gauge together with the constraint im plies the 
tracelessness of all p =£0 components of Л (у(р ), i .e . ,

^ ( ( (p )  = 0, f o r a l l p=£0 .  (4 .119)

It is useful to visualize the effect of the six б-functionals in the 
integrand (4.6) for a particular Fourier component A (](p). If the 
momentum p points in the z-direction, the constraint and gauge 
conditions read

P) = б ^р зЛ ^Д р ), (4.120)
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and

/М зЛр) = о, (4.121)

respectively. Inserting the second into the first we find

Л«з(р) = 0 , л , , ( р ) = 0 , л „ ( р )  = 0 .

This leaves us with only three independent matrix elements A lu Л 12, 
A 2i, as it should. Incidentally, it should be realized that in the helicity 
formalism we could have restricted the A Lj fields to be traceless right from 
the beginning. The constraint would then have simplified to d,/4<y(x) = 0 
and three components elim inated. Gauge invariance, on the other hand, 
would have been restricted to transverse functions A; only, i .e . ,

with d, A;- = 0. Correspondingly, the gauge condition dt A £y = 0 would no 
longer have implied three independent statements. In the exam ple in 
which p and z were paralle l, this would have showed up with A* = 0 being 
autom atically satisfied.

Let us now turn to the helicity-representation of the interaction in
(4 .6 ). Here we encounter a difference with respect to the magnetic case. 
The dislocation density a f ,(x )  satisfies only the three divergenceless 
conditions

and nothing equivalent to the constraints (4 .2) which would be cast as

A (j—> Aq + dcAy,

d( a (i{x) = 0 (/= 1, 2, 3) (4.122)

dj (x) ota (x ) . (4.123)

Using the equations (4.91) to (4.96) and the fact that e{q h), е(у 0) are 
sym m etric in €, j  while e\j h) is antisym m etric, we see that the first 
condition is satisfied by the helicity components
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The last three components would be e lim inated  by the condition (4.123) 
which, however, does not exist. Thus we have the p ecu liar feature that 
within linear elasticity, stress couples on ly to the first th ree of the six 
independent components of a {s'h).

The field energy in the partition function (4 .7 ) reads

’  “ 7  Ш 5 { V  ( |л” ' ’ ,<р)|г + И ° ' ' " <p)1, + Г Т Т |л” '

+ <(а'2- 2>(p)* A{2- 2)(p) + a<2- Л<2' -2>(p) + °>(p)* Au-°>(p)) J  ■
(4.124)

The three components a +±, a L are absent. They carry no stress energy at 
the level of linear elasticity.

W e can now integrate out the physical fields A {2' 2\ A 12, ~2\ Л (1,0) in 
(4.116) and, after a quadratic completion, arrive at

Z =  COnSt. X  e " (</ty(2Tr)J)( 1 /р2)(|а<2-2‘(р)|2 + |o<2 “2,(p)|2 + ((1 + v)/(l -  v))|a(l 0,(p)|‘ )

(4 .125)

The exponent must be the momentum space version of B lin ’s interaction 
energy for arbitrary dislocation densities which was derived before in the 
traditional way [see (3.29)—(3.31)]. In order to verify this not im m ed iate ly  
obvious fact let us rewrite (4.125) in terms of the tensor of dislocation 
density а^Др) by using the projection matrices into the helic ity  states,

Z = const. X e - (M/D/(rf3p/(2ir)3)(i/p2)e;#(p)(pĝ ,rp) + .̂Т'/ЧР) + ((I + v)/(1 — v))pyf̂ .fp))or/7rp)
(4 .126)

This can be brought into a somewhat more convenient form by observ ing 
that ( i* 2-2) + /*2- 2) + po, o>)e. can a jso be wrjtten as 8jj,8ee’ m inus a ll 
orthogonal projections J*2- l), j* 2- ~l\ pd. pO. -i) pi2. 0̂  j*0. 0) f ro m
(4.68), (4 .58 )-(4 .63 ) we calculate

PqJrr = \PtPiPfPf ~ k(PePjS(r  +  StjpePj.) +  £8,/8f r , 

(P{ 1 +  Pa‘ ^)tj,cj’ =  \(eepj +  Pj€e)(e*'p/I + pc e*') + c.c.
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= \{pepc(Siy - pjpr ) + pjpy(Sf f  - pepe.)

+  PePr (V  -  p j p r ) +  P i p e  ( V  -  P e P r ) )

=  \ { 8 (c p j p r  +  S j j ' p t p f  +  S e j p j p c  +  S j f p e p y )
Л  Л  Л  A, /4

-  2 pepjpcpj',

(/XI. 1) + /XI. -» ) f/. <7, = \{eepj -  pee,)(ee pr  -  pc er ) + c.c.

= i{(8fr -  PePc)PjPr + (V  -  PiPr)PePc
/ Л Л  /Ч \ Л  Л  / Л >4 \ /4 A  ^

-  (oey- -  P e P j ' ) p j p r  ~  K°jV -  p j p c j p t p j ' )

= P iP r + h  PePc ~  SerP/Pc ~ Sjt PePj')’

(4 -127)

By current conservation, pr<xcj' -  0* most terms in (4.126) cancel so that 
of these projection operators only the tensors

- \ p e p jb e’j' 4- l 8 Cj 8 e'j>, \{8et'p jp y  ± 6угРеР/')> \ 8 q 8 e>j’

survive in front of а Г/-(p), respectively. This shows that

( ^ • 2) + /X2 - 2) + /X1. 0))€.) e r a € r ( p )

= [ 5 ^ ( V  "  PjPr) ~ h(8ej -  p epj) 8e r ] a er  (p). (4.128)

W hen m ultiplied from the left by aej(p) the last term vanishes (since also 
acjpe -  0) and (4.126) becomes

Z = const x  -  /да - а гт&ч + - »)/*$,wp)»?.
(4.129)

A  final simplification is based on the observation that the projection 
matrix /*'•0), whose explicit form is

P{U °\p)ej.e‘j' = 2eW ee'j'k'PkPk'i 

[see (4 .68), (4.62)] can be expanded as

/*10)( P W  = V  "  ~ SjrPePr

+ 8trprPi + 8n PePr)- (4130)
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Between conserved а^ (р ) m atrices, only

\ — pjpj') -  8je>

survives and the exponent in (4.129) can be rew ritten  as

or

T j (2n)/
(4.131)

Going over to position space, this amounts to the partition  function 
[recalling (1.81), (1.89)]

This exponent coincides with Blin 's law (3 .29)—(3.31) for arb itrary  d is
location densities.

4.6. THE TWO-DIMENSIONAL CASE

Here the situation is much simpler. The conserved stress tensor can be 
expressed in terms of a field ЛДх) as

where eik is the antisymmetric unit matrix, eu = e22 = 0 , el2 = -  e2i = !• 
Notice that A, is no longer a proper gauge field. This is pecu liar to two 
dimensions. When written out in component form, (4.133) reads

сгц = е2Л |, сг22= - Э , Л 2, о-12 = д2Л 2, cr2i = —d, A\. (4 .134)

The symmetry is guaranteed by using a transverse Aj field.

Z = const, x  exp{--------
I 47tT j8fj8rj> Srck £n'k ^

aij -  £jk dk A j , (4 .133)
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Э,Л,  + д2Л2 = 0 .

In the isotropic case the stress energy becomes

£C' = I (е* д*А;)2

(4.135)

h i (.dkAij2 j _|_ ^(d| A 2 — d2A j)2 (4.136)

A partial integration in the mixed second term , together with (4 .135), 
brings this to the form

£ cl =
4/x(ll— j  d*xiakA ,? .  (4.137)

apart from a surface term.
In two dimensions, for which defect lines degenerate into points, the 

density of a dislocation with Burgers vector b at the place x0 is

tf/(x) = ekl dk d( m, (x) = bi S2(x -  x()). (4.138)

The interaction energy of a dislocation in the stress field of another is 
found, just as in (3 .22), to be

£ l u = J d 2x (Гуд/и}1 = J d 2xe,kdkA/(x)diuj' = J d 2xAj(\) eikd,dku)'

= j  d2x A/(x) a,(x) = bjAj(x(,). (4.139)

The partition function of stress for a given set of dislocations is (/3 = 1 IT)

Z =  J<2>Aj8(djAj) + + ^ 1̂ л , ( х ) а у(х) ( 4  ^40)

The Aj field can be integrated out with the result

Z = const, x  det(j8d2) - ,/V ^ (l + (4.141)

where vjj (x -  x ')  is the transverse Coulomb potential in two dimensions
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calculated in (1.124). The exponent is the tw o-dim ensional analogue of 
B lin ’s law.

The potential vfj has an infinity. Let us iso late it and discuss it 
separately. It contributes an exponent

M l  + V) ( ^ J d2x a j ( x ) j  ^ ^ l o g  ^  1 j  , (4.142)

where 8 is the small regulator mass. The superscript T of a T records the 
fact that i>,f(x) acts only on the transverse pro jection of a ,(x ) ,  
cxl{x) = (8jj — (djdj/d2)) otj(x). In the limit 5 —>0, this exponent diverges 
to —*  so that the dislocation can have a finite contribution on ly if

j  d2x a [  (x) = 0. (4.143)

We shall refer to this condition as dislocation neutrality. For such neutral 
systems, the infinity in (4.141) cancels and we can write

-  J drxdrx' al(x)v]j(x -  x ')a/"(x) = -  J d2xd 2x' af(x) v '?{x -  x’)a j(x '),

(4.144)

where

^ ( x - x') = - i ( ^ l o g W - ^ )  (4Л45)

is the subtracted transverse Coulomb potential.
The fact that the elastic energy couples only to the transverse part of 

the dislocation is the two-dimensional analogue of the coupling to only 
a (2. 2)̂  a (2. - 2)̂  a (i. in energy |s inciifferent to modifications of the
longitudinal part of a h a L{x) = (д,Э,/д2) ay(x ), or in Fourier space to 
a L (p) = PiPjaj(v), just as it was previously indifferent to the com ponents

aL = °’ + a (0-»»), a ++ = - L ( a c. »  + a d. ■>),
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a +-= ^ = (a < J" »  + a (' - - ,)) 

[recall the discussion after (4.123)].

NOTES AND REFERENCES

See the end of the next chapter.



CHAPTER FIVE

STRESS ENERGY OF GENERAL DEFECT DISTRIBUTIONS

5.1. THE SYM M ETRIC STRESS GAUGE FIELD

So far, the development has been very sim ilar to that of vortex lines in 
superfluid 4He. The forces between line elem ents are of the l/R type and 
the only additional complication consists in the different possib ilities of 
contracting the indices related to the Burgers vector. The situation 
changes drastically when it comes to including also the line-like defects of 
the rotational type, the disclinations. If they are present, the gauge field 
Л,у(х) is no longer useful since it does not couple locally to disclinations. 
A further derivative is necessary to achieve this goal. W e therefore 
introduce a gauge field x*>,(x) which has the property that its double curl 
is equal to the stress tensor,

°V/ (x) ~  £ikC Sjmn &k dm Xdn (x) • (5 • 1)

This representation has the advantage of being autom atically sym m etric 
if Xin is. The local gauge transformations which leave cr̂  invariant are 
now

Xin (x) -*  Xt/i (x) + d( £, (x) + a„ & (x ) . (5 .2 )

This ensures that only three of the six components of X//(x) are physical.

8 5 4
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It is straightforward to derive the coupling of this gauge field to a 
general defect line. For this we consider again one line L l in the stress 
field of another L M, so that interaction energy is

£ '•"  = Jd^xalju!/. (5 .3)

Using the gauge field (5.1) this can be rewritten in the form

£'■" = J  d\x (eike £jm„ Э* dm X} „ (5. 4)

A partial integration yields

=  j d }X E(ki £„mjh  d„, u}j. (5i5)

Hence we see that the symmetric gauge field \ln couples locally to the 
total defect density 7]e„ which was introduced in (2 .76),

£ '•"  = J  d*xxl,i (x) W - (5-6)

With the gauge field it is now straightforward to derive a partition 
function for the stress fluctuations around an arb itrary defect con
figuration [the analogue of (4.116)]. For this it is again convenient to go 
to a helicity basis. Expanding the gauge field Xr»(x) int0  *ts Fourier 
components [as in (4 .72)], we use (4.71) to decompose

X i.(P ) = £  Р 'Л п '  (P) X cv(P) = E  «ЙЛЮ  X<, ,,’(P). (5 .7)
A'./l V./l

with the helicity amplitudes

Х*-Л\ р )т *е»к)*(9)Хг«(р\ (5.8)

By virtue of the sym m etry of Xf»(p)^ оп,У the SIX components with spin 
5 = 0 and 2 can be nonzero. Three of these are gauge modes. From (5 .2 ), 
these have the general form
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‘ (9е&(р) + P h& (p ))- (5-9)

Decomposing f„(p) into longitudinal and transverse com ponents,

£. (p) = Pn ?(0,+ (p ) f (1)+ (pH‘"1); (s-10)

we see that (5.9) can be written as [see (4 .58 )—(4.63)]

2 i|q| PcPn f<0>(P) + ( ^ e(P" + Pl e") fU)(P) + C C-

= 2i|q| X ( %̂ e(2.0) + e(0.0))f(0)+ (e(2.l)f(l)+ c c ) (5Л1)

Hence the components (2, 1 ), (2, - 1 ) and the linear com bination \L -  
(l/V3)(V2xa l,) + x(H'0)) are unphysical. Using the previously defined 
polarization tensor [see (4.98)]

е Ш  -  + e V m  = PcP»’ (5-12)

the unphysical components are spanned by e{2' !), e(2% _l), and eL . The 
physical components, on the other hand, are spanned by the orthogonal 
complements e(2- 2), e{2* ~2) and the previously defined

<4(P) = ^ 5 ( - e f„ 0,(p) + V 2e£ A p )) = ^ (S fn -pe P n )-  (5 1 3 )

It is useful to introduce also projection m atrices associated w ith the 
polarization tensors eL and eL'\

Pen€'n'(i>) =  e ^ ( p )  £ f v ( p )  =  №en - p e p n)(8e'n- “  Pep,i ')>

Pent'n'(P) = £cn (p) efr'n' (p) = pepnpe'pn'- (5 .14)

In terms of these, the completeness relation reads
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I ! 2 P{2J,) + P L + P L J = ^ ( V  + 8tn.S„e-). (5.15)
h =  -2  
Ji* 0 f#i. Г#Г

The right-hand side is the unit matrix in the space of symmetric tensors. 
The physical components of х<»(р) are projected out via

xF lr(p) = (P t2- 21 + P'2 - 1' + P L) ,„ . r „ 'X 'w (  p)

= 4 « 2l(p )x a 2l(p) + f f , ; '3'(p )x <2 ' 2l(p) + e f„ (p )x '(p ) -  (5.16)

They satisfy the obvious gauge condition

p ( x ^ ys(p) = 0. (5.17)

These are three equations which suffice to elim inate the three unphysical 
components, since the corresponding polarization tensors would give

P*ef„'\p) = ^ e „ ( p ) .  Pee'e2;, _2l(p) = p, е^„(р) = ^=pn,

(5.18)

which are three nonzero independent vectors such that their sum vanishes 
only if the components do.

The stress tensor can be calculated from x?>,ys(p) by observing that the 
physical polarization tensors ea  ±2)(p ), e L(p) are invariant under the 
operation of the double curl, up to a factor p2, and a trivial sign change 
for the L component. For e{2' i 2)(p ), this follows directly from (4.102):

~  ~  (2. г 2 ) / ач , л (2. * 2 ) / л \  (2. ± 2 ) / ~ \

I Cikl P k  I CjmnPn, eln (P) = —Ejnm Pm  *}„ (p) = etj (p).

For <?L(p), we use (4.103) and calculate

t £ik( Pk * GjmnP/n ̂  (p) tn ~ * Ejmn Pm in ( P )  •

The right-hand side becomes, with (4.109), —( l/ V 3 )( - e (2, 0)( p ) + 
V 2 e (0 0)(p)) = -e ! f ( p) and this proves our statem ent. Note that the un
physical components vanish under the same operation, as they should, 
due to the gauge invariance of the decomposition (5 .1).



As a result, we can expand the stress tensor d irectly  in the form3

(p) = P2(4"' 2>(p) x '“ 3)(p) + e<2' "2)(p) x (2' _2)(p ) -  e!j (p ) X t'(p )) (5.19) 

and identify its helicity components as

I2’(p) = P2X12' ~ ’(p ). o-L(p) = - p 2x '  (p)- (5.20)

Comparison with (4.111) shows that x (s A' and the form er gauge field A {s li) 
are related by

■412' i2)(p) = Ip I X(2' *2’(p), * “■ °>(p) = —|pl x L(p)- (5.21) 

Inserting these into (4.113), the stress energy takes the helic ity form

£  = ^  /  ( f i ?  p4 ( l x 12-2,(p)'2 + 1*"' ' 2>(p )l2 + Й 1 * L^ 2) ■ (5 '22)

The linear coupling (5.6) with the defect density can be decom posed in a 
sim ilar way. Since T7,y(p) is symmetric and d ivergenceless, it has the sam e 
helicity decomposition as the stress tensor, nam ely,

Vijip) = 2)(p) ча 2'(р ) + 4 2'~2’(p) t)12' ~21(p) + e ' i p )  v L(.p) ( 5 -23)

and the general interaction energy now reads

£m> = “ J  ̂ ЗЧЬ.(Р)*Х<„(Р)

= - / 2\p)*x° 2,(p) + Vе- - 2,(p )’  x a  - 2,(P) + n Lrp )*x L(p))-

(5 .24)

aM ore genera lly , we could have derived the following identity [using Eqs. (4 .7 0 ), (4 .6 8 ), 
(4 .102)—(4.109)):

£tinC£jnjPmPn
= 2) + "2) + ̂  l)+^ " ,) + pl + pl '

+p<1- 14 pu- - 1)+ p< UV ,VT
_ ^ 2. 2) + p(2. -2) _  pL+ p ( 0 ) y .  r ."

Applying this to Xrr gives (5.19).

8 5 8  III. GAUGE FIELDS IN SOLIDS
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5.2. ELASTIC PARTITION FUNCTION FOR A FIXED GENERAL 
DEFECT DISTRIBUTION

A fter these prelim inaries it is easy to write down the partition function 
for a fixed set of defects with all their stress fluctuations,

/  — ^  C £ ) g ~ W T ) ( E  + iE-,nl) ^  25)

Since the physical components satisfy the gauge condition (5 .17), the 
m easure of integration can also be written as

(x) n ^ f X o » ) -

Integrating out the three physical gauge-field components gives 

Z = const, x  ^”<А‘/г>Я<̂ ,<-̂ *н|/|рГи|п‘:;,(р)|;! + lnt:‘ + (d +»')/(1 - vHln'ipjf) 26)

This partition function is the proper generalization of formula (4.125). 
The exponent is the momentum-space version of the elastic energy for 
arb itrary defect distributions.

The expression can be simplified in a manner sim ilar to (4.131). For 
this purpose we insert the projection matrices (P{2-2) + P (2, -2) + (1 + v)/ 
(1 -  v) P L)en.Cn' and rewrite them as the symmetric traceless unit matrix 
in the subspace of symmetric tensors, (l/2 )(S f r  8nn- + Sf„'S„r ) minus the 
matrices

p ll.l)+ [X2.-»+ pL' _ J ? _ p L  (5 27)
1 — V

These matrices are now contracted with the tensors i7r,/(p)*> т?г*г(р) 
which are divergenceless, i .e . ,  they satisfy the conservation laws

Pi Vin(P) = 0, p„ W P )  = 0. (5.28)

With the aid of the explicit polarization tensors (5.14) we see that P L (p) 
gives no contribution while P L(p) can be replaced by (1/2)5*-,, 5Гл'. 
M oreover, due to (4.58) and (4 .59), the matrix P(2,1} + P (2* ~l) between 
the rj tensors vanishes since it can be rewritten as
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(/><-■ n(p) + P12 ' " ( p ) ) , „ = i(e ,p „ + p, e„) ( e r  p„. + p r  e„.) + e x .

= H(S« '  ~P( Pr)P„Pn• + {Ь„п'-р„Р„’)РсРс

+ (8ln- - p ,p n-)p„pr  + ( S „ r -p „ p r)p ip „ b
(5.29)

clearly there are always momenta that are contracted with the 17 tensors 
and give zero. Thus we arrive at the m atrix form of the exponent,

_ £  f  d3p 1 „ 
r J  (2тг)д |p|j7 ,"*(p) + 8(n' S„r) + ------ $(,, ?>(•„•2 1 — v Уг„'( P)- 

(5.30)

In position space, this amounts to a partition function for stress 
fluctuations, i .e .,

2  = const x  + (i'/n - (5 .31)

where r 4(x) denotes the potential

' W H ' " '  ? ■  <5 32)

In Eq. (1.88) we had calculated this potential and found that it consisted 
of two terms: a constant

= _ L  П <*г
2 ТГ2Jo  q2

> 0 , (5 .33)
<I~

which diverges due to the small q fluctuations (infrared catastrophe) and 
a subtracted potential

ид(х) = r 4(x) -  r 4(0) = -R /Stt. (5 .34)

Inserting this decomposition into (5 .31), the subtracted potential leads to

Z = const. X + (»*/(I - i,))TjMx)q„1,{\’)|i>4(x -  X') (S .35)

The infinite constant can be treated following (4.141). It gives the overall 
factor
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g-(tUT)cf <l\x</V(П(«(*)4i/((X') + (k/(1 - v))i)n (x)t|,i,|(x')|
(5.36)

which may be rewritten as

(5.37)

where

1  + 2v  i
1 — v (5.38)

Since с diverges against plus infinity, the factor vanishes unless

for each t , n. Separating 17, „(x) into its traceless spin-two part 77}^(x) and 
the spin-zero part 17,,-(x ), this amounts to the two equations

These state that only such defect contributions have a non-vanishing 
stress partition function whose integrated densities vanish. We shall call 
this property charge neutrality of defects or defect neutrality.

Let us decompose the defect tensor щ (x) into dislocation and 
disclination densities according to (2 .79b), (2.80a)

The dislocations by themselves satisfy autom atically charge neutrality
(5 .40)b due to the derivatives in front of a tll. When inserted into (5 .35), 
these derivatives ensure that the potential between dislocations goes like 
1IR as given in formula (3.29). Just as for dislocations, the force between 
disclination lines is repulsive for line elem ents and attractive for opposite 
line elem ents, but the potential is linear. This leads to a “permanent 
confinement” of opposite line elem ents. In a statistical ensemble they can

(5.39)

(5.40)

V i/(X) ®//(X) "1" £//mi d/ц {&jn (x) 2 СКдд-(x)). (5.41)

’'Under the usual assumption that vanishes at large |x|.
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never be found far from each other. This situation is analogous to the 
permanent confinement of quarks and an tiquarks in e lem en tary particle 
physics, which apparently cannot be iso lated in the laboratory . Only their 
bound states, the strongly interacting partic les (m esons and baryons) are 
observable.

For disclination lines we have seen in the general discussion of Section 
2.4 that the bound states of lines of opposite sign are dislocation lines. 
The permanent confinement implies that a crystal in therm al equilibrum 
never contains free disclination line elem ents. Only their bound states, 
the dislocation lines can be found. External forces are necessary to 
generate disclination via plastic deformations. N evertheless we shall see 
later that it is possible to produce disclinations by heating, but only at the 
expense of a complete destruction of the crysta lline order in a melting 
process.

5.3. TWO-DIMENSIONAL DEFECTS

In two dimensions, the stress tensor can be written as

and x has lost both indices (since it corresponds to restricting x<« t0  Хзз 
only). As was previously true for Л ,, it is no longer a gauge field. 
Explicitly we have

It is explicitly transverse. The elastic energy reads [com pare (4 .137)]

The field x now couples to a defect tensor 17 (corresponding to 1733)

07/M = A-d„,x(x) (5.42)

On = dlx> °22 = dj*, a \2 = 0*21 = -d\d2x- (5.43)

The field Л, is related to x via

/4,(x) = eik d*x(x). (5 .44)

(5.45)

E,m = i j d 2xx(x) (5 .46)
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Hence we obtain for the elastic partition function [compare (4.140)
(4.141)]

Z = J  e_l /̂(4M(I + + ptl‘/2*x(x)v(*) (5-47)

= const, x  d e t(/3d4)- l/2 e- w , + ч(*)r4<x-*•),(«•) (5 4g)

The potential v4(x) was calculated in (1.121). Using a small cutoff mass 5, 
it contains an infinity 1/(47rS2) - » » .  This shows that Z vanishes for 
any defect distribution which does not satisfy the condition

J  d2x rj(x) = 0. (5 .49)

This implies two-dimensional defect neutrality.
Neutrality is not yet sufficient to guarantee a finite Z. There is another 

infinity in v4(x) which goes like -|x|2log5. This is elim inated as follows. 
We write the exponent as

log6  J d 2x d 2x'(x -  x ')2 i7(x) Tf(x']

=  - lo g  5 j^2 J d2 x x 2 tj(x ) j d2x' t] (x ')  -  2̂j d2x x r](x )j

= 2 1 o g S ^ J d 2x x r ) (x ) J  . (5.50)

From this we see that only such defect distributions can occur which also 
have a vanishing dipole moment,

J d 2xxTj(x) = 0. (5.51)

This condition will be called dipole neutrality. Once tj(x ) fulfills both 
conditions, the partition function can be written in the form (5.48) but 
with t’4(x) replaced by the finite potential t>4(x) = (|x|2/87r) log |x| of 
( 1.122).
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CHAPTER SIX

K IN E M A T IC  P R O P E R T IE S  O F D ISL O C A T IO N  LIN E S

So far we have studied only static defect lines. For a complete under
standing of the plastic properties of m aterials caused by defect lines it is 
necessary to know also their kinematic properties. In this text we shall be 
m ainly interested in equilibrium  thermodynamics of defects and stresses, 
where these properties are , to a large extent, irrelevant. For com plete
ness, however, it will be useful to recapitulate the way defects move in a 
crystal.

6.1. GLIDE

In Section 2.1 we already saw that a dislocation line of the edge type 
facilitates the movement of one crystal piece over another. The move
ment proceeds in a slip plane parallel to the Burgers vector and 
orthogonal to the line. Such a movement is called planar glide. If the 
stress is not applied uniformly over the surface of a crystal, dislocation 
lines take a piece-wise screw character (see Fig. 6.1) and the slip planes 
become cylindrical (see Fig. 6 .2a). Just as in the planar slip, only 
switching of bond directions is required as long as the lines move so as to 
keep a constant projection along the b direction.
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FIG. 6.1 .a. If a slip starts with a pure 
edge dislocation line and the shear forces 
become inhomogeneously distributed 
along the у -axis, the edge line acquires 
the screw and mixed sections shown in Fig. 
6.1b.

FIG. 6.1 .b . The atoms above and below 
a mixed dislocation piece connecting edge 
and screw parts. This can move to the 
right via slight shifts in bond directions. 
The circles and dots are atoms above and 
below the slip plane, respectively.

1

l:t
edge

I n
-------- ]

j screw

(a)

FIG. 6.2.a.b. The mixed edge-screw dislocation line in glide configurations on a cylindrical 
surface whose projection along b is the line shown to the left of the figure. This slip occurs if 
a force pushes to the right in the center and to the left outside the periphery. In Fig. 6.2b we 
also find a cross-slip away from the slip plane (see also Fig. 6.4).

6.2. KINKS

It may be expected that the slip movement of a line is not a continuous 
one. Due to the periodic nature of the crystal, the positions w here the 
dislocation line can lie most comfortably are determ ined by potential 
grooves which in a s.c. lattice would run parallel and orthogonal to b in 
the slip plane [see Fig. 6.3 for an illustration of the orthogonal grooves]. 
In such potentials a dislocation line may form kinks in which the line 
jumps across one potential barrier and proceeds in the next groove. K inks 
are single line elements of screw character. A  finite-line piece of screw  
character may be seen as a multi-kink jump in a pure edge d islocation.
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FIG. 6.3. The kinks due lo the undulation of the effective potential for a dislocation line 
which is caused by the periodicity of the lattice (Peierls potential). We have omitted the 
undulation orthogonal to b which is certainly also there.

6.3. CLIMB

A movement of a line away from the slip surface is in general restricted. 
In order to understand this most simply, consider the possibility of a 
dislocation line moving orthogonal to b x  dx, a movement which is 
m eaningfrl only to the non-screw piece of a dislocation line. Such a 
movement is called a climb. Looking at Fig. 2.2. we see that such a 
movement of the dislocation line to the right or left can only take place 
by extending the plane of excessive atoms. This, in turn, requires the 
presence and rearrangem ent of the interstitial atoms. We conclude that 
the climb must be a degree of freedom which hardly occurs in a plastic 
deformation. It can take place only on a long time scale which is needed 
by the interstitial atoms to diffuse to the climbing line.

6.4. GEN ERAL CONSERVATION MOTION

Closed dislocation loops have a slightly easier possibility of performing a 
climb without requiring extra interstitials. For they may use their own 
excess atoms and simply change their arrangem ent. Such a climb is called 
conservative. In general, any movement of defects which can take place
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without the need of extra interstitia l atoms is ca lled  conservative. It is 
characterized by the invariance of

- J  dS,b„  (6.1)
a' J s

since this obviously counts the number of excess atom s in the dis
location loop. The conservative movement m ay also be characterized 
by an integral along the dislocation line. Let 5x(s) be the d isplacem ent of 
the line. The excessive atoms of a dislocation line lie in the direction 
dsx(s) x  b where dsx(s) is the infinitesim al tangent vector. Thus a move
ment & ф ) requires

8Л = J d s ( x  x  b) • 5x(s) (6.2)

additional atoms. In terms of this expression, we see that a glide always 
proceeds in such a way that for each line elem ent it only displaces the 
same set of excessive atoms, i .e . ,  Sx(s) is orthogonal to the excessive 
layer: i

(x x b) • 5x (j ) = 0. (6.3)

Thus a glide is a conservative motion.
A climb is defined by (6 .3) as being nonzero. One speaks of a conser

vative climb if it possesses at least a vanishing integral around the whole 
line

ds(x x  b) • 5x(s) = 0. (6.4)

Even though a conservative climb is much easier to generate than a 
non-conservative one since the diffusion of atoms along the d islocation 
line is easier than the diffusion in the bulk of the crystal, it nevertheless is 
extrem ely unfavorable when compared with the glide.

6.5. CROSS SLIP

At this place we may observe that there is another possible dislocation 
movement which is not a glide but also of the easy type by having 
(x x b) ■ 5x = 0. It arises for screw dislocations for which x x b = 0.
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FIG. 6.4. A cross slip. Two loops on different slip planes can fuse without need of extra 
intcstitial atoms, or a screw piccc of a dislocation may suddenly escape from the slip plane 
in such a way that its projection along b is a line (compare with the cross slip tongues 
forming in Fig. 6.5b).

Therefore, a whole section of screw dislocations can move aw ay from the 
slip plane without need of interstitial atoms. Such a movement is called 
cross slip and shown in Fig. 6.2b. It is characterized by its projection 
along b being a line. A cross slip may also form and connect two different 
dislocation loops on different slip planes as shown in Fig. 6.4.

6.6. DISLOCATION SOURCES

If a dislocation line has moved once through the crystal, the plastic 
displacement is equal to the Burgers vector b of the line. In order to 
arrive at macroscopic deformations, a great number of lines is necessary. 
It was pointed out by Kuhlmann-Wilsdorf and by Frank that in order to 
understand the large deformations observed in many m aterials, an 
efficient source must exist by which dislocation loops can be created 
under external stress. The basic mechanism by which this happens was 
discovered by Frank and Read and is nicely explained in the book by 
R ead. A modification of his pictures is shown in Fig. 6 .5 a -d . By 
inspection we see that if the upper portion of the crystal is sheared against 
the lower, the section DC of the edge dislocation line starts circulating 
around the axis DE in the clockwise sense thereby expanding the slip 
plane once through the whole crystal. The result is a movement of the 
upper portion against the lower by b.

The importance of the mechanism lies in its periodicity: A fter one 
sweep, the line DC has returned to its initial position from where it can 
start the next sweep. In the illustration, the surface of the crystal seems to
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FIG. 6.5. The periodic motion of a dislocation according to Frank and Read which cuts a 
crystal an arbitrary number of times and permits a plastic shift of the top half against the 
bottom half by any number of Burgers’ vectors.

(d)

FIG. 6.6. The Frank-Read mechanism in Fig. 6 .5a-d  in a large crystal. It can produce 
dislocation loops which lie completely within the crystal. Only for small crystals, smaller 
than the typical loop size does it lead to a complete slip of the upper portion against the 
lower.

play an essential role. But this is not really true. A sim ilar process can go 
on completely inside a crystal leading to the periodic formation of d is
location loops. In order to see this we may consider a sym m etric in itia l 
configuration as shown in Fig. 6.6. By applying shear stress to the upper 
portion in the direction of b the line DC will bend and sweep out the 
same arc as those in Figs. 6 .5 a-b  within the crystal. The return to the 
original position proceeds, however, in a different way. A fter a certain  
amount of sweeping, the curve collides at point M. There the section
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DMC separates from the outside ring and re-establishes the initial line 
DC. The outside ring remains inside the crystal. This is obviously an easy 
movement since all that is necessary for a shift is a slight switching of 
bond directions as indicated by the dashed line.

C ertain ly , the dislocation lines in this plastic deformation process are 
not necessarily as smooth as shown. Even in a homogeneous stress field, 
the segments of the line have edge, screw, and predominantly mixed 
character.

It should be noted also that the lower part of the double cross slip in 
Fig. 6.4 can also act as a Frank-Read source.

6.7. INTERSECTING LINES AND JOGS

A nother important aspect of dislocation movement is the possibility that 
lines can be driven to intersect and pass each other. This happens if 
external shear forces are large enough to overcome the elastic repulsion 
between the lines. The conservation of interstitial atoms does not permit 
the lines to have the same shape before and after intersections. A 
moment’s thought shows us that, in general, each line acquires a jump 
orthogonal to its own slip surface whose size equals the component of the 
Burgers vector of the other line in this direction. An exam ple is shown in 
Fig. 6.7 for two lines A В and X Y  which are straight before intersecting. 
A fterw ards, the line XY  is still straight since the Burgers vector b of A В 
lies in the slip plane of XY. The other line A В , however, acquires a 
vertical component PP'.

Such jumps orthogonal to the slip plane are called jogs. They are the 
counterparts of kinks, which are jumps within the slip plane. The main 
difference between the two consists in the fact that whereas a kink 
requires no migration of atoms, a jog does. In the exam ple, the jog  line 
contains an extra row of atoms below the line A P  which is necessary for 
this partial climb of the line. These atoms have, of course, been left 
behind by the dislocation line XY. In order to see this we only have to 
keep in mind that the line X Y  before the intersection has a layer of 
excess atoms to the left while A В has such a layer extending down
wards. A fter the intersection, the layer to the left of X Y  is reduced 
by one Burgers vector b so that it contains one row of atoms less. It is 
precisely these that have been left behind in the row to the right of the

jog-
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FIG. 6.7. Two lines before and after intersection. The line AB  has a jog  PP' as large as 
the Burgers vector of the line XY, which points orthogonal to the slip plane of AB. The 
other line XY  remains straight since the Burgers vector of AB  lies in the slip plane.

X

I
bi

A у :

X у
S

b

6.8. BASIC ENERGETIC CONSIDERATIONS OF BRAN CHIN G 
OF DISLOCATION LINES

W e saw in Section 2.11 that defect lines can branch off each other 
satisfying conservation laws like those for electric currents. If a pure 
dislocation line L\ with Burgers vector splits b\ into two others L 2, 
with b2, Ьз, they obey the analogue of Kirchhoff’s law:

bj = b2 + Ьз- (6 .5 )
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E nergetically , such branching configurations are usually unstable. Just as 
in the case of vortex lines, the elastic energy of a dislocation line increases 
roughly quadratically in b. Thus, if the square of one vector is larger than 
the sum of the others, say

bT > b? + b l  (6 .6)

the line L , will slice open in favor of two lines L2 and L3. This is 
analogous to the case with elem entary particles where a decay process 
takes place with the conservation of the momentum vectors

Pi = P2 + P.i (6 .7)

as soon as the masses satisfy

m { > m2 + rn$. (6 .8)

From this argum ent, it is obvious that among all admissible Burgers 
vectors only the shortest ones have the largest chance of being stable. 
Others may be stable because of elastic anisotropy or because their 
atomic configuration in the core has a low energy. In a simple cubic 
lattice, the Burgers vectors

b, = (1, 0, 0 )u , b2 = (0, 1, 0)fl, b3 = ( 0 , 0 , 1  )a, (6 .9)

and their mirror im ages are stable while all others decay into them. In a 
body-centered cubic lattice which is spanned by basic lattice vectors

a, = (1, 0, 0)a, a2 = (0, 1, 0)a, a3 = (1/2)(1, 1, 1 )a t (6.10)

the shortest Burgers vectors which are of the form (6 .10), as well as the 
next longer ones pointing to the six next nearest neighbors

b = 4(1, К 1 )e ,  4(1, 1, - 1  )a ........... - 1 ,  - 1  )a  (6.11)

are stable. In a face-centered cubic lattice, the situation is sim ilar. Here 
(6 .9) and the twelve shortest Burgers vectors
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b = ±(l/2)((), 1, 1 )a, ±(1/2)■(()', 1, ±1 )a 
± ( 1 / 2 ) ( 1 ,  0 ,  l ) e ,  ± ( 1 / 2 ) ( 1 ,  0 ,  ± l ) e  

± ( 1 / 2 ) ( 1 ,  l y 0) a ,  ± ( 1 / 2 ) ( 1 ,  ± 1 ,  ( ) ) < ? .  ( 6 . 1 2 )

In the following it will be useful to think of all unstable dislocation lines 
as composite objects consisting of those stab le lines into which they can 
decay. This is sim ilar to the old fashioned theory of e lem entary particles 
in prequark days when all hadronic resonances were thought of as being 
composed of pions and nucleons. The sm allest set of stab le dislocation 
lines capable of building up all others w ill be referred to as basic or 
fundam ental. Only these fundam ental objects must be included exp licitly 
in the field theory of defects to be developed later. The others can be 
viewed as consequences of the field interactions.

6.9. ANCHORED BRAN CH POINTS

Branching dislocation lines have interesting properties as far as motion is 
concerned. In general, three slip planes intersect each other only in one 
point.3 In this case the vertex cannot perform any conservative motion. 
One therefore speaks of anchoring a vertex. The F rank-R ead source 
mechanism for dislocation loops can take place between any two such 
anchored vertices. In line configurations which are formed like the letter 
И and in which the four external lines do not lie in the slip plane of the 
cross connection, this can perform precisely the same periodic sweeps as 
discussed above, thereby producing sequences of loops.

NOTES AND REFERENCES

For more details see the books listed in Chapter 2 and the book by 
W.T. Read, Jr .. Dislocations in Crystals (McGraw-Hill. New York, 1953).

aAn important exception is that of

b, — | ( l , .  — 1. 0 ), b . - 5 ( 1 . 0 . - 1 ) .  b3 = 2 ( 0 , - I ,  1)

with b, = b2 + b3 and all three vectors Ivine in the plane orthogonal to the space diagonal 
(1 .1 ,1).



CHAPTER SEVEN

SOM E G E N E R A L  PROPERTIES OF THE 
MELTING PROCESS

So far we have studied specific defect configurations with their elastic long 
range stress interactions. These interactions were described by a gauge 
field coupled locally to the defect densities. In the previously investigated 
case of superfluid 4He we saw that given a system of random lines with 
such a coupling, it is re latively easy to develop a disorder field theory for 
a grand canonical ensemble of such lines. This field theory permitted the 
study of phase transitions in which vortex lines condensed. In 4He this 
transition carried the superfluid into the normal state.

In Chapters 4 and 5 we found gauge structures which are very sim ilar to 
those in superfluid 4He. Hence we might expect that a very sim ilar 
d isorder field theory can be set up for the defect lines in a perfect crystal. 
At a certain tem perature, the entropy of the lines overcomes the energy 
and the lines become infinitely long and proliferate. Once the crystal 
is filled with long defect lines it loses its high degree of symmetry. The 
fluctuations of the defects carry the atoms of the crystal to arbitrary 
positions. The resulting disordered state may be expected to behave like a 
liquid11. Thus, once we succeed in finding a proper disorder field theory of 
defect lines, this should provide a possible theoretical basis for the study 
of the melting transition.

When attem pting such an approach, however, one im m ediately realizes 
that there exists an important difference between the two phase tran-

aIf the time scale of defect movements is sufficiently short. Otherwise the state will be 
glasslike.

8 7 5
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sitions. The superfluid transition in 4He is a second-order phase tran
sition. Near the critical point, the physically re levant fluctuations are all 
of very long range. This m akes the critical behavior, in particu lar the 
critical indices, independent of the properties of the system  at short 
distances. For this reason a lattice model of the superfluid phase tran
sition such as the classical X Y  model is ab le to reproduce the critical 
behavior with arb itrary accuracy, even though the phenom enon of super
fluidity does certain ly not take place on a lattice. The critical behavior 
does not depend on the particu lar choice of the lattice structure. This 
property of second-order phase transition is called  universality. It has 
been one of the most im portant achievem ents in theoretical physics in the 
past decade to have recognized this property and developed methods to 
understand the different un iversality classes theoretica lly . U n iversality is 
the reason why the critical behavior of second order phase transitions can 
not only be described by various lattice models but also by a su itab ly 
chosen field theory. The field has only to be capab le of representing 
properly those degrees of freedom of the system  whose fluctuations 
acquire an infinite range at the critical point. For the superfluid 
transition, it had to be a complex field.

In contrast to this p leasant situation with the superfluid transition, the 
m elting process which we would like to understand in this part of the text, 
is a first-order process. Just above the transition tem perature , in the 
molten phase, all correlation lengths are finite. Thus the m elting tran
sition can certain ly not be a universal phenomenon in the sam e sense as 
second order phase transitions are. C rystals with different lattice 
structures show different transitions. For these reasons, there cannot be a 
simple universal field theory from which to extract quatitative poperties 
of all melting transitions which are com parable to the critical indices in 
second order phase transitions. The results w ill depend on short range 
properties of the field theory which differ from crystal to crystal. This has 
to be kept in mind when we go about trying to construct a field theory of 
melting. The best we can hope to achieve is to exhibit a universal 
mechanism of the m elting transition.

7.1. HISTO RICAL NOTES

The process of melting was probably one of the very first phase 
transitions ever observed by man in prehistoric times. The ancient G reeks 
were certain ly wondering about it. For its understanding they possessed, 
around 450 B .C ., two important theoretical concepts.

1. Atomic build-up of m atter, as advanced by Leucippus and Demo-
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critus: In solids the atoms were supposed to be hooked together by 
branch-like elem ents. In liquids, they were imagined as smooth and 
rounded objects, com parable to poppy seeds.

2. C easeless motion of atoms: This concept was an extrapolation of the 
dance of dust particles as seen through a sunbeam. It can be con
sidered as a predecessor of the Brownian motion, which was to be 
discovered in the 19th century.

Both concepts are beautifully recapitulated in the famous book on the 
history of science, De Rerum Natura, written in verse form in the year 57 
B .C . by the Roman Lucretius (see the quotations in the beginning of 
Parts I, II, III, IV ).

For a proper description of the transition between the solid and liquid 
phase the Greeks lacked, however, two important theoretical ingredients.

1. The connection between motion and heat.
2. The role of entropy, which gives a preference to states with many 

microscopic configurations over those with few.
The first of these two ingredients did not become available until 1762, 

when Joseph B lack (1728-1795) discovered latent heat, a discovery which 
went hand in hand with the practical development of the steam engine by 
Jam es W att (1736-1819) in 1765. M any years later, in 1809, Humphry 
Davy (1778-1829) claimed to have demonstrated this connection even 
more directly: he showed that ice melts when two pieces are scraped 
against each otherb. In 1850, M ichael Faraday (1791-1867) observed that 
increased pressure lowers the melting tem perature (a fact which in the 
opinion of many people forms the physical basis of the art of ice skating) 
and in 1860, R .W . Bunsen (1811-1899) determ ined the volume changes 
during the melting process. The second theoretical ingredient was 
discovered around 1850 by R . Clausius (1822-1888), W. Thomson (Lord 
Kelvin) (1824-1907), and W .M . Rankine (1820-1872) who formulated 
the second law of thermodynamics.

The statistical machanical basis embodying both ingredients was laid 
down in 1877 by L. Boltzmann (1814-1906), who showed that a macro
scopic state of energy E occurs with a probability \Уе~Е,квТ, where W is 
the total number of microscopic possible configurations of this state. He 
also found that the experim ental quantity S (entropy) was a measure for 
W, nam ely, W = esik". Therefore, different configurations of energy E of 
a system occur with probability е~твТ = e~iE~TSVkl,T and the quantity F 
was introduced as the free energy of a system.

Since then it has been c lear, at least in principle, how the melting

^The experiment, however, seem to have been faulty. The friction between the pieces would 
have been too low to do the required work. There must have been a heat leak in his setup.
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transition should be described theoretically . The practical calculation , 
however, remained very difficult due to the co llective nature of the 
transition. W hile it is rather easy to describe a cold solid ow ing to its 
regular structure, the breakdown of crysta lline order poses difficult 
theoretical problems, some of which are not yet understood even today.

Experim entally, the m elting transition has been the sub ject of many 
detailed studies. Since there exists an excellent review  by B ore liu s ,c we 
shall not dwell into the many interesting aspects of the process but refer 
the reader to that artic le. W e only disp lay the specific heat and the 
thermal expansion coefficients for two typical simple crysta ls , Na and Pb 
(see Figs. 7 .1 , 7 .2). We also show the im portant d iscontinuities, the 
jum ps in volum e, AV and entropy, As = ДS per atom , for a number of 
substances (see Table 7.1 and Fig. 7 .3) which have to be reproduced by 
theory. Notice that the data lie approxim ately on a line which intersects 
the ДslkB axis at about log 2.

7.2. THE LINDEMANN CRITERION

W ithin statistical mechanics, simple rough ideas about the tem perature 
scale of the melting process can be form ulated follow ing Lindem ann. 
In the ideal solid, each atom undergoes therm al vibrations about its 
equilibrium  position. Its average displacem ent is controlled by the elastic 
energy. Neglecting the differences between the elastic constants we may 
estim ate the energy by

E = i /х f  d*x (djUj)1  = W / iE  (З/Иу)2 = i f lV E  k ju f(k ), (7 .1 )
J x ‘ к

where a3 is the volume per atom , a3 = VIN = v. Thus, in Fourier space, 
the different modes decouple. According to the law of equ ipartition , each 
mode has the same average energy, i.e . (no sum over y),

fl3 (/xk2w/(k)> = kBT.

In x-space, this amounts to the correlation function

(u (x)u (x')) = ^ £ -— V  Т. [  к /кчх-х-) jf c . /-j 94\иД х )и д х  ) ) - (W3 N ^  k2 -  ^  J  {2n),e  k2 (7 .2 )

cSee the Notes and References.
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FIG. 7.1. The specific heat and the expansion coefficient of two typical Na (b.c.c.) through 
the melting transition (after Borelius, op. cit. in the Notes and References).
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FIG. 7.2. The corresponding curves for Pb (f.c .c .). 

500 1000

(7 .3)

Thus the average size of the displacem ent is

/ ’ / X\ -xk » T  Г d *k  1

Since the momenta к  all lie within the Brillouin zone of size «7г/д, this 
gives, roughly [see also Eq. (7.166)]

(u 2( x ) ) ~ ^ J J ^ I ~ ^ -  (7 .3 )7Г V 47т fxa 2 fia -

Thus, for rising tem perature, (u 2) increases linearly. It is obvious that 
this increase cannot go on indefinitely. As oscillating atoms begin to
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FIG. 7.3. The entropy and volume jumps at the melting transition for various materials 
(after Lasocka and Tallon, op. cit. in the Notes and References). The two points for Ce 
(0.61. -1 .1 )  and Pu (0.37, -2 .4 )  are from Gschneider, J. Less-Comm. Mai. 43 (1975) 179, 
Table 2. I thank Prof. Lasocka for a communication of these points.

invade into the regime of the nearest neighbours the crystalline structure 
necessarily breaks down.

According to Lindem ann, the melting tem perature 7 ^ , ,  can therefore 
be characterized by a dimensionless number, the ratio of V ( u 2) with 
the length scale a ,

V ^ F ) [FB■^rncll I к  в  T 'm clt(u 2) [к в ? mcii [кв 
~a--------

з (7.4)licv v 

The inverse of this ratio,

1 //? (7 .5a)

is tabulated in the literature as the so-called Lindemann parameter.
A ctually , what is given in the tables is usually the following com

bination of m aterial properties (see Table 7 .2 ),
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TABLE 7.1. Discontinuities in the melting transition, ks/kn = entropy jum p per atom. 
(AV7V)(%) = relative volume changc in percent (after A .R . Ubbelohde. op. cit. in the 
Notes and References).

b.b.c.
metals 2ДstkR ^ ( % )

f.c.c.
metals

2 bs/kn £<%>

Li 1.58 2.2 cAl 2.76 6.5
Na 1.67 2.5 Co 2.19 3.5
К 1.66 2.5 Ni 2.42 5.4
Rb 1.68 2.4 Cu 2.30 4.2
Cs 1.66 2.6 Pd 2.25 5.9
Tl 1.72 2.2 Ag 2.19 3.8
Ca 1.84 — Pt 2.30 6.6
Sr 2.10 — Au 2.24 5.2
Ba 1.85 — Pb 1.91 3.6
Sc 1.86 — Mn 2.31 1.7
Cr 1.62 — Yb 1.51 —
Fe 1.82 3.5 Nb 2.34 —

Mo 2.69 —
La 1.24 0.6 Sm 1.53 3.6
Ce 1.22 -1 .1 Eu 2.02 4.8
Pr 1.36 0.02 Gd 1.52 2.0
Pu 0.74 -2 .4 Tb 1.59 3.1
Nd 1.32 0.9 Dy 1.57 (4.5)

Yb 1.67 5.1
h.c.p W 2.31 —

metals U 1.45 2.2

Mg 2.32 3.6
Zn 2.53 4.3
Cd 2.49 3.8
Ho (2.31) (7.4)
Er 2.65 (9.0)
Tm 2.22 (6.9)

L = 0 DV"3ol(^ / 7 mclt) 1'2, (7 .5b)

where ©D is the Debye tem perature, measured in K, V'mol the volume per 
mol in cm3, A the atomic number, and T’m elt the m elting tem perature in 
K. See, for exam ple, the book by A .R . Ubbelohde (cited in the Notes 
and References). In order to find the relation between L an d  this L it is 
useful to recall a few basic properties of D ebye’s theory of specific heat.

7.3. REVIEW  OF D EBYE’S THEORY OF SPECIFIC H EAT

The Debye tem perature is experim entally accessible through m easure
ments of the specific heat which for low tem perature behaves as
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TABLE 7.2. Lindemann parameters L and melting temperature T,„ in К (from 
A .R . Ubbelohde, op. cit.).

f.c.c. L T JK b.c.c. L T JK hex. L T J K

Ag 148 1235.0 Ba 147 1983.1 Be 150 1558.1
Al 138 933.5 Cr 125 2133.1 Cd 168 594.2
Au 137 1337.5 Cs 118 301.7 Co 132 1767.1
Ca 124 1113.1 Fe 121 1813.1 Gd 129 1583.1
Cu 143 1357.6 К 122 336.3 Hf 143 2503.1
Ir 155 2720.1 Li 124 453.1 Ir 155 2720.1
Ni 143 1728.1 Mo 138 2893.1 Mg 134 923.1
Pb 149 600.6 Nb 104 2698.1 Re 134 3453.1
Pd 138 1827.1 Na 114 370.9 Ti 140 1943.1
Pt 151 2045.1 Rb 118 311.9 T1 138 577.1
Rh 167 2236.1 Та 110 3273.1 Zn 151 692.7
Sr 140 1043.1 Zr 133 2123.1
Th 159 1973.1 Se 91 493.1
V 123 2193.1 Те 178 723.1
W 135 2640.1

Rhomb. L T JK Orrhom. L T JK Tetr. L T JK

Bi 201 472.4 Ga 261 302.9 In 142 429.7
Hg 171 234.2 V 192 2193.1 Sn 259 505.1
Sb 138 903.8
As 170 886.1

12' .4

cv-— — • (7-6)

The T3 behaviour is a consequence of the quantum nature of the elastic 
lattice waves. In order to derive it we have to use the quantum partition 
function [recall (1 .84), (1.86) in Part I]. The Euclidean action is

r  fi/koT r
A e = J d z j d3x [ - i p (x , r) ■ u (* , r) + £ kin + E ], (7 .7) 

E being the elastic energy [recall (1 .20)],

E = J  d3x L u ?  + ^ Z u , ^  = у Е ( м к Ч у +  (м + А )* ,*у)и ,*(к)и ,(к)

(7.8)

and E the kinetic energy
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F _ j V P 2( x j )
£ kin — a Lk  ̂ ■ 

x 2p
(7.9)

The param eter p denotes the mass density. The partition  function of 
elastic waves, including quantum effects, reads

= J @ 3и (х , r )  ® 3P (x , l l e-<m)At
2 tt

(7.10)

The m easure of integration is w ell-defined only on a lattice. If a is the 
spacelike lattice distance and e the tim elike one, the action reads

= a3 £  | - i 'p (x , r „ )  • (u (x , t „ )  -  u (x , t„ _
X.T„ I

+ as Yi P- (н,у(х , г,,))2 + - I  Ц  и„(х -  i, r„)

p(x, r„):
2p

(7 .11)

where w/;(x, r) is a convenient lattice version of the strain tensor which 
we shall take in the form

м,у(х, т) = ^ ы Д х ,  r ) + VyM,(X, r ) ) . (7 .12)

W e have shifted the argum ent of the Л term in (7 .11) from x to x — i. This 
will be advantageous to us later when we come to calcu lating co rre la
tion functions of M,-(x, r) on the lattice. Integrating out the con jugate 
momentum variab les p (x, r„) gives the lattice version of the elastic 
partition function,

z = n f  du,(x, r„)

J  y/lmhia^p
exp l ^ p ( V TK/(x, г„))2 + /хы?(х, x„)

X,T„ ^

(7 .13)

Recall that т is an im aginary time. For real tim es, the (Vr « , ) 2 term would 
have the opposite sign. Then, for e —» 0, the extrem a of the action would 
be given by

[рЭ2 S,y -  p.V ■ VS,у ~ {p  + A)V,V; ]u ; (x , 0  = 0.
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This is the first place where we see that it pays to have shifted the 
argument in the A term. Had we not done so and used the naive form 
(E/H„(x))2 instead, the equation would have read

(ptf&ii -  • VS,у -  ixViVj -  AV,V; )h ,(x , r )  = 0,

which contains three different matrices in ij -  space. With the shift, there 
are only two m atrices which can be diagonalized by the standard 
methods:

p a ? - K V - v ( 5 (/- 3 ) - ( 2 ^  + A ) v . v J ^ Wy(x, г )  = 0,

where V,V; /V • V and -  (V,Vy/V • V) are projection operators onto a 
lattice analogue of longitudinal and transverse sound waves. In Fourier 
space they satisfy the equations

(pw2 -  p K  • K )w/(k, со) = 0, (pa>2 — (2p  + Л) К • К ) ^ ( к ,  w) = 0,

(7.14)

with the two “ transverse” and one “ longitudinal” sound velocities

The im aginary time variable is periodic in h/kBT so that the Fourier 
decomposition reads

m ,(x , r) =  £  elk' * ( k ,  <o,„), (7.16a)
V/V k.<*„

where o>m are the M atsubara frequencies

cjm = m ■ 2irkB Tlh, m = 0, ±1, ±2, . . .  (7.16b)

In terms of these variab les, the action A E reads
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A f. = r a ’ e l  S  to,,,)* ( - К + c f - j  К  • К  ) м Д к , ш,„)2 — ~ ■ / л \—1 — ш /  I 2  т  льт  • J2
I к.ш„ \£ а

+ Е  “ iL(k . й > т )* ( -^ Л ,А , + с £ - ^ к - к ) н / - ( к ,  <»,„)[• (7.17) 
к.Ч„ Xе а / J

where ft,„ , ft,,, are the analogues of К and К for the tim elike direction, 

П,„П„. = 2[1 -  cos (to,,, e)] = 4 sin2 ( “ 7“  ) • (7.18)

and u[, Uj- the lattice analogues of the transverse and longitudinal 
components, i .e . ,

« Д к ,  to,,,) m (Sjj -  K.iCjlK ■ К )ы Д к, o>,„),

ы/-(к, a>,„) ж j ^ " ( (k , ш,„). ( 7 -19)

Integrating out the и,- variab les according to the rules of C hapter 1, Part I 
gives

Z  =  + «“JC*‘2/«2)IC• K) + (l/2)log(ll,„ll„, + (| (rV )R -K)| 2Q^

The sum over ft,„ can now be performed using Eq. (6.248) of Part I. In 
the lim it of zero tim elike lattice spacing, the result is particu larly simple 
and (6.250) of Part I leads to

2  _  jQ  e~2{(htkB){u>T{kV2T) + log( 1 - r-A-rtkWflГ)) e_((A/M(W|.(ky27-) + log(l .,-*-им*яГ)̂  (7 .21) 
к

where we have set

а>т=ст У/K-K/a2, a>,. = cL V R  • К/л2. (7 .22)

The factor for each к  represents the well-known partition function

Z„ = ------- ---------= £  e"1"+ l/2),',“/t"n  (7 .23)
2 sinh ',=0

2k BT
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of a harmonic oscillator having frequencies a>Tl cdl [see (6.251), Part 1].
The internal energy is found by differentiating logZ . This gives the 

standard “blackbody” radiation energy

U = T, !>*>/■ 0 0  ( x  + J  ----- Y  (7.24)
л=o.± i к \2 еЛа,/'(к)/АдГ -  \)

The sum over h covers the three polarization modes of the phonons. The 
momentum sum is usually evaluated in the approximation of an isotropic 
continuum for which [for the general case see Appendix 7B]

*>L.7-~c/. .7-|k|, (7.25)

so that one may change momentum integrals into frequency integrals,
i.e ..

The functions g{h)(<o) are called the densities o f states. It is necessary to 
introduce a cutoff in the integration so that the total number of modes is 
equal to the number of atoms for each polarization. (Note that the proper 
lattice sum over к would have done so autom atically , since Ek = N.) This 
gives the conditions,

f  <
V d<og{h\o)) = /V, h = 0, ±1, (7.27)

Jo

where are called the Debye frequencies. Hence we have

^ у Ш т г ы - ^  (728a)

0)1 = 27
^ * 2’r ( j J w ) ' , , -CA = 2 ,rc"/r,b (728b)

where rQ is the radius of the spherical volume associated with each 
particle.

A  simpler but cruder approximation uses only a single density of states,

* ( « ) -  E
Л = 0. ± 1
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which is given by

477 ОГ
(7.29a)

where с is an average sound velocity

2
с  =

S 't c 'l

Then g(o>) can be param etrized as

1/3

(7.29b)

o r
g{a>) = 3 x 3 N —  

(0'n
(7.30a)

where

(oD
- г' { ш а Т ‘ - 2 М г -  (7 '30b)

The tem peratures related to a>$\ <*>n via h and the Boltzmann constant 
kB are the Debye tem peratures

e W  = hcoWlkB, ®D = hajD/kB. (7 .31)

Using the averaged density of states g(a>). the internal energy (7 .24) can 
be rewritten as the integral11

U = 9Nkn T

■*АИ З ’Г«'?Ь (7 .32)

and the specific heat at constant volume becomes 

C  = 9Nk , r
( e * - l ) 2

(7 .33)

dIn D dimensions, с = \DI((D -  1 )/c? + 1 lc?.]',D and r„ = 2irc/cu„ = ((DISd)(VIN))'° 
where Sn - 2 i r n/zir{DI2) is the surface of a D-dimensional sphere, so (hat U r_„> 
Na,r>” T” ' 'DT(D + I)i(D  + 1) = VSn(2-nc)-DTD*'r(D  + l)f (D  + 1) per mode.
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Using the well-known integral j (1НП~ т~ г = Г (0  + !)£(£>+ 1) and
Jo  e — 1

£(4) = 7t4/90. the low tem perature behaviour of U and С is seen to follow 
the well-known T4 and Г3 laws, respectively

" т ^ 9* * » Ц §  + 1 Г 4(770',)4) '  c T T i 7 9" * « 7 ^ 4(7'/0» )-1-
(7.34a)

For high tem perature, they tend to the classical limits

U ~ ^ U‘ ' = ™ k° T- C T ^ r CCl = 3^ « -  (7.34b)

This limit is in agreem ent with the law o f Dulong-Petit according to which 
a classical harmonic system has a specific heat of Nkn/2 for each degree 
of freedom, where kinetic and potential degrees are counted separately 
(C  = (3 + 3)Nkn/2). Using the Avogadro number of 6.022 x  1023 atoms 
per mole this amounts to a specific heat of

cal
С = 5 .96—  x  number of moles.

K.

The ratio C/CcI varies with temperature as a universal function of T/®D 
which is plotted in Fig. 7.4.

In real m aterials, this universality is violated for increasing tem pera
tures as a consequence of the anisotropy and anharmonicity of the crystal 
and the tem perature dependence of the sound velocities which were 
neglected in the above derivation. It is customary to display the violations 
by fitting С to D ebye's formula while allowing 0/, to be a function of 
tem perature. 0 / ,(Г ) . The deviations of 0/>(Г)/0/)(О) from unity can be 
of the order of 10% (see Fig. 7.5).

A fter this interlude, it is now easy to find the relation between the 
param eter L of (7 .5a) and the Lindemann param eter L of (7.5b). We 
simply combine (7.30b). (7.29b) and find the Debye frequency
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FIG. 7.4. The specific heat Cv (for constant volume) divided by the classical Dulong-Petit 
value Cv -  3NkB, for various materials with different Debye tem peratures as compared to 
the universal Debye curve.

TIQd

FIG. 7.5. The variation of the Debye temperature 0 O with temperature necessary to 
achieve a perfect fit of the universal function (7.33) to the specific heat data of various 
materials.

T/®»
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where M is the mass per unit cell and the ratio

Ct
с

(7.36)

is a number which lies between 0 and 3/4. It is related to the Poisson ratio 
[see (1 .40), v e ( - 1 .  1/2)] via

1/2 - v  1/2 -  r

Inserting (7.37) into (7.35) and (7.5b) we see that the Lindemann number 
is indeed proportional to V ^ / 3/7meU. Before doing this however it is 
useful to rewrite (7.5b) in a slightly different form involving proper 
dimensional quantities:

= * W  As \
К \pcnr /

1/3 / , \ 1/2 A
Tmc ,,/K

(7.38)

Using the fact that the mass per unit cell is M = Amf, where 
mp = 1.6762 x  10”24gm is the proton mass, this may then be reexpressed 
in the form

L = ( ^ )  — 4 n - ^ L = L = 5 M x L ,  (7.39)
\ g j  cm g l/~ V kB • К

where ZT, which will be referred to as the modified Lindemann number, 
has the form

L = в ,> к „ ( - р У м )  ( —Y — )  = (67г2)|/'л У . - y =  :
\n )  \л«'m cli/  ’  * »  'm e l t  V I —i ( l  -  r)

- Г [ б 1 Т / ( 1 - * ( 1 - г ) Г  (7.40)

Thus we arrive at the desired relation between L of (7 .5a) and the 
Lindemann number L of (7 .5b ). (7.38):

L = 22.8(1 —iCI ~ r))~m L. (7.41)
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Some experim ental numbers for L are shown in T ab le 7 .2 and we see 
that L ranges between 100 and 180 for m ateria ls of com pletely different 
hardness. As an exam ple we m ay com pare silver and beryllium  which 
have

\1.87/ cm '
/ч= ( x  10“  dyne cm 2,

- C H S -  * - ( ■ £ )  * * = •
. £ ) ■  ’ • - ( £ . ) * ■

In spite of the differences, their L indem ann numbers are almost the

In general anisotropic media the Debye theory is quite com plicated. 
U sually, however, the sam ples are po lycrystalline, and sound propagates 
isotropically on the average. Then formula (7 .15) can be applied again 
but with /x and к in A = к -  ĵ /л replaced by the follow ing averages of the

elastic constants:

1 , ч 1/
M — ~ C\-~ “  С1з) + "** Cbh''

1 7
X  =  ^ ( C i i  +  C22 +  C ) 2 )  4- ~ ( C | 2  +  C23 +  c ,3). (7 .43)

This is derived in the classic book on elasticity by Voigt (referred  to at 
the end of Chapter 1). For cubic m aterials one has simply

Д = ^(с„ - с|2 + З с « ) = ^ ( 3  + 2£).

К = | (сц  + 2c ,2) = Ci: + j(C it  -  C12) = A + = (7 -4 4 )

Let us translate the Lindemann number back to the physical quan tity  
( u f) at the melting point. According to (7.41) we have L ~ 150, which 
corresponds to L —25, L ~ 6  so that (7.3) leads to the estim ate
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1 1  ™  ,
\/б L ~~ n̂° sum ‘n (7-45)

This is an important observation: The melting process occurs when the 
displacements of the atoms are still very small compared to the distance 
between neighbors. For such small displacements the movement of the 
atoms can be considered nearly harmonic. The breakdown of crystalline 
order occurs all of a sudden, before the atoms invade deeply into the 
nonlinear regime of the interatom ic potential. It is a strongly cooperative 
phenomenon. This fact will be essential when we comes to formulating 
our defect theory of melting in the next chapter.

7.4. QUANTUM CORRECTIONS TO THE LINDEMANN 
PA RA M E TE R

If we include quantum effects, the atomic displacements are given by

<u,(0)uy(0)> = —  Ti [
P n J  (2тг)

k,k
S v - T r ] + 7 3x M _

[col + < 4(k)

к „ т у  r _ r f ^ r ____2_
* 3P V J ( 2 i r ) ' 4 + a > 7

j ____ M-y
k2 J  ' <07, + tu i(k ) k2

1
w j(k )  (*>7i + k)

(7.46)

where co„ = 2ттпкв Т1Ь are the M atsubara frequencies. Summing these up 
according to formula (6.261) of Part I gives

H/(0)«/(0)> -  3" /  (2ст)з [ ^ ( к ) Ла’7‘( к ) ( 2  + e ^ i,m ,T  _  , )

+ ^ П Й Лй" (к Н 2 + ,Лл>/(к)/Ая 7 _ j (7.47)

This can be written as
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where h runs over the three polarizations and u,,(k) is the average 
energy of a single harmonic mode of m om entum k.

In fact, this formula could have been w ritten  down d irectly . It is a 
consequence of the equipartition theorem . On the average , the energy for 
these modes is (no sum over i)

у  |ir(k, «012 = f ^ ( k ) k ( k .  o,)p = iff(k) = ^ .co(k)^  + n(k)j .

(7.49)

where n is the average number of quanta l/(eAw/A"r -  1). A t the level of

the Debye theory we can replace Xi = К / (^ 3А:/(2тг)3),
к

г/. f J ';) О)2V\ *«*<*>(«) = 3 *  d v -ш ь
JO  J  0

and find

<H|(0). 11/(0)) = 8„ £  J “" dcohcô  + e„ ~ - _  , )  . (7 .50)

where M is the mass of the atoms. Changing the variab le of integration to 
£ of (7.32) gives

(7 .51)

The ratio of V j(E w * (0 )) to the cell size a = ( V7/V)l/3 = u l/3 is given by

(7.52)
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Using the modified Lindemann number L of (7 .40), this ratio may be 
written as

8 = U J ^ E 5 v H 7 7 © S -  (7.53)
2 L \ /mc„ /, 0}/

where

f l / r  1  t2
W(T) = 1 + 4r 2 J "  ^ 77Г Т = 1 + 4 У т2 + (7.54)

This function is plotted in Fig. 7.6. For high tem peratures, it grows 
linearly with r , i .e . ,

" ( г ) - i  4T+i + * b -  -

FIG. 7.6. The function which rules the temperature dependence of the mean square 
displacement (u 2) within the Debye approximation |see Eq. (7.53))

i ( u ; ) i г и т 1*1! 
л ,,2 4/.*' r„,,„. «•,;>
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Thus, if the m elting tem perature lies far above the D ebye tem perature, 
which is usually the case (classical m elting), then

Or-l
T ( \ y  &% V

ттс1 , \ 3 V © ^ 7 .
1/2

(7.55)

which of the order of 7% at T = Tmclt (for L —25).
In general, w (77 0 D) lies above 7 7 0 D, due to quantum  fluctuations. 

These are seen in pure form at zero tem perature for which

The classical value (7.55) can be checked by calcu lating [m ore accurately 
than in the estim ate (7 .3 )] from (1.77)

•"(о) м' (о)>= кв т !  щ *  ( s* - Щ + i t v  Щ

квТ f  d3k (  2 1
11 3 J  (2 ir)3 U k 2 (A + 2/x)k;

Using the frequency distribution gw (<o) of (7 :28a), this becomes

(" '(0)U/(0)> = 5,yV w [ „ ? ±J „  daJ^ ^ + L
c 2l

,<«>-’  (A  +  2 f x ) ( o -

"  м  л J o

It follows that

(w/(0)w; (0 )) 8jj S  (/,) 2 '
M Г а >%)2

(7 .57)

which implies

S o  =  V 5 r
_ T'meU 3  h © D >2

1/2

(7.58)
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as in (7.55).
Some values for 5C] at the melting point are given in Table 7.4. 

A ctually , this tab le does not quite show the same 8 as defined here but 
liable = V (^ E u 2)/d where d is the nearest neighbour distance. In b.c.c. 
and f.c.c. lattices, d is given by d= (a0/2)V3=i>1/3(З172̂ 273) — 1/3x  1.09, 
d = a0/V2 = y 1/3(4 1/3/V2) ~ v 113 x  1.122, respectively, where a0 is the 
lattice spacing (so that a3 = v = all2)c. The second to last column is 
calculated from L of Eq. (7.40) and the purely classical approximation 
(7.58). The last column comes from a more elaborate numerical evalua
tion of (7.47) using a realistic o>/, (k ). It does not assume crystal isotropy 
but respects the proper b.c.c. and f.c.c. sym metries (while restricting 
itself to central forces between the nearest and next neighbours, thus 
satisfying the Cauchy relations, i .e . ,  C12 = C44). We see that for 
each of the two groups of b.c.c. and f.c.c. crystals, the relative am plitude 
of the melting point is indeed quite universal, with 6,аЫс = 
ranging from 0 .11-0 .46  for b.c.c. and 0.065-0.077 for f.c.c. sym metries. 
The strongest quantum effect in the table occurs for Li for which the 
result of a purely classical calculation would be 0.067 rather than 0.116.

Accepting the universality of the Lindemann number also for the 
quantum regime we are led to conclude from (7.56) that a crystal at zero 
tem perature whose Lindemann number L when evaluated with Tmcu 
replace by 0^/4 [i .e ., the number 2{v2,3Mlh2y ,2{kBQD)112] becomes 
sm aller than 25 will melt. This is the case for 3He and 4He, which are 
solid only for pressures of more than 30 bar. There the sound velocities 
are of the order o ff

с - 3 0 0 — - 2 3  К А ^ -  
sec n

At a molar volume of vNAv0gadro555 21 cm3 (у ~ 3.27 A ) this implies

& D ~ T -  V 6 I r d v 1'3 -  30.5 К (7.59)
кв

so that the Lindemann number L , for TmcU-+ 0p/4, becomes

L\Tmê Q nu  = 2 V v ^ M k s S o lh 2 *  10. (7.60)

'S e e  the Appendix.
rMore accurately, c M/p = 400 ш/sec, c^/p = 337 m/sec, c^/p = 362 m/sec (see the Notes and 
References for sources).
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TABLE 7.3. Various material parameters associated with nonlinear elasticity (after 
A . Eucken, Lehrbuch der Physikalischen Chemie (A kad . V erlagsges., Leipzig, 1944) p. 675.

coeff. of vol. 
expansion 

л -1 0 6 [K~l]

Griineisen 
constant 

ocVk 
У ~ Cv

spec, heat 
compressibility per mole 

k~' [1012 с NAvog 
dyne 1 cm2] [erg/(K • mole)]

molar volume
® ^Avog

[cm3/mole]

Na 216 1.25 15.8 26.0 23.7
К 250 1.34 33 25.8 45.5
Cu 49.2 1.96 0.75 23.7 7.1
Ag 57 2.40 1.01 24.2 10.3
A1 67.8 2.17 1.37 22.8 10.0
С 2.9 1.10 0.16 5.66 3.42
Fe 33.6 1.60 0.6 24.8 8.1
Pt 26.7 2.54 0.38 24.5 9.2
NaCl 121 1.61 4.2 48.3 27.1
KCI 114 1.54 5.6 49.7 37.5
KBr 126 1.68 6.7 48.4 43.3
KJ 128 2.12 8.6 48.7 53.2

TABLE 7.4. The relative displacements 5 = -  calculated in two different

ways (after Shaptro, cited in the Notes and References).

Smell
Smelt from latt.

from L dyn. w.
b.c.c. L T j e D (classical) qu. corr.

Li 124 1.08 0.067 0.116
Na 114 2.47 0.073 0.111
К 122 3.36 0.068 0.112
Rb 118 5.20 0.070 0.115
Cs 118 6.70 0.070 0.111

Smelt
^melt from latt.

from L dyn. w.
b.c.c. L T JQ C> (classical) qu. corr.

A1 138 2.42 0.072 0.072
Cu 143 4.38 0.058 0.068
Ag 148 5.61 0.056 0.071
Au 137 7.43 0.060 0.073
Pb 149 7.07 0.056 0.065
Ni 143 3.93 0.058 0.077
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FIG. 7.7. The temperature dependence of the specific heats of molten metals at fixed 
volume (after Grimwall, op. tit. in the Notes and References).

TIT,,,

This is indeed sm aller than the average number L ~ 25 so that the 
zero-point fluctuations in solid 4He exceed the Lindemann size. This is 
why the crystal exhibits melting into a quantum liquid at zero tem pera
ture. if pressure decreases below 30 bar.

Notice that the Lindemann criterium can be verified d irectly, at least 
in principle, by looking at the decrease of the Bragg intensities with 
tem perature. The scattering cross section for X raysg is governed by the 
dynam ic structure factor S (q , ш) where

Г со j
S(q. o>) =  I (7-61)

J — oo 2tt lt
In the harmonic approxim ation, this can be calcu lated , giving

r  OO I

S(q, со) =  e~2W Yi еч ‘, х" (7.62)
J — oo 27Г /,

8The differential cross section per solid angle dCl and energy interval dE is

da mJLPLI. c/~ \ 
dtldE An p fi (4 ,

where a  is the individual cross section for each atom in the lattice.
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where

2 W - ( ( 9 ,« ,( 0 ,  0 )2) (7.63)

is the so-called Debye-Waller factor. Expanding the last exponential in 
(7.62) into a power series, the sum over n can be analyzed  according to 
a purely elastic contribution which carries a 6(a>) function, due to energy 
conservation,

Sci(q , a>) = e -2wS(o>)A/E 5 , . c  (7.64)'q. 
с

where с are the reciprocal lattice vectors plus multi-phonon 
contributions. The elastic contribution gives the sharp peak seen in Bragg 
scattering. Its intensity has a tem perature dependence, e~2W. For isotropic 
systems

, ( u 2> (7.65a)2w = q
If 0 is the Bragg angle, then q2 = 4 sin 2 0 (47г2/Л2), w here Л is the 
wavelength of the light and

4тг2 h2 ^  1

= sin2 0 ~^2 a2 452. (7 .65b)
A

Thus, in Bragg scattering, one can directly observe the tem perature 
behaviour of 82 (7 .53). If the Lindem ann criterion is right, all crystals 
melt when the D ebye-W aller factor has reached the sam e size e~2Wa"b 
which depends only on the crystal structure.

7.5. C LA SSIC A L MELTING

When comparing the melting tem perature 7 mcIt with the D ebye 
temperature 0 D we realize that for most m aterials ^mclt lies far above 
(see Table 7 .4). There are only a very few exceptions to this, one being
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the quantum crystal of solid 4He. Thus, in general, the melting process 
takes place in a region where all Debye expressions have approached 
their classical lim it. In particular, the internal energy has approached the 
linear behavior (7.34b) and the specific heat, a constant (Dulong-Petit 
law ). From (7.21) we see that for high tem peratures, the partition 
function is dominated by the classical expression

Z c l =  J Q  е -21о ? (Л «г(М /*вЛ  -  log(AWL(kVAflD 

к

This, in turn, arises from the full partition function (7.20) if one uses only 
one infinitesimal r  interval in which the only M atsubara frequency is
n w = 0.

In the path integral (7 .13), we arrive at the same limit by noticing that 
for high tem peratures, the r  interval is so small that w(x, r )  has “ no tim e” 
to vary and the time-dependent fluctuations are com pletely frozen out. 
One may therefore forget the infinitesimal time slicing and keep only the 
initial and final times r0 = 0, ty = h/kBT, setting e = h/kBT. Since w(x, r )  
is periodic in this interval, t/(x, r0) = w(x, r i ) ,  the kinetic term in the 
exponent of (7.13) disappears and the partition function reduces to the 
classical lim it,

where

(7.68)

is the static elastic energy and w,y are the lattice versions of the strain 
tensor, Ujj = (VjUj + VjUj)/2a. The prefactor

Zkin.cl
к в Та p

3 N

2 irh"
(7.69)

leads to a specific heat per atom of (3/2) kB. It collects the three kinetic 
degrees of freedom of the harmonic oscillations. The second factor
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^pot.cl П
(x) -( l/ fte D E d M (7.70)

accounts for the three potential degrees of freedom . In tegrating out the 
w,(x) fields we obtain

1 1

к ( V f l V K -K )2 v V (2 / x  + A ) K K

Combining this with (7 .69) we obtain again

kBT Y ( k Br

(7.71)

Zd = 2km.cl Zpot.cl = П  Г -  (h(Or J \ fioj
(7.72)

in agreem ent with the classical result (7 .66).

7.6. LATTICE EXPANSION UP TO THE MELTING TRAN SITION 

Since the interatom ic forces are anharm onic, the crysta lline phonons are 
not independent of each other but are subject to interactions. This gives 
rise to some changes in the results derived up till now. Fortunately , apart 
from a few quantum crystals, m elting occurs at very sm all d isplacem ents. 
Therefore, the anharmonic effects are quite sm all. They can be taken into 
account by a simple lattice expansion and renorm alization of the elastic 
constant (softening). In order to see how this happens let us consider the 
elastic energy of the crystal up to the cubic terms in the strain tensor. In 
the isotropic case this may be param etrized ash

hSome authors (see the references at the end) employ the invariants

Л =  2 e«y*ei/l M*I =  114 '  h  =  2 H*»i -  ! ( “ «  ”  u i j) '

h  = i  eaketmnUn = £(«?, “  3 и „и?, + 2u4uikuki)

and they expand

ec, = (1 -  l {) [ -2 f i l2 + (A + 2/i.)/2/f] + (tl\ + m l, 12 + nly)

so that

c i =  + 2/x)/2) +  (m/2 +  /t)/2 + /i/б. c2 = \{m!2 +  m ) +  /»]/2 , c 4 =  nl2.

The factor (1 -  /,) in ecl comes from the expansion

det(80 -  2u„)ir- = (1 -  2/, + 4/:  -  8/,),/2 = 1 .

due to which the quadratic energy density, which is defined with respect to the invariant 
volume elements, receives a cubic correction when expressed in terms of the volume 
elements of the ideal reference lattice, which appears as J  d\v in the integral (7.73).
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id  = J d3x e cl

J + f  d3x(c, “ ее + c2uC(;ufj + c3 uijujkuki),

(7.73)

where /xq, A0, c b c2, c3 will be called “bare elastic constants.” The elastic 
partition function on the lattice is now [see (7.13)]

(x . T„)
v 2  m hlcfp _ e*p1 Z ! ~ê 2 (v r “ ,(x , r„))2 + ee|

(7.74)

with the classical limit [see (7.70)]

■Zpot.cl — П Jduj(x) -EcilkeT (7.75)

apart from a prefactor Zkjn>c, = (\fkBTa5p/2rrh2)3N [see (7.72)].
In Chapter 5, Part I, we introduced the concept of an effective energy 

which allowed us to study a field theory in the presence of a non-zero 
field expectation value. Let us apply these methods to the present 
partition function. Since the cubic terms produce an asym m etry between 
positive and negative dilations, we expect the fluctuations to lead to a 
new minimum at a non-vanishing strain (w,y) = £/,y. For sym m etry 
reasons, only the diagonal elements can be non-zero and must be equal 
to each other. Hence, they are equal to 1/3 of the relative volume 
expansion:

(7.76)

According to the rules of Section 5.4 , Part I, we can calculate the 
effective energy by inserting the field ui} = Ujj + 8u,j = 5,yjA + 8ui}- into 
the exponent, expanding it in powers of 8uijy and summing over all 
one-particle irreducible vacuum graphs involving the propagator and the 
interactions of 5м,у. The resulting expression can then be minim ized in Д 
and yields the volume expansion due to fluctuations. The sm allness of |5m| 
( «  a) permits us to consider only the one-loop correction which is quite
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easy to calculate. W ith' -  5/;(l/3) A + 8uij4 the e lastic  energy density 
becomes

^ei = ^o(A) + 8ec\ -I- 6 -eC|

= е„(Д) + ettW i'S itji + ie ' f ‘(Д),,*, %■&<*, + . . . ,  (7.77)

where

е»(Д ) =
U() A() / c-> Ct, .
3 +7  (" 3 9 1

4 > - K{) + I Cl + у  + — 1A A2

(7.78)

is the elastic energy of the d ilated solid and

k„ + 3 ( с, + у  + ~  ] A Su<> (7.79)

describes the linear deviations while

82ec\ = Vo8ufj + “ + (с2 + c3) А Ьщ + ( 3cj + \c2 ) A bu2u (7 .80)

the quadratic ones. These can be rewritten succinctly as

6 2ed  =  /x()(A) S u l  + (7 .81)

where /i, A are the bare elastic constants in the dilated crystal:

Mo (A) = д () + (c2 + c3) A, A0(A) = A0 + 2(3c, + ^c2)A . (7 .82)

'Hence ,
Д 2It и = Д + 8ufr. tr(»r) = — + -Д 5 u,, +

д ,  д2
tr( 0  = "9" + ~ JSltfr + +

l r ( « J ) = ^  ^  Дл«.<„ + 2 J (  «»„)-' + 5 Д(«и)-;, + №<)?,
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The bare modulus of compression defined by

d2e„(Д)
d Д—  = *о(Д) (7.83)

consists of the usual combinations,

к„(Д) = | Мо(Д) + А«(Д) = к„ + б ( с, + |  + 1 1Д . (7.84)

The anharmonic constants с|, c2, c3 depend on the volume expansion and 
are experim entally accessible via the dependence of the sound velocity 
upon changes of the volume. What one can easily measure are the 
so-called Gri'meisen constants,

У о т  -  —
1 dCor(A) 

Сот dk

1 dCl) L (  Д)

A = ( )

I_L_a_ 
2 /х„ ад

l l

Мо(Д)

л=« 2 (2/x0 -I- До) ЭДС,)/. с/Д

1 1 / , 10
(2m7 +A^) 2 1 + T C2 + 3

(2/м, + А„)(Д)
Д=()

(7.85)

W ith (7 .81), we can now easily calculate one-loop fluctuation corrected 
effective potential [see Section 5.3, Part I] of the crystal, associated with 
the classical partition Zpoud, which is equal to the free energy density of 
the anharmonic crystal:

1'ро..с(Д) = р Г рн1.с|[Д] = е„(Д) + ^ f f  21о8 Ы Д )  К ■ К]

+ 1о§ [(2М„(Д) + А„(Д)) К • К] f + - lo g (2 ir7 7 a ) .

(7.86)

То lowest order in Д, we can replace ^ (Д )*  2/хо(Д) + А0(Д) by the full 
fluctuation corrected values /x, 2/j, + A. Including the prefactors of Zc] 
[recall (7 .67)], this gives
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/ач l r  r* i /лч (k c TK\ , (Ь с ,к \<,с1(Д) = - Г с1[Д]=е„(Д) + — J  ^ i c g ^ — j + i o g ^

(7 8 7 )

where К — V K  ■ K/a2 is the lattice version of |k| and

с т — Сг(Д) = с ^ - с а Д ) - ^ - *  (7.88)
P P

are now the properly renorm alized sound velocities of the softened 
crystal. A part from e0(A ), this energy coincides with the expression for 
the classical partition function (7 .71) except that now

<or (k ) = cTK, wL(k) = cLK  (7.89)

are the volume dependent frequencies of the sound waves of w ave vector 
к  extrapolated linearly to zero tem perature.

If we now minimize uCi(A) with respect to the volume dilations we find, 
using

(7 90)
J  (2ir)5 fl’ J (2-nf a3 '

ay being the volume per unit cell,

к „ ( Д ) Д - ( 2 % г + У о ^ ) ^ = 0 .  (7 .91)

To lowest order in T (which is really the only re liab le order at the 
one-loop level), this amounts to

l L = 4 - V y » r + y aL)kBT + 0 ( T 2) (7 .92)
a ' k 0

The factor in front of T is the thermal expansion coefficient and is 
commonly denoted by a ,  i .e . ,

ЭД 1
a  = t=.= — (2y„T + y„L) kB + 0 (T ). 

a i а' к»
(7.93)
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Given the linear expansion law (7.92) we find from (7.82) that the elastic 
constants soften linearly with temperature as follows^

= MuU “  2yo7a T )% 2/х + Л = (2/х + Л)0(1 -  2y()LaT). (7.94)

It is straightforward to include also the quantum effects. For this, all we 
have to do is replace the logarithms in (7.87) by

[recall (7 .21)]. If we now minimize tf(A) with respect to A, we find

The integrals can be replaced by as the internal energy densities uT%l

In isotropic systems it is easy to calculate this expression. Let us work 
with the separate Debye approximation for each polarization with the 
densities of states [recall (7 .26)]

kBT
2

ha) т-(к)
~2 kBT

-1- lo g (l — e ,,шг№квт>)
(7.95)

2 ef'<»rikVkHT _  j
1 1
/■4 ”1” _/LWi- . )

+ yoi.ft«»t(IO r  + = 0. (7.96)

associated with the transverse and longitudinal modes [compare (7.24)]

(7.97)

and the thermal expansion is now given by

ко (A) A = (2y[)TuT+ J olUl). (7.98)

(7.99)

'H ere we have omitted T2 terms which, at the one-loop level, are unreliable.
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each having its own Debye frequencies

(Dp L = 2 irh 3 ;) Ct.L
k4ttV/N/

The three modes have a internal energy density

з n  I t  V f e » l/r , 1 1
-  +
2 —  1

At high tem peratures these have the D ulong-Petit behavior

N  L T -  ^  TUt. i.-+ ~yknT -  ~k/iT%

(7.100)

(7.101)

(7.102)

so that (7.96) reduces to the previous classical equation (7 .91). At low 
tem peratures, the internal energies are given by (7 .34a) i .e . .

T . L 1 7T * jf T \ 4+1 О
С

1 Tilv ^ ' 7  + '

_  3 ftcT. L 2 ? r  t t ~  1
-  8  or„ + 30

(k„T)<+  . . . (7 .103)

Thus, the cubic terms give rise to a volume expansion at zero tem perature 
due to quantum fluctuations.

а /л . 3 fxlir
Ko До -  (2уотс т  + Уоl cl ) z8 vr{)

(7.104)

Starting from this value, the thermal expansion sets in with an expansion 
coefficient

ад  4 /  l
—  = — I 2 yl)T~i дТ к А  су

j _ W _ l
c l )  30 tv

It is useful to introduce the quantity
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called the overall Griineisen constant. It governs the change of the Debye 
tem perature due to volume expansion,

В log Эр 1 d 
70 a log к  0 о а д н° д=о

1 -3  д —  3 - с  — с
з ад =о з а д  \ c f с\

i a _
с а д c д=о

)  = с 3 / 2у0Т
./ \ СТ Cl

(7.107)

This quantity can be extracted from purely thermodynamic m easure
ments. In order to see this we observe that within the Debye approxi
mation (7 .99), the free energy with quantum effects (7.95) has the general 
form

F = £,, + T £  Д в й '/ Г )  = £„ + F , , (7.108)
I)

where E{) is independent of tem perature. The internal energy is given by

U = ( FIT)
fl(l IT) v h 

From this one finds the pressure, 

SF

-  E  U „ = E  e ‘j5)/ '(e g ,/7'). (7.109)

and further the thermal expansion coefficient

1 а к
к а г

_ i ар/а г| у/ _  1 вр

р V др1ду\т к дТ

(7Л11)

W e may identify
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with the specific heats of the modes of po larization h whose sum is the 
total specific heat at constant volum e,

Cy — S  cvh 
и

(7.112)

The derivatives

ch ад
(7.113)

where сл are the sound velocities cT%L, are recognized as the G riineisen 
constants defined before. M oreover, we may introduce the overall 
Griineisen constant у  at arb itrary tem perature Г ,

У =
S  У hcVh 
_h______

S  cvh
/I

(7.114)

[which has the sam e low T lim it as (7 .106), by (7 .34a)]. In this w ay, 
(7.111) becomes

a  = - y c v \ 
к

(7.115)

hence у  can indeed be obtained from a com pressional experim ent for 
к = — V(dp/dV)\T and the therm odynam ic m easurem ents of a  = (1/VO 
СdV!dT)\p and cv =(VV)(dUJdT)\v =(l/V)T(dS/dT)\v . A ctua lly , the 
latter quantity is usually taken from

С у — ср —Т а 2к = cp + T
dV
dT

V —
p SP

(7.116)

since the specific heat a t constant pressure,
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is easier to m easure. The connection follows from the well-known Jacobi 
identity

„ = 1 . 0 1  
Cp VdT

T 1

_ T d(St V) _ T d(S, V) d(T, p) 
v V д(Т, V) V Э(7\ p) d(T, V)

VdV
dp

dT
dV _ a s

T  d p

dV
TdT

TdS
Cv~vYP

dV
TdT dV

dp

(7.118)

in conjunction with the M axwell relation

dS
dp

= + pV](p, T) = —  — [F + pV)(p, Т )= -Щ .
т dp дТ y  ’ дТ dp н 1УИ ’ dT P

(7.119)

It should be noted that all these relations are special cases of the very 
general properties of a phonon gas of frequencies w/,(k), which does not 
necessarily factorize as cT- K, cL K  and which may have an arb itrary 
dependence on the tem perature. In the general case, the free energy is 
given by

h(oh( k)
+ kBT\og(l -  e-h”h(m*T) , (7.120)

]•
where E0 = Ve0 is independent of tem perature [compare (7.87) and 
(7 .108)]. The pressure of this gas is found from

dF
P ~ dV - ~ + E « * c oov h, к

1 : /̂,(к)
]■

(7.121)
«*(k)av

where we have introduced the internal energy for each momentum state,

(7.122)Uh (k) -  h(oh (k) + eho>hwkBT — 1 j  ’

The coefficient of thermal volume expansion at constant pressure is 
therefore given by
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\_dV
VdT

= —  E  
K v t i

1 dpldT\y _  1 dp 
p~  V dpldV\T~~ к ВТ

V д
<o„(k)dV

шл (к ) (7.123)

The derivatives

v  a 
w / ,(k )av

w/;(k) (7.124)

may be defined as the Griineisen param eter per state. For a linear sound 
spectrum ,

“>y,(k) = C/,|k|, (7.125)

these certain ly reduce to the constants (7.113) introduced before. 
W e may also introduce the tem perature derivative of «/,(k),

л л -  9 /ЬЧ_/ /ftft)/t(k)Y eh“"™k*T Cwi(k) ^ м л (к ) kB\ I е̂ьщ {т„т _  ^ 2 (7.126)

as the specific heat at constant volume for each momentum state. Its 
integral and sum over h ,

CV ~ Y i \  n  чЗ ch ( k )л J  к̂ тг)
(7.127)

is the total specific heat at constant volume. Using these quan tities, the 
thermal expansion coefficient can again be written as

1
a  = - y c v 

к
(7 .128)

where

У =

£ % ( k ) c v/,(k ) 
A. к______________

E  Cvi, (k)
Л,к

(7.129)
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is the overall Griineisen constant for a general phonon spectrum. For the 
linear spectrum w/,(k) = c/;|k| it reduces to the previous constant (7.114).

7.7. SOFTENING OF ELASTIC CONSTANTS

In Eq. (7.82) we observed that the cubic terms not only cause an 
expansion of the crystal but also a softening of the elastic constants. If 
we force the total volume to remain constant, by some external walls 
for exam ple, this mechanism becomes inoperative. Still there is softening 
of the elastic constant due to higher anharmonic terms, with the quartic 
term predom inanting. Such a situation had been encountered before in 
Sections 7.6 and 7.7 of Part II in the context of the X Y  model. There, we 
had the partition function

R ecall that we had two options for dealing with the low tem perature 
regim e. One was the perturbative approach in which we expanded cos V ,y 
in powers of the argument

used the second term £K.#-(V/'y)2/2 as a free-field energy, and treated 
the rem aining powers as interactions. The other was the Hartree-Fock 
approach in which we removed from the exponent an unknown quadratic 
piece.

and treated the rest in such a way that an infinite set of diagram s was 
autom atically included, nam ely, those diagrams which brought the inter
action to normal form. The renormalization of /3 which achieved this was 
determ ined by a self-consistency equation,

( 7 . 130)

x .i x , |_

/ 3£ co sV ,.y  = /3D —^ - £ ( V , y ) : + £  /3(cosV ,-y- l )  + ^ - (V ,y )2

(7.132)

pR = pe-uc-fD* (7.133)
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This determ ined the softening of the effective stiffness pR as a function 
of /3.

Let us now follow a sim ilar approach for the softening of the elastic 
constants. For this we w rite the partition  function of the crystalline N 
body system in the form*

e -(0/2) Е1#уф(х + u(x) -  у -  u(y)) ( 7  134 )

where Ф (х -  у) is the (sym m etric) pair po ten tia l, u(x) the displacem ent 
field and the sum over x covers all lattice sites. The bare elastic  constants 
are obtained by expanding Ф (х) around the lattice sites , i .e . ,

\ T, Ф(х + u(x) -  У -  u(y))

= \ E  Ф(* -  у) + \ E  3;Ф(х -  y)(M;(x) -  И,(у))
^хФу ^хФу

+ 7 Е  3/Э/Ф(х -  у)(к,(х) -  M,(y))(u/(x) -  и,(у)) + . . . ,  (7.135)
^хФу

where

Е а , Ф ( х - у )  = 0, (7.136)
х ^ у

since х, у are the equilibrium  positions. R ew riting the quadratic p iece as 

2 • 2  E  Э/9уФ(х -  у) ы,(х)(иДх) -  И/(у))
ч х * у

and transforming u(x) to Fourier space,

u(x) = ^ E e ik‘ u(k),

we have

z - n /;
dui{\)

kWe omit the factor 1 IN\ due to particle identity and the kinetic part, for brevity.
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i^(kK(k)H,(k) ■ \  £  й,а,Ф(х)(1 -  е-'ь-‘)и?(к)н/(к). (7.137)
^ ZX*()

We now decom pose w,(k) into eigenstates of К,у(к),

и, (к) =  £  е<л>(Е)«<А>(к) (7.138)
А

we rewrite (7.137) in the form

“ E c <A’( k ) k V A’(k ) |2,
2 P k.A

(7.139)

where p  is the mass density M N / V  and

These are the elastic constants for the wave vectors к and with 
polarization A. If kinetic term s are included1, (M /2)E xw2(x), these have 
the corresponding decom position ( l / 2 )M £k|wJA)(k ) |2 so that the elastic 
constants determ ine the frequency in the usual way.

[c(A)(k)/p ] l/2 being the sound velocities.
Let us now see how these results change due to therm al fluctuations. 

W e could again proceed as in Section 7.6, 7.7, Part II, but find it more 
convenient to use the effective action formalism as in the last section. We 
introduce expectation values of the displacem ents,

(7.141)

U,(x)  =  <«,->

and write

'We suppress the time variable in the arguments of м,(х). м*(к).



T hen we expand the exponent in pow ers o f U(x) -  U (y) as follows:

- ?  E  Ф(* + »(*) -  У -  “(у)) -  f  E  Э,Ф(х + u (x )  -  у -  и(у))
хэ̂ у ^ хФу

х  ( U i ( x ) - U , ( y ) ) ~ 2  Е Э,д,Ф(х +  и ( х ) - у - и ( к ) )
 ̂х*у

х  (Ul( x ) - U i (y))(U/ ( x ) - U l (y))  +  . . .  ( 7 .1 4 3 )

We now identify the renorm alized elastic constan ts,

c<A’(k) = -J: A E  <а,Э,Ф(х + u (x )  -  u(0)))(l -  e~lk'%) 4 A)(K) *jA)(0 -
М К x* 0

(7.144)

The self-consistent approach is based on taking the therm al expectation  
value with the harm onic vibrations,

e -(^2.vKA///o>:k.A«'A,(k)H»‘A,(W)|-\ (7.145)

where c(A)(k) are the same  as those in (7.144). W e decom pose Ф(х) into a 
Fourier series

Ф(х) =  ^ £ е , , -, Ф(Ч), (7146)
™  q

rewrite (7.144) in the form

c‘A)0 0  =  E  Ф(ч)e,q x( l —f"'11'*)<?,-£/A)(k )Й1 е)А|(к)<е“',(",|х|* ,,,(0”).
M  к  /V  q x ^ o

(7.147a)

and evaluate the exponent in the usual way, for harm onic m odes

— e <i,q,D„(x) ̂  (7.147b)

w here D /;(x) is the subtracted correlation function

Dij(x)  =  < н , ( х ) и Д 0 ) >  -  ( u , ( 0 ) h ; ( 0 ) ) .  ( 7 .1 4 8 )

9 1 6  III. GAUGE FIELDS IN SOLIDS
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U nder the self-consistency assum ption, the correlation function 
(Uj(x)Uj(0 )) is determ ined by (7.145),

( Ц,(х )ЦД 0 ) ) = ^ ^ £ с(А)(1к)к2е'ь ’‘е;л>(к)в<л|«(к). (7.149) 

Thus (7.147) has to be solved together with

° ' ' (x )  =  ^ M ? ^ ( W ( e 'k ‘ _  ' ) e ! A,( k ) e ) A»*(k). (7 .1 50 )

It is easy to include also quantum  effects. All one has to do is replace, 
p/c(A)(k )k 2 =  l/o>(A)(k )2 by the M atsubara sum [recall (6.261), Part I]

<7 1 5 l >

For x =  0, D /;(x) vanishes, by construction. For large x it approaches a 
constant rapidly, nam ely, the quantity

- ( и , ( 0 )ыу(0 ) ) ,

which is related to the well-known W aller factor [recall (7.63)] by

2W =  <7,#/(m/(0) w; (0 )). (7.152)

In cubic m aterials, upon which we shall now focus a tten tion , the 
D ebye-W aller factor is

2 W  = i q 2{u2)

and the limit becomes

ЯПУ/J M * ) ■ (7 -153)

The approach to this asymptotic value is exponential. In practice, this is 
fast enough to perm it the approxim ation,

?,<?/Ay(x) x7 o 2 W =  iq 2(u 2(0 )>.
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W e thus arrive at the self-consistency equa tion  for the  elastic constants

c( A)( k ) =  - 1  P 1  £  ф (ч ) ( е ' я - « - в « я - м - » )9. е(Л )*(к ) %. е( А, ( к ) е- , ^ , <1Лвд> 
M  к  /V q^x^O

(7 .1 5 4 )

w here (u 2(0)) depends again on c(A)(k) via (7.149) since

< ■ • < » > > <7155>

W e can go back to x space by perform ing the sum over q. T he extra
factor е“(ч2/3)<“2(0)) am ounts to replacing the pair p o ten tia l Ф(х) by the 
renorm alized one

Ф*(х) =  1  ^  f  d 3x'  (7.156)

This has a simple physical in terpreta tion : the renorm alized po ten tia l is 
obtained from  the original one by sm earing the x variable ou t over a 
radius proportional to the m ean square d isplacem ent (u 2(0 ) ) .

In isotropic systems there are only two d ifferent sound w aves, a 
longitudinal wave with an elastic constant along к

( k )  -  - s  p i S . ® ' ' ™ ' " 1  -  ^  < 7 - , 5 7 )

and two degenerate transverse ones with

< * »  ■  ~  • * ■ " ’ > ( ?  -  т )  •  < 7 , 5 8 )

where we have used the obvious notation

<l>*(q) =  <f>{q) e-b faW M .  (7.159)

Perform ing the sum over x squeezes q once to с and once с +  к w here с is 
the reciprocal lattice vectors [recall Part I, (6.29)]
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£ e f , « =  N E s ( q - c )  (7.160)
X С

and we find

-  ~ к  £p  " > > « + ю -  ■
C#0

w2r (k) =  c r (k ) -  =  j -  E f c 2 -  ) (Фя (с +  k) -  Ф *(с)). (7.161)
P M c¥, „ \  k

The im portant observation at this point is that the transverse elastic 
constant does not contain с =  0 in the sum. Thus it begins with the 
nearest neighbor in reciprocal space, say C(. For small |k| «  | c1 the 
leading term  is

*>r(k) ~  ±  E  (с? -  ^£р ^ ) ( Ф л(с, +  k) -  Ф *(с,)). (7.162)

The longitudinal term , on the o ther hand, has the leading term

о ,1 ( к ) ~ - ^ к 2Фя (к). (7.163)

In general, the potentials fall off rapidly in m om entum  space such that it 
is a reasonable first approxim ation to neglect the higher с vectors.

This observation allows for two im m ediate conclusions: Since (u 2(0)) 
increases toward larger tem perature, the transverse elastic constant shows 
a much stronger therm al softening than the longitudinal constant. The 
transverse softening, for small k, is approxim ately [using (7.159)]

C r(k )lrt o _  g- (ci/3)<u-(0)) (7  164)
c t W \ t = o

<"’<о» - з ? л с ® Г " " ” ( ь ? * М  (7i65>

Here [see (7.50)]
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Let us estim ate (u 2(0)) from the classical limit o f form ula (7.57), 

i .e .,

<u2(o)> =  3 (7 -166>
м

Using Eq. (7.28), this can also be w ritten as

2 /3

л Г ( 2^ \ 1 n )  =  °  M
W » ) ) = 3 ^ H  (7.167)

where r0 is radius of the sphere available to  each atom . H ere ch are the 
three sound velocities. The transverse elastic constants Cy-(k), on the 
left-hand side of (7.164) are them selves (for small k) p roportional to the 
square of the transverse sound velocities c T. Using |c j  =  2irlr{) x  0.695 
(b .c .c .), 27г/г0 x  0.676 (f.c .c .) [see A ppendix 7. A] we thus arrive at the 
nonlinear equation for sound velocities

ct ( T )  e -{)№(kttmi)Y.,,\hUT) (7  168)
CT

To lowest o rder in T

£ Н Д , 1 - 0 . 6 8 ^ £ 1 -  (7.169)
c f  M h cj,

Before com paring this with experim ental da ta , e .g ., those in Fig. 7 .8 , we 
have to perform  an isotropic average a la Voigt [see (7.44)] and allow for 
the additional linear softening law due to volume expansion (7.94).

As a very rough approxim ation let us ignore that and study (7.168) 
itself. We also neglect, on the right-hand side of (7.168) the difference 
between elastic constants. Then we find the self-consistency equation

£ l ! D .  ^  е-«ш-..м*„г/л/)(1/гт(Г» (7.170)
c \

Setting г =  Ст(Т)/ст and r =  1.38{k B TIMc\)  we can rew rite this as

(7.171)
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FIG. 7.8. Experimental softening of elastic constants in Ag (after Grimwall op. cit.).
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This has a solution only as long as r  is sm aller th an  the  m axim um  of the 
function on the right-hand side, which lies at r /r  =  1 w here (xlr)e~xlr =  He 
[com pare (7.143) and Fig. 7.17 of Part II], i.e .,

W  =  (7-172)
e

A t this point, the transverse elastic sound velocity constants have 
softened by a factor of 1/e. The self-consistency approx im ation  cannot be 
continued beyond this point. The m axim al tem p era tu re  is

Т тм =  ^ М с 2т- \ ~ -  (7.173)
k B 1.38e

Let us translate the result to the m ean square d isp lacem ent. Using (7.167) 
we find

c _  /l  (u  (0)) max lkB Tmax у  1 /— j k B Tmax I 3 ~
a ™ -  ---------У1 ~ м ~ ~ V O s T 0 -89

(7.174)

Since melting occurs at 5mc|t ~  0.07 (from  T able 7 .4), in accordance with 
L indem ann’s law, we conclude that the self-consistent approxim ation  can 
well be used to describe softening of the elastic constants up to this point.

N otice that we can use the m ore precise determ inations o f 8 at the 
melting point to calculate the softening of the elastic constan ts. F or this 
we rewrite the exponential

e -(r r /3 ) ( ir (0 ))

as follows

£-n«/:(u;(0V3</-> £ - f T (7. 176)

where 6 is the ratio of V { u j ) / 3 with respect to the nearest neighbour 
distance d.  Then we use the fact that the classical regim e 82 grows linearly 
with tem perature.
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and take 5 ^Cu from Table 7.4. In b.c.c. and f.c.c. crystals, the smallest 
reciprocal lattice vectors are given by

(7.178)

where d  is the nearest neighbour distance [see A ppendix 7 .A] so that 
(7.176)

g ” 59.2 SmcH (WTmcXt)'

Inserting the classical num bers of Table 7.4 this gives us a softening ratio 
for the elastic constants,

£ l ( I ) s=e-'>.7(r-/7„., (b.c.c.). (7.179)
CT

(f.c .c .). (7.180)
Cj-

For an o rder of m agnitude com parison we take the experim ental curves 
for the softening of the elastic constants of the f.c.c. crystal Ag as shown 
in Fig. 7.8. W ith Гтсц =  1235 К we find the slope

1 - 0 . 3 .  r
С т  'm e l t

D espite the neglect of the contribution due to therm al expansion, (7.94), 
this agrees with (7.180). For the b.c.c. metal Та we use the data of Table 
1.2 and find with TmcU =  3270 К

o , 7 6 - ^ .
С т  L  melt

also in reasonable agreem ent with (7.179).
In the literature the breakdow n of the self-consistent approxim ation 

has som etim es been associated with the melting transition"1. From the

""See. for example. H. Fukuyama and P.M. Platzman, Sol. St. Commun. 15 (1974) 677, and 
Phys. Rev. B10 (1974) 3150.
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discussion of the X Y  m odel in Sections 7.6, 7.7 , P art II how ever, we 
know that this breakdow n bears no relation to the phase transition . The 
phase transition is not  caused by perturbative effects, and cannot 
therefore be derived from a partial resum m ation of infinitely many 
diagram s. The X Y  m odel has taught us that the physical origin of the 
superfluid phase transition is the condensation of vortex lines. O nly these 
lead to the destruction o f the superfluid o rder.

W e must therefore expect that a p roper understanding of the melting 
transition will be possible only after an analogous trea tm en t o f line-like 
defects. This will be given in later chapters.

Let us end this chapter with a few com m ents on the tw o-dim ensional 
situation.

7.8. T W O -D IM E N SIO N A L  CRY STA LS

Just as was the case with superfluids, solids too  can be studied ex
perim entally in the reduced dim ensionality D  =  2, at least to a certain 
approxim ation. It is possible to prepare  large m onoatom ic layers of atom s 
on grafoil (recall Section 11.1, Part II) and investigate the ir therm o
dynamic properties as well as their correlation functions (through X -ray 
scattering). The favourite systems are layers of rare gases like H elium , 
X enon, A rgon o r K rypton.

Such layers are usually not com pletely uniform  since the binding 
potential has the periodicity of the substrate and the d iam eter o f the 
X enon atom s is som ew hat larger than the lattice spacing of graphite. 
Thus the atom s do not properly match with the optim al positions (see 
Fig. 7.9). Fortunately , how ever, the variations in the binding energy are 
quite small. For X enon, for exam ple it is « 3 7 К . M elting of X enon occurs 
at « 1 0 0 -  152 К (for the phase diagram  see Fig. 14.5). H ence the 
deviations from uniform ity should be neglegible.

The D ebye theory  developed in the beginning of this chap ter applies to  
such tw o-dim ensional solids with only m inor m odifications. T he D ebye 
frequencies (7.28) are again equal to 2тгси1г0, w here ch are the velocities 
o f sound with polarization h and the radius r0 associated w ith each 
particle is now equal to  (N / V ) u2, V  being the tw o-dim ensional volum e, 
i.e ., the area occupied by the atom s. H ence

(7.180)
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FIG. 7.9. The geometry for the adsorption of Xenon on graphite. The Xe atoms are 
slightly larger than the lattice spacing so that the layer is not quite commensurate.

Xenon
substrate Lennard-Jones 
spacing diameter

Xenon adsorbed on graphite (001) surface

T here are only two polarizations h =  L ,  T  whose density of states is 
g </0(o j )  =  V [ V 2 tt ](о * /С й ). W ith the average sound velocity (recall 
(7.29b)]

1/2

(7.181)

T he single density of states is g(w) =  2V(1/2tt){ o>Ic 2). The average D ebye 
tem perature  is

0 D =  ho)D/ k B , (x)D =  2 ттс!гъ (7.182)

and the internal energy becomes
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U =  A N k BT  

and the specific heat

C  =  A N k B

IX  f
в о )  Jo

2 r  Qd/T 1 1 
+

2  e ( -  1
(7.183)

- )  fSD) Jo
2 Г 0О/Г

( e { -  1):
■d(. (7.184)

-  f  “ iFor low tem peratu res, we use d g £ 2- 7— -  =  2 f(3 ) =  2.404 and fi
J о e 1

that U and С have the limiting behavior

find

U т« 0/, 4Ыкй в п  I \  +  2.404
r « e t 4^ 7 -2 1 2 ^ '  ■ 

(7.185)

The experim ental T 2 behavior of С for m onolarges of 3H e of various 
densities are shown in Fig. 7.10. The D ebye tem pera tu re  extracted  
from data are p lo tted  in Fig. 7.11 as a function of the m olecular areas 
cr  =  777'i). For large tem peratu res, U  and С follow again the D ulong-Petit 
law,

=  2 N k °  T - С  —  Ucl =  2 N k B. (7.186)

Most of the o ther form ulas can be transform ed straightforw ardly to two 
dim ensions.

T here are , how ever, a few pecularities due to the L andau-Peierls 
argum ent, m entioned before in the context of superfluidity in two- 
dim ensional layers, i .e ., based on the fact that J ( ^ 2/c/(2 7 r)2) e ' k'(x_x)( l / k 2) 
is divergent. This fact has som etim es been used to argue tha t two- 
dim ensional solids cannot exist, but this is not really true. W hat is true  is 
that this divergence prevents two-dim ensional crystals from  having a 
p roper long-range o rder with б-function Bragg reflexes. T he deviations 
are quantitatively not very significant. Theoretically , how ever, they are of 
great interest. This w arrants a special discussion, which we now turn  to.

In the continuum  approxim ation, the linear elastic energy is

E e l  =  J  d 2x  j^ (a ,M / +  д/U,)2 +  ^(Э,М, ) 2 (7.187)
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FIG. 7.10. The specific heat data at low temperatures for high density 4He on grafoil (from 
Hering and Vilches, 1973, see J.G. Dash op. cit. in the Notes and References). The 
densities in units of n!A2 are 0.078, 0.079, 0.080, 0.082, 0.087, 0.092, for increasing 0 O.

FIG. 7.11. The Debye temperature for layers of solid 4He, as extracted from the low T  
behavior of the specific heat data, as a function of the molecular area a2 = тгт£. For 
comparison, we show the data points of hep JHe on the same length scale a (after M. Bretz 
et a/., op. cit. in the Notes and References).
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with a partition  function"

z = П
x

This gives the correlation function

г : 00 e~£d' r . (7.188)

< « ,(x H (x ')>  =  G ,(x  -  x ')  =

(7.189)

W e can now convince ourselves that due to  the logarithm ic singularity 
of the Coulom b G reen  function J ( d 2/c/(27r)2) e 'Mx“ x)( l /k 2), the two- 
dim ensional solid has indeed no p roper long-range o rd e r, a fact which 
m anifests itself in the absence of true б-function Bragg peaks in scattering 
experim ents. In o rder to see this we calculate the  dim ensionless structure 
factor0

S(q )  =  j j [ d 2x d 2x ’ e'4(x *') (p (x )p (x ') ) ,  (7.190)

where p(x) is the local particle density and N  the total num ber. If the 
atom s are at their equilibrium  positions [recall ( 1 .1)], this is given by

P(x) =  E 5(2)(x -  x„). (7.191)
П

Inserting this into (7.106) gives

5(q) = “  E e'1 = E e" " '  = (—) E 5<2)(q -  c) = N  E 54.c,
^ n . n '  n \ ^ / c  с

(7.192)

where с are the reciprocal lattice vectors (2тг/а)(си  c2, . . . )  with 
C/ =  integer. If the atoms are displaced by wf (x), one has instead

nWe drop ihe trivial factor (VkR ТаАр/2тгй2)2*  [recall (7.67) in three dimensions). 
°In terms of 5(q). the X-ray differential cross section is
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p(x) =  £  S2(x -  x„ -  u ,(x„)) (7.193)
П

and finds

(7.194)

As long as the displacem ent field is small and follows the laws of linear 
elasticity we can calculate directly [compare (11.92)—(11.96), Part II],

In th ree dim ensions, G,y(X) would go to zero for large distances and 
( e iqiu,(x)e -iq,u,(V)} j  Inserting this into (7.194) we see that we obtain 
S (q )«  Ec 5q c so that therm al fluctuations do  not  destroy the 5-function 
peaks in the structure function.

In two dim ensions, however, G fy(X) diverges logarithmically and 
(giq.utx)e -iqiUi{o)̂  fa jjs a pQwer Qf |x| instead of becom ing constant.
W hen inserting the pow er behaviour |Х |-ч(ч) into (7.194), the 5-functions 
widen into cusps around the reciprocal lattice vectors c, with the 
behaviour

_  e -q,ql(Tn)Z%.t Q(x)Gli(x -x ')Q (x ')  _  e q,q,TC„(\)^

(7.194')

w here we have used the abbreviations Q ( \ )  =  5x X ~  Sx>o,

Gb (X )  -  G 0(X)  -  G/j(0). (7.195)

(7.196)

T he precise value of rj(q) is found by extracting the long-range 
logarithm ic term  in (7.189). According to (1.125) this is given by
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so that the subtracted  G reen function has the  finite limit

(7.198)

giving?

(7.199)

Since pow er behaviors like \X \ ~V are  typical for critical system s, the 
pow er 17 is called a critical index .

Experim entally, the pow er behaviour (7.196) is visible in the  intensity 
profiles of X-rays scattered  on adsorbed layers o f a tom s as illustrated in 
Fig. 7.12 with the data of H einey et al. See the N otes and R eferences.

The m elting transition in tw o-dim ensional system s was first observed in 
m onolayers of 4He by B retz e t al. (1973). T he data  show sharp  peaks in 
the specific heat (see Fig. 7.13).

C ertainly, it is possible to carry through all the discussions of the 
previous sections once m ore in two dim ensions. For brevity , how ever, we 
shall not do this and em bark directly in studying the role of defects in the 
m elting transition. L ater, after having im proved ou r understanding  of 
the three-dim ensional transition we shall re tu rn  and study also two- 
dim ensional m elting in m ore detail.

A PPE N D IX  7A . SO M E L A T T IC E  P R O P E R T IE S  

In a b .c.c. lattice, we use the basis

and find the volum e per cell

v =  (at x  a2) • a3 = — (7A .2)

pNotice that the combination of elastic constants in the same as in the Debye temperature
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FIG. 7.12. Diffraction profiles illustrating the power-like peaks (solid lines) in the 
structure factor S(Q) rather than the 6-like peaks in the Bragg reflexes of 3D solids (after 
Heiney et al., op. cit. in the Notes and References).

(2(A)

so that a =  v m  =  я0/2 ,/3 and the nearest neighbour distance is d  =  (a0l2) 
V3 =  y I/2 (V 3/22/3) *  1.0911 a. With r0 =  ((3/4тг) t>)l/3 =  (3/4тг)113а we also 
have d =  1.76 r0.

In an f.c.c. lattice

a, = y (y  + z), a2 = f ( 2  + 8), a3 = f ( S  + y). (7A.3)
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FIG. 7.13. The specific heat data of 4He films on grafoil as found by Bretz et al. (1973) 
(op. cit. in the Notes and References).

so that v =  and v m  =  a =  a()/4 ,/3. The nearest neighbour distance 
is d  =  япЛ /2  =  t>,/3 (4 l/3/V 2) *  1.1225 я — 1.81 r0. T he reciprocal basis of 
an f.c.c. (b .c .c .) lattice is a b.c.c. (f.c .c .) lattice with д<г,сс =  Airla{) and 
a volum e (2t t )7>/ v — (2тг1а)7, so that arcc =  2n /a .  H ence the sm allest 
reciprocal lattice vectors of a b .c.c. lattice have a length d \ cc =  
(41/3/V 2)flrec =  (V3/2)(27r/d)  =  1 .1225(27r/fl) while those of an f.c.c. 
lattice have d \ec =  (V 3 /22/3)й гес =  (V §/2 )(2 W d) =  1.0911 (27т/а).

A PPE N D IX  7B. F R E Q U E N C Y  D IST R IB U T IO N S

For a general spectrum  w;2(k), the frequency distribution may be 
calculated as follows:

(7.B 1)
v  к

By integrating this over ш it is obvious that it has the correct
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norm alization (7.27). We now observe that the right-hand side can be 
rew ritten as

8
/ 4 N 2a>1 i v» 1
(w) =  —— l m — L ----- s---- :— ;— 777т

V гг N  к —ш~ — is  +  сь>̂ (к)
(7.B2)

where e is an infinitesimal positive num ber. This implies that g (/,)(w) can 
be obtained from the G reen function at the origin,

(7.B3)

by an analytic continuation in the square mass m 2 to

n r  =  —o r  -  le (7.B4)

and taking the imaginary part, i.e..

g (/,V )  =  "™,(0 )
V TT m- = — oj— te

(7.B5)

As an exam ple, take the one-dim ensional case w here for lattice space 
a =  1 [see Part I, Eq. (6.184)],

”ж(0 ) =  [(™2 +  2 )2 "  4 1
1/2 (7.B6)

so that

N 2  1
« (ш) =  у Т Щ Г З

(7.B7)

On a square lattice we can use Eq. (6.134) of Part I,

n r  + 4 7Г ^  \(1  +  m 2/4 )2
(7.B8)

Г тг/2
w here K ( z ) is the elliptic integral I d d (  1 — z sin2 0) 1/2, and find for a

Jo
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m ode with a lattice spectrum  coft =  2 (1  — cos /ci) +  2 (1  — cos k 2)

g O )  =  - T J = = 2K  (  л  I ’ " 2(4  -  <"2) >  16,
7T2 V 4  -  ci) \ «  (4 -  o> )

=  f * K \ l 6 ^  0 <  й>2(4 — a)2) <  16, (7.B9)

For a three dim ensional simple cubic lattice we have to replace a>2 by
J tt/2

dk/2rr.  Plots of

- tt/2

these functions can be found in the book by M aradudin  et al. [see N otes 
and References).

Similarly, we can use the G reen functions of b .c .c ., and f.c.c. lattices in 
Part I, Eqs. (6A .43), (6A .46) to calculate explicitly the associated 
frequency distributions.

N O TES A N D  R E F E R E N C E S

Experimental data on the melting transition are reviewed by
G. Borelius, Solid State Physics 15 (1963) 2.
The entropy and volume jumps upon melting are given by
M. Lasocka, Phys. Lett. 51A (1975) 137 [his ДS is given in units of cal/(K • mole), while we 
use R = 8.314, J/(K • mole) =  1.987 cal/(K • mole)].
See also
J.L. Tallon, Phys. Lett. 76A (1980) 139.
The specific heat at constant volume is given in
G. Grimwall, Physica Scripta II (1975) 381
using data on the isothermal compressibility x  and on the thermal expansion a and the 
formula cp -  e,, = a 2Tlx.

The Lindemann criterium was given in
E.A. Lindemann, Z. Phys. 11 (1910) 609.
He worked with polycrystals in the Einstein approximation to the specific heat. Further 
studies were made by
E. Griineisen, Ann. d. Phys. 39 (1912) 257.
Lindemann’s approach was improved, using experimental data at melting points by 
J.J. Gilvarry, Phys. Rev. 102 (1956) 308, 103 (1956) 1700, 104 (1956) 909.

Lattice dynamics was used, taking numeric solutions of the secular equations at room 
temperature, by
A.K. Singh and P.K. Sharma, Can. J. Phys. 46 (1968) 1677.
A semi-analytic calculation, using the moment trace method of
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E.W. Montroll, J. Chem. Phys. 10 (1942) 218, 11 (1943) 481, to calculate g(w), was 
employed by
J.N. Shapiro, Phys. Rev. B1 (1970) 3982.
Our values in columns 3 and 4 of Table 7.4 are from this reference.

Other early studies of the melting process are found in 
W. Brauneck, Z. Phys. 38 (1926) 549 (instability of optical vibrations),
N.V. Raschevsky, ibid 40 (1927) 214 (instability of a particle under action of its neighbours), 
K. Herzfeld and M. Goeppert-Mayer, Phys. Rev. 46 (1934) 995 (pressure minimum with 
respect to changes in volume),
M. Born, J. Chem. Phys. 7 (1939) 591 (collapse of shear stresses.
In this context, see also the more recent papers by
H. Fukuyama and P. Platzmann, Sol. St. Commun. 15 (1974) 677,
L. Boyer, Phys. Rev. Lett. 26 (1979) 584, 45 (1980) 1858,
J.E. Lennard-Jones and A.F. Devonshire, Proc. Roy. Soc. A169 (1939) 317, A170 (1939) 
464 (here melting appears as an order-disorder transition, a crystal being an alloy of atoms 
and vacancies: the disadvantage is that the melt carries memory of crystalline positions), 
J.A . Pople and F.E. Karasz, J. Phys. Chem. Solids, 18 (1961) 28, 20 (1961) 294 (like the 
previous one, but including two orientational degrees of freedom),
J.G. Kirkwood and E. Monroe, J. Chem. Phys. 9 (1941) 514 (disappearance of periodic 
Fourier components in density distribution),
K.K. Kobayashi, Mol. Cryst. Liqu. Cryst. 13 (1971) 137, Phys. Lett. A31 (1970) 125, J. 
Phys. Soc. Japan 29 (1970) 101 (like the previous, but including orientational order), 
G. Tamman, Z, Phys. Chemie 68 (1910) 205,
M. Volmer, O. Schmidt, Z. Phys. Chemie 35 (1937) 467,
I.N. Stranski, Naturw. 30 (1942) 425 (melting as a destruction of crystal starting from the 
surface).

Experimental data on the softening of the elastic constants can be found in many 
textbooks. The example in the text for Ag is taken from 
J.R. Neighbors and G.A. Alers, Phys. Rev. I l l  (1958) 767.
For Mo and W see D.I. Bolef, J. De Klerk, J. Appl. Phys. 33 (1962) 2311.
For Mo, W, Та see F.A. Featherston, J.R. Neighbors, Phys. Rev. 130 (1963) 132.
For A1 G.N. Kamm, G.A. Alen, J. Appl. Phys. 35 (1964) 327.
The specific heat of constant volume was given by
G. Grimwall, Physica Scripta 11 (1975) 381,
using data on isothermal compressibility x = k~1 and on thermal expansion a and the 
formula cr -  cv = crTtx.
The Lindemann numbers are tabulated in
A.R. Ubbelohde, The Molten State o f Matter (John Wiley and Sons, New York, 1978).
A.A. Maradudin. E.W. Montroll, G.H. Weiss. I.D. Ipatova, “Theory of Lattice Dynamic 
in the Harmonic Approximation", in Solid State Physics Suppl. 3, ed. H. Ehrenreich, F. 
Seitz and D. Turnbull (Academic. New York, 1971).

Nonlinear elasticity is discussed in
F.D. Murnaghan, Am. J. Math. 49 (1937) 235,
F. Birch, Phys. Rev. 71 (1947) 809.
The low temperature effect of the nonlinear terms can be found in 
J.M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960),
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954). 
The softening of the elastic constants is further discussed in
H. Fukuyama, P.M. Platzmann, Sol. St. Comm. 15 (1974) 677 (D = 3),
P. Platzmann and H. Fukuyama, Phys. Rev. BIO (1974) 3150.
See also
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F.M. Peeters and P.M. Platzmann, Phys. Rev. Lett. 50 (1983) 2021.
The phase diagrams of solid and liquid 3He and 4He at low pressure and temperatures can 

be found in
C.M. Varma and N.R. Werthammer, in The Physics o f  Liquid and Solid He Vol. II, ed. 
K.H. Bennemann and J. B. Ketterson (John Wiley and Sons New York, 1978) p. 505. 
The sound velocity in hep and bcc solid 4He can be taken from the review article by
D.L. Price, ibid, Vol. II, p. 691 or p. 693.
The Debye theory of specific heat can be found in most textbooks on solid state physics; for 
example in
N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New 
York, 1978),
G. Busch and H. Schade, Vorlesungen iiber Festkdrperphysik (Birkhauser Verlag, Stuttgart, 
1973).

For two-dimensional layers of 4He on grafoil, the Debye temperatures were measured 
and the melting transition was first observed by
M. Bretz, J.G. Dash, D.C. Hichernell, E.O. McLean, O .E. Vilches, Phys. Rev. A8 (1973) 
1589, A9 (1974) 2814.
See also
R.L. Elgin and D.L. Goodstein, Phys. Rev. A9 (1974) 2657 
For layers of 3He see
S.V. Hering, O.E. Vilches, in Monolayer and Submonolayer Helium Films, ed. J.G . Daunt,
E. Lerner (Plenum Press, New York, 1973) p. 1,
S.V. Hering, S.W. van Sciver, D.L. Goodstein, J. Low Temp. Phys. 25 (1976) 793,
J.G. Dash, Films on Solid Surfaces (Academic Press, New York, 1975)
Two-dimensional melting for layers of Xenon on grafoil was measured by 
D.A. Heiney, R.J. Birgeneau, G.S. Brown, P.M. Hari, D.E. Moncton, and 
P.W. Stephens, Phys. Rev. Lett. 48 (1982) 106.
Argon and Krypton were studied by
J.P. McTague, J. Als-Nielsen, J. Bohr, and M. Nielsen, Phys. Rev. B25 (1982) 7765.
R.J. Birgeneau, E.M. Hammons, P. Heiney, and P.W. Stephens, in Ordering in Two 
Dimensions, ed. S.K. Sinha (Elsevier, New York, 1980).
Other atoms (CD.,):
S.K. Sinha, P. Vora, P. Dutta, L. Pasell, J. Phys. C15 (1975) L275.
Computer simulations were done by
S.W. Koch and F.F. Abraham, Phys. Rev. B27 (1983) 2964.
S. Toxwaerd, Phys. Rev. Lett. 44 (1980) 1002,
R.K. Kalia and P. Vashinshta, J. Phys. C14 (1981) L643.
For a popular review article see also
W.F. Brinkmann, D.S. Fisher. D.E. Moncton. Science 217 (1982) 693.
The Debye temperature (two-dimensional layers) can be found in
J.G. Dash and M. Schick, The Physics o f Liquid and Solid Helium, Vol. //. eds K. 
Bennemann and J.B. Ketterson p. 550 (as a function of the density from 0.8 atoms to 1.2 
atoms per 10 A2).
The melting transition was studied via computer simulations of the molecular dynamics in 2 
dimensions by
R.M.J. Cotterill, L.B. Pedersen, Solid State Commun. 10 (1972) 439 (1972) (Lennard-Jones 
system),
F.F. Abraham, Rep. Prog. Phys. 45 (1982) 1113 and, in Ordering in Two Dimensions, ed. 
S.K. Sinha (North Holland, New York, 1980) p. 155 (Lennard-Jones system),
J. Tobochnik and G.V. Chester, ibid., p. 339 (Lennard — Jones system),
J.P. Tague, D. Frenkel, M.P. Allen, ibid, p. 147 (r-6 potential)
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S. Toxvaerd, Phys. Rev. Lett. 44 (1980) 1002, 
and in three dimensions by
R.M.J. Cotterill, E.J. Jensen and W. Damgaard-Kistensen, Phil. Mag. 30 (1974) 245, 
R.J.M. Cotterill, Phys. Lett. 44A (1973) 127.
W.L. Slattery, G.D. Dolen, H.E. DeWitt, Phys. Rev. A26 (1982) 2255 (Wigner lattice of 
electrons).
More details on 2D melting will be given in Chapter 14.



CHAPTER EIGHT

FIRST ATTEMPT AT A DISORDER FIELD THEORY OF 
DEFECT MELTING

The Lindem ann criterion gave us some im portan t inform ation on the 
nature of the melting transition: the transition occurs at a tem pera tu re  
slightly below which the atom s still perform , to a very good ap p ro 
xim ation, harm onic fluctuations about their m ean positions. T he non- 
linearities o f the interatom ic potential are not very im portan t. They 
m erely provide a shift in the m ean position and a softening of the 
elastic constants. If these two effects are taken into account, the crystal, 
even right below the m elting tem pera tu re , can be trea ted  practically as an 
ideal crystal. D efects are quite rare , due to their high energy, and we can 
describe the interactions of defect lines by the m ethods developed in the 
previous chapters.

As we approach the m elting tem pera tu re , the situation  changes 
abruptly. All of a sudden, the crystalline o rder breaks down. In analogy 
with the superfluid phase transition we set for ourselves the goal of 
describing this breakdow n by the condensation of defect lines. In the 
following chapters we shall try and follow the historical developm ent 
which ultim ately led to the lattice m odels to be described in C hap ters  
9 -13 . The d isorder field theory which will arise in the  course of the 
present chapter will not be used later on. T he insights gained in this 
discussion will pu t us in a be tte r position to appreciate the properties of 
these m odels.

9 3 8
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The practically minded reader is therefore advised to skip this chapter 
and turn directly to C hapter 9.

8 .1. D IS O R D E R  FIELD S O F D ISL O C A T IO N  LINES

Let us begin by studying fluctuating ensem bles of dislocation lines. We 
proceed in com plete analogy with the vortex lines of C hapter 2, Part II.

The elastic energy of N  lines L (0, i =  1, . . N  with Burgers’ vectors 
b[l) is given by (3.42):

This form ula was based on the laws of linear elasticity which are valid for 
large distances between the lines.

In the near-zone around each line, nonlinear effects becom e im portant. 
Just as in the superfluid, these are difficult to calculate. W e shall assum e 
that they can be param etrized approxim ately by a core energy of the form

where e j  =  e'c is the energy per unit length of an edge dislocation (which 
has dx  1  6 ) and ej: =  ec +  e ' that of a screw dislocation (which has dx  || 6 , 
6  =  b/|b| ).  The total partition function to be calculated is

As in C hapter 2, Part II, we shall proceed in two steps and suppose first 
that there is no elastic energy. We shall also assume, for a m om ent, that 
the param eters e T and eL are equal. Then it is straightforward to write 
down a disorder field theory for Z , in analogy with Eq. (2.3) of Part II:

x  (b(/) • rfx(/))(b (/) - dxU)) /R  -  2 (b ('> x  b('>) • (dx{i) x  dx(j)) /R

(8.1)

(8.3)
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Z  =  J  @<p @(pf

*  exp j —J  +  £  Sf. Wb\2M 2

(8.4)

The mass is given by

m 2 = ( ^ - l o g 2 o ) ^ .  (8.5)

with e j  =  e j - a  being the energy per link. T he sum  over b =  1, . . n 
accounts for the fundam ental B urgers vectors. W e have initially assum ed 
a quartic short range interaction which is purely phenom enological and 
whose precise form is unknow n. It has to satisfy an im portan t funda
mental physical property: when dislocation lines in teract with each o th er, 
the Burgers vectors are conserved just like electric charges (recall the 
discussion in Section 2.9 on branching defect lines). T he corresponding 
property of the disorder field theory  is that it is invariant under the globa l  
phase ro tations,

q>h( x ) - » e iy'b'<pb(x). (8.6)

This is why we w rote the interaction im m ediately in the form  £ /,.// 
(gbb'/4)\(pb \2 \(pb'\2- The coupling m atrix gbb> is fu rther restric ted  by cubic 
sym m etry. This perm its only two independent m atrix elem ents and we 
can param etrize the energy density as

e(x) = E 
b

8.2. FL U C T U A T IO N  IN D U C E D  F IR S T -O R D E R  T R A N S IT IO N

Let us study the partition function associated with this energy. It is useful 
to view the com plex field (pb as a special case of a general n • q  com ponen t 
field <p? with i  =  1 , . . .  n , a  =  1 , . . . ,  q  and a field energy
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(8 .8)

This is invariant under O (q)  ro tations of the indices a  and has a sym m etry
under the cubic point group in the indices i which count the different 
fundam ental Burgers vectors.

Theories of this type have been discussed in the literature in great 
detail (see the N otes and References). They are used to illustrate the 
possibility that fluctuations may induce a full 0 (n • q)  sym m etry betw een 
all n • q  com ponents of W hat is m ore im portant in the present context 
is that these field theories are also exam ples of a fu rther type of 
fluctuation-induced first-order transition, similar to the one we had 
encountered  previously in Section 3.11 in a superconductor for which the 
crucial fluctuation role was played by gauge fields. Let us recapitulate 
some of the well-known features of a field with energy (8 .8 ) which could 
be relevant for our purposes. For simplicity, we shall first focus atten tion  
upon the simplest prototype of a field with arbitrary n and q =  1 at the 
m ean-field level. Its energy is

For m 2 <  0, the fields acquire non-zero expectation values. T heir p ro 
perties depend on the values of g ly g 2. For g2 =  0, g { >  0, the energy is 
invariant under /i-dimensional rotations of the com ponents (<pb  . . . ,  <p„), 
and the ground state is degenerate with respect to these ro tations, with a 
field expectation value

For л =  2, this ground state is the same as the ordered state in the 0 ( 2 )  
sym m etric field theory of superfluid 4H e (or the X Y  m odel). If g2 <  0, 
and g i >  - g 2 the energy loses its isotropy and the ground state can no 
longer point along an arbitrary direction in the 0 (n) field space but must 
select one of the three directions along the field axes, say,

(8 .10)
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<Pi =  <pSi. 1 =  J -  m- ~  s i. 1 • ( 8 1 1 )
V g l +  g2

If g2 >  0, and g x >  - g ^ n  the expectation value is diagonal in field space,

_  _<p____1_  I m 2
^  Vn Vn  V gi+Z->/n ' (8.12)

In the three cases, the ground state energy is given by the m inim a of the 
potentials which are

m2 2 _^8 l 4 m 4
+ 4 ^  = " ^ ’

2 , g l  +  82 4 _
v g ! < o  =  ~ 2 < f  +  4  ^  _ _

m
4(g] +  g 2)

4m™ 2 . 8 \ +  8г<п 4
° f t> o  =  y < P  +  4 4 (g , + g i l n j

(8.13)

These ground states exist only as long as g] and satisfy the conditions 

gl +  g2 >  0, g l +  g 2//t > 0 .  (8.14)

These define w hat is called the stability wedge in the coupling constant 
plane (see Fig. 8 .1). For each point within the w edge, there  is a second 
order phase transition as m 2 passes through ze ro .3

W e shall now convince ourselves tha t along the boundary  o f the 
stability w edge, and in some neighborhood thereof, fluctuations change 
the order of the transition from  second to first. For this we calculate the 
one-loop effective potential. A ccording to the rules spelled ou t in P art I, 
Section 5.3, this is given by [recall Eq. (I. 5.23)]

1 Г d ° p  , 1 
2 J  (2^ t r , ° g

( p 2 +  m 2) S,j +
d2e (8.15)

“Notice that if we were to keep g, >  0 fixed and let g2 pass through zero, the order 
parameter of the system would develop a discontinuity.
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FIG. 8.1. The stability wedge in the coupling constant plane and the phases associated 
with the different regimes at the mean-field level. The axes g2 -  0 and g, = 0 correspond to 
an O(n) symmetric and a product of n Ising models, respectively and display the corre
sponding critical behavior.

Sz = ~ng i \ diagonal order

N
stability
wedge

82= ~ g l \

axial order

Si
isotropic

order

w here Ф, is the ground state expectation of the field <p, [i.e ., Ф, =  (<pj)]. 
In order to calculate the trace o f the logarithm , all we have to do is to 
find the n eigenvalues M j  of the “ m ass” m atrix,

(8Л6)

and we can write directly

1 n Г
+ 2 2  j  ( 2 ^ f log(j>2 + m2 + M'2)- (8-17)

Explicitly, we have

Mjj =  g,  ( гФ.Ф,  +  8 ,у E  <t>lj +  3g2 5,уф,2. (8.18)
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The eigenvalues depend on the sta te  under consideration . Consider 
first the case g2 <  0  with the “ axial” ground sta te

Ф, =  Ф5,Л . (8.19)

Then

Щ  =  [g ,(2S n 5yi +  8'j) +  3g26n 5Л ]Ф 2. (8.20)

This m atrix has one eigenvalue, nam ely 3 (g i + g 2 ) ^ 2 an d n -  1 degen
erate eigenvalues £ ]Ф 2. H ence the effective po ten tia l reads

"(Ф ) =  у Ф 2 +  lo g (p 2 +  m 2 +  3 (g, +  Й )Ф 2)

+  (л -  l ) lo g (p 2 +  /?i2 +  § ,Ф 2)]. (8.21)

In the “ diagonal” state

Ф , - ^ .  (8 .2 2 )

the m atrix M l  reads

M Ф2. (8.23)

This has one longitudinal eigenvalue 3 ( g \ + g 2/n) [asociated with the 
direction (1 , 1 , . . . ,  1)], and n -  1 transverse ones +  3g 2/n [associated 
with the directions (1, - 1 ,  0, . . 0 ) ,  (1, 0, - 1 , 0 ,  . . . ,  0),  . . . ] .  T hus the 
effective potential reads

У(Ф) =  у ф 2 +  - ^ ^ Ф4 ^ ^ [ l ° g ( m 2 +  3 (g , +  § 2/л )Ф 2)

+  (« -  l) lo g (m 2 +  (g, +  Зй2/л )Ф 2)]. (8.24)

It is now easy to verify that close to the boundary o f the stability  
wedge, the fluctuations indeed change the second-order of the phase 
transition into a first-order. A long the boundaries gi +  g2 =  0 anc* 
gi +  -  0, the potentials (8.21), (8.24) reduce (up to a trivial constan t 
shift) to
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, - 4 m 2 - « - I f  d Dp  , ,  ,,1 -(ф ) =  —  ф 2 +  _ _ _  j  _ ^ l 0 g ( p 2 +  m 2 +  gi< t,2)( (g 25 )

;,(ф) =  у ф 2 + J  ( ^ ^ log( /?2 + m2 + 1 Г ф2) ' (8'26)

respectively, where in either expression g { and g2 are positive quantities. 
The m om entum  space integrals in three dim ensions were calculated 
before in Part I [Eq. (3.106)]. If A denotes the spherical cut-off in 
m om entum  space, we obtain

. . .  m 2 ,  n - 1 1
»(Ф) =  —  Ф2 +

2  2 бтг2

X  |^ A 3 logA 2 - ^ A 3 +  3A m 2̂  +  3A (ra2 +  g ^ 2 )  -  7 r ( m 2 +  gj<I>2)3/2j  *

(8.27)

with g, replaced by 2g2/n in the second case, (8.26). This shows that, 
apart from a trivial additive shift of the potential, the fluctuations change 
the mass to  the renorm alized value m 2R =  m 2[l +  (n -  l ) (g ,/67r2) 3 A] and 
produce an additional term  — ((n — l ) /2 ) ( l /6r r ) (m2 +  g ^ 2)3/2. This la tter 
term  destabilizes the potential. H ence the potential rem ains truly stable 
only inside  the stability wedge.

Consider the im m ediate neighborhood of the lower boundary and set 
8 i +  g 2 =  e. Then the potential (8.21) becomes

e я 1 
Р(Ф) = У Ф + 4 + 26ет?

Л3 log Л 2 — |  Л3 +  ЗА т2

+  ^ б Ь З Л [ ( ш 2  +  З Е ф 2 )  +  ~  1 ) ( т 2  +  ^ | ф 2 ) 1

-  ~ [ ( т 2 +  ЗеФ 2)3'2 + ( п -  1 ) ( т 2 +  £ ,Ф 2)3'2]. (8.28)
2  6 77-

In o rder to proceed it is useful to include into the potential a further 
infinite num ber of loop diagrams which are trivial to do, namely, those 
which change the value of m 2 inside the term s (m 2 +  ЗеФ2)3/2,
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(m 2 +  g ^ 2) 3/2 to the renorm alization value m R. This is achieved by 
rewriting the original field energy (8.9) as

2 11 
™ r  V  2 
---- Zj <PT

/= i
(8.29)

and considering the term  |( m 2 -  m 2R) £,-<p2 as a m ass pertu rb a tio n . Thus 
we calculate the effective potential only for the first th ree  term s and find 
the expression (8.25), but with m 2 replaced by m R. T hen  we add the 
mean field part of the mass pertu rbation  \ { m 2 — m 2R) Ф2 which removes 
the term s -  1) ( 1/б7г2)ЗЛ (ЗеФ 2 +  (n -  l ) g ^ 2). T hus, up to a trivial 
constant shift, we can write the poten tia l as

^ Ф )  =  у Ф 2 +  ^Ф 4

■ + З еф 2 )3 /2+ ( "  “ 1)(m * + 8>ф2)т ~  n m * ]- (8 3 0 ) 

W e have norm alized и(Ф) so that it vanishes at zero  field, Ф =  0.
We are now ready to see the first-order of the transition . W e set 

m 2R =  0  and observe that the potential

»(Ф)„.;=о =  | ф4  - ~ К 3 «ф 2) 1/2 +  (я -  l)(gi<»2)3/2] (8-31) 

has a minimum away from the field origin at

Фп,1п =  ^ [ ( З б ) м  +  (й - 1 ) « П - ; >  (8-32)

where v is negative:

« (Ф т ш) =  “ з« 4. (8-33)

Since the field origin is locally stable down to m \  =  0, we conclude that 
there must be some positive value of m 2R for which it is energetically

oo = £
i=i

8 1
/I 2

2 1 , 82 VI , m l -
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favorable for Ф to jum p in a first-order transition from Ф =  0 to a 
non-zero value close to (8.33).

Let us now see w hether this conclusion is really trustw orthy. For this 
we have to m ake sure that the higher loop corrections remain small 
com pared with the mean-field and one-loop term s, which are of order 
g^/e3. O therw ise they will com pletely change the result. We verify this 
assertion by observing that for finite g b the mass term s of the Ф fluc
tuations at the new minimum are very large, nam ely, of the order 
ЗеФ2 ~  g] /e  and g { Ф2 ~  g \ / e 2. This turns out to ensure the convergence of 
the loop expansion. For exam ple, a two loop diagram  like 00 is at least 
small of the o rder gj (elg3) 2 ~  £2/g?. A  similar discussion holds for the 
o ther boundary g, + g 2//f of the stability wedge.

N ote that for the argum ent to go through, it is essential to have two  
coupling constants. For a simple (e/4)<p4 theory , there is only the first 
term  in (8.32) so that Фт!п is small, of the order e l/2 and so is the only 
mass term  ЗвФ2 which is of the order e2. The latter causes the two-loop 
diagram s 0 0  to be of order e ( l /e 4) and convergence is not ensured. 

Let us now generalize this result to the case of a n • q  com ponent field 
with the energy (8 .8 ). The energy is minimal for

Ф Г = Ф  8ц 8а\  (8.34)

or

Ф “ =  ^ 5 “ ' (8.35)

and the potential reads again

„ ( ф ) , | ф . + ь ± 1 ! ф . .  „ ( Ф ) , | Ф. + Ь А ^ Ф ' .  <*;“ >

respectively, just as before [recall Eqs. (8.13)]. Owing to invariance 
under 0 (q)  rotations of the indices o r ,  any orthogonal linear com bination 
of Ф " can serve the same purpose.

T he stability wedge is again given by g,  + g 2 > 0  and g, + g 2/ « >  0, 
respectively and the different phases have the same diagram as in Fig.

8 . 1.
The mass m atrix (8.18) becomes
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(M 2) , f  =  g, [ 2ФГФР +  Г)2)  +  t o b ( S a p £  (Ф Л :— ' ' ' f V- V i --■
/, Or /  \  У

I2 + 2<t>r<t>fJ.

(8.38)

In the axial ground state (8.34), it takes the specific form

( M 2) f  =  g, (25f l 8j„ S' 3' +  б|уб а^  +  g2 S„ 6Л (5 “ 0 +  2 8 al 8p[). (8 .39 )

This has one eigenvalue 3 ^  -f g2) (associated with the eigenvector 
8/ iS a l)> q — 1 eigenvalues g t +  g 2 (associated w ith 8ц 8а2, б ^ б 03, . . . ) ,  
and ( n - l ) q  eigenvalues g, (associated with 8i28a(3, 8i38ap, . . .  for 
/ 3 = 1 ,  . . . , ( 7). H ence the effective poten tia l in the low er part of the 
stability wedge reads

A t the mean-field m inim um , the total mass term  in the second logarithm  
vanishes as a m anifestation of the N am bu-G oldstone theorem  applied to 
the 0 {q)  sym m etry.

In the upper part o f the  stability wedge the mass m atrix reads

This has a longitudinal eigenvalue 3 ( g i + g 2/n)  [associated w ith the 
eigenvector ( 1 , 1 , 1 , . . . ) S al ], л - l  eigenvalues gj +  3g 2/n [associated 
with ( 1 , - 1 , 0 , 0 , . .  . ) 8a\  ( 1 , 0 , - 1 , 0 , . .  . ) 8a l , . . . ]  and n { q  -  1) 
eigenvaluesg j +  g 2ln [associated with 8̂ 8°^, S,ySa3, . . .  f o r ;  =  1 , . . . ,  n].

A t the m ean field m inim um , the total mass term s of the  last m odes 
vanish. The first-order transitions near the boundaries of the stability 
wedge follow in the sam e way as before.

It is possible to show, via renorm alization group argum ents in 4 -  e 
dim ensions, that in fact a first-order transition takes place for the  en tire  
section g2 <  0, gi >  0 and g { <  0, g2 >  0. For details we refer the  read er 
to  the works quoted  in the N otes and R eferences.

ф4 +  и  ( f ^ [ lo8 ( / ?2 +  " l2 +  3 t e i + s 2>ф2)

+ (q — 1) log (p2 +  m 2 +  (g, +  £ 2)Ф 2) 

+  ( n -  1)<? lo g (p 2 +  m 2 +  g, Ф2)]. (8.40)
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W hat does the above result imply about the forces betw een dislocation 
lines? Rew riting the interaction energy in (8.7) in the form

we separate the self-energies of the lines from interaction energies 
betw een lines of different Burgers vectors. H ence the result implies that, 
for a small but positive self-energy and arbitrary  positive interaction 
energy, the transition is of first order. This is in contrast with the disorder 
field theory of vortex lines in 4He w here positive self-energies always 
imply a continuous phase transition.

The o ther first-order transition occurs for negative g (, i .e ., at a slightly 
attractive interaction energy and a positive self-energy, gi +  g2 in which
g2 is close to - n g u such that g } +  g 2 ----- (n -  l)g i >  0. In the first case,
only dislocation lines of one sort condense, owing to the fact that the 
ground state expectation has the form Ф, =  Ф8ц 8а1. In the second case, 
there is an equal density of all dislocation lines / = 1 , since
ф ,« = ( ф / V n ) 8al for all i.

If we want to in terprete the phase transition of the above disorder field 
theory as a melting process, we have to assume the second situation to 
hold. D islocation lines are the defects of translational o rder. The conden
sation of the lines <p{, destroys the lattice periodicity along the direction b. 
In a liquid, there is no translational o rder. H ence all (рь fields have to 
condense.

In some crystals there exists an even m ore drastic difference betw een 
the d isorder field theories of dislocation lines and those of vortex lines. 
T ake for exam ple, a hexagonal crystal. The basis vectors are

(8.42)

so that there are four fundam ental Burgers vectors

(8.44)
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The first three are of equal length and add up to  zero . Since their energies 
are equal, each of them  may be described by its own d iso rder field <pb . In 
this case, the invariance (8 .6 ) perm its a cubic in teraction  o f the form

y O Pb^ b2<Pb, +  c .c .). (8.45)

This interaction will always  cause a first-order transition  in which the 
th ree types of dislocation lines all condense at the sam e tim e. H ow ever, 
in most atom ic lattices, which are of the b .c.c. o r f.c .c . types, this 
mechanism is absent and the disorder theory is o f the type (8.4) with the 
leading interactions being quartic  in the fields.

A part from these special features, the field energy of dislocation lines is 
structurally similar to that of vortex lines. In particu lar, the disordered 
phase of the field theory contains long-range N am bu-G oldstone m odes 
associated with the fluctuations of the phase angles y {h) =  b ( of the 
disorder field y>h. The gradients of the angles y (/>)(x) are p roportional to 
the current densities of the three fundam ental dislocation lines. If we 
rewrite the d isorder fields in polar coordinates, i.e .,

<p/> (x) =  p (b) (x) e iy'*{x\  (8.46)

these currents are

jb( (*) =  J jVhd,  (рл(х) =  p w (x)29, y w (x).  (8.47)

The incorporation of the second piece of the core energy ecr -  e j ,  which 
we had om itted for a m om ent, represents no m ajor difficulty. It m erely 
requires a few m ore steps. First we observe that the coupling of the 
Burgers vector in (8.2) to the integral over the orbit J dx (h) is of the sam e 
form as that for the magnetic potential in (2 .6), Part I. H ence the e'c term  
in (8 .2 ) is equivalent to the minimal replacem ent

> d( -  j;e'cb( (8.48)

in the gradient term  of the disorder field theory. This leads to two 
additional term s in the exponent of (8.4)
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-  S  J r f3JC <pi3e<P„Be + ^ 2  W 2j  . (8.49)

The second term  represents an additional contribution to the mass of the 
<pb field which is changed to

.'2 л

m'2 = ( ¥ + f S - ,og 2 D ) ^ -  <8 -50>

In the mean-field approxim ation, this disorder field theory has a second 
order phase transition at

rr=S ( \ / i+ f o iog2D-1) • (8 -5 i)

A t this tem perature, dislocation lines proliferate. The therm odynam ic 
functions - ( i f  (free energy), и (internal energy), and s  (entropy) have the 
same tem perature dependence as that calculated for vortex lines.

While the resulting disorder theory of dislocation lines has many of the 
pleasant properties which are necessary to describe the melting process, 
the first-order transition discussed above cannot yet be identified with this 
process. First of all, in b.c.c. and f.c.c. lattices, when there is no cubic 
term  (8.45), the existence and strength of the first-order transition would 
depend on a special com bination of the coupling constants g lt g 2. It 
would then be difficult to understand why all m aterials melt with similar 
transition entropies, lying betw een 1.5 and 2.5 k B per atom  (see Table 
7.1).

A further problem  is the following: Dislocations are defect lines only of 
the discrete translational symmetry of the crystal. W hen they condense, 
only this sym m etry can be destroyed. We are faced with the problem  of 
explaining how the ground state characterized by \<pb\ Ф 0  should also 
have lost the directional m em ory of the crystal. This second observation 
is crucial and provides the key for a proper treatm ent of the melting 
transition to be developed later. For the m om ent, however, let us ignore 
all these problem s and proceed in com plete analogy with the develop
m ent in Part II for the superfluid, nam ely, with introducing the long- 
range elastic stress forces between dislocation lines into the disorder field 
theory. A lthough the resulting field theory will not yet be the correct one, 
it will provide some interesting insights into the physical properties of the
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m elting transition. In particular we shall run  into several discrepancies 
betw een theory and experim ent which can be resolved only by the final 
correct theory (see C hapters 18, 19).

8.3. IN C LU SIO N  O F STRESS A N D  T H E  M E IS S N E R  E F F E C T

The inclusion of stress forces is quite  stra igh tforw ard  know ing the gauge- 
field representation (4.7) of B lin’s law,

e -(i/DEB.i„ =  f @ A €j(x) 8(d j A q  -  д€А»)Ф[А<Л £  e ’ WT){EtX + iZi^ Lii)̂ l)Au\
J {Q

(8.52)

w here the contour integrals run over all dislocation lines L (,). For an 
ensem ble of lines with Burgers vector b, the elastic energy  is obtained  by 
replacing the derivatives of the  associated d iso rder fields <pW by the 
covariant derivative

d m ( x ) - +  D t (ph(x)  =  ( de -  - j : b j A (j ) <pb (x).  (8.53)

In a simple cubic lattice, the fundam ental B urgers vectors coincide 
with the unit vectors ( 1 , 0 , 0 ), (0 , 1 , 0 ), (0 , 0 , 1), ap art from  the scale 
factor a , and the covariant derivatives read

D c<pi(x) =  w  (no sum  over / ) ,  (8.54)

where i =  1 , 2 , 3 labels the th ree spatial directions.
Let us turn our attention  upon this case, for simplicity. W e arrive at the 

following partition function for fluctuating dislocation lines under stress,

X j S)<pt 3><f) ♦ V * /fM )W VI:). (8.55)
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As in the case of the vortex lines with superflow, the gauge field extends 
the global invariance (8 .6 ), which guarantees the conservation of Burgers 
“charges,” to local gauge invariance, i.e .,

< P j ( x )  -> (x), Ac,(x)  -> A c/(x) +  3 ,Л ; (х). (8.56)

Extrem izing the energy with respect to variations 5<p,(x) on <p,- we obtain 
the field equations for the dislocation fields,

- I d , -  i ^ A (/)  + m 2 + E  gi f  Ы 2 ц ( х )  =  0. (8.57)

The derivation of the field equation for the gauge field is a little more 
subtle due to the constraints 8( d j A Cj -  dcAjj).  If we ignore these and vary 
the exponent formally we find

Г 2 * Д £Cmnd”' £,,pqdpA<ij i  _|_ v £jk(dk£mpqdpAqmJ — а^Дх), (8.58)

where

(8.59)

is the dislocation current density. Equations (8.57) -  (8.59) are a direct 
analogues o f Eqs. (3.27), (3.28), (3.29) in Part II. D ue to our neglect of 
the constrain t, how ever, Eq. (8.58) is not true since in the derivation we 
are allowed to vary only the physical com ponents of A £j. This implies that 
only those parts of the dislocation current appear on the right-hand side 
which contain the helicity com ponents (2 , 2 ), (2- 2 ), ( 1 , 0 ) [recall 
(4.124)]. Notice that this situation is different from what happens to the 
equation of m otion if the constraint is merely a gauge-fixing condition. In 
that case one obtains the same result as one would if there were no gauge 
fixing due to the fact that the current satisfies the conservation law

d€a Cj (x )  =  0 . (8.60)

This ensures that the three gauge-like com ponents ( l /V 2 )(a (2-l) +  a (L,)) 
( 1/V 2 ) ( a (2_,) +  a (l_1)), ( l /V 3 )(V 2 a (2’0) +  a (00)) are absent [recall
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(4.117)]. The sam e is true on the left-hand side of (8.58) which vanishes 
trivially when contracting with d( . This is why neglecting the gauge-fixing 
factor Ф[Л<7] in doing the field variations does no harm . For the con
straint 8(djA(j  — d( A j j ) y how ever, the situation  is en tirely  different, due 
to the absence of an analogous property  in the dislocation density a tj(x) 
[recall our rem arks regarding (4.123)]. T here fo re , the  right-hand side of
(8.58) has to be replaced by the pro jection

a „ ( x )  -  (P<~ - 2> +  F " - t r  » < r  (*).

which was calculated in (4.128) to be

“ c> (* )=  -  - ф - j  “ </ (x) _  \  (bci  ~  (8 6 1 )

The projected  a (J- satisfy the constraints

d j a (j (x )  =  д ( а /ш(х), (8.62)

which m ake it consistent with the left hand-side of E q. (8.58). In fact, 
both sides of Eq. (8.62) vanish by them selves as a consequence of the 
sim ultaneous validity of the conservation law d( a {j =  0 [recall Eq. 
(4.122)].

In o rder to extract some physical consequences from  Eqs. (8.57) and
(8.58), we now recall that the analogous equations [(3.27). (3.28) of Part 
II] w ere solved most conveniently by writing the fields <p(x) in the polar 
form ,

<p(x) =  p ( x ) e ' y[x\  (8.63)

with y(x) =  gA (x), and observing that the phase could be rem oved by a 
gauge transform ation:

A ( (x) —> Л < (x) +  A (x). (8.64)

W e can do the same thing here by writing

<p,(x) = р(Л(х)е,(я/Г)л'<*\ (8.65)
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while changing the field A Cj to A ej +  deAj .  This then results in the 
equations

Are these equations in accordance with physical observations? In the 
disordered state where all р^^ =  р ф  0, the current 5,y(x), in m om entum  
space, is given by

The left-hand side of (8.67), on the o ther hand, has the m om entum -space 
helicity form [recall (4.113)]

This shows that there exists a dislocation version of the M eissner effect. 
In the phase transition to the disordered state, the gauge field of stress 
acquires a finite penetration depth. Thus stress cannot invade into a state 
filled with dislocations. If the disordered state is in terpreta ted  as a molten 
crystal, this result is only partially consistent with experim ent. It is true, 
and well-known, that the molten state cannot support any shear  stress.

( +  ^ 2  Ti M j  +  rn2 +  Yi gjj'PU )2) P(y)(x) =  0 (no sum in /) ,  (8 .66 )
e r

T  2 f x \  Cmnd,n £,,pqdp A qi i +  у ^  ^П1р я ^ ят I — (8.67)(
with

O '- (8 .6 8 )

Thus we find the free field equations

(8.70)
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T he com pressional sound waves, how ever, do survive the m elting process 
and can traverse a boundary betw een the crystalline and the molten 
phase.

A t first sight it appears as though one could rem edy the disagreem ent 
by a slight modification of the theory. For this we note tha t before 
introducing the stress gauge field, the system had three long-range 
N am bu-G oldstone bosons associated with the flow of dislocation lines. 
A fter the minimal coupling, d( ->  D ( =  dc — i ( \ ! T ) b j A q % these were 
turned into pure gauge degrees of freedom  and could be absorbed  into a 
redefinition of the A t j . This suggests a simple way of retain ing a long- 
range mode associated with sound waves: We rem ove the trace of the 
field from the outset and postulate that the gauge field satisfies the 
constraint

A u  (x) =  0. (8.71)

Then the theory is no longer invariant under local gauge changes of all 
three phases of the dislocation fields

A C/ ( x ) - *  A {j (x) +  д еЛДх); (8.72)

the ЛДх) have to satisfy the transversality condition

d,-ЛДх) =  0. (8.73)

W ith these ЛДх), the longitudinal com bination of the phase fluctuations 
can no longer be rem oved from  the field equation  (8.57) and it survives as 
a long-range m ode. This could, in principle, be associated with sound 
waves.

A ctually, this procedure is less ad hoc than it m ight, at first, seem . W e 
should rem em ber that A (Д х) is not really the fundamenta l  gauge field of 
stress. It is merely a convenient  gauge field when restricting a tten tio n  to 
dislocation lines only. A  crystal can also have disclination lines and these 
cannot be coupled locally using the A (J( \ ) .  For a unified stress gauge 
theory  of both types of defects it is therefore necessary to in troduce the 
gauge field Xf„(x) defined by [recall (5.1)]

O’ijix') £ik(' &jinn d/nXtn  (X) • (8 -7 4 )

Hence the /4<Дх) is really only an abbreviation for the object
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^  £jmn dmXcn . (8.75) 

The proper gauge invariance of the stress coupled to all defects is

* ,„ (* )->  *o ,(x) +  dc U x )  +  d„(< (x). (8.76) 

U nder this transform ation, the field A y ( x )  transform s as

A tJ( x ) - > A 0-(x) +  Э( ЛДх), (8.77)

where

A/(x) =  ер„„дт£„(х).  (8.78)

This change is indeed purely transverse and A (j(x) =  ejm„dmX(n{x) is 
capable of absorbing only the transverse part of the N am bu-G oldstone 
modes of the three dislocation fields. Thus the longitudinal com bination 
of the phases of the disorder field dyA; does retain its long-range disorder 
and we may be led to conclude that A Cj could describe, in principle, the 
sound waves in the molten phase.

We shall see later that this m athem atical possibility does not corre
spond to physical reality. In fact, the phenom enological description of 
dislocation lines given in this section is quite unsatisfactory. It is unplea
sant to be faced with a missing constraint dya (/(x) =  a f a /7 (x) in the dis
location current to balance Eq. (8.58). A proper gauge theory of d isorder 
should not contain any com ponents of а<Дх) which are not coupled 
elastically. The proper fundam ental source of the gauge field A>„(x) is 
really the total defect tensor tjc„ ( x ) .  It is a symmetric conserved matrix 
field which carries only three independent com ponents rather than the six 
in a<y(x). It will be necessary to develop a disorder field theory for the 
statistical ensem ble of precisely all independent configurations of the 
defect tensors. This will be done later after we have deepended our 
understanding of the problem  via certain model studies.

W hat we shall find is that within a t ime independent  theory of defects, 
all three physical com ponents of the stress-gauge field XCn(x) are indeed 
M eissner screened so that, at the equilibrium  level, the disordered phase 
of a defect system will not be capable of transm itting sound waves. In 
fact, this phase will not be a liquid but ra ther an ideal gas. Only if 
dynamical effects, i.e ., those of defect mot io n , are included can this 
aspect of the melting transition be properly described. Among the
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dynamical effects there is one which is o f special physical importance, 
nam ely, that a defect line, on a short tim e scale of sound vibrations, can 
never climb but only glide. It is this p roperty  which ultim ately  leads to the 
survival of the longitudinal sound wave in the  liquid state.

It turns out that there  is a very simple counting argum ent which shows 
that at the level of classical equilibrum  statistical m echanics of stresses 
and defects it is impossible to account for the d ifferent behaviours of the 
longitudinal and transverse sound waves during the m elting transition: As 
we shall see in detail later, in two dim ensions the gauge field of stress has 
only a single com ponent [corresponding to * 33(x)]. This is obviously 
incapable of distinguishing the two polarizations o f sound waves. C on
sequently, it cannot describe at the sam e tim e the M eissner screening of 
the transverse wave and the survival of the longitudinal wave when 
entering the liquid phase. The gauge description of tim e dependent 
stresses, on the o ther hand, does contain an ex tra  vector field and the 
above difficulty is circum vented.

8.4. O T H E R  PO SSIBLE M EC H A N ISM S TO  M A K E  A 
T R A N SITIO N  FIR ST O R D E R

The subtleties discussed above in obtaining a first-order phase transition 
in the theory suggest the search for m ore effective m echanism s for the 
entropy jum ps observed in the melting process. Some insight com es from 
stress fluctuations via the C olem an-W einberg m echanism . W e had seen in 
Section 3.4, Part II, in the discussion on the ordinary  G inzburg-L andau 
theory , that gauge fluctuations can raise the tricritical point of an ordinary  
g\ijj\A theory from g =  0 to a g  of the o rder of e2, w here e is the charge 
coupling of the gauge field. The condition g  ^  e1 m eans that the 
G inzburg-Landau theory corresponds roughly to a type-I superconductor. 
By analogy, we can expect the stress-gauge field to extend the first-order 
regime in the stability wedge of the dislocation field theory  to larger 
couplings. It is therefore useful to introduce the concept of type-I and 
type-II dislocation theories depending on the ratio  betw een the p en e
tration depth Л of the stress field into the disordered state and the range 
of the size fluctuations £sizc of the disorder field.

Thus we introduce a param eter к.

1 Л
"^2 £sizc

(8.79)
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Let us estim ate its size in term s of the coupling constants. From  (8.70) we 
read off the length scales of stress in the disordered sta te ,

^ 5 = i i ( i 2p 2I T . (8.80)

According to (8.42), (8.11), (8.12), the size of the d isorder param eter is

p2 =  - m ^  =  — p < p r t  (8.81)

w here g is equal to g { +  g 2 or n g } +  g2, depending on the phase of the 
system. H enceb

Р - Т У  ( £ - 4 -  < W >

The size fluctuations of the disorder field, on the o ther hand, have the 
following two length scales.

(i) In the phase for which g2 >  0, 8 \ >  ~ 8^ n  ̂ the ground state 
Ф,в =  (Ф Л /л)(1 , 1, . . . ) 8al has

I _ _ 2  , J .  , 82p  =  m 2 +  ]Ф 2 (one m ode),

=  - 2 m2,

Д? =  m 2 +  ^gi +  Ф2 (« — 1 modes)

=  - 2 т 2 К т Ы '  (8 8 3 )

(ii) In the phase for which g 2 <  0, gi >  - g 2, the ground state Ф " =  
Ф (1 , 0, 0, . . . ) 8ttl has

bThis has the proper dimension since ца*/Т is dimensionless [see (10.4)] and mo, g have 
dimensions 1 /С2% 1 It. respectively ((  = length).
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m 2 +  g \ Ф2 =  — —— w 2 [(n — 1) q  m odes]. (8.84)
&  8 i +  82

Hence we can introduce t wo к param eters, each of them  having the form

gi  2 being appropriate com binations of the coupling constants. W hat do 
we know about the size of these param eters?  T he couplings g  p a ra 
m etrize the self-energy and the short range steric repulsion betw een 
the dislocation lines; ga  is a dim ensionless constan t. T he dim ensionless 
expression in the denom inator, цагЧТ, com pares the elastic energy per 
unit cell with the therm al energy. Its size is roughly know n since the 
Lindem ann num ber L  ~  22.8 V pta3/ T  [recall Eq. (7.41)] is a num ber 
betw een 100 and 200 at the m elting tem pera tu re  of m ost m aterials. M uch 
less is known about the steric interaction betw een the lines which is hard  
to  m easure precisely. A deep type-I dislocation field theory  with th e  
ground state Ф " =  (Ф Л /я )(1 , 1 , 1 , . . . ) S al w ould imply an extrem ely  
weak self-energy com pared with the elastic energy ца^/Т.  It is not easy to  
see how this can come about. The steric repulsion is caused by non linear 
parts of the reduced elastic energy /lu?3/ 7 \  Its o rd er of m agnitude seem s 
to be tied to the elastic constant /л as well. Thus we expect к to  be ra th e r  
of the o rder of unity and the C olem an-W einberg m echanism  seem s to  
becom e a delicate quantitative m atter. If this m echanism  w ere really 
im portant in crystal m elting, the question would now arise why it was no t 
active before in the disorder theory of the superfluid phase transition . 
Both disorder theories look very sim ilar, apart from  the fact that th e re  
are three times as many dislocation lines as vortex lines. As in the case o f  
crystals, the steric repulsion of vortex lines in superfluid 4H e is g enera ted  
by the nonlinear parts of superflow and there we do know that it is strong  
enough to m aintain the phase transition at second o rder. It is hard  to  
believe that the rather universal entropy jum ps observed in a process such 
as crystal melting should be the result of som e special choices of th e  
coupling constants. We are therefore led to conclude that the dislocation 
field theory constructed up to now misses out on a m ore essential aspect

(8.85)
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of the melting transition which m akes it com pletely different from the 
superfluid transition.

Indeed, let us rem em ber that a little earlier, in Section 8.1, we 
obtained a first indication in this direction. T here we observed that 
dislocation lines are merely the defects of translational crystal symmetry 
so that the phase transition discussed so far can only lead to a state in 
which this symmetry is violated. A tom s can move freely along the three 
crystal directions x, у and z but this does not imply that they can also 
move through space isotropically, as they do in a p roper liquid. For this, 
also the o ther symmetry group of crystals, nam ely, that of discrete 
rotations, has to be destroyed. Now we do know that the crystal 
possesses a natural set of defects which are capable of destroying this 
symmetry: the disclination lines. A superfluid has no such second set of 
defect lines. This must then be the crucial difference betw een the two 
systems. At this point we are sure that a proper understanding of the 
melting transition must acount for the possibility of form ing disclination 
lines.

8.5. D IS O R D E R  FIELD S FO R  D ISC LIN A TIO N  LINES

It is instructive to see qualitatively that the possibility of forming dis
clination lines can, in principle, drive the transition to first-order via an 
avalanche m echanism triggered by the M eissner effect. The forces 
betw een arbitrary defects were derived in C hapter 5. The defect tensor 
щ ( \ )  can be decom posed into disclination and dislocation parts 0 ,y(x) 
and a</(x) [see (2.60), (2.61)]:

щ ( х )  =  0 ,y(x) +  \ e im„d„,(otin(x) -  \ 8jna (C(x))

=  ©,y(x) -  \d „ ,( e tn i(a J(: ( x )  +  ( / / )  -  eij€a mC(x ) ) . (8 .8 6 )

A disclination line along L  may be introduced via a 5-function distri
bution [recall (2.44)],

0 fy(x) = 51(L)n>, (8.87)

where П, is the Frank vector of the line. The gauge tensor Л^„(х) field 
couples locally to щ ( х )  [see (5.6)] and thus to 0,y(x). For the disclination 
line (8.87) this gives an interaction energy
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£im =  dxtXv (x).  (8 .88)

This coupling is com pletely analogous to  tha t for dislocation lines [see
(8.52)]. It is therefore straightforw ard to set up a d iso rder field theory for 
a grand canonical ensem ble of disclination lines. This has the same 
structure as that for dislocation lines.

Let Д,- be the com plex disorder fields associated with the fundam ental 
disclinations whose Frank vector П, is equal to H e, w here e, are  the basis 
vectors in space. Then in analogy with (8.54), the covarian t derivative is

D $ b i ( x ) = ( d l - i j ; X t j ) b j ( x )  ( n o s u m o v e r y ) ,  (8.89)

and the partition function of disclinations has the form

Z  =  j  0  Дj е - № Ш '2№ Щ3 + (»г/2)л|д,|- + (i/4)WN'|A/'|-\ (8.90)

Just as in the case of dislocations, gfj- param etrizes the steric repulsion 
betw een disclination lines and the mass param eter is

m l = ( ^ f  + l ^ D - ]0g2D) v '  (891)

w here ед , are the two core energies per unit length. T he to ta l partition  
function of dislocation and disclination lines is [recall (5.25)]

Z = j3)<pj@<p} ®ДI ® д; S>X„,S(д ( Х1п) е - вп  (8.92)

with an energy

E =  ^ - [ d 3x X en( * ) ( P {1- 2> +  - 2> +  р Л  V % . „ . (x)
\  1  +  V /C n .C n'

+  r f  + S f k l 2 W 2

+  г [ а { е  ( ^ | d ? M 2 +  y l M 2)  +  S f  |Д ,|2 |Д/12 +  Ein<W n M -

(8.93)
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w here ^int collects the short-range steric interactions betw een the two 
types of lines. Notice that in term s of the field * f„(x ), the covariant 
derivative of the dislocation field <p; (x) takes the form

W ithin the present form ulation, the size of the core energy of disclination 
lines as well as the interaction E int[<pjy Ay] are hard to assess. In com 
parison with dislocation lines, however, one thing is quite clear: Dis
clinations cause a long-range distortion of the crystalline o rder. T here
fore, an individual line carries an enormous  am ount of elastic energy. 
This m akes them impossible to be created therm ally and m \  is very large 
com pared to m 2 of the dislocation lines.

A t first sight, this property seems to preclude disclinations from playing 
any role in the therm odynam ics of crystals and hence in the melting 
transition so that it appears as though disclinations cannot resolve the 
puzzle of the order of the melting transition. This conclusion w ould, 
however, be too hasty since it neglects the M eissner effect in the d isorder 
fields. Let us see what this implies for the partition function (8.93). A t 
low tem peratures, both types of defects are certainly very rare so that 
both field expectations (<py) and (Ay) vanish. The correlation function of 
the stress gauge field behaves, in m om entum  space, like

In real space, this corresponds to a linear behaviour in R . Since dis
clinations couple locally to ^ „ ( x ) ,  this is directly the R  behavior of the 
elastic interaction energy between disclinations. The coupling to dis
locations on the o ther hand, involves the derivatives ejmndmX€„(x)  and 
the elastic interaction energy of dislocations is governed by

resulting in the B iot-Savart like expression of Blin’s law (3.42).
Consider now the case m 2 <  0: the dislocation lines are infinitely long, 

and the fields <py- have finite expectation (p. Then the stress-gauge field 
possess an additional energy term  in the energy (8.93):

(no sum in j ) .  (8.94)

<*<„(p)*c,.'(p)> « A - (8.95)



9 6 4 III. GAUGE FIELDS IN SOLIDS

~ § fi\< p \2j £  (eimndmx cn)2 

=  ~^f2 \<P?j d3x £  (Э,„*«„)2 (8.97)

This contains two derivatives leading to a m om entum  space propagation 
of the type

JL_

P- +  ' - T 2 ’ -P '
(* ( ,,(p )* < v (p ))  a ----------- 21 12----- (8 98)

4 . №  M  - 2

The long-distance part of the forces betw een defects is given by the 
small-momentum part of the correlation function. This, in tu rn , is 
governed entirely by the new term  (8.97), i.e .,

<*C„(p)AW(P)> « J y p  p2 -  ^ 2 М 2 R  ' (8'99)

H ence, as a consequence of the M eissner effect, the correlation function 
changes from a linear dependence on distance to a Coulom b-like be
haviour. In other words, in the presence of a “ condensate” of dis
locations, disclinations behave in the sam e way as dislocations previously 
did in an ideal crystal. They acquire a Blin or B iot-Savart like interaction 
energy,

<fi dx' d x " ^  (8 . 100) 
№  \<p\ J u J l » r

and the ensem ble of disclination lines has an effective partition  function 
of the form

2d«sci. _  £  e - ( c j n 4 > \ 2) i i < j h ^ h ( n d x ^ d x ^ i i R  ( 8 . 1 0 1 )

with с =  T 2/fjui2.
The crucial observation which leads to the possibility o f a first-order 

transition in the melting process comes from  the observation that the 
tem perature in the Boltzm ann factor of this expression is accom panied by 
the density of dislocation lines «  |<p|2. W e know from the study o f dis
locations (or of vortex lines in superfluid 4H e) that a partition  function o f
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FIG. 8.2. The mean-field free energy of the subsystem of disclination lines as a function of 
the disorder field of dislocation lines. Due to Meissner screening, increasing |<p| has the 
same effect as raising the temperature, causing a second order transition within the 
subsystem.

i L - ( i f  of disclinations

the type (8 . 101) has a second order transition where the lines {L} con
dense. In Z dlscL, these are the disclination lines. Thus the free energy 
behaves just as in Eq. (3.127), Part II, i.e .,

- f iTltaL- - A / o ( ^ - 1)  • (8102)

Since the tem perature is always accom panied by |<p|2, the critical value of 
p c ~  1 !TC must be explicitly proportional to |^ |2, i.e .,

This shows that at a f ixed  tem perature Г, an increase in the density of 
dislocations |<p|2 in the condensate has the same effect upon disclinations 
as heating. We can therefore identify a critical value |<pr |2 of \<p\2 above 
which disclination lines would condense at a f ixed  tem perature T. Thus, 
when viewed as a function of \(p\2, the disclination lines undergo a second 
o rder phase transition. The behavior of the free energy as a function of 
|<p|2 is shown in Fig. 8.2. [This follows directly from Eqs. (3.127) of Part
II and (8.103)].
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FIG. 8.3. The mean field behaviour of the disorder free energy of the dislocation lines 
alone as a function of the disorder field strength |<p| above and below the transition. The 
transition is of second order.

This behavior could indeed be the origin of the first o rd e r na tu re  of the 
m elting transition. Consider the effective poten tia l o f the dislocations 
alone. As a function of the com m on field expectation , it has the standard 
Landau shape shown in Fig. 8 .3 , with a second o rd e r transition  o f pro
liferations at some tem perature Tc. Let us now add the free energy of 
disclinations of Fig. 8.2, also considered as a function of the dislocation 
density \cp\2. This will cause a protrusion of the po ten tia l in Fig. 8.3 as 
indicated in Fig. 8.4. As the tem pera tu re  is raised, the dislocation 
potential becom es flatter. A t a tem peratu re  Tni <  Tc, the com bined curve 
touches the |<p| axis at a point |<pw| Ф 0 (see Fig. 8.4). A t this tem p era tu re , 
the d isorder param eter jum ps from zero to |<pm|. This im plies a first o rder 
phase transition. Notice that this happens before  ( i.e ., at l ower  tem p era
ture) the second-order condensation of dislocations w ould have taken 
place in the absence of disclinations.

In simple physical term s, the effect of disclinations can be described as 
follows: They represent a reservoir of en tropy  which in a crystal is 
unaccessible to  therm al fluctuations, due to  the high elastic energy. A 
virtual increase in dislocation density, how ever, can open up this 
reservoir. A t a certain  critical density the screening of the elastic forces is 
so strong that the elastic energy is weak enough to be outw eighed by the 
entropy. This leads to the condensation of disclination lines. For a crystal 
whose tem peratu re  is sufficiently high, i .e ., close to the tem pera tu re  at 
which the dislocations them selves would pro liferate , fluctuations can
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FIG. 8.4. The combination of the two curves of Figs. 8.1. and 8.2. giving the effective 
potential of dislocations plus disclinations as a function of the dislocation density. The 
formation of a condensate of disclinations can cause a first order phase transition.

carry the dislocation field to such a critical density so that the conden
sation of disclinations takes place spontaneously. Then both types of 
defect lines condense jointly and can give rise to the first-order of the 
phase transition. Similar mechanisms have been observed in o ther 
physical systems in which the transition is governed by two types of 
coupled line ensem bles (see Janke and K leinert (1986), cited in the 
N otes and R eferences). We therefore see that the condensation process 
involves defect lines related to both types of crystal symmetry. From  this 
we may conclude that, in the disordered state, not only the translational 
o rder but also the rotational o rder are distroyed. Thus the disordered 
state has the chance of being a proper liquid and the transition can be 
identified with the melting process.

T here are two objections to this description of the melting transition. 
F irst, the discussion is too qualitative. We have neither specified the sizes 
of the steric repulsions nor the core energies of the disclination lines. The 
equations had a mean-field character and fluctuations could, in principle, 
cause drastic changes in the conclusions. The second objection is of a 
m ore fundam ental nature: The partition function (8.92) pretends that 
dislocations and disclinations are com pletely independent line-like 
defects. This is certainly not true as was discussed and illustrated in 
Section 2.4. A n infinite num ber of dislocation lines with equal spacing



9 6 8 III. GAUGE FIELDS IN SOLIDS

and equal Burgers vector can be piled up on top of the дг-axis (say). If the 
spacing is equal to the lattice spacing, the result is a single disclination 
line along the дг-axis. Thus in a consistent d isorder field theory  we should 
really use only one  type of fundam ental defect lines, for exam ple, dis
locations, and obtain the disclinations from  superpositions of infinitely 
m any dislocation fields. Such a description would not be unique since, 
conversely, dislocation lines can be viewed as bound states of neigh
bouring pairs of disclination and anti-disclination lines. H ence we could 
alternatively introduce fundam ental disclination fields and generate dis
location fields from pairs of these. Technically, the la tte r approach would 
be easier to handle than the first since bound states o f pairs are m ore 
tractable than infinite superpositions. O ne could proceed in analogy with 
the trea tm en t of C ooper pairs of electrons in a superconductor.

C ertainly, the interdependence betw een the two types of line-like 
defects does not com pletely invalidate the use of the partition  function 
(8.92). Even if one of the fields is a bound state of the o th e r it is often 
possible to introduce it explicitly in a phenom enological description. 
A fter all, the entire low energy treatm ent of nuclear physics is based on 
the concept of nucleon and m eson fields even though these are really 
bound states of quarks and antiquarks. So, although the partition  
function (8.92) is fundam entally incorrect, this does not p revent it from  
having a certain phenom enological relevance. Still, the situation  is far 
from being satisfactory and a m ore specific approach  is desirable. Such a 
specific approach will be presented in the following chapters. W e shall 
construct a lattice model of an ensem ble of fundam ental defects in which 
both dislocations as well as disclinations can appear on the sam e basis, 
generated  by one  type of fundam ental defect variables. W hat we shall 
find is that the discussion just presented  is much too sim ple-m inded. It is 
true that the possibil i ty  of forming disclination lines is a crucial p roperty  
of crystals which distinguishes their disorder theory  from  tha t of super- 
fluids. H ow ever, this possibility does not have to be realized to its full 
extent. Instead of stacking up dislocations side by side, they m ay be 
spaced two lattice units apart thus form ing only a partial disclination. T h e  
fact that the nearest neighbour stack has locally no  energy concen tra ted  
on the V olterra sheet implies that the doubly spaced stack still has a 
ra ther m oderate energy per unit area. E xperim entally , such incom pletely 
m atched quasi V olterra surfaces are observable as a grain boundary  
(see Fig. 2.6). G rain boundaries com bine a m oderate  energy w ith a 
trem endous entropy of random  surfaces. This m ore subtle collective 
phenom enon is the proper basis of the first o rder na tu re  o f the m elting
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process. The crystal does not  need to go all the way and form a conden
sate of independent disclination lines. The proliferation of “ incom plete 
disclinations” , i.e. of spaced stacks of dislocation lines which are grain 
boundaries, is sufficient to drive the transition to first-order and to 
destroy both  the translational and the rotational sym m etry.

W ithin the above form ulated (not quite correct) pure dislocation 
description of the melting process, the possibility of form ing disclination 
lines or grain boundaries may be viewed as the fundam ental reason for a 
particularly weak steric repulsion betw een dislocation lines, which helps 
to drive the transition to first order. This is in contrast with the strong 
steric repulsion between vortex lines in superfluid 4H e. In both systems 
the short distance forces have their origin in the nonlinear regions of the 
elastic forces. But only in a crystal do these forces satisfy the extra 
constraint of allowing for a nearest neighbor stack up of dislocation lines 
w ithout a build-up of stress across the V olterra sheet. This is w hat brings 
the steric repulsion down to such low values that the G inzburg-Landau 
disorder theory lies deep within the type-I regim e, where the Colem an- 
W einberg or Halperin-Lubensky-M a mechanisms can becom e active. The 
situation, however, is hard to form ulate quantitatively. This is why we 
shall, from now on, have recourse to specific lattice models of defect 
m elting, which are of the same simplicity as the X Y  model of super
fluidity. Starting from such models if will be possible to find a field 
theory, in which all stack-up properties of defects are properly respected.

N O TES A N D  R E FE R E N C E S

The ideas that dislocations may drive the melting transition appeared in 1952 in a paper by
C. Mott, Proc. Roy. Soc. A215 (1952) 1, 
and in a lecture by
W. Shockley, in L'Etat Solide (Institut International de Physique Solvay, Brussels, 1952), 
p. 431.
Since then, many people have tried to formulate this idea quantitatively, notably 
S. Mizushima, J. Phys. Soc. (Japan) 15 (1960) 70,
A. Ookawa, J. Phys. Soc. (Japan) 15 (1960) 2191,
M. Siol, Z. Phys. 164 (1961) 93,
D. Kuhlmann-Wilsdorf, Phys. Rev. 140A (1965) 1595.

Dislocations have been observed in computer simulations of the 3-D melting transition via 
molecular dynamics by
R.M.J. Cotterill, Phys. Rev. Leu 42 (1979) 1541.
In two dimensions, progress in dislocation mediated melting was made (following the ideas 
of Kosterlitz and Thouless. who had given a successful description of a vortex mediated 
superfluid-normal transition in 4He films) by
B.I. Halperin and D.R. Nelson, Phys. Rev. Leu. 41 (1978) 121,



97 0 III. GAUGE FIELDS IN SOLIDS

D.R. Nelson, Phys. Rev. B18 (1978) 2318,
D.R. Nelson and B.I. Halperin, Phys. Rev. B19 (1979) 2457,
A.P. Young, Phys. Rev. B19 (1979) 1855.
The first dynamical considerations are found in
A. Zippelius, B.I. Halperin and D.R. Nelson, Phys. Rev. B22 (1980) 2514.

The importance of grain boundaries to the melting process was first pointed out in two 
dimensions by
S.T. Chiu, Phys. Rev. Lett. 48 (1982) 933 
and confirmed via Monte Carlo simulations by
Y. Saito, Phys. Rev. Lett. 48 (1982) 1114, Phys. Rev. B26 (1982) 6239.

The disorder field theory of dislocations was developed in
H. Kleinert, Lett. Nuovo Cimento 34 (1982) 464, Phys. Leu. 89A (1982) 294, 91A (1982) 
295.

The induction of a first-order transition via fluctuations in an asymmetric 0(nq)<p4 theory 
is discussed in
A.Z. PataShinskij and V.L. Pokrovskij, Fluctuation Theory and Phase transitions (Pergamm, 
Oxford, 1979),
D. Amit, Field Theory, the Renormalization Group and Critical Phenomena (World 
Scientific, Singapore, 1983).
The relevance of disclinations was discussed in
H. Kleinert, Phys. Lett. 95A (1983) 493, 95A (1983) 381 

The generation of a first-order transition by a second type of lines in a system of 
non-self-backtracking vortex lines was observed in
W. Janke and H. Kleinert, Phys. Rev. Lett. 57 (1986) 279 and Nucl. Phys. B270 [FS16] (1986) 
399.



CHAPTER NINE

L A T T IC E  M O D E L  O F  D E F E C T  M E L T IN G

9.1. SETTIN G  UP T H E  M O D EL

In Part II we studied superfluid 4He and learned that lattice m odels allow 
for a simple way of incorporating vortex lines into a system carrying 
long-wavelength excitations. The steps were:

1. Rew rite the gradient energy of the long-wave-length excitations

(9.1)

in term s of lattice gradients,

£ « a S j ( V , y ) 2, (9.2)

w here V ,y(x) =  y(x  +  i) -  y(x).
2. Set up the partition function for long-wavelength excitations on the 

lattice
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3. Account for the periodicity of the variable y(x) in 2тг by going to a 
periodic Gaussian expression

z -  E П
{«,(*)} *

g-(flv/2)Ltj(Vty-2nni)2' (9 4)

The integer num bers /i,(x) param etrize an ensem ble o f surfaces across 
which the phase variable can jum p by m ultiples of 2 tt .

4. Observe that the partition function is d egenera te  w ith respect to 
vortex-gauge transform ations consisting in defo rm ations o f the  jum ping 
surfaces

и ,(х )->  n ,(x) +  V,/V(x) (9.5)

with a sim ultaneous shift of the phase variable

y (x )—> y(x) +  27tN ( \ ) .  (9.6)

5. Choose a gauge-fixing functional Ф[п] in the sum . In the Villain 
model we took

ф[п] =  S„,.o, (9.7)

which specifies the axial gauge л3 (х) =  0 .
The close analogy betw een superfluid 4H e and crystals in the 

description of both the long-wavelength excitations and the defect lines 
suggests that a similar procedure can be followed successfully for finding a 
lattice model of defect melting.

Let us do this step by step.
1. W e take the gradient energy of linear elasticity on a sim ple cubic 

la t t ic e /

(9.8)

and replace the volume integral f  d 3x  by the lattice sum  д3£ , the strain  
tensor Uy =  \(diUj +  djUj) by its lattice version [recall (7.12)]

“For the elastic constants see Eq. (1.49).
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“-)(*) = ~ ( v ,“/(x) + VjU,(x)). (9.9)

Introducing the same shift in the argum ent of the и,,(х) term  which was 
found convenient in Eq. (7.11) this leads to an elastic energy on the 
lattice,

2. The partition function of classical elastic fluctuations is then given by

W e must rem em ber that according to Eqs. (7 .67)-(7 .70) this is really only 
the potential part Z poud of the full classical partition function which 
contains an extra factor Z kin,d =  (V kB T а5р 12тгк2)ъм, due to the kinetic 
part of the classical fluctuations. Just as in the X Y  model we shall om it 
this factor, for brevity, it will be included only later when com paring our 
results with experim ental data.

We are now ready to follow step 3. In the X Y  m odel, the phase 
variable was defined up to multiples of 2тг. This was accounted for by 
going from the Gaussian energy to a periodic G aussian form. In a crystal, 
there exists a com pletely analogous ambiguity in the definition of the 
displacem ent field m; (x). For very low tem perature, this is not im m e
diately obvious. The atomic positions deviate very little from  those of an 
ideal crystal. It is therefore suggestive to use these small deviations for 
defining the displacem ent field w,(x). W e have discussed before, in 
Section 2.3, that this definition can be consistent only for a limited 
duration of time. Due to fluctuations, therm al as well as quantum , the 
atom s are capable of exchanging positions with their neighbours and 
m igrating, after a sufficiently long tim e, through the entire crystal. For 
this process of self-diffusion, which proceeds mainly via the support of 
vacancies, it is known from experim ent that the diffusion constant carries, 
at higher tem peratures, a Boltzm ann factor with the vacancy energy 
[recall the values in Section 2.1]. The time scale factor is of the order of 
« 0 .2  cm2/sec for N a, Cu, Ag. W e had pointed out before that self
diffusion m akes it impossible to specify m,(x) uniquely since the assign-

(9.10)

(9.11)
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m ent of the original position o f each atom  to  the nearest equilibrium  
position cannot be m ade after a long tim e. T hus, as a m a tte r o f principle, 
the displacem ent field is undeterm ined up to an a rb itrary  lattice vector. 
On a simple cubic lattice, it is im possible to say w hether an atom  is 
displaced by w, (x) or by

Certainly, the field N, (x) has to obey m any constrain ts which ensure that, 
after a reassignment of the starting position, no two atom s have come 
from the same place. These constraints will be ignored , for sim plicity. We 
had also seen in Section 2.3 that the m ultivaledness o f m, (x) is com pletely 
analogous to the m ultivaluedness of the phase variable y(x) in superfluid 
4H e where y(x) and

w ere indistinguishable.
This analogy m akes it straightforw ard to cast the elastic partition 

function into the appropriate periodic G aussian form . G uided  by (9.4) we 
introduce an extra sum over an integer-valued field л /;(х) and write

T he elastic constants /и,, £, Л and the lattice spacing a may be considered

outlined in C hapter 7 using the nonlinear term s of the elastic energy , o r 
they may be taken directly from experim ent. For the discussion to com e 
we shall elim inate the tem perature  dependence of a by enclosing the 
system in a fixed volum e V. The case £ =  1 corresponds to  an isotropic 
energy (9.8). The lattice version (9.14) is certainly not iso tropic. Still we 
shall refer to this case (som ew hat awkwardly) as iso trop ic , for 
convenience.

m, ( x) +  a N i{ \ ) . (9.12)

y(x) +  27r/V(x) (9.13)

( k B =  1)

x  exp] ~  Ц  x S  (V,«y(x) +  V; m,(x) -  a ( n v  +  n,,)(x))2
1 X * i < ix \_L i < j

+ £E (V;“/(x) -  a/i„(x))2 + ̂ -( E  (v /“/(x -  i) ~ 0»i„(x -  i))

(9.14)

as weakly tem perature dependent quantities. They can e ith er be cal
culated from the zero-tem perature values, according to  the  m ethods
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W e now come to step 4 and observe that the partition  function is 
invariant under the following integer-valued defect gauge transfor
m ations,

u,(x) -»  M/(x) + a/V,(x), (9.15)

n,y(x) - >  n,y(x) +  V jN j ( x ) .  (9.16)

The transform ation on m,(x) expresses the intrinsic m ultivaluedness of the 
displacem ent variable; the transform ation on л,у(х) accounts for the 
irrelevance of the jum ping (V olterra) surfaces.

T here is a further defect gauge invariance which did not exist in the 
Villain m odel. It is due to the fact that only the sym m etric com bination of 
л,у(х) and лу7(х) appears in the energy. The transform ation law reads

m,(x)—> m,(x) +  £ikj M k (x )Xj , (9.17)

/i/Д х)-»  Л/Дх) +  eijkM k (x), (9.18)

where M k {x) is an arbitrary integer-valued field. This invariance is 
associated with the rotational symmetry of the crystal. Its im plications 
will be studied later.

Step 5 consists in choosing a specific gauge in order to do away with a 
trivial infinite overall factor of the partition function, due to gauge 
degeneracy. The integer values of л/у(х) m ake the choice a non-trivial 
m atter which will be dealt with in Section 10.1. H ere we only sta te  the 
result that we shall use a gauge in which л,у(х) is quasi-symmetric  with 
the sym m etrized com bination л?- =  \{пц +  лу7) having three vanishing 
com ponents

л'22(х) =  0, n h ( * )  =  0, n b (x )  =  0. (9.19)

By quasi-symmetric  we mean that if n-j =  Дл,у +  лу7) is an integer, then л,у 
is chosen to be properly symmetric, i.e ., л,у =  лу7. If, on the o ther hand, 
Л/у is half-integer, then ntj =  Лу, ±  1 for i ^ j .

The non-zero defect gauge fields are taken to satisfy the boundary 
conditions

V3# iu (* b * 2, 0) =  0, (9.20a)

Л |1(*1. *2 , 0 ) =  0 , (9.20b)
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n\ 2(* i, 0 , * 3) =  0 , (9.20c)

and

" Ы 0 , x 2, 0 ) =  0 , (9.21a)

« 2з ( 0 ,  0 ,  * з )  =  0 , (9 .2 1b)

И2з (0 , x 2-> 0 ) — 0 , (9 .2 1 c)

V i« |3 (0 , jc2, 0 ) =  0 . (9 .21d)

The product of K ronecker 8's which enforces these conditions will 
collectively be denoted by Ф[/1/7] and will constitu te  o u r gauge-fixing 
functional for the defect sum. We shall now proceed  just as in the Villain 
model and first exhibit the defects implied by the sum  over j u mp  num bers

9.2. D E F E C T  R E PR E SE N T A T IO N  O F L A T T IC E  M O D E L

Let us convince ourselves that the lattice partition  function (9.14) does 
indeed describe what we w ant, nam ely a grand canonical ensem ble of 
crystalline defects including their p roper long-range in teractions. For this 
we shall perform  the same duality transform ation as in the Villain form  of 
the X Y  m odel. This goes as follows: First we in troduce a set of 
canonically conjugate variables tf,y and rew rite Z  in the form

X [ ]  f  e -l/(2^)^[i:(<,«?r,(x) + 1/(2£)^Г,Ы -  l/(2y)(i:(
x . j  _ J - x  a

X £(2ет/я)»'()\.,<,|7,,(У,ну + 4,14 -  2(111],) + -  rtiijj)) (9.22a)

w here

(9.22b)

and the elastic constant у  is related  to Л by [recall E q . (1.48) and the 
sta tem ent after (1 .110)]
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A = 1 . 
У -  Dt;

(9.23)

For the variables <r,y with i Ф j  this follows by direct quadratic completion. 
For i =  j  we can rewrite the exponent of (9.22) in matrix form as

r (l/2«E/,^(*-i)W(̂ (x-J) (9.24)

with

Л - 17

_ |

7

1 - i

7

1 У 7 7

=  2 f _ i

У 7
i - f

7

This has a determinant,
I

(9.25)

2 " f y j  2 °  A ZD~2y
(9.26)

with an inverse

£

y - ( 0 - l ) f

= 2 fSf;- + (9.27)

so that a quadratic completion indeed reproduces (9.14). 

"In the isotropic case where l ly  =  v/( 1 +  v). this matrix is equal to

with an inverse
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Notice that the <jjy part of the energy in (9.22) corresponds precisely to 
the stress energy of Chapter 1, Eq. (1.49). Indeed, the tensor ay, is the 
lattice version of ia3/(2irkBT)  times the physical stress tensor ay,.

We now integrate out the w,(x) variables in (9.22). Before doing this it 
is useful to complement the six components ay,- with i < j  by three more 
elements а /у =  ay,- for i > j  and form a symmetric matrix ay, =  ay,- for 
i, у =  1, 2, 3. Then the last exponential can be written as

g(2n/a)(i 12) uj + У/и* — 2an)j)
A partial integration brings it to the form

g-2niZtjfiajjUila -  2iriE,././or(ywJŷ (9.28)

Now the integration over Uj/a leads to the 6-functions

П  S(V,<f,y). (9.29)

These enforce the lattice version of the stress conservation law in the 
absence of external body forces.

Just as in the continuum formulation in C hapter 5 [see Eq. (5.1)], this 
conservation law is satisfied automatically by introducing a stress gauge 
field /?f„(x) and writing, in D  =  3 dimensions,

5,y(x) =  elktejmnVkVmX(n( \  -  € -  n). (9.30)

This decomposition [which is the stress version of the decomposition in 
Part II, Eq. (6.5)] is invariant under stress gauge transform ations

Xen (x) —>Xe„ (x) +  VeA„(x) +  V„A,(x)

=  W x )  +  VeAn(x + <) +  V„ A t (x +  n). (9.31)

Inserting (9.30) into (9.28), and performing two partial integrations, we 
find

where the symmetric tensor t}{„(x) is defined by

ziri'Et.t.nXinW'ninM (9.32)
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Vcn (x) =  eekienmjV kVmn l ix  + € + n). (9.33)

The coupling of X(n(x) to rjf„(x) is the same, up to a normalization 
factor, as the coupling of the stress gauge field *Y„(x) to the defect tensor 
rj(n (x) in the continuum formulation (5.6). Thus, r}cn(x) may be con
sidered as the proper lattice version of the defect tensor i?f„(x). Indeed, it 
satisfies the conservation law

VfT?<v,(x) = eckiEnmjVcVkVmnSij(x + I  + n) =  0

= V,„4(x + n) = 0. (9.34)

As a consequence, the coupling (9.32) is invariant under the stress gauge 
transformations (9.31)

E  * f „ ( x ) W x ) - >  E  [^ o ,(x )7 7 f„ (x )  +  (V f A „  +  VnA()rjCn(x)]
x.  €, it x . f  .#»

=  E X c,,(x )V cn(x)  -  2  E A „(x)V t 4 c„(x) =  E X o , ( * ) v
x. €,n x.C.tt x j . n

The decomposition (9.33) itself displays defect gauge invariance under 
(9.16), according to which

4 ( x )  #$(») +  i(V,Ny 4- V; N/)(x). (9.35)

When expressing the partition function (9.22) in terms of the stress 
gauge field XCn (x) we have to watch out to arrive at the correct measure 
of integration. The simplest gauge is the axial gauge where

*з/(х) =  0. (9.36)

Then the stress tensor has the following explicit decomposition,

^ u (x ) = V3* 22(*i> *2 “ 2 , x3),

^22(x) =  V5^ n (^ i “  2, x 2, *3),

^зз(х) = x 2 -  2 , *3) +  Щ х и (х i -  2 , x2, x 3)

- 2 V l V2X l2( x l -  L x 2 -  L x 3), (9.37)
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a l2(X) =  -V § * i2(jt, -  1, *2 -  1, x3),

fftaW  = W i X n t o  - 1 , X 2 -  1, x 3) -  V2X u (Xl -  2 , JC2, *3» ,

<rn(x) = - V 3(V ,*22(*i> *2 -  2, x 3) -  V2X,2(x - l , x 2 -  l , x 3)). (9.38)

We now see that the integrals over j r U) a 22 and a I2 can be exchanged 
freely with integrals over X22, X l2 since the only functional deter
minants which appear are products of det V3, which are all unity. The 
integrations over d-l3, a 23, a-33, on the o ther hand, are eliminated by the 
6-functions (9.29),

S(V,CT,1 + V2cr2i +  V3CT3l) 6 (V!(J12 +  V2C7-22 +  V3<r32)

X S(V|(713 + V2<r23 + V3cr33), (9.39)

where the functional determinants are again all trivial (due to det V3 = 1). 
Hence (9.22) can be written in D  =  3 dimensions as

Z = (x) dX22 (x) d X , 2 (x)s e i 1 3 r)_ (2^ ) w { ] [ / _ ^ . i

x exP \~Ye £  { S  s%+~  EЫ*)) I  X [#</ 2 S i

~ Y y  ( s  »*(* - * ) ) } -  2 *i j E  ^ , ,(x ) n o ,(x ) J (9.40)

Since the integrand is manifestly stress gauge invariant, it is possible to go 
from the gauge fixing Х ^ ( \ )  =  0 to any other gauge, for instance to the 
transverse gauge,

V'*,y(x) = 0. (9.41)

The proper normalization is found by the methods developed in Part II, 
Chapter 3 and applied to lattice gauge theories in Part II, C hapter 6 [see 
Eq. (6.51 )ff in Part II]. We take the integration measure in (9.40) and 
rewrite it as follows:

П [ d x n (x)dX22(x)dX i2(x) = П f dX,,(x) Ф„[дс,у], (9.42)
x J  x , i < j J
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where 4>e[A(,y] is the axial gauge-fixing functional

<u*-y] =  n « f e ) (9.43)

and perform the integral over all gauge transformed versions of 
X§ =  Xjj +  V, Ay + Vi A

П  f  dAj(x) 8(X3i +  V3A, + V,A3). (9.44)
x,i -J

The 6-functions involving At and A2 eliminate directly Ab A2 with only a 
trivial determinant det V3 =  1. The third 6-function involving * 33 leads to 
det(2V3) -1 =  2~n  so  that the gauge integration of (9.43) gives

П J  <M,(x)<t>„[*,y] =  2 - N. (9.45)

If we now pass over to the transverse gauge we can convince ourselves 
that the same normalization is achieved by the measure

П Глг*(х)Ф ,[ДГ#], 
*./</ j  -*

(9.46)

where Ф,[*;/] is the transverse gauge-fixing functional [analogous to 
(6.56) of Part II]

Ф,[*,у] =  d e t( -V  • V)3 I I S W ) .  (9.47)
x.j

In order to see this we write down the integral over Ф,[*,у] as follows:

П f ^A|(X)ф t \ X i j  + V ,A y  +  V j A i ]
x.i J  - *

= det(-V-V)-

=  det(-V-V)-

п [  г -A ,
x,i LJ - »  

:0 / - >

(x)

(x)

П «(V ,*, + V,- V,Ay +  V,V; A ,■)

x l l s f v ^  +  v v
x,; \ (9.48)
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In the S-functions, the two transverse com ponents of Л, [those which 
satisfy VjAj = 0] carry a factor V-V, the longitudinal com ponent a factor 
2VV. This leads to the functional determ inants d e t(-V -V ) -2  
d e t( -2 V V ) -1  =  det(-V *V )_32-A/ so that the integral (9.48) gives indeed 
2~n  and Ф has the same normalization as Фя [*//]•

Notice that it is possible to express rj,y in term s of the defect gauge 
fields nSjj, via the incompatibility relation (9.33), and perform  the defect

quires, of course, its own gauge-fixing functional <I>dcf|/Z//]- It will be 
specified in detail in Chapter 11. The partition function (9.40) then 
involves a path integral over stress gauge fields and a sum over defect 
gauge fields, both with some gauge-fixing functional,

In this form, the partition function describes a double gauge theory o f  
stresses and defects. Let us perform the integral over the stress gauge 
field, first in the case of two dimensions. There, the decomposition (9.30) 
reduces to

* n (x ) =  V22*(x), <r22(x) =  V2* (x ), <rl2 (x) =  —V,V2* (x ). (9.50b)

since the б-functions are 5 (V,<rH +  V2cr21) 5 (^!<7 ,2 -I- V2a 22) and can be 
used to eliminate, for instance, cri2( x ) ,  o"22( x ) ,  with the trivial Jacobian 
d t \ V 2 2 = 1. After this d a u (x) can be turned into dX(x) with another 
trivial Jacobian d e t^ | =  1 . Thus the partition function (9 .22 ) becomes for 
D — 2

sum Yi SV'-n, ,o by summing over the defect gauge field n]j. This sum re-
{ щ ) 4

Z  = ® X i j  E  ^ d c f [ « / y ] e x p  {as in (9.40)}.
K )

(9.49)

^ ( x )  =  £/*%V*Vf*(x). 

The components of ^ ( x )  are given by

(9.50a)

We can then easily change the measure of integration from

(9.51)

to

(9.52)
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x  Ф [я / ] + (I/2f)(oli(x) + ал:(х)2) -  (1/2у)(5ц(х -  1) + cr22(x -  2))2}

KW ) 4
x £2ir/E**i(x)A((x) ^  53)

where

rj(\) =  ekie€jV k V €nsij{\) (9.54)

is the two-dimensional defect density analogous to 7?,y(x) of (9.33).
We now insert the decomposition (9.50) and see that the elastic energy 

becomes explicitly

E  * (x ) jv ,  V, • V2 V2 + ^ [ (V ,  V,)2 + (V2 V,)2] -  ^;(V-V)2J *(*).

(9.55)

In the last term , a few manipulations were necessary to arrive at the form 
(V • V)2. First we employed summation by parts

£  (Щх(х  -  1) + V?*(x -  2))(V p(x -  1) + V?*(X -  2))
X

= £  №  -  l)V lV |^(x -  1) + *(x -  2) V2V2*(x -  2)
X

+ 2*(x -  l)V 2V2*(x -  2)). (9.56)

Then we rewrote the last term as

2 E V ? * ( X  -  l)V p (x  -  2) = 2 £  V1V,^(x)V2V2̂ (x)
X X

= 2 £ * (x )V 1V,V2V2*(x).

Using finally translational invariance we obtain, indeed, ExA'(x) 
(V-V)2X(x).
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z  =

Integrating out the X(\)  field gives 

- 2& y ' \ N 1
2 f ( l  - & y )  V 2^ N

det ( V V )2 +  2 ^ - ^ V , V , V 2V2 
1 - f / y

1/2

X ^  -  ( 1у) ) ^л  Щх)С{\-х' )тЦх')

(Ч(х)}

(у /Пф) 2 N det 2 f +  4 ( V  • V)2 +  4 ( f  -  1 )U  +  у  V, V, V2V2
- 1/2

X £  £-/347r'f( I + iOEx.x->}(x)G(x — x') jj(x')

{>j(x)}

where G(x) is the lattice Green function0

(9.57)

_____ = Г d 2k■77 „ J (2 t t )2
C(x) = - S e iks---------------- r ~  I O V

k ( К - К ) 1 +  2 ^ - — К 1К 1К Ж ,  (
1 -  & y

x ______________________________ i________________________________
(2 -  2 cos * | + 2 -  2 cos fco)2 + 2 ( f  ■- 1) (1 + v) (2 -  2 cos k , )(2  -  2 cos k 2)

(9.58)

where we have used the anisotropic Poisson ratio

A f
У =

(D -  1)A + 2gM У -  f  

In the isotropic limit f  = 1 the partition function becomes simply

1 1 1

(9.59)

Z  =
( Л / 2 W t ) 2 N  ( V / x . ( 2 / l l  +  A ) n  d e t ( - V  • V )

X ^  /34тт-1 i + i')2x.x'j?(x)G(x - х'Щх'^
{n(x)}

(9.60)

where now

°We have used the D = 2 identity

( -  2f  + -  
~ a ______д

2< H
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- I

N ? ~  ( K K )2 

d 2k  1
(2ir)~ (2 — 2 cos/с | + 2 — 2 COS&2)'

(9.61)

Inserting (3 = ца2/(кв Т(2ir)2) and going to momentum variables, the 
prefactor becomes the two-dimensional version of the partition function 
(7.72),

Zpo,.ci =  П ( V 2 ^ 7 ) 2— 4 .  1 = = ■  (9.62)
P к V a 2/xK • К V a 2(2M +  A ) K - K

Hence we expect the prefactor in the £Ф 1 partition function (9.57) to be 
the proper anisotropic version of this. Indeed, if we take the fluctuation 
energy of the elastic waves

5 +  ( # -  +  ( A / 2 -  0 ) : ) ^ 9  £ 3 )

and write it in momentum space as

e - (0 /2 ) 'J lk/f)(k )!|K 1£ < + К K«„ + 2 ( f -  1)К ,Я А ,-М А /м >А:,Я,|"/<к) ( 9  ^

Then the 2 x 2 determinant of the fluctuation matrix is

det
K K ,  + K K + 2 ( f -  \ ) K , K ,  +  j ^ K , K ,  ^1 + j ^ K , K 2

\ + - ) K , K ,  K ^ i  +  K R  +  2 ( { -  \ ) K 2K2 + - K 2K 2 
N  '  M

A \ , . „
= К, K, K 2K2 + I 2 f + -  ) К, K, K 2K2+[ 2 £ + -  1 [(AT, AT,)-+ (J< ,ЛГ,)2]

j  K , K , K 2K2

= f 2 f +  M (K  • K )2 +  4 ( |  -  l ) ( f  +

=  2 |(1  -  v)- l  [(K • K)2 + 2 (f  -  1)(1 + v)K , K, K 2 K2] . (9.65)

K 2K2
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Comparison with (9.57) confirms our expectation: the integral over the 
м,(к) fluctuations is indeed the same as the prefactor in (9.57).

Thus, due to the Gaussian form of the model, the partition function 
factorizes into a pure phonon part Z pot,cb the prefactor in (9.57), and a 
pure defect part,

Z d c f =  J ]  g-/J4tr*2£((£ + A//i)/(2£ + A//z))E,,*-Tj(x)G(x — x')rj(x')  ̂ (9.66)
{*?(x)}

which, in the isotropic case, is equal to

Zdc(=  E  е-^< 1  ^>Е,ад<<-™г^м (9.67)
(««))

For the calculation of the Green function we may write it as

C ( * > - J | y ' “ ( K - K утшлт <9 а д

with the anisotropy parameter 

and factorize

1 1 1
(K -K )2 + e K ]K ] K 2K2 <xKxK x +(3K 2K2p K { K x + a K 2K 2

with

H N 1-
Then we introduce a subtraction and define

For large distances this diverges as
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2 r d 2k  K K-'if (27t)2 (K -K )2 +  e/C, /Cl K 2K2

2 ' r d 2k  (aK ^K i  + f}K2K2) + ( a * * p )  
/3 J (2тt)2 ( a K xKi  + P K 2 K 2) ■(<**+/})

=  1 [
4 a  +  /3 J

= x2 2 Г d 2k________ 1
4 a  +  /3J (27r)2 aK ,/C , +pK2 K 2

Thus if we introduce the logarithmically divergent quantity

v r_d*k_________ K -K ________=  _ 2 _  f  j i *k_________ 1
J  ( 2 n ) 2 ( K - K ) 2+ e K ] K , K 2 K 2 a  + f } J  (2 i r ) 2 a K ,  K ,  + / 3 K 2 K 2

we arrive at the finite twice subtracted anisotropic potential between 
disclinations,

G "(x) =  G '(x) +  j * , ( 0 )

■I
-I

d2k V - - i + - k  k W  1
(2 t t ) - \  4 / ( К - К Г  -h e/C, /с, a:2/c2

d2x I  . x2— \  1
c o s k ix l cosk2x 2 — 1 + “7 ^ '  is\2(27t) \   ̂ z 4 / ( K - K f  +  e ^ j / C , ^ ^

(9.70)

The Green function (9.68) itself is finite only after introducing a small 
regulator mass m.  In the limit m —> 0, it contains the same two types of 
divergences as it would in the continuum since they are caused by the 
k —»0  limit of the integrand and for long distances all lattice gradients 
can be replaced by ordinary gradients. It is useful to remove these 
divergencies from G(x) by defining G"(x) as follows

G(x) = Gdiv(x) +  G"(x), (9.71)

where, for e = 0 , the divergent part is given by

Cdiv(x) S 4 ^ b  + i |x|2l0g"'- (9‘72)

If we insert the above into (9.66) we see that there can be a finite limit 
only if
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E Tj(x)i7(x’) = (E  Ч(*)) =0, (9.73)
x ,x ' \  X /

E|x-xfrj(x)Tj(x') = 0. (9.74)
x,x'

The first condition enforces defect neutrality, i.e .,

E r j ( x )  =  0 . (9.75)
X

The second can be rewritten as

гЕ x2 i?(x) E *)(x') - 2 Ê xtHx)') = 0 .
X X'  \  X /

Using charge neutrality this reduces to

E xrj(x) =  0 , (9.76)
X

i.e., in addition to charge neutrality there must also be dipole neutrality.
Notice that once the defects satisfy these two conditions, the G reen’s 

function G"(x) can be exchanged by any other one which differs from it 
by an arbitrary constant plus a quadratic term

ДС(х) =  const. +  CijXtXj. (9.77)

Such an additional piece never contributes to the sum since

\  Е ч ( х ) Д С ( х - х ') ч ( х ')  =  0.
 ̂x,x'

As a particular finite Green function we may therefore take the 
previously introduced subtracted expression (9.70) whose values will be 
given later in Table 11.2.

In three dimensions, the analogous derivation of the defect represen
tation is much more tedious. One thing is immediately obvious: the 
partition function will certainly factorize in the same way as in two 
dimensions [see Eq. (9.57)],

^  2 p 0t C|Z j Cf, (9.78)
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where the classical part can be obtained by simply integrating out the 
M,(k) fluctuations of the harmonic energy (9.11). Thus Z pot c, will be the 
generalization of the isotropic expression (7.72),

Z po, c  =  П ( v 2 ^ e r 3(Vfl3^ R K)2 V a 3( v  + A )K . K)  (9'79)

to the anisotropic case. To be able to find this, all we have to do is 
replace the isotropic fluctuation determinant

П  det ( M(R • KS* +  K.K,)  + -  K ,K ,) =  П ( МК • К)2П (2/* + A)K ■ К 
k \ M J к k

(9.80)

by the full one. Writing (9.10) out in matrix from gives 

E  = a p  E ^ , ( x ) ( v - V 8* +  V,V, +  2 « -  0  V,V,S,; + ^  V,V,j U/(x) (9.81) 

so that the full determinant becomes

П  a 3 det • К S,y + K, Kj + 2 (f  -  1) К, K, % + д  K-, К, j  .
(9.82)

This can easily be calculated after bringing it to the form

П M(K ■ К + 2 (£ -  l ) K , K i )  e~k,rlog|5"+ (1 + a'm)k,*//<R-k + 2« -  i)K,*,)I ( 9  3 3 ) 
k,i

and expanding the logarithm in a power series,

- s K ' ( i + » ) ) " ,rM"- < 9 '8 4 )

where M  denotes the matrix

Mii =  К • К + 2 ( £ -  l ) К ,К , ' (9,85)

This is a projection matrix up to a factor
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M * y / K K  + 2 ( £ - l ) K t K j Mii CMih 

where the factor с is just the trace of M,  i.e .,

trM " = tr(c "“ 1M) = c".

The sum (9.84) can now be performed with the result

log

(9.86)

1 + I 1 + - c

Thus we obtain, for anisotropic materials in D =  3 dimensions, 

k l VR • К +  2 (£  -  l)K,K,

х П

i + ( i  +  - ) E s
K t K {

м / Г К * К  + 2 ( М ) К Д ( (9.87)

Inserting D — 2, this formula is seen to reproduce correctly the two- 
dimensional prefactor in (9.57).

In order to calculate the infinite products in (9.57) (9.87) numerically 
we write them in two dimensions as

exp A ] A 2 + \ l + - j ( K l K l A 2 +  K 2 K 2A l )

(9.88a)

with

A x =  ( 2 f -  l )^ t /C , +  K2 K2, Л 2 =  £ ,* : ,  +  ( 2 f -  1)K 2 K2 

and in three dimensions as

. 1 , „ 1 f  d 3k  , e x p i - - l o g 2 - - J ^ l o g Л ,Л 2Л , +  1 +  -  £  K i K j A j A ,
' /V ijk cyc\.

2

(9.88b)
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with

A,  =  ( 2 f -  l )K ,K,  +  KjK/  + K k Kk (/, j, к =  cycl.), 

and approximate the momentum integral by a sum

d Dk  1 ^
J (2 тг)° /VD b  „ „  

/V 0.5) 
//,= 1.2......N

In three dimensions, the integral is so smooth that we obtain a reasonable 
accuracy for the rather small value N  =  3. In two dimensions, the integral 
is not as well behaved at the origin in momentum space and we have to 
take at least N  = 10 to obtain satisfactory accuracy (except for very small 
£ for which N  has to be taken much larger than that). In order to display 
the result we write the second exponential in (9.88a,b) as

e~[D,2)l (9.89)

and give f  as a function of £, for A =  0 in Table 9.1. We also plot 
£ -  log(2D) for various £ and A in Fig. 9.1.

As a check of our accuracy we set £ = 1, A = 0 in which case we must 
recover the free field trace logs

TABLE 9.1. Logarithm of the fluctuation determinants in D = 2 and D =  3 dimensions for 

anisotropic lattice f * - j *»l° g [ (  П ^')(l + (* ^ "]' where A = K K +
2 ( £ -  I) KjK,-. For A = I, £ = 1 this reduces to J (dDk/(2тг)п) log К • К.

£ ± =  0 
Д М

-  = 2 
М

± = 3 
М

£ ± =  0 
м

* - 1 * =  9 
М

*  =  3 
М

0.2 0.2060 0.6560 0.8844 1.0399 0.2 1.0352 1.2668 1.3998 1.4942
0.4 0.5980 0.9241 1.1187 1.2582 0.4 1.2708 1.4585 1.5774 1.6647
0.6 0.8411 1.1076 1.2803 1.4083 0.6 1.4351 1.5990 1.7083 1.7904
0.8 1.0214 1.2506 1.4071 1.5261 0.8 1.5649 1.7124 1.8143 1.8923
1.0 1.1662 1.3690 1.5128 1.6244 1.0 1.6734 1.8085 1.9044 1.9788
1.2 1.2880 1.4707 1.6042 1.7094 1.2 1.7672 1.8925 1.9833 2.0546
1.4 1.3934 1.5602 1.6850 1.7848 1.4 1.8503 1.9672 2.0536 2.1222
1.6 1.4866 1.6404 1.7577 1.8527 1.6 1.9249 2.0349 2.1174 2.1835
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FIG. 9 
(9.89) 
£ = ( c .

.1. The logarithm o f the fluctuation determ inants € -  log (2D ) as defined in (9.88), 
[£ is the anisotropic version o f J(WDA:/(2iT)D)lo g (K  • K)] as a function of 

, -  c ,:)/2cj4 for various values o f A l/л =  c ,2/c4j.

5

p -  ( J O J l , ^ _ / 1 1664 d  = 2 'J (2 ir)°  g(  ̂ 1 1.6734 D = 3,

calculated in Part I, Chapter 6 . O ur approximate sums give, instead
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1.1662 and 1.6734 and are in good agreement with these numbers.
Let us now come to the harder part, the calculation of the defect factor 

Zdcf in (9.78). For this we take the gauge хзе =  0 and insert (9.37), (9.38) 
into the stress exponent (9.22) which takes the momentum-space form

~~2p  S  (^12 + ^23 + <̂ 3l) + 2^(^11 +  ^22 +  ^зз) “

= - ^ S  *J(k) M, j (k)Xj (k)  +  2 m  £  rj}(k )^ (k ) ,  (9.90)
2p к к

where Xi denotes the components

* „ ( x - 2 - l - 2), *22( x - 2 -2 - l ) ,  * i2(x — 1 — 2) 

and tji the components

П „ ( х - 2 - 1 - 2), У к - 2 -2 - 1), 2rji2(x — 1 — 2).

The matrix elements of Mu  are

M n . u  =  K 2K 2 K , K 3 +  ± [ { K 2K2f  + ( K 3K 3f )  ~ l y ( K 2K 2 +  K 3K 3) \  

M22.22 =  R , К , K 3K3 +  1 [ ( K ,  a :,)2 + (K 3K3)2] - ^ ( J f , K, + k 3k 3) \

M ,2. ,2 =  К • К K 3K3 + 2 i  j  К,  К, К 2К2,

М и .22 =  - U . K ,  К 2К2 -  ^ - ( К . К ,  + К 3К3) (К2К2 + К 3К 3),
2$ l y

М и .  12 =  - ^ 1  * 2 [ к 3К3 + 1-К 2К2 ~-у ( К 2К2 +  К зК з)) .

М22. 12= - ^ 1^ 2 ^ з ^  +  ^ 1^ 1 - ^ ( ^ 1^1 +  ^зЛ :з)У  (9-91)

This matrix can be made real by writing, in M n ,i2> A/22, i2>
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K l K 2 =  e - ik',2e4k',2\ K l K 2 \

and absorbing the phase into the Fourier transform  of * i2(k) i.e., by 
defining

* i2(k) =  e-*‘/2e“,*2/2* 12(k). (9.92)

The remaining real matrix has the same form as its continuum limit, 
except that the /с, are replaced everywhere by K t =  2sin/:,/2. If 
denotes the inverse matrix, we find

Zdef=  E (9 .93)
Ш *» '

The wiggles on top of 17/ record extra phases carried by rjnO4)* ЧггОО» 
2 iji2(k)> which arise from (9.92) together with the shifts in the arguments 
of Xe„(x) to X(n(x -  t  -  n),d

4 n ( k ) - e - “ --*» 4 i i (k ) .

Ч12(Ю s  +*3/2>~ _ rji2(k ). (9.94)

In order to simplify the expression (9.93) it should be realized that if 
we extend the defect matrix (9.94) to the full 3 x 3  form, defining also

Tj13( k )  =  e - ,W 2  + ‘ j /2 , - “ :' - * ! 7 j i 3 ( k )>

7j2 3 ( k )  =  ik l T)2 3 ( k ) ,

Чзз(к) =  e‘ ,(* '+ *! + *j) пзз(к), (9-95)

then the new defect matrix satisfies the conservation law

К , щ ~  0. (9-96)

dRecall that the defects were coupled as £ xT7f„ (x )* f,,(x) *  E*Tjf„(x -  I  -  n )^ „ (x  -  € -  n) 
and it is Xln(x -  t  -  n) which appears in (9.90).



9. LATTICE MODEL OF DEFECT MELTING 995

This is readily seen by writing these equations down explicitly, for 
example, for j  =  1,

(<,»■*,/2 _  e-2'*i -  ik'-rjn + (e '*:/2 -  е~,кгГ2) e~i{k'12 + kl>2) ~ik' ~ ik> rjl2

”b (e*k̂ 2 — £~lk̂ 2)  ̂ g-, l̂ — *̂2 7̂ 2 j

=  [(1 -  e-'*') j)n +  (1 -  e-'*!) Vn  +  (1 -  e~ik>)%,],

and the bracket on the right-hand side vanishes due to

V/Tty = 0 .

(9.97)

(9.98)

This implies that the exponent in (9.93) has exactly the same matrix 
elements as the continuum expression for 7j,y(k), except that kj is replaced 
everywhere by K h  We can therefore use a well-known result0 for the 
defect energy in the continuum and obtain

£  |t),,|2(aK2 +  bKf)

+ 2\rj[2\2(dK 2 + eKl)  +  2\T)2i\\dK2 + e K ?) + 2|t?3, |2(^K2 +  еК\)

£  V ic
(

cK2 (9.99)

where Д is the determinant of the matrix (9.82)

Д =  (K2 + 2(f -  1) К  ?)(K2 +  2 ( f -  1) K\)(  K2 +  2(f -  1) K\)

Х [ 1 +  ( 1 + Й ? к 2 + 2« - 1)/С?.

=  ^2 f +  ^  K6 +  4 (f -  1 ) (K \  K \  + K \  K \  + K j  K])K‘

+  4 ( f -  l )2^2f +  1 +  3 ^  K \ K \ K l , (9.100)

and
eThis result is due to E. Kroner, Zeitschr. Phys. 141 (1955) 386, who calculates 

Xu = (//M)[flk2 + b k\)r]u + k277„], Xl2 = (/^Д)(dk2 + е*§)т*12, • • • 

For a derivation of (9.98) from (9.93) see Appendix 9A.
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e - 2 f | 2 * + y ,  b =  4 ( £ -  l ) ( 2 f 2 +  ( 3 | -  1)* У  c =  2 f - i  
J  M

d — 2 , e = - 4 ( f - l ) ( f + - l .  (9.101)

For the individual \rj(n\2, the wiggles can be dropped, since they amount 
only to a phase. The only term for which the wiggles have a non-trivial 
effect is \L( Tja \2. Inserting the proper shift in the arguments, this reads in 
дг-space

E  [i? n (x  -  2 • 1 -  2) +  i722(x  -  1 -  2  • 2 ) +  rj33(x -  1 -  2 -  3 ) ]2. (9 .102)

Shifting all the arguments by 1 +  2 , this becomes simply

£  ( S  Vcc(* ~  4) )  >
x \  e

(9.103)

in complete analogy with the shift of the argument in the stress energy 
(E,cr„(x -  i))2 in (9.21). Thus we can render the defect partition function 
on a cubic lattice in the form

E Vi,(*)(aG + bGi)(x  - x') T)„(x')

+ 2 E  Vij(.*)(dG + eGk)( \  -  x') щ ( х ' )
i.j, к = cyclic

+ E -  ()c G (x  -  x')E V r r ( x '- t ' )
e ('

(9.104)

where G, G, are the correlation functions

G ( x - x ' )  =  J(2ir)- G' ( x - x ' ) = / ( f ^ e ' Д
(9.105)

with
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Д = [ 2 f +  ^ j(K -  К )3 + 4 (£ — 1 ) { e  + ^ j ( K iK l K 2K 2 +  2 cyclic term)

+ 4 ( £ -  1)2I 2 |+  1 +  3 - )  AT.AT, K 2K 2 K 3K 3. (9.106)

In the isotropic limit,

and

Writing

Д = ( 2 +  ~ )(K- K) 3 (9.107)

a = d = 2 |2  + - ) ,  с = 2 ^ ,  b = e = 0. (9.108)

=  2  V

_ A 1 -  v
2 +  -

V

the exponent in (9.104) reduces properly to

4тг2/3 E ( %(*) + 7 —̂ E (* - *) E 4rr(*' - <') ) рД* - x')
x. x' \  1 -  V f  V  J

(9.109)

with

л  ..... i»4(x)
(9110)

as it should.
The exponent contains the same infrared divergence already found in 

the continuum case. It can be finite only if the defect density satisfies 
[recall (5.40)]

E f e W - 0 . Р -Ш )
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For such neutral “defect gases” we can rewrite (9.109) in the form

-4 t t2p  £  K y (x ) r i i j ( x' )  +  t ~~~ E  V c e ( *  ~  * )  £  Vr r ( x  -  €')) »J(x -  *'),
x, x' \  1 -  v  С Г  )

(9.112)

where i>i(x) is the subtracted potential

v™ = S i ^ w w {e‘k x ~ l ) -
(9.113)

This potential may be calculated using the methods of Part I [Eq. 
(6.122)]. It is simply

y '( x) = __ —  (  A A ---------1____ (eik‘* -
V a W  d m 2 )  (2тг)3 К  - К  +  m 2 1)

//i = 0

У  H*n -  H n
L  (я +  1) , 2 , оТГчя- о 4 ' (m *  + 2D) +2

m = 0
(9.114)

The nearest-neighbor value is found directly from [compare (6.127), Part
I]

D
—2 £  cos kj +  2D

— 2ъ ! щ >  (2 O - 2 EC0 , „ f  -  -  - » M 2 ' 2 <D - 3>
(9.115)

The other values are given in Table 9.3.
For large |x|, t>i(x) tends to the continuum limit which was calculated in 

(1.88),

l>4(x )->  — |x |/8tt. (9.114#)

It is gratifying to see that even at |x| =  1, the asymptotic formula is 
correct up to 11%, - 1x 1/8-77 being equal to -0.03979.

The value v ’4( l)  can be used to express the sum in (9.110) in the form
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£  Vc„(x)v'4( x - x ' ) r i e„(x ' )
хФх '

=  "4( 1) £  V c M v o A x ' )  +  £  V o , ( x ) ( v i ( x - x ' ) - v ' ( l ) ) T j e„ (x ' ) ) .
х Ф х ’ хФх ’

(9.115')

Due to the defect neutrality (9.109), the first term can also be rewritten as 
-t> i(l)E x7j(„(x)2. This has the form of a core energy. The second sum 
begins now with the next nearest neighbors, a fact which will be denoted 
by a double prime. Hence we arrive at the following partition function

Z = Z pol.cl £  S?= .0 exp-U ir2/3vi(l) 
<•>,(«»

x £
X

Vo, (x)  +  r ~  ( £  Vcr(x ~  О
I — V \  ( V ,j(x) V,>•(*')-4тг2/ з £ " ( :

x * x  \

+ £  r j e e (* -  *) £  T ) c e ( x '  -  t)J(x -  x') j>  (9.116)

where

c j ( x ) - i ; ; ( x ) - r i (  1). (9.117)

The sum over rji} (x) represents a grand canonical ensemble of crystal 
defects.

Note that due to the conservation law V, Tj,y(x) =  0, all defect configura
tions restricted to a finite region in space automatically satisfy defect 
neutrality equation (9.111). But not only that! As we can see directly 
from the representation = eikeejmnVkVm пе„(х + i + j) , upon partial 
integration on the lattice, also the defect moments Т,ххкщ ( х )  are neutral, 
as is true for two dimensions.

9.3. AN X Y  TYPE M ODEL OF DEFECT MELTING

In Part II we saw that the properties of the phase transition of a model 
involving a periodic Gaussian are closely related to those in models of the 
X Y  type. In these, the periodicity of the fluctuating variable y(x) is 
accounted for by an energy of the cosine form in the lattice gradients. It is
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quite straightforward to construct such an X Y  type model for the present 
case.

We proceed in two steps: First we take the displacement field w,(x) and 
split it into a variable w, (x) which is restricted to run only over a unit cell, 
plus a lattice vector aNj(x) where N/(x) is an integer-valued field, i.e., we 
write

w,(x) =  Uj (x) +  aNj(x). (9.118)

We then absorb the integer-valued field /V,(x) into the gauge field by a 
defect gauge transformation

nfy(x) л?Дх) + К V,N/(x)  + V;yV,(x)). (9.119)

The exponential in the partition function (9.14) is invariant under 
this change. The im portant consequence of this transformation is 
that with Nj(x)  running through all integers, the new jum p numbers 
nSjj(x) +  \(V,-Nj +  VjNi)(x)  no longer satisfy the gauge condition but 
become unconstrained variables. The diagonal elements /ijy(x) cover all 
integers while the off diagonal elements take all integral and half-integral 
values precisely once. Hence we can rewrite the partition function as

z = £  П
{«;>} x./

г  *±1
J _ „  a

(x) s  \ 2

X.l<]

X,  I (9.120)

This unrestricted sum puts us in the position to take the energy in the 
cosine form by using the Villain approximation

(9.121)

where

R V{P) =  lo(p )V2vpy ,  PV(P) =  - \ l { 2 \ o g ( l , { p ) I W ) ) ) ‘ (9-122)

In the present case, we want to use (9.121) in the opposite direction. 
Given p y ,  we have to calculate p. Since we want to keep the notation p
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for the periodic Gaussian model, it is useful to define the inverse trans
formation of (9.52) and write

R v - i ( l (9.123)

where (3V \ is the solution of

/3=  - 1/(2 log/,(/3v-,)//„(j3^-,)) (9.124)

and R v .(/З) is the function

« „ - .(0 )  =  l/(/„(/3v - ,) V 2 ^ ) .  (9.125)

If A =  0 we can apply this directly to (9.120) and find a cosine energy 
for each sum over n j ,  i < j  and nf,:

Е п Г Р
:<} x.i L J-o  a J

X £0V'-lS*.«/ cos((2Tr/e)(V1ffy + V,£,)} + (24P)v-lZ,., cos[(2w/a)V,0,j 126)

If A =£ 0, the approximation is not immediately applicable since the 
diagonal numbers /?/, no longer appear in a single complete square. An 
obvious way out suggests itself via the introduction of an auxiliary 
integration. We can rewrite the / = j  pieces of the energy as

exP j ^  E  (V/М/ -  an],)2 + ^ E  ^ E  (V,af -  an]i){\ -  i)j  j  

= П  f  du(\ )  у / Щ П  Г, е-№.Л*А -  0(» + 0 - «й)! -  гЕ.о-<*>|
х LJ-« ^тт1(Р(2тт)21а2)  J

(9 .1 2 7 )

Indeed, the exponent can be completed quadratically to give

- p Ha~
£ E(V#e, - anf,)2 + E f E (VA - «4)(« - i)

x.i У x \  1

(Of -  y) £  (fl(*) + E (V,0, -  ви*«)(х -  i) j"
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Now if D f  — у  > 0, the integration over u can be performed and pro
duces the correct energy in (9.127) [recall that according to (9.23), 
e / { y - D t )  =  Л /З Д .

The application of the inverse Villain approximation to (9.127) is now 
straightforward. In this way we find

Z  =  R v - , ( p ) D N R v - i 2 № (1/2 ) D ( D -  1)Л

n / .
dS(x)

V ttIB

] [ / : ^  
exp|/3v,-, £  cos(V,yy +  V,y,)

I *■'</

+  (2£P)V-, £  cos(V,y,(x) -  S(x +  i)) -  /Зу £  S(x)2 1 - (9.129)
X.  I X J

where we have rescaled the uijy u variables and defined angle-like 
variables у , =  (2ir/a) u iy8 = (2тг1а) и.

The main problem with this derivation is that for most materials, 
у  -  Dt; is a positive quantity. This means that D£ -  у  is negative and the 
integration over 8 is impossible. At first sight it appears as though we 
could simply rotate the contour of integration to run along the imaginary 
axis. This, however, poses another problem, namely, that cos(VJy/ — 8) 
diverges.

It is still possible to find a cosine version of the melting model, for 
у  — >  0 , albeit with a little more effort and at the expense of 
£> • (D -  l)/2  auxiliary fields in D dimensions (y 12, у2з> 7 i3 in three 
dimensions, y [2 in two dimensions). For this purpose it is preferable to 
start out with the conjugate form (9 .22) of the partition function,

1
(V2)dn

* П

d c r t i( x )
£  Ф К -]K(x)}

J. dui(x)
a

V 2 tтр

e-(l/2j3)H4| + (1/2£)£,<t5 -  (l/2r)(S,a«(x -  D):]
x. I

X + V/H, -  2mif/)̂ (9.130)

The troublesome feature is the negative sign of the (Е/о-„(х -  i))2 term. 
We therefore reorganize the parts involving a u\

e - ( l /2 /3 ) E ,I ( l / 2 £ -  DI2y)Zja&  — (1/2у)Е,<Д<7/,(х - 1) -  (x -  J ))2] (9.131)
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Using the identity у  -  D £ k ' / \  -  D £  + 2£2/x/A [see Eqs. (1.130), (9.23)] 
the coefficient before the first sum is /л/ D k ’ =  £(/x/A)(l/y). Hence both 
quadratic pieces appear with a positive energy and this is what we want. 
We then introduce D ( D - l ) / 2  auxiliary angular variables y,y with 
у ,j= —yjj as well as three auxiliary fields with Д,у =  —Д;7 and write the 
exponent (9.131) as

/ .П
x. i < j

П
x. / < ; / .

<fy/(x)
2 tt

e-(I/2̂ )|(fM/yA)j:v,<r5 + (1/2у)Г,.к,Л5)]

(9.132)

The integrations over y,y(x) ensure the identity

Д*(х) =  ?,v(x -  i) -  ай (х -  j) , (9.133)

so that (9.132) is the same as (9.131). We now split the integrals over y,j . 
into sums over integers i rj times 2тг plus integrals over the restricted 
interval (—7r, 7r] and obtain

Z =
1

(V2)D N 1 -  D
dvjjjx)
y / 2 i тр

x £ ФК) £ П
К  00} xJ

Ж
п

x. i<j

d yjjjx)
2тт

£  d*<
s

K,/(x)}

(X )

x  e - ( l /2 /3 ) [£ ,. i</ ? ;  +  ( 6 * / y A ) U l  +  (1/2Г)Е ,.(</Д5]

X  £ ' s * .K /^y(v <У/+  ?/>» “  4w7y ) +  ~  +  0  -  2 »E /fy  -  2iwiJ/) +  Ех./</Д,>(у,у -  2wf;,) _

(9.134)

Then, we integrate out the stress fields сг,у, Д,у and arrive at

Z =
(V2) DA/ - к  1 - D -

M2

v ^ ,n~
U2)D(D-l)N

x  £  ф ю П
М Д х ) }  X,  J

r ^ l n f r
J  -7Г _ x . f < /  _ j  -

d y y M  
r 27Г

£  (V, yy+ V, у,-- 2 т т J ) 2 + ^  £  ( V,-у,--  £  у ,,( x + i) - 2тг£у ец - 2 i m sn j 
l_x, i </" s M x . / \  j  /

+ 2 y £  (TV/- 2 ir€,y)' 
*.<</

(9.135)
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We may cross check this expression by going to low tem peratures for 
which the jum p numbers /?/}, €,y are frozen out and the last two terms in 
the exponent become

P Ух V  ( V-yj -  £  y..(x + i)'! - y p  Ya yfj
i  /  X. i<i

\  £  (V,y, ) 2 -  £  y„(x + i)(V,.y, -  V,y,)=  ~ p f  
& \ . I < J

if,
x. j \  j  )  x . / < /

(9.136)

We now write out the quadratic y,y  terms explicitly,

^ £  ( £  yv)  =  £  r f i+ £  £  Ун v*
1 i \  j /  »</ i j * k

(9.137)

In the vector space of y/y with / < y, they take the quadratic form

у ' My  = £  S  У,}Мч\к(Ук< 
i < j k < l

(9.138)

where in two dimensions

2 (9.139)

and in three dimensions
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The matrix M  has determinant

and inverse

d e," - a | + «

4

^ y ;
A 4f

for 0  = 2, 
/> = 3,

A +  £u. у

M~ =
2Л 

ЗА + 2f/i

1 +  —  —

+ 2/if 2/if 2/if
A A

2/zf + 2 /xf 2/xf
__ A_ A A

\  2Mf  2 / t f  +  2Mf

2|
У

A

+ 2/if

A A

2/if 2/if
A A

2/if 2/if
A A

1 + ̂2/if 2/if

(О = 3).

(9.140)

(9.141)

I

We can now complete the square and integrate out the y^s with the result

1 1
Р у Л ^ о - г )»'2 (d e tM) 1/2

X е-ЖуА/̂ м){( 1/2)1,.,(V, у,-)2 -  (1 /4 )^ < ,.*«(^ у ,(х  -  i) -  V/y>(x -  j (?*?*(* -  к) -  V, y,(x - г))} _

(9.142)

Inserting (9.140) we obtain in two dimensions

g-0(yA/fM)( 1/2)1,. ,(T,y,)2 + /Э(А/2M)S,(V,y, -  *2*)*

— e-«yWfti)(W2)5«(?/w)3 + £(*/2M)!:,l2((v,y,): + (v2y2)J) - (v,y, + v2y2)2] (9.143)
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and in three dimensions

+ ^ E  [(V,y,(x -  1) -  V2y2(x -  2))(V2y2(x -  2) -  V3y3(x -  3))

-  (V,y,(x -  1) -  V2y2(x -  2))(V,y,(x -  1) -  V3y3(x -  3))

-  (V2y2(x -  2) -  V3y3(x -  3))(V,y,(x -  1) -  V3y3(x -  3))]

Л V»+ /5=- E2k  x

- ^ ( 3 E < W - ( s  ? , * < * - . > ) '  

-  exP { - » ^ 5  S<V,r,)’ + p | ; E ( ) E  (V,r,)2 -  ( E -  l l ) ’ j

1 + 2̂ )1 3 E (v.r.)2 - ( E V ,y,(x -  i)

In D  dimensions, the exponential obviously becomes

e -0(yA/{M)(l/2)E,.,(V,y,): + -  (E,Vjy,(x -  i)):j

(9.144)

(9.145)

Using yA/£ = DA + 2£ijl and adding the first term in (9.135) (for n/;=  0) 
this gives the correct elastic energy

\ E (ViVj + У/ r i )2 +  2 f  E (V,y,)2 +  ~  E (E V,r/(x -  i) )  . (9.146)
X, ( < /  x . i  x \  i  j

Also the pre-factors cancel properly by rewriting [( l/fD)(l -  D $ y )]NI2 as 
[2(M/ A ) ( l / ^ - 2)( l/y )]W2.

It is now straightforward to take the partition function (9.135) to a
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(2 р у )Ш° -  l)/2 )N

7 „ 7  1 l ] M2 f j k DN

x R v -,(())m D ~ un)NR v -! ( / 3 ^ j DW/?

‘ Ж Ш д , ( f ; M
x exp / V ,  £  cos(V,y, +  V y ,) +  ( /3^—)

I x.i<j \ fc)v-<

x £  c o s ( v ,y , - £  yv(x + i)j +(2/3y)v-i £  cosy,;
X. »  \  j  J  X.  / < / ’

(9.147)

The relationship with the original partition function (9.120) is best 
exhibited by expanding the exponentials into Bessel functions using the 
formula (4.15), Part II. Then

Z\/~\ — /л 1 1

A e ~2 У

N/2 O N
l)N/2

x  R V-,(I3)MD- 1>,2'NR v - , ( j 3 ^ DNR v-,(2/3y)WD- 1- 1 )/2)N

П r - M l n f f
J  - 7 Г  2 .7 T  X.  / < /  _ J 27T £ П

[ S „ ( x ) . 5 „ ( x ) l  x.i<j  
1 '< /  i< j  (

x <? + V,y,) + ,?„(x)r«f(x + I) -  f-v» /д.»(х) У.,(х) (9.148)

Integrating out the angular variables gives the conservation law =  0 
and the identity Д,y  = ^„(x -  i) -  o^(x -  i) and Zv-. becomes the sum

Z v -i*  £  ^ . , , П . М ^ - , ) Г Т / г„ ( ( ^ - )
i /v /«r\\ v i < I v ; \ \ ЦМ / i/"" *{ o - „ ( x ) }  "  X . / S /  ’ X . /  " W & J v -

x П  75tl,(*-i)-^(x-j)((2/3y)v-0 (9.149)
X , l < ]

apart from the above normalization factor.
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In the limit of low tem peratures, we can use the approximation Ia(fi)/ 
Л)(/3) ~  e and see that (9.149) reduces correctly to (9.130), rewritten 
with the use of (9.131) [to get the same expression we have to sum in 
(9.130) over all n - ,  which makes integer, and integrate out the и,(х) 
variables, which enforces the conservation law =  0 ].

A PPENDIX 9A. D ER IV A TIO N  OF D EFE C T EN ER G Y  (9.109) 
FROM  STRESS EN ER G Y  (9.90)

First we observe that, after the phase changes (9.92)-(9.95), the 
determ inant of the matrix M LJ in (9.91) is (writing k t instead of K,,  for 
brevity)

where A is the fluctuation determ inant of the displacement field, (9.100). 
Inverting the matrix M  and removing a common factor,

\M\ =  Д/сз/[4£2(2£ + 3A//x)], (9.A1)

(9.A2)

we find for the matrix M'  l :

+  4£ (k t  +  k \ k \  +  k \ k \  + k^kj  + k \ k \  +  kbt)

+ 4 f {k% +  k\ki,  +  k \ k \  +  k]k* + k \ k \  + k%)
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+ 8£2 y i  +  k \k l ( k l  + kj ),  

m'T2 12 =  2 tk l ( k i  + k i  + ki) + 4 d t + - \ ( t i k i  + к Щ  + k] k \  +  k\k \ )

+ -  2k \ k \  + k i -  2k]kj  + 2k \ k \  + Art),

M Til22 =  Ч - k M - k i  + k l  + ki) + 8 k ] k \ k \

+ 2 - f ( ^  + 2A:|fej +  /ĉ 5  +  2Affc  ̂+  2*?/H + +  2^ / t l ) ,  
M’

А/'Гиг =  4£k\k \k \  + 4 f2* ,* 2№l +  ArfA:! +  *f) + 8£2( £ + ^ ) *?*2*з
2/x

+2- k ]k i k l ( - k j  + Id +  &2)
/X

+ 2—£ k\к-)(Ък\ +  -  3£y* 2 + + 2*1),
M-

M ' 2212 =  4£к\к2к\  +  4^2А'|/:2(/сз + /:2 +  /с2/с2) + 8£~ ( £ + ^ ) кук^к2
2 fx

+ 2—к хк->к\(—к\  + к$ + к])

+ 2 - £ к хк 2{Ък\ + к \к \  -  ЪкЩ + 2 + 2к\к}к\ ),  (9.АЗ)
/■*

The defect energy is then given by 47t2(S times the quadratic form

£  =  * (9.A4)
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where r}{ =  т/1Ь т?2 =  т}22, г)ъ =  2г)12.
The expression

2 г * ц М ' Ъ ' т ц  (9.А5)

gives, of course, the three non-zero com ponents X/ =  (Af, j , X22, Xl2) of the 
stress gauge field in momentum space. The energy takes a more 
symmetric form if we use the defect conservation law (9.96),

V n  = - ( 4 n * i  +  7)22*2 -  Vxk j) /2* ,* 2,

V23 =  — -  7)22*2 -  *?зз*з)/2*г*з,

V n  = - ( v i \ k 2\ -  7)22*2 +  7)33*3) 12ki*3 , (9.A6)

to express r/i2 in terms of the diagonal com ponenets r)Ul r)22, 1733. It then 
acquires manifest cubic symmetry

£  =  ^t E  Ч<*4</ % ,  ( 9 A 7 )
2Д k-r./

where

Л\\) =  | 2 ^ ( * з  + *2 +  *?) + 4 # ^ +  у  (* |* 2  + *2*1 +  k \ k l  + *?*1) 

+ 8f t f k l k l  +  (A//x)*?(*3 +  2*1* | +  *2 -  2*?A  ̂-  2 *1*1 +  *?) 

+ 12 (Л/МЖ £ -  §)*1*1*1 [ /(*1*1),

^  =  " {  Г  +  m) ( _ ^  +  ^  +  *?) +  4  V  +  Г

+ 2(А/КЖ * 1 + *! + *?)• (9.A8)

The other matrix elements follow from cubic symmetry. Alternatively, we 
may express all defect configurations in terms of the three off-diagonal 
components tj* =  17,у (/, j,  к cyclic),



Vl \ =  ~ ( V \ 2 ^ 2  +  Т?1зЛ3) /Л | ,  7)22 =  ~ ( V l 2 ^ l  +  1723*3)^2»

1?зз =  -(т?1з*1 +  (9.A9)

Then the energy reads

E  = T z T ,  ViA'iPvi , (9. A 10)k.f./

with the matrix elements

y ^ )

+ 8 ( f + 5 ; ) 4  + 8e’ ( « + | i + i ) (» i + ® .

=  2(A .//*)£(*§ + 2*§*£ +  ki k j  + 2k2, k i  + 2k] к j + k \ k l  + 2k\k \ ) l (kxk 2kl )

+ 4e k M k l  +  *?У*5 +  8 ( e  -  J f 2 +  -  - f  + A )
\  2 2 Д f i  2fj iJ

(9.A l l )
It is now easy to verify that (9.A3) and Kroner’s expression (9.99) are 
identical. We merely have to express 17,3 , т/2з, 1713 in terms of 17, , ,  1722, 
7733 via (9.A6) and recover (9.A7). Alternatively, of course, we can insert 
(9.A9) into (9.A3) and recover (9.A10).

With the existence of powerful algebraic computer-software there is no 
problem, in principle, to calculate the defect energy in the continuum 
limit for any for the 9 classes of elastic matrices c,jkl specified in Appendix 
1A. The expressions are much lengthier than those for the cubic case, so 
we refrain from writing them down.

Let us only mention that, in general, the 3 x 3  matrix M  in the 
continuum form of the stress energy [defined as similar to (9.90)]

e = -o-jjCjjkcCTkc =  -X/MfjXj ,  (9.A12)

and the 3 x 3 matrix of the strain energy D,y, Eq. (1.92),

9. LATTICE MODEL OF DEFECT MELTING Ю 1 1

(9.A13)
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have determ inants related by

|M| =  |£»|(*|/|c|), (9.A14)

where |c| is the determ inant of the 6 x 6 matrix c. Thus the elastic Green 
function Gjj and the defect energy can be derived from the same 
fundamental scalar Green function G = l/\D\. The first gets multiplied by 
the cofactors ( |D |D _I) (denoted by M,;- in Eq. (1.94), but not to be 
confused with the matrix M u  under consideration here) the second by

J $ ( |M |A r ') . (9.A15)

where \M\M~'  is the cofactor of the matrix M,j .

NOTES A ND R EFEREN CES

The lattice models described in this chapter were proposed in 
H. Kleinert, Phys. Lett. 91A (1982) 295, 
see also
H. Kleinert, Lett. Nuoco Cimento 37 (1983) 295, Phys. Lett. 97A (1983) 51, ibid  96A (1983) 
302.



CHAPTER TEN

D E F E C T  G A U G E  F IE L D S

In the last chapter we focused attention mostly upon the gauge structure 
of stresses, since it leads to a simple defect representation of the melting 
model. Initially, however, when constructing the model for linear 
elasticity plus jump numbers Я/,, it was the defect gauge fields which 
played a primary role. The partition function (9.14) was invariant under 
the defect gauge transformations (9.15)-(9.18) and required a gauge- 
fixing functional Ф which removed the gauge degeneracy. We stated that 
it was always possible to choose a gauge in which n{j is quasi-symmetric 
and in which the symmetrized jump numbers n*j = (л,у +  я/7) /2 have three 
components n%2, /133, n\$ vanishing identically with the non-zero 
components satisfying the boundary conditions (9.20), (9.21). With Ф[л/У] 
denoting the Kronecker 8 enforcing these conditions, the partition 
function reads [note the differences with (9.14)]

i n n
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It is worthwhile studying the defect gauge properties of this partition 
function in detail.

10.1. G A U G E  FIXING

In this section we shall first convince ourselves that our gauge choice is 
always possible. Due to the integer values of the fields, this is a non
trivial m atter.

The first part of the gauge choice, namely, the quasi-symmetric 
property is trivial since the transform ation (9.18), /7,y—> ni} +  eijkMk, can 
be used to change n ,y, л/7 for i ^ j  by adding and subtracting the same 
integer number from n,у and «;7, respectively. If л - = h(nij +  nj i ) IS integer 
so is the difference ri-j =  \ (п^ -  л;7), which can be reduced to zero. Other
wise naij is half-integer and we can make the transformation 

n°ii +  €ijkMk and reduce nJ- to ±1/2  for i >  j.  This defines what we 
have called the quasi-symmetric gauge. In it, the symmetrized jump 
numbers nf; for i Ф j  and i =  j  run precisely through all half-integer and 
integer values, respectively.

We now turn to the further defect gauge invariance (9.16)

4 ( x )  4 ( x )  +  i(V ,fy (x ) +  VyN,(x)). (10.1’)

This will be used to bring njj to the gauge

n |2(x) =  0 , nb (x ) =  0 , n},(x) =  0 . ( 10.2 )

Suppose fl/y(x) did not satisfy these conditions. Then we can always 
perform the transformation to a new set of jum p numbers r t f  {x) via

n?(x) =  < ( x )  +  i(V,A/; (x) +  V,N,(x))  (10.3)

which do. The integer transformation functions N,(x) are determ ined 
uniquely when we specify the boundary conditions (9.20), (9.21) for 
nM(x)\

V3* u (* „  *2, 0 ) =  0 , ^ ( * „ * 2, 0 ) = 0 , / $ ( * . ,  0 , * 3) =  0 , (10.4a,b,c)

nf2(0, x 2, 0) =  0, (10.5a)

«S (0 , 0, x , )  = 0, n g (0 , *2, 0) =  0, V ,/jg(0, x2, 0) =  0. (10.5b,c,d)
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In two dimensions, the analogous conditions are

Л22М  = 0 , /i?2(x) =  0 . (10 .6a,b)

with the non-zero component satisfying

0 ) = 0 , V2/?n,(jfj, 0 ) = 0 . (10.7a,b)

We will first consider this simpler case of two dimensions. Since the 
remainder of this section deals exclusively with /rj(x), Л/Дх), we shall, 
from now on, omit the superscripts s. Inserting (10.6a,b) into (10.3), we 
find the difference equations

”22(x) = V2N 2(x), n l2(x) =  k(VlN2(x) +  4 2N l(x)). (10.8)

When solving these it is useful to introduce the inverse of the difference 
operators as the following specific sum, valid for X\ ^  1

^ / j ( x )  =  £ / W ,  x2, ДГ,), (10.9)

with a similar expression for V J1, V3 *. For x\ <  1 this sum is defined via

f ^ - / ) ( x )  = £  f ( x \ , x 2, x , ) -  £  f (x'b x 2,x>). (10.10)
\ v l /  .rj =  - x  *; = - *

Thus the operation ( ( 1/V ,)/)(x) satisfies the boundary condition

( ^ / ) ( o , * 2. * 0  =  o. ( io . l i )

For brevity, we shall often omit the parenthesis and write V| l/ ( 0, дг2* 
*3) with the tacit understanding that x x =  0 is taken after the operation
vrl.

Using this notation, we can write the most general solutions of (10.8) as

N 2(X) =  ^«22<X) + / 2(*l) (1 0 .1 2 )
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and

N,(x) = ^ ( 2/iI2 -V,yV2) + / , ( j Cl)

1 V,
-  2 — n ]2 — ^ 2 >ь2(х) — x 2V\f2( x l) + / i ( * i ) ,  (10.13)

where f \ ( x {), f 2(x\)  are two arbitrary integer-valued functions of X\. 
Taking this N |, we can now calculate the non-zero component

Нц(х) = «п(х) + VjTV,

= #l?,(x) +  2 ^ If 12 -  ^ « 2 2  -  x 2V ] f 2( x {) + V ,/ ,( * ,) .  (10.14) 

We now make use of the boundary condition (10.7a) and find [by (10.11)] 

/ | ( л )  = ^ » м ( ^ | .  0) +  C|. (10.15)

where c { is an arbitrary integer number. If we, on the other hand, 
differentiate (10.14) with respect to a 2 and set a'2 = 0 afterwards we find

V2/iM(jCi. 0) = VyiVKx,, 0) + 2Vlw12(jrI, 0) -  V t/2(a ,). (10.16)

Now we invoke the second boundary condition (10.5b) and determine /»:

-  2V,/712)(a',, 0) + c2 + г2a*i, (10.17)
м

where c2, r2 are integers. In this way we arrive at the two integer 
functions

N,(x) = 2 ^ - /ip (x )  -  z ^ /b 2(x) +  x 2 —  (V2/iM -  2Vi/i12)(a*i, 0)
V 2 V 2 Vj

1+ y -« l l (x )  +  C| ~ rX2-

N 2(x) = ^ - n 22(x) -  4 ( V 2/Jii -  2V1/i,2)(jt,. 0) +  c2 + nr,. (10.18)
V 2 V f
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The constants cb c2 and r cannot be determined further in principle, since 
they do not change /i/y at all under the transformation (10.3).

Notice that these constants have a simple physical meaning. The 
constants Ci and c2 amount to an integer-valued translation, m,(x)—> 
w,(x) -I- Cj while the constant r is the integer-valued version of an 
infinitesimal rotation of the entire crystal w,(x)—► m,(x) + re^xj.

Let us now generalize this procedure to three dimensions. Here the 
conditions ( 10.2 ) amount to the following difference equations:

" 22M  = V2/V2(x), л33(х) = У3УУ3(х), n ]3(x) =  i (V,/V3 + V3/V,)(x).
(10.19)

They are solved by

Л'з(х) =  ^ Я зз(х ) + b ( x ДГ.,), N 2(x) = £ -n22(x) +  / 2(x ,, x3),

Л/,(х) = 2 rj-;i,j(x ) -  ^ - N 3(x) +  / ,(* ,,  x2)
V 3 V 3

=  2 - j - n L,(x) - ^ 5 Л з з ( х ) - ^ 7 | /з(Х|,дс2) + f \ ( x u x2), ( 10.20 )
v 3 V 3

where / ь / 2 and / 3 are arbitrary integer functions of their arguments. For 
the discussion to come it will be useful to denote the determined parts of 
Nj by R,  and write

W2.3(x) =  N2 3(x) + / 2.3(jc,, лг3>2),

/Vj(x) =  Л/,(х) -  x ^ j ^ x ^ x i )  + / 1(^ 1, x2). ( 10 .21)

The initial conditions (10.4a-c) lead to the following difference equations 
fo r / , :

V3n n (x l4 jc2, 0) = V1V3/?i(jci, *2, 0) -  V2/ 3(xb x 2), (10.22a)

Яц(дт1, x2, 0) = x2l 0) + V ,/i(j:i, x2), (10.22b)

0 , x3) = {(V lf )2 + V2Ri)(x i ,  0 , x3) +  iV ,/2(xb x3) + 2^ 2fi(x\y 0).
(10 .22c)
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The first and second can be solved by

V3 V3 ^
/з (* ь  *2) =  - ^ й я и(*1. х г, 0) +  — N|(jT|, x 2, 0) +  Cy(x2) + d3(x2)x , ,

1 1 (10.23a)

f l(Xl,  *2)= :^ - 'l l l ( * l ,  *2> 0 ) - # , ( * , ,  X2, 0) +  C |( * 2) = f l ( x Ь X2) + Cl(x2)- 
V1

(10.23b)

With these we find from (10.22c),

/ 2(^ 1. * 3)  = ^ - [2 « ,2(^ i . 0, * 3)  -  V2R , ( x , ,  0, лг3)]
V 1

-  f i 2( x u  0 , *3) -  ^/|(ДГ|, x2) -  с1(0)дг, + с2(*з)
V 1

=/•>(* 1. *з) -  ci(0)jr, +  с2(дг3), (10.23c)

where we have denoted the simple lattice derivative by a prime, for 
brevity.

In order to determine the functions Cj(*2), c2(x3), c3(*2) and d3(x2) we 
now turn to the initial conditions (10.5) which read

И 12(0 , Jf2 , 0) (V, tf2 + v 2t f ,) + H V ./2 +  V2/ , )  -  lc{(0) +icJ(X2),
(10.24a)

n „ (0 , 0, л:,) =  4 (V2# ,  +  V2R 2) + KV2/3 +  V ,/2) +  к з (0 )  +  ic j(* s).
(10.24b)

я23(0 , x 2, 0) = i(V,/V3 +  V,W2) +  i (V2/3 +  V3/ 2) +  5cj(x2) +  2 2̂(0),
(10.24c)

V |/i^(0 , x 2, 0) =  i  (V|V2N 3 +  V,V3t f2) +  i(V  1V2/3 +  V1V3/ 2) +  Ы з ( х 2) .
( 10.246)

From the first equation we find
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С ,Ы  =  2 ^ - и,г(0, дг2, 0) -  ~ - R 2(0, x 2 , 0) -  /?,(0, x2, 0)
V 2 у 2

- x 2V ,/,(0 , 0) - / , ( 0 ,  x 2) + c[(0)x2 + gl 

=  f i f e )  +  ci(0)j:2 +  £ i. (10.25)

where ci(0 ) =  - r 3 and g, remain arbitrary integer constants of integra
tion. The second equation gives

C2( X y )  =  2 z J - /7 23( 0 ,  0 ,  X y )  ~ ^ f i y ( 0 ,  0 ,  X y )  -  N 2 ( 0 ,  0 ,  X y )
V 3 V 3

— *з^2/з (0 , 0 ) *3) ~  сз(0 )*з +  gi

= ?2{ x y ) - c m * y  + g2, (10.26a)

with c 3( 0 )  = r h  g 2 being arbitrary integers.
The third equation leads to

c, (x2) =  2 ^ и , , ( 0 , *2, 0 ) -  Я 3(0 , x2. 0) -  ^ R 2(0 , x 2, 0 )

- 7 з ( 0 ,  x 2) -  x 2Vy?2(0,  0) -  c ;(0 )x 2 +  gy.

Inserting (10.26a) evaluated at X y  = Q, the second line becomes 

- c 2(0 )jc2 +  с3(0)дг2 +  gy,

and we may write

c,(x2) = £3(^2) + c m  x 2 +  g3, (10.26b)

where

c3(x2) =  2 ^ 5 /123(0 , x2, 0) -  $ з (0 , *2, 0) -  ^ iV 2(0 , x2, 0)

~ /з (0 , x2) -  x 2V3f 3(0, 0 ) -  c2(0) x 2. (10.27)

There is only one constant of integration, g y .

Finally the fourth equation (10.5d) is solved by
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-  53(дг2) -  r2 , ( 10.28)

where r2 is a constant of integration.
In this way we have determ ined all /V,(x) uniquely, up to the following 

arbitrary integers,

AN2 =  r$x i — r, *3 +  g2, A Ny = r xx 2- r 2x x +  g3, A/V, = r2x 3- r 3x 2 + g[.

These are integer-valued versions of translations plus infinitesimal 
rotations of the crystal as a whole. It is not possible to fix them any 
further since they do not contribute to the defect gauge transformations

10.2. PHYSICAL CONTEN T O F IN T EG ER -V A LU ED  DEFECT 
G A U G E  IN V A RIA N CE

Previously, in the X Y  model, we saw that defect gauge invariance had a 
simple physical interpretation. It implied that the partition function does 
not depend on the way in which the jumping surfaces of the vortex lines 
are chosen. The same situation holds in the present case of defect lines. 
In order to see this, let us recall once more the classical theory of 
plasticity, which is formulated in the continuum. In the limit of zero 
lattice spacing, the jum p numbers n^ go over into what is generally called 
the plastic part of the strain tensor (apart from an overall factor; see 
Section 2.9). The exponent in the partition function (10.1) becomes the 
lattice version of the elastic energy in the presence of plastic deformations

Note that as long as we are not interested in the statistical mechanics of 
the defects ensemble, but only in the elastic properties of a fixed given 
plastic deform ation, then these properties can all be extracted from the 
partition function:

(10.29)

(10.3).

M
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= J @u,(x)e (UT)ldDx\MUii -  ufi)2 + <A/2)(«„ - (10.31)

Following the same procedure which lead us to (9.22) from (9.14) this 
can be brought into canonical form,

Z  = j  @u,(x)f @ <T:j (x) - (-'(! +»)>«.) + '»,("* -  «?>, (10.32)

where cr,y is the fluctuating stress field. The plastic strain acts as an 
external source to the stress field. Minimizing the exponent we find the 
Euler-Lagrange equations

д/ст}, =  0 , ( 10.33)

with

°~ij =  7  [2/л (uij -  ufj) +  A6ij(ue€ -  upn ) ] .  (10.34)

Inserting the second into the first gives

-[/x(V 2w, + did( u() + А = -(2/xd/Mg + A d/iiff). (10.35)

Thus the plastic strains have the same effect upon w,(x) as a volume force

/f(x) = -(2 /xdX  + Aa#«ffc). (Ю.36)

Using the expression (1.90) for the Green function we can solve (10.35) 
and obtain

W|(x) =  2 / l l  fd*V [a*G ,y(x -  x')wf*(x') +  ” - d j G i j ( x  -  x ' ) u pe e ( x ' ) )

J 1 Zv (10.37)

With the explicit expression, G/;(x -  x') = (1 /87171) (5,yV2/? — (1/ 
2(1 -  v))didjR), this becomes
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If we wish to use this formula to calculate the displacement field of a 
defect line we must choose ufj appropriately. From the discussion in 
Section 2.8 we know that и? describes the discontinuity across some 
cutting surface S  whose boundary is the defect line. The multivalued 
gradient д,м; has the property

when encircling the boundary line of S. This corresponds to the non- 
integrable “ plastic” part of w, having the form [compare Eqs. (2.60)-

Inserting this expression into (10.38) and restricting it to a pure dis
location line (П* =  0) we find Eq. (3.13) which was derived in C hapter 3 
via V olterra’s cutting procedure. Formula (3.13) was valid only for x 
values which did not lie on the cutting surface. It is possible to change the 
position of the surface as long as the boundary line is anchored on the 
same dislocation lines. If the surface S is changed to S ', the difference of 
S  and S' forms a closed surface. For a pure dislocation line the difference 
between the two plastic gradients is

But the 8, function on the right-hand side can be rewritten as the gradient 
of the volume V enclosed by S' — S  so that

(2.62)]
d,u f  = S,(S)(b, + ej H ( lkx t ). (10.39)

For the strain tensor this amounts to

=  2 8j(S)(bj +  ejk(Clkx c) +  (//).

а,ир  -  8,-uf = [5,(5 ') -  S,(S)]b,  =  8, (S’ -  S)bj.

diU?' -  d,uf  =  - d , 8(V)b,
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[recall Eq. (8.20), Part II). Thus we see that under changes of the cutting 
surface of a dislocation line the plastic gradients undergo a gauge 
transformation

d iu f -> d iu f  -  di8(V)bj.  (10.40a)

Correspondingly, the plastic strains transform like

< - » « { f - i ( M ( V ) ^  + ay8(i0 W .

The energy (10.30) is invariant under this transformation if we simul
taneously change the displacement field w,(x) by the trivial Volterra 
operation

мДх)—» m, ( x) -  8(V)bi  (10.40b)

[recall Eq. (2.60)]. This was the way we demonstrated that in the 
continuum the defect gauge invariance is a manifestation of the 
irrelevance of the position of the Volterra surface. As long as the 
boundary line stays fixed, it does not matter where the cutting surface is 
placed.

Let us now come back and consider the discrete case of a cubic crystal. 
For this case the 6-function over a volume can 'be represented by an 
integer field N(x) .  The trivial Volterra operation for a dislocation 
(10.40b) is given by

u , ( x ) - >  Uf(x) -  N a ( x ) t f a\

where b\a) for a  =  1, 2, 3 denotes the three fundamental Burgers vectors 
( 1, 0 , 0 ), (0 , 1 , 0 ), or (0 , 0 , 1), respectively, i.e.,

The higher Burgers vectors with 2b,-a\  36,-a) are obtained by choosing 
Na(x) =  2, 3, . . .  over the volume V in question. If the crystal contains 
dislocations of any strength and of both orientations for each fundamental 
Burgers vector, the Volterra operation becomes

W /(x)-»u,(x) -  £  Na (x)b{ia\
a

(10.41)
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where Na (\ )  can be any integer num ber 0, ± 1 , ± 2 , . . .
We now take the energy (10.30) and rewrite it as a lattice sum,

Ti (V/W/ +  V/M/ - 2 wg) 2 +  ^ J ]  (Vf M((x - € ) -M ? t( rx - € ) )  j -

(10.42)

This is invariant under (10.41) if the plastic quantities undergo simul
taneously the following changes:

u'/(x) -»  u''(x) -  Д Е  V,Na (x )b ja) + ( i j)

= «/>(*) +  ^ ( E  nia( \ ) b ) a) + . (10.43)

The integer vector fields /7ya(x) =  -V ,N a (x) are, of course, the lattice 
versions of the 6y(S)-functions which are singular on the surfaces Sa of

The plastic field of a defect is obtained by allowing the surfaces to have 
a boundary in which case all the vectors лвДх) become independent 
[rather than being the three com ponents of the gradient of the field 
N (of)(x)]. Therefore, the general dislocation configuration is represented 
by the integer plastic tensor

< (x )  =  ^ E ( » , „ b ) o )+  (')'))• (Ю.44)
^ a

Using the explicit form of the fundamental Burgers’ vectors 6 ,-a) =  8ai we 
find that

Mf(x) =  i W x ) + « / / ( x ) )  (10.45)

or, for the plastic part of the lattice gradient itself,

V,wf(x) =  /7fy(x). (10.46)

These are precisely the jump numbers introduced previously.
Note that in the presence of defects the impossibility of assigning a 

unique rest position to the atoms, from where to measure the displace-
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merit fields w,(x), becomes quite obvious: If we consider the specific edge 
defect shown in Fig. 2.10, we see that the two choices of a Volterra 
surface S and S' correspond to two natural assignments of original lattice 
positions where the displaced atom has come from. When shifting S to S' ,  
which means that the plastic strain tensor undergoes a defect gauge 
transformation of the type (10.43), this assignment shifts m, ( x ) by a lattice 
vector (1, 0, 0). As a consequence, the displacement field is transformed 
by an integer field

m , ( x ) - » W i ( x )  -  N{\).

This is precisely a trivial Volterra operation of the type (10.41) which 
accompanies a defect-gauge transformation (10.43), thereby keeping the 
elastic energy invariant.

The observable quantities in the presence of defects are not the strains 
themselves but only the differences of the total strain and the plastic 
strain, i.e., the proper elastic strains

These are defect gauge invariant quantities. The physically observable 
stress is proportional to this quantity, i.e.,

*fys = 2м(“ч - UH) + Щ ( иее ~ Uce)

[compare (10.34)] and, as such, it is defect gauge invariant as well.

10.3. INTERACTION ENERGY BETWEEN DEFECT LINES 
FROM THE DEFECT GAU GE FIELD

In Part II, Chapter 8 , we saw that the defect gauge field allows for an 
alternative simple derivation of the interaction energy between vortex 
lines. The same thing is true for crystalline defect lines. For simplicity, we 
shall consider only defects in the continuum limit and use as a starting 
point the partition function of elasticity in the presence of an arbitrary 
plastic deformation (10.31),
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Z  =  J  S>u,(x) -  <>! + «лх*,, -  .'!•,)-] (10.47)

W orking out the exponent gives

~ f  J rf3j:| ^ “.(x)(-M V 2S,y -  (A + n)djd j )u j (x)  -  2fiui(x)d,u?j(x)

-  Am,(x) a , < f (x) +  /ли?2 +  ^ и?? j  • (10.48)

Going to the defect gaugea dfujj =  0, the first coupling to the plastic strain 
vanishes. After a quadratic completion, the Boltzmann factor for the 
defect-gauge field becomes

g - ( \ I T ) [ \ d yx ( t i u f  + (AI2)u fi)  -  (A-/2) j< t\xd\xЧ « м  (x)G„ (x  -   ̂Ю .4 9 )

where

G" (x “ x>) = 1 й е',<х‘ " ( Й [ ^ ( ч 4  " q,q>)+
(10.50)

is the elastic G reen function. This satisfies

e,G,r (x -  x') =  7- ^ - d , . v ( x  -  X'), (10.51)
Л + 2/л

where v(x -  x ') is the Coulomb G reen function J  (d3q/(27r)3)e'4(x-x) 
( 1/q2), so that

a,a;.G ir(x -  x') =  - э , a,. G„. (x -  x') =  л +* (Ю.52)

and (10.49) simplifies to

“For integer-valued defect-gauge fields, this is an illegal gauge. Recall the discussion in the 
superfluid case (Section 8.4, Part II). For the derivation of the defect energy, however, this 
does not matter. The argument given there also holds here.
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e - ( ! /n J < r t r ( | t t i f  + (A/2)i»f/ — (A-/2(A + 2M))«{?) =  e ~ ^ T ) \ d x { u f  + (A/(A + 2M ))«/£)

Using the Poisson ratio v = A/(2A + 2yu.) we can also write

A _  v 
A + 2pt 1 — v

It remains to express m£2 and w?2 in terms of the defect tensor

Vijix) =  £ik(’ £jmn дц dni ufn (x).

With the identity (2.53) we get

Щ  =  - V 2*/# +  ( V %  -  d , d j ) u lf ( +  ( d . d k u i j  +  ( / / ) )  -  8 i j d k &t u £ €f

tjk = V2wff — dk d( u% f .

In the transverse gauge, d*w*f =  0, we have directly

Vet =

so that

j d 3xu tf  = f d 3xvcc(x)^Va(x)-

Furtherm ore, since

r)jj = — V2mJ + (V25fy — djdj)ufc*

we see that

J  d3Jtt^(x) = J  d3x(V2ufjV2uf; + 2didjuf/ V2ufc)

and find, in the transverse gauge,

J d 3x u f ? ( x )  =  f d 3x V i / ( x ) ^ V i j ( x ) -

(10.53)

(10.54)

(10.55)

(10.56)

(10.57)

(10.58)

(10.59)

1027

(10.60)
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This brings the Boltzmann factor (10.53) to the correct form [recall 
(5.31), (9.109)]:

-(M/r)Jrf'jr[ji,y(x)(I/F,)T,(/(x) + (y/(l -  v))V,( M(\/V*)rj(((x)) (10.61)

It should be pointed out that the present type of derivation is the most 
convenient one when working with crystals of arbitrary symmetry. The 
partition function (10.47) is then

z  = J  @ M/(x) e-(VT)fd}x(l/2)ci/i((uif - «*)(!,*, - upk() (10.62)

and (10.48) becomes

cijkC ukC

(10.63)

A quadratic completion in u,(x) brings this to the form

* т { / л [ й
-  J d 3x d3x' ^uZt (x)ck(0d,3- G,r (x - х')с,т *ч Х т  (x ')j ’ (10.64)

where G//>(x — x ') is the elastic Green function which solves the 
differential equation

—с,у*<Э,-Э( G*„(x -  x ') =  S/„S(3)(x -  x '). (Ю.65)

If D(d) is the determ inant of the matrix M ik =  - c ijkcdjd( and Dk„(d) are 
the cofactors, Gkn(x -  x ') is given by

Gkn(x -  x ') =  Dkn( d ) D ~ \d ) .  (10.66)

From (10.64) and (10.66) and the general closed form expressions for Gkn 
given by Every (1980) (cited in Chapter 1) it is, at least in principle, 
straightforward to find the long-range forces between defects in any 
crystal.



10. DEFECT GAUGE FIELDS 1029

10.4. TH E DEFECT M ODEL AS AN APPROXIM ATION TO A 
FIRST-PRINCIPLE N-BODY PARTITION FUNCTION

Up to now, the construction of the defect model of melting was based 
completely upon analogy with the X Y  model of superfluidity. It is 
instructive to see under what approximations this model can be derived 
from the fundamental partition function of /V atoms. Assuming only pair 
potentials for simplicity, this reads

In this formula, the positions of all N  particles are counted from one 
common  origin. In the crystalline state at low tem perature, the partition 
function becomes

where x and у are the lattice positions.
Upon heating the crystal, the atoms begin fluctuating around these lattice 

positions. As long as the temperature is low enough it is economical to 
describe the ensemble of positions not be using the common origin but by 
specifying the displacements of each atom from its zero tem perature rest 
position, i.e.,

If, in this formula, the displacement field is chosen so as to correspond 
to a permutation of all atoms, then the integrand is invariant. The N\ 
possibilities of doing this are cancelled by the prefactor 1 INI 

For the purpose of introducing defects it is essential to realize that the 
choice of the ideal crystal positions x as reference positions was a matter 
of convenience. We could have, instead, used an arbitrary distorted 
crystal. Among all these possibilities, an important role is played by a 
reference crystal whose position vectors differ from those of an ideal

(10.67)

(10.68)

x' = x + u(x).

Then the partition function can be written as
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FIG. 10.1. (a) A possible alternative to an ideal crystal of reference positions for the 
displacement field. It differs from the ideal crystal by a shift of an entire section by a lattice 
vector. This is a trivial Volterra operation x - + x  +  aN (x). (b) In constrast, this shows a 
reference frame with defects.

crystal by special regular deformations. They consist in a shift of an entire 
section by a lattice vector. Such a shift may be written as

x —»x +  tfN(x). (10.70)

An example is shown in Fig. 10.1, where a small cube has been displaced 
upwards by one lattice spacing. We recognize a trivial Volterra operation 
of the type (10.41). This operation has created a layer of missing atoms at 
the bottom and a double layer of atoms at the top. Obviously, we might 
just as well use these shifted positions to define the displacement field 
w(x). For low tem perature, the pair potential between the atoms will 
spread the double layers on top apart, due to the repulsive cores and 
remove the large distance across the empty layer on the bottom. The 
lowest energy state in the partition function will again be given by the 
equilibrium positions of a perfect crystal within the displacement field 
which is

и,-(x) =  - aNj(x). (10.71)

There is no physical content in this change of the crystalline reference 
frame by a trivial Volterra operation.

The situation changes drastically if we permit, among the reference 
frames, crystals in which there are isolated layers of double or missing 
atoms without a near-lying counterpart. When turning on the pair
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interaction, double layers will spread apart and gaps will be closed. But if 
the counterparts are absent or lie too far, it is impossible for the crystal to 
return to the perfect state. Thus the crystal will contain defects. If we are 
to include this possibility in the statistical mechanics of the system, we 
have to sum in the partition function (10.69), over all such crystalline 
reference frames which contain defects:

z pox = TT. £  n [  f  du,-(x) 1 - г * “(»>- «fr))_ (10.72)
{x} x, i L J  -so J

w ith dcfccts

The characteristic feature of the “defect frames” is that the difference 
vectors (x -  y)j can no longer be brought to an ideal crystal by simply 
adding two integer fields

fl[ty(x) — Ni(y)].

In particular, for nearest neighbors, it is not sufficient to add

a[N,ix + j) -  Nj(x)] = aVjNi(x)% (10.73)

i.e., to add a lattice gradient of an integer field. Instead, the difference 
between points in the defect and in the ideal frame is given by

у
X; ~  У/ldcf. =  Xj ~  yjidcal +  A E  «//(X) (10.74)

X

and the result depends on the path chosen for calculating the sum on the 
right-hand side. The numbers л/7(х) are, of course, the jump numbers 
introduced before into the model.

It is now straightforward to see to what approximation the model 
emerges from the full partition function (10.72). Consider first the ideal 
reference crystal. Assuming the displacement field to be small we can 
expand the energy as follows:

I  E  Ф(х -  у) + г  £  Э,ф(х -  у)(«,(х) -  и, (у))
^  х ф у  ^  хФу

+ \  Е  Э/Э/Ф(х -  у)(и,(х) -  и,(у))(иДх) -  uj(у)) +  . . .  (10.75)
^ хФу
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For a very smooth displacement field, the second and third terms are 
written as

\  S  й,Ф(х -  у)(* -  y ) j  V,M,(y)
Z х ф у

+ 7  S  Э,Э; Ф(х -  y)(jr -  y )* (x  -  y ) t Vk Ui(y) V( u,(y). (10.76)
^ x^y

Since the reference crystal represents the equilibrium positions, the linear 
term must be absent,

£  Э,Ф(х)лу =  0. (10.77)
x * 0

Further, since a smooth uniform rotation Vk u, = \ e k i ( cannot  change 
the energy, the constants

скщ  =  \  S  didi <^(x)xkx,  (10.78)
z  x * 0

must be symmetric in ki and i j  and we can identify them with the usual 
elastic constants c kilj  introduced in C hapter 1.

For central forces,

Ф(х) =  ф(х2), (10.79)

one has

Э,Ф(х) =  2х,ф'(х2), 

д,д,Ф(х) =  28,i ф'(х2) + 4х,х;ф"(х2).  (10.80)

and

ckitj = Е  [8,у<А'(х2) + 2х 1х,ф'Хх2)]хкх с . (10.81)
хФО
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The equilibrium condition reads

Y  д/Ф(х)*у =  2 Y  Ф'(x2)XjXj =  0 , (10.82)
x * 0  х=з*0

so that the first term in (10.81) vanishes and the symmetry is manifest, 

Cue/ = 2  E <l>"(̂ 2) x ixjx kx f .  (10.83)
X

For a defect frame, the lattice gradients V*w,(x) in the equilibrium 
positions are no longer zero. Instead, they prefer to be as close as 
possible to the jump numbers nki(x). Only then will the equilibrium 
positions locally resemble that of a proper crystal. Thus an expansion of 
the energy has to be performed in powers of (V*m, -  anki) rather than 
Vk Uj. Far away from the defect line, the elastic energy will be practically 
the same as that for an ideal crystal. Obviously, the approximation of the 
Villain form of our model of defect melting, (10.1), consists in assuming 
that this approximation holds throughout the crystal.

NOTES

The integer valued defect-gauge fields were first discussed in the references quoted at the 
end of the previous chapter.



CHAPTER ELEVEN

THERMODYNAMICS OF THE MELTING MODEL

In the following two chapters we are going to analyze the thermal 
properties of the lattice model of defect melting in a way similar to that 
employed in the Villain model of the superfluid phase transition. For this 
we shall first expand the partition function Z of (9.40) into a high 
tem perature series.

11.1. H IG H TEM PE R A T U R E  EXPANSION

We will proceed in two steps. First we sum over all defect tensors i?,y(x) 
which satisfy the defect conservation law

V,4 i)(x) =  0 . ( I l l )

We shall do so by letting т/ц(х), t/22(x) run independently through all 
integers and t7i2(x) through all half-integers while adjusting the remaining 
components in a unique way so as to satisfy (11.1). This is achieved by 
choosing

1034
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V \3 =  V3i = + V2rj2,), (11.2)

V23 =  V 32 =  - 5 - ( V | l? 12 + V2422). 
v 3

(11.3)

and

**733 ~ (^1 ^13 +  V2V21) - ^ ( ^ 2\Vn  + ^ 2^22 +  2V,V2 t?i2). (11.4)

It is understood that the boundaries in each equation are treated in the 
same way as previously in the equation

?3 = - ^ ( V | « , + V 2 f2), (11.5)

which was discussed in Part II [discussion following Eq. (6.40)]. 
Using the stress gauge Xi3 = 0, the defect coupling is

Therefore, the sum over the independent numbers rjih V221 V 12 forces the 
gauge fields * n (x ), * 1г(х) t0 become integer and the partition
function turns into the sum

Z  =
М2

(2 tt/3)

x  ^  e-(i/20)s,{S,</o| + (i/2i)E1ff5-(i/2y)(!:(ff,((*-O):)> (ц .б а )
{* ||. X22. * 12}

This sum over all integer stress-gauge fields *ц(х), *22(x), ^ ( x )  
produces precisely all integer-stress fields ay, which satisfy the divergence 
condition V,<7y(x) = 0. Thus we can rewrite the sum also as
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£  _ — £  0 •
{^11,^22*^12} №ij)

( 1 1 . 6 b )

In two dimensions, the sum m ation over the defect tensors tj/;(x) reduces 
to the single sum over rj(\) in (9.57) leading to the partition function

Z  =
(2У 1

М2 1
3 N

X £  e x p j - - ^ £  
<*(«» L 2/3 ,

( у 2тф)

* Ъ + ^ ( * ? .  +  ? 12) - ^ ( М х - 1) + * 22(х - 2 ))2

(11.7a)

rather than (11.6). The sum over the integer stress-gauge field /V(x) can 
again be replaced by a sum over conserved integer stress fields

£  — Yj
{*} {*,/}

(11.7b)

The high-tem perature expansion in now obtained by finding successively 
larger and larger <t;; (x) configurations which satisfy V,<f,y(x) =  0.

The physical interpretation of this expansion is quite clear. In the hot 
crystal, (3 is so small that no cr,y configurations can contribute. The crystal 
is completely stress free. For lower tem peratures, clusters of atoms form 
by fluctuations which are locally capable of supporting stress. For 
decreasing tem perature, these regions become larger. At the melting 
tem perature, stress is allowed to spread over the entire crystal.

We shall study this process now in detail and consider first the case 
of two dimensions. At very high tem peratures, where all cr,y(x) con
figurations are frozen out, Z  has the limit3

М2

(УТтф)3 N ( 2 0  1 + W

-М 2

(У П ф )зы
(11.8)

In order to find the stress configurations which form at lower tem pera
tures we may resort to two graphical methods. The first proceeds in close

“Recall that A =  2 /uf7(y -  D£) so that (1 -  D # y )  =  £/[DA/(2/t) + £].
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analogy with the superfluid case. We take advantage of the conditions 
V,crfy =  0 and represent the components

Ь У ' ш о - ц ,  b j2) =  <T,2, (11.9)

as two sets of closed non-self-backtracking random loops. In order to 
guarantee the symmetry of the stress tensor they have to satisfy the 
condition

(11.10)

If we draw ЬУ \ 6 ,-2) as oriented solid and dotted lines, respectively, this 
amounts to the rule that whenever there is a solid line f or \  it has to be 
joined by a dotted line ••••>••• or •••<••••, in the form

or

The lines —*—, — and r , i  , on the other hand, are unconstrained. 

The smallest possible configuration which complies with these rules is

0  7 7 7 ^ 7 7 .::.

(11.12)

If the lower left corner is taken to be the origin, the corresponding «re
values are given by

^n(O) = 1 , cru (2) = - 2, <rn (2 -2) = l,

022(0) =  1 , ^ 22( 1) =  “ 2 , ^ 22(2 * 1) = 1,

^ 12(0) =  —1 , ^ 12(1) = 1 . ^ 12(2 ) =  1 , ^ 12(1 +  2) — - 1 .

(11-13)
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Inserting this into (11.7), the Boltzmann factor becom es

£-(l/20)[4 + (1/2̂ )(1 + 4 + 1 + 1 + 4 + 1) — (l/2y)20) _  g-(l//3)(2 + 3/f-  S/y)̂  (Ц .1 4 )

The number associated with the third term (<гц(х -  1) +  cr22(x -  2))2/ 2 y  
is somewhat tedious to extract because of the shift in the arguments. B ut 
if we observe the identity

Yt ( o n ( x  “  1) +  ^22(x -  2 ) )2 =  E  (V-V*)2 =  E  (2a-\2 +  &2\i +  ^ 22)
X X X

(11.15)

and compare the right-hand side with the first two terms in the exponent 
of (11.7) we see that there is a simple way o f finding it: It has to be such 
that for f  =  1, у -  1 the exponent vanishes.

Graphically, the Boltzmann factor is found as follows: We simply count 
the numbers n( ........) =  n( [ ) ,  n(•— ), л ( ; )  of lines

■ 1 -

(11.16)

— cr12 — cr21

= ^11

=  O'22

in a diagram. If i denotes their multiplicity, we form

A = £  «('...... ) i2 =  E n ( i ) - ‘2.

B =  £ n ( . — •) • i2 +  S  n( i  ) • i2,

С =  2A +  B,  (11.17)

and obtain the Boltzmann factor

e-(l/40)(/t + (B/ZO - (Ct2y)) (11.18)

In the above graph (11.12), for example, we have
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«(•....) =л(1) = 4* 1, /?(•— ) = 2 -1 + 1 - 2, /!(;) = 2 -1 + 1 *2,
(11.19)

where the second factor in each product is the multiplicity i. H ence

A  = 4  1, tf =  2 * l  +  l -  4 +  2 * l  +  l -  4 = 1 2 ,  С =  2A +  В =  20, (11.20) 

and the Boltzm ann factor is then

-(1/0X 2+ 3 /* -5 /y ) (11.21)

as in (11.14).
By superim posing two fundam ental graphs side by side we obtain

» * ►

'a *
(11.22)

and count

«(...... ) = n(i) =  4 - l ,  n(-— ■) = 4 • 1 + 2 • 2, n(j) =  4 1 ,  (11.23)

so that

A =  4 -1 ,  5  =  4- l +  4 * l + 2 * 4 = 1 6 ,  С =  2Л +  5  =  24, (11.24) 

and the Boltzm ann factor becomes

e - ( lW (2  + 4 /f -6 /y ) . (11.25)

Obviously, this graphical m ethod quickly becomes very complicated. 
Fortunately  it is possible to develop a more economical procedure based 
on the stress gauge field ^(x). This has the advantage that for w hatever 
choice o f ^ (x ), the stress tensor сггу =  eikejeVkVeX(x) is automatically 
traceless and symmetric. In fact, the complicated configuration (11.13) is 
the result of the simple choice
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This follows directly from the explicit equations

,(x) =  Щх(х)  =  X(x) -  2X(x -  2) + X(x -  2 •  2),

O22M  =  V^Cx) =  * (x )  -  2V(x -  1) 4- * ( x  — 2 1),

o-|2(x) =  - V , V 2J (x )  =  -Л'(х) +  * (x  -  1) +  * ( x  — 2) — X{x — 1 — 2).

The field configuration (11.26) can be represented  graphically by a single 
point at the origin

A'(x) =  5Xi0. (11.26)

The calculation of the stress energy is also straightforw ard. All we have to 
do is to use the explicit gradient form given in (9.55),

e -(I/4№ to){V|V,V2V2 + (I/2fl|(V,V,)J + (?2V2)J) - <l/2y)(VV):}*(x) (11.27)

W e rewrite it as

e-(I/4p)E4J(x){(V V)-'(l -(I/y)) + |(V,V,)3 + (V;V:)-J«l/£) - l))*(x) (11.28)

The lattice Laplacian of *(x) is found directly from  the following rule: G o 
around each lattice site and count the occupancies of all nearest 
neighbors. Then subtract four times the occupancy of the point itself, and 
square this num ber. For the operators (V jVj)2 and (V2V2)2 we follow the 
sam e procedure in the 1 or 2 directions only, subtracting only twice the 
occupancy of the point itself. For the diagram  (11.27), we find the 
Laplacians
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(V2V2): =  6

This gives a Boltzm ann factor

: e

(11.29)

(11.30)

in agreem ent with (11.14). The superposition (11.22) corresponds to the 
X graph

(11.31)

Its sum over Laplacians is easily found,

(V-V)2 1

1 1 

t I i

N
9

1 i 
1 1

1 = 2 4 ,

(V ,V ,)2 1-----5— 5-----1 = 4 ,

(V2V2)2

so that the Boltzm ann factor is

M 1'4 |4  
1 ' l

=  12,

: e

(11.32)

(11.33)

The X graphs have the further advantage that it is easy to see how many 
of them  go on the lattice. The graph (11.30) can obviously occur 2N  times 
(N  times for each sign of the “charge” of X). The other graph (11.31) has, 
in addition, two directions so that it can occur 4N  times.
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Let us now organize the graphs according to the o rd e r they have in an 
isotropic у  =  oc system. Then —f  ■ ■ goes like and will be said to  be of 
o rder 5 w h ile -f—f-goes like е~щ  and is of o rd er 6. A graph of the same 
order is seen to be

J - L

Т Г

for which the lattice Laplacians have the values

(V-V)-

(V .V ,)2

(V2V ,)-

and the Boltzmann factor is

1 1

1---------- ------1

‘П ^ Г 1
=  24

1 1

=  8

T F :

(11.34)

(11.35)

(11.36)

Since the num ber of graphs is again 2N.  the partition function up to o rd e r 
6 is

Z  =
(2 0 * V  2 У

N /2

(V 2 7 rj8 )3N 

+  6 Ne~[llfiy'Hi~{Uy)) + M{U()~ X)) +  }

j l  _j_ 2 yV e“ (W/,){5(i + 1)1

(1 1 .3 7 )
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FIG. 11 . la —b. Graphical expansion o f the D =  2 melting model (Villain type) according to 
integer stress gauge-field configurations. The lowest graphs o f order 5 and 6  are given in the 
text [Eqs. (11.30), (11.33), (11.36)]. The first column counts the number o f configurations 
on the latticc, the third and second to the last column the numbers #  in the Boltzmann  
factors -  ( ,;r)), e - ( i /0 )#(O/£) -  l)t respectively. The number in the third column is
also the order o f  the graph.
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FIG. 11.1 (continued)
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TA B LE 11.1. Summary o f Fig. 11 .la —c. exponents in the partition function Z =  1 +  
/V ^ > -0 № ( i - d / y )  + » i( ( i /f ) -Щ and in the partition function Z  =  1 +  NT. /"'(/З)/,(2/3£)"м 
I2{2pf)'": which will be needed later in Section 13.4 [Eq. (13.85)].

# Graph n m /71, m 2 t

2 N • 5 3 4 4 2 12

AN • • 6 4 4 8 2 16

IN
• • • • 6 4 4 16 0 2 0

AN
• • • • • • 7 5 4 2 0 0 24

AN • • • 7.5 5.5 4 10 3 2 0

8 N
•• • 8 5 6 12 2 2 2

AN
• • • • • • • • 8 6 4 24 0 28

IN • • • • • • • • • 8 6 4 24 0 28

16 N • •• • • 8.5 5.5 6 18 1 26

8  N • •• • • • • • 9 6 6 24 0 30

AN • • • • 9 7 4 12 4 24

AN
• • • • • • • • 9 7 4 28 0 32

AN
• • • • • • • • • • • • 9 7 4 28 0 32

\bN
•• • • 9.5 6.5 6 14 3 26

16 N • • •
• • • • 9.5 6.5 6 22 1 30

16 N •• • • • • • 9.5 6.5 6 22 1 30

AN • • • • • 
• • 10 6 8 24 0 32

8  N • • • • 10 6 8 16 2 28

16Л/ • •• • • • 10 7 6 2 0 2 30

16 N • •
• • • • • • • • 10 7 6 28 0 34

\bN • • •• • • • • • • • 10 7 6 28 0 34

AN
• • • • • •

10 8 4 32 0 36

AN • • • • • 10 8 4 32 0 36

2 N
• • • • • • • • • • • •  • • • •

10 8 4 32 0 36
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T he contribution of all diagram s up to o rder 10 are listed in Fig. l l . l a - c  
and sum m arized in Table 11.1.

If e ( n , m) stands for e x p [-( l//3 ){ /? (l -  (1 /y )) +  m ((l/£ )  -  1)}] the free 
energy can be written as

- 0/ = !  'og -  |lo g (2 ir |8 )  +  2e(5,  3) +  6<?(6, 4)

+  4e(7, 5) +  4e(7.5, 5.5) +  8e(8, 5) +  6e(8, 6)

+  16e(8.5, 5.5) +  8e(9, 6) +  12e(9, 7) +  48e(9.5, 6.5)

+  12e(10, 6) +  48e(10, 7) +  10e(10, 8) +  . . .  (П -38)

To this o rder, there is also one disconnected graph in Z

I 4N о 

\
N

adding to - f i f  a term

_£fdisc= _  18^(10, 6). (11-39)

The free energy as a function of /3 is p lotted for £ =  0.2, 0.4, . . . ,  1.2 in 
Fig. 12.2.

Let us now turn  to the case of three dim ensions. T he very high 
tem perature limit of Z is given by [see (11.6)]

— Л//2 j

(2ТГ/3)3"
(11.40)

with a free energy density

Z„ =
(2 & 1 - 3

М2

(2-тт/З) (2 0 3 1 +
ЗЛ

2&t

-fifo = - 3 log(2w/3) -  i |o g ( ( 2 |) ’ ( l  + ^ ) )  • (H-4 ')
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In order to construct the lowest stress diagrams in three dimensions, it 
is convenient to go into the stress gauge ДР3/(x) =  0. Then the stresses 
&ij =  Siki ei„MVkVmX(„(x -  I  -  n) are given by

^ ц (х )  =  V^*22(x), ^ 22(x) =  V̂ Aru (x), O’ j2(x) =  “ V ^ , 2(x), 

o-33(x) =  VtA'22(x) +  VtA'i^x) 2V| V2A'j2(x),

oS3(x) =  V3V j^ i2(x) “  ^ 3̂ 2*11 (x ) ’ ^ 1з(х) =  _ V3V,A'22(x) +  V3V2A'|2(x),
(11.42)

where we have set **я (х) =  Xfn(x -  £ — n), for brevity. The lowest 
contribution is obtained by choosing one element X€n to be non-zero.  
Taking, for exam ple, AS2(x) =  8x 0 we find from

](x) =  AV>(x) -  2A'22(x -  3) +  ЛЧ2(х - 2 * 3 ) ,  

cr33(x) =  ЛЧ2(х) — 2 АЧ2(х — 1) -}- Â22(x — 2 • 1),

o-,3(x) =  ~ X 22(x) +  * 22(x -  1) +  ЛЧ2(х -  3) -  ДГ22(х -  1 -  3),  (11.43)

the following non-vanishing elements

crn ( 0 ) = l ,  crn (3) =  - 2 ,  <rn ( 2 - 3 )  =  l ,

033(O) =  1 , 0-33( 1 ) =  —2 , (733(2 • 1) =  1 ,

<7I3(0) =  - 1 ,  crl3( l )  =  l ,  ^ |з(3)  =  1, a  l3( l  +  3) =  — 1. (11.44)

This can be pictured by the same diagram (11.13) in the 13 plane as in the 
two-dimensional case.

Since this diagram can appear in each o f  the three lattice planes with 
two orientations, the partition function has the lowest defect contribution

Z, =  Z 0 • N  • 6 e -iu m  + m  ~ (5/y))

=  z 0 'N '6 e ~ {m{2*i m ~{S,()v,{' + v))- (11.45)

A n independent low-order diagram is obtained by taking

T hen the equations

* 12( x )  =  S x . 0 . ( H -4 6 )
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f f» (x )  =  - 2 * 12(x) +  2AC|2(x -  1) +  2ATi2(x -  2) -  2 * I2(x -  1 -  2),  

^I2(x) =  - * u ( x )  +  2 * , 2(x -  3) -  AT12(x - 2  -3 ) ,

? 2.i(x) =  X|2(x) -  X,2(x -  1) -  AT12(x -  3) +  * ,2(x -  1 -  3),

a ,3(x) =  * i’(x) -  АГ|2(х -  2) -  * 12(x -  3) + * 12(x -  2 -  3) ,  (11.47)

give the following non-zero elem ents

av,(0) = -2 , a „ (l)  = 2, a„(2) = 2, aM(l + 2) = -2 ,

*12(0) =  - 1 ,  <Ti2(3) =  2, Ст|2(2 • 3) =  — 1

^-,(0) =  1. ст2Л(1) =  - 1 ,  5 2, (3 )  = - 1 ,  a l2( l  + 3) =  1,

а , , ( 0 )  =  1. а „ ( 2 )  =  - 1 ,  o - , , ( 3 ) =  - 1 ,  f fTJ(2 +  3 ) = l .  (11.48)

The energy ( l / 2 0 ) [ E , , <ya ?  +  ( l / 2 f ) E x, a ?  -  ( l / 2 y ) E x( E ( a u (x -  €))2] 
associated with these num bers is

This is much larger than (11.45) so that the contribu tion  of this 
configuration is negligible com pared with the previous one.

It is also possible to find in three dim ensions a high tem pera tu re  
expansion based on the integer-valued stress gauge fields * ц (х ) ,
* 1г(х)- The counting becom es, however, much m ore difficult than in two 
dimensions since the existence of a gauge sym m etry implies that large 
pile-ups of graphs are equivalent to a very simple graph in an o th er gauge 
and can therefore have a very low energy. F ortunately , the higher graphs 
becom e rapidly unim portant which shows that fluctuations in the three 
dimensional defect system are very small. As a consequence we shall be 
able to reproduce the M onte Carlo data very well using only the lowest 
stress graph and may dispense with the difficult task of developing the 
high tem perature series any further.

(11.49)

11.2. LOW  T E M PE R A T U R E  EX PA N SIO N

Let us now consider the opposite extrem e of low tem pera tu res . For 
T - *  0, The partition function has the classical limit [see (9.87)]
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* ~ - { J W T l!n s T T 2 ( f - l  ) K , K (

П — Г  = 7 r =  J (11-50)

М / Т  K -K  +  2 ( £ -  1)/Г, AT, 

In the isotropic case, this can be calculated right away yielding

z  , , =  ( ,  I I m l j B  I.  ̂ _____1_______ - ( 0 /2) / ( Л / ( 2»)°)1оек К
po, cl IV  J (2 + Л/МГ 2 ^

(VTnjS)0"  (2 +  A//x)W2 ’ (11.51)

with

' * / ( 0 > lo g K E  ( l l5 2 )  

being known from (6.206a), Part I ( t  =  1.16625 for D =  2, £ =  1.67339 
for D =  3). This am ounts to a free energy

D > „  „ч К  Л  A  f  1-16625 . |D  =  2,
-ДЛ, =  - ^ 1 0 8 ( 2 ^ )  - -log(^2 +  "J -  ( ц .6 7 3 3 9  f° r \ D  = 3. (1L53)

To this we have to add the contribution of the defect sum

Z  % = Y  e~4v'p0 + -  «*)«*') (1 1 5 4 )
{rj(x)}

in two dimensions and

^dcf =  Z] x 0e_47T'^i:*i'l5','(x>n"(x,) + (w/(l" (11.55)
Ых)} '17,' * ’

in three dimensions, where *’.*(х) is the lattice G reen function (9.61):
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(1 1 .5 6 )

Its values in two and three dim ensions are given in A ppendix  11 A.
Let us calculate the first few term s in these sum s.
In two dimensions, the lowest contribution which satisfies the defect 

and defect-m om ent neutrality [recall (9.75), (9.76)] is

This is a quadrupole of neighboring disclinations which can be pictured as

The expression is made explicitly finite by perform ing the two sub
tractions explained in Appendix 11A giving

where v2{x) is the lattice Coulomb potential S ( d 2k l (2 i r )2) e ik^(l/K  • K). 
Then V has the same form as in (11.59), except that all the potentials 
f 4(x) are replaced by the finite subtracted i>4(x). Notice that replacem ent 
is valid due to the properties of this Extj(x) and EXx?j(x). T he subtracted  
potentials have у4(0) =  0, tf j( l, 0) =  0, by construction, so that we arrive 
at

Tj(x) — 8X 0 — 8X j — 8X 2 +  1+2 • (11.57)

(11.58)

It has a stress energy

V 'f+ i) = \ E  v(x)i’4(x - X') v(x')
z x.x'

=  2 t4 ^ ( ° )  -  2t’-.(b 0) -  2Ы 0 , 1) +  2 p4( 1, 1)

+  21)4( 1, 1) — 2 r 4(0 , 1)

- 2 v4(1, 0)]. (11-59)

t>2(x) =  t>4(x) -  t>4(0) +  Jx2t)2(0), (11.60)

v (+ ± ) -2 i» S ( l ,  1). (1 1 .61 )



Using the numbers quoted in Table 11A.1 we find

k ( + ± )  =  2 ^  =  0.079577. (11.62)

The next higher contribution is due to the configuration

7}(x) =  Sx о ”  8x2  — 5* 2-1 +  8Хш 2-1 + 2* (11.63)  

corresponding to the diagram

II. THERMODYNAMICS OF THE MELTING MODEL 10 5 1

+ -'± (11.64)

It has a stress energy

v(+.±) = j( 4r4(0) - 2r4(0. 1) - 21-4(2. 0) + 2t'4(2, 1)

+  2 r 4(2. 1) -  2r 4(2 , 0)

— 2d4(0 , 1) )

=  2v'i(2. 1) -  2 r4(2 , 0)

=  2 - l _ 2 ( i - - l )  =  - - i  =  0.136619. (11.65) 
477 \ 4  4ttJ it 2

The second next contribution comes from

7}(\) =  8x 0 — 5x>_i +  8x%2 — 8X, | + 2, ( 11.66)

represented by

• +  
-  + (11 .67)

Its energy is
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к ( 1 | “ ) = 5 ( 4!’4 (0 ) -2 1 '4 (1 .  0) +  2 p4(0, 1) — 2 у4(1 ,  1)

-  2i'4(l, l) + 2»4(2. 1)

— 2u4( 1, 0))

=  «1(2. 1 ) - 2 г 5 ( 1 .  I) = ^ - - ^ -  =  ^ -  =  0.15915. ( 11 .68)
47Г 5 7 T ITT

Notice that the similar configuration .1 +  1" is ruled out by moment 
neutrality £ xxtj(x).

Counting the associated number of configurations gives a fourth 
contribution

- 0 -  (11.69)

with a double charge in the middle. Its energy

V (— 0  —) =  2(6r4(0) — 4 r4( l ,  0) +  2 r 4(2. 0)

- 4 r 4( l .  0))

=  r j ( 2 . 0),

can be expressed in terms o f  the other three.

V ( - © - ) = V ( ? ± ) - i ^ : ± )  +  K ( : + T )  = - ^  +  5  =  0.1704.  

(11.70)

The defect partition function is

Zdcf =  1 +  N (  r‘(,/4s> +  4 e ‘

+± +:±
_j_ ge- -̂->(l^rHI/2s) +  4^-S^l *гИ11/4)-Ц/4гП +  (11.71)

- + ~  " ©

which leads to a free energy due to defects.
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— A/dcf = 2e~Pil * v) b m + +•*)• 10.787 + + I»)-12.566 _j_ + t-)-13.454
(11.72)

This has to be added to (11.53) to arrive at the total free energy. In the 
anisotropic case, the expression (11.51) has to be replaced by

Z  i = ------- ---------------— И 1 7TI
pw, cl (V 2 ir (3 )DN (V2) ’ { }

where t  is the anisotropic generalization of  the integral J (d Dk/  
(2tt)°) log К ■ К which was introduced in (9.89). Its values are listed in 
Table 9.1 as a function o f  £an d  A, and plotted in Fig. 9.1. The defect sum  
takes the form

Zdef= + (11.74)
i

where V(i)  are the anisotropic versions of  the potentials o f  the lowest 
defect configurations (11.58), (11.64), (11.67), (11.69). Their values 
depend only on the combination o f  the elastic constants 
* = 2 (f — 1 ) ( 1 + v )  =  4 ( f - l ) ( ( f + ( A / / * ) ) / ( 2 f + A / j i ) .  They are listed in 
Table 11.2, for e =  —1.6, - 1 . 2 ,  . . . ,  1.3, 1.6. From these we obtain the 
energy o f  the smallest defect configurations as shown in Table 11.3.

Let us now turn to three dimensions. In order to find the leading  
contribution to the defect sum (11.55), we shall construct elementary  
configurations of  the conserved defect tensor rj/Дх). This can be done in 
analogy with the elementary stress configurations in the high temperature 
expansion. We express т//Дх) in terms o f  the defect gauge field л,у(х), 
V iiW  =  Sik leim„ V ^ llln l„{x +  i + i ) .  and choose a gauge (say) n22 =  0, 
«зз =  0, /I|3 =  0 so that we have explicitly

7j , | (x )  =  —2V2V3/i23(x +  2 - 1),

Vizi*) =  Vj/j, ,(.v +  2 - 2),

тЬз(х) =  V^/ij|(.v +  2 • 3) -  2V,V2//,2(x +  2- 3),

T7 t2(x) =  - V v f | 2(x +  1 +  2) +  V|V3/!23(x + 1 + 2),

*Ьз(х ) =  ViV3/?|2(x +  2 +  3) -  V2V3« n ( x  +  2 +  3) -  V7/ |2з(х +  2 +  3), 

тЬз(х) =  V,V2/z23(x +  1 +  3) +  V2V3/zl2(x + 1 + 3 ) .  (11.75)
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TA B L E  11.2. Numerical values o f the anisotropic twice subtracted potential between two- 
dimensional disclinations on a square lattice

x2=, \ 1^(x) = f f ^ ( e ' k x - l + - K K )  —  J 4 / ( К(К • К)2 + e K ! К2 К 2К 2

for various values o f f  =  2 ( £ -  1 )(1  + i/) =  - 1 .6 .......... 1 .6  (corresponding to the parameter
o f anisotropy £ =  0 .2 , 0.4, 0 .6 , 0.8 , 1.0, 1.2, 1.4 at A =  0).

1.6 - 1.2 - 0.8 - 0 .4 0.0 0.4 0.8 1.2 1.6

0.0000
0.0000
0.2258
0.7506
1.6133
2.8419
4.4589
0.0605
0.3266
0.8743
1.7522
2.9924
4.6188
0.6531
1.2537
2.1732
3.4467
5.1007
1.9148
2.8909
4.2139
5.9106
3.9277
5.3088
7.0588
6.7506
8.5597

0.0000
0.0000
0.2073
0.6895
1.4831
2.6140
4.1031
0.0534
0.2970
0.8007
1.6085
2.7503
4.2482
0.5941
1.1448
1.9904
3.1626
4.6858
1.7489
2.6447
3.8613
5.4231
3.5939
4.8620
6.4714
6.1836
7.8452

0.0000
0.0000
0.1926
0.6409
1.3793
2.4322
3.8180
0.0479
0.2737
0.7421
1.4940
2.5571
3.9522
0.5474
1.0583
1.8448
2.9360
4.3546
1.6171
2.4488
3.5803
5.0341
3.3283
4.5061
6.0031
5.7319
7.2756

0.0000
0.0000
0.1805
0.6010
1.2940
2.2827
3.5854
0.0434
0.2546
0.6940
1.4000
2.3987
3.7088
0.5093
0.9876
1.7254
2.7500
4.0825
1.5093
2.2883
3.3499
4.7149
3.1107
4.2144
5.6188
5.3615
6.8085

0.0000
0.0000
0.1704
0.5676
1.2225
2.1572
3.3891
0.0398
0.2387
0.6539
1.3211
2.2651
3.5044
0.4775
0.9284
1.6254
2.5939
3.8546
1.4192
2.1539
3.1566
4.4470
2.9285
3.9699
5.2965
5.0510
6.4167

0.0000 
0.0000 
0.1618  
0.5394  
1.1614 
2.0499  
3.2212  
0.0367  
0.2252  
0.6196  
1.2537 
2.1512  
3.3296  
0.4504  
0.8780  
1.5400 
2.4606  
3.6586  
1.3424 
2.0394  
2.9917  
4.2181 
2.7731 
3.7612 
5.0212 
4.7861 
6.0822

0.0000
0.0000
0.1544
0.5143
1.1084
1.9569
3.0755
0.0342
0.2136
0.5893
1.1954
2.0524
3.1779
0.4271
0.8345
1.4661
2.3451
3.4892
1.2760
1.9403
2.8489
4.0197
2.6387
3.5806
4.7828
4.5568
5.7926

0.0000
0.0000
0.1478
0.4927
1.0619
1.8752
2.9476
0.0319
0.2034
0.5635
1.1441
1.9656
3.0447
0.4069
0.7964
1.4014
2.2437
3.3405
1.2179
1.8535
2.7237
3.8457
2.5209
3.4224
4.5738
4.3558
5.5386

0.0000
0.0000
0.1421
0.4734
1.0207
1.8027
2.8341
0.0300
0.1945
0.5409
1.0987
1.8888
2.9265
0.3890
0.7628
1.3441
2.1539
3.2087
1.1666
1.7767
2.6129
3.6915
2.4167
3.2823
4.3886
4.1778
5.3137

The num bers /7n run through all integers and /? 13 through all half- 
integers.

The configuration with lowest energy is generated by

For it, the non-zero elem ents are

N |2 ( x ) ~  2 ^ x .2 - 3 + l  +  2 - (11.76)



TA B L E  11.3. Elastic energies o f the lowest defect configurations on a square lattice.
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f(A =  0) v ( + ± )  v ( + : ± )  v { - + ~ )  П - ® - )

- 1.6 0 .2 0 0.121098 0.201573 0.205469 0.225780
- 1 .2 0.40 0.106819 0.179546 0.190227 0.207273
- 0 .8 0.60 0.095735 0.162234 0.177941 0.192559
- 0 .4 0.80 0.086860 0.148223 0.167764 0.180512

0 .0 1 .00 0.079578 0.136623 0.159155 0.170422
0.4 1 .2 0 0.073487 0.126841 0.151748 0.161815
0 .8 1.40 0.068311 0.118468 0.145288 0.154365
1.2 1.60 0.063853 0 .1 1 1 2 1 0 0.139588 0.147835
1 .6 1.80 0.059970 0.104853 0.134510 0.142054

'*7зз(0) = — 1, 1733( 1 ) =  1» 17зз(2) =1, т?33(1 + 2) = -1 ,

vuiQ ) =  - i ,  7712(3) =  l, % 2(2 * 3) =  —2,

V 2 1W  = 2» 7723(1) =  “ 2» *?2з(3) =  “ 2> ^23(1 + 3) = 4,

*?1з(0) = 2> 7713(2) = —i, 7?! з(3) = 21 ^1з(2 + 3) = | .  (11.77)

This corresponds to the stress configuration (11.48), except for a factor \ 
on each elem ent.

The elastic energy associated with this defect is given by

Vi = г  S  r-*(x “  x )I 2^ 12(х)7712(х/) + 2т),з(х) Т71з(х') + 2тЬ(х) т?2з(х/)
^ х. х' L

+  Ч я з М  Ч з з (* ')  +

=  ^ | 2 ^ [ 6 r 4(0) -  4с4( 1, 0) +  2 г4(2 , 0)

- 4 е 4(1, 0)]

+ 2 • 2 •  ̂[4r4(0) -  2r4( l ,  0) -  2 г4(1, 0) + 2t>„(l, 1)

+ 2p4(1, 1) — 2t)4(l, 0) 

- 2 o4(1, 0)]
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+ Y T ^ |4 « 4(0) -  2d4( 1, 0) -  2 l-4( 1, 0) +  2e4( 1, 1)

+  2 w4( 1, 1) -  2 f 4( l , 0)

(11.78)- 2 i 4( 1 .  0)]J-

Perform ing the subtraction to v'4(x) =  v4(x) —1*4(0 ) and fu rther to 
v1(x) =  v\{\ ) + (x2/6)t;2(0), and using the num bers quo ted  in Appendix 
11A, we find

V, =  X-  ( - 2 4 P i ( 1,0 )  +  8e J( 1 ,1 )  +  2d4(2, 0) j  +  ^ -  4 r i  ( 1 ,0 )  +  2 c i  (1 , l ) j

=t(8»3(1, 1) +2*5(2, 0)) + —^— p4( l ,  i ) - i  + - 2 - 0 . 0 2 1 .  
4 1 -  v 12 1 — v

(11.79)

A nother fundam ental Л/Дх) configuration is

я п ( х ) =  ^x.2-2+2-3- (11.80)

For this we find the defect tensor

i?22(0) = l f Th2(3) = - 2 ,  1722(2 • 3) =  1,

%з(0) = 1* 1733(2) = —2, 1733(2 • 2) = 1,

^23(0) =  7723(2) ~  2 у ТЬз(З) =  2 ' 7723(2 +  3) =  — 2- (11-81)

This can be pictured by the same diagram (11.12) as the m atrix elem ents 
(11.43) of 07, (x) except that the off-diagonal dual elem ents carry only half 
the weights. Its energy is considerably larger than (11.79):

V2 =  2 Е / и ( х -  х ' ) | 2^ 2з(* )^ 2з(х ') +  ^ 22(x)r)22(x ') +  Т?ЗзМ *Ьз(х ')

+ Ŷ ;(7?22 + 1733)(x)(7]22 + 17зз)(х')
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- j | 2 - J [ 4 r 4( 0 ) - 2 v 4( l ,  0 ) - 2 r 4(0, 1) +  2г4(1. i)

+  2 i ’4( l .  1) — 2 i’4(I ,  0)

— 2«4(1. 0)]

+  2[6o4( 0 ) - 4 f4(1, 0) +  2t>4(2, 0)

- 4 r 4(I ,  0)]

+  -  4 l ’-<(0 - 0  +  4(,4(0. 2) -  4 p4(2, 1) +  2 d4(2, 2) 

— 8 r4(0, 1) +  8 r 4( l ,  1) — 4 j>4(2, 1)

— 8t’4( l ,  0) +  4 d4(2, 0)

— 4 i>4(1, 0 )]J

=  »4( 1, 1) +  2dJ(2 , 0)

+  Г ^ [4^ ( 1 ’ 1) +  4t’4(2, 0 ) - 4 o j ( 2 ,  1) +  »J(2, 2)]

=  0.183 +  x  0.176 (11.82)

and can therefore be neglected.
N ote that due to the factor I x  half-integer values of the off-diagonal 

T7,y(x) term s, the im portance of the two lowest defect graphs is the reverse 
of the corresponding stress graphs in the high-tem perature expansions. 
Taking only the lowest contributions, we arrive at a partition function

Zdcf = 1 + Ar6£-8 (̂(i/.2) + (2/(i-v)) o.o2.) +   ̂ ( n  g3)

with a free energy

- p f dcf =  6 e - 8ff2wi/,2) + (2/(,- v)) 02,) +  . . .  (11.84)

A PP E N D IX  11 A. C A LC U LA TIO N  O F T H E  G R E E N  FU N CTIO N  
v4 = 1/(V-V)2

For D — 2, two subtractions are required. We first define

u4(x) = t>4(x) -  i>4(0) (11 A. 1)
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so that the quadratic divergence is gone. T hen we rem ove the remaining 
logarithmic divergence by forming

is the usual unsubtracted and thus divergent lattice C oulom b potential at 
the origin. This particular subtraction has the advantage that the potential 
u ^x ) satisfies the difference equation

As explained in C hapter 6 , Part I (after Eq. (6.192)], the difference 
equation perm its us to calculate all values of ^ ( x )  knowing only those 
along a particular radial direction, for which we shall use the diagonal one 
x =  (n , n), plus the values of i4(x) from  Table 6 .6 , Part I. A long the 
diagonal, the once subtracted potential can be w ritten [using (1.6.190)] as

d 2k ___1_
(2t t)2 (K -K )2

where

(11A.3)

-V-VdIJ(x) =  u2(x) -  y2(0) =  uj(x). (11A .4)

On a square lattice this implies

-4(03(1) - »J(0)) = oj(0) = 0 (11A.5)

so that

®Sfl) =  0 . (11A .6)

dm2 4 J о 7Г J  о 7Г
8_1  r ndp Cn,dq  cos(2np) -  1
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= !Lmo ^ r ? (cos(2p" ) _ 1 ) i

+  Г ~ т — 1J F 7Г 1 — COS /

1 cosp  sin q
tt 1 -  cos p  cos q

cos p  cos q
(11 A .7)

The partial integration in q is necessary since the small q part of the 
integrand is quite singular in p  and easy to miss. In fact for small e we can 
write

cosp  sing
1 -  cos p  cos q

71 2e
=  cosp  ------2 =  cosp  27r5(p), (11 A .8)

q - е  p  +  £

so that the partially integrated piece contributes to v'4(я , n) the quadratic  
term

n
8tt

The second piece can now be integrated in q with no subtlety [using 
(1.6.191)], and we find

vi(n' п)=к +Тб1Л(cos(2pn)" 1} i '

The second subtraction (x2/4 )u2(0) brings this to

i>3(/i, n) =  f  —  (cos(2/?/j) -  1 +  2rt2sin2/?)/sin3/?- (11 A .9)
877" 16 Jo  7Г 

We now use the well-known formula

^  ч (2/?)2 . 2 (2/z)2((2h )2 -  22) . 4
cos(2pn)  =  1 -  +  —  ’ u  * —

2! r  4!

(2h)2((2/Q2 — 22)((2/z)2 — 42) ._6 
6 !

sin p  

sin6/? +  .

+  ( _ )„ ( 2 n ) \ ( 2 n f  -  t L - Ш .  Z (2”  -  2)2) sin2>  (11 A . 10)
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and the integrals

to find

(2»)2((2>7)2 -  22) (2n)z((2n) -  42) 2 
4! 6! 3

(2/Q2((2«)2 -  42)( (2»)2 -  62) 8 
8! 15

(2h)2((2«)2 -  42)((2;t)2 -  62)((2n )2 -  82) 16
10!. ' 35 +  ' '

8ir
„2 . " v  , . , (2«)2((2n)2—42)- • ((2н)2—(21+ 2)2) 

) (2^ +  4)!

The lowest values are

i>3(l. 1) =  —  =  0.039789,
07Г

, Д 2 , 2 )  =  ±  4 +  Ж 1 6 р 4 )  = ^  =  0 _4 7 7 4 6 5 i

МЪ Ъ  -  1 I ?  I 36(36 ~  4) 36(36 ~  4)(36 ~  16) 2 
8t t \  24 720 3

* 4 , 4 ) - g .  ^ ( 5 , 5 ) = ^ .

107 
247Г

The off-diagonal values can now be obtained from the 
equation (11A.4). For example

(11A.11)

(21)!! ~ 
(2M -1)!!. ‘ 

(11A.12)

=  1.41913, 

( 11A . 13) 

difference

t>3(0, 0) + «3(2, 0) + 1)3(1, 1) + d3(-1, 1) - 4t'3(l, 0) = -I’Kl, 0) = J.
(11A .14)
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Hence

0) = b i '  (11A15)

A nother exam ple is

»J(1, 0) + dS(2, 1) + »S(0. 1) + 1)3(2, —1) — 4i>3(l, 1) = - UJ(1, l) = i
7Г

(11A.16)

and hence

* 3 ( 2 , 1 ) - —  (11A .17)
47Г

The results are shown in Table 11A.1. Num erically, they can be fitted 
rather well by the asym ptotic form

u3(x) ~  -г- x 2 log|x| +  Л |х |2 +  B log |x | +  С, ( 11A .18)
07Г

with

A =  J - ( y  -  1 +  log(2V2)) -  0.02455, у  =  0.577216649 . . . ,
ОТГ

В =  -------- 0.01989,
107Г

С =  -7— ( г  — у  -  log(2 V 2 )) ■» —0.0289, (11А.19)
16-77 \6

with an e rro r of only 0.5%  for n =  2 (see Table 11 A .2a). M ore compactly 
we may write

v’l ( \ )  «  ^ - |x |2 lo g ( |x |2 \^ e , ‘ l) - ■ ^ lo g ( |x |2 V 2 e r ' 1'6). (11A.20)
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TA B L E  11A.1. Exact values of the defect potential on a square lattice:

u3(x )= f ! ( S ( e''k , " i + T R ' K) ( r a '

4443
5 280тг

5.0509

46 873
4 5 tt

2.9285
70 t7

3.9698

3
107 
247Г 
1.419

203
ЗОтг

2.1539

- 1 + 156Z
1 I2 0 ir 
3.1566

_3_ 35 3 J i 1 2 -
2̂ 0 tt2 2 tt 1 2тг 4 4 tr

0.4775 0.9285 1.6254 2.5939

1 877r
3

4 tt
1 29
2  8 ir rr

99 1301 
2  8 ir

0.0398 0.2387 0.06539 1.3211 2.2651

0 0 0
I  1 
4 4 tt 2 ~ t

37
1 3 -  —  

7r
0.1704 0.5676 1 .2 2 2 2 2.1572

% 0 1 2 3 4 5

T A B LE  11 A .2a. Comparison of v'fat, n) and the 
values from the asymptotic formula (11 A . 19).

n »3(n, n) Eq. (11A.20) error

1 0.039789 0.04088 3%
2 0.477465 0.4777 0.05%
3 1.41913 1.4192 0.005%
4 2.92845 2.92849 0 .0 0 1 %
5 5.05089 5.05090 0 .0 0 0 2 %

10 25.9092 25.9092
2 0 125.931 125.931
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The calculation of this asym ptotic form is som ew hat tedious. Starting 
out with (11A .9), we rewrite the second term  as follows:

sin 2p sin p

= - fJ>

+  sin 2pn

1 1 1
Sin~p/7 I — +  — -------- j )  ~  П

\P~ sin~p p - 1

sin 2pn Л  1 /  sin"
— 5------n I -  +  1 — •

P~ / Р  \  P

P sin p  p )  

- 1)>2 /  \sin/7 P )

sin2/? p 2)  sin p

sin2/7/2

+ • ’ Г 1 1+  sm~pn - r -т--------т
|_ sm  p  p '

.2 .1  „2 I 1 1
sin p  p

— /Г —  n

(11A.21)

In this way the integrand is separated into three pieces, no one piece 
having a singularity at p  =  0 .

T he first of these three pieces is now evaluated further as follows:

1 sin2p/j
2

тт/2 Гтг/2
+

0 JO

f 1"* , I sin pn  cospn n 
" J  dP \ ------- 12 — “

=  — ,s in
TT~

7Г n2 Г 1 ч ff/2 Г ' \  (cos(2pn)  l\
2 Л + 2 + | ' Г ( 2 р т ) о + n J о d P V ~ P  p )

/i2 +  n2 f  
Jo

>7r/2 cos(2p«) -  1 
-------- ------

P P 

(11A.22)

Г  777!

The last integral can be rescaled to I dp(cosp -  1 )/p  so that Д can
Jo

be expressed in terms of the well-known cosine integral



т * т  п м х а  н и  д о в о д о м

C i i z j -  у  4* io gz  +  I d i * ^ - — -  (H A -23)
Jti t

/;i =  --- К  (I -  ( ~  f )  4- 5 /72 +  /J2(Cj(a77T) -  У -  log(77П)) (1 1A-24)
~ z

D ecom posing C i(z) into auxiliary functions6

C i(z) =  / ( z ) s in z  -  g ( z ) c o s z  (11A.25)

with

л ' > - . О й т  <1,A-261

we find the asym ptotic behaviour

Ci(7m) =  f  d/e-""0 - t 3 + . . . )  =  - ( - г ( т - Ц г  -  7 ~ y i  + • - •)
Jo \(т™) Ын)  J

(11 A .27)

and

l , = > r ( l - y - log(mi)^- Л + о ( 1 ) .  (11 A.28) 

The second piece in (11A.21) gives directly

h  ',2/„  ^ ( i " p )  = _ "2{ log,an2 _ l o g 2}„ = "2'°g
7Г
4

(11A .29)

bSee M. Abramowitz and I. A . Stegun, Handbook o f  Mathematical Functions (D over, N ew  
York, 1965) formula 5.29.



II. THERMODYNAMICS OF THE MELTING MODEL 1065

T he third piece, finally, can be evaluated exactly, a fter a pow er series 
expansion of the square brackets, using

^Р=1+1 + ̂  + Шо<’5 + 0^ '

=  3  +  T z l - 2  +  +  ••• (11A .30)

+

sin"/? p a 6p a~ l  \  180 12 )  p

Introducing the quantity

/  \ _ 1 1 a ( a  a r \
r a i p ) ~ s i n ap  ~  p a ~  6ра~ 2 ~  \180  7 2 / P

we find

1 Г"'2 . cos(2pn) — 1 1 f ”'2 . .. . f4 ,  v
h =  J o d p ------- j-p ---------- 2 Jo  dP ( cos(2Pn ) “  ! ) гз(р )

1 1 Г77/2
- ^ j ^ - ( y  +  l o g ( 7 r w )  -  C i(7 T /2 ) )  +  2 j 0  d P r * ( P )  +  • * *

= ^(У  +  l0g(7777)) +  j  +  О ^ 2̂  , (11 A .31)

w here the num ber /? is found by integrating of ra (p)  and setting a —» 3:

ч Л  -  Г _  log(ff/4)
7Г О

0.2401.

Collecting the three asymptotic forms of / j, 12 and /3 into (11 A .21) and 
adding п~/$тг in (11 A .9) we find, indeed, the asymptotic expression 
(11 A. 18) [recall that n =  |x |/V 2 on the digonal]. Note that the term  A  
could have been found right away from the identity —V -V i^x) =  ^ ( x )  
and the asym ptotic form of t’JM  [see (6.196), Part I], which shows that 
1 + 8тгЛ =  log(2V 2e y).

For com pleteness, let us also calculate the corresponding twice 
subtracted  potential for a triangular lattice:
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where [see Eqs. (6A.104), 16A.60) in Part I]

d 2№ ,  „  1f d 2kW

^ - / е т ^ - Ц д г(2тг) ' ( К - К )2

and

К К =  4 -  j (cos +  cos /с(2) +  cos(/t(l) +  A:(2>)). (11A.33) 

Analytically, it is easy to find the asym ptotic behavior along the line

(лт( |\  jc(2>) =  (я , и ), (11A.34)

i.e ., for the Cartesian coordinates

(x „  дг2) =  „ ( 1, 0) +  и ^ - i .  Щ  =  "  ( j .  y )  ' (11A ' 35)

when x =  n2.

The substitution (6A.61) in Part I leads, for the once subtracted  
potential, to the integral

« • ;( „ ,„ )=  fiw± fw*l________ cosg p n )  -  1__________(11A .36)
Jo  2 ir J() 7Г [4 -  ^(2cosp  co s^  +  cos(2/?))]2

We now use the identity

•>
.  . •) Q

1 a {  \  b sm_p +  —z — 11 a I c o s p c o s q  \  H b2 a 1\  о si

b d q \ a  b c o s p c o s q )  (a — b c o s p  cosq)2 b a  — b c o s p c o s q
(11A .37)

with 6 =  8/3, a =  4 — (4/3)cos(2p), to write ( e —> 0) 

r d q ______________ l______________

Jo  7Г [4 -  5(2cosp  co sq +  cos(2p))]2
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cosp  sin q
8 sin2/?(l +  5sin2/?) [ 7t 4 — 5 (2 cosp  co sq +  cos(2p))  

dq  1 +  sin2p________
+

7т 4 -  j  (2 cosp  cos q +  cos(2p))
(11A.38)

The partially integrated piece, i.e ., the first term  on the right-hand side, 
can again be w ritten as a б-function, just as in (11 A .8),

V3 cosp 2e  V3 л . / л * а

Y 7 ^ ^  = ̂ cosp (p)- ( }

A fter doing the q  integral we arrive at

V3
1’4(« , П)

n2 1 f "dp 

^ + 1 6 j ((^ [COS(2/" ' ) ~ 11

x  1 1 +  sin~P 1 (11A.40)
sin-’p 1 + jSin2/> Vl + jsin2p

We are now ready to perform  the second subtraction. Using Eq. 
(I.6A .62),

„ № г л Г ”——___1_(11A.41)
"2(0'0) 8 Jo 2w|sinp|Vl+isin̂

the addition of ( /r/2 ) ib(0, 0) gives

у > ’") = т { ^ + 1  ̂L  i lcos(2np)~ 1 + 2 "2 si"2pl i d + i s U ) “

+  72 f  ~ [ c o s ( 2 np)  -  1 ] - r ~  n  A •  ̂ Гз72 1 * (11A.42) 16J () 7г 1 4 sm p (1 + J s in - p r “ J

W ith the aid of the general integral formula
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f^dp sin2fl lp  1 . 1 /  1 1 z \
Jo IT (1 +  zs in2Py ~  n  з) (1 +  z y  \ P' 2 +  ^ ~ p ' 2  +

(11A.43)

where F is the hypergeom etric function and

= Ш 1 М ;
Г(дг +  у)

3
we have for p. =  1, p =  -

r d p  sin p  _  1 3 
Jo  я- (1 +  ^sin2p )3/2 tt2

and can rewrite (11 A .42) as

(11A.44)

V3 f 1 f ndp -> , 1 1 +  sin2/?
■SC"." )  =  T l ^ J o  T [cos(2,,p) “ 1 +  2 n ' s i n ' p t e  ( T T i i i ^ F 5

(11A.45)

The expression in curly brackets can be trea ted  in the sam e m anner as 
that for the square lattice case, Eq. (11 A .9), and we find, evaluating the 
integrals via (11 A .43) and the hypergeom etric functions as explained in 
Part I, Appendix 6A [in the context of vJOO] values shown in Table
11 A .2 a [Kleinert (1988)]. In the limit of large n, we regroup the curly 
brackets as

1 Г ' 2 j  ( s in V 1 1 1 +  sin2p  _  1 , ,  , 7 j_ 7 .\
л I P 1 ’ 7 ^ ** J \3/2 a  ( I 2 *3/»47tJ o \  Sin~p /  Sinp (1 +  Jsin /?)3 47Г

(11 A .46)

with

Г1
h  =  - n 2

J о

' i t /2

dp _1____ 1
s • sin p p

_ I Г it/2
~  “ o dp[cos{2np)  -  1] (11 A .47)

о

where / 2, 73 differ from the previous integrals defined in Eq. (11 A .21) by 
the factor
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1 1 +  sin2/? 
s ~ (  1 -h is in 2/?)3/2‘

The limiting form of is known from (11 A .28), i.e .,

i x~ * n ~  7  ~  1° 8( 7rW) )  ~ ~ 2  +  ° i ~ 2

The integral I2 is calculated by rewriting it as follows:

Г77/2 Г 1 +  sin2/? 1 1 
Jo  P [(1 + 5sin2/?)372 sin/? p

f n/2, Г sin~ '/j
J o  4 d  +  ^sin2

Гтг/2
=  lim I dp 

m- о Jo

(11 A .48)

(11A .49)

■/? 1 2  sin/? 
V r ^ S C l + ^ s i n V )-1'2

sin2M l/? 
(1 -f 5 sin2/?)

sin2" -1
J„ ^(l+*sin2pr+<‘'2>.

(11A.50)

Using form ula (11 A .43), this may be cast as

1 B(m, i)  1 I *lim
M- 0 2(1  + } ) "  2 ц \ 2

2 1 g ( l ,  4) 
+  3 2 (1 +  j ) 1

7Г 1

°®2V3 +  2
(11A .51)

H ence

/ 2- - « 2 ( - l o g 2 ^  +  | ) -  (11A.52)

In the last integral we observe that for small /?, the expression within 
square brackets in (11 A .47) has the expansion

1____ 11  1 _  J_  68
ssin^p p 3 J p  15^ 315

/?3 + ... (11A.53)

W e may therefore write
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h  =  dp [cos(2np) -  1 ] Q  +  j  , (11A .54)

with [s0 =  V l  +  js in2p]

1 1 2  1 1 1
rn = (11A.55)
°  sinap s i ~ a 3 s m oc~2p  5o_or 3p a~2

Proceeding as in (11 A . 31) this gives the limit

/ 3—» ^(7  +  co s (7r/i)) +  у »  (11A.56)

where

■77/2~  Г77/2 2 1
Д =  d p r3 = — I- log(2V 3/ 7r) — -  «  0.1337, (11 A . 57) 

Jo IT 6

this number being obtained by integration o f  ra using (11 A . 43). 
Collecting all terms we arrive at

«*(». «>= x  ( " i ) { " 2 ( I  -  * - log(7r,,))  ■ i

-  n2 ^  +  +  1° g (7r" ) )  +  2 +  " |

=  T { i l Xl2 ,0glXl +  i4M 2 +  5 ,°g lx l +  c |  +  . . . ,  (11  A . 58)

with

A  =  8̂ Y -  1 +  log(2^ 3 ) l  “  0.0326135,

В =  - - 7 -  =  -0 .0 1 9 8 9 4 4 ,
167Г
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We may therefore write m ore com pactly

The |x |2 term  could have been found directly from the asym ptotic
behavior (I.6A .70) o f the C oulom b potential on the triangular lattice, 
using the identity

In Table 11 A .2b we have listed the values of ^ (x )  obtained by num 
erically integrating the original form ula (11 A .32). Except for (* ( , \  jc(2)) =  
(0 , 0) and ( 1, 0), where i>4(x) vanishes, it is possible to use the asym ptotic

form ula (11 A .58) with |x| =  V *(1)2 +  *(2)2 -  ;c(,)jc(2). The erro r is sm aller 
than 3% at (лг, у) =  (1, 1), sm aller than 0.5%  at (x, y )  =  (2, 0), and 
decreases so rapidly for larger distances that all o ther values on Table
11 A .2 can be taken directly from the asym ptotic formula.

In three dim ensions, only one subtraction is necessary to render y4(x) 
finite. We therefore calculate

A further subtraction of - ( x 2/6 ) r2(0) makes the integration even m ore 
regular but does not change the interaction energy (due to the m om ent 
neutrality of the defect tensor щ):

- V  Vt)J(x) =  H2(x )->  “ 4 o g ( |x |2 V 3 e '0 .  (11A.61)

' d s e - s { l x){2s ) lxp s ) l xp s )  ~  H i t s ) ) .  (11A.62)
0

= J*dse-< "Г* (/,,(2*)Ix,(2s)Ixp . s )  -  /3(2*)) + ^-/03(2 i)J .

(11A.63)

In o rder to estim ate the asymptotic behavior we rewrite the integral as
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TA B LE 11 A . 2b. Exact values o f  the twice sublracted Green function on a triangular 
lattice. Eq. (11A .32). at х =  У ,,(1 . 0) +  1/2. V3/2J.

<!>
X

(2 )
—x Гд(х)

0 2 - 9 / 8 V 3 -  +  3/8 0.16825166
0 3 -  135/4V5t7 +  27/4 0.54754992
0 4 - l  179/2 V3ir +  219/2 1.16387204
0 5 -3 7 4 8 5 /4 V 3 tt +  6897/4 2.03636292
0 6 - 1 1 56545/8V3?r +  212571 /8 3.18011018
0 7 - 2 1 924693/10V3 tt +  805857/2 4.60752827
1 1 9 /16V 3tt 0.10337416
I 2 99/16V 3tt -  3/4 0.38711584
1 3 855/8V 3tt -  75/4 0.89109189
1 4 15057/8V 3i7- 1377/4 1.63996576
1 5 497727/16V 3 tt -  22857/4 2.65160690
1 6 7882317/16V37r — 181065/2 3.94010363
1 7 151976727/20V 3 tt -  2792961/2 5.51711215
2 2 -6 3 /8 V 3 tt +  9/4 0.80276164
2 3 -2943/16V3TT+ 141/4 1.44664709
2 4 -3 4 5 8 7 /8 V 3 tt + 6375/8 2.34114558
2 5 - 6360993/80V3 tt +  14616 3.50314801
2 6 - 53935857/40V 3 tt +  991233/4 4.94613801
2 7 -1 2 2 1 3 5 3 2 197/560Vbir + 8016291/2 6.68132708
3 3 10773/16V3tt -  243/2 2.23887896
3 4 314793/40V3TT- 1443 3.28730813
3 5 1721637/10V3tt- 31635 4.60751757
3 6 352958985/112V3tt -  579150 6.21228942
3 7 30357003429/560V 3tt -  39849237/4 8.11239650
4 4 -5 7 2 4 9 /2 V 3 tt +  5265 4.49534433
4 5 -8540495  1/280V3tt +  56061 5.97940668
4 6 -1844444781/280V 3 tt +  9684783/8 7.75145807
4 7 -6 7 4 3 2 6 1 6 19/56V 3 tt +  88518015/4 9.82176526
5 5 91744641/80\/Зтг- 421497/2 7.63159749
5 6 6448242303/560V377 -  8464491/4 9.57519348
5 7 68991690141 /280V 3tt -  181129059/4 11.81990484
6 6 -2 4 6 8 6  15697/56V3tt +  32405265/4 11.69376245
6 7 -2628329362353/6 160V3tt +  313652421/4 14.11630181
7 7 185200539543/1 12n/3 tt -  303888105 16.71953008
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V'i(X) 1к-<л- (2ir)3 (k2)2 (e 'k ’ 1}

_  Г f ” d 3k Г d 3k 
L J - „ ( 2 t7 )1 J k :< A ; ( 2 i r ) 3

(e'kx — 1)
(k2)2

(e 'kx — 1). (11 A .64) 

For A —» t he first integral was calculated in (1.88) and gave

d ^ k \  1 1 
J - „ ( 2* f | _ ( K K )2 (k2)2_

№ .
8ir (П А .6 5 )

T he second and third integrals are regular at the origin so that the limit 
|x| —> gives the additional constant

с =  Ci + c2

’f” d 3k [* Al l f" ^Г_1 _ I i 
J _„(2тг)д J_.(27r)',J(k2)2 J -„(2ir)3 [(K • К)2 (к2)2]'

( 11A .66)

The first integral lies outside the cubic region |fc,| <  тт. We may approxim ate 
this region with a sphere whose volume is (2ir)3, i.e ., of radius k0 =  
(б*2) - 1" ,

f  d 3k  1 4 n  Г dk  1 1 __n n i ,  , , ,
C| ~  i |* |> * „ (2’r)'1 (k2)2 _  (2ir)3J  к1 ~  2тг2 k0

M ore accurately, we may do the integral outside the sphere |k | =  тг 
exactly obtaining

0.0161,
Z7T

and subtract the numerical integral over the volume between the sphere 
and the cube \k/\ =  7r, for which we find

c \2)«  0.0027.
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TA B LE 11A.3. Numerical values o f the twice subtracted potential between three- 
dimensional disclinations and comparison with the asym ptotic form (11 A .71).

X\ xy »;(*) t’4(x)a 1’4(X) гЗ(х)и

0.000
0.000
0.082
0.251
0.505
0.844
0.021
0.113
0.286
0.542
0.882
0.215
0.394
0.654
0.997
0.579
0.843
1.189
1 .112
1.461
1.814
0.049
0.146
0.322
0.579
0.920
0.250

-0.011
-0.009
0.078
0.249
0.504
0.843
0.017
0.111
0.284
0.541
0.881
0.213
0.393
0.653
0.996
0.578
0.843
1.189
1.112

1.461
1.814
0.046
0.144
0.320
0.578
0.920
0.249

0.431
0.692
1.035
0.616
0.882
1.228
1.151 
1.500 
1.853 
0.357  
0.542  
0.805
1.151 
0.729  
0.996  
1.344 
1.267 
1.618 
1.971 
0.920  
1.189 
1.539 
1.461 
1.814 
2.168  
1.735 
2.089

0.430
0.691
1.035
0.616
0.881
1.228
1.150 
1.500 
1.853 
0.357 
0.541 
0.805
1.150 
0.729 
0.996 
1.344 
1.267 
1.618 
1.971 
0.920  
1.190 
1.539 
1.461 
1.814 
2.169  
1.735 
2.090

It follows that

ci =  c i l ) - cp ) =  0.0134, 

close to  (11 A .66). For C2, a numerical evaluation gives

c, =  -0 .0246 .

Hence we find

(11 A .68)

(11 A .69)

С — C | +  C2 -------- 0 . 0 1 1 . (11 A . 70 )
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The values of r'j(x) are found by num erical in tegration  o f (11 A .62) and 
are shown in Table 11A.3. They are fitted optim ally by the asym ptotic 
formula

r 'i(x )->  +  ^ 0 , ( 0 )  -  0.011, (11A .71)
o7T 6

[with r 2(0) *=0.252731] whose values are also listed in the sam e table. 

NO TES A N D  R E F E R E N C E S

The lattice Green functions - ( V  • V )-1 . (V • V) ' 2 on a triangular lattice and their asymptotic 
limits are calculated in 
H. Kleinert, Berlin preprint (1988).
An asymptotic limit has also been given in
D. N elson, Phys. Rev. B26 (1982) 269.
but this is incorrect. The error has been repeated by
K. Strandburg et al. (see the papers quoted in the next chapter, and the discussion in Section  
14.11).



C H A PTER  TW E LV E

TH E M ELTING T R A N SIT IO N  IN T H E  D E F E C T  M O D E L

Let us now study the properties of the defect m odel and see w hether it 
properly describes the phase transition of melting. W e shall first consider 
the leading approxim ations at high and low tem pera tu res , thereby 
obtaining crude estim ates for the location and type of the transition . T hen 
we shall proceed and calculate the corrections due to stress and defect 
graphs (which, in three dim ensions, will be found to produce am azingly 
small effects).

12.1. LO W EST O R D E R  RESULTS FO R  D =  2

For two dim ensions and isotropic m aterials, the free energy in the high- 
tem perature limit is given by the first two term s in (11.38)

- #
1 /  л\" 3 1 ’ 1 +  v l
2 1o8

4K ) = - - lo g (2 T r /3 ) - - lo g

(12.1)

The low tem perature limit, on the o ther hand, is given by the pure 
phonon fluctuations (11.53) and reads
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=  — log(2irj8) -  i l o g l  2 +  -  I -  1 .16625

=  —log(2TФ)  -  | log ( j ~ ;  I -  1-16625. (12.2)

The two curves intersect at

iSmcud +  v) =  ^ e -  =  0.820. (12.3)

To lowest approxim ation, this determ ines the m elting point. T he 
Lindem ann num ber associated with this point is [recall (7 .5a), (9.22)]

L =  л / т г т ~  =  2 *  J .  \2 =  2 irV |3 iU  =  5 .6 8 9 3 - = L = -V &/J ^mC|t у к ft V l +  V
(12.4)

In the anisotropic case we have, to lowest o rder [see (11.38) and (11.73)] 

-HfT—  =  - 5 | 0g(277/3) -  j l o g f W l  +  ,

- / } / r - °  =  -1 о 8(2тг/3) -  i  log 2 -  e.

The intersection gives

Using Table 9.1 for the logarithm of the anisotropic fluctuation d e te r
m inant € we calculate melting points for A =  0 listed in Table 12.1.

T he internal energy and entropy and given by
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in the hot phase and cold phase, respectively. This corresponds to a first 
o rder phase transition with a transition en tropy  per site of

As =  §. (12-7)

The specific heat of the model is given by

cv = - f ? * - u = \ \  for ( 12.8)

"2«

This is only the potential part. The kinetic part would add an o th er 2 ■ 1/2.
Note that to this approxim ation, the internal energy, the en tropy  jum p, 

and the specific heat are universal functions of (3. They are independent 
of the elastic constants £ and A. As a consequence, the en tropy  jum p  As is 
also universal, to this approxim ation.

12.2. LO W EST O R D E R  RESU LTS FO R  D =  3

For three dim ensions and isotropic m aterials, the high tem pera tu re  limit 
is given by (11.41) for £ = 1 ,

=  _3 iog(2*j8) — j l o g ^ l  +  ^ J  J

= -3log(2*j8) - j l o g  ( e ( : f r s ; ) ) .  (12'9) 

The low -tem perature limit was calculated in (11.53) and found to be 

- / T - °  =  -|log(2ir/3) -  i lo g  ̂ 2 + ^  - 1 - 1.67339

=  - |lo g (2 w /3 ) - | l o g ( 2 167339- ( 1210) 

These curves intersect at
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*Ch ( г г ^ Ю = ̂ еШЗУ, = 0-534' (1211)

which leads to a L indem ann num ber

L  =  2 ttV /3 %  =  4.593.

According to (7.41), this corresponds to

L ~  105, (12.12)

for v **0 , which lies at the lower end of the range o f experim ental 
num bers ( 100- 200).

In the anisotropic case we have [see (11.41) and (11.73)]

'Ы
- P f 7- 0 =  - | l o g ( 2nP) -  \  log 2 - 1 log л  

and find the zeroth-order melting point

(1213)

V + 2 W

Using € from Table 9.1 this gives the values listed for A = 0 in Table 12.1. 
The internal energy and entropy and obtained from

t >  t ;melt'

T <  T,mclti

i »  » » )

This corresponds to a first-order phase transition with a transition entropy 
of
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(12.16)

Similarly the specific heat is

(12.17)

As in the two-dimensional case, the internal energy, specific heat and 
entropy jum p are all independent of the elastic constants £ and A at this 
level of approxim ation.

The alert reader might rightfully object to the presen t approxim ation 
procedure. A fter all, by extrapolating high and low -tem perature  limits of 
the free energy into the opposite regimes w here they do not apply and 
bringing them to intersection one will always find a first-order phase 
transition which, in general, lies at the w rong place. The pleasant 
property of our m odel, however, is that it is possible to calculate the 
corrections to this lowest approxim ation and show that they com e out to 
be small for D =  2 and extrem ely small for D =  3, as we shall now see.

12.3. STRESS AND D E FE C T  C O R R E C T IO N S IN IS O T R O P IC  
M A TER IA LS

We will first restrict ourselves to the leading correction.

THE TWO-DIMENSIONAL CASE

In two dim ensions at high tem peratures, the additional energy for an 
isotropic crystal was given in ( 11.21) to be*

For low tem peratures, the first defect corrections are, from (11.53),

N ear the melting point /3„lelt of (12.3) (calculated to lowest o rder) bo th  
corrections are very small. H ence, we find the corrected  m elting

-0/strcss =  2е'(|//3)15"5(А/;!м)1,/(, + А/̂ ))1 = 2e“(|W -5,,/(l * (12.18)

(12.19)

‘ Recall that in general -
мОЛ/м1 + 2Г ^  = ,,/<1 + ,'>-
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tem perature by using the values o f (12.18) and (12.19) at 0 ^ , , .  For v =  0, 
they are

-/^/sircssl^,, *= 2e~(5//,-" ) ~  0.00449,

"/V defU u *  2e-2̂ '<  ~  0.01158.

This leads to the corrected v =  0 equation

ilog(4TT0)  -  1.16625 -  |№л +  /3/ slrcss|Д1, n =  o,

or

P L i ,  =  /Sraehе~т ""5|,_,ши4,) =  /З'п,с1, (1 -  0.014) -  0.808.

This is to be com pared with the value found by M onte Carlo sim ulations 
on a 60 x  60 lattice to be described further down (see Table 12.1):

/ C h - 0.815.

Curiously, the zeroth order value ( 12. 11) is better than the first corrected 
one. In fact we have to carry out the first four corrections in o rder to 
obtain a perfect agreem ent. The corrections to the anisotropic values can 
be found in the same way (see Table below).

T A B L E  12.1. The intersection Д (,'° o f high and low temperature expansions o f the free 
energy for the D =  2 melting model (Villain type, A =  0) including n corrections on both 
sides (see Fig. 12.1). The Monte Carlo data at the last column are from Jankc and Kleinert
(1985).

£ A f f t U / e J8° A A Д5° Д* 1 Д5МС

0 .2 0.601 0.602 0.608 3.004 3.008 3.039 0.5 0.358
0.4 0.658 0.655 0.662 1.645 1.639 1.656 0.5 0.353
0 .6 0.713 0.707 0.715 1.1S9 1.179 1.191 0.5 0.347
0 .8 0.767 0.757 0.766 0.959 0.947 0.957 0.5 0.343
1 .0 0.820 0.806 0.814 0.818 0.820 0.806 0.814 0.5 0.339 0.28
1 .2 0.871 0.853 0.862 0.726 0.711 0.718 0.5 0.335
1.4 0.923 0.900 0.907 0.659 0.643 0.648 0.5 0.333
1 .6 0.973 0.946 0.952 0.608 0.591 0.595 0.5 0.330

(12.20)

( 12.21)
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TA BLE 12.2. Transition parameters o f the D =  3 m elting m odel (V illain type) as obtained 
from Figs. 12.6, for A =  0 and various values o f £, in com parison with M onte Carlo Data 
from Janke and Kleinert (1985).

£ f t f t Pi, As' AsMC

0 .2 0.283 1.42 1.400 ± 0 .1 0 0 1.50
0.4 0.360 0.900 0.8880 ± 0 .0 1 5 1.50
0 .6 0.422 0.703 0.6875 ±  0.0025 1.50
0 .8 0.482 0.503 0.5875 ±  0.0025 1.50
1 .0 0.537 0.525 0.537 0.525 0.5175 ± 0 .0 0 2 5 1.50 1.33 1.2
1 .2 0.590 0.492 0.4690 ±  0.0075 1.50

THE TH RE E -D IM EN SIO N AL C ASE

In three dim ensions, the additional stress energy in isotropic system s with 
v -  0 is, according to (11.45),

- /3 /s,rc » k „  =  ( 12.22)

The exponent has the same form as it had in two dim ensions. The leading 
defect correction, on the o ther hand, becom es, due to  (11.84),

-0 /d c f |f tu  =  + 34-смега» (12.23)

At the lowest o rder transition point, jSmcit ~  0.5344 these have the values 

-/3/s.rcss ~  0.0005, - 0 / Ucf ~  0.0302, (12.24)

leading to an extrem ely small correction

=  0 L u ( l  -  50.0304) =  0.524. (12.25a)

This is in excellent agreem ent with the M onte Carlo value ob tained  on a 
163 lattice as described below (see Table 12.2)

Pmc\t ~  0.5175 ± 0.0025. (12.25b)
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The fluctuations are so small that the position o f the strong first-order 
transition, shown by the model to lowest o rder, is modified only very 
slightly by higher corrections.

12.4. A N ISO T R O PIC  C U B IC  M A T E R IA L S

For general cubic m aterials with A =  0 the free energies with stress and 
defect corrections are p lotted in Fig. 12.1 for D  =  3 and in Fig. 12.2 for 
D =  2. In the first case we have not distinguished the zeroth and first 
orders on the high tem perature side since the differences are too small to 
show up. On the low tem perature side, they are visible and are given by 
the dotted curve for £ =  1. We have not calculated the low tem pera tu re  
correction in the anisotropic case £ = £ 1, due to the com plexity o f the 
anisotropic defect interactions. [See Eq. (9.104).] From these figures we 
extract the critical tem peratures as listed in Tables 12.1, 12.2.

From the three-dim ensional isotropic value of p„, (P„, *  0.525) we can 
calculate the Lindem ann param eter of the model. Recalling relation
(7.40) we find for isotropic systems

22
- 1 / 3 - 1 / 3

(12.26)

where

(12.27)

Since our model has A =  0, L becomes

155 v ^ ; .
W ith P„, =  0.517 we obtain

(12.28)

(12.29)

This is som ewhat smaller than the Lindemann num ber of isotropic 
m aterials with small A. A good candidate for comparison is W (for which 
£ =  1.005, А/2/i =  0.628)(see Table 1.2) which has L =  135 (see Table 
7.2). O ne source of discrepancy is obvious. The experim ental Lindemann
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FIG. 12.1. Free energy of the D =  3 melting model (V illain type) as a function of /3 for 
A =  0 and various values of the anisotropy parameter £ = 0 .2 ,  0 .4 , . . . ,  1.2. The stress 
corrections at low p  are too small to be visible on this graph. The low est defect correction at 
high /3 is shown for the £ =  1 curve ( ----------). It is very small.

param eter is defined via the Debye tem perature [see Eq. (7.38)] which is 
sensitive to the zero tem perature elastic constants. The m elting m odel, on 
the o ther hand, involves tem perature dependent elastic constants. A look 
at Table 7.1 shows that the model's value of /3,,, has to be increased by 
roughly 15% before it can be inserted into formula (12.28). Still, this does 
not remove the discrepancy entirely and the model really melts at a fairly 
high tem perature. In other words, when heating a crystal, the destruction
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FIG. 12.2. The D  =  2 energy density o f the melting model as a function o f  /3 for A =  0 and
various values o f £(0.2. 0 .4 ...........1.2). The intercepts o f the high and low temperature
expansions give the transition temperatures in Table 12.1. On the high as well as the low  
temperature side, the lowest curves correspond to the lowest approximation without stress 
or defect graphs. The highest solid curves include the corrections (the dotted curves arc the 
unphysical continuation o f the corrected curves).
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of crystalline order via defect form ation sets in too  la te , in comparison 
with real crystals.

T here can be different reasons for this. F irst, we have not taken the 
p roper crystal structure into account. The m etal W  is really f.c .c ., while 
the model is simple cubic. This could m ake a quantita tive  difference 
which must be studied in the future. Second, the m odel may contain too 
little inform ation on point defects. The sm allest defect loops may not be 
an adequate representation of these. The th ird  reason , which we believe 
to be the most relevant one, will be understood  only la ter, in C hapter 13. 
There we shall point out the main w eakness o f the m odel. W e shall see 
that its disordered state is m ore disordered than that of a p roper liquid. 
The reason is that the model has no input param eter for the hard cores of 
the atoms. In the disordered state these atom s are point-like objects 
which makes the liquid look m ore like a gas than a liquid (see Fig. 13.23). 
This causes a too large difference in the free energies betw een ordered 
and disordered phases leading to an intersection at a ra th e r high tem pera
ture. Considerable work will be necessary to repair this inadequacy of the 
simple model.

Let us now turn to the internal energy. It is found by differentiation  of 
—p f  with respect to —p.  In the absence of stress and defect corrections, 
the internal energy was seen to be independent of T:

We add to these the stress and defect corrections. For D =  3 we shall do 
this only for £ = 1, due to the complexity of the defect in teraction  
potential in Eq. (9.104). The result is shown in Fig. 12.3. A t the 
transition points, the entropy jum ps are given in Table 12.2. For £ =  1 we 
find As =  1.49 to lowest order and Д 1.33 after including the lowest 
stress and defect corrections. The M onte Carlo sim ulations to  be 
described below give As = 1.2 . This is in good agreem ent with the 
experim ental num ber for W ( Д 1.5 from Table 7 .1). A ctually , this 
com parison is not completely justified since this num ber for W  was

(12.30)

(12.31)
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FIG. 12.3. The internal energy of the 0  =  3 melting m odel (Villain type) at the same 
values o f £ as in Fig. 12.1. The curves now show  the lowest stress corrections plus the lowest 
defect correction for £ =  1 as in Fig. 12.1.

m easured at constant pressure while our m odel’s value is apparently  
observed at constant volume for which As should be much sm aller. It is, 
how ever, not entirely clear what to take for the volume of the disordered 
sta te  of the m odel, since this is defined not via the lattice sites x but via 
the displaced positions x +  u(x) and these are defined m odulo defect 
gauge transform ations. Q uite possibly the correct size of As is partly  a 
consequence of the too large disorder in the liquid state.

For the two dim ensional model we can easily calculate all higher 
graphical corrections to the internal energy for various £ and find the 
curves shown in Fig. 12.4. Using the transition values /3,„ obtained before 
from  the free energies we find the transition entropies as listed in Table 
12.2.

12.5. M O N TE C A R LO  STUDY O F T H E  M ELTING M O D EL 
(V ILLA IN  TY PE)

In o rder to check the accuracy of our calculations we have perform ed 
M onte Carlo simulations of the model. Consider first the simpler case
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FIG. 12.4. The internal energy of the D = 2 melting m odel (Villain type) at the same 
values o f £ as in Fig. 12.1. The jumps Ди at the transition points p„, give the transition 
entropies As =  /3„,Ди listed also in Table 12.2.

D — 3 for which we have used lattices of various sizes from 43 to 163 with 
periodic boundary conditions.

Equilibrium  configurations were generated  em ploying the standard  
heat-bath algorithm . In order to save com puter time we have approxi
m ated the continuous 1/(1) symmetry by its discrete Z(/V) subgroup and 
taken N  to be once 16 and once 32. We have checked that the relevant 
transition region does not depend on this approxim ation. This is 
analogous to the situation in the X Y  model for which the additional 
transition caused by the discreteness of the Z(N)  variables (the so-called 
“ freezing transition” ) increases with N  as N 2 and thus lies at very high 
N. A t each tem perature, we have made 100 passes through the lattice to 
equilibriate the system and 250 more to m easure the free energy and the 
specific heat. The resulting num bers for isotropic m aterials ( £ = 1 )  are 
listed in table 12.3 and the corresponding curves are shown in Figs. 12.5 
and 12.6 .a The inserts resolve the region near the transition point. W e see 
that in three dimensions the fluctuations are quite unim portan t and the 
approxim ate analytic calculations are very reasonable.

For the sake of a better distinction with respect to the figures to be displayed in Chapter 13 
for a cosine version of the melting model we have attached to labels p  and £ a subscript V. 
This is supposed to remind us of the Villain-like periodic Gaussian partition function  
(compare Chapter II).
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TABLE 12.3. Internal energy and specific heat o f the D =  3 m elting model (Villain type) 
for A =  0, £ =  1 found in a Monte Carlo simulation on an 8  x  8  x  8  sim ple cubic lattice. 
Each step in the thermal cycle involves 100 sw eeps for equilibriation and 200 sw eeps for 
measurement [Janke and Kleinert (1986)].

P и (heat) и (cool) с (heat) с (cool)

2 .0 0 0.7432 0.7475 1.3997 1.1637
1.95 0.7704 0.7655 1.5124 1.4937
1.90 0.7834 0.7871 1.6110 1.6331
1.85 0.8112 0.8115 1.4039 1.2718
1.80 0.8291 0.8292 1.5330 1.5967
1.75 0.8542 0.8542 1.4153 1.2727
1.70 0.8781 0.8737 1.4693 1.2041
1.65 0.9083 0.9059 1.5342 1.2962
1.60 0.9359 0.9354 1.4787 1.6836
1.55 0.9615 0.9633 1.4964 1.6095
1.50 0.9995 0.9993 1.2907 1.2840
1.45 1.0328 1.0347 1.6478 1.8006
1.40 1.0709 1.0725 1.5141 1.5354
1.35 1.1129 1.1160 1.5709 1.5819
1.30 1.1517 1.1513 1.6278 1.6528
1.25 1.1971 1.2063 1.4825 1.7799
1 .20 1.2453 1.2419 1.5432 1.4728
1.15 1.2949 1.3033 1.3540 1.3453
1 .10 1.3716 1.3614 1.7440 1.8887

1.05 1.4293 1.4350 1.4587 1.3614
1 .00 1.5049 1.4968 1.3345 1.5324

0.95 1.5790 1.5728 1.5331 1.4117

0.90 1.6675 1.6864 1.7417 1.6700

0.85 1.7626 1.7694 1.4675 1.4194

0.80 1.8860 1.8928 1.3710 2.0570

0.75 2.0228 2.0320 1.5393 1.4206

0.70 2.2213 2.2013 1.6052 1.8626

0.65 2.4059 2.9051 1.8863 73.3719

0.60 2.6731 4.7326 1.8815 3.3108

0.55 3.0771 5.2078 3.0595 3.8969

0.50 3.7711 5.8692 7.9192 3.2214

0.45 6.5738 6.5707 3.2643 3.1685

0.40 7.4347 7.4385 3.1995 3.5484

0.35 8.5480 8.5420 3.2445 3.0269

0.30 9.9615 9.9443 3.1429 2.9899

0.25 11.9727 12.0032 3.2393 2.8661

0 .2 0 14.9715 15.0070 3 .0 2 0 2 2.8085

0.15 19.9825 19.3840 3.0044 2.9531

0 .1 0 30.0042 29.9953 3.0089 2.9980

0.05 60.0058 59.9958 2.9989 2.9982
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FIG. 12.5. Comparison o f  the D =  3 internal energy o f the m elting m odel (Villain type) of 
Fig. 12.3 for £ =  1 with Monte Carlo data on a 8 ' and a 16' sc lattice. N otice that the 16я 
data show undercooling.

In order to find the melting tem perature we have positioned the  system  
into a mixed state [half liquid, half solid, where liquid m eans random  
m, ( x )  e  ( —7Г, 7г), and solid means W /(x) =  0] and observed the develop
m ent of the internal energy over many iterations. T he system  
equilibriates very quickly and decides after less than 500 iterations into 
which state it belongs, even close to the point, for which m elting occurs:
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FIG. 12.6 a. Comparison o f the D =  3 specific heal o f the melting model (Villain type) at 
£ =  1, with Monte Carlo data. The insert resolves the jump in the specific heat at the 
melting point. This jump is very sensitive to £ and changcs sign at 0.65 (see Fig. 12.6b).

ft*  * 0 .5 1 7 5  (D  =  3, £ = 1 )  (12.32)

(see Fig. 12.6 for £ =  1). This is in very good agreem ent with the analytic 
result obtained above.

The accuracy of this value was further tested by studying the stability of 
an initial solid or liquid state right at /3W. The internal energies are shown 
in Fig. 12.7. A t /3„, =  0.5175 they are completely stable and from their 
distance, shown in Fig. 12.8; we extract

Ah *  2.323, Ay « 1 .2 0  (D =  3, £ =  1). (12.33)

W e have repeated the same analysis for various values of £ and found 
and As as shown in Figs. 12.9 and 12.10, where they are also com pared 
with the analytic results of Table 12.2. The values of /3„, are seen to 
follow quite well a straight line given by

p m ~  0.5175£“ °‘57 (D =  3). (12.34)

F or 0, the transition tem perature goes to zero. This has a simple
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FIG. 12.6b. The £ dependence o f the difference betw een the specific heats o f the solid and 
liquid phases. Most materials have £ « 0 . 6  (see Table 7.1) so  that Дс is positive, in 
agreement with experiment.

1
ДС

D =  3 Melt Vill. 
spec, heat jumps 
д с =  c dcf -  c slr

- i f  •  Monte Carlo Data
j 16' Lattice

0.2 0.4 0.6 0.8 1 0^.1.2

FIG. 12.7. Developm ent o f the internal energy o f a mixed initial configuration (half solid, 
half liquid) over many Monte Carlo iterations for /3 near the transition value (isotropic 
crystal £ = 1).
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physical reason. We had seen in Section 1.2 [see the stability conditions in 
Eqs. (1.17) or (1.21b)] that at £ = 0  a crystal becom es unstable with 
respect to shear stresses. Hence fluctuations diverge and destroy the 
crystalline order.

Since the transition entropy is rather large there is an o th er way of 
estimating the transition point and the value of As. W e may go to a
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FIG. 12.8. Stability o f solid and liquid phase at the transition point ($„, =  0.5175 over many 
iterations. From the distance o f the internal energies we extract As ~  1.2.

iterations

sm aller lattice, say 43, and look again at the developm ent of the internal 
energy over many iterations. At the transition point, the small system 
fluctuates back and forth between the two equilibrium  states as shown in 
Fig. 12.11. If we plot a histogram for the distribution of the energies (also 
in Fig. 12.11) we find a pronounced double peak which shows that for 
/3 <  p„, the system rests predom inantly in the liquid sta te , for /3 >  in 
the solid state. At (3 =  /3,,, the two peaks are symmetric and their distance 
determ ines Д5. Notice that for a 43 lattice, the melting tem perature  is 
slightly lower than that for a 166 lattice Q3„, 0.534 versus /?„, ~  0.5175 at 
£ = 0 .

Let us now turn to the case of two dimensions. H ere we use lattices of 
varying sizes, from 102 to 602, with periodic boundary conditions. 
Employing again the heat-bath algorithm and the Z ( 16) approxim ation 
we find, after 50 sweeps for equilibriation and 100 sweeps for m easure
m ent, the internal energy and specific heat as shown in Table 12.4 and 
Figs. 12.12 and 12.13. We see that they com pare rather well with the 
analytic results. It is also interesting to note that the peak in the specific 
heat has a shape quite similar to the experim ental specific heat seen in the 
two-dim ensional melting of adsorbed layers (see, for instance, Fig. 7.13).

It must be noted that the system has much stronger fluctuations than in 
th ree dimensions. This implies that much more care is needed when 
trying to find a precise values of /3,„ and hs. In particular this is necessary 
since there are, in the literature, conflicting statem ents regarding the
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FIG. 12.9. Dependence of /3„, on £ for the D =  3 melting m odel as found from the stability 
runs. The analytically obtained values o f Table 12.1 are practically the sam e.

FIG. 12.10. Transition entropy Дs o f the D =  3 melting model for various £ from M onte 
Carlo simulations (compare with the £ =  1 analytic result given in Table 12.3).
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FIG. 12.11. Transition signal o f the melting model on a smaller lattice (4Л). The internal 
energy jumps back and forth between the two phases. The histograms with a symmetric 
double peak indicate the first order transition.

D =  3 melt. V ill., 4J lattice. £v  =  1 
1 0 0 0 0  sw eeps, random start

o rd er of the two-dimensional melting transitions. These will be discussed 
in m ore detail below, particularly in C hapter 14.

In o rder to find /3,,, we proceed as in three dimensions and iterate the 
system many times starting once from a solid and once from a liquid 
state. The internal energies are shown in Fig. 12.14 and we extract

A , - 0 . 8 1 5  (D = 2 , f = l ) . (12 .35)



1096 III. GAUGE FIELDS IN SOLIDS

For this value of /Зш, the two states are stable over as m any as 15000 runs 
(see Fig. 12.14c). From the distance of the  curves we deduce

A w « 0 ,  A s - 0 . 3 .  (12.36)

Thus, with the definiteness which a M onte Carlo analysis sta tem ent can 
possibly have, our model undergoes a first o rd er phase transition .

W hen repeating the same analysis for various values of f  we find the £ 
dependence of the transition point and of the en tropy  jum p as shown in 
Fig. 12.16 and 12.17, respectively.

It should be m entioned, however, that som e of the stability runs 
display a curious behavior, an example of which occurs in Fig. 12.14b. 
For some initial configurations, the energy of the solid phase jum ps 
abruptly, after many iterations, towards the liquid phase, followed by 
further jum ps later on. Also , the liquid state som etim es moves lower. 
This could be interpreted as a signal that the stability of the two phases, 
displayed in Fig. 12.14c, is only apparent and we just had not w aited long 
enough for the system to equilibriate. The suddenness of the energy 
jum ps, however, inclines us to believe that it may be som e o ther 
phenom enon that could be taking place.

We therefore study the distributions of defects after such jum ps. They 
are found by taking the configuration of displacem ents m,-(x) and finding a 
set of integer num bers /j„( x) and half integers w,y(x)(/ =£j) so that

E (V,w,(x) -  2777?,,(x))2, (12.37)
x.i

E С^/иДх) +  Vjiij(x) — 4im,y(x))2, (12.38)
*./</

are minimal. From these numbers we obtain the defect distribution  by 
forming the double curl

Viji*)  =  £ikeejmnVkVmti<„(x -I- i + j ) .  (12.39)

In two dimensions we are only dealing with the defect density 
i?(x) ~  7733(x), a few examples of which are shown in Fig. 12.17. T he 
defect distributions show an interesting feature. As the free energy of the 
liquid moves down toward that of the solid, there are m acroscopic 
sections of the crystal which are practically free of defects. Such sections
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T A B LE 12.4. Internal energy and specific heat o f the D =  2 melting model (Villain type) 
for A =  0, £ =  1. The Monte Carlo simulations were performed on a 60 x  60 square lattice 
with 50 sweeps for equilibriation and 100 sw eeps for measurement [Janke and Kleinert 
(1986)].

p и (heat) и (cool) с (heat) с (cool)

2 .0 0 0.4990 0.7962 0.7548 0.9110
1.95 0.5112 0.6087 0.7579 0.7475
1.90 0.5252 0.6232 0.8927 1.2787
1.85 0.5376 0.6389 0.7967 1.1334
1.80 0.5559 0.6584 1.0974 0.8772
1.75 0.5721 0.6715 0.7393 0.9614
1.70 0.5891 0 .6 8 8 6 1 .0 0 2 2 0.9542
1.65 0.6035 0.7076 1.1414 1.0866
1.60 0.6256 0.7266 1.0722 0.7998
1.55 0.6413 0.7490 1 .1 2 2 2 1.0393
1.50 0.6642 0.7742 1.0356 1.1047
1.45 0.6906 0.7962 1.8727 0.7926
1.40 0.7164 0.8257 1.3910 0.9388
1.35 0.7392 0.8552 1.0191 0.8679
1.30 0.7672 0 .8 8 8 6 0.9279 1.0129
1.25 0.8074 0.9253 1.0081 0.9934
1 .20 0.8374 0.9680 1.1057 1.1961
1.15 0.8767 1.0138 1.4215 0.9555
1 .1 0 0.9179 1.0677 0.8685 I .2610
1.05 0.9685 1.1302 1.1580 1.1326
1 .0 0 1.0317 1.2381 1.0001 2.3382
0.95 1.0879 1.3578 1.1523 1.3237
0.90 1.1621 1.4646 1.5221 1.2630
0.85 1.2631 1.6210 1.4976 1.8810
0.80 1.4009 1.7642 1.4947 1.5004

0.75 1.6045 1.9382 2.3084 1.3713
0.70 2.0387 2.1028 3.2047 2.2007

0.65 2.2845 2.2798 1.5969 1.8314

0.60 2.4807 2.4897 1.2777 1.1680

0.55 2.7191 2.7254 1.8126 1.2788

0.50 2.9906 3.0009 3.3905 1.1703

0.45 3.3134 3.3222 7.5173 1.2776

0.40 3.7461 3.7559 3.2282 1.5885

0.35 4.3012 4.2834 3.5455 1.2059

0.30 4.9946 4.9946 3.2809 1.2932

0.25 5.9950 6.0014 3.9873 1.7238

0 .2 0 7.4901 7.5132 3.5328 1.4359

0.15 9.9912 9.9918 3.4499 1.4240

0 .1 0 15.0034 15.0105 3.5394 1.5051

0.05 30.0000 30.0001 3.5001 1.5003



1098 111. GAUGE FIELDS IN SOLIDS

FIG. 12.12. Comparison of internal energy o f the D  =  2 m elting model (Villain type) with 
Monte Carlo data.

are chunks of solid. Thus it appears as though the approach of the two 
free energies is not a signal of an equilibriation of the system in a pure 
state near a contribution transition, but ra ther an indication that the 
system separates into a mixed state, with finite pieces of solid im m ersed 
in the liquid phase. As a m atter of fact, in na tu re , precisely such a 
phenom enon happens if a crystal melts at fixed total volum e. D ue to the 
difference of the solid and liquid phases, the internal energy does not 
have a jum p, as it does at fixed pressure, but moves continuously from  
one value to the other. This issue, (raised by Toxvaerd in 1980 and 
investigated further by A braham  in 1982, via m olecular dynam ics 
sim ulation) will be discussed in more detail later in C hap ter 14 (see, in 
particular, Figs 14.11 and 14.12) which is dedicated entirely to the co n tro 
versial results on the order of two-dimensional melting.

At this juncture let us only mention that our results are in disagreem ent 
with recent M onte Carlo investigations by S trandburg, Solla and C hester
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FIG. 12.13. Comparison of specific heat o f  the D =  2 melting model (Villain type) with 
Monte Carlo data. The peak resem bles the experimental peak in adsorbed solid JHe films 
found by Brctz (cf. Bretz et al. 1973; see Fig. 7.13).

(1983) who claim to have seen two successive continuous transitions. 
T heir evidence is not derived directly from our model but their study 
differs from ours in two respects.

(i) They use a triangular lattice rather than a square one.
(ii) They do not simulate our model but a dual form of it.
T he first difference could, in principle, be im portant. But Bruce (1985) 

has redone the same work on a square lattice and found the same result 
(nam ely, two successive continuous transitions). If this were true, it could 
only be the use of the dual version of the model which causes difficulties 
in obtaining equilibrium  in M onte Carlo simulations. Let us therefore 
describe that model briefly. It is given directly by the integer-stress gauge 
field form of the partition function. In two dimensions, this was written 
down in Eq. (9.53) and (9.55). A fter summing over all defect fields rj(x) 
it reads
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FIG. 12.14a,b,c. Stability o f solid and liquid initial states for D  =  2 near and at the melting 
point over many iterations.

D =  2 melt. V ill., 602 lattice, £ =  1 

ordered/random starts
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Ш 0 Ш  ' ***

5000 10000 15000 
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Pv  =  0.815

5000 10000 15000
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2.0
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1.6

1.5
1.4
1.3
1.2

P v  = 0.816

5000 10000 15000
iterations

p ,' = 0.818

i-4 $ ]
1

5000 10000 15000
iterations

FIG. 12.15. The melting transition values /3,,, o f the D = 2 melting m odel (Villain type) for 
various values o f £. They follow only very roughly the empirical law /3,,, *= c£~a with a  lying 
between 0.7 and 0.86.
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FIG. 12.16. Transition entropy As of the D = 2 m elting model (V illa in  type) for various £.

0.2  0.4 0 .6  0.8 1.0 1.2 1.4 1.6

z  = ® M ) ]
x XI *(*)

N12

( у 2 тф) {̂ x,) eX^  ~4fi

(V V)"I “ J  + ((V 'V ')2 + (V2V2)2) Q -  1 *(x)

(12.40)

where the sum extends over all integers *(x). Dropping the prefactor, 
one remains with the sum

Z l r  =  Y  e"(,/4̂ )E,7(x),(fT):(," (1/y)) + ((f,V|): + (?:V:):)((,/f)" 1),?(x). (12.41) 
{*(*)}

This partition function is reminiscent of the discrete Gaussian model 
which appeared before as the dual version of the ordinary Villain model:

ZR= Y  e_(0*/2)-t*(x)(-f r)*(x).
M*)}

(12.42)

We have seen that that model could be used to study the roughening
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FIG. 12.17a,b. Defect p ictures illu strating the equ ilib riation  process for the run in Fig. 
12.14c at 0  = 0.81 for ordered start (ord) and random  start ( ran ) , respectively. The 
numbers to the right of each picture tell the num ber (in thousands) of equ ilib riation  sweeps 
[after Janke and K leinert (1986)].
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FIG. 12.17a,b. (continued)
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transition on crystal surfaces [recall Part II, Eqs. (11.254), (11.125)] with 
the identification TR = 1 lpR = p v .

The partition function (12.40) has a very similar appearance. In the 
isotropic case with £= 1 it differs by having an energy (-V -V )2 term 
instead of ( —V-V). It has therefore been named the Laplacian roughening 
model by Nelson (1982). In this model, one usually defines the tempera
ture TLR such that \/fi in (12.41) is replaced by

Y ~  ~ 2P lr- (12.43)

Taking the prefactor in (12.40) into account, the internal energy and



specific heat of the model (12.41) are related to those of the 
model (12.40) with £ = 1 as follows:

3 1 3 1
"~2/3 2/32 c ~ 2 ~  /}Ulr + C lr '

1 1 04  111. GAUGE FIELDS IN SOLIDS

U l r ~ 2  P ^ ' W r " '  CLR~ 2 - J [ - r U + °-

The previously calculated high and low temperature expansions, 
the melting model had the general form

-(3f = constant — ~ log >3 e~[,,/2l3\

и = —  + Г  -  —  e-w»\ c _  £ + V  4- —  e~[,,l2fi) 
“ 2(3 2(32* ' 2 \ (3 + 4(32) e '

for high temperatures and

—(3f = constant -  log/3 + 2

u = ^ + Y  Ье~*'\ с = 1 + /32 E  b2e~li,\ 

for low temperatures, now read

-N,.r = E e-**",

чlr = E  ae-»w\ cLR = P2LR E

and

-M lr = -ilog(2̂ ,.R) + E

ULR 2fiLR “  2{Sl r  2 V P lR W lr

melting

(12.44)

(12.45) 

which in

(12.46)

(12.47)

(12.48)

(12.49)

(12.50)

(12.51)

(12.52)

(12.53)

in the opposite temperature limits of the temperature TLR.
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FIG. 12.18. Internal energy of the Laplacian  roughening model of m elting and com parison 
with Monte Carlo data on a square lattice [taken from Jan ke and K leinert (1986)).

P/.R

In Figs. 12.18 and 12.19 we have compared the calculated internal 
energy with the Monte Carlo data for £ = 1. In the immediate neighbor
hood of the transition point the agreement is quite bad, demonstrating 
the importance of fluctuations. Since we have studied this model in the 
previous dual Villain form, there is no need to do this once more here. 
Let us simply mention that, for the simulation, it is useful to bring the 
energy to a more convenient form. First we rewrite
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FIG. 12.19. Specific heat of the Laplacian  roughening model and com parison with Monte 
Carlo  data on a square lattice.

о

FIG. 12.20. The three types of vectors to the neighboring positions appearing  in Eqs.

The vector sums over i, j  with i ^ j  covers twice the 4 next-nearest 
neighbours and once the 4 second-nearest neighbours. If the correspond
ing vectors are denoted by ±/i, ± a , respectively (see Fig. 12.20), we find

E(V-V*(x))2
X

= E l 20X(x)2- 8 E x (x + i)* (x )+ 2 E * (x + ^ )* (x )+ E * (x + « ) * (x )
x  ̂ ±i ~[i - a

=  E * (x ) (2 0 * ( X )  -  8  E * (x  + i) + 2  E *(x +  f i )  +  E * (x  + a ) ) ■
±1 ±u ~a /

(12.55)
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which is the desired form. It can also be rewritten as

E (V -V *(x ))2
X

= 4 V* f y f v - i - n — У* (X(xA- иЛ — AYx^2 — -  У! (A'(x-f-a) — A'(x))2,

(12.56)

where the first term is the ordinary discrete roughening energy 
8ExP (x )(-V  V)A,(x) and the others may be considered as next and second 
neighbor corrections. These are quite significant as can be seen by merely 
comparing the transition temperatures. If the other two terms were 
negligible, we should have TLR/S=TR where TR is the roughening 
temperature. For p ,R we find from Fig. 12.19

so that TLR!8 = 0.208 which is much lower than TR = 0.605.
The previous studies of this model by Nelson (1982) and by Strandburg 

et al. (1983) were performed on a triangular lattice for which the 
Laplacian reads

(12.57)

VVAr = ?£ (A r(x  + i ) - * ( x ) )  
±i

(12.58)

and the vector i denotes the three oriented links

1 = (L  0 ), 2 =

In momentum space, one has

К ■ К = |{6 -  2[cos(l • k) + cos(2 • k) + cos(3 ■ k)]}, (12.60)

which for small к behaves correctly like k2.
The energy is the square of the expression (12.58). In analogy with 

(12.54), (12.55) it can be rewritten as follows:
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FIG. 12.21. M onie Carlo  data on the specific heat of the L ap lacian  roughening model on 
triangu lar lattices of various sizes N = Lr whose finite-size scaling behav ior c = A N + B  
indicates a first order transition [(from  W . Jan ke  and D. Toussaint (1986)].

Pl.R
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E (V-V*(x))2

= n E  I 42A"(x)2— 12 E  Jf(x + i)Af(x) + E  Af(x + i- j)* (x )
У x I ±i ±i. ±j

f i#j 
= s E  42*(x)2 -  12 E  *(x + i)*(x) + 2 E * (x  + i)*(x)

 ̂ * 1 ±i +*

+ 2 E  *(x + At)Af(x) + E  *(x + a )  A-(x)
±/i ±a

= ̂ E *(x) ] 42X(x) - 10 Yi X(x + i) + 2 XI *(x + ft) + Y  *(x + a) | *
У x t ±i ±/t ±a J

(12.61)

In this form the Monte Carlo runs are easiest to perform.
As with (12.56) there is yet another version

E  (V-V*(X))2 = I E  15 E  №  + i) - *(x))2 - E  (*(X + p) - *(x))2
x У  x I  ±i ± f i

- ^ E w x  + a )- ^ (x ))2j- (12.62)

in which the first term

y E * ( x) ( - V V ) * (x) (12.63)
3 X

corresponds to the ordinary discrete Gaussion model and the other two 
terms represent next-nearest and second nearest neighbor corrections.

The simulation of this model by Strandburg et al. (1983) focused 
attention upon the long-range behavior of the correlation functions, as 
first suggested by Nelson (1982). From a change in this behavior they 
deduce two closely spaced continuous transitions at

T['R= 1.825 ± 0.025, (12.64)

and at

T};R = 1.925 ± 0.025. (12.65)
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FIG. 12.22 The linear growth o f the peak in the specific heat with size (=  two- 
dim ensiona volum e) characteristic o f a finite-size «-function and thus for a  first-order 
transition [Janke and Kleinert (1988)].

As far as the melting transition is concerned, this would mean that the 
crystalline order breaks down in two successive steps. In the first step, the 
translational order breaks down leading to a phase in which the atoms can 
move around freely but only along the six crystalline directions (hexatic 
phase). The second step destroys this remaining directional memory and 
leads to a completely disordered state.

On the basis of our own data we believe that these results are not 
trustworthy for three reasons.

(i) The Monte Carlo iterations of the model equilibriate very slowly 
since the interaction energy involves nearest and next-nearest neighbors.

(ii) The correlation function cannot distinguish whether the system is 
in a uniform phase during a continuous phase transition or in a mixed 
phase during a first-order phase transition.

(iii) The size of the lattice was not large enough to see the effect of a 
very weak first-order transition.
Our doubts were enhanced when reinvestigating the order of the tran
sition on a square lattice [W. Janke and H. Kleinert (1986)], which gave 
on у a single weak first order transition. This prompted a repetition of the 
simulation of the triangular model by W. Janke and D. Toussaint (1986) 
with much higher statistics than the one by Strandburg et al (1983). The

1000 2000 3000 4000 
volume
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FIG. 12.23. Finite-size behaviour of peak positions in the specific heat of the Laplacian  
roughening model on an L x L triangular lattice. The intercept gives the transition point 
[Janke and Kleinert (1988)].

result suggests that the model on the triangular lattice has the same weak 
first order transition as on the square lattice.

A further simulation of the triangular model was performed recently by 
Strandburg (1986), ignoring any work that had appeared after Strandburg 
et al. (1983). The conclusion of a finite-size scaling analysis was, once 
more, that the model has two successive continuous transitions. By 
comparison with the work of Janke and Toussaint it appeared that 
Strandburg had not gone to large enough lattices to see the finite-size 
scaling associated with the first order transition of the model. This was 
confirmed in a high statistics study by Janke and Kleinert (1988) [see Fig. 
12.22]. Figure 12.23 shows the finite size scaling of the transition point.

This transition will be discussed in more detail in Chapter 14.

NOTES AND REFERENCES

The transition entropy and their relation to the volume change is discussed in 
M. Lasocka. Phys. Lett. 51A (1975) 137.
See also
S .M . Stishov. l.N . M akarenko. V .A . Ivanov, and A .M . N ikolaenko. Phys. Lett. 45A (1973) 
18.
J .L . Та I Ion. Phys. Lett. 76A (1980) 139.
K. Ohashi and Y .It. O hashi. Phys. Lett. 86A (1981) 179.
A general review of specific heats in solids is found in
G .G . Borelius. Solid State Physics 15 (1963) 2.

The therm al expansion was removed from cP to get cv = cP ~ а 2кТ [recall (7.96)] for a 
few m aterials by
G. G rim w all. Phys. Scripta 11 (1975) 381.
The M onte Carlo sim ulations were performed in three dimensions by



1112 III. GAUGE FIELDS IN SOLIDS

W . Jan ke and H. K leinert, Phys. Rev. B33 (1986) 6346 and also in two dim ensions by 
W. Jan ke and H . K leinert, Phys. Leu. I14A (1986) 255, 
for square lattices and by
K .J. Strandburg, S .A . Solla and G .V . C hester, Phys. Rev. B28 (1983) 2717.
W . Jan ke and D. Toussaint, Phys. Leu. 116A (1986) 387,
K. Strandburg, Phys. Rev. Leu. B34 (1986) 3536, 
for triangular lattices.
A fter this text was w ritten . D. Nelson drew  my attention to a paper by D .A . Bruce, 
Material Science Forum 4 (1985) 51, who claim s to have observed the sam e behavior on a 
square lattice as Stransburg et al. (1983) on a triangular one, in contradiction w ith Jan ke  and 
Kleinert (1986), probably for the sam e reason discussed in the text. See also the theoretical 
paper by
D. Nelson, Phys. Rev. B26 (1982) 269,
proposing the phenomena claim ed to have been observed by S trandburg et al. (1983). 
Recent work is contained in
W. Janke and H. K leinert. Phys. Leu. A (1988), in press.



CHAPTER THI RTEEN

TH E M ELTING M O D E L OF TH E CO SIN E TY PE

For comparison we shall now investigate the melting transition in the 
cosine form of our model as defined in Eq. (9.147). For simplicity, let us 
omit the /3 dependent prefactors and consider the slightly modified 
partition function,

In the last chapter we saw that the parameter A produced little change in 
the transition temperature and entropy. We may therefore confine our 
attention to the case of A = 0 for which у  = Dg+ 2/x£2/A—» »  and the 
angular integrations over are frozen out, leading to the partition 
function [compare (9.126)]

+ (0У А) E cos(v,7> - E Уv(x + >)) + (2/3y)i/-i E cosy,,(\)| •
x. i<j

(13.1)

1113
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Z' = П
A—>0 x , i

Г  d7 i(x) 
J - I T  2tt

cos(V,yy + V; y() + (2/3f)r-i cos(Vjyj) (13.2)

In order to simplify the notation we shall, from now on, omit the subscript 
V~l and study the model as a function of /3 and £ in its own right.

13.1. INEQUALITY FOR FREE ENERGY AND THE MEAN- 
FIELD APPROXIMATION

A study of this partition function within the mean-field aproximation 
becomes possible by observing that Z' can be expressed in terms of pure 
phase variables

Uj(x) = e 'Y,(x) (13.3)

as follows:

z=n P  dyAx)
J - 7 7  2 tt

exp Re I £  Uj(x) U}(x + i) Uf(x + j) Uj(x)
I  x,/</

+ 2/3f£ U*(x) Ui(x + i) 1 • (13.4)

The arrangement of the Uj(x) variables in the first term can be pictured by 
a distortion graph around the site x

x+j x  +  l + j

where each C/,-(x) is represented by a displacement arrow along the link i 
with U j(x) pointing in the opposite direction.

Using the variational methods described in Part II, Section 5.1, we can 
now derive an upper bound for the free energy. For the trial partition 
function we choose the simplest product of independent one-link integrals,

Zo- П
Г  dy,(x)

J  -77 2 t t
,-РЫу,\ = [d b  

J  2
.(*)

277
eoStiRcu,(*) _  f J / 0( a ) D,

(13.5)
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where a  is the analogue to the magnetic field used in the ansatz (4.28) for 
the XY  model. We now take the positive normalized measure

П (dfi(x)myU\f
x J  -M) x . i  J  -

dj,(x)
2 iт (13.6)

and denote expectation values within this measure by ( ) 0. Then we 
rewrite the partition function in the form

Z' = z„ П I M x ) - « ( Т Ы - Е ,Ы ) (13.7)

where

РЕ'[у,] = Р S  cos(V,yy + V,y,) + iptYi cosV/y/. (13.8)
x . i < j  x . i

Now we make use of Peierls’ inequality, as in (II.5.12), and obtain the 
bound

-pF * -PF0 - P(E'[y,\ - EoM>o. (13.9)

The expectation value of E0 is found in the same way as in (II.5.16): 
Since Zq is a product of independent integrals on link variables £/,-(x), the 
expectation values of all U,(x) is the same:

( l/,(x)>о = J 4 4 0  U,(x) = j r  J  l  U’(x)

( | 3 ,0 )

Let us call this expectation value и

u=  (U,(x)) 0 = D /■(«)
/«(«)

(13.11)

Then we can calculate
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<£ oM>0 = E  0f<t/,-(x)>о = NDau. (13.12)

The expectation value of the full energy (13.8) is found as follows:

Inserting this, together with (13.12), into (13.9) we find the following 
bound for the energy density,

This free energy has an important property: when changing /3, one 
changes directly the quartic term w4. This is in contrast with the XY 
model, where only the quadratic term has a /3 factor. As we can see 
immediately, it is this property which makes the melting transition first- 
order.

The value of и in the free energy is given by (13.11), but just as in the 
XY model, we can see that we might as well allow и to be an arbitrary 
variable and determine it by maximizing the right-hand side in a and и, 
independently. This gives the two equations

The /З-dependent uA term in (13.13) appears here as a cubic //3 term which 
leads naturally to a first-order transition. This goes as follows. In the limit 
a->  0, /3 approaches the value /3,, = l/2f with /' = 0. This is the point at 
which the mean-field solution и = 0, a = 0 destabilizes. As a increases, 
the free energy —/' decreases first from zero to negative values, then, 
starting from, say, /35 it turns around and begins to grow monotonically 
[see Fig. 13.1]. In the region (3X < /3 < /3,/, the free energy as a function of

X j  J  \ X . /< /

—p f  a  /3—^ -i/4 + 2/3£Du2 — Dan + D log /()( a ) .  (13.13)

и = /,(а)//0( а ) ,  

2{P(D -  !)«• ’  + 2p£u) = a .

(13.14a)

(13.14b)
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FIG. 13,1. Signal for the first o rder transition at As a  is increased from zero , the free 
energy moves along the arrow . The potentials arc visualized on top of the figure.

a and и has two minima (one at the field origin and one away from it), 
and one maximum (between the two minima). The phase transition 
occurs at a place (3m when the free energy at the second minimum passes 
through zero. There, the order parameters a and и jump from zero to a 
finite value. This is the signal for a first-order transition. In order to be 
specific, let us fix £ to be 0.25, 0.5, 0.75, 1. Then we take a from zero to 
infinity, calculate u(a) from (13.14a) and /3(a) from (13.14b). The 
resulting functions can then be inserted into (13.13) and we obtain the 
free energy - / ' as shown in Fig. 13.2 for D = 3. The transition points 
extracted from this are plotted in Fig. 13.3 as a function of £ and 
tabulated in Table 13.1.

In D = 2 dimensions, the situation is somewhat different as shown in 
Figs. 13.4, 13.5 and listed in Table 13.2. Only for £< 1 is there a first 
order transition at the mean-field level. For £>1 the transition is of 
second order. In fact, close to f  *  1 the mean-field free energy has the 
Landau expansion

- r MF= ( / * - | ) « 2 + ^ ( w ) “ 4 - ^ “ 6 + - - -  0 3 1 5 )

which clearly shows that the point £ = 1 is tricritical. We shall see later 
that fluctuation corrections change this result drastically with the con
sequence that melting in the two-dimensional cosine model is always a 
first order transition.
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FIG. 13.2. The free energy of the cosine m elting m odel as a function of for various 
values of £ in three dimensions. The intercepts betw een the high tem perature expansion and 
the one-loop corrected mean field gives the transition points (/3„, = 1.69, 1.19, 0 .95 , 0.80, 
0.71 for £ = 0.25 . 0 .5 , 0.75 , 1.0, 1.25). They are com pared with M onte C arlo  data  in Table 
13.1. The one-loop corrections can be taken in its lim iting from (13.67 ) [ i .e . ,  involving only 
the pure phonon fluctuation determ inant calcu lated  in (9 .87 )]. The full one-loop correction 
shows practically no deviation from this down to the transition point. It m ere ly changes the 
curves in the irrelevant neighborhood of the m ean-field transition point (w here the dashed 
curve intercepts the /3£ axis) as indicated by the dotted curved bottom piece for £= 1.

FIG. 13.3. The transition tem perature of cosine m elting model for D = 3 . extracted  
from Fig. 13.2 (see Table 13.1) as compared to the Monte C arlo  sim ulation  of Jacobs and 
Kleinert (1983). They are fitted reasonably well by the formula (3„, = 0.77£

1

-0.597

0.5

cd 
JE - 0 .5

-1

m elting transition 
for D = 3 (cos) 
x  analytic calc.

I Monte Carlo data

-2  - 1 0 1 
In*
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TA BLE 13.1. Transition data of the D = 3 cosine m elting model from various sources, in 
particular, the intersection of m can-ficld-plus-one-loop with the tem perature curves (L T , 
HT). The sixth column shows the em pirical best fit to the £ dependence o f /3,,,.

£ P"F /&ТИТ / ftC 0.77 Г 0597 A*LTJrr Д5МС

0.25 2.00 1.09 1.69 1.73 1.76 1.68 1.64
0.50 1.00 0.77 1.19 1.17 1.16 1.77 1.58
0.75 0.67 0.59 0.95 0.91 0.91 1.65 1.45
1.00 0.50 0.47 0.80 0.786 0.77 1.45 1.33
1.25 0.40 0.40 0.71 0.67 0.67 1.20 1.20

FIG. 13.4. The free energy of cosine m elting model in two d im ensions, taken from Ami 
and Kleinert (quoted in the Notes and R eferences). From the intercepts we extract the 
transition values p„, = 4.46 , 2 .30, 1.71, 1.38, 1.18, 1.04 for £ = 0 .2 , 0 .4 , 0 .6 , 0 .8 , 1.0, 1.2 as 
com pared to Monte C arlo  data 2.35 ±0.05, 1.36 ± 0.02, 1.15 ±0.05 for £ = 0 .4 , 0 .8 , 1.0 and 
obtained by Jan ke and Kleinert (see Fig. 13.5). The approxim ation has a second-order 
transition for f  = 1.

The internal energy per site is given by

D -  1 и4 + 2£h‘ = N<£>
(13.16)

and is shown in Fig. 13.6 for D = 3 and in Fig. 13.7 for D — 2 (more
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FIG. 13.5. The transition tem peratures of the cosine m elting m odel for D = 2 (ex tracted  
from Fig. 13.4) as com pared with the M onte C arlo  data  of Jan ke  and K leinert (1984). A  
reasonab le fit is pm = 1.15£-078.

precisely, the figures give wMF = w'MF + D[{D -  l)/2 + 2f]. Notice how 
in the latter case, the curves for £ = 1.0  and 1.2  display the second order 
transition at the mean-field level.

The entropy per site is given in terms of the internal energy u 'MF and 
the free energy f ' MF by

sMF = pu'MF -  Pf'™.» M F (13.17)

Since/ 7 is continuous, the transition entropy is determined by the jump in 
the internal energy u\

A s = pbu'. (13.18)

Then if Aup denotes the jump in the powers p of the order parameter u,

A*MF= - P - - D.  ^  An4 + 2 P£DAu2 (13.19)

Using the fact that —/3f  is zero just above and below the transition, one 
has

^ Ли4 + 2/}£DAu2 = A(Dau -  D log/0( a ) ) ,  (13.20)

so that АУ can also be rewritten in the form
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A jmf = A(Dcrw -  D log/(,(a ) ) . (13.21)

When comparing the curves with those of the Villain-type model 
calculated in the last chapter we have to keep in mind that the physical /3 
and 2/3£ are actually (5v-\ and {2(i^)v-\ so that, in fact,

Asmf = —S —  
P dp P v A P )— ,  - A« 4 + {2№ vA P)D bu2 . (13.22)

13.2. FLUCTUATIONS AROUND THE MEAN-FIELD SOLUTION

In the ЛТ-model, we were able to derive corrections to the mean-field 
energy by rewriting the partition function as a theory involving two 
fluctuating complex fields. The new field energy had the property that the 
mean-field approximation gave exactly the expression which appeared in 
the bound for the free energy (13.14). The one-loop correction gave 
sufficient improvement, resulting in an adequate description of the overall 
behaviour of -/3/' in the cold phase up to the neighbourhood of the 
phase transition.

We shall now follow the same approach here. For this we first use the 
trivial identity (II.5.74) to liberate the phase variables U,{x) from the unit 
circle and rew r ite^ ' as follows [compare (5.75), Part II]

Г х dan(x) dal2
J  _/» 2 -7 7 7  2 rri

2(x)Z' = П
X. /

x  exp |Re 

+ 2/3f E uj(x) Ui(x + i)
X ,/

+ E  iog/0( k  (x)|)

П / : dui}(x) dui2{\)

P E ui(x) uj (x + i) uf(x + j) Uj(x)
_ X, I < /

- J E  (« / (* )« ,(* )+ C.C.)
 ̂X.l

X, I

(13.23)

where an , uiX and a i2, ui2 are the real and imaginary parts of the complex 
fields ah uh respectively. Maximizing the exponent gives the equations

и = /i(a)//o(«)> (13.24)

2 [/ 3 (D -l)w 3 + 2/?£w] = a , (13.25)
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for each i = 1, 2, 3. These are precisely the equations (13 .14a,b) and we 
see that the saddle-point approximation to (13.23) does indeed satisfy the 
bound (13.13).

Let us now calculate the one-loop corrections to the mean field solution
(13.25). For this we rewrite cr, as a  -I- 5a,• + ida] and w, as и + 8uj 4- /8uJ 
and expand the exponent in (13.23) up to quadratic order in Sa,-, 5w,-.a 
The linear terms vanish, since a and и lie at the maximum. The quadratic 
terms can be written in the form

-/382E= (Suf, 5af)(x) Atf,y(x,

E (S“J. 8a!)(x)M !j(x, * ( * < ' > )  . (13.26)

The 8a 8u and 8a 8a parts of the M matrix are the same as in the XY 
model, apart from an extra factor and we can write

Mc(x, x ') = I d2F „ I, (13.27)
mfj(x, x') i 8ij 8XX'

d2F
—i 8jj 8X x'

b’ da2 * *'

m;y(x, x') —i8jj8XX'

1 dF
—i8jj8xx> 8ц - — 8XXa da

M '(x, x ') = I 1 d F ^  I, (13.28)

where

dF _  1 Ii(a) _  и 
da a Io(a) a

and we have rotated the contour of integration in 5aJ to run along the 
imaginary axis [just as in (11.5.83) and (II.5.84)].

The explicit calculation of the mf/ 1 matrices governing the 8щ 
fluctuations requires more work. Consider first the quartic pieces in m, 
(of 13.23). They give

“The superscripts t  and / refer to “ longitudinal” and “ transverse" with respect to the ground 
state expectations a, и in the complex plane (not to be confused w ith the polarization  
directions in space, which are denoted by L and T).
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W ̂  E «/(*) "/(x + i) !/,(x + j )  h / (x )  + c.c.1̂  X . I < J

= Y [5w,+(x) St/y(x 4- i) + 5m/(x) 8uj(x 4- j )  + 8uJ(x) 8uJ(x)
2  x J < j

+ 8Uj(x 4- i) 8uj(x 4- j )  4- 8uJ(x) 8itj(x + i) 4- 8uJ(x) Sw,(x 4- j )  4- c.c.] 

= ~  Y  [5м/(х)(1 4- V,) (x) 4- 8uJ(x)( 1 4- Vy) Suf(x) + 8uJ(x) 8uj(x)
^  x,/#/

4- (1 4- Vy) 6w/(x)(l 4- V,) 6м; (х) 4- 8uj(x)( 1 4- V,) 5мДх)

4- 8w/(x)(l 4- Vy)5w,(x) 4- c.c.]

= 7  E  [2Sw/(x)(l 4- V,) Suj (x) 4- 25m/(x)(1 4- Vy) би,(х)
4 X , /' Ф  j

4- 8uJ(x) 5м/(x) + 8uf(x)( 1 -  Vy 4- V,- -  V,Vy) 8iij(x) 4- c.c.]. (13.30) 

The second term can be reorganized slightly as follows

E Sj//(x)(1 + V,)5w,(x)
x . i ^ j

= 2 XI 8 u ! ( x )  Sitj (x) 4- Y Suf(Vj 4- V*) Sw,(x)
x j  x . i

I. j .  к  = cyclic

= 2 XI 5и/(х)5и,-(х) 4- XI 5м/(х) XI &л(х) - XI 8u!(x) V, 6w, (x)
x, I

= 2 E 5м/(х)( 1 + ) 8u,(x) -  SuJ (x) V, Si/,(x) (13.31)

From these expressions we can easily extract the matrices mffl (x, x ') in 
(13.28). For this, we replace the sum E/*y in (13.30) by E,-.y(l -  5,y), for 
example:

E S«/(x)(l + V,) ЗиДх) = E «".■(*)( 1 - W  + V,) Su; (x).
x.i^y x.i;/

Then the quartic piece gives the following contribution to m,y '(x, x '):
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Mij (x, X ) |qUarl 2(1 -  в^)(1 + V,) + 4 5 J  1+
V €V €

± (1 -  8U) ± (1 -  80){ 1 + V,- -  Vj -  Vf.Vy)

-  25,yV,

5(x -  x '), 

(13.32)

where the upper sign holds for the longitudinal (real part), the lower for 
the transverse (imaginary) part of 8uf. In the last term we observe that

8g( 1 + V, + V; -  V,Vy) = 8у(\ + V,- -  V,- -  V,V,.) = 8;; (13.33)

so that the two 5/;- terms in the second row are, in fact, the same and 
cancel. Moreover if we use the fact that between real fields

-E S«,(x)VjSUj(x) = E V;Sm,(x)Suj{\) = E SU,(x)VlSu,(x)
м ч

= E  Sui(\) V, S«y(x), 
i->

(13.34)

then (13.32) reads

x ')lquart =  —/Зм2{[2(1 + V ,) ± 1 ± (1 + 2V/) + V,V,.

+ S,y[-2(1 + V,) + 4 + V,V, -  2V, ± 2]} 5X. , . .  (13.35)

In momentum space we set 1 + V, = eik\ 1 — V,- = e~ik> and find

Wjj (k) |quart

= -/3w2(  ±(eiki ± l)(e"'*' ± 1) + 25,y( Y  cosk( -  2 cos kj +

- 2 ( 0 - 3 ) ) ,
2 ( 0  -  1)) ,

(13.36)

= Bu2l ~{в*  + l){- 4k‘ + 1} + 5'>(K * *  "  2KiKJ  “  
P \ AT, /C7 + 5/y(K • К — 2Kj Kj —

where we have used the fact that between real fields in x space only the 
real parts of the matrix elements contribute.

Consider now the piece quadratic in w,(x) of (13.23). Its fluctuation 
energy is
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2  (8uJ(x)( 1 + V,) Su,(\) + c .c .)
Zr v #

(13.37)

so that the matrices m,y'(k) are extended by

< '( k ) | q u a d r  = 4/3f cosk, S,y = 4 ^ (1  ~{K,K,) S,j (13.38)

in both the longitudinal and the transverse parts.
Combining all terms, the fluctuation matrices A/f and A/' read, in 

momentum space

k) =
^М2|/̂ (к) + 5/у̂ К * К+ 2 ^ — 1̂ KjKj— ̂ 4^+2(D —3)̂  j j -/5* 

— iSjj —~ —

(13.39)

л*'00 =
j8« 2{p'(k) + 5/;[K-K + 2 ^ - l ) ^ ^ - ( 4 ^  + 2(D-3))]} -ib,

■18;,

(13.40)

where we have introduced the matrices

Pfj = (efii + l)(e-*- + 1), P\j = (e *  -  l ) (e rt/ -  1) = K,Ej. (13.41)

We now integrate out the 8a f,/ fields. This leads to the following 
fluctuation matrices in 8u1' 1 space alone:

-  P}j(k) + К • К 8,j + 2 ^  ■- l j  К, K, ,• 8„ -  ^4 4j-+ 2(D -  3) j  S^j

1 ------- u1
8jj ,

(13.42)

D\j{ k) = /3<r K,Kj + К KSij + 2 ^ - 1 j K,K,S9- ^ + 2 ( 0 - 1 ) ) * ]

(13.43)
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We now make use of the extremality condition (13.25) and see that the 
last two terms in (13.43) cancel. Thus the matrix £>{,(k) describes massless 
fluctuations. This was to be expected on the basis of the Nambu-Gold- 
stone theorem, since the imaginary parts of the fields 8ul point along the 
valley of symmetry in the energy of the disorder field theory (for phase 
rotations u —> eieu, a - »  eiea). These massless fluctuations describe sound 
waves in а ТФ 0 crystal. In the limit of low temperature, they reduce to 
the sound waves of the initial elastic energy. Indeed, in this limit, u - »  1, 
5m ,(x) = ш5у,(х) —> /5y,(x) and the fluctuations 5w/(x) can be identified 
with 5y,(x). Thus the matrix D'(k) contributes a fluctuation energy

This agrees with the fluctuation matrix for the elastic energy (9.10),

after over going to momentum space [see (9.64)].
For increasing temperatures, the matrix D/Дк) describes the softening 

of the elastic constants upon heating. As long as the temperature is still 
small, the extremality conditions (13.24) and (13.25) can be solved 
approximately as follows:

Thus и decreases linearly with temperature as

4 [/ 3 (D -l)  + 2/3fl
1 (13.46)

It remains to properly normalize the fluctuation energy. For и Ф 1 we 
have
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which leads to the elastic energy 

E 1 1
Y  = 2 n J ? , 8У<(-Ь)[Ри\К,К/ + К • К S,y -  IK .K A j)  

+ 2/3Su2KiKi8ii)8yJik ). (13.48)

From this we extract the elastic constants at non-zero temperature,

Л . . ' ,  « Р - . Л  (0 .4 9 )

When comparing these results with the experimental softening of the 
elastic constants one must bear in mind the fact that /3 and 2/3£ do not 
reflect the proper temperatures but the inverse Villain transforms [recall
(9.124), (9.125)]. These, in turn, were assumed to contain the softening 
effects of the cubic terms. Since we have given a detailed study of the 
temperature behaviour of the elastic constants at an earlier stage we shall 
refrain from repeating such an analysis within the present model.

The longitudinal modes described by the fluctuation matrix are all 
massive. The mass reflects the difficulty in creating defects. For low 
temperature, the mass diverges to infinity. This follows directly from the 
limit (13.45) according to which

1 2a 2 + 0 ( a )  ~ 8 [P(D -  1) + 2/3f]2, (13.50)
1 -  -  -  u2 a

which grows like /32, whereas the gradient terms in grow more slowly, like 
(3 [see (13.42)].

13.3. ONE-LOOP CORRECTION TO THE MEAN-FIELD 
ENERGY

Having analyzed the fluctuation modes we can now turn to calculating 
their fluctuation determinants. From the integrals over which we 
performed to arrive at the pure Sw, fluctuation matrices (13.39) and
(13.40), there is one trivial contribution to the free energy, which is
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After this, the integrals over Sw,(x) produce the determinants 
(D etD c) - 1/2(D etD ')-1/2 which give the remaining free energy at the 
one-loop level,

~ Pfl ,oop = —  J ^ 0 > [ t r lo g D f(k) + tr log D'(k)]. (13.52)

In order to treat the fluctuations of real and imaginary parts 8u on the 
same footing it is useful to introduce the following abbreviations

e€ = /Зм2( 1 -  -  -  и2 ) ,  s' = pu2 - » 
a J a

(13.53)

and

Nf'r =\ + K K . a i - i (13.54)

Then we can rewrite (13.52) as

- p f i loop = у  (tog ( l  -  ^ -  u2)  + log - Ц  ̂ p t t r l o g  ( N f b - S P f r

+ Wlog(N/S,j + £'/>')]. (13.55)

The first part cancels with (13.51) and the full one-loop correction energy 
becomes

- P f l loop = 4 /  ( 0  [  S  cos Nf + E  N} + tr log ( s ,  — £l

(13.56)+ tr log | S,y + e’— Pjj

In this form, the logarithms can be easily calculated by expanding them 
into a power series in P-/1:

< ' 3  57)/1=1
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The traces can be calculated by observing that due to their factorized 
forms, the matrices

pf/'(k )= ± p * '(k ) (13.58)

are essentially projection matrices,

V  1 , k' k" 1 , k- ki ( V  4 cos2k„/2 \ p f
= ^ 4 COSI COS 2  < 4 COS2 COS2  =

and similarly

(13.59)

Let us denote the sums on the right-hand side by С<л(к ), respectively, 
i.e .,

c(,( k) = E i
n iyn

2 ̂ n
cos T ’

sin* kn
(13.60)

Incidentally, these sums are the same as t r ( f y '( k ) ) .  Using the relations

tr(Pe,(k))n = Cl , (k)n- l trP €,(k) = Ce'\k)n7 (13.61)

we can rewrite (13.57) as

- E  V c W -  £  ^ ( - е 'С '( к )Г .
n=ln = 1 n

(13.62)
л=1
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which can now be summed up to

log (1 -  e c Cc(k)) + lo g ( l + e 'C '(k )) . (13.63)

We thus arrive at the one-loop correction to the free energy,

- P f ' loop = OogWf + logiVJ) + log ( l  -  ecCeI

+ log(l + e f C'(k))|-

I loop _ _
’0 0 )

(13.64)

This expression can be calculated numerically and the result is included in 
Figs. 13.2 and 13.4, where it is added to the mean-field energy (for details 
see the figure captions).

For very low temperatures, the real modes are very massive and can be 
neglected. Then only the sound waves contribute. Their contribution is 
found directly from (13.42), (13.48) by inserting the limits (13.45)

The term (13.65) cancels with the corresponding term in (13.51). The 
other term in (13.51) has the limit

and the full one-loop correction becomes, for very low temperatures,

tr log(D,y(k)) -> D log 1 -  ^ -  u2
- l

(13.65)

f 108 log[2(/3(0 -  1) + 2P€)]

~Pf' '°°PJZt% log[2(/3(Z) -  1) + 2PO)

1 Г dDk _  _  _
~2j ( ^ trl°g[№K/+ K-K5,y + 2 ( f -  1)К,*Лу)].

(13.67)
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This has to be added to the mean field energy

-pf'MF = p D(£ ~  1) ц4 + 2p£Du2 -  Dau + Olog/0( a ) . (13.68) 

Inserting the high /3 limits for u, a of Eq. (13.45) we find

1 }+ 2^ D -  h 2D {KD  “  1}+

-  D a ^ l -  + Da -  у  log(2 ira)

P D {~ ^ +  2/3£D -  у  log (2mr)

= /3D + 2 ftD  -  у  log (2 ir■ 2[fi(D - 1) + 2 m  + О (  J  ) .

(13.69)

Adding to this the one-loop correction (13.67) gives 

_/3/'MF+i loop^ / 3 D(P2~ 1) + 2/3fD -  | lo g (277/3)

4 / ( ^ p trlog № ^ / + K  K5v + 2 ( f -  !) * / * / * ) •

(13.70)

This is just the pure phonon free energy of the partition function (13.2). 
The first term contains the trivial /3 dependence of the cosine energies for 
zero strain. The trace log is the sum of the purely quadratic fluctuations 
for small displacement fields, where the quadratic part of the cosine 
energy agrees with the energy of linear elasticity (see (13.44)].

After plotting the sum of the free energy (13.67) and (13.68) in Figs. 
13.2 and 13.4, we find, in D = 2 and D — 3 dimensions, that up to the 
melting point (i.e ., from large /3 down to /3,„) it is practically the same as 
the complicated full one-loop curve based on a tedious numerical 
evaluation of (13.64) (see the £ = 1 curve in Fig. 13.2). Taking the 
derivative with respect to Д we obtain the internal energy u'MF =
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FIG. 13.6. The in ternal energy of the D = 3 m elting m odel as a function o f /3£ for 
different £ (= 0 .25 , 0 .5 , 0 .75 , 1.0, 1.25). The left-hand branches a re  the high tem perature 
expansions, the right-hand branches, the m ean-field expressions. The one-loop correction 
p ractically drops out when forming -(d/d/3)(-/3/'MF). The vertica l lines ind icate the jumps 
at the transition tem peratures. From these we can ca lcu late  the transition  entropies 
As = /Зт Ди and find the values listed in Tab le 13.1 and p lotted in Fig. 13.14 w here they arc 
also compared with M onte Carlo data.

-  (d/d/3) (-/3/'MF) as shown in Figs. 13.6, 13.7. Since the one-loop correc
tions are practically constant, for they disappear from the 
derivative and the high /3 energies are given directly by the mean field 
approximation. The curves can be compared with Monte Carlo data and 
we see that they are in excellent agreement with each other (see, for 
example, Fig. 13.8 and 13.9).

13.4. HIGH TEMPERATURE EXPANSION OF THE COSINE 
MELTING MODEL

In order to determine the melting point of the model without recourse to 
Monte Carlo simulations we have to proceed as in the XY  model, 
calculate the high-temperature expansion of the free energy and see 
where it intersects with the loop-corrected-mean-field curve. For this, the
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FIG. 13.7. The internal energy of the cosine model in two dim ensions (from Am i and 
K leinert, quoted in the Notes and R eferences). From these curves we read off the entropy 
jumps as shown in Table 13.2 and com pared there with the M onte C arlo  data.

№

FIG. 13.8. Comparison of the calculated internal energy (D = 3) from Fig. 13.6 for 
£ = 1 with data from M onte Carlo sim ulations on an 83 lattice (see Table 13.3).
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FIG. 13.9. Comparison of the calcu lated  in ternal energy (D  = 2) of Fig. 13.7 for £ = 1 with 
data of the M onte Carlo sim ulation by Jan ke  and K leinert (1984).

1 f i

cosines are again expanded as in Part II [Eq. (4.15), and following] and 
the partition function (13.2) becomes

b №
<г«00Л<Я (5„W ) x ,/< ; W )

h . . m ) П f  ” d y,(x )  
J - П 2 tt

iEx.i<f*i/(ViY/ + V/Yi) + iEt.iffav/r,

By rewriting the integrals over y ,(x) as

£> y/(x)

(13.71)

(13.72)

with (Tjj = <Ty,, we can evaluate them and find the stress conservation law

V,<Mx) = 0, (13-73)

so that the high temperature series reads

Z' = /o(0 )(1'2)D(D- 1)'4 (2 / 3 f)£W
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We can now perform the same graphical expansion we employed 
previously in the Villain form, the only difference being that instead of

£-(1/2/3)(£ж.,<у̂  + (1/2£)£ж./о2) £23

the weights of the graphs are now given by

These are the same for large p for which lb(ap)ll0(ap) has the limit
e-(\/2ap)a2

We can now insert the lowest graph, discussed already in Chapter 2, 
and find in D dimensions

^ =/o(^ )(1/2)D(D-1)N/o(2^)DN

/ 7 .Г ? Д Л \ 4 / U 7 R f i \ \ 2
(13.77)

( }\ w )  \ io№ ) W m ) J

and hence

- p f  = — 2 logl0((3) + Dlog/0(2/3f)

+ D (D  _ J k т У ( ь ш ) л( Ь Ш У  . а з  78ч 
+ D(D Л м р ))  U m ) J  Ц (2р е ) + ■ • ■ (13-78)

In three dimensions, this term suffices to fit the precritical stress 
fluctuations on the high temperature side. In two dimensions, we have to 
carry the expansion to higher order. This is most conveniently done by 
taking recourse to the expansion in terms of integer-stress gauge field 
configurations whose diagrams were counted before in Fig. 11.1 in the 
context of the melting model of the Villain type. In order to use those 
results for the cosine model, we rewrite the product (13.76) in the form

П П /*,vw( m) П /*л*со( m)- (13.79)
X X X

Performing a trivial shift in x, the second and third products become



1136 III. GAUGE FIELDS IN SOLIDS

П Jv,v,*(x) (2/3f) П ̂ v2v2*(x> (2/3£). (13.80)

Thus, the Bessel functions /^.(2/3£) which appear in the high-temperature 
series are determined by the values of the two-dimensional Laplacians 
VjVb V2V2 for each graph. They can be extracted from Fig. 11.1 and 
are listed in Table 11.1 (actually, their squares since these were relevant 
for the Villain form of the energy). In the present case each number w,- 
on the graphs in the fourth and fifth columns of Fig. 11.1 amounts to a 
Bessel function For instance, the graphs — and —j—f—

give l xm ) % № ? and

l i i i + 2

and from J— J -

j  , respectively. The first Bessel function in (13.79) 
i

function in (13.79^ occurs with the index

ViV2*(x) = *(x) -  *(x  -  1 ) -  * (x  -  2) + X(x -  1 -  2). (13.81)

We can obtain these numbers by placing an elementary square on
top of each graph, site by site, and counting the occupied corners with 
alternating sign. Each number to gives a factor /*(/3). For example, the 
graph

(13.82)

gives /i(j8)4. So do the graphs

l  i : o  ; : - 1  :

; l 0 :  _ 1

! 1 •i о ; 0 - l  :

I o i; о 0 0 j

! 1 !! 0 i: о ! - l

(13.83)

The indices of the Bessel function are listed in column 7 of Fig.
11.1 (with l 4 for /i(/3)4, etc.). As long as there are no graphs with doubly 
occupied points, the index can only be zero or one and the power 
of /j(/3) is directly equal to 2{n -  m). If e(nu mu m2) denotes the free 
energy terms

Ф ь  m u m2) _  ( Ш  
W ) io № )J  \ Ш ) /

(13.84)
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then the high temperature expansion in two dimensions reads

~ Pf=  log Ш )  + 2 log /o(2/3£) + 2e(4, 4, 2) + 4e(4, 8 , 2) + 2e(4, 16, 0)
12 16 20

+ 4e(4 , 10, 3) + 8e(6, 12, 2) + 4e(4 , 24, 0) + 4e(4 , 12, 4) + . . .  
20 22 24 24

(13.85)

The disconnected graph gives a further

- p f disc = —18e(8, 8, 4). (13.86)
24

On the bottom of each term, we have listed the total power of 
p(t = nx + mi + 2/722) to which it reduces for small p. As a cross check, 
we let p grow very large in which case the product 
П J z n(p )lzu{2p £ ) l f j2p(;) must tend to exp[-(l/p){n -  m + m (l/f)}], 
where n, m are the numbers in the expansion (11.38) in terms of

e(n , m) = e x p [ - i { « ( l - ^ + m ^ - l j J  .

(1/4) т х + т 2 and (aij/2) + (l/4)mi + m2 are equal to the numbers m 
and n in the expansion (11.38), respectively.

The internal energy associated with each term e(/zb rab m2) is given by

-~ L e (ni> m2) dp

//■(<з)У"-'Л 1( 2 ^ ) \ - '/ /2( 2 ^ ) у 4 .  i i m  h m V
■\/oos)/ W m )j \1оШ)) L p w ) W p) J .

('т\я(ь<т\я>-1( - Г, _ j_  ьши _ (ьш>\
m'\MP)J W m v  W m v  l т ш т  Wmy_

m2\4P)J \WP&) Vo(2m ) УоШ)
/,(№ ) h(2№  
io № ) !» № ) _ '
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TA B LE  13.2. Transition data for the D = 2 cosine m elting m odel (w ith  the sam e notation 
as in Table 13.1). The theoretical entropy jum ps are now much less re liab le  than those for 
0  = 3 , due to larger fluctuations (after Ami and K leinert, and Jan ke  and K leinert, quoted in 
the Notes and References).

1 /sSS
Q\\ FPm oLT. 1 IT Pm nMCPm 1 .1 5 Г 078

д 51ЛМ,т bsMC

0.2 2.50 1.77 4.46 4.39 ± 0 .1 5 4.04 0.71 0.48
0.4 1.25 1.12 2.30 2.35 ± 0.05 2.35 0.70 0.41
0.6 0.83 0.81 1.71 1.71 0.69
0.8 0.62 0.62 1.38 1.36 ± 0 .02 1.37 0 .66 0.35
1.0 0.50 0.50 1.18 1.15 ± 0 .05 1.15 0.62 0.30
1.2 0.42 0.42 1.04 1.00 0.60 0.20

If we denote this by u(n ,, m lt w 2) we can obviously write

u(n|, m j ,  m2)

= —n e(/i| -  1, wi|, m2) -  ^ е (/7ь  w*|, m2) — e (/7! -1- 1, m i, m2)

m, 2£?(/t|, W| -  1, m2) — т :* (и ь  m2) — 2fe(/i|. m , + 1, m 2)
r

2
— m i 2{e(ii|, m, + 1, m2 — 1) — m, ,  m 2) — 2£б’ (/?|, mi + 1, m 2)

(13.87

The free energies are plotted in Figs. 13.2, 13.4 for D = 3 and D = 2 and 
various values of the anisotropic parameter £. Their intercepts with the 
one-loop corrected mean field curves determine the melting points (3,,, as a 
function of £as shown in Tables 13.1 and 13.2 and in Figs. 13.3 and 13.5. 
The internal energies are shown in Figs. 13.6 and 13.7. The compare very 
well with Monte Carlo simulations as can be seen in Figs. 13.8, 13.9.

In order to find precise values of /3„, (Monte Carlo) for the melting 
point we proceed as in Section 12.4 for the Villain version of the melting 
model. We place the system in a mixed initial state (half solid, half 
liquid) and iterate the internal energy many times. Above and below /3m, 
the system runs immediately into the solid or liquid phase. Melting occurs 
at the turnover point. Thus we see in Fig. 13.10 that in three dimensions 
we have, for f  = 1 ,
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FIG. 13.10. The development of the internal energy of a m ixed in itial state (h a lf so lid , half 
liquid) over many M onte Carlo  iterations in the D = 3 , isotropic (£=  1) m odel. This 
determ ines the transition value p„, ** 0.786.

5 ---------- »---------- ----------- ¥---------- -----------1----------»---------- ----------- ----------- -----------

4

U

3

2
500 1000

iterations

p„, « 0.786 (D = 3, f = 1). (13.88)

The accuracy of this value is again tested by placing the system once in 
a solid and once in a liquid initial state and observing that after many 
iterations the energies are extremely stable. The resulting figure looks 
quite similar to that of the D = 3 Villain model (see Fig. 12.8) so we do 
not show it here. From the distance between the stable internal energies,

Дм - 1 .6 9  (D = 3, £=1) ,  (13.89)

we deduce the transition entropy

Д* = Д „Д и~ 1.33 (D = 3, £=1) .  (13.90)

In two dimensions we go once more through the same procedure.
In Fig. 13.11 we exhibit the development of the mixed initial state for 

P = 1.14, 1.15, 1.16, 1.17 from which we extract

A,f ~ 1.155, Дм = 0.34, As = 0.39 (D = 2, f  = 1). (13.91)

These values are confirmed by a stability test of the solid and the liquid

p = 0.783
3D  m elt, (cos) 20- latt. 
m ixed starts

• * ^ " 4 ^  0.787 1 

0.789
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FIG, J3 .J J .  A nalogous pjol !o  Fig, 13.6 for the L ) - 2 .  iv^tropk I ;  m elting model 
giving ft*  ~ 1.155.

1 -16

0.5
1000 2Ш  3000 4 Ш) 5000 

Monte Carlo  Sweeps

phase shown in Fig. 13.12 for various values of /3 in the neighborhood of
A*.

Similar runs are performed in D = 3 and D = 2 dimensions for different 
values of £. The results agree with the analytic calculations plotted in 
Figs. 13.3, 13.5 and tabulated in Tables 13.1, 13.2. The data fit very well 
with the following empirical formulas

Pm «  0.77f "0-597 (D = 3), (13.92)

0„f ~ 1 .1 5 r 0’78 С0  = 2]). (13.93)

^or ► 0 , the melting temperatures approach zero since at £ = 0  the 
crystal becomes unstable with respect to shear stresses [recall the stability 
conditions (1.17), (1.216)].

The good agreement between the analytic and Monte Carlo values 
shows that, for the free energy, the contribution of even the lowest 
non-trivial graph may be neglected up to the melting point and we might 
as well extract the intercept using only the first two Bessel function terms 
in (13.78). This corresponds to the physical fact that, as a liquid is cooled, 
the pre-transition fluctuations, which tend to form microcrystallites before 
the on-set of freezing, are extremely small.

Just as before in the melting model of the Villain type [recall Eq.
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FIG. 13.12. S tab ility , in the 2D isotropic, m elting m odel, of solid and liquid in itial state 
over 4000 Monte Carlo  iterations.

2D  incli. (cos) 60:
O: ordered. *: random

1.15

1.17

1.18

1.20

1000 2000 3000 4000 
iterations

(12.26)] it is possible to compare the three-dimensional values of / 3 with 
experimental numbers, provided we ignore the dependence of /3,,, on the 
elastic constant A (which, as we recall, had been assumed to be zero 
throughout this discussion, for simplicity). An exploratory calculation for 
A//a 0.5 indicates a very weak A dependence. We therefore decide to 
use /3,,, = /ла̂ /Т and calculate the Lindemann number associated with it
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via (7.40). Since that formula was derived only for isotropic materials we 
employ the averaged elastic constants

Д = “ (3 + 2f ) ,

л= л —

introduced by Voigt [see Eq. (7.44) and Voigt’s book, quoted in Chapter 
1, Part III] in order to describe sound propagation in polycrystalline 
samples. This gives the Lindemann numbers

3 + 2 f  V ' 2/  1 _ Л " 1/3L = 2тг • 22.76 ( - j ± p m I  ̂1 -  - ( 1  -  r) ) , (13.94)

where

f = £ b  3 + 2̂ V 2 (13.95)
+ ( 4 + + 5 ^

is the correction term in formula (7.40) involving the averaged longitu
dinal and transverse sound velocities, cL = V (2 Д + X)/p, c r = V/Z/p. The 
result is shown as a function of f in  Fig. 13.13. We may now use Table 7.1 
and insert also the experimental values. They are seen to be in rather 
satisfactory agreement with our predictions.

Let us now turn to another important quantity of the melting process, 
the transition entropy. Using the theoretical transition values firn of 
Tables 13.1, 13.2, we can extract from (13.6) and (13.7) the entropy 
jumps As = /3,„Ди for various f  and find the values shown also in Tables
13.1 and 13.2 .b For D -  3 they are plotted in Fig. 13.14 and are in good 
agreement with those obtained from Monte Carlo simulations as 
described above. For D — 2 the analytic As values are about twice as large 
as the Monte Carlo ones which are plotted in Fig. 13.15. The reason is

bIn Figs. 13.8 and 13.9 we can verify once more the values As of Eqs. (13 .90 ), (13 .91 ).
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FIG. 13.13. Comparison of the m odel’s Lindem ann num bers with experim ental values 
from Table 7.1.

that fluctuations in two dimensions are much more important than those 
in three dimensions. Notice also that the fluctuation corrections produce 
an entropy jump even for f  > 1 for which the mean-field approximation 
had a continuous transition [recall Eq. (13.15)].

Forming a further derivative with respect to /3 yields the specific heat 
с = - 0 2(d/d/3)w'. The analytic results are compared with the Monte 
Carlo data for f  = 1 (listed in Table 13.1, 13.2) in Figs. 13.16 and 13.17. 
In Fig. 13.18 we have also compared the D -  3 data with the experi
mental data for lead (extracted from the curves in Fig. 7.2 after sub
tracting the electronic and vaporization parts).

It is instructive to study also the defect distribution in the model: 
for simplicity we take only the two-dimensional case. We proceed in 
the same way as in Section 12.4. The jump numbers л,у(х) are extracted 
according to Eqs. (12.37)—(12.39) after iterating an ordered or disordered 
initial state 4000 times (i.e ., after arriving at the final states of the stability 
runs in Fig. 13.8). These are displayed in Figs. 13.19a—g. These lead to 
the defect densities rj(x) as shown in Fig. 13.20d,e. Notice that since the 
final state is a solid, there are very few defects. Nevertheless, the jump 
numbers obtained from ordered and disordered initial states differ vastly.
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T A B L E  13.3. Monte Carlo data for the D = 3 cosine m elting m odel on an 83 lattice (Z ( 16) 
app rox .)(£ = 1, A = 0). There were 100 + 200 sweeps for equilib riation  and m easurem ents, 
respectively. Note the "6-function peak" in c(coo l) at (3 = 0 .9  as a signal for the first o rder 
of the transition (from Jacobs and K leinert, 1983).

p f/(heat) «/(cool) c(hcat) c(cool) P « (h ea t) « (co o l) c (heat) c(cool)

2.00 0.7863 0.7919 1.5786 2.0322 1.00 1.7319 1.7275 2.5359 2.3944
1.95 0.8182 0.8102 1.4309 1.7767 0.95 1.8467 1.8479 2.1596 2.2959
1.90 0.8336 0.8381 1.7355 1.5974 0.90 1.9890 2.4431 2.7781 133.3700
1.85 0.8602 0.8643 1.5558 1.5481 0.85 2.1433 3.6894 2.6490 7.4843
1.80 0.8883 0.8833 1.8540 1.3791 0.80 2.3722 4.0411 2.8292 3.0625
1.75 0.9122 0.9119 1.6688 1.7736 0.75 2.7337 4.2849 4.4629 3.3217
1.70 0.9378 0.9353 1.7834 1.6531 0.70 4.5123 4.5176 2.1423 2.5629
1.65 0.9767 0.9712 1.8210 1.7969 0.65 4.7621 4.7675 2.0221 2.0424
1.60 1.0084 1.0042 1.5658 1.8619 0.60 5.0536 5.0267 1.8545 1.4745
1.55 1.0364 1.0434 1.8064 1.9528 0.55 5.2905 5.2731 1.6750 1.5084
1.50 1.0785 1.0808 1.5886 1.5915 0.50 5.5890 5.5748 1.0598 1.5084
1.45 1.1220 1.1232 1.7185 1.6046 0.45 5.8698 5.8844 1.2755 1.1039
1.40 1.1693 1.1631 1.9998 2.0098 0.40 6.1815 6.1946 1.0187 1.0481
1.35 1.2089 1.2166 1.9086 1.9414 0.35 6.4857 6.5104 0.8585 0.7101
1.30 1.2682 1.2716 1.5930 1.9068 0.30 6.8264 5.8411 0.6789 0.6386
1.25 1.3289 1.3332 1.8468 1.8777 0.25 7.1722 7.1766 0.4327 0.3921
1.20 1.3922 1.3846 1.8658 2.0927 0.20 7.5137 7.5215 0.2682 0.2345
1.15 1.4449 1.4579 2.1894 2.1376 0.15 7.8793 7.8752 0.1633 0.1498
1.10 1.5491 1.5414 2.3550 2.0680 0.10 8.2505 8.2487 0.0746 0.0780
1.05 1.6367 1.6354 1.9019 1.7571 0.05 8.6318 8.6258 0.0168 0.0164

The difference consists, of course, mainly in a trivial defect-gauge trans
formation. The same analysis is performed for other values of /3 and the 
defects obtained are shown in the remaining Figs. 13.20. By comparison 
with the stability curves in Figs. 13.8 we can easily see the correspon
dence between the solid and liquid energies and the defect densities.

Finally, let us test the quality of the Villain approximation for the 
melting model. By taking the values p,„ through the Vil lain transform,
(9.124) and (9.125), i.e ., by calculating0

P v = -ii[2 \ o g l{(p )/ W )l  

2pv£v = — l/[21og/,.(20f)//o(2j8f)], (13.96)

W e have now attached the subscript V to the param eters of the V illa in -type m elting m odel.
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FIG. 13.14. The entropy jum ps of the D = 3 m elting model extracted  from the curves of 
Fig. 13.6 as com pared with the M onte C arlo  data of Jacobs and K leincrt (1984) (see also 
Table 13.1).
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0.5

0
0 1 2 ^ 3  4

TA BLE  13.4. Internal energy and specific heat of the cosine model of m elting in D = 2 
dim ensions (Z (16) approx.) with (£= 1. Л = 0). The lattice size is 32 x  32. There w ere 100 
sweeps for equilibriation plus 200 for measurement (from Jan ke and K leinert, 1984).

/3 //(heat) «(coo l) //(heat) //(cool) P //(heat) //(cool) //(heat) //(cool)

2.00 0.5365 0.5365 1.1841 1.1581 1.00 1.7080 1.7326 1.8140 1.3103
1.95 0.5506 0.5523 0.9798 1.1536 0.95 1.8130 1.8339 1.5476 1.8343
1.90 0.5692 0.5428 1.3140 1.2859 0.90 1.9367 1.9228 1.6133 1.5350
1.85 0.5911 0.5864 1.1905 1.1444 0.85 2.0400 2.0364 1.5579 1.3409
1.80 0.6063 0.6050 1.1676 1.2766 0.80 2.1452 2.1262 1.6984 1.6106
1.75 0.6247 0.6225 1.2698 1.2669 0.75 2.2603 2.2539 1.5546 1.6246
1.70 0.6459 0.6454 1.8193 1.4908 0.70 2.3952 2.3772 1.3375 1.0886
1.65 0.6654 0.6714 1.2197 1.3882 0.65 2.5136 2.5130 1.1330 0.9855
1.60 0.6910 0.6917 1.2903 1.1680 0.60 2.6496 2.6629 1.0812 1.4138
1.55 0.7199 0.7193 1.2425 1.3803 0.55 2.8198 2.7988 ■ 0.9650 0.9805
1.50 0.7452 0.7563 1.3487 1.3347 0.50 2.9684 2.9708 0.8242 0.7993
1.45 0.7842 0.7803 1.3297 1.3744 0.45 3.1495 3.1473 0.7896 0.8848
1.40 0.8222 0.8157 1.8275 1.4053 0.40 3.3174 3.3213 0.5834 0.4838
1.35 0.8507 0.8440 1.7549 1.4832 0.35 3.4998 3.5039 0.4233 0.5295
1.30 0.8993 0.9439 1.4988 1.8471 0.30 3.7091 3.6984 0.3697 0.4007
1.25 0.9450 1.0959 1.4825 1.7231 0.25 3.8976 3.9052 0.2538 0.2465
1.20 1.0135 1.2626 1.9586 2.6552 0.20 4.1194 4.1153 0.1509 0.1848
1.15 1.1100 1.3633 4.4383 6.2191 0.15 4.3298 4.3442 0.1052 0.1210
1.10 1.2796 1.5348 5.6822 3.2761 0.10 4.5493 4.5491 0.0444 0.0452
1.05 1.6329 1.6310 2.2055 1.9622 0.05 4.7709 4.7731 0.0119 0.0107

D = 3 melt model (cos) 
I . entropy

1 * jum ps at T„,

i .

x  A nalytic Calc.
I M onte Carlo  Data
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FIG. 13.15. The entropy jumps in two dim ensions as a function of £ as obtained from 
M onte C arlo  sim ulations of Janke and K leinert. The theoretical values in T ab le 13.2 arc not 
in satisfactory agreem ent with these since in the m ean-field-plus-one-loop calcu lation  cannot 
do justice to the defect excitations of the model (cf. heading to Fig. 13.17).

q  ̂_ 602 lattice
2D  m elt (cos)

о

о
о

о

ln£

FIG. 13.16. Specific heat of the D = 3 cosine model for £=  1. Com parison between 
theoretical curves and Monte Carlo data (obtained by Jacobs and K leinert).

we find transition values for the Villain-type melting model which are in 
good agreement with those obtained in Chapter 12.

It must be noted, however, that this is somewhat of an accident. In 
fact, as far as the full high-temperature behavior of и and с is concerned, 
the Villain approximation is really much worse in this model than it is
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FIG. 13.17. Specific heat of the D = 2 cosine m odel. Com parison of the M onte C arlo  data 
with the m ean-field-plus-one-loop correction (from Jan ke and K le inert). W e see the 
descrepancy due to the neglect of defects. This phenomenon was observed before and 
discussed in detail in the XY  model of superflu id ity, sec 7.19. Part I.

FIG. 13.18. Specific heat of the D = 3 model for £ = 0.25. Comparison of M onte Carlo  
data with experim ental data for lead as obtained from Fig. 7.2 with appropriate subtractions 
(after Jacobs and K leinert).

in the XY case. The reason is the following: We pointed out in Part II 
that the quality of the Villain approximation is not based on the equality 
of (13.75) and (13.76) for large p but rather on the approximate equality 
of the Bessel functions, for small /3, i.e .,
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FIG. 13.19. The defect gauge fields /in (x ). n ^ (x ) . n22(x) obtained from a M onte Carlo 
sim ulation of the D = 2 cosine m elting model on a 60 x  60 sc lattice (Jan k e  and K leinert, 
1984) taken after 4CKK) sweeps for equilib riation  for the defect configuration at /3 = 1.2. 
Notice that with a random start, there are m any Пц(х) exc itations, most of them correspond 
to a pure defect gauge whose double curl vanishes. (H ere o .s . and r.s . refer to ordered and 
random start; cf. Fig. 13.20.)
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FIG. 13.20. D isclinations in the 2-dim ensional cosine model of m elting on a 60 x  60 sc 
lattice below and right above the m elting transition /3,,, = 0.135. W e sec that in the 
molten state the d isclinations of alternating sign are linked up into strings. Below  the 
transition, there are mostly nearest neighbor and next-nearest neighbor quadrup le ts ,
i.e . ,  short closed strings. As the m elting tem perature is passed the loops becom e large 
and break open. The pictures w ere taken after having perform ed 4000 sw eeps for eq u i
libriation , once with an ordered start (o .s .)  and once with a random start ( r .s .) .  The 
difference in the pictures is understood by looking at the developm ent of the in ternal 
energy over the 4000 sweeps which are d isp layed in Fig. 13.12. For 1.14 the system  
alw ays winds up in the liquid state , and for 0  > 1.17 in the crysta lline state . This ex
plains the s im ilarity of the defect pictures for 0 =  1.14, 1.18, 1.20. For 0 =  1.16, on the 
other hand, the in itial configuration rem ains p ractically frozen. The defect configurations 
arc determ ined by finding for a fixed displacem ent field w,(x) = (а!2тт) y ,(x )  the defect 
gauge field л,Дх) by m inim izing £*.,</(?, y, + Vyy, -  2 tt/ i;/( x ) )  and ZK j{y ,y t -  2 v n a {x))2. 
The resulting pictures of « ц (х ) ,  n i : ( x ) ,  n22(x) are shown in Figs. 13.19 for 0 =  1.2. The 
defects are obtained by taking the double curl of these fields (from Jan ke and K leinert, 
1984). See also Fig. 12.17.

0  = 1.18. o.s. 0=  1.18. r.s.
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Fig. 13.20. (continued)

t

■

/3= 1.16. o .s.

with the Gaussian approximation

(13.98)
for a  = 0 and a  = 1. For <7 > 2 this is no longer a good approximation. In 
the case of vortex lines, this was not very serious since the phase tran
sition was mainly caused by lines of unit strength as they were growing to 
infinite length. Here, however, even the lowest stress configuration 
contains a,, elements of strength two so that the approximation (13.97),
(13.98) breaks down. For the determination of /3„, from the free energy.



13. MELTING MODEL OF THE COSINE TYPE 1151

this breakdown was of little consequence since, as we observed above, 
even the lowest correction is quantitatively rather insignificant due to the 
smallness of pre-transitional fluctuations. But for the internal energy it 
becomes observable and for the specific heat quite important. A much 
more intimate relationship between the Villain type of melting model and 
cosine models is obtained by observing that all graphs included in the 
high-temperature expansion (13.85) involve the three Bessel functions

with the numbers Л|, Ш|, m2 in e(n\, m h m2) giving their powers. In the 
model Villain-type melting, the corresponding terms are

i.e ., they are equal to the terms e(n, m) of (11.38) with n = n \!2 
+ (m] + m2)/4, m = (mi + 4m2)/4. From the discussion in Part II, Eq. 
(7.113) on the improvement of the Villain approximation to the XY  
model, we decided that for the melting models of the Villain and of the 
cosine type, a really close correspondence can be achieved only by the 
presence of a second cos(2V,w,) term in the cosine energy. Thus we find 
the improved Villain approximation for D = 2,

x  exp j (3v-\ E  cos(V/y/ + V/%-) + (2)8f)v-'[cos(V/y/) + 6cos(2V/y f)J >>

h(Pv->) /i((2 jB fly -) /2((2« У - . )  
W v -У  U № )v-> )' A>((2/3f)i/-i)

e - ( !//})((«,/2) + ((ш , + тг)Ц) + ((H I , + 4«»2)/4)((l/f) -  I))

x. i < j

(13.100)

where
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and

R VA № )  =  [/,?((2/3^-,)V277(2/^)]-',

e-ur.v.m  = l?((2№v-,)/It?((2f}{)v-,), 

е-Ч2Ш» = /Й (2M )v-,)llfi((2f}e)v-,). (13.101)

With this identification we ensure that all terms in the high temperature 
series (13.85) become identically equal to the corresponding one in the 
Villain version (11.38).

In this form, the Villain approximation is very good throughout the 
entire high temperature region, including the transition point. For more 
details, see Janke and Kleinert (1986), quoted at the end of chapter 12.

13.5. PAIR CORRELATIONS IN THE DISORDERED PHASE

We have called the phase transition of the model “melting transition." 
Let us now investigate whether this terminology is really justified on 
physical grounds. For simplicity, we shall consider only the case of two 
dimensions. Since the defects comprise dislocations and disclinations we 
certainly expect the defect proliferation to destroy both translational and 
rotational order. This is necessary for the final state to become a liquid.

But there is more to a liquid than just complete disorder. A gas also 
has complete disorder. The difference between a liquid and a gas lies in 
the density correlation function, which is defined as follows:

£>(x, x') = D(x -  x') = -ij(p(x)p(x')), (13.102)
Po

where

p(x) = E  S(x -  X ,)  (13.103)
i= I

is the density operator and p„ is the average density (p (x )) . Separating 
out the disconnected part.
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D(x -  x') = Л  <p(x)p(x')>r + Л  <p(x)>2 = Dr{x -  x') + 1 (13.104) 
PC) PC)

and using the fact that density correlations are of finite range (except at a 
critical point) the asymptotic behavior of £>(x — x ') is

(13л05>

Since б(х -  x,) 6 (x -  Xy) = 5(x -  x' — x,- + xy) S(x ' -  xy) the density corre
lation function can also be written as the expectation value

D(\ -  x ;) = Л  S  (S(x — x' — X/ + Xj)  5(x'  -  Xy)). ( 13 . 106)  
PC) i.j

Because of translational invariance, the sum over x; is isotropic in x\ on 
the average, and we can remove the second 6-function in favour of a 
factor p()/yv.d In this way, one arrives at another form,

D (x - x ' )  = - ^ E  <S(x " x' -  x, + Xy)). (13.107)
Pci N i.j

The average has to be taken, as usual, with the /V-particle probability 
distribution

............... x„) = ^ e - * IG'-''* '* -4  (13.108)
Z/v

as

( 0 ( x ..........xN)) = j -  -  ^  d- X~ 0 ( x l.......... x/v)»v(x1.......... x/v),

(13.109)

where Ф(х,- — xy ) are the pair potentials between the atoms in the gas and 
ZN is the classical partition function,

dThis is due to the average S(x' -  xy)->  / (d*x'IV) 5 (x ' -  x ,) = 1IV = pi}/N.
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**1 . . .  d°xN
ZN = J- -  ...........\N) (13.110)

and the expression

dDx { . . .  d°xN 
N\

> Ф ,...........\N)

is the probability of finding one particle in the volume element dDX\ 
another one in d °x 2, etc.

In liquid state physics, it is customary to define the pair distribution 
function as

g ( x - x ' )  = -^  f -  j r j  ‘ j !  —  w(x, x '. X3.......... Хл,). (13.111)
PnJ (N — 2)!

This is obviously the expectation value of the operator

Л Ц  8(x — x,)5(x -  X y).
PC) i*j

Hence the relation to the density correlation is the following

D(x -  x ') = - S ( x  -  x ') + g(x -  x'). (13.112)
Po

From (13.110) we see that the normalization of g(x -  x ') is 

Po J d Dxd Dx'g(x -  x') = pH V J d*xg(x) = N2 -  N.

In a grand canonical ensemble, the right-hand side becomes
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we see that we can make the identification

(N2) - ( N ) = k BT(N)
dp
dP V.T

(13.113)

so that

PoV+ PqV j d Dx(g(x) -  1) = (N2) -  (N )2 = (N) kBT
dp
dP V.T

and we arrive at the so-called compressibility sum rule

1 + Po j  d°x(g(x) -  1) = kBTxlp(), (13.114)

where x = (l/p)(dp/dP)\VT is the isothermal compressibility. In an ideal 
gas, tv(x,. . . . ,  x n ) = NUVn and

* ( * - « ' ) -  l - ^ ^ l -  0 3 .1 1 5 )

The density correlation function is measurable quite directly in scatter
ing experiments, typically with X-rays, electrons or neutrons, the first 
probing the electron distribution, the second the charge density, and the 
third the positions of the nuclei. Taking neutron scattering as an example, 
the atomic distances are usually larger than the scattering nuclei and the 
scattering cross section in the Born approximation is given by the well- 
known formula

do- _  j  m„ \2 
d[l \2irfi2)

where Cl is the solid scattering angle, q the momentum transfer, and K(x) 
is the scattering potential of the neutrons. For slow enough neutrons, for 
instance reactor neutrons with thermal energies and de Broglie wave
lengths A ~ l A ,  the nuclei may be approximated as point-like objects, 
whose effect upon the neutrons is described to a good approximation by a

'/d°xe""V{x) (13.116)
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simple phase shift a in the s wave. Such a phase shift is associated with a 
total cross section 4тта2 and can be thought of as coming from a potential

K(x) = — a £  S(x -  x ,) (13.117)
Mn i

i.e ., using the particle density (13.103), as

У(х) = flp(x). (13.118)
ntfl

In a thermal ensemble, the absolute square is replaced by the expectation 

f d Dx e ‘" V (x )  J  dDx 'е-">х'V ( x y , (13.119)

so that

^  = a2 j d °xd Dx' e 'q'(x" x)(p (x )p (x '))  = a2NS(q), (13.120) 

where N is the total number of atoms in the sample and

S(q) = A. J  dDxe'4'* D(x) = J d Dx S(x -  x, + Xj)j

= t; E  (13.121)
™ Ц

the Fourier transform of the density correlation function, i.e ., the 
structure factor of the liquid. In terms of the pair correlation function 
g (x ), S(q) is given by [see (13.112)]

S(q) = 1 + p0 J dDx e iq *g(x) (13.122)

= 1 + Po j d Dxei4 %(g(x) -  1) + а ,(2 тг)0  8°(q)

= SC( q) + p0(27r)D5D(q). (13.123)
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FIG. 13.21. Pair distribution of argon at 84 .4K as obtained from neutron diffraction by 
Henshaw et al. (cited in the Notes and R eferences). The curves o f the atom ic position for 
the D = 2 m elting model are from Kahn (see Notes and R eferences).

r( A)

From (13.114), the value of Sf(q) at q = 0 is directly related to the 
isothermal compressionality:

(13.124)
V.T

In an ideal gas, for which g(x) ~ 1 we find

(13.125)
V.T

in agreement with the equation of state pV = NkBT.
A typical pair distribution g(x) is that of liquid argon at 84.4K shown 

in Fig. 13.21, as obtained from neutron diffraction data. The figure shows 
also two theoretical curves obtained by assuming Lennard-Jones poten
tials. If r=  | x| is much smaller than the diameter of the atoms, the pair 
distribution vanishes. The “hole” at the origin leads to the peak in the 
Fourier transform 5r(q) at q — lirtd and 5f(q) has the characteristic shape 
shown in Fig. 13.22 for another system, Rb, at 40K.

Let us now find the pair distribution function in the disordered phase of 
the melting model. For this we perform a Monte Carlo simulation of the 
cosine model and record the displacement variables w,(x). These can be 
used to find the atomic positions. Notice that the positions are not 
immediately given by

Sc(q = 0) = kBT
dp

dP
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FIG. 13.22. Structure factor S(Q) for a gas of hard spheres as ca lcu lated  by Ashcroft and 
L ekner (cited in the Notes and R eferences) and com pared with experim ental data  on Rb at 
40C.

x' = x + u(x). (13.126)

The reason is that the variables w,(x) in the cosine model run only from 
—a to a so that the atoms can apparently never leave the unit cell. This 
would be unphysical. In order to permit an identification of x + u(x) with 
particle positions we have to perform a defect-gauge transformation into 
a gauge in which the trivial fluctuations of the Volterra surface are 
absent. In order to understand this point more clearly, consider the 
Villain approximation to the cosine model (taking A = 0, for simplicity):

Z -  S  П
K(x)}

Г
J - a  a

(x)

\  E (V/Uj + Vjи/ -  2ansij)2 + i  E ( ’V/Щ -  ansu)2 
i< j i

(13.127)

In it the displacement fields w,(x) all remain within the unit cell and 
the jump numbers Л/Дх) include all fluctuations of the Volterra sur
faces. From our previous considerations in Chapter 10 we know that 
these fluctuations are unphysical. If we want to include only physical 
fluctuations, we have to remove the irrelevant parts by a defect-gauge 
transformation,

ut(x) + яЩ х), #«J(x)-* 4 ( x )  4- \(VjNj(x) + VjNi(x))y (13.128)
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FIG. 13.23. Atom ic positions in the m elting model before and a fte r the transition . The 
molten state looks like a gas rather than a liquid due to the absence o f a hard-core 
repulsion.

where we may choose the integer fields N,(x) such that n*j satisfies the 
gauge conditions (10.4) and (10.5). Then the partition function reads

Г  fM x )
J-oo aK ( X ) }  X, I

[  /2тЛаx  exp*(—/31—  2 j  
\ a x

\ £  (V ,«, + VjU t-lan’n)2 + ( V , « , - anl)2j j

(13.129)

Ф[я;; ] being the gauge-fixing functional enforcing the gauge (10.4),
(10.5).
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Now the different allowed configurations of the jump numbers tr-j 

correspond precisely to all physically different defect configurations. In 
addition, the displacement variables cover the entire crystal. Thus, in the 
fixed defect gauge, the variables

x' = X + u(x)

can be identified with atomic positions. In Figs. 13.23 we have shown 
these positions above the melting transition. (Below the transition the 
positions show, of course perfect crystalline order with only small 
disturbances.) There is complete disorder with neither translational nor 
rotational memory. The pair distribution of this system is obviously not 
that of a real liquid but of an ideal gas. The reason for this is quite clear: 
the model contains no information on the hard cores of the atoms. It 
describes a crystal of point-like atoms. Consequently, the pair distribution 
function g(x) does not vanish for |x| smaller than some atomic diameter 
and, in that respect, does not resemble that of a proper liquid. The model 
will need modifications in order to incorporate the finite atomic sizes into 
the system.
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CHAPTER FOURTEEN

THE TWO-DIMENSIONAL KOSTERLITZ-THOULESS- 
HALPERIN-NELSON-YOUNG APPROACH TO 

DEFECT MELTING

Let us compare the properties of our defect models of melting with 
previous predictions on the behavior of two-dimensional defect melting 
as advanced by Kosterlitz, Thouless, Halperin, Nelson and Young 
(KTHNY).

14.1. DISSOCIATION OF DISLOCATION PAIRS

We begin with a slight modification of the partition function (9.53), 
namely (dropping now the bars on top of 07,- and A'):

Z =
4f

N/2

(V27ф) .Я/V n / : d X (x )
{»»!/(*))

+ 2 i r i£ b ,(x )  c „ .V ^ (x ) [ ,

v h  + jg(<r u +

(И.1)

where the stress tensor is the double-curl of the stress “gauge field" A'(x),

<Tij (*) &ik eJmVk ̂ m X(x) 

1162

(14.2)
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and

b,(\) m oij(x) = etjVf riij (14.3)

is the two-dimensional lattice version of the dislocation density. Actually, 
KTHNY considered triangular lattices while our partition function was 
set up for cubic systems. In two dimensions the linear elastic energy of 
triangular lattices can be parametrized in the same way as in isotropic 
systems. We will, therefore, find it convenient to consider first isotropic 
square lattices and include the modifications due to the triangular 
structure at a later stage. In isotropic systems, where £=1, the parameter 
у is given in terms of the elastic Lame constants /x and A by

A Ifx1

у 2(A//i +1) 1 + v

Hence (1/4)(1 - 2/y) = (1/4)1/(А/д + 1) = (1/4)(1 - v)/(l + v) and the 
partition function becomes

Z  = 1 1 -  v 
4 1 + v

x exp

N/2

(л /П ф У3 N п / : dX(\) E ФК1

~ T p  T+~v ?  ( V 'V * )2 + l7!i 5 b'(x) £«v*Ar} ' (14-4)

The X field can be integrated out giving

Z  = О - v)
N/2

der'(-V-V ) E  Ф Ы
(V2 rr(3) {«„(x)}

x exp (14.5)

This is the same expression as (9.60) except that the defects are described 
in terms of the dislocation density 6,(x) instead of the defect density tj(x). 
In the dislocation form, the defect representation is very similar to the 
vortex representation of the ordinary Villain model in two dimensions:

z "  - < v s b r  ? ' «  Ц ' <“ >
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Indeed, the interaction energy between two dislocations has the form

• fa ) = («., - v  + W j )  ■**>• ( 14-7)

where

" « W  =  j ^ ' к  > ,T i  . Л  ,2 4 2  ( 1 4  8 )(2ir) (K  • К  + 5 ^

is the potential 1/(V V)2 with an infinitesimal regulator mass [recall Eq. 
(1.119)]. For large separations |x|, the first term - 6/yV Vu|(x) gives rise 
to the same logarithmic potential as in the vortex case [see Eq. (1.123) 
and take the trace]:

- 6/yV-Vy|(x) = 5,yV-V(d/dS2)tf6(x) 

6,
1*1-

(14.9a)

The second term contributes

v , v K x )
|x|-+X S.ylogJ |х ||еЛ + — 8iylogS, (14.9b) 

47Г

so that both together give [see Eq. (1.124)]

■ « * > — s [ v " « h  -  p ]  -  ‘  ’ )  *  4 ' «  ( 1 4 9 c )

In the limit 8—> 0, the second term enforces neutrality of the dislocation 
gas,

£  bt(x) = 0 . (14.10)

This is a manifestation of the dipole neutrality (9.76). For such neutral 
gases we can replace v ,y by the subtracted potential

® *T W  =  4 ( * )  -  Ф )  =  • V  -  V , . V , K ( x ) .  ( 1 4 .1 1 )
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For long distances, the potential is dominated by the logarithmic part

—  Voglx l (14.12)

just as in the ordinary X Y  model.
Since critical properties of a system are governed by its long-distance 

properties, Kosterlitz and Thouless concluded that there should be no 
difference between the phase transition of vortices in a thin film of 
superfluid 4He and that of dislocations in a two-dimensional crystal. At 
low temperature, the crystal should contain only very few dislocations 
bound in pairs of opposite charge. As the temperature increases, the 
average separation increases. The long-range interaction energy of a pair 
of fundamental Burgers vectors with bj = 1 is

£im *  4tt20(1 + v)2^4ogr,

where r — |x|, is the separation of the pair. Using only this asymptotic 
formula the average of r2 can easily be estimated as follows

J  Л ег2 exp-
f , 2 

-47Г73(1 -I- v) ~ log г 
[ 47Г 2 — 27t/3(1 + v)

j  Лсехр j —4tt2/3(1 + v)-^-logr| 47Г J
4 - 2ir/3(l + v)< ' 2 >

For /3(1 + v) ** 2!tt this expression has a pole of the form

(14.13)

/r2\ « --------------• (14.14)
v '  4-2tt/3(1 + v) v ’

Because of the frequent appearance of the combination /3(1 + v) we 
shall, from now on, call this quantity /3.

If renormalitation effects are taken into account, formula (14.14) 
implies that there should be a dislocation pair unbinding transition at a 
critical temperature at which

&  -  f t * ( l  +  V « )  =  = I-  0 .6 3 6 6 , (1 4 .1 5 )
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where vRy /iR, \ R are the renormalized elastic constants right at the 
transition point. Remembering that /3 was equal to р.аъ1(2тг)2кв Т  where a 
is the lattice spacing, this result can also be written more explicitly as

a V *  m* + A r  2 q .6366. (14.16)
(2v)2kBTclxR + AR/2 17

In the literature on this subject one finds the results stated in terms of the 
stiffness parameter3

/ С - —  2a - ^ -  ( 1417>k „T c %  + A/2

which is related to our (3 by

K = 8w20. (14.18)

At the critical point, the renormalized K R should have the value

K ?  = l6-n- = 50.265. (14.19)

Equations (14.15), (14.16), or (14.19) are universality statements: A  rare 
gas of dislocations undergoes a continuous phase transition whenever the 
combination of elastic constants on the left-hand side has softened to a 
point at which these equations are satisfied.

The relation (14.16) is, of course, the precise analogue of the univer
sality condition for the critical superfluid density in films of 4He,

(1420)

which was derived from the critical value [see Eq. (11.179)]

0* = - (14.21)
7Г

in the Villain model.
Notice that the critical index governing the width of the B ragg - like  

peaks (7.123) is not universal since it contains a combination of м and 
Ал, which is different from K R.

“For triangular lattices, a2 is the square of the lattice spacing aa and the cell volume is 
v = a2 = y/balH. See also footnote h below.
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14.2. R EN O R M A L IZ A T IO N  G R O U P EQ U A T IO N S

A  characteristic feature of the continuous pair unbinding mechanism is 
the unusual temperature behavior with which the coherence length £ of 
the disordered phase goes to infinity when approaching the critical point. 
We have seen such a behavior in Part II, where the coherence length of 
the Villain model was found to have an essential singularity at T= TC1 of 
the form

A similar law can be derived for dislocations on a two-dimensional lattice. 
To do so we first find the general renormalization equation for the elastic 
constants which is analogous to Eq. (11.112) of Part II for the superfluid 
density in the Villain model. For this we define the renormalized elastic 
constants at a momentum к by the correlation functions of the stress 
tensor crjj = eikejiVkV,X:

« ( k) cr*, (k)> -  (K  • K )” 2e„„ejn Km KnekretsK rKs[2(3( 1 + v)]*(k).
(14.24)

In linear elasticity, [/3(1 + v)]* reduces to the к independent “ bare”  
elastic constant. In the presence of defects, the correlations of <7,y(x) can 
be obtained from the partition function with external strain sources,

exp {const. (T/Tc -  1) 1/2}, (14.22)

rather than diverging with the usual critical powerb

(14.23)

by forming the functional derivative

bWe use the customary notation for this power v even though this letter is already occupied 
by the Poisson number v. The alert reader will, hopefully, not be confused.
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/л%ч 1 82Z  
( (Ту(x) ak( (0)) = 2 5„«<(x) &,««(<)) (14.26)

With (Tij expressed in terms of the stress “ gauge field”  X we can 
integrate out the X field and find, for isotropic media [recall (17.34), Part
in ,

Z[mJxi] a exp|—̂ 4ir22(l + v) 2  T}(x)-- 1v p 7}(x)| > (14.27)

where rj(x) is defined to be a modification of the defect density rj(x) in 
which the plastic gauge field 2ттпц appears together with the external 
source as follows

rj(x) = £,*<* V*V( ( 4  "  ) • (14-28)

Forming now, in (14.27), the derivatives with respect to uf*K and setting 
u f ' = 0 we obtain

(o-J; (k) crkl (k)) - 2/3(1 + v) K 2̂ Sj„ K„, K„ ekrecsKrKs

x ( l  - 00 ч00>) • (14.29)

Contracting the indices ij with kt gives

(tr5 (k )^ (k ))  = 2/3(1 + v ) ( l  -  41г ^ ^ - ^ (ч * (к )ч (к )> ) • (14.30)

The quantity on the left-hand side is, due to (14.24) equal to the renor
malized value of 2/3(1 + v), so that we find the exact equation

2 0 »  = 2j3 (l -  8 lr2j 3 ^ = ^  ( ij*(k) ч(к)>) . (I4 31)
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with /3 = 0(1 + v), as defined before. In a pure dislocation model, rj(k) 
can be written as

т)(к) = еи К(Ь/(к), (14.32)

where £>,(k) is the Fourier transformed dislocation distribution and the 
formula becomes

P ( k )  = ^ ( l - 8 7 r ^ = ^ ( s 9 - | ^ ^ ( ^ ( k ) 6 y( k ) ) j .  (14.33)

Let us find the x-space version of the limit k —»0 on the right-hand side:

lim F ^ ( S* - F ^ W ( k)b,(IO>- (H.34)k_o К  • К  \ К  К

As far as the first term is concerned, we may proceed as in Part II 
where we proved in equation (11.114) that due to charge neutrality, 
Ex6,(x) = 0,

lim J - (6 f (k )6 , (k ) )  х2(6,(х)Ь,(0)>. (14.35) 
к—о к К  4 x

Here we need a similar statement also for the second term, i.e.,

11 m T i r W  Ki K j(b*(k ) bj (k )). (14.36)k-o (K 'N )

For this we consider a general tensor function

= £  е1к'/и(х), (14.37)
X

which satisfies the charge neutrality condition Ех//Дх) = 0 , so that 
/V(k = 0) = 0. Invoking mirror reflection invariance, the lowest expansion 
terms of fij(k) are

Ъ ( к )  = а к %  + р к ;к ;+ 0 {к л). (14.38)



1170 Ш. GAUGE FIELDS IN SOLIDS

On multiplying this by (К (К })/(К • К)2 and taking the limit k ->  0 we find 
a + /3. If we, on the other hand, differentiate twice with respect to к we 
see that —XjXjfjj(x) and - х 2/и{\) have the Fourier transforms

d__d
dk,dk/,JK" '  dkf

Thus we may supplement the relation (14.35) by

( K ^ * i W (|0*/(k)> = § ?  (!«// + х ,х ,и ь , (х )Ь ,т .
(14.40)

Combining both limits gives

lim ^ K (fef(k) fcy(k)) = ^  E  (3x2S,y -  2x,xj)(b,(x) b,{0 )) ,
k —*0 IV  ■ К  10  x

(14.41)

so that the renomalization equation (14.31) becomes

+ Д у Е ( З х 2 8 ^ - 2 ^ ; )(6 ,(Х)6у(0 ))|-  (14.42)

where the expectation is to be formed within the partition function (14.5).
If the dislocation gas is very dilute, a fugacity expansion can be set 

up for evaluating the contributions of an increasing number of dis
locations. The dominant contribution is a single pair of oppositely 
oriented fundamental Burgers vectors. Their interaction at a long range 
is given by a subtracted transverse potential (14.11), with the limit

p*rM  w Z t - ^ ( v o g M - X- f )  -  logc. (14.43)

c being a constant depending on the type of lattice. It can be determined 
most easily from the fact that the trace of i'ljT(x) is equal to the lattice 
Coulomb potential r/,r (x) = r'(x). Thus

"«W ~^(l°g(|x|c) - ^  (14-44)
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has to coincide with the asymptotic behavior of the subtracted lattice 
Coulomb potential, which is known to be [see Part I, Eq. (6.196)]

u'(x)w l^ - ^ ~ l°g (W 2 V 2 e r) (14.45)

on a square lattice. Hence we can identify

cs = 2V2ey + 1/2 = 8.3057... (14.46)

On a triangular lattice, t/(x)< vvith the normalization V-Vi/(x) = 
Sxj2/V3, behaves like [see Appendix 6A, Part I, Eq. (6A.77)]

«’'(x ) 1 ^ - ^ I o g ( | x | 2 V 5 ^ ) .  (14.47)

with x measured in units of the lattice spacing а[)л and

c, = 2V3e*+,/2 = 10.172. (14.48)

In contrast to the vortices in the ordinary Villain X Y  model, the 
interaction energy of a pair of Burgers vectors 6,(x) depends on 
the azimuthal angle в of the distance vector between them [cos 0 = 
(x -  x')i/|x - x'|]. If the Burgers vectors point along the ±l-direction, 
their energy is

fin, = bi(x)v;jr(\)bl (0) = [log (|x|c) -  cos20] (14.49)

Notice that due to the subtraction (14.11), there is no self-energy 
K (0 )  = 0]. Therefore, the expression

£  (35,yX2 — 2xjXj)(bi(x)bj(0)) (14.50)
b, =  ± .\

is equal to

-2(3 - 2 cos20)x2 exp |-47r22^ —  [log(|x|c) - cos20]| * (14.51a) 

which holds for square and triangular lattices. In both cases
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J - « 1+ - > - d ! h  ( 1 4 - 5 2 >

If the direction of the Burgers vectors is rotated by 90° we find once 
more the same expression with cos20 replaced by sin20 ,

-2(3 - 2sin20)x2exp | - 47г2 2/3 j-(log(|x|c) -  sin20 )J • (14.51b)

We now perform the integration over the angles 0 and use the formulas

/*2тг
rf9e),-*ii4,iW< = 2 T e*«/||( ^ ) ,  (14.53a)

J o

f  rfecos2ee4”:* l'4'"c“ :e = 2ire’gh/„(v/3) + /,(it(3)], (14.53b) 
Jo  2

where /0 and /, are the associated Bessel functions. Then the two terms 
(14.51) together give

-8же’^3/и( ^ )  -  (/„(ir/3) + /,(ir/3))] (14.54)

and we obtain, from (14.42), the following renormalization equation for 
the elastic stiffness constant /3 = /3(1 + v):

P R = P

where

/ * dR — 2irfi (14.55)

z = c"7*  (14.56)

is the fugacity of a single dislocation.
This is to be compared with the equation in the ordinary Villain model

in which the fugacity was

/3я  =  /3^1 -2**pzi2 ir f ’ ^ R 4-1« ) ,  ( 1 4 .5 7 )
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2 = (2V2ey) “ ■* (14.58)

Thus, apart from a multiplicity factor of 2 for the two directions of the 
Burgers vectors, the different fugacity

and the angular factor

the expression is the same.
For small fugacities and close to

j3C~ -
77

(14.59)

we can therefore derive the renormalization group equations for /3 and z 
as functions of the scale parameter t = log Л in the same way as in Sec. 
11.6, Part II:

a/з -i

и
— 4тт2 г22тге*Р (14.60)

and

dz
d£

{2- it/3)2. (14.61)

14.3. T R IA N G U LA R  LATT ICE

Let us now see what modifications arise when working on a triangular 
lattice. Since in two dimensions the laws of linear elasticity for a 
hexagonal crystal are the same as those for an isotropic one, the long- 
range elastic forces between defects are unchanged. What is different for 
a triangular lattice is, first of all, the number of possible configurations of 
Burgers vectors. As on the square lattice, there can be two oppositely 
oriented vectors along the jr-direction with the same interaction energy as 
in the isotropic lattice.
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FIG. 14.1. Triplets of dislocations contributing to the renormalization equation (14.71).

— 4 tt22 ( 3  ——  [log(|x| c) — COS2#]. 
4n

Now instead of a contribution of the same type with cos2 0—» sin2 0, 
there are two more terms arising from the directions of one Burgers 
vector being rotated once by 60° and once more by 120°. Hence the 
expression (14.51a) plus (14.51b) is to be replaced by

-2(3 - 2cos20) exp \ -4тг2 2(5 —  [log(|x| c) - cos20]

- 2  ̂ 3-2 cos2 ^0 - 

- 2 |3 -2 co s2( 0-

2 tt

4 tt

exp ■4тт2 2 р ~ } —
4тг

expS —4тг~2р
4  it

log(|x| c) — cos2l 0 -
2 tt

log(|x|c) -cos2( e - y )

(14.62)

and Eq. (14.55) becomes

1 - втг-р z е"р(1п(ттР) — — /!(7г/3)) 2 (14.63)

i.e., the factor 47t2 of the square lattice is replaced by втт2.
Were it only for this modificating, the critical behavior would have 

been the same for both lattices. On a triangular lattice, however, there is, 
an additional contribution to the defect sum. It consists of three dis
locations pointing into the three different lattice directions (see Fig. 
14.1). The relevance of such configurations derives from the fact that the 
special case when two of the partners coalesce reduces to the previous 
simple pairs. We may therefore view the additional triplet configurations
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as a result of a break up of one partner in a dislocation pair into a further 
pair. As long as the “ fragments” remain close to each other this produces 
only a small increase in the energy which, moreover, is partly compen
sated by an increase in configurational entropy. So what we have to do is 
supplement each of the three pair terms in (14.63),

by a three-body term (Ддг<*> = x(() -  jt<"\ кЛ,п = 123, 231, 312)

where Дх(Л) = х( ( )- х (,,,) = (x, R - x/2, R + x/2) for ktm = (123, 231, 
312). We assume that the distance r -  |x| between x2 and x3 is much 
smaller than the distance R - |R| between x, and the center of mass of x2 
and xv Expanding the exponent in x up to quadratic terms gives

On integrating over x, the linear terms vanish. The quadratic correction 
terms are of order (HR)2 and can be neglected as long as r «  R. Thus the 
additional contribution reads

j  {kiln) J
X  + +  eXn:ph{"h'>'rT(R - x/2) +  e X7r#>pb;'V,f(x)^

exp{87r2/3[6<»(i><2> + 6 fV ,y (R ) + r,f(x)]}

x [1 +\8п2р ь У \ Ь ^ - Ь ^ в кгГ (К )Хк

+ i ( S n W  bj1 >(M2> - b ^ )i dk 0,7(R ) bjf »(6 '2» -  b ' \ d k- v,r  (R ) **•**■ 

+ i8n2f} b]'\ba) + b0))jdkdk’V/j(R)xkxk- + . . . ] .  (14.6!(14.65)

f * —  /?J “ г2—* (14.66)
J ,  R J ,  r Jo

and r0 «  R  is the distance up to which the break up is included. It will be 
taken to be some fixed fraction of R, say
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Taking the Burgers vectors

6(2> = 1(-11 V3), b(3) = K - l ,  -V3 ) (14.68)

and the relative direction

x = (cos<p, sin<p), 

the integral over <p is seen to give

f  d<pe2lt* cos(*-*«)«*(*+я/з) = 2тг en&12 I q( ttP) . (14.69)
Jo

Hence, the effect of the break up can be described as a change of the

integral in (14.63) from f  —  R 4~2̂  to 
J  i R

I ,  Y RA ^ { 1 + 2ze’,Slo(-n^ 2nf  ° T '' '2” * )

and the renormalization equation becomes, at low fugacity,

P* = 0^1 -  б7Г222е^(/0( ^ ) - 1 / , ( ^ ) )

f  * dR - - Г PR Hr 1
x 2 7 rJ ,  T R 4 ~2* ( l  + 2zen0/2l° ^ 27rJ  7 r2 " ^ )

In order to extract from this equation reliable information on the 
critical regime we must again resort to a length-scale dependent self- 
consistent approach similar to that in the Villain model (see Section 11.7, 
Part II).

We first define a softened stiffness constant /3(A) which contains all 
pairs of distances smaller than A plus all possible split ups of each partner 
into two individual dislocations of radius smaller than pA.

As a second step, we replace the potentials in the Boltzmann factors 
R  = £-2*0log/? jntegrajs over t^e sca|e dependent force up

ro = pR. (14.67)

(14.70)

(14.71)
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{ Г  log R

- 4 ,
to the corresponding radius exp) ~2n j dIogA/3(A)f [recall the

treatment of (11.140) in Part II].
For the third step we introduce the auxiliary fugacity of a pair of 

dislocations separated by a distance R with the possibility of a break up of 
each partner [recall (11.144)]

Г г log л
z(R) -  z exp \ 2 log R - тг I d log A/3(A)

I J  — loer

x 1 1 + ze^/2/0( — f  dr -\ 
ттр ) 2 tt  j  ~yr2~irpJ-  (14.72)

In the fourth step, we finally allow for the fact that the potential between 
the products of the break up is renormalized once more by pair 
fluctuations between them. Hence we push the factor zen&2Iq(ttP) under 
the integral and replace (14.72) by

Г riog/г
z(R) = exp j 2 log/? - 7Г I dlogAjS(A)

[ J  -logс
/ r  log(pff) _ \

X 1 + 2 7Г J o d \ o g rz (r )e^ r),4o(7rp(r))j. (14.73)

After these manipulations, the renormalization equation (14.71) turns 
into a pair of self-consistent integral equations, valid at low fugacity:

log A
Ж А г 1 = / r ‘ + бтг3 I d lo g R z \ R )a 0(iTp(R)).

7 .

/log/? _
log A/3(A)

-log  с

r  log (pR)
x ( 1 + 27ГJ  d\ogr z(r)ai{7T(3(r))), (14.74)

where we have abbreviated

«о(й = -  i/i(?)), «|Ш = е (П1аШ- (14.75)
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The corresponding equations for the square lattice are obtained by 
replacing [compare (14.60) and (14.61)]

6a 0—»4а(ь c*|—»0. (14.76)

We then differentiate both equations and find

= 6tt3z2(A) «о Ы КА )),d log A 

dz( A)
d log A = (2 - 7t/3(A))z(A) + 27rz(A)z(pA)a1(7rj8(pA)) + 0(z3). (14.77)

This is a pair of ordinary differential equations which specifies the 
renormalization group trajectories in the /3” 1, z plane as a function of A.

As in (11.149), Part II, it is convenient to introduce the variable 
€ = logA. We furthermore define £()= logA. Then the equations read

d^ d ( ^  -  6 7 r 'V (€ )a 0(7r/ij(e)),

~  = (2 - i r m w )  + 2irz(f)z(( + elt) a i (np(e + f„)) + O (z ’).
(14.78)

These can be solved numerically. The flow graphs are shown in Fig. 
14.5.

For an approximate analytic solution we observe that a(,(£) and <*i(£) 
are smooth functions of £ so that in the neighbourhood of the critical 
point £ = 77-/3 «  2 they can be replaced by

a„ = a()(2) = 2e2(/0(2) - 4/,(2)) - 21.9347,

a, • a,(2) = e/„(2) = 6.1966. O4-79)

Expanding z (i + €0) in a power series in and using repeatedly Eqs.
(14.78) to express the derivatives of z(€) in terms of z(€) we realize that 
z(€)z(£ + €o) on the right-hand side can be replaced by z2(£) with an 
error which is, at most, of the order (2 - 7 t/ 3 )z 2( £ )  or z*(€). Close to the 
critical point, such terms can be neglected when compared with the two 
leading terms. We may therefore replace z (t)z (t  + £u) by z2(£) with no
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effect upon the critical behavior. With the same accuracy, we may replace 
2 - 7Г/3 by 2[(2/ir)p~l - 1].

14.4. C A LC U LA T IO N  OF C R IT IC A L  T E M P E R A T U R E

Let us use the renormalization group equations and calculate the critical 
temperature for both square and triangular lattices. The procedure 
becomes most similar to that of the Villain model by introducing the 
reduced variables [compare (11.148), Part II]

x = - p ~ '- l ,  у = V6ao7rz, (14.80)
7Г

which obey the reduced equations

(14,81)

f (  = 2xy + 2ry2, (14.82)

where

r — £ = ~ f  0 o n f  square ^
V 6ô ) [0.5401 [triangular

We now determine the trivial straight-line solutions which separate the 
set of all trajectories into three classes (see Fig. 14.2). Inserting into 
(14.81), (14.82) the relation

у = mjt, (14.84)

we find the algebraic equation

or

m2 - r m -  1 = 0  (14.85)

m± =  ± 1 ,
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FIG. 14.2. The renormalization flow (schematic) in the /3-1, z plane. Near x = 0, the 
two v-like heavy lines are the separatices у = m~x with given in (14.86). The solid 
line is the locus describing the melting model of the Villain type with no extra core energy 
and the purely elastic fugacity z = Ac~np (A  = V 6a  ̂тг = 36, с =10.17). The dashed 
lines of the same thickness, with the core parameters с =» 6 and с *= 20 are drawn for 
comparison.

for square lattices and

m* = Г- ± , /-  + 1  »  (  1'3059, (14.86)
"  2 V 4  [-0.7658,

for triangular lattices. That r enters non-trivially into the solutions 
demonstrates that the y2 term in Eq. (14.82) is relevant to the critical 
behavior. It can be easily verified that any higher term xy2 or y3 in either 
equation would change the separatrices only further away from the 
critical point and can therefore be ignored in the critical limit.
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The critical temperature is found from the intersection of the separatrix 
S_ (i.e., у = m-x) with the initial fugacity curve

z(/3) = = c~2/(1 +x). (14.87)

Recall that the number с was defined by the asymptotic behavior of the 
potential i.e.,

v7 00 -» (log(|x| c) 5,у -  (14.88)

and had the values

cs = 2V2eyV e~  8.3057 (14.89)

on a square lattice and

c,«  2V3 eyV e ~  10.172 (14.90)

on a triangular lattice [see (14.46), (14.48)].
In terms of the natural variables x, у , Eq. (14.87) amounts to

2/(1+jc) f square
»<-> f° r {triangular ^  <1491)

where the prefactor is As -  V 4a^7r~  29.427 for square and 
Ai = V6a0 Tr ~ 36.0451 for triangular lattices. The intersection of this 
curve with the separatrix S_ is given by the equation

X = _d _ c -2/(I+Jrr)

or

Solving for x by iteration we find

xc =  - 1  -  2 log с/log • (14.92)
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{

-0.1744 I square 
-0.1726 ° r {triangular{ lattices, (14.93)

so that

/5 —
Pc=  7T {l+ Xc)

lattices. (14.94)

It turns out that in both cases, x is somewhat too large to permit the 
use of the small fugacity approximation employed in the derivation of the 
critical stiffness. In going from (14.78) to (14.82) we replaced

The error involved is about 3% for the square lattice value of xc as well as 
for the triangular lattice. We should therefore expect discrepancies of this 
order when comparing /3C with the melting temperatures obtained 
previously for the Villain model, either by analytic calculations, or by 
Monte Carlo simulations. Indeed, for square lattices, we found at v = 0

which agrees to within 5% with (14.94). For triangular lattices, on the 
other hand, Strandburg et al. (1983) locate a transition between

A recent higher precision study by Janke and Toussaint (1986) finds a 
melting transition at

by

7T

Pm -  0.815 (14.95)

Pm,(I + v) *  0.9125, pm:(l + v ) «  0.9625.

ft.,(l + v) <** 0.932. (14.96)
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Dividing this value by 2/V3 [because of the normalization (14.88) as 
opposed to the one implied by (12.60)] gives

These numbers differ from the calculated value (14.94) by the expected 
amount.

14.5. T H E  C R IT IC A L  B E H A V IO R  OF T H E  C O H ER EN C E  
LEN G TH

Just as in the case of the ordinary Villain model, the renormalization 
group equations allows us to examine the manner in which the coherence 
length tends to zero as the crystal is heated beyond the critical tempera
ture. For this purpose we have to study the solutions close to the 
separatrices. We shall proceed as in Chapter 11 of Part II: divide the two 
equations (14.81) and (14.82) by each other, and study the differential 
equation

On triangular lattices, for which гФ  0, Eq. (14.97) is still a homo
geneous differential equation so that it is possible to separate variables by 
introducing u(x) = y/x. This satisfies the differential equation

A»», 0.79, Am -0.834, A » - 0.807.

(14.97)

which for r - 0 was solved trivially by у = V x 2 + xq.

и + x (14.98)

which can be brought to the form

dx udu udu
x 1 + rw - w

1

(u - m+)(u - m_) 

1 du 1 du (14.99)
m+ — m_ \ni- и — m+ m+ и - m_

The integration is now trivial and gives
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where x is a constant of integration. This can also be rewritten as

(y -  m+x)l~v(y -  m _x)v = x, (14.101)

with

у ш — L = = (14Л02)
m+ - m_ m+ 1 + m t 1 + m+

Using (14.86), we find

v = 0.36963. (14.103)

For quadratic lattices, r = 0, m+ = 1, v becomes 1/2, and Eq. (14.101) 
reduces to

y2 - x2 = x2 = Xq (14.104)

as it should [compare (11.154), Part II].
The value of x is determined by the initial condition which, close to the 

separatrix, i.e., close to the critical point, has the form [compare 
(11.134), Part II]

x = xc + Ty у ~ m_xc -f ar, г = — (T!TC — 1). (14.105)
7г

Inserting this into (14.101) gives

[(m_ -  m+)xc + (a - m+)r]1-v(a -  m J)vxv *  x. (14.106) 

For small r, this can be rewritten as

x ~ - m-)vTv = x rv, (14.107)

where

x = x ( u -  rn + y i{m+~m-)m-(u -  (14.100)

/ mi m-\ I Г 2 |jcc| « 0.349
W - t a lm s k ! - » .

square,
358 triangular.

(14.108)
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We can express the slope parameter a in terms of the critical value \xc\ by 
taking the fugacity equation in terms of reduced variables,

у = i4 c '2/(,+,); (14.109)

differentiating with respect to x, <x = (dyldx)\xt = 2\ogc ( 1/ ( 1  +xc)2)y c, 
and expressing log с once more in terms of xc via Eq. (14.92),

— с- ^ + Ч  (14.110)
fti-

This gives

2 log с = -(1 4- xc) log m Xc> (14.111)

and we have [compare (11.170b), Part II]

m_xc , rri-xc /н л
a= S~ A ^  <14m>

For square and triangular lattices with с = 8.3057 and 10.172, A = 29.427 
and 36.0451, respectively, this takes the values

-xc** 0.1744: a *  1.083 square, Г14 113)
—xc *= 0.1726: a «0.896 triangular.

We are now ready to calculate the length scale from (14.81),

The integral has to be carried from x0, y0 to *min, ymin, where у reaches its 
minimal value [recall Part II, Eq. (11.136)], and further on to some place 
* i, where the dependence €(x) slows down. The minimum is given by 
the intercept of (14.101) with the line dyidx = 0 - xly 4- r, i.e., by

>\nin = * ( 1  + rm+y ~ l( 1 + r m _ ) " v = 2m J \  (14.115)
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For x —> 0, these quantities vanish like jtminr v, y minTv wherec

•*min ГУггпп* (14.116)

>-min = xm l" 2|'«-l 2v = \ n з704|  * = |q '“ ca f° r
.852 J square, 

0.8704J ~ [0.550 ° Г [triangular,

^ = - ^ "  =  l - 0 0 2 9 6  f o r { r „ g u . a r ,  ( 1 4 Л 1 7 )

in the three cases.
In the integral (14.115), the small r dependence comes mostly from the 

region around the minimum of у with the dependence of x0 on r giving 
only higher order corrections. The leading behavior can best be exhibited 
by introducing further reduced variables у = y r~v, x = xt~v and rewriting 
the integral as

2 J ,„y 2 2 J.v„r- У

Since the integral converges, the dependence on the limits of integration 
is very weak. We therefore separate the integral into three pieces

x _
2

d x _  [ * oT~ 'd x _  Г  dx 
У 2 J - X  f  J x l r - y 2_

(14.119)

For small r, the second and third integrals can be well approximated by

- Г ’ - Й з - Г  - ^ 1 =  (- 4 ---------- (14.120)m tx J XT-vm%x* \m tx  0 m+xxJ

and we find

- Л Г -  + - 4 ----T4 — ’ (14-121)2m-Xq 2m+xx

where h is the number

cFor m+ - |m_| = 1, v = 1/2, A=2n  this reduces correctly to the XY  model formula 
(11.171) of Part II.
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" 4122>

and x0 = xc + r. For л;, we may choose again [compare (11.166), Part II]

X\ *  0.25, (14.123)

which is large enough to put xJf y x into the disordered phase and small 
enough to remain within the validity of the fugacity expansion. In order 
to estimate h we expand у around the minimum as

У=Уп,т + ^г—  ( * - * mi„)2+ (14.124)
A/min

The curvature l/2ymin follows directly from the differential equation 
dy/dx =x/y + r = x/ymin + r = (x - x min)lymin (now applied to y, x). Thus 
we find

h = - Г * rr----f- 2 ~ (14.125)
2  J  —-к. ^m in "1* C* — -*min) 2 y mjn

and the coherence length becomes

« г )  = « x „  * )exp  { ^ r - “ + ^  -  2^ - }  (14.126)

[to be compared with the similar expression in Part II, Eq. (11.139) for 
the X Y  model].

For r —>0, the coherence length diverges like

f (r )  « ehT"  = er"r(ir/25?m,n). (14.127)

If we insert the numbers —xc »  0.1744, 0.1726 and the corresponding 
values of A we find

A - f c l M r " - .  (14128)[ 2.86 [triangular.
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Given experimental or Monte Carlo data, the resolution of the critical 
behavior is just as difficult as it was previously in the X Y  model, due to 
the г behavior of the second and third integrals in (14.119). In order to 
estimate the corrections we expand y(x) around the separatrices as 
follows

near (14.129)

where

P- =
g W I- r )

P- = (m ~  — n t- )lv il
(14.130)

This leads to the additional terms in (14.121)

I  = r 1 - 2 P-____L
( + \_ \m.\ \х,Г-

V

1

2m\xx 1 - P *

1 + 1 -  v
(14.131)

with the small г expansion,

-  (  1 1
\2m!|xc| + 2 m\

1 П  T v ! ( \ - v )

+ --- ---- ' +■■• (14.132)

1 — V

As a cross check, we set m± = ± 1 , v=  1/2, к = y min and recover the 
correct X Y  model result (11.173b) of Part II.

Numerically, the expansions are, term by term,

£ ~  1.84r“ ,/2 -  2.86 - 2 -  16.44r + 2.85r + 2.85r + . . .  (square),
(14.133)
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e ~ 2.86r“ °  Л7 - 4.94 -  1.17 - 28.59r + 5.09r + 0.34r° 59 (triangular).
(14.134)

On a triangular lattice, г has to be considerably smaller than г ~  10-2  to 
see clearly the t ~ v dependence of the first term. This brings the 
coherence length to the order of a few hundred lattice units.

Experimentally, the coherence length has been measured up to several 
hundred Angstroms by Heiney et al. (1982) (op. cit. in the Notes and 
References, see Fig. 14.4). Thus, under the assumption that the system 
has no extra core energy, this coherence length begins to barely invade 
into the scaling regime. Indeed, the data can be fitted quite well also by 
an ordinary scaling curve £ = a((T/Tc) - I ) ” [see also Eq. (14.142)- 
(14.143)].

14.6. TWO-STEP M ELT IN G

In their work on the dissociation of dislocation pairs, Halperin, Nelson, 
and Young (H N Y) realized that this dissociation alone could not readily 
be identified with a melting process. The high-temperature phase in which 
dislocation pairs are separated does not behave like a proper liquid. Even 
though the translational order is destroyed, there is still memory of the 
orientational order of the crystal. On triangular lattices, this phase with 
orientational order is referred to as the “ hexatic phase.”  A further phase 
transition would be necessary to destroy this orientational order.

In order to describe it, HNY introduced an independent set of dis
clinations into the “ hexatic phase” . In that phase, these have once more 
the same interaction energy as vortices in a film of superfluid He. There
fore, when heating the “ hexatic phase,”  they can undergo a further 
Kosterlitz-Thouless phase transition with a jump of the orientational 
elastic constant from a universal value to zero. This elastic constant is 
defined by the orientational energy of the bond angles cu(x). It can be 
parametrized by

where the subscript A of the elastic constant KA records the fact that KA 
refers to the angular stiffness. In a hexatic phase, the fundamental dis
clinations have an angular defect [see (2.7), (2.118)]

(14.135)
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and the disclination density 0 (x) = e,yd,d;-cu(x) can be written as

®(x) = f t £ a (2)(x - x (',)), (14.137)
x(n)

where x(/1̂ are the positions of the disclinations. It is then possible to 
introduced a “ gauge field”  of the “ angular stress”  and write

а  = 60°  = 2тг/6 , ( 1 4 .136)

£  = 2i b / Л с (а' Л )2 + ‘ /  d2xe(x )A (x ). (14. 138)

From this, the interaction energy between a disclination and an anti- 
disclination is, at long distances,

e iM = ft2 ^ ^ lo g |x | .  (14.139)

By the same argument as in (14.13), (14.14) it is now possible to conclude 
that a rare gas of such pairs undergoes a pair-unbinding transition when
ever the angular stiffness drops to a point at which

<14Л40>кв Т(2тт) тг

corresponding to the universality relation (П = 2 тг/6)

К  Ac = 12kB Tchr. (14.141)

14.7. E X P ER IM E N T A L  EV ID EN C ES  FO R  AND  A G A IN ST  A  
H EX A T IC  PH ASE

The work of Halperin, Nelson and Young catalyzed a large number of 
investigations on the two-dimensional melting process. Experiments were

We write the angular stress as aAi = ê d.-Af. As was the case with X in Eq. (14.26), A (x) is 
not really a gauge field, due to the reduced space dimension D = 2. In higher dimensions it 
would be, though.
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FIG. 14.3a.b. The p, T phase diagram of Xenon on graphite (p is the coverage of the 
adsorbed). The pioneering experiment is due to Thorny and Duval in 1970 (Fig. 14.3a) 
followed by Hammonds et al. in 1980 (Fig. 14.3b) (cited in the Notes and References). The 
dashed lines are paths traced in recent experiments of Heiney et al., (Fig. 14.3b). There is a 
first-order melting transition at submonolayer density.
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performed both in the laboratory and in model systems, via molecular 
dynamics or Monte Carlo simulations. In laboratory experiments there is 
now evidence for both continuous as well as first-order melting transi
tions. But none of the first type of experiments really separates the 
two transitions. Up to the end of 1988, evidence for the hexatic phase in 
atomic crystals has remained scarce and indirect. Only in crystals, which 
consist of rod-like molecules with an extra directional degree of freedom, 
and to which the above theory does not apply, the situation is different. 
Simulation studies with two-dimensional atomic crystals on the other 
hand, suggest that these melt in a single first-order phase transition as was 
obtained previously in our cosine model of defect melting. The only 
exception is the 2D Wigner crystal (electron lattice) which could undergo 
a continuous transition. This will be discussed later in detail. Let us first 
describe some of the important experimental data. The references can all 
be found in the notes at the end of this chapter.

In a pioneering vapor pressure isotherm experiment, Thorny and Duval 
showed in 1970 that Xenon adsorbed with less than a monolayer density 
on a (0, 0, 1) surface of graphite (see Fig. 7.9) exists in the three phases
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FIG. 14.4. The coherence length of a layer of Xenon layers on graphite at a coverage 
p — 1.1 and a melting temperature of 152 K, as measured by Heiney et al. (1982). It is
better fitted by the Kosterlitz-Thouless form £_l — e~v T̂~ Tf)' ‘ than by the power law 
Г ‘ ~ 0.24 A " 1 (77152.04 К  -  l )0 277.

gas, liquid, (incommensurate) solid, with a phase diagram which is very 
similar to that of a three-dimensional system and with first-order tran
sitions between the phases. The original phase diagram is shown in Fig. 
14.3a. This behavior of Xenon is in contrast to Krypton or Nitrogen on 
graphite for which Butler et al. in 1979 found neither the triple point nor 
the critical point. The structure of the Xenon phase was investigated 
further by Hammonds et al. in 1980 (Fig. 14.3b) who found again a 
first-order transition up to 112K which was the highest temperature they 
studied.

In 1982 Heiney et al. reported that an increase of coverage to 1.1 
monolayers softened the melting transition and made it continuous. This 
evidence was taken from a measurement of the coherence length which 
is shown in Fig. 14.4. It can be followed continuously to more than 100  A 
(in their more recent 1983 paper to 200 A) which would be impossible in 
a first-order transition unless it is extremely weak. A  best fit to the 
Kosterlitz-Thouless form (14.127) gives

Г 1 = 0.082 A " 1 exp -0.0862 (14.142)
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where v lies between 0.3690 and 0.4, in good agreement with the H N Y  
number of 0.369. This fit reproduces the experimental points somewhat 
better than an optimally chosen power law formulac

0.277

r ' - ° - 2 4 A " l , « i « K - v  ■ < 1 4 1 4 3 )

At the critical point, the cusp parameter 77 of the (1, 0) Bragg peak at the 
momentum transfer q = 1.63 A -1 = (27г/д0)(2Л/3) was found to bed

7) ~  0.28 ± 0.05. (14.144)

Using (14.52) and the lattice spacing a0 = {2lVb){2irl q) = 4.42 A this 
corresponds to a measurement off

1  + Г -  
p * . 2 m

1 + r -  3/x
= ^ r ^ 3 = i ^ i = ^ ~ 0-57’ <14I45>

a number which is compatible with what would be obtained from the 
universal pair unbinding value Eq. (14.15)

Д * ( 1  + И ) = - «  0.64, (14.146)
7Г

as long as v* is a small positive number (which is usually the case). 
Similar experimental results were reported by McTague et al. (1982) for 
monolayers of Argon.

At first sight, these results seem to give evidence that two-dimensional 
melting does proceed as described by the HNY theory. However, things 
are not as simple. First of all, one should remember that the two-dimen-

eIt was argued by J.M. Greif et al. (1982) and by J.L. Cardy (1982) (see the Notes and 
References) that the scaling law (14.128) should not be applicable before £ reaches ~108 
lattice spacings. Experimentally, one never gets beyond 103 spacings so, if these authors 
are right, it would be futile to attempt fitting the anomalous behavior (14.142). 
fRecall the definition of 77 in Eq. (7.199). Notice that we may use the inequality on v, which 
follows from the positivity of к = A + /x, —l< v ^ l  to derive, from (14.145) and the 
universality prediction (14.15), the inequality 77 < 1/3. Moreover, since v is usually >0, 
one also has a weak lower bound 172: 1/4 which is satified by (14.144).
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FIG  14 5. The phase diagrams of Xe, Kr and Ar, as given by McTague el al (1982) The 
densdy ,s measured in units of the epitaxial density p* on the subs,fate.

sional melting process in layers of 4He exhibits a sharp peak in the 
specific heat [recall the data of M. Bretz et al. in Fig. 7.13]. Sharp peaks 
were also reported for Neon by G.B. Huff and J.G . Dash (1974). Such 
peaks are incompatible with the dislocation unbinding HNY mechanism 
w ic should not show up at all as a singularity in the specific heat, nor in 
any thermodynamic measurement.

Second, there are only two experiments which report orientational 
order in liquid layers of Argon, namely, one by Shaw et al. (1982), and 
anot er one by Rosenbaum et al. (1983), in Xenon. The evidence for the 
exatic phase presented in these papers is, however, quite indirect and 

carnes some theoretical bias (they apparently wanted to see the hexatic 
phase) so that it is hard to assess the systematic errors, 
н 'u ,  n0ne l̂e papers reporting a continuous transition has 
liquid '^C secont* transition from the hexatic phase to the proper

An additional difficulty is the following: when McTague et al. (see Fig.
•5) compare the phase diagrams of Xenon, Argon and Krypton,
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plotting them against a temperature Т П тр (p  = 3), where TTP (D  = 3 ) is 
the triple point of the three-dimensional system, the diagrams look quite 
different. They should, however, be very similar due to the law of 
corresponding states (which is clearly obeyed in 3D). If substrate effects 
are as unimportant as often claimed, this is hard to understand.

A two-dimensional system which is free of substrate effects can be 
studied using smectic liquid crystals of Type B. When smearing such a 
material across a hole one can prepare well-defined few-layer systems of 
two-dimensional crystals lying on top of each other and coupled weakly to 
each other. In this system, D .E. Moncton et al. (1982) find a definite 
sharp first-order transition for two layers and, surprisingly, two successive 
first-order transitions for 3, 4, 5 layers. Unfortunately, it has been 
impossible to prepare thinner than two-layer systems so that the substrate 
problem is replaced by the disadvantage of not having a monolayer. 
Another disadvantage is that the system consists of rod-like molecules 
which can have additional directional fluctuations and these might easily 
change the order of the transition.8

14.8. COM PARISO N W ITH  M O LEC U LA R  DYNAM ICS 
CO M PU TER  S IM ULAT IO N S

Up to now, the only way of studying substrate free monoatomic two- 
dimensional systems is via Monte Carlo simulations. This road of approach 
has been followed by numerous authors and the outcome of their 
investigations conforms with the behavior of our cosine model of two- 
dimensional melting, which shows a first-order process. Early work by 
Hansen and Verlet on Lenard-Jones systems found a phase diagram of 
the usual type, with a first order transition and a density jump of the 
order of 5%. (See the phase diagram in Fig. 14.6 and 14.7.)

In 1979, after the theoretical work of HNY, McTague and Frenkel 
claimed to have seen two continuous transitions in a soft disc system with 
a potential Ф = e(cr/r)6, just as is required by the theory, Working at a 
constant overall density per2 = 0 .8 , they identified the following transition 
temperatures

7V, = 0.1525, 7V, = 0.15625. (14.147)

8RecaIl the discussion in Chapter 3, Part II. See also Section 18.7.
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FIG. 1̂4.6. The phase diagram of a 2-D Lennard-Jones system [V (r) = 4e((o/r)12 - 
(cr/r)e,)l obtained via molecular dynamics calculations by Hansen and Verlet (1969).

Moreover, in the small temperature interval between TCi and Tc the 
correlation functions were reported to display a large-distance behavior as 
expected for the hexatic phase.

This appears to confirm the HNY theory. The picture is, however, not 
consistent. The internal energy (see Fig. 14.8) has a clear jump and this is 
in serious contradiction with the H N Y theory. From what we have 
learned earlier in the Villain model, the pair-unbinding transition is 
practically undetectable in the internal energy. The specific heat should 
show only a smooth peak which lies considerably above the transition 
temperature. Thus the conclusions of McTague et al. are at variance with 
their own internal energy data. Incidentally, by counting the deviation 
from the coordination number q around each atom (see Fig. 14.9), the 
authors showed in which way the disclinations proliferate in the melting 
process and the result looks very similar to what we found in our cosine 
model (recall Figs. 13.20).

The contradictory situation was clarified by Toxvaerd in 1980 and by 
Abraham in 1980, who studied the same Lennard-Jones system once 
more at fixed pressure and various temperatures via Monte Carlo 
techniques. They observed discontinuities in the enthalpy and density
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FK}. 14.7. The pT diagram of the 2-D Lennard-Jones system as given by Abrahams 
(1980). The dashed line is extracted from simulation data of Toxvaerd (1978).

0.30 0.40 0.50 0.60

temperature, к Tie

which are characteristic of a first-order transition (see Fig. 14.10). They 
also gave a simple reason why the previous authors had seen two 
transitions: if a first-order solid-liquid transition is studied at fixed overall 
density (i.e., along isochores) there exists a two-phase co-existence 
regime in which pieces of solid with lower density are in thermal 
equilibrium with surrounding regions of liquids of higher density (Figs. 
14.11-14.12). Abraham also suggested an explanation for the observed 
stiffness KA of the angular correlations in the two-phase regime: in the 
computer simulation, the solid pieces had not had enough time to change 
their crystalline orientation with respect to the initial solid. This is why 
some orientational memory is retained if one carelessly averages over the 
two-phase system. In fact, if extracted properly, the orientational order in 
the two-phase regime was shown to disappear by Zollweg (1982) in a 
simulation of a hard-disc system.
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FIG. 14.8. Temperature dependence of internal energy as reported by McTague el al.
(1980) in their simulation study of soft discs with an r -6 repulsive interaction potential. They 
claim to see two successive continuous transitions but the internal energy displays a clear 
first-order signal.
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After these results, Abraham and Koch (1982) found it worthwhile to 
reinvestigate once more the importance of the subtrate by simulating 
Xenon atoms adsorbed on a graphite via Monte Carlo techniques sub
jected to the same conditions under which Heiney et al. (1982) had seen a 
continuous transition. Contrary to the laboratory experiments, they found 
a clear first-order transition. Since Heiney et д/.’s coverage was 1.1 
monolayers, Abraham and Koch also studied the effects of second-layer 
promotion. This did not affect the character of the transitions.

On the basis of these simulation results it thus appears that two- 
dimensional melting of Lennard-Jones soft-disc and hard-disc systems is a 
first-order process. The adsorption on a surface of graphits does not 
change this.

More work will be necessary to tell the difference between the 
laboratory and the simulated systems and to understand why one system 
can apparently undergo a continuous phase transition while the other 
cannot.

14.9. U N IV ER SA L  STIFFNESS

An important feature of the HNY theory is the prediction of a universal 
stiffness pR = [/3(1 + v)]* = 2Itt^  0.64 at the transition, after which it
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FIG. 14.9. The atomic positions as found by McTague et al. (1980) for soft discs of the 
potential e(o/r)6 at 7* = kBT/e = 0.150. By counting the deviations from the regular 
coordination number q = 6 of the triangular solid they find pictures of the disclinations 
similar to those of the cosine melting model in Fig. 13.20. The pictures are taken at 
Г* = 0.1, Г* = 0.15, T* = 0.1525. The melting temperature lies between 7'* = 0.15 and 
0.156.

must fall rapidly to zero. This should happen significantly below the peak 
in the specific heat. Experimentally, Greif, Silva-Moreira and Goodstein 
(1980) noticed that the sharp peaks in the specific heats of solid helium lie 
considerably above the temperature Tm, calculated by using the zero- 
temperature elastic constants, i.e., they observed

I  + v)]S-o ,  2
(2я-)2А:в Греак It

(14.148)
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FIG. 14.10. The discontinuities in density and enthalpy as observed by Abraham (1980) in 
a 16 x 16 Lennard-Jones system at two different pressures.
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FIG. 14.11. The p = const, and p = const, cuts through the state diagram of a solid-liquid* 
gas system. While melting and evaporation are discontinuous processes at p = const, they 
appear as two successive continuous transitions at p = const., due to phase mixing.
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FIG. 14.12. Schematics of phase diagrams in a first order process at p-const. (after 
Abraham, 1980).
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Since elastic constants usually soften with temperature, this is consistent 
with the H N Y theory.

Tobochnik and Chester (1980), in a computer simulation of a Lennard- 
Jones system, found that at high densitiesh (per2 ~  1.143) the stiffness at 
the melting point is still higher than that predicted by theory (Fig. 14.13). 
At lower density (per2 ~  0.86 - 0.89), however, the universal value can be 
reached. These results indicate that at higher1 density, melting is a first- 
order transition which takes place before the dislocation-unbinding 
mechanism can come into action. The coherence length does not have a 
chance to grow large enough so that the renormalization group procedure 
becomes applicable. The Monte Carlo data on the internal energy 
support this picture. For high densities they show a discontinuity, while 
for low densities they appear quite similar to the internal energy of the 
X Y  model for the superfluid phase transition for which pair unbinding is 
believed to be active.

hRemember that cr is the size parameter in the Lennard-Jones potential V = 4e[(a/r) —

'This is in contrast to the experimental finding that the transition softens with increasing 
density (see Figs. 14.3 and 14.5).
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14.10. TH E  W IG N ER  ELEC TRO N  LA T T IC E

Another two-dimensional crystal in which the melting transition has been 
studied in detail is the two-dimensional version of the electron lattice 
proposed by E.P. Wigner in 1934. It was pointed out in 1971 that by 
applying a strong electric field perpendicular to the surface of superfluid
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helium it is possible to prepare an electron crystal in two dimensions. By  
calculating the ground state energy for all five possible two-dimensional 
Bravais lattices, i.e., square, triangular, centered-rectangular, primitive 
rectangular, and oblique,' Bonsall and Maradudin (1977) showed that the 
triangular lattice had the lowest energy. For this lattice they found the 
static ground state energy per electron [to be rederived latter in (18.224)]

E  = —3.921034 —̂  (14.149)

and the eigenvalue equations for long wavelength phonons

mw2ua (q) = £  A„/3 (q)up(q) (14.150)
P

with [for a derivation see Eq. (18.343)]

* g2 
p ~~ v 1/2 + v(Sal3q2-6qaqp) + 0 (  q4), (14.151)

where tj is a numeric constant

77 = 0.245065. (14.152)

The q factor in front of the longitudinal projection qaqp/q2 implies that 
the Lame constant A is infinite, corresponding to an incompressible solid. 
The shear modulus p. is equal to

М - ч р я -  (14-153)

The quantum mechanical zero-point energy was calculated to be

<14-,54)

*The basic vectors and cell volumes v are я(,(1, 0), я„(0, 1), flfi; ati( 1, 0), ait(U2, n/3/2), 
(V3/2)<?o; (a, 0), (a/2, 6/2), аЫ2\ (а, 0), (0. b), ab', (a, 0), (c, b), ab, respectively.
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In 1975, Hockney and Brown simulated a 2D Wigner crystal via mole
cular dynamics and found a melting transition atk

r - * - V ^ - ! -  = 95±2, (14.155)V К ft 1 m

with a transition entropy of

As = 0.3/^/particle (14.156)

distributed continuously over roughly 1K. The specific heat they 
observed looked very much like that of a A transition in bulk superfluid 
helium (see Fig. 14.14), and at the vicinity of the critical point could be 
fitted by a power behavior c ~ r ~ om on the low and c ~ r -0 14  on the 
high r side. This value of Tm was compared by Thouless with the univer
sality prediction, using the zero-temperature elastic constants of Bonsall 
and Maradudin. We had seen in Eq. (14.151) that due to the 1 ! r  forces, 
the 2D electron crystal is incompressible so that A = «  and v = A/ 
(2/x + A)= 1, and hence the universality prediction (14.146) is

2 R
К к = г^г-4тг= 1677. (14.157)

k B Tm

Using (14.155) and (14.153) this corresponds to

^ = т )Г *  = 16тг (14.158)

or

Г?, «  78.71. (14.159)

Since usually the elastic constants soften with increasing temperatures 
this could, in principle, be compatible with the value found by Hockney 
and Brown. However, in 1979 simulations were preformed by Gann, 
Chakravarty and Chester who could not reproduce the data of Hockney 
and Brown and found instead a much larger value of

“They used v = 10 10 cm2 so that Гт = 296.12(1/Гш(К )).
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FIG. 14.14. The specific heat of a 2-D electron lattice at a density of 10'° electrons/cm2 as 
found in molecular dynamics simulations by Hockney and Brown (1975).

П К )

Г,„ *  125 ± 15.

At the same time, Grimes and Adams (1979) performed a laboratory 
experiment observing a melting temperature consistent with this number. 
Such a large value for Г,„ would imply that the elastic constant //. could
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soften by as much as 20%, from T = 0 to the melting temperature. 
Although this seems rather large, it could, in principle, be possible.

In 1979, however, Morf pointed out that according to the theory of 
Platzman and Fukuyama (1974) the elastic constant ц in a 2D electron 
gas should have an anomalous temperature behavior and increase with 
temperature. This would immediately destroy the possibility of a 
universal melting stiffness. Puzzled by this contradiction he performed a 
simulation in which he determined directly the shear modulus /x as a 
function of temperature. He found that the elastic constants soften 
linearly, at low temperature, behaving as

M( 7 ) = M[i - 30.8Г-1 + 0 (Г -2)] (14.160)

and confirmed the value (see Fig. 14.15)

r OT-130±  10. (14.161)

Thus he found a strong decrease of (x with a melting temperature only 
slightly below the universality prediction (see Fig. 14.15). In addition, he 
was able to fit his data with a curve obtained via a renormalization group 
calculation. For this he integrated Eqs. (14.81), (14.82), by assuming the 
initial stiffness j8 ( (0) to soften linearly with temperature, with a slope 
obtained from the initial piece of his simulation data. He then took the 
estimated core energy of Fisher, Halperin, and Morf (1979) (н¥ = г ""!)*

*>
e(. — 0.1 ± 0.02 /1.У2 e2 = /I —  loec (14.162)

2tt w

with с = 13 ± 6 , estimated the natural core energy to be /x(«f,/27r)log2. and 
worked with an initial fugacity of

z = (2c)- ^  (14.163)

While he claims to see agreement with the KTH NY theory, two problems 
arise. One is the sharpness of the peak in the specific heat, which a 
Kosterlitz-Thouless transition should not have. The second is the 
apparent absence of an intermediate hexatic phase. In fact, the data look 
very much like those of the melting model of the Villain type (recall the 
specific heat in Fig. 12.13). A further problem is prompted by the contra-
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FIG. 14.15. The shear modulus of a 2-D electron lattice (26 x 26) obtained by Morf (1978) 
in a molecular dynamics simulation as a function of Г 1 (labeling the abscissa directly with Г 
values). The dashed-dotted line shows the locus where the stiffness should collaps according 
to the HNY theory [Eq. (14.158)) assuming linear softening of /л(Т). A = x. The triangle 
indicates Thoulcss' value Г «78.71 obtained from the use of the T -  0 elastic constants. 
The solid curve was obtained from renormalization group calculations by (a) assuming the 
bare clastic stiffness to soften linearly with temperature, as indicated by the dashed line, (b) 
including a core energy. <v~0.I x As’̂ r  as calculated by Fisher. Halperin, and Morf 
(1979), and (c) adjusting one parameter, the size of the defect core. The value 
Г„, = 130 ± 10 is the presently accepted value.

dictory simulation data of Kalia et al. (1981), who find a clear first-order 
transition.

Summarizing the status of experimental and simulation data one may 
say the following.

1. Experimentally 2D melting is mostly a first-order process, as in our 
models of defect melting, but may sometimes be continuous.

2 . Molecular dynamics calculations have found a first-order transition
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for Lennard-Jones systems and possibly a continuous transition for an 
electron lattice.

3. In many cases the specific heat has a clear single sharp peak which, if 
the transition is continuous, cannot be understood on the basis of the 
KTHNY theory.

4. The experiments which have measured the divergence of the 
coherence length a la Kosterlitz-Thouless, Eq. (14.134), have not 
simulaneously measured the peak in the specific heat to see whether it lies 
significantly above the transition as it should.

5. The experiments which, in atomic two-dimensional crystals, claim to 
have measured an angular stiffness as a signal for the hexatic phase have 
not seen the collapse of this stiffness and related this second point to the 
peak in the specific heat.

Thus, while first-order and continuous transitions both seem to occur in 
adsorbed atomic largers there is no convincing evidence as yet for the 
existence of two successive continuous transitions in the continuous case.

Some indirect evidence comes from NM R measurements of spin-spin 
and spin-lattice relaxation times which are claimed to show two successive 
anomalies in temperature, the first lying roughly at the universality point 

= 2/7Г, the second at the peak of the specific heat [M.G. Richards 
(1982)]. Whether the first anomaly is really associated with the pair- 
unbinding transition is not clear and remains to be shown more con
vincingly.

Our models of defect melting have a first-order transition. Certain 
modifications will therefore be necessary in order to explain the experi
mental data, in which the transition is continuous. Preliminary steps in 
this direction have been undertaken in other models, such as the three- 
dimensional X Y  model and the four-dimensional Abelian lattice gauge 
model [see Janke, Kleinert (1986)]. We shall see in chap. 18, in particular 
Sec. 18.6, how we can generalize our models of defect melting so as to 
comprise both types of transitions.

14.11. F IR ST  O R D ER  V ER SU S  CONTINUOUS KTH N Y 
TRANSIT IO NS

If 2D melting is of the first order, as in our models of defect melting, the 
question arises as to how the KTH NY formulation of defect melting has 
to be corrected in order to account for this. When deriving the partition
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function of the dislocation gas K TH N Y  use the asymptotic form of the 
potential between two dislocations

p:T(x) = ( ~$/v'7 + ' __ > __L
" U  \ (V-V)2 ) W-** 4tt log(|x|2V2e,+(l'2)) 5,у — _2XjXj

x:
(14.164)

They separate this into a term

47Г
XiX,

—H  log |x| — 35 (14.165)

and an x independent diagonal termj

— log(2\^e’,+(1'2))5,y. (14.166)
47T

Contracting i’,yr(x — x') with the Burgers vectors 6 ,(x), bj(x') and 
summing over хФх ' ,  they use charge neutrality [£x6 ,(x) = 0] to rewrite 
this latter term as a core energy,1

^-log(2V2 (14.167)
47Г X

A  core energy of this magnitude, if it exists, would indeed enforce a low 
density of dislocations, justify the fugacity expansion, and could lead to a 
pair-unbinding transition as envisaged by these authors. Unfortunately, 
this procedure violates an important fundamental property of the elastic 
energy between defects. We had seen in the general discussion of Chapter 
5 that disclinations can be thought of as a string-like pile-up of 
dislocations. When such a pile-up takes place, the memory of the string 
disappears completely due to a perfect matching of the crystal faces along 
this string. A  core energy of the type (14.167) would prevent this from 
happening. If it were present, the string would carry an infinite energy 
and no disclinations could form.

In the formalism, the disappearance of the string energy for disloca
tions with unit separation is a direct consequence of the fact that the

'Actually, their numerical constant is different since they work on a triangular lattice, but 
this is irrelevant to the discussion to follow. Also they did not know this term exactly on a 
triangular lattice; it is given by (14.43), (14.48).
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FIG. 14.16. A nearest neighbor stack-up of dislocations which is equal to a disclination 
and a second-nearest neighbor stack-up which is equal to a large-angle grain boundary.

Boltzmann factor contains only the transverse projection of the dis
locations density

expj-4i72/3 (*• * ' ) ¥ x ' ) j

= exp J  -4ir2/3 J ]  «*fy,(x ) ̂ 5  ̂ tbk (x')j • (НЛ68)

In order to see this let us form a string of Burgers vectors 6 ,(x) which all 
point along the y-axis and are stacked up along the jc-axis, starting from 
point X,  Y  (see Fig. 14.16):

bj(x) = 8l2~-8x x8y%Y = (14.169)

&xX = ^ S x X = t  Sx..x (14.170)
V 1 Л' = -X

Here
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is the lattice version of the Heaviside function which vanishes for x < X  
and is equal to unity for x > X. Applying to this the operation e;7Vy we 
find

ejFjbi = 8x.x&y.x- (14.171)

This formula shows explicitly that the string has no elastic energy. The 
energy is focused roughly concentrically around the point (X , Y) which is 
the disclination generated by the string of dislocations.

Notice that if the long-distance limit (14.164) of the transverse potential 
is employed too early (as Halperin, Nelson and Young have done) 

one is incapable of describing this phenomenon. The cancellation of the 
elastic energy makes essential use of the short-range properties of the 
potential vjj(x) on the lattice. As discussed in Section 2.5, a crystal may 
contain not only complete pile-ups of dislocations but also incomplete 
ones, where the Burgers vectors are stacked with a separation of 2, 3, or 
more lattice spacings. Such incomplete stack-ups are observed in the form 
of grain boundaries (see Fig. 14.16 and Fig. 2.6 in Section 2.1). The 
disappearance of the energy for nearest neighbour spacing has the con
sequence that strings with spacing 2 still have quite a moderate amount of 
energy. Since they carry, in addition (and in contrast to string of nearest 
neighbour dislocations), the configurational entropy of a random chain, 
this can outbalance their energy and we may expect the proliferation of 
grain boundaries at a certain temperature. It was suggested by Chiu 
(1982) that this proliferation would take place before pairs of individual 
dislocations could dissociate.

The results of simulations of our models of defect melting confirm this 
idea. In these models, the fundamental defects are carried by rj(\) and 
are disclinations. Pairs of these have the same interaction as a single 
dislocation with the Burgers vector pointing orthogonally to the dipole 
vector. If we look at the distribution of disclinations extracted from our 
simulation data (see Fig. 13.20) we see that for low temperature the 
disclinations always appear as quadruplets, corresponding to pairs of 
dislocations and antidislocations. As the system passes the melting 
transition, these quadruplets do not split up into pairs, as predicted by the 
KTH N Y theory, with a subsequent unbinding transition of these pairs, 
but they blow up into larger and larger strings of alternating charge tj(x) 
with or without open ends, in a single transition. Interpreting each pair of 
neighboring disclinations as a dislocation, these strings may be viewed as 
string dislocations with spacing 2 , i.e., they can be viewed as grain
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boundaries. The reader is referred back to the end of Chapter 12 for a 
more detailed discussion of these features of the melting process.

It is not easy to reconcile the KTH N Y theory with these findings. As 
long as the theory is formulated in the continuum and uses the long
distance form of the defect potential. The melting process requires stacks 
of defects at next-nearest neighbor positions and an additive core energy 
would prevent their formation.

14.12. D IREC T  S IM U LA T IO N  OF A  GAS OF D ISLO C A T IO N S

The importance of the pile-up of dislocations was confirmed in Monte 
Carlo simulations by Saito (1982). He considered directly the partition 
function of a gas of dislocations:

{ВД }
Zdisi- E  expj-/3 (X, х')6Дх')1 • (14.172)(V*V)

In order to enforce the validity of the dilute-gas limit, he followed 
Halperin, Nelson and Young and added on the core energy

(14.173)

Working on a triangular lattice with lattice vector я0( 1, 0), a0(-l/2, 
V3/2), he considered only the fundamental Burgers vectors

f>(l) = ±a0(l, 0), b^ = ± a „ l  _ V 5  
2 '  2

(14.174)

For the potential he took the long-distance approximation (14.43)

§;;V* V + V,V
(V-V)- M- 4 it

log(|x|c)5,y- ~ § (14.175)

where, we recall, с is the constant (14.47) determined numerically by 
Saito. When he simulated the system using the above asymptotic form he

mHis parameters are related ours by \о̂ /квТ= [м(м + A))/(2/x + Л)](яг,/тгЛлГ )  = 27TP-
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found a continuous dislocation pair-unbinding transition as predicted by 
the HNY theory. He then reduced the natural core energy implied by 
(14.175) by an additional negative term, i.e., he used the core parameter

c = cfVe (14.176)

instead of c. This produced a first-order transition in which the 
dislocations piled up into strings of large-angle grain boundaries.

In view of the above discussion it is easy to interprete this result. While 
working with an unphysical model in which he had taken the long
distance limit of the lattice potential (thus destroying the proper pile-up 
behavior of the dislocations), the artificial reduction of the core energy 
partially corrected for the wrong starting point. It lowerest the energy 
of the nearest neighbor strings of dislocations so much that their 
configurational entropy led in the end to their proliferation before the 
pair-unbinding transition could set in. While Saito’s result tells us how the 
parameters of the HNY theory can be modifed in order to generate a first 
order transition, his approach maintains the fundamental drawbacks of 
the HNY formulation. Saito’s strings of dislocations are, by construction, 
nearest-neighbor strings on a triangular lattice which, as we have seen in 
Eq. (14.171), are really disclinations and thus should not carry any string 
energy at all (they are not even physical degrees of freedom). Only the 
next-nearest-neighbor strings are physical. It is the artificial core energy 
which gives rise to his model’s nearest-neighbor strings. This must be kept 
in mind if we want to reinterprete Saito’s result in terms of real crystals. 
Saito attempted to account for this short coming in ad hoc manner by 
taking, as a length scale over which the dislocations can be separated, 
twice the lattice spacing rather than the lattice spacing itself. This was 
certainly a step in the right direction although it introduced an error in 
the positional entropy of the single defect configurations.
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DISORDER FIELD THEORY OF DEFECT MELTING

CHAPTER FIFTEEN

Now that we possess a lattice model which respects all stack-up properties 
of the defects in a crystal it is possible to derive a consistent disorder field 
theory of crystalline defects. This field theory turns out to be rather 
different from the tentative construction presented in Chapter 8 . In 
contrast to that theory for which a good deal of effort was spent in finding 
possible mechanisms for making the transition first-order, the proper 
disorder field theory to be proposed in this chapter will have a natural 
way of undergoing a first-order transition right at the mean field level. We 
shall see that as was the case with the field theory involving order fields 
[see Section 13.1] the disorder field theory will contain a temperature 
dependent quartic term which naturally causes a first-order transition 
(recall Fig. 13.1). The disorder field theory contains D complex disorder 
fields, one for every lattice direction. It describes all possible configura
tions of the defect tensor щ (\) and consequently a grand canonical 
ensemble of dislocations as well as disclinations.

15.1. D ISO R D ER  LA TT ICE M O D EL FOR THREE- 
D IM EN SIO N A L D EFEC T  CO N FIG URA TIO N S

Our starting point is the defect representation (9.40) of the partition 
function of the melting model (omitting the bar on top of X,j)

1218
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z = М2
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(15.1)

A disorder-Iattice model will now be introduced to replace the sum over 
the defect configuration rj,j(x). In order to achieve this, consider the 
following auxiliary sum over defects with an arbitrary core energy e,

^dcf <S rj (x). () exp | e (  E  Tjjj + E  Щ  
Ш * ) )  I  \x./</ Z X./

(15.2)

where Tj/f(x), т?,у(х)(/< j )  run over all integer and half integer numbers, 
respectively. By comparison with (11.6) we see that the sum over т?/Дх) 
has exactly the same form as the sum over stress configurations, i.e.,

E  5v,5„oo.oexp[-^-( E  <r? + |E«^)j-
[<M*M I  4P\x./<> Z x., / J

(15.3)

The only difference between the щ (х) and <f,y(x) sums is that cr,y are я// 
integer numbers for i = j  and /#/ while rjj,(/</) are half-integer. The 
sum (15.2) can be thought of as being the dual transform of a model

z dci.v= E  ФКМ1П
{«,>(*)) X.' /.

”  ^ y (x ) 
27Г

x exp(--|~ E  (V,y/+Vyyf-217n//)2 + 2E(V/y/-^«f/)2 f
I  £U « /  «■- (15 4)

where the symmetric jump numbers /i,y(x) run over all integer values for
i = j  and / ^ j. Indeed, if we introduce integrations over auxiliary 
variables i7,y(x), we can write this, just as in (9.22), as
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Z<Jcf.v=r375Q П  f  7 /§“T  ^  ф К ( х)1ехР j ~ e £  H v fj + l  YiVu
L  V 27Г J  {«<;(x)} L * U < i  z »

+ 2/ £  V ,i(V ,y j  + V ; y, -  27771;,) + £  T)„(V,-y/ -  1ГЛ/,) 
x, »<; x./

(15.5)

This js the same as (15.2) since the integrations over y,, the conservation 
law V,-i7,y(x) = 0 , and the sums over щ  force ijtf(x) to be integer and 

< ;) to be half-integer. The latter is the principal difference with 
respect to (9.22), where отДх) had to be integer for i — j  and i < j.

In order to work toward the desired disorder field theory we now 
proceed in the same way as we did in the case of vortex lines in Chapter 
12, Part II. We take the inverse Villain approximation to (15.4) and write

Zdcf - П J d y M
2tt exp^ £  cos(V,y, + V,y,) + i  £  cos(2V,y,)

_X. /</
(15.6)

Notice the appearance of the double angle in the i = j  cosine [in contrast 
with the melting model in the cosine form (13.2)]. This partition function 
of all defect configurations can then be transformed into a disorder field 
theory just as the cosine form of the melting model in Sec. 13.2. Before 
doing this, however, let us see how the stress field enters into this 
partition function.

15.2. CO UPLIN G  TH E  STRESS G A U G E  F IE LD

Let us we add to the defect sum (15.6) the stress gauge field. According 
to (15.1), the coupling is

exp 12iri £  Xtn(x) ijcn (x) } • ( 15-7)I X,f./I J
In the partition function (15.5), VCn appears in the last two terms, so
(15.7) changes them to
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As a consequence, the disorder model (15.6) contains XSj (x) as follows,

Z d ef M  =  П [d y ,
J  2 tt

xexpj- £  cos{Viyj +Vj y,-2'iTXij)+ \ Y i cos{2Vlyi-2TTXi,) [• 
Le Lx.x/  ̂x./ J J

(15.8)

Combining this with (15.1), the complete disorder lattice model becomes, 
in the presence of an extra core energy e,

■^ciisord ~

N/2

(2тгЦ) 3 N П J dX\ i (x) dX22(x) rt'A'ijfx) J
x exp-j —— £  + (Eov/(x-i)

x . i < j  x. / x \ i

2 
+ -  

€
E  cos(Vf-y;- + Vjj,- -  2тгХ0) + \ Y  cos(2V/y/ -  2тгДГ,7) |

_ x . i < j  £  x. i  J J

where

сгл(х) = eikcejmnVkVmXen(x -  € - n).

(15.9)

(15.10)

Notice that the model is properly invariant under stress gauge trans
formations,

Хц(х) —* X,j(x) + V,Aj(x) + VyA,(x), y,(x)-»y,(x) + 2irA,(x)t (15.11) 

as it should.
The original melting model (15.1) corresponds to the limit e—>0, i.e., 

no extra core energy. In that case the model becomes the analogue of the 
“ frozen lattice superconductor”  treated in Part II [see the remark there 
before Eq. (12.8)].

For the case e->0, the model (15.9) can be replaced by yet another 
one in which e is nonzero and plays the role of the natural core energy 
associated with stress fluctuations [recall (9.116)],
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where

\c\ «0.011 (15.13)

is the constant by which the asymptotic behavior of the subtracted defect 
potential

differs from the continuum form -\x -x '\ IK tt  [recall Eqs. (11.A65), 
(11.A71), Гд(х - x') —> — ( |x — х'|)/87г + с ]. We may choose

and modify the energy in (15.4) in such a way that the dual transform
(15.2) involves the natural core energy

The removal of the natural core energy is to be accompanied by a change 
in the gradient terms of X,j in (15.9). Everything can be done in complete 
analogy with Sec. 12.4 of Part II.

15.3. D ISO R D ER  F IE LD  T H EO R Y  OF IN T ER A C T IN G  D EFEC T S

After these preparatory steps, the derivation of the disorder field theory 
is straightforward. All we have to do is to transform the cosines into three 
sets pairs of complex fields uh a, in the same way as we did in Chapter 13. 
The partition function (15.8) is rewritten as

(15.14)

e = 87т2(31 с | (15.15)

x exp I - Re £  t//(x) U,(x + i) U,(x + j)  Uj(x )
I £  x i < i_x. i <  j

(15.17)
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where

t//(x) «  e'»w (15.18)

are pure phase variables. These are replaced by pairs of complex fields 
w,(x) and a,(x) in the well-known way [see Eq. (13.25)].

Notice that the products

Uj(x + i) UAx+De-29***™ (15.19)

transform under stress gauge transformations (15.11) just as Uj(x) 
themselves:

U,(x) U,(x) е2ш'(А>оо + л,(*>) ц щ  (15.20)

Indeed

Uj(x + i) Uj(x + j)exp {-2 тХц (х )} -* Uj(x + i) £/,(x + j)  

x exp {2-777 [Ay(x + i) + A,(x + j)] -  2тгЦХ0(х) + V,Ay + VyA,]}

= Uj(x + i) Uj(x + j)exp {-27ГiXfj(x)} exp {2тг/(Л; (х) + A ,(x )}.

In contrast with the disorder theory of vortex lines in Part I, the 
symmetry of X0(x) makes it impossible to rewrite (15.19) in terms of a 
covariant derivative of single U,(x)'s [recall Eq. (12.10) of Part II].

The stress gauge invariant field theory involving u,(x), a,(x), Х^(х) has 
a structure which is markedly different from the theory of dislocation 
lines studied in Chapter 8 in analogy with the theory of vortex lines. It 
does contain three pairs of complex fields w,-, a, to describe the defects 
associated with the three spatial directions. In contrast to the vortex case, 
however, the (3 dependent terms appear with the fourth power in the 
disorder fields u,. The quadratic powers in и and a remain stable at all 
temperatures. This is the crucial difference between defect and vortex 
disorder. The phase transition is caused by making (3 small, i.e., e small. 
This produces a large negative quartic term in the energy. The и,-, a, fields 
destabilize and acquire non-vanishing expectation values as a signal of the 
condensation of crystalline defects. Since these describe what happens to 
the total defect tensor, they comprise*both dislocations and disclinations.

We observed previously in Chapter 13 that if a phase transition is
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caused by the temperature variation of the quartic term at fixed stable 
quartic terms, the phase transition is always of first order. No subtle 
Coleman-Weinberg mechanism is required to generate a first order 
transition from stress fluctuations. The interplay of dislocations and dis
clinations is sufficient to generate a discontinuity in the phase transition. 
This is the lesson we can learn from the lattice model of defect melting 
and its disorder field theory.



G E N E R A L  A N A L Y S IS  O F D E FE C T S ON THE L A T T IC E

CHAPTER SIXTEEN

In Chapter 15 we constructed a model of defect melting which, after a 
duality transform ation, yielded a partition function with a sum over 
symmetric discrete defect tensors rjij satisfying the conservation law 
V ,^ y = 0 . The diagonal parts of 77,у were integer, the off-diagonal parts 
half-integer. Such a sum contained only three independent sets of integer 
numbers which were not able to distinguish the full variety of all possible 
defect lines. So the question arises as to how we have to modify the 
model so that all defect lines appear explicitly in the partition function. In 
order to work towards an answer to this question let us first try and 
reform ulate the continuous decomposition of the defect tensor according 
to dislocations and disclinations in such a way that it can be used on a 
lattice.

16.1. DEFECT DENSITIES ON A LATTICE

In analogy with the differential definitions (2.42) we define dislocation 
and disclination densities on the lattice as follows:

a,y(x) = £ik€VkV€Uj(x + i), ®ij W  = £ike^k V((Wy(x + i), (16.1)

where we have introduced the rotation field

1225
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(16.2)

From the definition of 0 ,y(x) we find d irectly the conservation law for 
disclinations on the lattice,

In order to derive the lattice analogue of the conservation law for dislo
cations we write

ain(x) = I eiklV *(V ,u„(x  + i) + V„u, ( x  + i)) + J eikt V*(V ,u„(\ + i)

-  V„M( (x + i))

= em Vku,„(x + i) + t,k( Vka>(„(x + i)

= s,kl V* u,„ (x + i) + S,„ V,.wr(x + i) -  V„ tu,(x + i) (16.4)

and arrive at the conservation law

V ,a„f(x) = V,-5,„(x -  i) = V„V; {u; (x) -  У/^сиДх)

®i//i Vf Wy (x) £jjn ©,y (x i) . (16 .5)

Furthermore, from (16.1) we see that

implying that (16.3) can be rewritten as

e/«V *ii€l,(x  + i) = V„ o>, (x + i) + ain (x) -  ^ ,„ a rr(x -  r  + i).

Shifting the argument by j  and applying the lattice curl ejm„Vm this 
becomes

4 i/(x) = 0,v(x + j )  + s/„mV ,„[a„,(x 4- j )  -  |5„,o;„(x -  r  + i + j ) ] ,  (16 .7) 

where 5jj,(x) is the defect tensor on the lattice,

V ,0 ,y(x) = O. (16.3)

“ ;/(x -  i) = eiktVkV(Uj(x) = 2Vkwk(x), (16 .6)

V/,(*) &ikC&jmnVkV ( x  + I + j ) . (16.8)

Hence we may define Nye’s contortion on the lattice by
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K,„(x ) ^  -a ,„  + iS ,,a rr(x -  r  + i) (16 .9 )

and write

rj,y(x) = 0 y/(x + j )  -  ej„wV„,Kin(x+  j ) ,  (16 .10)

which is the desired lattice analogue of the decom position (2 .80a).
It is also straightforward to derive the other form (2.80b) of this 

decomposition. For this we take the expression and apply the identity

Ejnui 8jq  5 &ijm n̂q 2 ( &min fyq  4* £ injn  ^ iq ) • (16.11)

This gives

Ejntn ̂ in Kj„ (x + j )

= Cjim,Vm( a //f(x + j )  -  55/„йгг(х -  г + i + j ) )

=  “ |V „i(emina jn(x +  i) +  emjna in(x + i) -  eiina nw(x -  m +  1 +  j ) )

so that we obtain indeed the lattice version of (2.80b):

% (x ) = 0 „ (x  + i) -  |V„,(e„„„а/„ (x + i) + (/>'))

+ ie/y»V„,a„,„(x -  m + i + j ) .  (16.12)

The conservation law (16.4) can be used to rewrite the last term as

£jin V,n <*nm (X -  m + i + j )  = Bjin amk (X + > + j )

= -£jik se*kVk&cn(x -  e + 1 + j)
=  - 0 ;,(x  +  i) +  0 * ( x + j ) .

Inserting this into (16.12) gives

i},y(x) = 4 (0 ,i(x  + i) + (/>')) ~  iv „ ,(£„,;„5,>,(X + i) + (<)'))■ (16.13)

which exhibits correctly the symmetry of the defect tensor.
Form ing the lattice derivative V,*j,y and using the conservation laws of 

dislocations and disclinations
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V,or,„(x + j )  = - 6 w 0 M(x -  p + j ) ,  V ,0 ,y (x + j )  = 0,

we can verify that the defect tensor is also properly conserved:

W X )  “b i) "1“ 2^w Smjn ̂ npq ®pq P j)

= iV ,0 y,(x ) + iV ^ S ^ f x  -  p + j )  -  i v ^ f x )  = 0.

16.2. INTERDEPENDENCE OF DISLOCATIONS AND 
DISCLINATIONS

We now observe that for a given т?,у(х), the decom position into dis
location and disclination densities is by no m eans unique. One possible 
trivial decomposition is

5 /y(x) = 0, 0 v (x) = Ч/Дх), (16 .14)

in which there are no dislocations but only a certain  set of disclinations 
constrained so that 0 ,y(x) is symmetric. A nother possibility is

0 ,y(x) = 0 ,
x}-  1

(“O Vmi ^)I*I = ~ x2' (16.15)

The sum can also be written as

««•(*) = -  m)- (16 .16)
v 3

Instead of picking the z-direction for the sum we can use any direction 
n = x, y , or z and write

««-(*) = -efkm— ^nkTf„,i(x -  m). (16 .17)
n ■ V

By reinserting this expression into (16.13) we recover rj/Дх).
The operation (16.15) has a simple geom etric m eaning. W henever 

there is a value т)„/(х) Ф 0 it may be viewed as a string of dislocations 
stretching from x along the positive z-axis to infinity.
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The non-uniqueness of the decom position of the defect-tensor is a 
manifestation of the in terdependence of dislocations and d isc lin ations 
which was discussed in general in C hapter 2 (and ignored in C h ap ter 8). 
It was also of im portance in Section 14.11.

W hatever decomposition we choose, our model of defects and stresses 
involving only a sum over гщ(х) contains only a subset of e ith er d is
locations or disclinations. In a real crysta l, on the other hand, a ll con
figurations of dislocations and disclinations are possible and their e lastic  
energies determ ine the probability of each configuration.

For a dislocation, each of the circuit integrals

can be an arb itrary m ultiple of the basis vectors. This means that each of 
the displacement vectors ыу (х) can have its own independent jum ps across 
the links j  = x, y , and z. The energy must therefore contain jum ping 
numbers я,у(х) corresponding to all lattice gradients V,wy(x ). The m odel, 
up to now, was restricted to only symmetric m atrices л,у(х). This 
restriction was a consequence of the fact that the elastic energy involves 
only the sym metric combination of gradients, i .e . ,  the strain

In order to include the antisymmetric part of n,y(x), the elastic energy has 
to contain also the antisym metric part of the gradients,

In the classical theory of elasticity this is not the case. The reason lies in 
the extrem e long-wavelength approximation of that theory. Only first 
gradients of the displacement field w,(x) are considered. A t that level the 
rotation field, which is itself a first-gradient field, is a constant and does 
not vary throughout the crystal. It corresponds to a global rotation of the 
entire crystal. It follows from rotational invariance that the energy is
independent of w ,(x).

W hen describing the situation in this way it becomes obvious that the 
absence of <a,(x) is not an intrinsic property of the system but a con
sequence of the first-gradient approximation. This approximation is 
sufficiently accurate for most classical problems which involve only the 
long-range aspects of elasticity. Questions concerning disclinations,

(16 .18)

ui} = \{VjUj + VjUj). (16.19)

= \(VjUj-VjUj). (16.20)
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however, are of a more microscopic nature and involve d irectly the 
rotation field w ,(x). They cannot be answered within this approxim ation. 
This suggests a rather obvious way of extending the defect model of 
melting. The elastic energy must be made sensitive to variations of co,(x) 
in the crystal. Thus it must depend, at least, on d,(oy(x) which means that 
second gradients of the displacement field are present. Due to the 
absence of co,-(x) in the classical theory of e lastic ity , the elastic energy 
depends entirely on the symmetric combination of grad ien ts, the strain 
tensor (djUj+djUj)/2. This tensor can be calcu lated un iquely if the 
symmetric defect tensor т),у(х) vanishes. We had seen previously in Eqs. 
(2.105) that the distortion fields д/иДх) them selves cannot be determ ined 
knowing only that Tj,y(x) = 0 (besides boundary conditions). T heir deter
mination would require the additional knowledge of the vanishing of the 
rotational defects, 0 ,y(x) = 0. Only then can we reconstruct the field 
ci>,y(x) = ( 1/2)(д,-Иу(х) -  djU,(x)) which can be combined with w,y(x) to find 
djUj(x). The independence of o>,(x) m akes the classical elastic energy 
highly degenerate with respect to variations of the defect configurations. 
The degeneracy is described quantitatively via the decom position (2.80) 
of the defect tensor. The tensor щ(х) which uniquely determ ines the 
elastic energy consists only of three sets of independent integer of half- 
integer numbers. In contrast, the disclination tensor 0 //(x) has six 
independent elements and the dislocation tensor a,y(x) another six. Of 
these twelve degrees of freedom, only three differ by their classical elastic 
energy. Our model of defect melting identifies all degenerate defect 
configurations and distinguishes only the three equivalence classes of 
defects which are characterized by different elastic energy densities. As 
far as the thermodynamic behavior of all defects is concerned, this 
identification is of no consequence since inclusion of the degenerate 
degrees of freedom in the partition function would m erely result in a 
triv ial, tem perature independent, overall factor (a lbeit an infinite one). 
The situation is very sim ilar to that encountered previously in gauge 
theories. A lso there we were confronted with a degeneracy field confi
guration which were those differing by a gauge transform ation. Had we 
performed the path integral naively, this would have resulted in an 
infinite overall factor. The overall factor was removed by a gauge-fixing 
condition. In the same sense we may view the present system as a model 
of dislocations and disclinations but with a “gauge-fixing condition” 
imposed so as to remove the energetically degenerate defect confi
gurations, nam ely, those with different 0 /Дх), <*,y(x) but equal rj,y(x).
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16.3. DEGENERATE DEFECT CO N FIG URATIO N S IN LIN E A R  
ELASTICITY

Let us analyze the structure of these degenerate defect configurations in 
more detail. For sim plicity, we shall work in the continuum lim it. Then 
we can apply the helicity decomposition which simplifies the counting of 
the different components. First we rewrite the decom position of the 
defect tensor,

Tit„(x) = е („[х)+\(дкеш а м (х) + (f t i) )  + i e 0„ A l a„„ (x ), (16 .21)

in helicity form. Due to the conservation law d ,0 ,„ (x )  = O, the tensor 
0 f„(x) contains only the six components 0 (2- ±2), 0 **, 0 +± == 
(0 (2. ±i) _|_ 0 (L±1))/V2 and 0 (L(,) (as was the case with the d ivergenceless 
matrices ao .(x ) in Chapter 4). As for the elim inated 3 components 0 L ,
0 -± = (0 <2-±!) — 0 ( i - - l))/V2 , they correspond to the pure gauge com
ponents in Eq. (4.117).

The a fl-(x) tensor has 9 components. The last term in (16.21) is an ti
sym metric in 6, n and thus must be of unit spin (spins 2 and 0 have 
sym m etric tensors). Since d„, is contracted with the first index of amh it 
contains precisely those helicity components which are elim inated by a 
condition d,„ami = 0, nam ely, a L\ a~~ = ( a (2,±l) — a^['~l))/V2. Hence 
we need to consider only these three components and we find in 
momentum space [recall Eqs. (4.62) and (4 .57)—(4.62)]:

^ecniPm[eL aL' + e,„*a + + e„„ a  ) = ,-p e (ni\pia L + e ,a  * - e f a  ] 

= ^ ( 16. 22)

The two other a  terms are brought to helicity form by using the general 
formula (4 . 110) , but taking care that the indices n and / appear in the 
opposite order so that a (l,± l) appears with the opposite sign. Symme
trizing in the indices € and n removes the spin-1 polarization tensors and 
we have
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{e&2V^(еш Вка„, + ((**  « ) )  = p ] eg,-2)e (2,2) -  eft  2)a (2- 2) -  ef-„a( l -°>

у г 12Л)“ "+ - ^ е(2'- 1 , “  j -  ( l6 2 3 )

Inserting this and (16.22) into (16 .21), the helicity components of the 
defect tensor decompose as follows:51

т,(2.±2) = 0 (2.±2) ± р в (2.±2)ч (16.24)

7iL = S L — p a ^ A)). (16.25)

Remembering now that 0 “ -  = 0 (due to d,©,, = 0) we see that the 
antisymmetric parts on the right-hand side cancel, i .e . ,

0 +±± p a -± = O, (16.26)

0 ( l*U) + p a L Jy/2 = 0. (16.27)

These three relations are, of course, just the helicity version of the 
conservation law for dislocation densities, BmanU = - e ik(S k(. The com
ponents L , ((2 , ± 1) + ( 1 , ± 1))/V2 of a u are absent, in agreem ent with 
their decoupling from the stress field observed in Eq. (4 .127).

Equation (16.24)—(16.27) show clearly which changes can be made 
on the defect configuration without changing the stress field of linear 
elasticity:

Q̂ 2’ ~“) —> a<2*±2) + Al2*±2), 0 (2. ±2) —̂ 0 (2* —2) *  |р|Д(2.±2)ч

a ( l.0 )_ >  Q,( 1«0) +  д (1 .0 )  q l _^ 0 l +  |р|Д<1.0)

+ Л ±,% 0 +* _ > 0 +± + |р| д -1, 

a L' - > a L' + Al \ 0 (,л)>—> 0t'°>  -  |p|AL7V 2. (16 .28а)

In addition there are the changes of the three components a L, 
(оД2* - 1* + a (l-~l))/V2 of a (i which do not appear in щ  at all:

a L —> a L + A**, a +~ —> a +~ -I- A~. (16.28b)

dThe sign changes in the a  parts are a reflection of the opposite parity of a  and 0 .
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These 9 transformations among degenerate defect configurations may be 
considered as a kind of gauge invariance associated with the linear long 
wavelength approxim ation of classical e lastic ity . Our model was based on 
this approxim ation. Thus, if we would have tried to include all defect 
configurations, we would have obtained a sixfold infinite tem perature 
independent overall factor. By summing over only the three independent 
components of the defect tensor i7,y(x), this factor did not appear.

In a physical crystal we expect the above described degeneracy to be 
removed by crystalline forces. If we want to find out how this happens we 
have to go beyond the classical theory of elasticity. There are two ways by 
which this theory may be extended.

1. If the length scale over which the displacement field varies is large 
compared with the atomic distances, but no longer extrem ely large, then 
higher derivative terms of the displacement field z/,(x) have to be 
considered.

2. If any of the gradients of д,и}-, difdiyiih . . .  becomes large, higher 
powers of the gradients, have to be considered, i .e . ,  (di/)3, (dd«)*\ . . .

If we want to understand the elastic properties of realistic crystalline 
defects, then both extensions are necessary. In the neighbourhood of a 
defect, both the length scale over which the displacement varies as well as 
the size of the gradients become large. Thus we need terms of these two 
kinds in the elastic energy. The second kind is nonlinear and hard to 
handle. A t best it can be treated perturbatively. The consequences of the 
first kind, on the other hand, are straightforward to evaluate, due to the 
linearity in the displacement field. They will be discussed in Chapter 17.

16.4. EXTENDING THE DEFECT SUM TO THE LATTICE

For the purpose of extending the defect sum, we have to find a proper 
lattice representation of all defect configurations. We recall the general 
continuum procedure of describing the plastic deformation associated 
with a general line-like defect as given in Section 2.10. There we began 
with the trivial Volterra operation of taking a volume piece of the crystal 
and shifting and rotating it by a lattice vector and a symmetry angle, 
respectively,

By differentiation we found from this.

u,(x) = -8(V)(b,  + eltirn oxr). (16.29)
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i(diU,(x) + dr Ilf (x )) = \\d,(S)(b, + eeqrt lqxr) + ( i f ) )

= Ш ( х )  + /% (х)), (16.30)

а„ш,(х) = \ejk,d„p pkC(\) + </>;;,(x), ( 16 .31)

where

/3{f (x) = S,(S)(i>(; + etqr(lqxr), ФЙ(Х) = 8,(5)П< (16.32)

were the plastic distortions and rotations of the crysta l. From these we 
obtained the defect densities [recall (2 .68), (2 .69)]

<*i( (x) = S/jk^jKt + £i< Ф'кк — ФРЦ = £ijkdj&k(S)(bl + £tqr^qxr)

= S,(L)(b, + ecqrtoqXr), (16.33)

s ,„ (x )  = = eijkd,8k(S )n t = S , ( L ) « f , (16.34)

exhibiting the physical boundary line L via S tokes’ theorem  on the 
6-function [see (18 .17), Part II]

« * 8,« * (S ) = f t (L ) . <16'35)

An ensemble of lines which can be either dislocations or d isclinations (or 
both) was given by

/3|т(х) = S  (Sa )ba{ + E  $i{Sp) £ec/rQpc[Xr >
or (3

ф ;;-(х) = E s ,(5 e ) n w , (16 .36)
/3

where a  runs through the V olterra surfaces with different possible 
Burgers vectors and /3 through those with different Frank vectors of the 
crystal. It has the defect densities

® ^ ( х ) =  XI b a t  "1" S  (^/з) £tq r^ q  r̂->
a /3

e » W - E « W i V r .  (1 6 3 7 )
P
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Let us now see how this differential structure can be generalized  to a 
discrete simple cubic lattice. Then 6-functions over a volume are given by 
lattice functions N(x) which can take values 0 and 1 on the different sites 
x. It is therefore suggestive to simply replace the continuous expression

The alert reader will im m ediately realize that this A nsatz, while 
representing the most straightforward generalization of the trivial Vol
terra operation in the continuum to a discrete form, is physically not the 
proper analogue. The V olterra operation in the continuum is an 
infinitesimal translation plus rotation of a crystalline piece. In a real 
lattice, this should become a discrete translation plus a discrete rotation 
by an angle of the crystal sym metry. In simple cubic crystal, the minimal 
sym m etry angle is П = ±тг/2. But then the discontinuity across the 
surface can no longer be calculated using the infinitesimal formula of a 
vector product elqrClqxr .

The operation (16.38) is therefore not really a translation plus a 
rotation. It does, however, represent an allowed change of atomic rest 
positions from where to count the displacements vectors as long as by and 
Clq are integer numbers. The translation by eeqrZlqxr may be viewed as 
the straight-line continuation of an infinitesimal rotation along the 
tangent direction. In this way it accounts for the basic properties of 
crystal disclinations without introducing the non-Abelian com plexities of 
the finite rotation group. We shall call this approach the tangential appro
ximation to disclinations.

Within this approximation it is possible to carry out all the previous 
differential analysis on discrete crystals. Forming the lattice derivatives of 
(16.38) and respecting the product rule

У ,Л (х )£ (х ) = A(x + i)B(x 4- i) -  Л (х )£ (х )

= (A(x + i) -  A(x))B(x + i) + A(x)(B(x + «) -  B(x)) 

= (V H (x)) B(x + i)) 4- A(x)V,B(x)

(16.29) by

iie(x) = -N{x)(be + £fqrn qxr). (16.38)

= (V ,A(x + i ))B(x + i) + Л (х)У ,# (х), (16.39)

we find

V,wf (x) = -V,N(\)(br + sftlra ri(xr + Slr)) -  N(x)e„/,a <l (16.40)
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and

(V,n, (x) + V ,M/(x))/2 = -V,./V(x)(6 ,  + e€qra q(xr + 8ir)) + (€/). (16.41)

The derivatives я ,(х ) = - V f/V(x) describe the boundary surface of the 
volume elements N(x). They are the lattice version of the 6-functions 
8k(S) = -3 * 5 (1 0  [see (18 .20), Part II]

A proper lattice defect is now obtained by tak ing the surface to be 
open. Then the components n ,(x ) become independent. W e therefore 
introduce the plastic distortion on the lattice as follows:

j3T( (X) -  #i,(x)(ftt + etqra q(xr + 8ir)). (16.42)

A sim ilar treatm ent can be given to the rotation field which we defined in
(16.2) as the lattice gradient version of the usual rotation field

«/(x) = i e ff*V/*i*(x). (16.43)

Inserting here the Volterra operation (16 .38), we find the lattice gradient 
of wy (x ),

V„W/(x) = i « „ f V .# ,  (x) + Ф';„(х), (16.44)

where

(16 .45 )

is the lattice version of the plastic rotation [recall Eqs. (2 .6 2 )-(2 .6 8 )] .
We now use the lattice definitions (16 .1 ), (16 .2) and calcu late  the 

defect densities,

»/t (x) = e,*fV*V,My(x + i)

= Bike4 kn t (x + i )(b, +  £/,гП,(х + € + i) r) , (16.46)

0 , f (x) = £iktVkVf a)j(x + i) = eikey kne(x + i )A f . (16 .47)

Defect lines are introduced by using Stokes’ theorem on the lattice 
according to which the divergenceless vectors

£<(*) = eiktVkn,(x + i) (16.48)
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form the closed boundary lines of the surfaces described by л ,(х ). This 
was shown in Part II in connection with Eq. (8 .3 ). Thus £,(x) represents 
the lattice analogue of the 6-function 8,(L) = eik(dk8( (S) and the defect 
densities become

«/<' (x) = (\)(bj + eiqr£lq (xr + 8tr + 8/r) ) , (16.49)

0 ,т (х) = € ,(х )П ,. (16.50)

For an ensem ble of lines which can be either dislocations or disclinations, 
or both, the plastic fields are

Pft(*) = Y nai(x)ba€ + Y  mfii{x)Elqr^ q(xr + 5/r), (16.51)
(3

Ф?С(x) = Y  . (16.52)
/з

where the sum over a and (3 covers all Burgers and Frank vectors, 
respectively, and лст/(х ), mpi(x) = 0, 1 describe the Volterra surfaces 
associated with these.

W e now make use of the fact that the Burgers and Frank vectors occur 
in all integer multiples of three fundamental vectors. These integers can 
be absorbed into the numbers nai(x) , тр,{х) which are then no longer 
restricted to 0 , 1 but cover all integers 0 , ± 1, ±2 , . . .

The defect densities associated with these plastic fields are

й|*(х) = Y  t?(x)bQV + Yt?(*)eiqr% q(xr + 8rr + 5/r),
a P

0/f(x) = £  £ f ( x ) I V  (16.53)
/з

Since tf3 are divergenceless, these densities satisfy the proper conser
vation laws on the lattice,

V ,0 „ (x ) = O,

V,a,,(x) = (x -  i) = ~ e ~  P)- ( |6-54)

as they should.
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We shall use these results and construct an extended m odel, in which 
the full sum over all defect configurations appears exp lic itly  with distinct 
contributions. Before we can do this we must first extend the classical 
theory of linear elasticity to higher gradients which w ill be the subject of 
Chapter 17.

16.5. TWO-DIMENSIONAL CONSIDERATIONS

It is useful to look at the same question in two dim ensions where the 
situation is much simpler. There the total defect tensor as well as the 
disclination density reduce to one independent integer-valued component 
each, г)зя(х) = rj(x), ©зз(х) = 0 (x ) . The dislocation density becomes an 
integer-valued vector field a ,(x )  (recall Section 2 .13). For a single 
dislocation at x, a ,(x )  has the form 6 , 6(2)(x) where bj is the Burgers 
vector. Thus, a distribution of dislocations a ,(x )  may be pictured directly 
as a “gas of Burgers vectors” with integer components bj(x) = 5,-(x). The 
defect density can be written on the lattice as [com pare (2 .94)]

Tj(x) = 0 (x )  + £(>V,6y(x). (16.55)

The coupling to the stress “gauge” field is

J d2xX(x)rj(x) = J d2x(X(x)6(x) + e,j VjX(x)bj{x)) (16.56)

and we recognize the lattice version of the field used in Section 5.3 , 
A ' = EjjdjX [recall (5 .44)], which couples locally to dislocations.

Among the three sets of integer numbers 0 (x ) ,  b,(x) only the single 
combination rj(x) determ ines the stress energy of linear elastic ity . Thus 
there are two “gauge transformations” which leave linear elastic ity 
invariant. These are given by

bi(x)->bi(x) + S/2= -B i(x ) -  Sit = -B 2(x ). (16 .57)
V j V2

0 ( x ) —* 0 (.y ) -  Я ,(х ) -  B2(x), (16.58)

w itji integer-valued fields £ ,(x ) and B2{x). This follows d irectly from 
SjjVjbj-* SjjVjbj + B , + B2.

It is easy to understand these gauge transformations physically. If # i(x)
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vanishes everywhere but is equal to unity at the origin, say, then it 
contributes to 6,(x ) a string of B urgers vectors pointing along the 2-axis 
starting out at the origin and running along the 1-axis:

We have discussed this string of Burgers vectors before [see Eqs. 
(14.169)—(14.171)]. It can be compensated for by a disclination of nega
tive charge at the origin [recall Fig. 14.16].

The same holds for a string of Burgers vectors pointing along the
1-axis and running up the positive 2-axis. This is the degeneracy at the 
level of linear e lasticity if we include independent dislocations and dis
clinations. In order to lift this degeneracy we shall have to include more 
general terms into the elastic energy.

м  ' x; = o

where ©д- is the lattice version of the Heaviside function,

(16.60)



E X T E N D E D  T H E O R Y  O F E L A S T IC IT Y

CHAPTER SEVENTEEN

17.1. TORQUE STRESSES

Let us recall here that according to the N ewton-Euler axiom s, a con
tinuous body has to satisfy the following laws of motion:

1 . momentum conservation,

J t pi=  J / 4 ( * )  + £ dS,a„(x), (17 .1)

where P) is the total momentum, fj(x) the external local force density, 
and (Tjj the stress tensor [i .e ., each piece of a body exerts a force density 
dSfO-fj upon its neighbor across the surface elem ent dSj].

2. angular momentum conservation,

j / i  -  ei;k J ^ d 3x x ,ft(x )  + e,/kJ ^ S (Xj<Tu , (I7-2)

where Ji = \eijkJjk is the total angular momentum.
These laws hold for any finite part of the body with volume V and 

surface S. Using Gauss’ formula, the surface integrals can be transformed 
into volume integrals so that (17.1) and (17.2) become

1240
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dth -  ЦкJ / Ф М х )  + d(Xj(Tlk {\)) = EjjkJ  d3xxj(fk(x) + д( сг1к(x)).

(17.4)

(17.3)

Since this is valid for each volume elem ent one deduces the equations

djCTijix) = (17.5)

£,>*0/a(x) = 0 , (17.6)

which were used extensively in Chapter 1 .
Comparing Eqs. (17.1) and (17.2) one may wonder why the law of 

angular momentum conservation does not contain a direct term of the 
form

by which a volume piece transfers torque to its neighbour via the common 
surface elem ent. The tensor r* ,(x) is called torque stress or couple stress. 
Its presence is natural in orientable media as was first discussed by E. and 
F. Cosserat in 1909.

If such a term is present, the law of angular momentum conservation 
leads to

It is rem arkable that in the absence of external body forces [i.e ., 
fj(x) = 0], the two conservation laws (17.5) and (17.8) have precisely the 
same structure as the laws of defect conservation (2.45), (2.46),

(17.7)

dkrki(x) = -£ ijkajk{x). (17.8)

a/0 ,y(x) = o, (17.9)

djt**A'/(x ) — £ ijk ® jk  ( X )  • (17.10)

The reason is, of course, the essential role played by the space group in 
deriving both laws. It is curious, however, that the association with
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translations and rotations is precisely the opposite. W hile д,<т/; ensures 
translational equilibrium and dkrki = ~£ijkcr]k rotational equ ilib rium , the 
law 8,-0 ,y = 0 conserves rotational defects (d isclinations) and dkaki = 
—Ejjk translational  defects (d islocations). Form ally, the reason is easy 
to see: A ngular momentum is the cross product of position with linear 
momentum. In defect system s, on the other hand, the translational 
defects arise from the cross product of position x with rotational defects 
[recall Eq. (2.43)]. The cross products cause the inhom ogeneous parts in 
the conservation laws (17.8) and (17.10).

The treatment of a crystal as an orientable medium becom es necessary 
if certain groups of atoms in a unit cell are tightly bound to each other 
so that they act like small composite objects. These requ ire , in addition 
to their position, three Euler angles for their characterization ,a and 
gradients of these Euler angles appear in the elastic energy. Such an 
extension of elasticity is of particular importance in the description of the 
phenomena of piezoelectricity.

Nevertheless, for simple monoatomic crystals which do not exhibit such 
phenomena, there exist physical circum stances under which torque 
stresses may become observable. This happens if higher grad ients of 
stresses become so large that it is no longer adm issible to omit them in 
the expression for the elastic energy. As soon as such higher gradients are 
present, the energy is no longer independent of the local rotation field 
<°ij =  2^ j u k ~  dk U j ) .  W hile (Ojj itself cannot occur in the energy (as a 
consequence of rotational sym m etry), gradients of a>fy can. This is why 
simple crystals with large higher gradients will d isplay torque stresses. In 
fact, this is obvious on physical grounds since at the level of higher 
gradients the field equations must be able to account for restoring forces 
which arise if a small region of the crystal is rotated as a whole with 
respect to its neighborhood.

17.2. GENERAL FORM OF THE ELASTIC ENERGY

Let us briefly recall the standard sym metry argum ents for the general 
form of the elastic energy. In the continuum lim it, a distorted crystal is 
invariant under translations and rotations. If the positions of the atoms, 
in itially situated at the coordinates x, are described by

J It is sometimes necessary ю allow also for distortions of these groups of atoms which 
require the inclusion of further fields, but these will not be discussed here.



x '(x ) = X + u (x ), (17.11)

the positions of the sam e atoms after a common translation
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xT = Xj + a, (17.12)

are given by

jf '7(x) = x \ x  -  a). (17.13)

After a common rotation

(17.14)

they are given by

*!R(x) = R«x;(R-'x). (17.15)

This shows that the distorted coordinates дг/(х) form a vector field as 
defined before [for example in Eqs. (4.9) and (4.10)].

The consequences of the transformation laws (17.13) and (17.15) are 
most easily found by considering infinitesimal transformations. For infin
itesimal translations we have

The displacement fields of the distorted and translated crystal are

Correspondingly we define the infinitesimal change of u,(x) under 
infinitesimal translations as

S Tx,'(x) = x,'r (x) -  x-(x) = -ajdjx'i(x) = -a,- -  ajdj«,■(*). (17.16)

(17.17)

STii,(x) = м,7(х) -  н,(х) (17.18)

and calculate

s Tu,(x) = (л-;г (х) -  xi) -  (.r;(x) -  x^ = x;T(x) -  x;(x) 

= STx'i(x) = -ajdjU,(x) -  a (17.18')
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Thus, in addition to the normal translation law for vector fields, S Tu,(x) 
contains an extra piece - a ,  . This is the reason why the e lastic  energy of a 
translationally invariant system cannot depend on the disp lacem ents. The 
derivatives dku ( (x ), however, do transform properly under translations

8 Tdku, (x) = —ajdjdkU( (x ) (17.18")

and the energy can depend on them.
This dependence is not com pletely arb itrary since it is restricted by 

rotational sym metry. For infinitesimal rotations,

Rjj = - akekij, (17.19)

and x and x' change as follows [see (4.14)]

8RXj = x ?  - x ,  = a kekljXj.

8Rx,'(x) = x',R{x) -  x!(x) = a k(ekjjx'j(x) + ek(jx, d; x '(x ) ) .  (17.20)

For the displacement field и,-(х) = A'J(x) — x,- this im plies

S '* llf(x ) = K,R(x) -  II,(x) = (x,'K(x) -  x,) -  (x ,'(x) -  Jf,(x))

= х ;« ( х ) - х;(х) = 8*хцх)

= a k(£ki/Uj(x) + ekljx, 9jUj(x)) + a kekljXj. (17.21)

Thus, also with respect to rotations, displacem ents are no longer proper 
vector fields but transform with an additional rotation piece.

Since the additional piece depends on л*7, the gradient of the d isp lace
ments is not a rotational tensor field. R ather, it transforms as follow s,1’

8Rd,uj(x) = a k(ekijdl uj (x) + ekfmd,„i<,(x)) + akekil. (17.22)

The additional piece disturbing the tensor transformation law is an ti
symmetric in С and /. This is precisely what m akes it convenient to 
introduce the strain tensor, which obviously is a proper tensor:

bNotice incidentally, that such additive transformations (17.18') and (17.22) are typical for 
gauge fields, as discussed in Chapter 4. Part I.
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8 U(i(x) Gk(,£kijHi'j(x) "b £kl ' m • (17.23)

Hence the local rotation field ь>а(x) carries all the non-tensorial pro
perties of dt w,(x) = Uf/(x) + (x ),

SR (ou (x) = a k(ekijCOCj(x) + eklm<ami(x)) + a keki€. (17.24)

This is what leads to the usual conclusion that the oju (x )  are absent in the 
classical theory of elastic ity . If elastic distortions involve only small long 
wavelength displacem ents, the energy density must be quadratic in U /-,-(x), 
(o(,(x). W hile terms like uji(x) are rotationally invariant, (ojj(x) is not and 
the energy density cannot depend on (o(i(x).

As soon as higher gradients are allowed, however, the rotation field 
does in general appear in the energy. From (17.24) we see that d,,(ou(x) is 
a proper tensor field, since [compare (4.47)]

8 dp(D(j(x) = OLk (Ekjjdp (Of j  (x) + £k(m dp (x) + екрчдча и{х)). (17.25)

As a m atter of fact, from (17.22) it follows that starting from the second 
derivative, all Vf| . . .  d( Uj(x) are proper tensor fields. Thus, the most 
general form of the elastic energy density with higher gradients is 
obtained by directly contracting higher derivatives of m ,(x )  with each 
other and forming an invariant expression with the following variables

e(x) = е (м „ (х ), д ,,Э ,; и ,(х ), д ^ Э ^ и Д х ) ,  . . . ) .  (17.26)

17.3. CANONICAL FORM ALISM  FOR HIGHER GRADIENT 
THEORIES

Before developing the theory of elasticity for an energy expression such 
as (17.26) it will be useful to recall the canonical formalism for systems 
with more than one derivative. This formalism is best known for 
mechanical systems in which the “field variab les’ are the particle 
positions as functions of time rather than field variables as functions of 
space. For simplicity, let us consider only one such “ field variable #(0- 
The dynamics of the mechanical system is governed by the action

A\q] -  Jd tj( t)q (t)  = Jd tL (q ( l) . q(i), № • ■ ■ •• O 7 -2 7 )
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where L is the Lagrangian. For future convenience, we have added an 
external source to the system . The physical field configurations are found 
by extremizing the action

Ц Ы - Й О - О .  (17.28)

Using the general formula [recall Eq. (1 .54), Part I]

T 7 ? = ( 17. 29)  8q(t)

we  fi nd

И м '  Г ' л т ‘ ( ' '  - 0  *  0

d L

V w (0

By performing partial integrations in all terms except the first this gives 
the Euler-Lagrange equation

dL d dL d2 d2L , xNdN dL n i  ~n
777 + 7 17 7 7 7 +  ■■■ + ( - ) N7 j <7Z>nT77 = ](')■ (17-31)dq(l) (it dq(i) d r  Щ 1) "  v ; dt” dqw (t) 

The N derivatives

dL d dL N dN " dL л/ /i t
р “ = ^ ' л ^ + - ' + н  dtN~"a<i{N)' "  ........... ( }

may be considered as higher analogues of the usual canonical momentum

p = —  • (17.33)
dq

These higher canonical momenta make it possible to reduce the single
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higher order differential equation (17.31) to a sequence of first order 
equations. For this, let us define

Я\ = <7> <72 = ? ,  <7з = <7> <?/v = <7(/V_,\ (17.34)

as new independent variab les of the system and rewrite the Lagrangian in 
the form

*-(<?. <7. q ......qW ) = L(q............... ... , q „ ), (17.35)

in which there is only one variable with a first derivative, nam ely qN. The 
previously defined canonical momenta can be written recursively as

Pn = T ~ ~ ( q ...... qN-qN)~Pn+\ n = 1,2, 1, (17.36a)
°Яп+\

Pn = • • • 'QN' Ян)- (17.36b)dqN

Note that with respect to the new variables q x..........4n-\* Lagrangian
has only one canonical momentum, nam ely, pN.

We now consider the Legendre transform

—H(p\..........pN, q j , . . . ,  qN)

=  L{q, q ..........q{N~x\ q(N)) ~ P\q\ -  Р2Я2 “  •• • -  Pn-\4n-\ ~ Pn4n

= Ц<7ь Я2.......... Я n* Я n(Pn* Я\1 Ян)) ~Р\Я2 ~ Р2ЯУ ~

“  Рл/-|?л/ “  PnQn(Pn> Я\.......... Яи)* (17.37)

where the derivatives <7,, <72..........Qn- 1 have been elim inated in favor of
q2, <73........... by (17.34) and qN in favor of pN by inverting equation
(17.36b).

Obviously, H is constructed from L in complete analogy with the 
standard construction of a Hamiltonian from an ordinary first order 
derivative Lagrangian L = L(q, q), for which the Hamiltonian is
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where q = q(p, q) is determ ined by inverting p = dL(q , q)/dq.
The Hamiltonian formalism perm its reducing the second order Euler- 

Lagrange equation,

(1739)

to two first order Hamiltonian equations: By extrem izing the action

A [q\ ~  J '  d tj(r)q (0

= Г ж (Ц < ? ( ') .< ? (0 ) - / ( 0 <?(0 )
J l.

= \ ,bdt(p(t)№-H{p{t)> q{<))-j(t)q(l)) = A\P> <71- f  d4(t)q(()
(17.40)

in the new variables p(t), q(t) with fixed end points in q(t) [ i .e ., 
<?» = <?('«). <7h = <?('(>). fixed],

5 ( л Ь -  q\ -  j '  dlj(t)q(r)j 

= 8 j \ t ( p q - H - j q )

= / J dt[ Sp ( q  -  + ( - p  -  ^  - / )

we find the equation

9 = ^ ( P .  ? ) .  P =  " ?)-/ •  (17 .41 ')

(17.41)

In the present case we can go through the same procedure with (17.27) 
and minim ize, at fixed <?,(/„), 9/(1/>)« the action,
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« И Ь , , .  Я п )- (  dtj(t) 171(/)

f th
= S J  dt[plq l +p2q2 + • ■ • +Pn4n-H(P\< • Pn* Я\..........Чы)~т)Яi]

Г'* Д
= f E

•Ч, » = i 5p"1 aPJ  + (  p" dq„ S”‘j  1 Sq“

N

+ E
n=i

(17.42)

This yields the set of first order Hamilton equations

^  = a//(p,„<?„)■ ^ = J ........... ^

d p r

dH(p„. q„) ;
P ‘ -------- ^ ---------

p r =  J H ( p n , q „ ) ' г  = 2< N 
dqr

(17.43a)

(17.43b)

The equivalence to the single equation (17.31) can be seen by writing 
these equations down explicitly, using (17.37), i .e .,

• dH 1 л/ t <?„=—  = ?,»+1 /1 = 1 , . . . ,  N — 1 ,
op„

. _  dH dL dqN . dqN
dpN dqNdpN PN dp N

• _  dH . _  dL dL dcfrst ддн  _  :
Pl dqx J dqi + dqN dqx PN dqx dqx

dH dL dL dqN dqN_ d L  2
P r = - —  = —  + —  ~r1 - P r - i - P N - r -  = j r - P r - i  r ~ 1 ’

dqr dqr dqN dqr dqr dq,
. . , N .

(17.44)

The first line simply shows that the new variables qr are to be identified 
with the time derivatives of q ,, as in (17.34). The second line gives 
(17.36b). The last line amounts to (17.32) and can be used, together with 
the previous line, to calculate
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°  = /’ | -(P 2 + P i) t,) + (A i+ P 2)(2)+ - + ( - ) A' ' ( P n + P n - \ ) i N  [)  +  ( . - ) n P n

dL . d dL d2 dL SL , NdN dL
~ dq 1 d ld q + dl2 dq + ' -  + ( > dtN~' dq<N~" ( > dtN dqN'

(17.45)

which is indeed the same as (17.31).
We shall be interested in linear elasticity with h igher grad ien ts. This 

implies that the energy is a quadratic form in the derivatives of the 
displacement fields. In the present analogous m echanical m odel, this 
corresponds to a Lagrangian of the type

1 N
H q .q ......<?<"’) = r  E e,m,q{"\l)q{'"\t). (17-46)

 ̂II. lit = 1
with constant symmetric coefficients Cnm = Then the mom enta are

N- 1
Pn X! ^птЯп +  \ ^ n N ^ N  P//+lO & h n ) '  ( У ? A l )  

»=l

and the Hamiltonian can be written explicitly as 

H(p„* q„)

1 (  Nv  *— P \ Q l  + P l Q y  +  • • • + P n ~1 I P n ~  Zj * N m 4 m +1
^ N N \  in = 1

 ̂ N-1 /V 1 / Л_1
^  Xj ^ iw ?/ i+ l?m + l Xj п̂ИЯп +17 ( P N Xj ^NmQni+l
^n.in = 1 tt = 1 ^NN\ «1=1

~^~r, ( p n ~ XI {мпЯт+ i') • (17 .48 )
£ I N N \  in = I /

The action takes the canonical form 

A\p,n Яп] -  I Л / ( 0 ? | ( 0
J lи

= + Р 2Я2 + ■ • ■ + Pn<1n- Р\Я2 ~ Р2ЯУ ~ • • • ” P.v-i<7a/

1 л/-1 l l /  N_l У
Xj п̂1пЯп+1 Ят+ I — T ( РЛ/“  Xj ^JVw9»i+I ) ~Л0Я

^n.m = 1 ^ ''AW \ »i= 1 /
i( ')

(17.49)
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This action governs the quantum  fluctuations of the mechanical system. 
A rbitrary Green functions can be calculated from the generating 
functional

ад = П / ЩЛ0 j  ̂ f ^ e x p \ iU [p n, q„) -  J  AJ(t)q,(t)j]- (17.50)

Notice that the source acts only on q\(t) = q(t) and the other coordinates 
q2, • ■ • , qN are just aux iliary  variab les.

The expression (17.50) can be simplified by observing that the first 
N -  1 momenta p ]y . . . ,  pN-\ can be integrated out trivially resulting in a 
string of 6-functionals

2ттЬ(с^ -  q2) . . . 2 тг6 ( ^ - 1  “  <7n)-

This allows one to integrate out all the q2, . • •, qN variables so that the 
integral reduces to

1 1 N -  I

, T - \ p N-  T, W ” ) - jU )q (')
Z C/v/v in = 1

Finally, a quadratic completion of the pN parts

Yj  N̂mcl(m) ~ ^NN̂ {N)2 СN N
Pn

ш= 1
2+ ;  W " >2+ E  W ^ Y " 0 .2 m — I

can be used to integrate p^ out and brings the generating functional to

Al) = П j s q e x p l i j '  dt J E -/(')<?(')
*41.111= 1

(17.51)
■]}

where the product in front covers all points on the grated time axis. The 
reader will have noticed that the canonical form of the partition function
(17.50) is not a very aesthetic one, due to the special treatment of the last 
momentum variables pN. This asymmetry can be removed by introducing 
a further independent variable qn+1 and generating the last term in the 
action (17.49) by an auxiliary Gaussian integral
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№nn 
2m dqN+1

exp j- i  Jd tp NqN+, + ^ J  dt \?NN<]N+ 1<7лМ-1+ X  ^NintfN+l й т+11

(17.52)

N -  1

Then the partition function reads

Z[j] = U

x  exp h :  + ? 2<?2

(0

N

+ . . .  + P n4 n ~ Р\Й2~ РгЯъ~ •••

(17.53)

Since the integrals over pN ensure that •••» <7ah-i are
identically equal to q x = q, q2 =  q, . . qN = q{N\ we can replace the 
exponent by

+ p2q+  . . .  + PNq{N) ~ Р\Яг~ P iq i~  ••• “ Рл/<7л/+1'J' dt\ptq

It is now possible to integrate out the variab les q2t . . . ,  <7лм-1 anc* we 
arrive at the partition function

Z[j] = П

И ,  1 V» _
p\q+p2q+  • ■ • +Pyv?(A° - ^  L

„ _ ^  n . m =  l (17.54)

This form will be much more convenient to work with and will be 
referred to as the quasi-canonical representation of the partition function. 
Performing the Gaussian integrals over the momentum variab les brings us 
again to the pure q l̂) representation (17.51).

As an exam ple, consider the Lagrangian



L = \(aq2 + bq2 + 2cqq). (17.55)

Defining q\= q, q2 = q this becomes

L (q{, q2, q2) = \(aq2 +bq2 + 2cq2q2) (17.56)

and the momenta are

P\ = aq + cq -  p2 = aq2 + cq2 — p2, p2 = bq + cq = bq2 + cq2. (17.57)

This leads to the H am iltonian

H{pi, p2, <7b 92)

=  P\ q 2 +  p 2q2{ p 2, Я\, 42) ~  42, Яг(Р2* Я\* Я2))

=  Р\Я2 + Р 2 ^ ( Р 2  -  сяг) - \ [ ас& + " с̂ 2 +  21^ Р 2 “ с^ )  *
(17.58)

The path integral

Z U J - f  0 4 , 0 4 2  f

x e x p | /  j '  dt(piqt + Р 2Я2 ~ H(pi, />2. 4 \■ Ч2) ~ N\)

17. EXTENDED TH EO RY OF ELASTICITY 1253

(17.59)

becomes

Z[j] = j  3>qi@q2 J S>Pi <3>P2
2tt 2 7Г

x ex p | / J^  dt| p i(<71 - ^ 2) +/?2<?2 + 2 ^  26 

■ ^ ехр('/, + 2 ^  ~ 2b f'P2~ Cq'’ ^ ']}

■ ц [ Ш  f a * *  + * +

ju st as in the general expression (17.51). Let us also write down the
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quasi-canonical form (17.54) of the partition function which arises by 
integrating q2 out in the first line of (17 .60),

27Г 27Г

■гx  exp i / I dl\p,q+ p2q -   ̂ ^ ^  (bpf + apl + 2cptf2)

17.61)

Upon performing the integral over /?,, p2, this yields once more the last 
line of (17.60).

In order to apply this formula to higher derivative e lastic ity , only a few 
simple changes are necessary. We want to study fluctuations of the elastic 
energy as a function of derivatives of the displacem ent field, д( м ,(х), 
д^д^нД х), . . .  instead of a Lagrangian as a function of <?(/), q(t), . . .  
The transition to spatial variab les is achieved by rotating the time t to 
the imaginary time r  = - i t  and identifying the Euclidean Langrangian 
L(q, (1 /i)(d/dr)q, ((\/i)(d/dT))2q, . . . )  with the energy density e(w, du, 
ddu, . . . ) .  It follows that the Euclidean path integral in the canonical 
formulation (17.50),

(r )
2 r r Tа д - П

xexp{^/ rfr[' ̂  H<P‘ <7i) ~ i(r)q (r) (17.62)

reduces in precisely the same way to the pure </(r) form (with (17 .46 )],

2 [Л = П  | ® ? e x p | i j  -j t  • ■ ) “  A * )? (r )

(17.63)
I

If there is time reversal invariance, the Euclidean Lagrangian has an 
even number of time derivatives so that it is real. W e therefore define
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where ' denotes the derivative d/dr. The canonical momenta are given by

dL . —dLr 
P" ~ / ,\„ Pn+1( !  ~~ = (-О "  / , \ „--------- Vl i +i O ~дЫ «0 »[i)
and the Legendre transform is

H = p\q + Piq + ■ ■ ■ + pn4w  -  Uq, q, • • •. q(N>)

= Piq2 + Piqy + ■ ■■ ipuq's + LE(q, q', . . . .  q(N)).

In order to remove awkward powers of i it is preferable to define, in the 
Euclidean case,

q" = {£) 9(t)’ P" = ' dq̂ lx) ~ P"+1 (1 “  S"n)’ П = 1.....N'
(17.65)

Then the Legendre transform becomes

q„) =  i(p fq '  +  Piq" +  . . .  +  p f a (N)) +  LE(q, q ', . . . ,  q{N))

= КР\Й2 + Р2 Я1 + + Ры-\Ян + РнЯн(Рн, Ян)

+ LE(q f% q$.......... qEN, q'N(PH* Я\............Ян)) (17.66)

and the path integral is

m  = П fs>q„(r) J  f '  4dT[i{Plq\ + p2q’2 + ...

+ РнЯн) -  HE(P„, qn) - У ( * ) ? М ]  I ’ (17.67)

where we have dropped the superscript E of q’nE, <7,f, since q2, • • •, <7/v> 
Pi» Р2» • • •, P n  are dummy variables anyway and the only observable to 
which the external current is coupled, = is the same with or 
w ithout subscript.

Obviously, all operations can be carried out in the Euclidean version 
just as before. A Euclidean Lagrangian
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1 N
LE(q, qw ) = -  E  <.... <7<")(T) '?<m>(r ) (17 .68)

^ И.in = 1

can be treated as in (17 .46)—(17.51) and we obtain , indeed, the partition 
function (17.63) in the form

а д - П К е *277

(17.69)

The Euclidean Lagrangian (17.68) is precisely of the generic type 
encountered in linear elasticity with higher gradients.

As a simple exam ple let us study a one-dim ensional system  with a 
single displacement variable u(x) and an energy density which is the 
Euclidean analogue of (17.56):

Le(u\ u") = e(u\ w " ) = i K 2 + bu"2 + 2cu'u"). (17.70)

Treating x like r  in (17 .65)—(17.69), we define

<?i = w, q2 = u' (17.71)

and write the energy density as

е(Я2 , Яг) = + ьЯг + 2с^2^г)- (17.72)

W e can now read off the m o m e n t a = i(au' -I- cu") -  p2 = K<*q2 + cq2) -  p2> 
p2 = i(bu" + cu') = i(bq2 + cq2) and construct the Legendre transform
(17.67) [compare (17.58)]

K P u P 2> Яи Ч2) = i^ p i02+ Р2 ^ { - 1Р г -  cq2)

+ \ + I ( ~‘P2 ~ cq2)2 + 2 ^ q2( - ip 2 ~ cqi) j

= ‘Pl42 + ^q2 + ^ ( - ip 2 -C ( l2 ) 2> (17.73)
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and the total energy reads, in p„, q„ variab les.

Е\.РиРг< <7i. <Ы = Jdx[i(p ,q\  + p3q!,) -  h (p ,, p2, q,. qi)\

*Р\(я'\ -  Я2) + 1Р2Й2 -  2 Я2 ~ ~ c<?2)2

(17.74)

The canonical partition function becomes

x e x p ( 7 / d x ^ + > P 2 q '2 ~ \ q * ~ c q i > ~ i q > )  

= П £ J J &t,exp j - y  J dx Г|(аи'2 + bu"2 + 2cu'u") -  j,J“

(17.75)

which is the Euclidean version of (17.60), as expected. The alternative 
form (17.61) now reads

*“ -n

x exp{7 f dx[ iP>u' + ‘Piu" ~ \ ab 1 c 1 (bp2> + ap2 ~ 2cp,/>2) J J  ’
(17.76)

which will be of use in the next section.
W e emphasize that the simplicity of the integration measure in (17.51), 

(17 .54), (17.60), the last line of (17.75) and (17.76) is a consequence of 
the absence of the displacement fields и in the coefficients €„„„ which, in 
turn, follows from translational invariance. If the were functions of q 
the canonical formalism presented above would have led to q dependent 
m easures,
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?nn(u)
2 tti - W - M

j@ q  V ^ r det(e/27r' ) ' ,,2( ° r I - \ / det(6/2тг)_ 1/2

h m « h m

h M v £ h ( ° ' h S v ^ ? :

<2)u - I€nn(u)
V 2 t t

!b(u) 2 iт

17.4. SECOND-GRADIENT ELASTICITY

Let us now apply these techniques to linear e lastic ity  with second 
gradients of the strain tensor. In an isotropic continuum , the invariance 
arguments given in Section 17.2 lead to the following most general energy 
involving second derivatives,

E = j  dt>x[b\didl u(djd(u( + b^djuf diu( ]. (17 .77)

By a partial integration, this can be cast in a form involving the strain 
w*,(x) and the rotation field a>,(x) = ^е/уддуИ*(x ),

E — J d Dx(b| df it((djU( i + /ьд ,<Ojd,ojj), (17 .78)

with

ЪХ = Ъ\ + Ь2* b2 — 4/?2 • (17 .79)

This follows from the equality of the first terms in (17.77) and (17 .78), 
with the second term being equal to

41 d° X d' £jk( dk d‘ €,k'r  dk' U('= \ /' d° x (didkU( didk 111 ~ di dk U( did( 11 k}

= dDx(d?U(dlu(—did(ul djd(ul ). (17.80)
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The first term in (17.78) m erely gives a higher gradient correction to the 
strain field. The second term is, on the other hand, qualitative ly  new 
since it contains the local rotation field and accounts for energies due to 
local twists in the m aterial. We shall m ainly be interested in the new 
features brought about by this term . For convenience, we shall write the 
new elastic constants as

where V are two length scales characterizing the strength of b}, b2. We 
then arrive at the following elastic energy density.

In terms of the displacement field, this takes the alternative form

Going over to momentum space and regrouping the terms according to 
longitudinal and transversal projections, this becomes [compare (1.75)]

bt = (2/x + А) Г 2/2, b2 = 2>ie2. (17.81)

/ли1 + -  u2(l +-(2ц + \)€ 2(diUi()2+2n£2(dia)j)2— fi(x)ut-(x) .

(17.82)

— (d( u()2 + ~̂ ~2— u( didi lit

(17.83)

From this it is easy to obtain the Euler-Lagrange equation

—fid2иi — (/x + A)djd( u( + (2/x + \)€ 2d2djd(Ui 

+  fi€2(dAUj — d~djd(U()  =fj(x). (17.84)

Mq2( l  + C2q2) и,(q) + (2fi + A)q2( l  + €'V )^ f4( Ч) =Л(ч).
(17.85)

which is im mediately inverted to give,
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« ; ( 4)

-G*(q)/#( q)
1_____ I S . . _ M

/xqz( l  + €2q2) \ " q2 j  (2ц + A)q
i______ м Л Л(
!(1 + € '2q2) q2 J /; 

l + «'2q2) )/ x q ( l + f q )  4 qJ \ ^(1 + e'q-) (2^ + A )(l + €
(17.86)

In order to return to x-space we introduce the partia l fractions

1 1 I \ 1
/xq2(l + £2q2) [X \q2 q2 + l/€2 ' ’

i i / 1 i \ i e21 1 1
/xq4(l + £2q2) fiq2 \q2 q2 + 1/ fy  /xq4 fi \q2 q2 + l/£2/ ’ 

1 1 / 1 1
(2/a + A)q4(l + T 2q2) (2/ll + A)q2 \q2 q2 + Ш'2

1 C2 ( 1 1
(2/i + A)q4 2/u. + A \q2 q2 + l/ '̂2

(17.87)

In three dimensions, the Fourier transform of 1/q2 and 1/q4 are 1/47tR 
and -R/8tt, respectively. For l/(q2 + l/€2) we calcu late as in (1 .81),

t/f( } J  (27t)3 q2 + l/€2 _  4 ir2 Jo  q2 + l/€2 J _ ,

1 Г*

1 Г  / 1 1 \ e** -  e~i(lR
8tt2 J  ̂\<7 - //€ + q + л*7 + Ut J 2 i

1 7 (17 .88)

Closing the contour of integration in the upper half plane for the first 
expansion and the lower one for the second, we find from the residues the 
Yukaw a potential
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4 i t  Ft

Thus we can rewrite (1 .87) in x-space as

r ,/( (x  -  x ')  = ~T~ze~Rn- (17.89)

>u.q2( 1 + €2q2) fi 47tR

_____ I_____ a J L * _ £ _ L a
/uq4( l + f 2q2) я-8'П" M 4ttR

1 1 Л Г 2 I

Д - —  (1 - e - * " ) .  (17.90)

(2|x+A)q4(l + f V )  2̂  + A8i7 2/u. + А 4я7?
( l -< ?-* " ). (17.91)

Hence (17.86) becomes, in x-space.

«/(*)

2 / j l  -I- A /(x#). (17.92)

In the special case £ = 0, i '  -  0 we recover the previous result (1.90).
Notice that the higher powers of q in the field equations regularize 

the Green function at the origin, G,y(0). The 5/, part goes with (1 /R) 
(1 — е~™) ~ ({/€) -  (R/2t2) which is regular at R -  0. In the derivative 
part we can expand

,  ,  (R  (R t 2(R R2 , Я*Л\
\2 + e R / ~ y + R ( ?  “  2?  + 6 f2) )

= а ,аЛ  + f e -  . . . )  = ± 3,  +  o (R ) ,  (17.93) 

which is also regular at R = 0. Hence we find

Gv(°) = 4^ 5v ( ^ _ 3^  + (2/x + A) ■ 3€') • (l794)
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17.5. CANONICAL FO RM A LISM  FOR SECO N D -G RAD IEN T 
ELASTICITY

Let us now set up the canonical formalism for the e lastic  energy (17.82). 
According to (17.65) the “canonical m om enta” are given by

de
tr‘i = Su- = + A5>/u <().

T> = = i (2 M + A) V 2 djUf,.00,Иц

de
Tij =  —  = i 4n t 2arcoj . (17.95)odjWj '

Generalizing the expressions (17 .75), (17.76) to several space dimensions 
we arrive at the two partition functions of second-gradient elastic ity .

zlfi] = J  ®4 (x) exP j _^ J d°x

x  — t '2(djUr()2 + 2/xf2(fl,wy)‘  -  fill, j
(17 .96a)

and its canonical form, the stress representation 

z lfi] ~ j @M/(x) J @(г-;(х) j  <3т[(х) J @т0(х)

*  с„ р { - 1  \ л [ ± { * /  -  * 2 № 1 л)1л гГ-

+ -  >°1i(diui + djit,) 12 -  ir'i did,it, -  iTijdiWj -  fjllt | ■

(17 .96b)

The superscript s indicates that the “ momentum variab le” crjj is a sym 
metric tensor such that in only the components i ^ j  need be 
integrated.

Some trivial overall factors have been omitted in the m easure. The 
equality of the two forms (17.96a) and (17.96b) is verified, as usual, by 
performing a quadratic completion in the momentum variab les and
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integrating them out. The com plete squares arising in this process show 
that, in equilibrium , the fluctuating momenta crjj, г/, r/; are given by 
(17.95). In the lim it € = €' = 0, the г/, r,y integrals are frozen out and we 
recover the usual path integral (1 .44) or (1.45) of linear elasticity.

It is useful to introduce the w, variab le as an independent field and to 
ensure the connection w, = \ eijk djUk via an additional functional integra
tion over an antisym m etric tensor field c r Then Z[f{] takes the form

We have jo ined the antisym m etric matrix сг-J with cr-j and formed the 
tensor <jjj = ar-j + crg which has no sym metry at all.

If we perform the integrals over the variable m ,(x) and <w,(x) we find 
the conservation laws

(17.97)

dj ((Ту &ij dk Tk ) fj » (17.98a)

djTfj £jk( &k< • (17.98b)

Identifying

ofjhys = ау + 8ддктк (17.99)

as the physical stress tensor, the first relation reads

(17.100)

and ensures the conservation of stress in the absence of external volume 
forces. Since the additional piece in crPhys is symmetric in / and /, the 
second equation can also be written as
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This is just the Cosserat equation (16.8) relating the torque stress r/; to 
the antisym metric part of the physical stress tensor.

As expected, the inclusion of higher gradients has led to the appear
ance of a field equation for the rotational degrees of freedom  which 
describe the balance of torques and which is the stress analogue of the 
equation

d ,a f> = - e Jk(Qk(.
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CHAPTER EIGHTEEN

IN T E R A C T IO N  E N E R G Y  O F D E F E C T S 
IN S E C O N D -G R A D IE N T  E L A S T IC IT Y

Our goal is to investigate how our model of defect melting must be 
modified if we are to account for the higher gradient terms in linear 
elasticity. For this it is first necessary to understand the elastic properties 
of a continuous m aterial which has undergone a given set of plastic 
deformations.

18.1. ELASTIC ENERGY OF PLASTIC DEFORMATIONS 

The elastic energy is given by

In the presence of plastic deformations, the elastic energy is measured by 
the deviations of the total strain w,y and the total gradient djtOj from the 
plastic strain м'у and the plastic gradient respectively:

£c i = J  dyx

1265
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General plastic deformations were analyzed in Section 2 .9 . T here we 
found that a defect line of Burgers vector be and Frank vector Cl€ is given 
by [see Eq. (2.61)]

«8 = 1(08 + Pfd =  i№(S) в ,  +  (</)), (18.3)

and [see Eq. (2.65)]

a,uf = 4  - 1 ч к « , № ( 5 ) Я г -  8 (V )e „ e n ,]  = heikeB M t  + 4>ih (18-4)

where

B e =  be + eeqrftqXr ( 18-5)

is the total Burgers vector and

ln t = 8k(S)Bc, (18 .6)

<t>$e = 8 k{S)n e (18 .7)

are the plastic distortions and rotations, respectively. Thus we can write

E = j d 3x L ( « , y -  W i  + P?,№ 2 + \ ( « «  -  Ppa ?

+  — t ' 2( d i ( u e e  — P e e ) ) 2 + 2/x€2 (6/o>,- — 1/2 e ik e t y P k c  ~ Ф%)  | ’

(18 .8)

Let us study the defect gauge invariance of this expression. The general 
trivial V olterra operation of translating and rotating a piece of m ateria l 
corresponds to a pure gauge transform ation,

Uf(x)-> Uf(x) -  8{V)(be + Eeqr^qXr)’ ( 18-9)

Let us abbreviate this by

wf (x )->  Mf (x) + Ne{x) + eiqrMq{x)xr = ue(x) + N f (x ), (18.10)

with
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Ne(x )m -s(V )b e9 (18.11)

(18.12)

Ne(x) = -8(V )B e. (18.13)

From (18.10) we find d irectly the pure gauge transformations of the 
rotation angle,

These transformations must accom pany any shift of the V olterra cutting 
surface S to S' with V being the volume enclosed by S' -  S.

From (18.6) and (18.7) we see that such a shift results in the following 
changes of the plastic distortions and rotations:

/& -*  Pit + (S* (S’) -  Sk(5)) B, = Pit -  (Э* S(V)) B,

= f i t  ~ *kW Y)Bt) + eeqk8(V)(lq = ppkt + dkNe -  etqkMq,
(18.15)

Фьс-*  t i t  + (8k(S')~ 8k(S))Oe = 4le~dk8(V)Пе = фркс + дкМе. (18.16)

Inserting the transformation laws (18.10), (18.14), (18.15) and (18.16) 
into the energy (18.8) we see that it is invariant under defect gauge 
transformations, as it should.

There is yet one subtlety which must be noted in this construction. In 
the absence of plastic deformations, the rotation field satisfies = 0 . 
For the plastic version, however, this is no longer true since in the 
presence of defects [recall (2.77)]

<°i(Oi + i eik(dkNс. (18.14)

xfi = d/0),- = 5 a /7. (18 .17)

This leads us to introduce another energy expression,

2\it2e J d 3x ( d j < O j  -  1/2 Ejktdifikt -  ^){^Щ  “  1/2 eiki djp%f -  <££•),

(18.18)
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which, in the absence of a plastic bend-twist, would be a pure surface 
term , and an energy

2fie2s‘ j  rf-V(d,<e, - (18.18')
which can be directly expressed as an extra core energy of dislocations

8 d'xa,,. (18.18")
and needs no further treatm ent; it will be ignored hence forth.

We shall thus study at the partition function of elastic fluctuations in 
the presence of plastic deformations,

Z = j  <?H,(x)exp| —J  J  Л  j/4 «,y -  u1,j)2 + ^(u,, -  u',\)2

+ ^ ~ - t ' 2(d,(4n -u '!,) )2

+ 2/ш12[(д,-шу — d , ( o j ’ ) 2 + e ( d j t O j  —  3,a> f ) ( d j W , -  — 3; o»f)]| ■ (18. 19)

with

«$ = § 0 5  + Pfh b r f  = BiKt + Ф'-г ( 18-2°)

Invariance under defect-gauge transformations can be used to bring (3(( 
into standard form. A convenient gauge is

Pi’, = Pa = "*<• 04 = и& = 0. (18.21)

The sym m etry of fikl is reached by an appropriate choice of M ^ A f te r  
this, we can perform a further gauge transformation with arb itrary N( and 
Mp = epk(dkNf so that fikl remains sym m etric while the strain  changes 
like

i i f i - m f i  + + a ( N A). (18.22)

In this manner t/£( can be brought to the desired gauge = и& = 0.

18.2. CANONICAL FORM OF THE STRESS PARTITION 
FUNCTION

It is useful to rewrite (18.19) in canonical form, corresponding to (17 .97), 
in which w,(x) and a>, (x) are treated as independent variab les and in which
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the relation between them is enforced by an integration over an anti
symmetric part of the stress tensor. W e can easily verify that Z becomes

Z = JZfiiij j <2>сгу j J @ T ' i  j@ Tjj

x + 2(2J A)r^

+ 8м^ (3'T/2/ + + 1 f  d'x[fT'/(d,ui ~ ечкШк ~ P'fi

+tftdidtu, -  a,l3{V) + т0(д,а>, -  0g)] j , (18.23)
where

6 , = 1/(1 — e2), 62 = - £ 6 ,. (18.24)

To see the equality we perform a quadratic completion and integrate out 
ст-), r/, Tjj. The integral over a-," enforces the connection cu, = 2eijk̂ /uk- It 
is interesting to see the manner by which this generates the (Sk( parts of 
the djWj gradient terms of (18.19). Notice that in the canonical form
(18.23), where w ,(x) is an independent variab le, the plastic rotation </>£ 
plays a more fundamental role than the plastic bend-twists dj<o?  which 
were the most natural plastic quantities in the original form (18.2).

Defect-gauge invariance of (18.23) holds now with respect to the 
transformation [compare (18 .9)—(18.16)]

u((x)^>u( (x) + N, (x ),

flfi (x)->0[-/ (x) + dkNt (x) -  ek<pM„(x)y (18.25)

<y,(x)-+ w/(x) + M ,(x),

Ф ; ; ( х ) - < ( х )  + а ^ Д х ) .  (18.26)

18.3. LATTICE MODEL OF DEFECT MELTING WITH SECOND- 
GRADIENT ELASTICITY

It is now straightforward to construct a suitable lattice model from the 
partition function (18.19). For the strain part, the procedure is clear. All
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we have to do is to replace the continuous variab le x by discrete lattice 
sites of a simple cubic lattice, the gradients d, by lattice gradients V,-, and 
the plastic distortions j3£f by integer numbers nkc, m ultip lied by the lattice 
spacing a. When using rescaled variab les y f- = (27г/я)н,(х) we may simply 
take flfi = 2777!**.

If we follow the same procedure for the rotation part we run into an 
immediate difficulty. In the continuum form ulation, all quantities m,-(x), 
w,(x) were infinitesimal. Only for this reason could we define the rotation 
field a>/(x) by a simple differential operation ,

" / ( * )  =  2 e t j k S j U k ( x ) .

On going over to a lattice, this relation has the trivial generalization

**(x) = *(V x  U), = i e №Vyii* (x ). (18.27)

However, one should realize that this is a proper rotation field only for 
very smooth fields uk (x) and certain ly cannot be m aintained as soon as 
uk (x) has finite jumps across V olterra surfaces. W e ran into a sim ilar 
problem previously when we calculated the plastic quantities on a lattice. 
There, we resolved these difficulties by considering, instead of a finite 
translation plus rotation, a modified V olterra operation (16.45) which 
implied a “ tangential approxim ation” to the rotation group.

In real crystals, the m ultivaluedness of the rotation angle is determ ined 
by the smallest finite discrete rotations around the sym m etry axes. The 
derivation of the plastic distortions, however, was carried out in the 
continuum, where all quantities are infinitesim al. Thus it is obvious that 
in order to find a proper crystal version of the partition function (18.19) it 
is necessary to respect the full group structure of finite rotations. The 
result would be a non-Abelian gauge theory. This is som ewhat dis
couraging since the defects in non-Abelian gauge theories pose com
plicated nonlinear problems which are far from being understood. F ield 
theorists who have tried to explain the forces in elem entary partic le 
physics have studied such theories for several years now and progress has 
been rather lim ited. Faced with this difficulty, we have opted to proceed 
using the “ tangential approxim ation." Within this approxim ation we 
consider (18.27) as the definition of an ш,(\) field which plays the role of 
the rotation field &>,(x) in the lattice model and which allows for integer- 
valued jumps in these quantities.

The model we are then led to has the following partition function
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Z =  E  Ф к у , т , 1п [ Г ^ м
{%./«//} X,/ ^ 7Г .

x  exp \ -(3 

2 u  + A V 2
T E (V ,V ( r ( .-27rV ,./ ,Jf) 2

2̂
+ ^ 2  £  [(V, £/*, VA. y( -  2тг(2т0 + Vj£jk( nk( ))2 

+ e(V,£jk( Vkyi -  2тг(2ти + Vj£jklnk()) 

x  (VjZiki ^кУ( ~  2tt(2tit# + Vj£ik(nkc))] (18.28)

where is the sym metric part of the jump numbers л,у (which is half
integer for i Ф j) . The canonical form of this partition functions is

, N/22 =

</ L 

dr'i (x)

nf Г^мТпГ r^ w l n Г Г ^1пр<(х)1
17 |_J-x 2tt J x.,LJ-« 2tt J , ,4y L J— V2^J 17 L J

Г r-, -1 Г dr'/ (x) 1 ГГ Г Г  *-> (*)
П 2 <fofl(x) П

X. 1 < /  L  J —x  J x . i

V 2 tt(2 + A//i)/3£,2/tf2 П
x./.y

Г  dr,,(x) I

J-. V877/3f2/a2J
шг

2(2/i + A ) f и Е * 2Xexp{- ^ [? i(< - rh <r?'
2

+ 371 £  (5 i r/y + % rr ,)  + / £  OTjjiVjyj- eijk(0k -  2тгПу)
X X

+ ; E  Т» (V/V, y , -  2irV,n(t) + i E  4 i v iw, -  2irm„) (18.29)

The symbol Ф[/*,у. m,y] denotes a gauge-fixing functional which is neces
sary to remove in infinite overall factor due to gauge degeneracy. A 
simple choice is the quasi-symmetric gauge [recall Section 10.1] wherein

п0- = riji + 1
if n,j + Пр =

even,
odd,

(18.30)
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and

« 13  =  0 ,  / 1 2 2  =  0 ,  Л 3 3  =  0 . (18.31)

Ф К -, rrijj] contains the appropriate K ronecker 8's to enforce this gauge.
If Пц, rrijj do not satisfy the conditions (18.30) and (18 .31) we can 

always perform particular gauge transformations which achieve this goal. 
If we denote the antisym metric part of n,j by /?•-, these gauge trans
formations (18.10)—(18.16) are

We showed in Section 10.1 how to find integers /V, and M, so that /i,y is 
quasi-symmetric and the three non-zero njj fields /in, /i|2, /123 satisfy the 
further boundary conditions

Integrating out the у,• and w, variab les in (18.29) produces the proper 
conservation law of stresses and torque stresses, now with lattice 
derivatives:

For sim plicity, we have ignored the tJ2 term since it produces only sm all 
quantitative corrections to linear elasticity3.

The conservation laws are autom atically satisfied by introducing the 
gauge fields Л (-Дх), hLj{\) and setting

4 - > <  + Kv,/vy + v ; yv,), 

nfj-* n f  -  eijkMk,

+ V/My,

У( + 2тг/7ь

(18.32b)

(18.32a)

(18 .33a)

(18.32c)

a>( —» (o( + 2ttM( . (18.33b)

V j <Tjj 0, Vj X,j — Ejkt’&ki • (18.35)

“In the next sections this term will be included.
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cr/y«  eik(VkA (j(x -  £),

Ц = £ik( V*h(J(x -  €) + 8цА1( {х -  €) -  Afi(x -  j ) .  (18.36)

The stresses are invariant under the following local gauge transformations

Л „ (х ) - * Л ,у (х )  + V ,A y(x), (18.37)

h(/(x)^> h(j{x) + Vf g (x )  -  eCjkAk(x + e). (18.38)

Just as in our previous treatm ent of three-dim ensional defects within 
classical e lastic ity , these have the same structure as the gauge transfor
mations on the defect fields (18.15) and (18.16). The only difference is 
that the stress-gauge transformations are continuous while the defect- 
gauge transformations are integer.

In terms of A i ( , hi( the coupling to the defect-gauge fields becomes, 
after a partial integration in the last terms of the exponents (18.29),

“ 2rri Y  Л ,у(х )(еш УА.л,у(х + £) + 8(jmkk (x + €) -  mj( (x + €))
X

-  2177 E  Л(/(х) ea .,V*w9 (x + €). (18.39)
X

Comparing the sources of Л ,у(х) and Л/у(х) with (2.69) and (2.68) and 
recalling that ntJ and m,y are the lattice versions of plastic distortions and 
rotations, we may identify these sources with the lattice versions of 
dislocation and disclination densities, a f/(x) and 0 (,(x ), respectively, and 
write the interaction as

= -277/ £  (Л„5(У + hu&ci). (18.40)
* X

In Section 16.1 we showed that the defect densities satisfy the conser
vation laws [see Eqs. (16.3), (16.5)]

Vf 5 « (x )  = - e ik: ( ® h ( x  -  k ) ,  V( @<,(x) = 0. (18.41)

These guarantee the stress-gauge invariance of £ im. as can easily be 
verified by inserting the gauge transformations (18.37) and (18.38) and 
performing a couple of partial integrations.
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18.4. CALCULATION OF THE INTERACTION ENERGY OF 
DEFECTS VIA STRESS-G A U G E FIELDS

Let us now see what the interaction energy of defects is in second- 
gradient elasticity. The problem is quite involved and it is p referab le to 
study it in the continuum limit w here we can use helicity am plitudes. 
We decompose A (i and hu into ĥ sJ,) according to the ru les of
Chapter 4. Then we can use formula (4.110) and find [com pare Eqs.
(16.23)]

a<2* ±2)(k) = 2 -2 ) (k ), a +±(k) = ±kA + ±(k)< cr_±(k) = 0, 

o<M,)(k) = - k A L{ к ) , o *(k ) = - M (KW)( к ) , a L'(к) = 0. (18.42)

The three components A~ +, A and A L' do not contribute to the 
stresses. Note that the momenta in these and the following formulas 
correspond to the continuum limit of the dim ensionless lattice grad ient V, 
and therefore measure the physical momenta in units of 1 la.

The stress energy contains only the sym m etric parts of сг,у, i .e . ,  the 
spin-2 and spin-0 helicity components, so that it is equal to

E ̂ {и (2Л)|2+ис2- -2,i2 +| и++12+\и+-12} •
(18.43)

Consider now the torque stresses r,y. From (18.36) we see that they have 
the same helicity content in terms of h(j as ay, has in terms of A (J-. In 
addition, there is the term 8,jA(( -  Ajj. The 8^А(1 part can be written as

{V2eL + eL )jj(\/2AL + A L ). (18.44)

Since Aj} is the transpose of Ац we see that in the helicity decomposition 
of Tjj, the sign of the spin-1 contribution of Л СКЛ) is reversed. Thus we 
have

Т(2.±2) = ±^ ( 2 ^ 2 ) _ Л (2.±2)< T+- = ±kh+ ± - A - * f j~ ± = -y4  + " ,

= -k h L -  Л (|' 0), tl = - W ' ,u) + A l + у/2А'-\ т‘-' = У/2А'-.
(18.45)

giving a torque stress energy of
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Щ г  E  { (5 , + 32)[|M<2-2> -  Л <2-2>|2 + \kh(-2, - 2> + A * --2f

+ + A l + V 2 A l’I2 + 2\Al \2]

+ 8 ,[|*/г++ - A ~ +12 + |kh+~ - A — |2 + \A ++\2 + \A+"|2]

+ S2[ -(k h ++ -A ~ * )* A ++ -  ( - k h +~ -  A )*A + ~ + c .c .]

+ (8 i — 82)\khL + /4( i ' 0,|2| • (18.46)

The energy is invariant under the gauge transformations (18 .37), (18.38), 
which read in the helicity basis,

A~± -+A~± + £A“ , A l’ -^ A l ’ + kA{\

Л<1- * 1) ^ Л(к=ы) ± yfikA *, A( l-0>->A<f-°> + V 2 *A 0, (18.47)

and

/ Г * -* / ?"*  + * £ -, hL'-+ hL’ + kg°, (18.48)

respectively, with all other components remaining unchanged.
These can be used to elim inate the anti-symmetric components 

A(10) (as well as /z(2,± l), hL' if they were present) so that only three 
components of h are dynam ically relevant, nam ely, A(2,2), h{2' ~2) and hL. 
A fter gauge fixing, the elastic energy (18.23) reads

^с= ^1]^{и(2-2,12+и(2-2)12+ ^ и “-т+|и++12+|и+12}

+ W 2 ?  { (S| + 52)[l khP" 2 )"  л<2'2)|2 + 1 kht2' “2) + л  (2‘ " 2)|2

+ \Al + V 2 A l ’\2 + 2\Al \2\ + 5|[|/t ++|2 + \A+- 12 

+  |/Г+|2 +  И “ ‘ |2] +  8 , ( / Г +' Л ++ +  A — A+- +  C.C.]

+ (8, -  82)\khL + A (10)|2| - (18.49)

where 8 , + 8,  = 1/(1 + e ) , 8| -  S2 = 1/(1 -  e ) . 8, = 1/(1 -  e2) , 83 = 
- e / ( l  -  e2). We now turn to the interaction energy (18.40).

In the continuum lim it, the conservation laws (18.41) ensure that 0*c has
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only the helicity components ©<2- - 2\ 0 L, @+±, 0 (1O\ the la tte r three 
being identical to +ka~~, - k a L'fV2, respectively. Hence the helicity 
decomposition of the interaction energy (18.40) reads

^  £ jn, = - 2wi E  (A (2' 2)* « (2‘ 2) + A (2‘ ~2)* „ (2- ^  ‘ 1 • °>* 1 • °>
* к

+ Л(2. 2)*в (2. 2) + /|(2* ~2)*0 (2, —2) + /?Z>0 L + л  + + *а  + +

+ Л +- * а +"  + (Л~+ -  kh++Y a~ + + (Л  + M +" )* « ~ “

+ ( i4 L‘ -  khil'0)/V zyaL’ + A L*aL}. (18.50)

In the stress gauge for which has the three com ponents /i(2*2),
M2*_2), hL only, this becomes

^ £ im = - 2 v i  E  {Л<2' 2>*«<2-2> + Д(2--2)*а (2.-2) + Л (1.0).а (1.0)
• к

+ Л(2' 2>* 0 <2- 2> + A<2- _2,*0 (2'-V  + hLte L

+ A~+ta~+ + a — + A ++’ a ++ + A + ~'a + ~ + Au 'a L‘ + AL'a L) .
(18.51)

Noting that in the stress energy, the components Л(2-±2) and hL alw ays 
occur in conjunction with A (2' ±Tl and Л (10) , it is useful to rew rite the 
second line in (18.51) as

ft(2 .2). 0 ( 2 .2 )  +  h (2. - 2 ) .  0 (2. - 2 ) +  f,L* @ L

= ( a<2' 2> -  А л*2' 2» )*© '2-2» + f*<2 - 2> + 1/1(2.-2 )^ 0 1 2 .-2 )

+ ^ _ 1 Л (1.О)у0^ + 1 ( Л (2.2),0(2.2)_/1(2.-2).0(2.-2) + /4(1.О).0^

(18.52)

R ecalling the composition of the total defect tensor in the helicity basis 
[ i .e .,  (16.24) and (16.25)], we see that the second line can be combined 
with the first line in (18.51) to give the defect couplings,
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+ U<2.2) _  j  Л (2.2) ) 0 (2.2) + /Л(2. -2) + 1 ^ (2 . -2>V 0 (2. -2)( к
1
к

(■
hL + i/ 4 <10) (18.53)

We now change the variab les from A (2, ±2), A (1 •0), /z(2*±2). hL to A (2*±2), 
/4(1' 0), hS2' ~2) нк (l//:)y4(2* ~2), AL + (l/& )i4(l,0 \ Then the integrals over 
these six fields can im m ediately be perform ed, giving the following 
Boltzmann factor:

The first term contains the defect energy of classical linear elasticity. The 
second gives an additional B iot-Savart energy between disclination lines, 
which at long distances is negligible as compared with the linear forces 
implied by the first term. It modifies only the core of the disclinations.

As for the remaining fields, A~~, A +~y A L and A L these produce 
additional short-range effects for the remaining components of the defect 
densities. The fields A~~ give

exp | ~ 0 4 ir2 E  j ^ ( h (2' 2)l2 + IV 2- - 2)l2 + 7 7 > t )

-  E  p [ d  + e)|©(2-2)|2 + (1 + *)l® (2- - 2)P + (1 -  * )I© T ]}  ■

(18.54)

(18.55)

The fields A L, A u  have a stress energy
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= ̂ (S, + %) E (̂ , ALy (^ \ (* LL) ,T CI 8/3r k

so that integration over them leads to

(18.56)

exp| “f ~24̂"2(! + e) E (“L. )'2 a
V 2 \ / a L

- V 2  3

= exp| -2 / 3 ^ 4 it2(1 + e )  E
V 2

(18 .57)

A ll these additional terms are of short range. They present obstacles to 
the formation of dislocations.

From the identity (16.26), we observe that the second term  in (18.55) 
can also be written as

exp j - 2/3^54 ir2 E ^ ( l ©++|2 + l©+“ |2)}  ’ (18 .58)

and may be viewed as a B iot-Savart law for disclination lines. S im ilar ly , 
using (16.27), the energy (18.57) may be written in terms of a L, (—V 2Ik) 
0 (1’ O), rather than a L, a L'.

Then the total Boltzmann factor becomes15

e x p | —/34-тг2 E £  (|V2- 2>|2 + h (2‘ -2>|2 + YT;\vl

-  2/3 4̂7r2E r;
к к

+ (l-
+ E

[(1 + е)|0<2-2>|2 + (1 + e)|0<2- - 2>|2 + (1 -  e )| © T ]

e2k2e2la2
1 + k2f/a2 

1

(|©++|2 + I©4—|2) + (1 + e)|0 <l,o)|‘

+ E 
к

1 + k2(2la2

— e 
i  +

(Ia+ + I + la+ г) +1 + £ aL + |©(,0) 
к

( a  ++* a  + + a + *a + c .c .) (18.59)

bRecall that the defect densities in these formulas are the integer-valued lattice quantities. 
Thus they are related to the continuous ones by a factor 1/2тг as well as an appropriate 
power of the lattice spacing. Sim ilarly, the momenta are measured as multiples of 1/a.
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From this expression, it is straightforward to go back to tensor notation. 
Using the fact that 17 possesses only the three components r){2'2\ r/(2, ~2\ 
r]L we find that

W 2 = b (2-2,l2 + h (2- " 2)l2 + | i?T . I%I2 = |VZtjT .  ( is -6 0 )

and the first sum becomes

- p 4-Л-2 E  j i j  ^ lv„ l2 + h f f p j  • (18.61)

S im ilarly , ©,y has only the six components contained in the second sum so 
that this sum reads, for e = 0 ,

- 2 ^ ^ 4 т г 2 Е Л | 0 ,У|2. (18.62)a k к

Furtherm ore, using the polarization tensors e+~ of Eq. (4 .97), we obtain

|a++|2 + I a t  |2 = -zfakjerkj-aijCirf + c .c .|2

(18.63)

It is useful to introduce the abbreviation

( 18-64)

for the transverse part of a,y [i.e ., that which contains only the + + , + ,
-  + , — , ( 1 , 0 ), and L components]. Then

|«*+|2 + |a+1 2 = p M 2- (18-65)

S im ilarly , using eL of Eq. (4.97) and of Eq. (4.62) we find
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2 k4 

1

— 7^4 I№yd2 -  didj)oiij + ei€kdke ie\2

\d2 + ei€kdk®i€\2. (18 .66)2k

With these formulas, we can collect the e = 0 parts of (18 .59) into the 
following tensor form,

exp

kl\&ij\2 + k2 1 + ^ 2  fa2 1 1 2 + 4^4 I a  Г + ei€k &k ®i <

(18.67)

The e terms require a little more work. Those in e | 0 (e,/,)|2 can be 
grouped as follows:

e(|0 (2*2)|2 -f |0 <2’ "2>|2 + |0 L|2 + |©<l >°>|2) -  2e|0 |̂2. (18 .68) 

Now, 2|0l |2 is just

2|0L|2 = |0^|2. (18.69)

The first sum may be rewritten as

e(|0,y|2 - | 0 ++|2 - | 0 +-|2). (18.70)

But from the same calculation as in Eq. (18.63) we have d irectly [recall 
that d/0 /y = 0]

|0 +1 2 + 1©+1 2 = А |э/-0 ,|2, (18.71)

so that (18.68) gives

*(l®.y|2 - p l ¥ M 2 -| © fA  (18.72)

The mixed terms in a ++, a -+ , etc. take the following tensor form ,
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a + +*a + -I- a + *a + c.c.

-~£2 (eikjkr er  a * a /r + c .c .) + ^ ( k iej er kr  ацап > + c .c .)

= 1?  (5/У a *jan' + p  (̂ >ji---  ̂kjkr  a -a .y

= jS id j*F B ea €i + c .c .) = -^ { d jc x ?  eipq в рд + c .c .) . (18.73) 

Using these form ulas, the e, e2 terms in (18.59) become

exp | —2/3^ 47r2 Y  £ p (  \*ц\

!  + £2^2/д2 p  |Эу0 ,у I2 + jp | d 2a£> + £ * * 5 * 0 ,^

+ 1 + k2Z2la2 + c c ')
(18.74)

A t first sight it appears as though this expression is the best starting 
point for a disorder field theory of defect lines. Either defect systems, Qei 
or ah  could be turned separately into an XY  model, one for each j. 
U nfortunately, this simplification is an illusion for two reasons. First, it is 
impossible to go from integers aa  to integers а[{ since the lattice operator 
(VfVr /V-V)ar/ produces non-integer numbers. Hence the sum over aji 
does not allow for an XY  model representation. Second, the resulting 
field theory would not be local. The orthogonal part of a jt still appears in 
the exponent which reads

exp | - 2тг/ Y  (^Aei(^*a + ^ - tx e ' i j  + j  j

= ex p |-27г/ Y  [aei<*Ta +  [ h a  ~ А пкеш 0 « ^  j  ’ (18.75)

so that with aJ , 0 f/ as fundamental defect variables the field Ank couples 
nonlocally to 0 f t , and such a nonlocal coupling cannot readily be incor
porated into a covariant derivative of a disorder field for the disclination 
density &ei.
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18.5. SECOND-GRADIENT INTERACTION ENERGY DERIVED  
FROM DEFECT GAUGE FIELDS

In linear elasticity we observed that it was sim pler to calcu late the 
interaction energy of defects by using defect gauge fields rathe^ than 
stress gauge fields. Let us now see how this method works in higher 
gradient elasticity.

Our starting point is the partition function (17.19) with the energy 
expression

£  = J Л г  j/x(uiy -  ug)2 + ~ ( u «  -  ufr)2 + ^ ~ - e'2(di(uCc -  M?f))2

+ 2/jL€2[(dj(i)j — dj(of)2 + e(dj(i)j — dy w f)(d ; a>, — djtof)] |» (18 .76)

where 4  = ( 1/2)(Э, <  + djU?) = ( 1/2) ( $ -  + $ ) ,  df cof -  = ( 1/2) eikCd; 
Pic + ftji [recall (2 .63), (2 .64)]. In contrast to the discussion in the 
previous section we have now kept the t '2 term which corresponds to the 
stress energy r'2.

W e now recall that the basic trick which simplified the calcu lation of 
the elastic energies in ( 10.6) was to impose improper transverse gauges. 
We had dem onstrated in the XY  model that this is adm issib le, as long as 
no knowledge is required on the correlation functions of the order 
param eter which is the case here. Then we can alw ays choose
noninteger gauge functions N,-, to arrive at a gauge in which /3jJ- is 
properly sym metric but purely transverse, i .e . ,

/3? = $ •  = «?•. a,Mg = 0. (18 .77)

Using this gauge and working out the different squares in (18.69) gives

(X) -/xd2( i - € 2a 2) l8 ,v - ^ 4

- ( 2м + Л)д2( 1 - € ' 2Э2) ^ 4

d

U j  (x) + XlljdjUfc
d'

-  (2fi + А)€ '2и,д;д2и$с -  2/jL€2UjEjkcd(dj(x?k + exfy) + fjmf2 

+ ^ ufc + — Л e'^djUfa)2 + 2 + exgxg ) j • (18.78)
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A quadratic completion gives the defect energy

Em = J  + 2 + ex***)j
-  d3xd3x'G ir(x -  x ')

x  [АЭ,м?(. -  (2fi + \ ) ( % д 2и?с -  2 ^ 2eiktakdi (xfk + e * ? ,) ](x )

X [АЭ1..и?с -  (2(1 +  \ ) e ,2ar a2u?e -  2/J.e2erkl.dedj (x?k +  е х ^ Ж х ') ,
(18.79)

where G„'(x — х ') is the elastic Green function calculated in (17.106), 
(17.112) in momentum space

c " (k) = (ik2(i + e 2k2) (s,r ~ k,k''/k2) + (2(1 + x)k2(i + r 2k2) ¥ "
(18.80)

This satisfies

kiG,r ( k ) = ki (2/j. + \)(1 + ( ’2k2) l ?

kjkj- G,-,'(k) = — ■ —" — p, 2 / 2ч ’(2/х + A) (1 + t ukz)

Sikiktsi-k'i'kf Gff'(k ) — ^ kkkkJlc1). (18.81)

It follows that

C„.(k)(M ?< (A  + (2/x + A )e f2k2) -  2/x£2 / eik( k(kj (xfk + s x f f l

x  (kr u%c (A + (2/i + \ )i'2k2) -  2 f i f ie rkekekj (xfk + ex£; ))

_  1 (A + (2/x + А) Г У )2 2 1 (2/xl2)2 (
~ 2^ + A  1 + t'2k2 K (| + n l  + e2k2kiki\SM k2

x  (xft. + exij)\xrk> + sx ir ). (18.82)

Inserting this result into (18.79) we can collect the ufj terms as follows,
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E
к

ж / + i ( »  ♦ e , ♦ И с \ 2

-Eк м К 'Р  +
IX A + (2ju. + \)('2k2

>21,22/x + A 1 + C2k Ш 2

1“ ? |2 + Т^К12 + Т=ТГТ&1"?(12= м Е  
k

Sim ilarly, the x  ̂ terms become

(18 .83)

E w :
1 >\ Ш

1 + e2k2j' k2 I
A:*.**.

i + e2kiJ  -^2 -------p - J ( * f *  + ex?, ) ’ (*?*• + e * ? r )

= 2/Л2 E  l ^ l 2 - p | 5 y « l 2 + p M * * f r |2

+ 1 + (2k2\k2 ̂ /Х'к ̂  fc4 X̂ k ^

+ e *// f 2̂ (d jX jkdjX ^j +  C.C.) +  к Л \д;дк хГк \~

■ p tfjx ft ajxfy + C.C.) -  ^ | d ;A * f * | 2
1 + €2A:2

t 2e2
1 + t 2k2 — Хз1э*9/*€/|2 (18.84)

The plastic deformations in the energies (18 .83), (18.84) must now be 
rewritten in terms of the defect tensors 17,у , О,у, а For this was done 
in Section 10.6 [Eqs. (10.121), (10,122)] so that (18.83) becomes d irectly

'd c f. i f = m E
1 / 2  v 2 \ 1 -  2v t '2 1 2

р ( ^ + г ^ Ч + r - V i  + f 1* 2 ? ^
(18.85)

The first term is the usual defect energy of linear e lastic ity , the second 
term represents a modification of the short-range part of it.
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A little more work is needed to translate the plastic rotations into 
defect tensors. For the first two terms in (18.84) this is simple enough 
since the disclination density 0 ,y = eikCdkdea)f = EikedkxFt} gives directly

EAl©,yP = E
к К- к

,P I2чч ~-^\ai xn\2 (18.86)

The rem aining terms have to be expressed in terms of 0 /y and akc. Since 
dj<Xjj= —£jk( ®ki i the divergence of a t] is not an independent quantity 
and can be expressed in terms of 0 * f . Thus we choose the full Qke plus 
the divergenceless part of ar/y for the param etrization of all defects. 
Recalling the relations

= eik( dk u?n + 8in x%k -  х?и , (18.87)

we can calculate

d/d,- \ _ - p i s d/d/Л p p I d/ dy2̂ J a i’n ~ £ik£dkU£n + I Ojn ^  J rfik *ni 2̂
(18.88)

From this result we find

— x£k + ~ r  * (18.89)

d2a j ( + EkiCdk@u = d2afc  “  д2х% + дпд,х^  = 2дед/Х&, (18.90) 

and due to the transverse gauge of w£„,

di aU = “  ̂  ~ tyrfc»

E  M *  = E  [| * ,* P  -  p l ^ - 4 1 2]  - (18.91)

Inserting (18.86), (18.90), (18.91) into the e = 0 parts of (18.84) we see 
that they come to agree with the previous result (18.67) (with a = 1).

W e now use once more 0 ,y = eikedkx%jt to calculate
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E |d;0,y|2 = £  (М-xfyl2 -  |Э,Э;*?уР) (18.92)
к к

and see that the e2 term agrees with that in (18.74).
Then we form

к к

= E (Э/хГа; хй + с . с . ) - ^ | Э ; Э*<*|2 (18 .93) 
к L *

and see that the e/(l + (rk2) terms in (18.84) and (18.74) are  the sam e. 
F inally, we evaluate

so that the rem aining e terms also agree with (18.74).

18.6. SECOND-GRADIENT ELASTICITY AND THE PARTITION 
FUNCTION OF TWO-DIMENSIONAL DEFECTS

For com pleteness, let us perform a few of the m anipulations of Section 
18.4 in two dimensions. In this case there is only one rotational field and 
the jum p numbers mу reduce to an integer-valued vector field m ,. The 
partition functions (18.28) and (18.29) have the exponents

S l © f;l2 = E [ | f l * x f / |2 - | a yxg.|2], (18 .94)
к к

E |0(i I2 = E [k*'/,l2 + 2kiX̂ kiXf, -  *2 - \k,x',f - î xgi2).
к к

(18.95)
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p\7 E (v <Yy + V/Vi -  4-rrnfj)2 +  ^E ̂ E (V,Г/ -  2ттпЬ)

+ 7j~ - 5  E (V ,vf ye - 2rrV,nh)2
^ a x.i

£~ v̂ i _

+ 2?  ■ ^кУ€ ~ 277(2m* + Vi£kCnkl )) (18.97)

and the canonical form

Me 1
P \  X

+ * Y  o-ij(V, yj -  E'jCO -  27T/2,y) + i Y  Ti (V ,Vry£ -  27rV#-/lf f )
X X

+ / St/CV/w — 2тгт,). (18.98)
x

The measures of integration are

2  Ф К .™ ,1 П [ Г ^
,(x) (18.99)

in the first and

E Ф[л.у, т,]П
K - W , }  X . I

dyd*)
2 тг

1 — v
1 +  V

М2
П J .

Г *П
J_ « 2 

d&\2 (x)

х П
X. I / ;

v2tt(3 

drl(x)

П
X

П

dcojx) 1
с 2 7 1  J

^2тг(5(2 + \/fi)e’2/a2_

f
Ш М Е - Н

г г  1
J  — Vs^ sP/P j

(18.100)

in the second case.
In the following, we shall again ignore the coupling P since it causes no 

interesting qualitative changes. The physical observables of stresses and 
torque stresses at the minimum of the energy are given by
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< 4  =  /з (V,y, + V,y, -  + -Sij(V(ye -  2тгп*а )

€2 i2 
Tj = 4/3 — (V/w — 27rm,) = 4/3-2 V ,^ « V * y € -  Tr(2w, + V/£Afn*f)

(18.

The stresses af; are invariant under the simultaneous replacement

01)

+ Vy/V,(x)), 7i(x)-> y,(x) + 2тг/У,(х),
(18.102)

the torque stresses under

m ,(x)—>m,-(x) +  V,M(x), o j ( x ) —» <u(x) +  2 t t M { x ) ,

nfj(x)-*nfj(x) -  £ijM(x), 7/(x) —» 7 ,fx). (18.103)

In order to avoid an infinite overall factor in the partition function, we 
have to fix again the gauge. As in Section 18.3, we go to a gauge in which 
the antisymmetric part of /i/y(x) vanishes if nfj = integer or is equal to 1 of 
nfj = half-integer. In two dimensions, this concerns only one component, 
namely n\2:

nai2(x) = j (n \2 -  >bi)(x) = 0 for n\2(x) = integer, 

n°i2{x) = 2(,? 12 ~ » 2i)(x) = 2 f°r я 1г(х) = half-integer. (18.104)

After this, the symmetric part is taken to have the same gauge as in 
Section 10.3, i.e .,

л?2(х) ”  0, ns22(x) = 0. (18.105)

This choice was always possible. For, if /i,y, m, do not satisfy these 
conditions, we can always go to new variables /i§° which do, via the defect 
gauge transformation

nil = nf2 + V2/V2(x), n\2 = n $  + i(V,JV2(x) + V2/V,(x)), (18.106)

with the fields Л^(х), N2(x) of (10.5). These were shown to be unique 
solutions (up to a trivial translation plus rotation of the crystal as a 
whole), if the only nonzero component /?п(х) satisfies the boundary 
conditions
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0) = 0, (18.107)

0 ) = 0 . (18.108)

Let us now perform the integrals over y,(x) and w(x) in this gauge. 
This gives the conservation laws [corresponding to (18.35)]

Via,-, = 0, V,Tj = - eke<rke. (18.109)

These can be ensured by introducing “gauge fields” Лу(х), h(x) and h(x) 
and writing

OffW = eikVkAj(x), xf-(x) = etkVkh(x)-A i(x). (18.110)

Actually, in two dimensions there is really no gauge freedom in the 
decomposition. Still we have used the term “gauge fields” recalling that 
in three dimensions this name was appropriate. When going from the 
variables cr,y, rf- to AJ y h we have to watch out for the measure of 
integration. The 5-functions for the stress conservation laws S(Vf<f,y), 
S(V,r,- -I- ekc<rk€) can be used to integrate out crl2, (t22 and r2 (say). There 
is no Jacobian factor since det V2 = 1. After this, the remaining integrals 
over crn , cr12 and X\ can be changed freely into integrals over dA{dA2dh 
since

o-ii = V2/li, cr,2 = V2i42, Г| = V2/i — Ai, (18.111)

and there are again only trivial Jacobian factors det(V2). In this way we 
ascend from (18.100) and (18.102) to a partition function

z ■ [/_>>] П [/> > ]

Q O fi l  £k e A ( ) 2  2 7 Г / ^  € jk  ^ k A j n i j
o p c  x  X

-  2 ir iE  (eikVkh -  /4,)m, j • (18.112)



The stress-energy terms arise as follows:
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H o f  (x) = £
X X

-j?

1 ] 2 
2  fakVkAj + (<У)) I

(V ,A ,)2 + (г>) + 2eikVkAj ejk'Vk Ai

= E , (18.113)

£ a $ ( x - € ) = £ ( £f*V H f (x - € ) ) 2
X X

= E  [ Л ( - ™ ) А ,  -  V ,A t (*  -  € )V f.A f  (x -  €')]
X

= S  [i4 i(-V  V)A,. -  (V A(x))2]. (18.114)
X

After a partial integration, the last two terms become [by (18.112)]

—27Гi J ]  Aj(eklVkriij — m ; )  — 2iri J ]  hekî kmt • ( 1 8 .1 1 5 )
X X

We now compare the sources in parentheses with the continuum formulas
(2.123) for the defect densities and see that we can identify

“yO) = E*,V*/r,y(x) -  mj(x) (18.116)

as the integer-valued dislocation density on the lattice and

0(x ) = e*,V*m,(x) (18.117)

as the integer-valued disclination density.
Using the notation a(x) = b,(x) on two dimensional lattices [recall

(12.19)], the coupling (18.115) becomes simply

-2 i r i  £  (Л,(х) b/(x) +  h(x ) ©(x)). (18.118)
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We now integrate out the fields A (x ) and h(x). The stress energy of? is 
diagonal in the “transverse” and “ longitudinal” parts of Л ,(х). Therefore 
it is useful to split Л ,(х) explicitly into these two parts0

A (x ) = eyVj<PT+Vi<PL> (18.119)

and cast the stress energy to the following form:

+ ^ 2  £  [(V*(A -  <Pt))2 + ( W ) .  (18.120)

By rewriting the coupling (18.120) as 

-2177 £  [(e,,V,<Pt + V,<pL )f>, + A0]
X

= —2vi £  W rW ib j  + ©) -  f t U  + (A -  v r)© ], (18.121)
X

we see that we can integrate out independently the fields <pT, </>£,, Л — (pT. 
The change of variables yields a Jacobian factor

П f dAi f  dA 2 J dh = det(-V  V ) I l  J d<pL J d<pT J d(h-<pT).
(18.122)

From the integrals fd<pr and fd(h — <рт) we then obtain a Boltzmann 
factor

exp j-/34?r2(l + v) £  7 j ( k ) ' V(k) ~ 2 p ^ 4 ir2 £  0(k)' =r^r0(k) j »

(18.123)

where the first term contains the lattice version of the total defect energy 
of classical elasticity,

E x p l i c i t ly ,  <pL =  (1/ V -V )V H / , <Pt =
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It is sensitive only to this combination of dislocations and disclinations 
[recall (12.19)] and not to the particular nature of the different defects. 
The second term removes part of the degeneracy discussed in (12.21), 
(12.22) by giving the disclinations an additional Coulomb energy. The 
integration over (pL, finally, generates a Boltzmann factor involving the 
longitudinal part of the dislocation density,

e x p {- 2 ^ 4 .2 £  (К А (к )Г  R . К(1 + . K) K M * ) } '
(18.125)

This fixes the remaining degeneracy. As a result, the partition function 
becomes

Ф )  = £ijV,bj(x) + 0 (x ). (18.124)

f l  "I N/2 i _

x exp j -/3 4тг2( 1 + v) £  t j( x ) -^-^ 2 г)(х)-2/3^4тг2 £ 0 ( х ) 3 = ^ 0(x )

2/3̂ 47r2£(V,6f(x))[-VV(l-(€2/fl2)VV)]-4V,̂ (x))J
(18.126)

The sum runs over all three defect configurations 6 |(x), b2(*), в (х ) , 
independently, and no infinite overall factor appears.

The new defect energies remove the degeneracy between strings of 
dislocations and single disclinations, in a way specified completely by the 
higher gradient elastic energy (18.97).

Consider a single dislocation

(18127>

From (18.126) we see that it has an extra core energy,

£c«rc = -2/34тг21>„,(0) (18.128)

where r,„(0) is the Yukawa potential on the lattice. A pair of 
disclinations, on the other hand, with



0 (x) = Sx.x+I -  6x.x = V,Sx.x (18.129)

[which gives the same contribution to rj = e,yV,6y-+ © as (18.127) and is 
indistinguishable from it in lowest gradient elasticity] has the extra core 
energy

£corc = —2/3(£2/я2)4тг2г'0(1), (18.130)

where r '(x ) is the subtracted Coulomb potential on the lattice. 
Conversely, a string of dislocations along the 1-axis from X to
Y = X + n • 1, say, has

b,(x) = -  6Xl.Yll  (18.131)

where 0 is the Heaviside function on the lattice defined in Eq. (14.170). 
Equivalently we can write

^ (x ) = 5/2V r,(5 x .x -5 x.Y). (18.132)

For lowest gradient elasticity, the string would be equivalent to a pair of 
disclinations at the ends of the string,

0 (x ) = Sx, x - S x. Y- (18-133)

The pair carries an extra energy depending on the distance,

£cx.ra = 2(3((2/a2)4ir22i<l,(X -  Y). (18.134)

On the other hand, the string has the much more involved extra energy,

£ c * „ a  =  2/34-7Г2 £  ( S „ . x  -  S x . v ) ( V 2/ V , ) [ - V  ■ V )(-V  • V +  a2l( 2)}-' 
x.x'

x  (V2/V,)(x, x m - .x  -  Sx .y ) = 2/}4tt22w(X -  Y), (18.135)

where

H'(x) =  V 2 V 2 ( V , V , ) - |[ - V - V ( - V ' T  + i! ¥ ) ) - |(x, 0). (18.136)

If one wants to study the full influence of the different extra energies 
upon the melting process, Monte Carlo simulations of the present model
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will be necessary. Fortunately, the limiting situation of a large rotational 
stiffness, i.e., of a very large Z, can be dealt with analytically and we shall 
do this in the following section.

18.7 TWO SUCCESSIVE MELTING TRANSITIONS AT LARGE 
ROTATIONAL STIFFNESS

The present model with second gradient elasticity accommodates 
naturally the possibility of melting via two successive continuous 
transitions. This can be demonstrated most easily in the limit in which the 
length scale €, which characterizes the rotational stiffness of the system, is 
sufficiently large. Our starting point is the partition function (18.112). We 
perform the sums over n,y and mit thereby forcing the gauge fields of 
stresses and torque stresses to be integer-valued (to be denoted by A x, h). 
Then Z becomes

Z = 1 1 -  v N/2

4 1  + v j V b t f3" V87T|8€2/a22N

e x p j - (1/4/3) £

—(a2/8/3€2) £  (Vkh - (18.137)

Let us follow the behaviour of this model from small to large /3.
For very small /3, both A { and h are squeezed to zero. If € is very 

large, however, the sqeezing of the h field in the second term is relaxed 
and follows an effective partition function (apart from a trivial shift of the 
h field),

Z ~ £  exp
{*}

| (-o 2/8(8€2) E (V*A ): (18.138)

This is a discrete or Gaussian roughening model [see Eqs. (11.10), 
(11.254) of Part II] with fiDG = я2/4/3€2. It is known to have a continuous 
phase transition of the Kosterlitz-Thouless type at j3DG ~ w/2, (see Eqs.
(11.11), (11.68a) of Part II) i.e ., if j8 = /3/, is about equal to
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4(3he2/a2~ 2/тr. (18.139)

These approximate relation hold, of course, exactly for the renormalized 
quantities /3dg> Ph- The same will be true for similar approximate 
statements on transition points appearing later in this section, without 
being always stated explicitly. The subscript h records the fact that, in this 
transition, the fields h becomes rough.

For p of order unity, the prefactor a2lSp£2 is so small that the 
discreteness of h becomes irrelevant. It is then a good approximation to 
integrate out h as if it were a continous variable. By decomposing

= £  [ewV,(A -  (V • V)~le/,V,Aj) + (V • V )-% V ,,4 ,]2, (18.140)

we see that the energy separates into the squares of a longitudinal and a 
transverse part. Hence, after the h integration, the partition function 
becomes effectively

Under the assumption of a very large the last term can be ignored and 
we remain with a discrete Gaussian vector model. For v = 1 (incom
pressible material), this takes a simple form, reducing to the product of 
two identical discrete Gaussian models with a phase transition of the 
Kosterlitz-Thouless type at p = pA with

Below we shall find the same transition once more in the dual defect 
formulation of the partition function, (18.126), where it is easy to see that 
the same universality class prevails also for v<  1. The two continuous 
transitions and their characteristic properties are displayed graphically in 
Fig. 18.1.

In the opposite limit of small the system has only a single first-order 
transition at p = P>1%a t

£  (V*/* -  ekiA c )2
X

X

(V,v4,)2]

(18.141)

4/3 л =  2  In. (18.142)
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FIG. 18.1. Schem atic characterization of the three phases for la rge €, w ith the two 
Kosterlitz-Thouless transitions (K T). The left-hand side indicates the field configurations in 
the roughening representations (18.137) ( « 0  sm ooth, t r o u g h ) ,  the right-hand side 
indicates the defect excitations as deduced from the defect representation  of the partition 
function (18.126) [from H. K leinert (1988)].

0/,~<r/£2-

Рл~ 1

/г ~ 0 0 * 0 ,  bj Ф 0

KT

/|=£0 Л, — 0 0  = 0, bj^Q

KT

h Ф 0 А, Ф 0
0  = 0, 6, -  0

roughening picture defect p icture

■P»~a2ie2

T

L arge-f transitions

Ь,.ат( 1 + v ) «  0.815. (18.143)

This is the first-order melting transition discussed extensively in the 
Chapters 12-14 [see Eq. (12.35)]. Here it arises since, for small the 
third term in (18.137) forces the vector field A k to be equal to 
A [  = - e k(V(h, so that the first two terms combine to the Laplacian 
roughening model, with the associated known discontinuous transition 
[see Sec. 12.6]. In it, the fields h and Л, become simultaneously rough. 

For p far above this transition, the effective partition function is

Z= Y  exp\-(a2/Sp£2) Y  (Va-Л -  в*И *)2 |- (18.144)
{Я.л,} t x J

This looks like a Villain model [recall Part II, Chapter 7, Eq. (7.29)] in 
which h plays the role of the phase angle у and ek(A ( that of the jump 
number nr There is, however, an important difference: The h's are integer 
numbers. A duality transformation following the steps (7.16)—(7.18) and 
Eq. (8.31) of Part II shows that Z is equivalent to a sum

Z= Y  exp\ - 2p(e2/a2)47r2 Y  &/(x))' (18.145)
{£><(*)} I x J

Since the h's are integers, there is no constraint V,-/?,• (x) = 0. But the 
unconstrained discrete Gaussian sum (18.145) is an analytic function of P
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FIG. 18.2. For small t, there is only a single first-order melting transition at (3 ** 1, where  
h roughens o r the defects 0  pro liferate in a background o f random 6, fields.

Ph.AT39 1 

T

fiA~a2te2
h Ф 0 , Aj = -e,yVy/i Ф 0

h Ф 0 , A k Ф 0 

roughening picture

0  Ф 0 , Ь< Ф 0

first-order transition  

0  ~  0 , Ь,Ф 0

no transition 

0 - 0, b,~ 0

defect picture

-A#-I 

т

small-^ transitions

so that there is no phase transition. If h in (18.144) had been a continous 
variable, the ensuing constraint УД(х) = 0 would have led to a Kosterlitz 
Thouless transition at

а2/\6тт2рА €2 2/7Г, (18.146)

in which the A, fields become rough. In Fig. 18.2 we have illustrated the 
properties of the two phases for small t.

The sequence of transitions can also be studied in the defect 
representation of the partition function, Eq. (18.126). We follow the 
model from small to large temperature T= (3~l.

For large €, the disclinations 0  are frozen out and only the dislocations 
can be excited,

Z = E  exp I —2j84ir2 £  b ,(x)(-V  • V)- 16 ,(x) | ■ (18.147)
{*,<*>} I * J

This is the partition function of two independent identical Coulomb gases 
with a Kosterlitz-Thouless transition at p = fib

4)8/, «2/тr. (18.148)

The subscript b indicates the unbinding of dislocation pairs in this 
transition, which is to be identified with the roughening transition of the h
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field in (18.142). In the defect picture, it is easy to predict the position 
and character of the transition also for v < l. Then the interaction
(18.126) between dislocations can be written as

№ m = /64ir2( l + v) £  b,(x)vfi(x -  x'),ybj(x') +
x.x'

2/84ТГ2 E  b ,(x)v^(x -  x')0b,(x'), (18.149)
x,x'

where vq. is the massless transverse Green function, V,V;/V V, and r^y 
the massive longitudinal one, —(8,yV • V -  V,-V; )/(m2 — V V ) .  The long
distance behaviour of tf0(x) was calculated in Eqs. (1.123) and (1.124),

»o M  |Х|^Ж -(1/4тг)(5/уlog |x| + ДГ/Лу/|х|2),

4 W  |Х|^Ж — (1/4тг)(5/у log |x| -  х/х;/\х\2). (18.150)

Both together give the long-range Coulomb interaction energy of a pair 
of dislocations,

£ inl = 2Tr/3[(l + v) + 2]log|x| (18.151).

According to what we have learned in Chapter 14 [compare Eq. (14.13)], 
there is a pair-unbinding transition near

/ ^ « ж4/2тг[(1 + у) + 2]. (18.152)

For a finite £2, the longitudinal part of the interaction (18.149) only has a 
finite range and does not contribute in the critical limit. Then the 2 in 
the bracket of (18.152) is absent and the transition lies at

Рь 2/7t (1 + v). (18.153)

As stated above, these approximate relations hold exactly for the 
renormalized p [recall (14.19)].

For small p ~ a2/£2 the effective partition function is
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It represents a Coulomb gas with a Kosterlitz-Thouless transition at

4 р е е 21а2 ~2/тт. (18.155)

This is the defect version of the roughening transitions (18.139). See 
again Fig. 18.1 for a characterization of the phases.

For p of order unity, the © and V,-b,- terms in (18.126) can be dropped 
and the effective partition function is

£  exp] -р4тг2(1 + v) £  t?(x)(-V - V)~2^ (x ) l-  (18.156) 
№ )) I x J

This has a first-order phase transition at

fr ,(l + v ) - 0.815, (18.157)

which is again the melting transition of the lowest gradient model. 
It corresponds to (18.143).

Consider now the defect picture for small £. Then a phase transition 
might have been expected at large p ~ l/€, in which rj is frozen at zero so 
that © is equal to - ek(Vkb(. The second and third terms in (18.126) can 
be added together and give an effective partition function,

Z «  £  exP j -2р(€21а2)4тг2 £  b2(x) } • (18.158)
{b,(x)} I X J

Due to the absence of the constraint V,6 ,(x) = 0, this has no phase 
transition. With the constraint, there would have been a phase transition 
at

а 2/1в7г2р ь С2 2/7Г, (18.159)

just as in (18.146). The characteristics of the two phases, as seen from the 
defect point of view, are illustrated in Fig. 18.2.

These considerations have led to the qualitative prediction of the phase 
diagram in the p , €2 plane sketched in Fig. 18.3 [Kleinert, 1988] A phase 
diagram of this kind was indeed found in recent Monte Carlo simulations 
of the model [Janke and Kleinert, 1988)], performed in the roughening 
version (18.137), with the trivial prefactors omitted, i.e., the partition 
function investigated was
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FIG. 18.3. Phase diagram suggested by the three known transition points. It is not clear 
where the first-order transition line becomes that o f the Kosterlitz-T houless (KT ) type. The 
dots indicate the would-be transition ( 18 .14 6 ), (18 .159 )  [com pare with Fig. 18.5).

Z,.= £  exp(-/3£ r). (18 .160)
(Л.Д.)

Er being the Л, Л, energy in (18.137). Since the universality class does not 
depend on v, its value was chosen to be 1 , to have the simplest energy. 
The simulations were done with periodic boundary conditions using the 
the standard Metropolis algorithm, in which trial values for h(x) and 
Л,(х) were chosen randomly from one above or one below the current 
value at each site. The transition points were found by measuring at 
various fixed Ts, first the specific heats, for an estimate, and afterwards 
the correlation functions of h and Ah for a precise determination. Figure
18.4 shows the specific heat curves, with the definition с = T2(d2l 
dT2)\nZrIL2, where L2 is the number of sites of the square lattice. It is 
advantageous to use T instead of /3 in this definition since in the 
roughening picture the temperature interpretation is usually inverted 
(cold й smooth, hot й rough). Then the curves allow for the easiest 
comparison with the curves of the known limiting cases of large £2, where 
we should see two rounded peaks of the discrete Gaussian model, and of 
small €2, where there is only a single first order transition of the Laplacian 
roughening model. The correlation functions which were studied are 
defined as follows,

c"{x-x') = L((h(x)-h{x'))2)

c f ( x -x ')  = L ((A fo )-X ,(x '))2), « = 1 .2  (18.161)
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where ( . . . )  denotes a thermal average with respect to Zr, and the 
wiggles on top are averages along columns in the у direction, 

1 ^
h(x) = —— J ]  h(x,y). In momentum space, these averages are equi-

l. у -  j
valent to a projection on the kx-axis, leading to simple one-dimensional 
Fourier^ representations for </'(■x) and c*(x), In the absence of defects, 
where h and /4, are continous free fields, these can be evaluated exactly 
(even on finite lattices).

Let us summarize the theoretically expected behaviour of these 
correlation functions, first in the limit of a large €2, where it is most 
obvious. In the Iow-temperature solid phase, there are very few defects 
and the discrete variables h,A,- can be treated effectively as massless 
continuous fields. The dilute gas of bound defects manifests itself only 
in a renormalization of the temperature, i.e ., This is an
exponentially small effect, due to the finite activation energies, i.e., to the 
low fugacities. The correlation functions of h and Л, can then be 
extracted from the energy in (18.137), or taken directly from the defect 
energy (18.126). After replacing /3 by the renormalized quantity pR and 
projecting on to the kx-axis in momentum space this gives (for a = 1)

c"(x) = - 2f}R~ -^ [v 4(x) + (2€2/(l + V)M0)« ] ,

cf (x) = -4/3RvVn)(x), c$(x) = — 20*—̂ — v^(x ) , (18.162)

where the D = 1 Green function are [see (1.6.184)]

1 W  PikuX —  1 ? 7 Г
4""W  = 7  E  , u  2 . k„ = — n, (18.163)L /f=i 2(1 -  coskn) + L

1 V  e * * - lv4(x) = -  £
L i [2 ( 1 -cosAr„)]2

With increasing temperature, we run into the first transition /3((l 1 where 
dislocation pairs begin to unbind. There we expect the /l,-fields to 
become massive, as a two dimensional disorder version of the “Meissner” 
effect in superconductivity. In an ensemble of unbound dislocation pairs, 
a single pair has only a finite interaction range, due to the screening of 
the Coulomb forces by the ensemble. At the same time, the h correla
tions, which in the low temperature phase grow like ( 1/8тг)|х|2 log |x|
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[recall Eq. (11A.181)], are screened at long range to oc -(\I2it) log |x|. 
The amplitude can be extracted from the effective discretize Gaussian 
model in Eq. (18.138). Hence, after a projection onto the &Y-axis, the h 
correlations are

c\x)  =  - 4 p Re2vy\x). (18.164)

From the defect version of the model (18.154) we see that, in this phase, 
the disclinations are bound together by a two-dimensional Coulomb 
potential. Upon a further increase in temperature, we run into the second 
phase transition where also the h correlations become massive and the 
pairs of disclinations unbind. The renormalized values of /3 at these 
transitions were given in Eqs. (18.139), (18.155).

In the low temperature phase, when we plot C2 (x) as a function of 
v^)](x) for many values of x , we expect the points to lie on a straight line 
for all /3 > /3/>. Its slope decreases with temperature, but with a limiting 
minimal slope f$R • (1 + v) = ((Soc,<•)” ' = 2/тг at the critical point [see 
Eq. (18.153)]. For the correlation length (= inverse mass)
becomes finite. In the plot this is signaled by the straight line curving 
downward at large distances. If the lattice size is smaller than this finite 
correlation length, then the straight lines still appear straight, but now 
with a slope smaller than 4/тт. By a comparative finite-size scaling analysis 
of the correlation function near the transition in an ordinary discrete 
Gaussian model transition (to which it reduces for С —» » )  it can be shown 
that using this “onset of curvature criterion” it is possible to determine 
the transition point Д. quite accurately, and with very little dependence 
on the finite lattice size, as long as L2 > 16 x 16. In this way one can 
reproduce the well known transition point of the discrete Gaussian model 
[compare Eq. (II. 1.68b)]

f t x j c -  1.354 ± 0 .0 2 .

The correlation functions were measured on 32 x 32 lattices using 
500000 configurations for the thermal averages, after discarding 100000 
configurations for equilibration. The transition points (for v = 1) are 
shown in the €2 -  T phase diagram of Fig. 18.5 as open circles. The solid 
lines are an interpolation of the data. The dotted tangential line has a 
slope 5.4. This agrees with what would have been expected from the 
approximate discrete Gaussian model (18.138), which would have a 
transition at 4f}c€2 = ((3DGc)~l or T = 4(3DGc€2, i.e ., a slope of
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FIG. 18.4. Specific heat versus tem perature o f the defect melting model on a 16 x  16 
lattice with increasing length scale o f  rotational stiffness C. The tem perature scale is the 
same in all plots. A rrow s indicate the transition points which, for C2 > 1, lie clearly below  
the peaks. It is not necessary to plot the peaks for larger 6'2, since they follow quite well the 
appropriately rescaled specific heat curves o f the ordinary discrete Gaussian model. The 
data arc averages o ver 5000 configurations, after discarding 1000 configurations for 
therm alization [from Janke and K leinert (1988)].

4- 1.354 — 5.42. The full circles show the location of the peaks of the 
specific heat, /3pcak, as measured on 16 x 16 lattices and plotted in Fig, 
18.4. Actually, to determine the precise location of the maxima, 
additional runs were performed near the tip of the peaks with much 
higher statistics. Furthermore, the finite-size scaling behavior for t 2 = 0.2,
0.5, 1.0, 3.0 was studied (using lattices up to 64 x  64) to make sure that 
there is no significant finite size dependence in /3pcak. The dashed line 
with slope 6.9 agrees well with the peak position of the pure discrete 
Gaussian model (18.138), which has a peak position Pp£k ** 1-722 ± 0.01
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FIG. 18 .5. Phase diagram o f the lattice-defect melting model for v = 1. The abcissa is the 
length scale o f rotational stiffness, the ordinate the tem perature. The transition points are 
determ ined from measurements o f correlation functions on 32 x  32 lattices. In the upper 
phases we have indicated the roughness o f the integer-field configurations and the defects as 
in Figs. 18 .1 , 18.2. The low er phase contains very few defects and is com pletely  rough in 
h, Л 5. The right-hand margin are marks for the position o f low er peak and K T  transition  
for € = oo [Eq. (18 .152)]. For finite €, the transition tem peratures are low er than these, by a 
factor (1 + v)/[l + v + 2], since the longitudinal modes have only a finite range € and do 
not contribute to the critical limit o f the renorm alization flow [com pare ( 1 8 .15 1 )] .

corresponding to a slope 4 1.722 * 6 .8 9  for €2 >2. Not only the peak 
position, but also the peak height depends very little on L, as a reflection 
of the finite correlation length f  under the peak (f  **3a). The transition 
temperatures, where the correlation length diverges, lie about 20%-25% 
below the peaks. Thus, for large €, the Monte-Carlo data render clear 
evidence for two successive Kosterlitz-Thouless transitions.

At around £2 = 1, the two peaks merge. The transition points, 
however, are still well separated. While the lower transition temperature 
remains almost independent of near Tc *  3 , the upper one moves 
closer and closer to the peak location until, at around £2 * 0 .5 , a 
difference is hardly detectable. Simple extrapolations of the two 
transition lines suggest that they meet at around €2 *  0.1-0.2. Since we 
know from earlier work that for €2 = 0 there is a single first-order melting 
transition at Tm «  2.45 (with an entropy jump of As «  0.2 per site), we
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expect the transition to continue to remain first-order up to the separation 
point around i 2 ** 0.1-0.2. For larger €2, it is conceivable that the lower 
transition changes, at a tricritical point, to the Kosterlitz-Thouless type, 
while the upper one remains first-order up to some €2 between « 0.2  and 
« 0 .5. This observation would explain the very small separation between 
peak locations and transition point. This picture is partly confirmed by 
simulations at € 2 = 0.2. Here, a clear hysteresis is observed in the 
internal energy, together with a pronounced finite-size scaling of the peak 
height of the specific heat with increasing L, indicating indeed a first 
order transition (with As per site remaining «0 .2 , as for i  = 0). At 
€2 = 0.5, on the other hand, no reliable hysteresis can be observed and 
the peak height depends only weakly on L (up to L = 32). However, at 
this € it is very difficult to disentangle a possible weakly singular part of с 
from the large background contributions due to the lower Kosterlitz- 
Thouless-like transition (whose specific heat peak could be just be lying 
on top of the second transition).

In conclusion we see that the present lattice defect model with 
rotational stiffness resolves all open questions within the KTNHY 
approach of the two-dimensional melting process. It is apparently the 
simplest lattice model rich enough to describe the variety of different 
melting processes observed in recent experiments with liquid crystalline 
material.

18.8. APPLICATION OF i 2 CRITERION TO LENNARD-JONES 
AND WIGNER LATTICES

With the results of the last section it is now easy to understand why the 
D — 2 Lennard-Jones crystal at low coverage has always been seen to 
undergo a clear first order transition, experimentally, (see Figs. 14.6- 
14.12) while the Wigner electron lattice has a sharp but continuous 
transition (see Fig. 14.15), with the stiffness constant К collapsing near 
the universal Kosterlitz-Thouless value (see Fig. 14.13). The reason lies, 
as we shall now demonstrate, in the different values of €2 in these 
systems.

According to Eq. (17.86), the f 2 parameter occurs in the dispersion 
curve of the transverse sound waves as follows,

« 2 ( к )  =  / x A ^ l  +  e-k2 +  . . . ) . ( 18 . 1 65 )
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For a lattice held together by a central potential Ф(х), the transverse 
frequencies orr (k) can be deduced from Eq. (7.140). They are given by 
the eigenvalues of the matrix

^i/(k) = Ti [1 “  cos(k • х)]д,д; Ф(л:), (18.166a)
x * 0

divided by the atomic mass M. Alternatively we can use the Fourier 
transform of the potential Ф(к), and have the formula [compare (7.161)]

VtfOO = 77 £  I(c + k),(c + к),Ф(с + к) -  С,С/Ф(С)], (18.166b)

where с is a reciprocal lattice vector. For an m, n Lennard-Jones lattice 
with a potential

Ф(х) = 4е[((т/гУ" -  (a/r)"l (18.167)

the x-space representation (18.165a) converges so rapidly that in the sum 
over x, the nearest neighbours almost give the entire contribution. We 
therefore calculate

д,-дуФ(х) = А 8ц + BxjXj,

with

(18.168)

A = Ф'/r. В = Ф"1г2 -  Ф'/г\ (18.169)

and expand

= £
х * 0

(x • к )2 (x • к )2
24

-I- . (A8jj + BxjXj). (18.170)

The most stable lattice is of the triangular type, with lattice vectors

x = ' (18.171)

and cell “volume” v = (see Part I, Appendix 6A). The sum over



the nearest neighbours involves the six vectors x = ao(cos(p„, sin<p„) with 
the azimuthal angles <p„ = mr/3. Over these we have to perform the 
angular averages

< (x k )2) ,  <(x-k)4>, <(x-k)6) ,  . . .  (18.172a)

If the rotation symmetry were perfect, this would give

\ k2' \ k* 'b ,k('' ■ ■ (18.172b)

With only the sixfold symmetry, the first two averages are still correct, 
but the third (and the higher ones) depend on the azimuthal angle <p 
of the momentum k=|k|(cos<p, sincp). [Notice that in (k ■ x)6 this 
dependence disappears again in the contribution of the higher lattice 
vectors x since there are more angles (p„ to be averaged over.] The (p 
dependence of ((k -x )6) is

( (k .x/ ’ ) = 10 + C3°2S(6-p)-  (18.173)

Since the deviations from isotropy are at most 10% we shall ignore them 
in the following. We can then immediately calculate (using natural units 
with cr= 1 , and к = k/|kj).

K„(k) = (V fk 2 + v ^ k \ s ,i -  £,£,) + (v £ V  + (18.174)

with

l4 2’ = 6(Ar/4 + BrV\6) = у  [m(m -  2)r~m -  (m«->/i)],

2
K r * = - З А / 132 -  fi/764 = -  4 )r~m -  {m*->n)},

16
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V[2) = 6(A/~/4 + 3BrJ/16) = y  [m(m + 2/3)r~" -  (m «->«)],

v £ ] = —ЪАга/Ъ2 = —— [m(m + 4/5)r~m -  (m /*)]. (18.175) 
16
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FIG. 18.6. The length scale o f rotational stiffness C2 (m arked “ transverse” ) as a function 
o f the lattice spacing a0 for a (12 ,6 )  Lennard-Jones crystal and for W igner lattice. The place 
r0 indicates the minimum o f the Lennard-Jones potential. The effect o f m ore distant 
neighbours places the equilibrium value o f a0 about 1%  below r„. The figure shows also the 
length scale C'2 o f the longitudinal branch [recall (17 .86)].

Each expression is to be evaluated at r = a{).
For the most common set of parameters (m,w) = (12,6) we find from 

the transverse coefficients, the parameter i 2 \

e  = i/<4)/l4-2) = 1 ~ . (18.176a)
1 301-41/5

This is plotted in Fig. 18.6.
Although not of direct concern here, we also give the parameter V~ for 

longitudinal modes (see again Fig. 18.6)

= = J A  [— . ( 18 . 176b)

w  57 i - £ - *

In absence of an external pressure, the equilibrium value of r lies very 
close to the minimum of the potential, (18.167),
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T able 18 .1 . V alues o f the lattice sums S„, fo r the triangular lattice 
for various m values. For large m one can use the lowest two  
neighbour correction to S,„. S;,'PP = 1 + l/3"": + 1/2"' tabulated in 
the second column.

m s„ C “ PP m S ;r

4 1.28510 1.17361 10 1.00524 1.00509
5 1.12697 1.09540 11 1.00292 1.00286
6 1.06264 1.05266 12 1.00164 1.00162
7 1.03254 1.02920 13 1.00092 1.00091
8 1.01741 1.01625 14 1.00052 1.00052
9 1.00949 1.00908 15 1.00030 1.00029

r(, = (т/п)Щт~н). (18.177a)

i.e., for the (12,6) potential at (see Fig. 18.6)

r{) — 2 l,(\ (18.177b)

If the sum over all neighbours is included in minimizing the energy, r0 is 
decreased to

r() = (A775;„//?5/f) ,/(w' - /'), (18.177c)

where S„, is the sum

( 1 8 1 7 8 )в x Ф 0 |X|

The values are tabulated in Table 18.1.
For the (12.6) potential the correction is 0.9902. At г« = 2 1'6 we have

9 1/6
Й = - — « -0.0468. (18.179)
0 24

Extrapolating our Monte Carlo data in Fig. 18.5 to negative values we 
conclude that a Lennard-Jones lattice must have a weakly first order 
melting transition. Monolayers of rare gases adsorbed on graphite under 
no external in-plane pressure are expected to have this property.
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Equation (18.176a) has an interesting feature. At larger a0, near 
«max ~ 51/6 ~ 1.3077 ~ 1.165/0, i e ., at a density 36% lower than the 
density at zero external pressure, the size of — £2 increases dramatically 
(see Fig. 18.6). The theory then predicts a strongly rising transition 
entropy. It is well known from Monte Carlo data and measurements on 
rare gases adsorbed on graphite that a lower coverage of the substrate is 
accompanied by an increasing discontinuity at the melting transition [see, 
for instance, Figs. (14.3), (14.5)]. Moreover, at a0 ~~amiix, i 2 diverges. 
This may be interpreted as a signal, within this simple theory, for the 
onset of the gas phase.

Let us now turn to the Wigner lattice. Here Ф = e2lr and the lattice 
sum (18.166a) converges very slowly. In the sequel, we shall use natural 
units with the charge e, the electron M, and the lattice spacing a{) all 
equal to unity. The eigenvalues of K,y(k) will then be directly the squares 
of the eigenfrequencies w2 measured in frequency units w2) = e2/Maf). 
The convergency is improved by the following procedure, invented 
by P.P. Ewald in the 1920’s. Consider the characteristic lattice sum

E l—"—r<?'k‘x with an arbitrary displacement vector u. Set R = |x + u| 
x |x + u|

and rewrite this sum by means of an auxiliary integral as follows

= [ *  dtt~1/2 £  + ik *. (18.180) 
x R  v t t J o  x

For finite /, this sum converges now very fast. The strongly convergent 
region of small r is treated using a generalization of Poisson’s formula
(6.37), Part II, valid for arbitrary periodic lattices in D dimensions with 
cell volume v ,

E e “ k = ^ ^ E s ( k - c ) ,  (18.181)
x V с

where the right-hand side runs over all reciprocal lattice vectors [recall 
the definition in Part I, Eq. (6.29)]. Multiplying this with the Fourier
transform /(k) = S / ( xK~'k x of an arbitrary function/(x) and performing

X

the sum (1 /N) 2 j , the formula (18.181) just reexpresses the well-known 
identity, k

£/(*)= E/(c)- (18.182)
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For the special case /(x) = e /Л' + ,к х, this gives in two dimensions,

tR- + fk • X _  J L  V* e ic ■ U ^ -(k  + c)’/4r 
Vt r

(18.183)

While the left-hand sum over lattice vectors converges fast for large r, the 
right-hand side over reciprocal lattice vectors does so for small t. We 
therefore choose an arbitrary separation parameter for the t  integration, 
say e, and decompose the lattice sum into two dual terms,

£ i e/kx= l Г  dt, 1/2£ е-л= + л.» + ^ £  [ 'd t r 'K ^ e -
x R V 7Г J e x Vt Jo c

(18.184)

After a rescaling of / by e, the sum on the right-hand side can be 
expressed in terms of the so-called Misra functions

<Pn(z) = j *  dtt"e~:l. 

They are related to the incomplete Г functions,

Г(а, z) = J  dtt— 'e-'.

к + n + I

* = 0 * !(*  + /!+ 1).

(18.186)

(18.187)

by

<Pn{z) =  (z)~"~T(n + 1, z).

They can be expanded as follows,

<P„(2) = (z)-''-,|r(;!+l)- £ (-)*
L к = 0

Then (18.184) becomes

£  = V ^ £  , - ie ( « * V * -  + V ^ £
( 18 . 190 )

(18.188)

(18.189)
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For a triangular lattice, the reciprocal lattice is also triangular and has the 
vectors

There exists then a particular convenient choice for the parameter e with 
the property that it makes the two sums in (18.190) for к = 0 and u = 0 
completely symmetric, namely.

If this relation is to make sense, we have to remove the singular x = 0 and 
5 = 0 pieces on either side in (18.190). Both x = 0 and c = 0 are still 
admissible as long as u Ф 0 and к Ф 0, since then the Misra functions <p_i/2 
are finite. In order to treat the limit u -> 0w e remove the x = 0 and с = 0 
terms on both sides and write.

(18.191)

£ = 7tIv. (18.192)

Then the arguments e/?2 and c2/4e of the Misra functions run through the 
same values.

(■ V T 2 T V T 2
1 2

*>

= (2-tt/V3)(ct + c ,c2 + « ) .

( 18 .1 9 3 )

Hence we can write formally

(18 .1 9 4 )

E  * = ( ~ГТ + V̂ e/7T</>_ 1/2(ец2) ) + -  V7r/ev>_i/2(k2/4f)\ n I t '

( 1 8 . 1 9 5 )
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Then we use (18.189) and deduce the limit of the Misra function

<p_,/2(z ) - »  V t t J z  -  2 + 2z/3 -  z2I5 + 0 (z 3). (18.196)

This shows that for small u —» 0 , the quantity inside parentheses in
(18.195) is regular and we have, for e = ttIv, u = 0 and small к

(18197>
where the sum over s is understood to comprise the correct multiplicity of 
each value (18.193).

As an example for the effectiveness of this resummation procedure, 
consider the energy of a single electron in the Wigner lattice (in units 
e2 = l)

£„= £  П ' (18.198)
x * 0 |x|

In order to obtain finite energy we have to add a neutralizing negative 
background charge which gives an additional energy

Eh = - -  lim lim -V  (18.199)
|x| V k - o k "

The total energy £=£<, + Eb can then be directly evaluated using 
formula (18.197) since the background energy just removes the singular 
1/k2 piece. Hence

f i - r W E  *•-«*(■»)- 2 )- (18.200)
V» \j  ̂0 /

At the nearest neighborhood position,

j ,  = 2ir/V3, (18.201)

the Misra function has the value

¥>-|д(*|) = 0.065790. (18.202)
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Including the six neighbors, this gives the lowest approximation to the 
energy (to be multiplied by e2, for proper physical units)

£ = -3 .921052^= - (18.203)

A full summation over all s in (18.200) changes this very little to [see 
(14.149)]

£ = -3 .921034^= - (18.204)

Thus, while the sum over Coulomb energies converges very slowly in 
x-space, the representation (18.190) with e=  тт/v is strongly dominated 
by the nearest neighbors in both, the direct and the reciprocal lattice.

After these preparations we are now ready to calculate the parameter 
€2 for the Wigner lattice with the help of formula (18.195). We rewrite 
the x-sum in (18.165) as

Mk) = у̂(к) + ^/(k) -  ve/7r E [1 -  cos(k • x)]a,d,(p_l/2(ex2)

+^Vn/e E  [(k + c),(k  + c ) j  -  CiCj]<p-x,2 Г ^ ~ )  ' (18.205)

We expand the two sums in powers of к up to /:?, arriving at

Vfl(k) = Ve/7r Y - ( к .х ) 2 - - ( к . х Г . [ 4 £ 2X jX j  (py2 ( £X2)

-  2e5/y9i/2(eJc2)]1 (18.206)

V^(k) = U/Ш E j(k + c),(k + c), <Р-иг[^  -

1 /c2\/ 2c -k  + fc2
4! 4e 4e CjCjfP—1/2

W J ’
(18.207)

where we have used the identity

-<p:,(z) = <p„+,(z). (18 .208)
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Incidentally, all higher Misra functions in (18.207) can be reduced to the 
lowest one, <?i/2(z), via the iteration formula,

<pn+l(z) = ^[(n+ l)<pn(z) + e *]. (18.209)

When summing over all x, c, the only (small) anisotropy arises from 
(k • x)AXjXj and (k • c)4c,cy for the nearest neighbor x, с vectors. As 
before in the Lennard-Jones case, we shall again use the isotropic 
approximation. Expanding V,j(k) in powers of k.

v0(k) = i f  + vy'ifc' +(4). 4 (18.210)

we find for e = 7т/v, keeping only the nearest neighbour contributions, 
from the x sum (к,- = /r,-/|k|).

r(-)x ~ r 6 Vv

1 6 1
V v 4e 24

+ 2Uj)r<P>nAs) -  \ V v i e w ]  (18.211) 

(S„ + 4к,£,)Р<р}12(5) -  З В ^ п Л !) J  • (18.212)

The с part of the sums (18.207) contributes first from с = 0 a purely 
longitudinal term,

У 1 Г »  -  ♦ f ( - *  ♦ 5  ♦ • • • ) }  • m m

The first term is the origin of the incompressibility of the Wigner lattice, 
[recall Eq. (14.151)]. The sum over the nearest neighbor vectors on the 
reciprocal lattice gives

V\f)c = ^ 6  j i/з(s) -  (8jj -I- 4 ^ < P y n  + (8u + 2к^ )-срш , 

V-f)c = + №y + 12к,1с})-(рш

-  (8ij + 6fcjfCj)̂ <p5,2(s) + —  (5,y + 4^f^y)53<p7/2(j)| * (18.214)

j f
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Projecting out the transverse parts gives

V^P = - 7=6 • 2
Vo

(4) = _1__6_ 
T Vv 4e

s s
- 2 <P\I2(s) + T «w (s )

3 j2 s ’

s s2 r ’
+ 1 4 <P3n(s) -  -<Pfi2{s) + (18.215)

Inserting s -s\  we find, after factorizing out the standard frequency

шр = = ~MnC0̂) (listing x an  ̂ c contributions separately),Mva 0 V3/2

= 2-0.0181 = 0.0362,

к5-4) = -0.000478 + 0.000252 = -0.000226, (18.216)

Thus, the transverse frequency spectrum is, in proper physical units,

a)2r -  а,~[0.3в2(као)2 -  0.000225(kaQ)4 + . . . ] .  (18.217)

This implies the following value for the angular stiffness parameter (in 
units of ao)

e2 = V^/V^  = -0.00622. (18.218)

Since the dispersion curve of the square lattice in the simulations in Fig.

18.5 has a spectrum 2 — 2 cos к = к2 — this value of t 2 corresponds

to a value of t 2 in the lattice model of €2 + — 0.1. In this neighborhood

the single first order melting transition is about to split into two 
Kosterlitz-Thouless transitions. The specific heat curve should therefore 
have about the same shape as that of the lattice defect model in the first 
of Figs. 18.4, i.e ., it should look similar to a A transition in superfluid 
helium. This is indeed what was observed by Hockney and Brown in 1976 
(see Fig. 14.14). Near the splitting point, the elastic stiffness KR at the 
melting transition is expected to have the universal Kosterlitz-Thouless
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value (14.157). This is seen in the Monte Carlo simulations in Fig. 14.13. 
For completeness, let us also state the longitudinal coefficients,

VL(k) = V 4tt7/vk -I- V ^ k 2 + V ^ k 4 . . . ,  (18.219)

with

] =  V r  [  ( 2 (f>112 +  4 ^ * V2)  “  3 +  ~  2 S<Pl/2^  +  J 5Vi/2 ’

1/(4) _ 6 1 [  / 3 , 5 я \ 1 
~ V ? 46 { \24s <P|'2 ~ 24S <Pm) + 9

~ <̂Pi/2(s) + -̂s<Pm(s) - j-s-pV2(s) + ^-S'V7/2(5')j| • (18.220)

where we have listed separately the contributions of the sum over x, 
с = 0, and the sum over с Ф 0. The first term gives the well-known 
anomalous contribution to the longitudinal frequency,

2 2 о

( 18 .22 1 )
M м  v

which is responsible for the incompressibility of the Wigner lattice [recall 
Eq. (14.159)]. The term К[2) contributes to the longitudinal frequency

а>[2) «  w2 (0.0809 -  0.2962 + 0.0336)(Ьо)2 -  -0.1818(*до)2,

a>t4) *  <o2(—0.0057 + 0.0068 -  0.0004)(/:ао)4 *  0.0007(^o)4- (18.222)

Hence, the parameter t ’2, defined in (17.86), has the value

£'2 ~ -0.0038. (18.223)

Notice that up to order /с2, the frequency spectrum is given by

0)7-«  (oj,0.362(ka())2, a)2 = Шр(ка0) — 5^7, (18.224) 

in agreement with Eq. (14.151).
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DISORDER FIELD THEORY OF 
DISLOCATION AND DISCLINATION 

LINES IN THREE DIMENSIONS

CHAPTER NINETEEN

19.1. THE PARTITION FUNCTION OF GENERAL DEFECT 
LINES IN THREE DIMENSIONS

The interaction energy given in (18.59) for defects in higher gradient 
elasticity puts us in a position of developing a disorder field theory which 
distinguishes the two types of defect lines. For this we extract some finite 
self-energy from the dislocations and disclinations in the Boltzmann 
factor,

£-(/9/2)4ir St(rea,7 + c«0,7) (19-1)

The remaining substracted energy can again be brought back to the gauge 
field formulation. In this way we arrive at the energy expression

^ ( £ ; 1 + /Eim + £dcf) = ^ I ]  (V -  7 7 - ^ й 2)  + ^ 2  E  (S. x\? + баГЙ)

-  2 tt i Ya {A a a a + heiQei)
X

+ §  ■4ir2 E  (c« afj + c0  6 f) , (19-2)
£  X

1319
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where the primes indicate a modification of the elastic energy by higher 
gradients to compensate for the added last term in (19.2). As long as we 
are interested only in structural properties we do not have to write these 
terms out explicitly. (The procedure of Section 12.4, Part II is 
applicable.)

When brought to the above simple form, the construction of a disorder 
field theory becomes rather straightforward. Following the same steps as 
those of the XY model, we first observe that the sum over defects

can be rewritten [up to the trivial overall factor jV =  (2 тг(Зса)~9М2 
(27г/3Гн)“9М2] as the partition function of a lattice model of the Villain 
type [compare Section 13.3, Part II]

The proof proceeds as usual by introducing auxiliary fields aa , ©(, to 
linearize the squares,

(19.3)



19. DISORDER FIELD THEORY OF DISLOCATION AND DISCLINATION LINES 1 3 2 1

Now we perform the sum over n(i, m(i which makes au, 0<, integer say 
a (i, 0 |,, and the integrals over yh 5, which enforce the conservation 
laws, Vta (i + eikf ®i<( = 0, V( 0 ,, = O. Thus (19.5) is indeed equal to
(19.3).

19.2. COSINE FORM OF THE PARTITION FUNCTION

The next step consists in approximating the expression (19.4) a la Villain 
by a model of the XY type involving cosines rather than periodic 
Gaussians. Recall that the original Villain approximation went in the 
opposite direction,

„  Л(/3) £  e-(*GKTH-W (19.6)
II

where

fi(fi) = f t ,  = 1/(2 log (/,(«//„(/3))). (19.7)

In Section 9.3 we encountered the same problem and found it useful to 
define the inverse operation

£  = Rv_,(p)<,/>,-.«>•*» (19.8)
II

where Pv-i((3) is the solution of the equation

p = -1/ (21о 8 (/,(/Зк-,)//о(/^-0)). (19-9)

and

Rv-,(p) = ll(logI0(pv-<)-VTtf). (19.10)

With this notation we can approximate (19.4) bya

aA ctually, we had seen in Section 13.4 that a much better approximation is given 
by replacing the second cosine by the mixed energy cos(V, 6, -  -/»<, ) + 
5cos(2(V , 5, -  sukyk -  h(i)) where 5 is determined by Eq. (13 .101). We shall omit the 
second term , for brevity.
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Zdcf I R y  I I 2
.w

г  (  1 VwnT f "  rfs,(x)
4тт(3сс

x  exp j ft, E  cos(Vf y, -  Л ,,)  + /Зв  £  cos(V, 5, -  em yk -  h„ )  j  -

(19.11)

where

4тт-рс„ y-1 (4 tt2/3cJ )  v - iA .s l ; r 4 r r J  • j f e " l z 3 z r )  • <1912)

As a third step we re-express the exponent in terms of the pure phase 
variables U,(\) = е'*л*\ У,(х) = <?'л,(х) as follows

j3„ Re E  U,(x) Uf(x + е)е'л’л') + /3,., Re ( E  V,(x) Vj(x + i) eiKM
x. i. С

+ E V,(x) K/(x + t) U fa) e'""1*'
X

eik = 123 .231 .312

+ E К,(х)И ;(х + €)У *(х)ейй«‘Ч . (19.13)
X

tik = 213.321 .  132

19.3. DISORDER FIELDS FOR DISLOCATIONS AND 
DISCLINATIONS

The disorder field theory can now be obtained in the usual way by 
introducing a pair of complex fields М/, ai% r t , A, via the identity

I dtijdu* [' ^ £ ^ - е-<'«и.,Ч+м)*|1йи«-«1+м.)= [_ (19.14) 
J -x  J_ ,x (2 ir/)-

and a similar one for v,-. A,-. With these the integrations over the phases 
y/(x), 5,(x) can be done trivially, giving associated Bessel functions 
/0(|а,|), /0(|A,|). In this way we arrive at the partition function [ - Г ' = 
J r [Rv-i(l/4n2pca)3"Rv-l(l/4ir2pce)3A']
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f dujduf f  П  Г Г dv'dv] Г*_J-* J  —j x M  J _ % ' f /2 n i)2

x exP j Д, Re £  Ui(x)uJ (x + t)e IA,lM
I x. /, С

+ pe Re ( XI 0/(x) y/fx -I- i) e,7'"(Jt)
X, I

Vj(x) vj(x + €)ul(x) eih,M

+ Yj v, (x) vj(x + t) uk(x) eih,,(x)
(ik = 213*321.132

-  \  T i  ( a / W, +  C.c.) - \ T a ( A Jv, + c.c .) + £  log/„(Ы)
L  X ^ x X./

+ Slog/„(|A, 1)1- (19.15)

m =  123*. 231 . 312

It describes the fluctuations of dislocations and disclinations under the 
effect of external stresses and torque stresses carried by the gauge fields 
Л</(х), h(i(x).

The final total partition function for defects and stresses with higher 
gradient elasticity is then obtained by multiplying this expression by 
the Boltzmann factor of the stress energies and integrating over all stress 
gauge fields.

An important feature of the field energy is that, as a consequence of 
the defect conservation law V( a (i + eik( Qki = 0 , there is now a coupling 
of the two types of disorder fields with each other, through the cubic 
terms vv*u. These terms have the capacity of making defect proliferation 
a first-order process even in the absence of screening effects. We recall 
that in our initial qualitative discussions in Section 8.5 we had identified a 
simple mechanism for driving the melting process to the first order. This 
mechanism was based on the Meissner screening of stress in the presence 
of dislocations which, in turn, liberated the disclinations and opened up a 
new reservoir of entropy. Here we find a further driving mechanism to 
achieve a this. It is the coupling of dislocations with the antisymmetric 
part of the disclination density.

In order to see this let us set the stress fields equal to zero and study



1324 III. GAUGE FIELDS IN SOLIDS

the mean fields alone. Giving all components an equal real mean value, 
the free energy of the defect system is

“ 0/def ='/3«9h2 + Д0 (3 + 6u)v2 -  3au -  3At1

+ 3log/0(a ) + 3log/0(A). (19.16)

In the absence of disclinations {v = 0), the dislocations by themselves 
would have an energy

'VAfdisioc = A, 9u2 -  3au + 31og/0(a ). (19.17)

This has the same form as the mean field energy of an ordinary XY model 
which has a second-order phase transition at [recall (5.28), (5.29) of Part 
II]

pa = 1/3- (19.18)

Close to this, (19.17) has the Landau expansion [recall (5.31) of Part 11]

-/3/d,sioc ~ 3 1 3 A, u2 -  au +4 64 J [  4 \3j§a J  64 J
(19.19)

The second order character of the phase transition is physically under
standable since, with ©f, = 0 , the dislocation density a Ci forms three 
independent sets of closed dislocation lines, just as though there were 
three types of independent vortex lines in superfluid 4He, each of them 
proliferating in a second-order phase transition. Consider now the dis
clination part and let us suppose, for a moment, that (3Q is of the same 
magnitude as fia. Then we see that if pa «  /30  is large enough to make the 
dislocations proliferate, it will be too small by a factor 3 to do the same 
thing for the disclinations. Only when и increases to order one, can v 
become nonzero. At fixed pa, /30 , i.e ., at fixed temperature, f dcf of
(19.16), when considered as a potential for disclination fields v at varying 
and fixed и has a second-order phase transition. We had observed before 
that this type of coupling between two second-order transitions can 
generate a first-order transition (see Figs 8 .2-8.4). f
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19.4. TOWARDS A QUANTUM DEFECT DYNAMICS OF 
MOVING DEFECTS IN TWO DIMENSIONS

In two dimensions, there exists no comparable disorder field theory since 
the defects are pointlike. The situation changes, however, if quantum 
effects are included. Then, the points as a function of time describe orbits 
which are world lines in spacetime and these do allow again for a proper 
disorder field theory. In fact, in this way it is possible to solve an 
outstanding problem of second-gradient elasticity and defects, namely, 
the construction of a theoretically consistent dynamical quantum field 
theory of defects, which might be called quantum defect dynamics, in 
analogy with the quantum field theory of photons and electrons, called 
quantum electrodynamics, and with the quantum vortex dynamics dis
cussed in Chapter 14, Part II.

The desired quantum field theory in 2 + 1 dimensions is, of course, 
closely related to the three-dimensional theory developed in the last 
chapter. The main difference lies in a reinterpretation of one of the three 
spatial axes as a time axis, and in the anisotropies of the elastic and 
defect energies associated with space and time directions. After imposing 
the appropriate modifications upon Eq. (18.2), the elastic interactions 
between a given set of moving plastic distortions and rotations in motion 
are controlled by the action

s / = f  Л [(1/2)(д0и,- -  ю 2 + \ <9o<*> -  *o)2 - \{Щ  + djU i - t f i -  Hi,)2

~ -  р?д2 -  -  * f )2]. (19.20)

where x'(i = 1 , 2) are the space coordinates and x° is the time (the 
modified Jt3). The quantum partition function of elastic fluctuations in the 
presence of an arbitrary given defect configuration is

Zdcf = f  @2u,-(x) exp [(UK) Jf]. (19.21)

For simplicity, we have used natural units in which the transverse sound 
velocity c, = (p/p)112 and the shear modulus /x are both equal to unity. 
The constant Z is the length scale of rotational stiffness in second-gradient 
elasticity. The quantity i is the density of inertia for the local rotations. 
As before, we have omitted possible gradients of the strain tensor since 
they produce no qualitatively new structure.
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In the continuum, the plastic quantities /3£,-, x£(/z = 0, 1, 2) are given
by

0 //M = 8i(s )(bj ~ tejrXr)

x fw  = B k A fa  + Ф? =

£&(*) = - »А (5 )(& , -  Ле/Гдтг)

*oM  = £к(доРн + Фо, <Po = — 0*$*(5)/2, (19.22)

where bj are the Burgers vectors, fl  the Frank scalars, and 5 the time- 
dependent Volterra cutting “surfaces” which, in two dimensions, are 
really lines. They move through space with the velocity vk. The 8- 
function 5,(5) is defined to be singular on 5 and to point along the normal 
vector. Since 5 is a line, we may also write 6,(5) as - е ,Д (5 ) ,  where 6Д5)) 
points in the tangential direction, 5Д5) = J ds(dxj/ds)8{2\x -  x(sj)). We 
shall keep the first notation, however, because of its close analogy with 
the three-dimensional situation.

The stresses and torque stresses are introduced by taking (19.21) to the 
canonical form

Z  = J <2>Uj(x) J ^ C T j ^ J  Q)(o(x) j <Z>Tj{x) f®PlJ @7reXp [(i!h )s/c anonical]

= I  ~~\l7r1 ~ + + ( 1/8̂ 2) r,?J

X Pi(d{)Uj -  Э& ) + 7Г(Э00) -  <£{))

Sfr,canonical

-  (TjjidjUj -  BjjO) -  $ j )  -  r,(a,(D -  ФЧ)

=s/el + j/ inl (19.23)

where the elastic energy contains only on the symmetric part 07, of стуг  
The integration over the antisymmetric part enforces the identity of o) and 
(1/2)ejjdjUjy modulo the plastic part (l/2)e,y0j/. Integrating out m,(*) and 
сo(x) yields the dynamic defect conservation laws

djCTij =  d0pjt Э ,r y =  а 0 тг -  ekcakc- (19.24)



They can be fulfilled by introducing the time-dependent stress gauge 
fields or phonon gauge fields, Ah H, c,y, d,f.

dij BjkdfcAj + доСу, Pj — djCjj,

T( = eikdkH -  Aj + d0dh 7Г = djdj + e,yC/y. (19.25)

The gauge transformations which leave these decompositions invariant 
are somewhat degenerate, due to the reduced dimensionality of space:

A j—>Aj -I- d/£+ доЛ/, H—» H + do£, (19.26)

Cjj-^Cjj -  EjkdkAj, dj-± dj -  eikdk£ + Л/, (19.27)

It is useful to introduce Л,у = e,*Qy, Hj = eudc, so that (19.27) becomes

Лу-> + diAt , # ,-»  Я/ + Э/f + (19.27')

Inserting (19.25) into (19.23), the interaction with the defects can be 
brought to the form

= J  42х1А/(ек/дк$ - <t>1) + Hekjdk<t>f
-AfiSiddoPfj. -  3, A'} + eij-фи) -  Н,еи(д0фрс -  д(фр0)]

+ J dsx(Aiai + Н в- A^Jy -  HjSj).  (19.28)

The sources

<*i = 8цдкР$ -  ф'), © = ек/дкфр/,

J,i = bhMX, ~ Av + «</*6). «  = e / < - a<*6). (19-29>
are identified with dislocation density, disclination density, and their 
respective currents. Inserting (19.22) we find explicitly

ctj{x) = 8(L(t))(bj -  Cleirxrl  0 W  = 5(L(r))ft,

■ W  = —P/5(L(f))(ft|j -  Пе;>дгг), 5,(дг) = - «Д Ц г))Л . (19-30)

19. DISORDER FIELD THEORY OF DISLOCATION AND DISCLINATION LINES 1 3 2 7
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where L is the boundary ‘Mine” of the Volterra cutting “surface” S which, 
in two dimensions, consists of the two end points. The function 8(L) is 
positive on one end point and negative on the other. The densities and 
currents obviously satisfy the conservation laws,

These are necessary to ensure stress gauge invariance under (19.26) and 
(19.27').

The plastic quantities in (19.29) can be subjected to defect gauge 
transformations which correspond to changing the shape of the Volterra 
cutting “surface” at fixed boundary. Indeed, under S —»S ' we find that 
8j(S') = 8,(S) -  dj8(V) where V is the “volume” (here area) over which 
the surface 5 is swept. From (19.22) we see that under such a change

where M = —8(V){2y N/= —8(У)(Ь{ -  Qeirxr). These transformations 
obviously preserve the defect currents (19.29). Separating out some self
energies of the defects as in (19.2), we arrive at a partition function

where s/'s is the quantity in large square brackets of the action (19.23), 
expressed in terms of the gauge fields, but modified at short distance, so 
as to separate out the core energies in the last line of (19.33). The symbol 
фРь°п <jenotes a gauge-fixing functional for the phonon gauge fields.

The defect partition function (19.33) is the analogue of the Maxwell- 
Lorentz theory of the electromagnetic field around the world lines of an 
ensemble of electrons,

dihj = d0Otj ~ SjjSi, djSj = 0 O0 . (19.31)

Pfj + Щ  -  e.jM,
p g j-*  Щ  +  d o t y ,

ф1>'.->фг. + д1МУ

ФЬ->ФЪ + Э0М, (19.32)
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Zfm = exp (-L  J  d*KFl)j exp ( j  J  d/(<p -  A ,x ^

x exp J  dt(l -  x2),/2'j • (19.34)

In order to turn (19.33) into the desired quantum field theory of defects 
and phonons we put the system on a square lattice with unit spacing 
a — 1 . Then the plastic quantities become discrete. Rescaling и, by 27т/а 
the plastic distortions = 2 ттп̂  represent the jumps of the displacement 
variables uj across the lines, thus parametrizing an ensemble of Volterra 
“surfaces” 5,- while ф? = 27гт{ are the jumping “surfaces” of the rotation 
angle. Taking a nonzero lattice spacing also for the time variable (which 
is sent to zero at the end) the surfaces perform hopping motion as a 
function of time.

The result is a theory of moving defects of the same form as in Eq. 
(19.15), with the only difference being the anisotropy of the space 
and time directions, the absence of w3(at), i?((x) and Л*3, Ay3, fia , 
hy ( t% /= 1 , 2 ), and the following replacements of the stress gauge fields

А з,- —> /4/, Л33 —> H,

The fields Л,у(/, j=  1,2) are the same as before. After completing the 
modified partition function (19.15) by the stress partition function (19.23) 
we obtain a fully fledged quantum defect dynamics of moving dislocations 
and disclinations in 2 + 1 dimensions. For more details, the reader is 
referred to the original papers quoted in the Notes and References. So 
far, this quantum field theory has not been studied in any detail.

NOTES AND REFERENCES

For the construction o f a field theory o f Quantum Defect Dynamics, see 
H. K leinert. У. Phys. A 19 (1986) 1855. and Int. J. Engng. Sci. 23 (1985) 927.





PART IV

DIFFERENTIAL GEOMETRY OF DEFECTS 
AND GRAVITY WITH TORSION

Qua propter locus est intactus. 
inane vacansque. Quod si non esset. 
nulla ratione moveri res posseni.

( Therefore. space is untouchable, 
free and empty. For if it were not so, 
matter could not move.)

Lucretius. De Rerum Natura. Rom e. 57 B .C .





INTRODUCTION

C H A PT E R  ONE

The defects in different physical systems have the common property that, 
in the continuum limit, certain closed contour integrals over field vari
ables do not vanish due to singularities. If the field variables are spatial 
distortions, as in the case of crystals, the defects in the continuum may 
be efficiently described by means of differential geometry. A crystal filled 
with dislocations and disclinations turns out to have the same geometric 
properties as an affine space with torsion and curvature, respectively. Now, 
according to Einstein and later researchers, such a space forms the basis for 
a coordinate independent description of gravity. Mass points generate 
curvature, spinning matter gives rise to curvature and torsion. We may 
therefore expect many features of gravitational matter to coincide with 
those of crystalline defects.

In the previous discussion of line-like defects we saw that defects can 
always be described in terms of defect-gauge fields. This was a con
sequence of their closed-loop nature and the associated vanishing diver
gence of the defect density. The gauge transformations amount to move
ments of the physically irrelevant Volterra surfaces. The standard geo
metric description of gravitational matter, on the other hand, is given in 
terms of a metric tensor and a connection field which govern the distances 
and laws of parallelism in space.

The relation between the two descriptions is quite simple. Since Sciama

1333
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(1962) and Kibble (1961) it has been known that geometric quantities 
may be interpreted as gauge quantities associated with local transforma
tions of the space group. They showed that the theory of gravitational 
matter is invariant under local translations and local rotations.1* We shall 
see that, structurally, this is precisely the gauge invariance found pre
viously for defect systems when subjected to deformations of the Volterra 
surfaces.

Differential geometry has one disadvantage, however. It cannot cope 
with the discreteness of the lattice. The gauge fields of defects previously 
studied were discrete. In the geometric discussion to follow these will 
always be continuous. Up to now there exists no analogue of differential 
geometry which would be applicable to discrete defect systems. This is 
why we must restrict ourselves to a continuum approximation of the 
defected crystal. While the continuum approximation is physically not 
quite correct, it has, at least, the advantage of being mathematically 
manageable and consistent. We had seen that the description of dis
clinations in terms of integer gauge fields ran into certain difficulties. The 
non-Abelian nature of the group of rotations was not properly respected 
and we were forced to adopt a certain “tangential approximation.” In the 
gauge formulation of differential geometry which works entirely with 
infinitesimal defects, such mathematical difficulties will certainly be 
absent.

To be specific it will be necessary to review the ordinary differential 
geometry in such a way as to make the connection with defect theory 
most transparent. Einstein's original theory ignored the spin of gravita
tional matter and the geometry he employed was free of torsion. The role 
of spin was recognized only much later. Quantitatively, its effects are very 
small and, up to the present, the different possible equations of motion 
involving spin and torsion have not been tested experimentally.

After generalizing Einstein’s theory to spaces with curvature and torsion 
we shall use our experience and develop, in the same type of space, a 
general differential geometric theory of stresses and defects.

’ It goes without saying that “space" in gravity includes the time variable so that the local 
translations and local rotations comprise local time displacements and local Lorentz  
transform ations, respectively.



M ETRIC-AFFINE SPACES

CHAPTER TWO

2.1. GRAVITY AND GEOMETRY

Einstein's theory is deeply rooted in the philosophy of Plato, who 
postulated the relevance of simple geometric laws in nature. It starts with 
the observation that in the macrocosmos, that is, over length scales 
exceeding by far the distances of the planets, all but gravitational forces 
are irrelevant/1 These forces, on the other hand, are quite simple. They 
are determined by one single parameter per point-like object, its mass, 
and are independent of any other internal structure. Moreover, the gravi
tational acceleration of arbitrary mass points is universal. It is inde
pendent of the size of the mass of the particle due to the marvelous 
equality of inertial and gravitational mass. It is this universality which 
forms the basis of Einstein's geometric description of the motion of mass 
points in gravitational fields.

In the absence of gravitational fields, relativistic physics is described in 
inertial frames in a Lorentz invariant fashion using coordinate four 
vectors xa = (cr, x\ x2, * 3), a -  0, 1, 2, 3, to specify space-time points 
(where с is the light velocity in vacuum с = 2.9979250(10) x 101() cm/s)
and vectors and tensors, v‘\ ta1.......to specify physical observables.
Such quantities make it easy to formulate any equation of motion in a

aRecentIy it has become apparent, however, that magnetic fields are more important than 
previously thought.
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Lorentz covariant form, i.e ., in a form which does not depend on the 
particular coordinate system. All one has to do is to define products of 
vector and tensor quantities with the help of the Minkowski metric

and subsequent contraction of indices. The scalar product of two vectors, 
for example, is given by v • w = v° whrjnb.

Free massive particles run on straight world lines in four-dimensional 
space-time. Starting at a space-time point these arrive at another 
space-time point x2 following straight world lines which extremize the 
action

and will be referred to as the invariant length parameter. Its quotient with 
the light velocity, ds/c = dr, gives the elapsed time measured by a clock 
attached to the particle. Unlike material particles, light rays behave like 
“timeless particles” : for them, no time elapses, since they follow paths 
given by ds = 0. In the following we will not mention time explicitly and 
use space for space-time.

Einstein realized that the universality of the gravitational acceleration, 
imparted upon an arbitrary mass point by a gravitational force, makes it 
possible to eliminate these forces completely, at least locally, i.e ., in a 
small neighborhood of the point. This is achieved by going to an inertial 
coordinate system which itself follows this acceleration. This is called a 
“freely falling frame.” This local frame is then again of the Minkowski 
type. In it, free particles trace out straight lines.

The situation can also be looked upon from the opposite or active view, 
in contrast to the previous passive view: A coordinate system дгм in which 
gravitational forces are observed can be thought of, locally, as being an 
accelerated piece of an inertial frame xa with the acceleration simulating 
the gravitational forces. It is a direct consequence of this observation that 
the motion of a free particle in a gravitational field can be described

(2.1)

(2.2)

where ds is the Lorentz invariant quantity

ds = (Vahdx" dxh)tn. (2.3)
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locally by the same laws as those valid in Minkowski space. In order to 
achieve this, the Minkowski metric r)ab has to be replaced by another one, 
called gMV(x), which arises from r)ab after a local coordinate transforma
tion from the freely falling frame xa to the actual frame x where the 
gravitational forces are present. Let this local transformation be given by

xa^ x ^ x a). (2.4)

From the above construction it is clear that it can be defined at most in 
some small neighborhood of xa. Under such a transformation the Lorentz 
invariant distance (2.3) goes over into

ds = [gtiv(x)dxtLdxv]xl2, 

where the new metric g^v(x) is given by

dxa dxb
Sfj.v(x') T) ob

(2.5a)

(2.5b)

Light rays still satisfy ds = 0 and the world line of a free massive particle 
minimizes the action (2.2), but now with ds from (2.5a). It is straight
forward to find the differential equations for this movement as described 
in the coordinates x M. If we parametrize the path directly in terms of the 
variable $, we can calculate

, ,  , , dx^(s) dx',(s)\ 1'2
g*Jx(s)) ds ds J

dx^dx' 
ds ds(9xgnv)Sxx^ r  -JT +

dbxxdx'
ds ds (2.6)

Partially integrating the last term gives,

e dxAs'- ( s' - . d (  dx'\
8»’ b x 1 7

Since must be set equal to zero at the end points we find, from the 
extremal principle.

sf ds=lj ds - dx^dx" . d2x '  
2d» g iu ) ds ds  2 « a v  d s i

5л- = 0 (2.7)
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and the differential equation for particle motion becomes

< /V (  1 \dx^dx'‘ л
*Av ds2 + V ' l *Av 2  Aft“ 7  ds d s ~  ( )

It is convenient to introduce a quantity called the Christoffel symbol of 
the first kind

{/J.V , A }  =  5 ( 3 ^ g „ A +  -  3 Ag MV) ,  ( 2 . 9 )

which describes the so-called connection of the space in the parametriza- 
tion x Then

d V *  . ^ d x »d x v „
^ ^ T  + {/*v,A} —  —  = °. (2 .10 )

It is also useful to introduce the Christoffel symbol of the second kind

g xA{^v,  A}, (2.11)jxv

in terms of which Eq. (2.8) takes the form

\ dxtidxv
$ 4  Д | ^ = ° -  ( 2 i 2 )

Observe that the form of this equation does not at all imply that there 
really is a gravitational field. After all, the same equation would hold if 
the coordinate transformation (2.4) did not involve any acceleration. 
The gravitational field is hidden in the Christoffel symbol in a somewhat 
subtle way. In order to see precisely how, we have to take a closer look at 
the geometry inherent in the metric ^ Д х ) .

2.2. MINKOWSKI GEOMETRY FORMULATED IN GENERAL 
COORDINATES

2.2.1. Local basis tetrads
If we want to understand the geometry of a space with gravitational 
forces it is important to learn to distinguish between inessential complica
tions which are merely due to the formulation in terms of general
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coordinates, and the proper manifestations of these forces. For this 
purpose it is useful to look first at a space without these forces, i.e ., 
ordinary Minkowski space x° with a metric ds = (r\abdxadxb)m but 
described in terms of general curvilinear coordinates x*Xx“). The basis 
vectors in Minkowski space will be denoted by e„ so that x = eaxa are the 
vectors pointing to specific points in this space. The basis vectors ec define 
what is called an inertial frame of reference. They can be taken to be 
orthonormal with respect to the Minkowski metric r)ab, i.e .,

«V e* = 17ab- (2.13)

Consider now an arbitrary new set of coordinates x M for the same 
points in space whose values are given by a mapping

xa-*x »  = x»(xa). (2.14)

In order that x* provide a reparametrization of Minkowski space we shall 
assume that the functions х*(ха) possess an inverse xa -  xa(x*) and are 
sufficiently smooth so that х^(х°) and x°('x*) are twice differentiable. 
Then by Schwarz’ lemma, the second derivatives commute with each 
other. In other words, the general coordinate transformation (2.14) and 
its inverse х“(х*) are supposed to satisfy the integrability conditions

(Эмд„-д„Э „)* ‘'<'*А) = 0, (i)„dh -  dhd„)x^(xc) = 0. (2.15)

The derivatives dxa!dxM define a network of new coordinate lines whose 
tangent vectors are given by

e/.(x) = eaeafl(x) = e„^ --  (2.16)

These are called local basis vectors. Their components еа̂ (х) are call
ed local basis tetrads. The difference vector between two neighboring 
points x and x' has, in the inertial reference frame, the description 
dx = ea (x,a -  xa) = eadxa. On going to coordinates x,fX, this becomes

dx = z„e\dx» = tae \ ( x '» -x n  = e^ x '»-x » ).

Thus, the same vector is obtained by taking the differences of the x M
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coordinates and contracting them with basis vectors ед of the local 
reference frame. A direct consequence of this is that the length of an
infinitesimal vector, ds = V dx2, is given by

ds = Vdx2 = V (eMdxM)2 = V eM • evdx*dxv.

Therefore, the metric in curvilinear coordinates is given by the scalar 
product of the local basis vectors: = eM(jc) • е„(л'). In fact, inserting
(2.16) we find

, N dxa dxb dx° dxb
&.»(*) -  eM ■ e„ -  e„ ■ a -  V„h gxfL dx„'

an expression which was given in Eq. (2.5b).
Since the general coordinate transformation (2.14) was assumed to 

have an inverse, we can also calculate the derivatives дх^/дх“. These are 
reciprocal to the derivatives dxa/dxfX, i.e .,

дха дх»
dx° dxv P’ dx*dxh b'

It is useful to denote the derivatives дх^/дха by eaM and to call the vectors 
е м= taj]abeb  ̂reciprocal basis vectors. Their components satisfy

Ь ,(^ )  = « " м М г ..М  (2 1 ? )

and

e„>\x)e\(x ) = «"„, e\{x)eh>\x) = S'V (2.18)

Further, we shall freely raise and lower the latin index using the metric 
Vab = Vab ancl define

ea* = e,m = t)„heblx.

2.2.2. Vectors and tensors
In formulating the laws of physics in Minkowski space it is important to 
analyze physical quantities according to their transformation properties
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under Lorentz transformations. These are defined by linear coordinate 
changes from one inertial frame of reference to another,

xa x,a = (Ax)a = Aabxb,

where Aab comprises all 4 x 4  matrices which preserve the metric r\ab,
i.e ., the length elements ds = y/i)obdxadxb = /̂r)abdx,adx,b are the same 
in both coordinate frames xa and x,a. This implies that the Aabs coincide 
with all matrices satisfying

гi„bAaa'Abb' = (АТТ]А)аЪ> = T)a.b.

or

(VA)T= VA-'.

Infinitesimally, one can parametrize A“b, (A~')ab as follows,

A'* = П  + (Л - 'П  = 5% -  o>\.

The relation (rjA)r = -rjA-1 implies that

^ab =  Van' Ы b

is an antisymmetric matrix, i.e ., (oah = — ioba. It has six independent 
elements. The three components ш, = (Vi)eijk(ojk parametrize infinitesimal 
rotations, |o)| being the rotation angle and ш/|а>| the axis. The three 
components <w0, are associated with the infinitesimal relative velocity of 
the two coordinate frames.

Since the physical events are the same before and after a Lorentz 
transformation, the basis vectors ea change according to the law

ея —» е'я = (еЛ“ ‘)л = = (гг}Атт])а = (т?Ат/)/е6 = Aabeb.

Indeed this gives

x = e(lx“ = ex-^x1 = er]ATr)Ax = ex = x,

so that the vectors of physical events remain unchanged. It is customary 
to call lower indices transforming with Aab, covariant and the upper 
indices transforming with Aab, contravariant.
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Consider now a physical observable at a point P whose position corre
sponds to a fixed vector x in space and which is itself a vector quantity

v(x) = e„va(x).

Under arbitrary Lorentz transformations of the coordinates x‘\ the basis 
vectors ea change. The observable vector v(x), however, must remain the 
unchanged at the same point in space, i.e .,

v'(x) = v(x).

Writing this as

v'(x) = eav'"(x') = v(x) = ee !>"(*),

we see that the components of the vector in the two frames have to be 
related in the same way as the coordinates xfa and xa, i.e .,

v'a{x’) = Aahv'b(x),

or, written differently,

= A V ^ A " 1*). (2 1 9 )

For infinitesimal transformations,

A"h = (S\ + u>\)xh

with

(\ -'x)“ = x- - 0>"hx\

we see that va(x) has the transformation law

»'"(*) = va(x) + (o\vl\x) -  (ob hxhdb'V°(x).

It is conventional to denote the infinitesimal local change of a function 
f(x) when evaluated at the same numerical values of the coordinates x 
[which correspond to two different points P in space, namely x = t„x“ and 
x' = еДЛ-1*)"] by 5/(дг), ^
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(2 .20)

This is sometimes referred to as the substantial change of f(x). Then the 
infinitesimal transformation law of a vector reads

8v“(x) = v'a(x) -  va(x) = a>“hvb(x) -  (oĥ x h’dhva(x). (2 .2 1 )

To be able to construct Lorentz invariant quantities it is necessary to 
contract contravariant indices with covariant ones, e.g., va{x) = rjabvb(x). 
Its transformation property is found to be

The derivatives of covariant and contravariant vector fields with respect 
to the coordinates of x“ are tensor fields of higher rank. For infinitesimal 
transformations the derivatives change via the sum of contraction with 
w,,/,, one applied to each index. This follows directly from (2.22) using the 
commutation rule [d„, xh] = rj(lh:

Notice that, since the arguments in / and /' in (2.20) are the same, the 
operation “substantial change” commutes with the derivative. The simple 
rule (2.24) can easily be extended to arbitrary higher derivatives thereby 
obtaining the transformation properties of tensor fields of higher rank.

Consider now the same physical objects but now described in terms of 
curvilinear coordinates x^(xa). Then the components of v are measured 
not with respect to the basis e0 but with respect to the local basis 
eM(jc) = eaeafJL(x) so that it is natural to specify v in terms of its local 
components v^(x) = va(x)eahL(x). On such fields one may perform 
Lorentz transformations as well as any general coordinate transforma
tions (2.14), лгм-»л :'м(л*м), which will be referred to as Einstein transfor
mations. Under these transformations, the components ertM(.r), being

Sv„(x) = <o„hvh(x) -  wh‘bxhdh.v„(x) 

= u„hVb(x) + 0Jhh'xhdh’V„(x), (2 .22)

where we have introduced the matrix elements

(2.23)

8db va = db8va = dh((o/v„' 4- w / x cdC‘ Va )

=  dbVa ’ +  <*>hb db'Va +  (t)c’Xcdc'd h Va . (2.24)
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derivatives of the coordinate transformation functions х*(ха), undergo 
the following changes:

u / и/ _  дх'* _ dx,fXdxv _  e„ -*e„  (x ) ^  axV дх„ а „е„ (x),

" J Эдг’ "  алг,,х djcv M ^  ^  1 J

The matrices

- ( “ )* "  (2-26)

are reciprocal to each other,

a \ a S - b * ,  aS<x\ = 8v\ (2.27)

i.e.,

( a ' 1)1’* = а л“ (2.28)

is the inverse of the matrix a,,11. For infinitesimal changes we put

(2.29)

and see that Einstein transformations can be interpreted as local 
translations. The infinitesimal transformation matrices are

a A„ = SA„ - 3 „ f V ) .  V  + M ’ M - (2-30>

and the substantial changes of е„м(лг) are given by

e'Mx) -  e„»(x) = e'^(x') -  e„»(x')

= e„»(x) -  e,f(x’) + е,Г(х') -  e,»(x) = f% e„»(x) -  

Se\ = + ^ e e ‘\(x). (2.31)

When we write <Эм£Ае"л we mean (Эм£А)е"л. Otherwise we write
M f  *«**)•

Analogous transformation laws can be derived for the components of
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the vector fields v v »M. They follow from the fact that the components 
v°(xh), va(xb) are trivially independent of the change of general 
coordinates from xM to x'* since the inertial basis and coordinates are 
unchanged. Thus we have the obvious relation

v,a(xb) = va(xb).

When reparametrizing the point xb in the two different coordinates x 
and x̂ y this relation takes the form

v'a(x') = va(x), (2.32)

where we have omitted the Greek superscripts of x\ x. Thus the 
substantial changes, at the same values of the general coordinates x are

8va(x) = vu\x) -  va(x) = £Adxva(x). (2.33)

Using this and (2.31), we derive from (2.32)

V̂ (X') = a *vv*(x), v'^x’) = a / v v(x)y (2.34)

with the substantial changes

Sv »(x) = v"\x) - 1> %*) = f 4  V» -  ал f V ,

4 W  = t'V W  -  «v W  = (2.35)

Any four-component field with these transformation properties is called 
a contra- and covariant Einstein vector or world vector, respectively.

This definition can be extended trivially to any Einstein- or world 
tensors. All one has to do is to apply separately the transformation 
matrices (2.26) to each index. In particular, the metric £м„(лг) transforms 
as

g'k\x‘) = a \ a\ g ^ (x), (2-36)

or, in infinitesimal form,

5g ^ = z \ g m -  a* f V  -  eg**,

Sĝ „ = + • (2-37)
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It is now obvious from (2.27) that one may multiply world tensors with 
each other by a simple contraction of upper and lower indices and always 
obtain new world tensors. In particular, one obtains an Einstein- or world 
invariant if such a contraction is complete, i.e ., if no index is left uncon
tracted.

2.2.3. Connections and covariant derivatives
The multiplication rules for world tensors are completely analogous to 
those for Lorentz tensors. There is, however, one important difference 
between the two tensor fields. Unlike the Lorentz case, derivatives are no 
longer tensors. In curvilinear coordinates, certain modification of the 
derivatives are required in order to make them proper tensors.6 It is quite 
easy to find this modification and to construct covariant objects analogous 
to the derivative tensors in the Lorentz frames. All we have to do is 
rewrite these derivative tensors in terms of the general curvilinear com
ponents. Take, for example, the tensor dhva(x). Going over to curvilinear 
components we can write this as

But if we take the derivative db past the basis tetrad we find

(2.38)

Using the relation

(2.39)

we see that

3ft V„ = + (eb“dvea*)v A.

The right-hand side can be rewritten in the covariant form

(2-40)

bNotice that Vg = V d ctgMl. transform s like 8Vg = £AdA V g + 3A£AVg = dA(£AVg). Hence 
jd Ax Vg is invariant. A  quantity transform ing this way is called a density [see Eq. (3.5) for 
the consequences!.
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where the symbol Dv stands for the covariant derivative

£>„iV = d*vn -  e/ d „ e / iJA = -  Г„МЧ . (2 .41)

The explicit form on the right-hand side follows from the simple relation 

3 A A= - « „ V a , e ; ) ,  dve\ = - e \ ( e cxd„ec*), (2 .42)

which, in turn, follows from differentiation of the reciprocity relation
V 'a  = S„h.
Similarly, we can find the Einstein version of the derivative of a 

contravariant vector field dbva(x), which can be rewritten as

дьиа = = e\ebvBuv*+ (ebvdve\ )vx (2.43)

and cast in the form

e\ebvDvv (2.44)

with a covariant derivative

Duv,x = dvv/i-  ecxdvec,tvx = Э„!?м + ec,±dveĉ vx

= dvv»+ r * * v \  (2.45)

The expression

ГМ„А -  ea% e \  ш -e\d^e„\ (2.46)

is called the affine connection. In general, a space with metric gM„ and an 
affine connection (both single-valued) defining covariant derivatives, is 
called a metric-affine space and the geometry, carried bygM„, Гм„\ an affine 
geometry. Observe that, by definition, the covariant derivatives of evai eav 
vanish:

D^e" = д„е\ -  r„„V * = 0 ,

Оме/  = ад е / + Г мЛ-е„А = 0 . (2.47)
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Since gfJLV -  that same property holds for the metric tensorb

V Â/LI gcrv r*Ai* £ц.(Г 0,

DkgT9 = 9x8** + r ^ g ”  + Г 0. (2.48)

It is worth noting that the metric satisfies once more similar relations 
with the connections replaced by Christoffel symbols. In fact, from the 
definition (2 .8 ) we can verify directly that

+ {*'}*”  + {Zr} **” -  °- (2-49)

Since the expressions on left-hand sides of Eqs. (2.40), (2.43) are tensors 
with respect to Lorentz transformations, the right-hand quantities, Dl,v/JLt 
Dvi»M, must also be tensors with respect to general coordinate transforma
tions, i.e ., world tensors. In fact, one can easily verify that they transform 
covariantly,

= v9{x).

The term, which disturbs the covariant behavior of ordinary derivatives

d V M * ')  = « м 'Ч ( в / 1'»М ) = + <VMdMo v X C v)

is compensated by the non-tensorial behavior of Гд/ :

cRight now. when the space is still flat, this is a rather trivial statem ent. The identities (2 .47 ). 
(2.48) w ill, how ever, remain valid also if the space acquires curvature or torsion. In general 
relativity there have been theories based on spaces in which this is not satisfied. The object 
QXttv = -D Kgttv then becomes a dynamical field to be determ ined from  field equations. See  
Th. de D onder. La gravitation de Weyl-Eddington-Einstein (G authier-V illars. Paris. 1924); H. 
W eyI. Phys. Z. 22 (1921) 473. A nn. Phys. 59 ( 1919) 101. 65 (1921) 5 41 ; A .S . Edd ington. Proc. 
Roy. Soc. 99 (1921) 104 and The Mathematical Theory of Relativity (Springer. Berlin . 1925); 
F.W . Hehl. J .D . M cCrea. E .W . M ielke. in Exakte Wissenschaften und ihre philosophische 
Grundlegung. ed: by W . D eppert. K. Hiibner, A . Oberschelp. V . W eidem ann (V erlag  Peter 
Lang, Frankfurt. 1988). In these spaces, the connection is defined by ГМ,.А — 
^»A(dM ~ D^)e“v and can be decomposed as follows;

r v  =  «/ № . -  D = { Д }  -  (S / „  -  + 5 „ / ) +  -  Q\„ + (? ,./ )  

where 5м/ =  (1/2)(Гм„А-  Г,,МА) as is defined in (2.53).
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T V v V )  = e '/ a V e 'V  = a AA < v '4 . 4 ( « . / « ev)

= <v '‘( « ./ « a'a Гм/(х) + e A'„aMa v v), (2.50a)

or

r V v V )  = = -a S a^ e °„ d „ (a * \ e „ * )

= а „ . '> 1/ а Ал Гм„А(д:) -  a S d „ a * v). (2 .50b)

Infinitesimally, ад" = 8^” + a M„ = S,,'*— d „ fд and we see that the 
covariant derivatives DMu„, D/Xy*' have the correct substantial variations 
of world tensors:

+ dMg *Z>A«„ + a„£Az v * ,

8 D X  = -  rD ^ v \  (2.51)

A gain the last non-covariant piece in

saKw„ = зм5 ум = aM(g AaAw„ + A«A) 

= f  Аэл d„i\, + a „ f AaA d„ + a „ f AaMuA + \>A

is cancelled by the last, non-tensorial, piece in 5(ГМ1,*ук )

s r M/ =  ? 4  r v / +  a „ f Ar A„*+ a„ f % „ * +  а^в.Г- (2.50c)

It can easily be checked that the same cancellation occurs if the covariant 
derivative of an arb itrary tensor field is defined by

D r  v’l . . . V'„, _  -J w'l . . . v’m _ V  P  A,
/i ” w, . . .  i»„ “  1 V, . . . V„ L i  1 Atw,1= 1

+ E r MA. > v, . . . 1, / " - A< - - » .  (2.52)
>=»

2.3. TORSION TENSOR

Since the coordinate transformations x,x = x* — ( X(x) were assumed to 
be integrable, the derivatives of the infinitesimal, local translation field 
£a(jc) commute, i .e . ,  (dMa v -  dvd^)t\x) = 0. As a consequence the anti
symmetric part of the connection



i

i/fSi(Jl! Ш15ЦГ.
i^rms of the

,4‘ *•*' '»>*' ^ W  IJVH i»> i , uti^ C ii t ,
M - H w * -  •Г.ФЛ !>.,)■ .!«» J v  г * t  Uv>vMtoe .It .f
’ ' ' 1|” l , i '1 *vu* i/‘ ж t , - « ’ " usiC  tji<r tumoeclion

н av |Ai(<>un ^ ^u w UhmR' iranslormation to
“  ; Uii vo^ iive iio i would not be zero in

,l ,v' u,li ^0 >ЧсЛл'# i>-Ai i^iisof ^ i,c  lu c re io re  remains zero in

ы  n u l i/л ili.*i witli the help of the torsion tensor, the 
* c ĉ tAA)1>lP<>scd into a O in  slo t le i part, given bv Eq. 

U^iuuds only on the m etric gMl,(x). and a second part.
. .  , }> , which is a com bination of torsion tensors. To see

«<«> Ui *s 4cm w  ihe modified connection Г A «  r  ^  = e a ^  and 
ifu' a^h i-hand  side as follow s. * *  ^ ^ e , a n d

 ̂t*W ~~ *'/,A

• * ‘ -A -V <’ . + «'„A Л ,  + <V д » Л  + «..«V, <"* -  f № Йл f"„ -  ЙА (?„„ f"..}

' » e'*!iy  и -<?„ма„е’"л + f,w Йл f''„ +ет .вле“м
(2.54)

? п Г м п Г П be Wrhten as ^ 12) ^ Л ^ е \ )  + ЬЛс1Ще \ ) -
Л  r  ' , + о^дл -  ofAgMP) so that it coincides with the

tie symbol (2 .9 ). The second part is the contortion tensor. It is a 
brnanon ° f l° rsion tcns°rs 5mwA - 5 m̂ xA. U sing (2 .46) we see that

r "-A = {/xv’ A> + Sm»a -  S*л* + V ,  = {mv. A} + /См„л- (2-55)

ind i- Ih: n , 'hl  com or,'on tensor Kia[iA is antisym m etic in the last two
i ~ . e ! ree ^ lerms are easy to rem em ber: The first starts out with

- it * 6 m . ,Ces as ^ vA* The second and third are shifted cyclica lly  with
\nnrr J l*n§Slgns- Spaces with 5 = К ~ 0 are called symmetric or Riemannian
Rirm *™ces NSIt̂  curvature and non-zero torsion are also referred to as 
Kiemunn-Cartan spaces.

4 C0N N ECT10N T E N S0R  AS A  COVAR1ANT c u r l  o f  t h e

tensor its antkv П° 1бС| ^  SVen though the connection Гм/  is not a 
ymmetric part, the torsion S ^ \  is. The question arises
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w hether it is possible to form a covariant object which contains inform a
tion on the sym m etric Christoffel part of the connection. Such a tensor 
does indeed exist.

Looking back at the transformation property (2.50c) we see that the 
proper tensor character is destroyed by the last term which is additive in 
the derivative of an arb itrary function d^dv^x(x). Such additive trans
formation laws are fam iliar from gauge fields. R ecall that the gauge fields 
of magnetism transform additively with a first derivative

8A,( x) = a/A, (2.56a)

where A(x) is an arb itrary gauge function. Now, in magnetism there was 
a simple way of constructing a gauge invariant quantity, nam ely, the 
antisym m etric combination of derivatives

F 'j^ d 'A j-d jA ,,  (2.56b)

which gives a m easurable magnetic field strength via B, = {ll2)eijkFjk. 
This suggests that a sim ilar construction might exist also for the 
connection.

Such construction is straightforward if we observe that ГД1/Л has 
precisely the transformation properties of a non-Abelian gauge field dis
cussed before in Part I [Eq. (3.125)]. To establish contact with the 
notation employed there we must consider ГМ„А as the matrix elem ents of 
the four 4 x 4  matrices Гд ,

ГМ/ = ( Г Д Д  (2.57)

Then we may rewrite (2.50a) as the matrix equation

r v (*') = + 3„a a - ') . (2.58)

This shows that Гм transforms in exactly the same way as the non-abelian 
gauge field in (1.3.128).

This is not surprising if we recall that the original purpose for intro
ducing these fields was to form the covariant derivatives (1.3.127) and 
(2.41). Thus the connection may be viewed as a non-Abelian gauge field 
of the group of general coordinate transformations Einstein vectors 
and tensors are the associated gauge covariant quantities. From the 
discussion in Part I, Section 3.5 , it is then clear how to form from ГМ1,а a
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tensor invariant under general coordinate transform ations. A ll we have to 
do is take the covariant curl [see (1.3.132)]

— Э„ГМ — [Г ^ , Г .,]. (2 .59)

The matrix elements of FM„ are commonly denoted by

Aa = dMr\,A" -  ЭРГмА< '- ГмА5Г 1;5-+  (2 .60)

The covariance properties of F^v follow in the sam e w ay as (1.3.133). In 
the present case there is another simple way of deriving them by realiz ing 
that in terms of the basis tetrad the covariant curl has the simple 
representation

/ W '=  -  Э„Э„)е"А = - е " А(Э„3„ -  Э„ЭДК " .  (2 .61)

The first part follows directly from inserting Г^,,* = into (2 .59)
and evaluating the derivatives,

aMr„A» - ( r Mr ^ x - ( M « v )

= (дме„*Э„Л + e„*d(1d„e‘'A + елраме6Ае"ра 1,е„)‘) -  (p. <-> v)

= ^»x(3Ma,. -  М м ) * ”*-

where, in the third term , we have used the alternative representation 
Г„р* = - e apdve(lx. The second part of (2.61) follows from the opposite 
choice of the two representations ГД1,А= —e°vdM е,Д  Г„рх = e(xdve“f).

From the tetrad expression for /?Ml,A* the tensor transform ation law is 
easily found [using (2.25)]

*mVa''*V) = e „ * V ) ( V  V  -  Э/Эм. W ( * ' )
= a x'xaM̂ at/e/W (aMav - a„a,)(«A-Â AW )
= ctyKa x'xRpvkx(x)

+ alx-fla v'Va x\[(dpdv -  M m)<*a'A]- (2 .62)

Since general coordinate transformations are assumed to be smooth, the 
derivatives in front of ay x commute and ЛдуА* is a proper tensor. It is 
called the curvature tensor.
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By construction, this curvature tensor is antisym m etric in the first index 
pair. W hat is not so easy to see is that it is also antisym m etric with respect 
to the second index pair, nam ely,

R/jlvAx Rfj. vx\ (2.63)

where RpV\x RfxV\ gx<r‘ Indeed, if we calcu late this difference using the
definition (2 .61) we find

Rn»\x + = tax(dMdv -  dvd^)eax + eaX (dMd„ -  dvdtJL)e(ix

— dp d v {eax e д ) d v dp {eax e a )

= (dMd„ -  dvdM)g A* (2.64)

By assumption, the coordinate transformations x“(xM) are smooth 
functions satisfying the integrability condition (2.15). As a consequence, 
the metric gXx(x) = (дха/дх*)(дх„/дх*) is a smooth function. In the 
following we shall always assume that it is at least doubly differentiable. 
Since the metric is an observable quantity it must be single-valued. This 
implies the integrability condition

( Э ^ - М ^ Я ах^О. (2.65)

It is this property which makes the curvature tensor antisym metric in the 
last two indices.0 The curvature tensor gives a covariant characterization 
of the connection which includes information on the Christoffel symbol.

Since /?M„A * is a tensor, it can be contracted using the metric tensor to 
form covariant quantities of lower rank. There are two possibilities:

(2 .66a )

called the Ricci tensor and

R = RtLvgfU'* (2 .66b)

called the scalar curvature. A combination of both

dIf the space were more general and had = -Q^x* ^ 0  (see footnote c ), there would
be a sym metric part

Rpvkx + RfxvxX — QvXx (*7*)] + 25Ml,P0pAx •
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= ~ i8hvR (2.67)

was introduced by Einstein and is therefore called the Einstein curvature 
tensor.

It turns out that there is a related tensor which deals more exclusively 
with the Christoffel part of the connection than the curvature tensor

A '
/XV

of Гм„л has the same transformation properties (2 .50c) as ГМ1Д  and we 
can form the Riemann curvature tensor

(2.60). Since the contortion KpvA is a tensor the Christoffel part

i L  -  a, 1 -  J  •- a . ^ у -  ц ; Ад  V; |  -  | ;л ц » \ |. (2 .6 8 )

U nlike /?М„АХ, this curvature tensor can be expressed com pletely in 
terms of derivatives of the metric [recall (2 .9 ), (2 .11)]. The difference 
between the two tensors is a function of the contortion,

a x "  Н -л * =  DVK ^ - ( K ^ K vp* - (2 .69)

(}
where denotes a covariant derivative which is formed with only the 
Christoffel part of the connection. Notice that the R iem annian  curvature 
tensor has the same antisym m etry in the first and second index pairs as 
Ядра*- For the first pairs this is triv ial, by the construction (2 .68 ); for the 
second, this follows from (2.69) and the antisym m etry of the contortion 
KvAx in the second index pair [see (2 .55)]. In addition, it is sym m etric 
under the exchange of the first and the second index pair

{} {}
/ w  = (2 -7° )

To see this one writes the first two terms in (2.68) exp licitly as derivatives 
of the metric tensor

{}
R/jlvAx

gx'v
Sxx’dfj. 2 "I” d\8i/cr ^ct£va) -  [m ** v ]
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and uses (2.49) to express in terms of Christoffel sym bols, so that
we can write

x
fJiX

grx' "1”
( . « • К ) * " ’'

and hence

{}
ЯдиАх =  dA#vx -  dfLd x g vA) “  (jtl <-> V)]

<7

/XX
+ {/X *', *} g * a\ Сdvgx<r + dx g w -  bag vA )-( /* « *  v)

P
/xA {vp, *} -  i vA f ( w

A further use of relation (2.49) brings the second line to

U K  + ( A h , , )

£pA + (/x <-> v)

and we find that almost all terms cancel, by the symmetry of 

in /xv. Only

~ ( t } {vA’ + {f**'’ * } { * a } )  + v)

и

{}
remains. The second term in this expression cancels the third line in /?M„Ax 
which therefore becomes

ДМмА* = ^[(dMdA£vx “  */1 **£>*) “ (/*** V)] -
cr

fix] I vAГа} ■(/iv)) gcrcr' •

(2.71)
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This expression shows manifestly the sym m etry fj.v<r*\x [using (д^ди
— d„dM)g Ax = 0, as well as antisym m etry under A «-> x and /x v].

Another property of M inkowski space now em erges. Just as this space 
had a vanishing torsion tensor for any curvilinear param etrization , it also 
has a vanishing curvature tensor. This follows from the obvious fact that 
Кц1>\*= ea*(dfLdv ~ dvdn) e(\ = 0 for the special choice of the basis tetrad 
с(Г — $<*■ Together with the tensor transform ation law  (2 .62) we find 
R„v*m0 in all transformed coordinates.

2.5. TORSION AND C U R V A T U R E  FROM  DEFECTS

In the last two sections we saw that a M inkowski space had neither 
torsion nor curvature. The absence of torsion followed from its tensor 
property, which was a consequence of the com m utativity of derivatives in 
front of the infinitesimal translation field,

(Эм Зр- д удм) П * )  = 0. (2 .72a)

The absence of curvature, on the other hand, was a consequence of the 
integrability condition (2.15) of the transform ation m atrices,

(Эм д „ - М м)л * А(л:) = 0 .

This implies that

(aMa„ -  a„aM) a Af  = о, (2 .72b)

i .e . ,  that derivatives commute in front of derivatives of the infinitesim al 
translation field. This suggests a simple way of constructing general affine 
spaces with torsion or curvature or both from a M inkowski space by 
perform ing singular coordinate transformations which do not satisfy 
(2 .72a) and (2.72b).

Let us study the properties of a space at which we can arrive starting 
from basis tetrads e„M via such infinitesimal singular
coordinate transformations £*(*). According to (2 .30 ), the new basis 
tetrads are

еа» = 8„* -  a . f M.  «** =  S \  +  a M r ,  ( 2 . 7 3 )

and the metric is [compare (2.37)]
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The connection associated with the tetrads (2 .73) is [see (2.50c)]
/

Гм/ = З м д„£А (2.74b)

and the curvature tensor becomes, accordingly [from (2 .61 )],

/ W  = (dM a„ -  a„aM) aA f  * (2.74c)

Since £A are infinitesim al, we can lower the index in both equations [with 
an error which is only of the order of (£)2 and thus negligib le] so that

Г'/ц.рА A ■> /̂xi>X 1̂/̂ /л)£а» R/xvXx (.̂ n̂ v  ̂vd̂  d\£x .
(2.75)

For singular £m(jt),  the metric and the connection are, in general, also 
singular. This could cause difficulties in performing consistent length 
measurem ents and parallel displacements. To avoid such difficulties, 
Einstein postulated that the metric and the connection ГМ„А should be 
so smooth as to permit two differentiations which commute as stated for 

in (2.65). By (2 .74a) and (2.74b), this implies that we must consider 
only such singular coordinate transformations which satisfy the conditions

- э„эм)(аА& + ax&) = o, (aMa„- a„aM)a<,aA& = o. (2.76)

Observe that the curvature tensor is now trivially antisymmetric in the 
last two indices — an immediate consequence of the integrability con
dition (2.65) of the metric.

For completeness, let us also write down the decomposition (2.55) of 
the connection into the Christoffel symbol and the contortion tensor [by 
inserting (2.73) into (2.54) and (2.53), and (2.74a) into (2.9)]

Гм„х = {/*v, x) + K^vx, (2.77)

with

{^v, x) = 4aM(a„fx + ax&) + |av(aMfx + ax§ j -  (2.78) 

=4(<V„ - avaM)& - l(avaA - aAav)&  +
= -  aA&) + *aA (a .&  + aM&) -  i a v(aA£M + aM& ). (2.79)

g,,u = e \ e av = + (d ^ v + dv£ J. (2.74a)
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From the Christoffel symbol we find the R iem ann curvature tensor,

О
Ruvл* = 2dM[dv(dA& + dx £A) + dA(dv& + dx £„) -  dx(dv& + dA£v)]

4d„[aM(a*£x + зх&) + aA(a„fx + axf„) - эх(эм& + эл&)].

Due to the integrability condition (2 .76), the first terms in each line 
cancel and we obtain

= H (3„eA ( a „ 4  + dx Q  -  (/u <-» v) -  (A «-» * )] (2 .80)

In order to understand the geom etric properties of a space generated  by 
the infinitesimal singular transform ations,

xa^>xfl= (x“ -  (2 .81a)

we recall that such transformations have been encountered before in the 
context of crystalline defects. T here, we considered infinitesim al d isp lace
ments of atoms w;(x) containing defects, i .e . ,

Xj —> X{ =  Xi +  Uf (x ) , (2.81b)

where x\ are the shifted positions, as seen from an outside observer and 
M,(x) is the total ( i .e . ,  elastic plus plastic) distortion field, u,(x) = 
uf(\) + u4{\) [with derivatives commuting neither in front of wf(x) nor in 
front of d/My(x )]. Thus, if we change the sign of the d isplacem ent field, 
M,(x)—► — M,(x), the transformation law (2.81b) is of the sam e form as 
(2 .81a) and the non-com mutativity of derivatives in front of singular 
coordinate changes £“(x b) is com pletely analogous to that in front of total 
displacements m ,(x ) .  M oreover in Chapter 2, Part III, we analyzed the 
defect structure of w,(x) in terms of dislocations and disclinations. A 
sim ilar analysis can be given here for the coordinate changes £a(xb).

To be specific, let us restrict our considerations to the three- 
dimensional Euclidean subspace of M inkowski space. Then we have to 
identify the physical coordinates of m aterial points x° for a = 1, 2, 3 with 
the previous spatial coordinates x,- forc / = 1, 2, 3 and д0 = d/dxa (a = i) 
with the previous derivatives Э/. The infinitesimal translations in (2 .80 ), 
Г ='(х ), are equal to the displacements total m ,(x )  (with the reversed sign 
convention), so that the basis tetrads are
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e j  = s j  -  daUj, e“j = 5" + b,ua, (2 .82)

and the metric becom es, in linear approxim ation,

£// £nj6 j 5,y + 3/My ■+■ djUj. (2 .83)

A part from the trivial unit matrix it coincides with twice the total strain 
tensor и/,-= (\/2)(djUj + djUj). Invariant distances ds = \Zgjjdx'dxJ are 
m easured by counting atomic steps within the distorted crystal.

The connection is simply

Г,у* = djdjUk (2.84)

with torsion and curvature tensors

SiJk = Hdjdj -  djdj)uk, Rijk, = (djdj -  djdj)dkue. (2.85)

We now recall that the expression for the curvature tensor appeared 
before in Eq. (III.2.51). There it was introduced purely as a m atter of 
convenience. In fact we did not yet know its fundamental differential 
geom etric meaning.

The integrability conditions (2.76) imply

(djdj -  djdj)(dkUi + d(Uk) = 0, (djdj -  djdj)dm(dkUc + d(Uk) = 0,

(д/д, -  d,d,)d,„(dt uc -  d,uk) = 0. (2 .85 ')

They state that the strain tensor, its derivative, and the derivative of the 
local rotation field are all twice-differentiable single-valued functions 
everywhere. We argued in (III.2.47)—(III.2.50) that this was true in a 
crystal. We may take advantage of the first condition and write the 
curvature tensor alternatively as

R»kt = (9,a, -  d,di){{dkue -  dcuk). (2.86)

cWhen working in Minkowski space our convention is to consider vector components with 
upper indices as physical components. In purely three-dimensional calculations one usually 
em ploys the m etric r)„,t = 8oh so that x"~' and xumi are the same.



1 3 6 0 IV. DIFFERENTIAL GEOMETRY OF DEFECTS AND G R A V IT Y  WITH TORSION

The antisym metry in ij and kC suggests, in three d im ensions, the intro
duction of a tensor of second rank/

Gr, = \eikteinmRkt""\ (2 .87)

where

îjk Vg Ejjk gjj' gjy gkk' в * gjj' gjj< gkk' C ^

is the covariant version of the e-tensor in general m etric-affine spaces.
The tensor Gy, happens to coincide with the Einstein tensor as defined 

in (2.67). Indeed, if we use the identity

îkl̂ jmn gijgkmgin gimgk/iglj gingkjgtm

§ij§( ingkn gimglngkj gingljgkm

and insert it into (2 .87), we find, using (2 .66a)

Gji = Rji -  \gjiRkk •

To linear approxim ation, Gr, becomes [using (2.85))

Gjj — Sjk ?dkdf(2 £jmn Un ) •

The second factor is the local rotation <uy= (1/2)£yw„d,„w„ introduced in 
Eq. (III.2 .3 ), and we see that the Einstein tensor can be written as

Gp = eikfdkdr(Oj. (2.88)

{)
Let us also form the Einstein tensor G,y associated with the R iem an-

{>
nian curvature tensor R^e- Using (2 .80), we find

Gjj = £}k( £j„w dk dm 4 (d( un + d„ ut). (2 • 89)

fNotice that in 4 dim ensions, there is an equation sim ilar to (2 .87 ),

C - ^ ie ^ e ^ R p y S r .
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In the discussion of crystal defects we introduced the follow ing m easures 
for the non-com mutativity of derivatives: the dislocation density 
(III.2 .42a)

tf// “  Bike дк de uj  > (2 .90a)

the disclination density (III.2.42b)

®ij = e iked к dc(Oj (2.90b)

and the defect density (III.2 .76)8

Vij Bjke в jinn ̂ k dm Uen • (2-91)

Comparison with (2.85) shows that ai} is d irectly related to the torsion 
tensor Ski' = (1/2)(Г*(' — Г** ):

асу = £jk( Гkej ~ в,ке$ке/• (2 .92a)

Hence torsion is a measure of the translational defects contained in 
singular coordinate transformations.

We may also use the decomposition (2.55) and w rite, by the sym metry 
of the Christoffel symbol {kt% j )  in k ty

& ij В Of i К к Cj i

where Kk(j is the contortion tensor. Since this is antisym metric in Cj, it is 
useful to introduce the second rank tensor,

/j 2 Kk(jB(jn .

Inserting this into (2.92b) we see that

<*ij = - f y  + 8jjKi(,

that is, K,j coincides with Nye's contortion tensor which was introduced 
previously in Part III, Eq. (2.79a). This can be seen once more using the 
explicit decomposition of Kijk as given in (2.79), which reads in terms of 
the displacement field m,(x)

gRccall that these total displacements w,(.v) were defined with the opposite sign convention 
as those in (2.82)—(2.89) so that ail the following identification carry a factor - 1 .  For 
sim plicity this factor will be suppressed.
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Kijk = d j(d jU k -  dkUj)/2 -  (d j(d k Ui + d,uk)l2 -  (j  k))

= dj(ojk -  (djUkj -  (j  <-> k)). (2.92b)

Contracting this with (1/2) etjk yields

KiC — — £(jk dj Ukj ,

which is precisely the defining equation (III.2 .78).
Consider now the disclination density 0 /y. Com paring (2 .90) with 

(2.88) we see that it coincides exactly with the E instein tensor G;/ formed 
from the full curvature tensor

0,y - G * .  (2 .93)

The defect density (2 .91), finally, coincides with the Einstein tensor 
formed from the R iem annian curvature tensor, (2 .89),

<)
Vij ~ Gjj.

Hence we can conclude: A space with torsion and curvature can be 
generated from a Minkowski space via singular coordinate transformations 
and is completely equivalent to a crystal which has undergone plastic 
deformation being filled with dislocations and disclinations.

In M inkowski space, the trajectories of free partic les are straight lines. 
In defected space, free particles follow a com plicated path , which is no 
longer straight since defects may lie in its w ay. According to E instein 's 
theory, the motion of mass points in a gravitational field is governed by 
the principle of shortest path as defined by the defected m etric gM„. This 
metric contains all gravitational effects. They m ay be viewed as a con
sequence of disclinations present in the “world c rysta l.” The natural 
length scale of gravitation is the Planck length

where с is the light velocity ( « 3  x  Ю10 cm/s), h is P lanck's constant 
(«1 .05 4 5 9  x  10-24 erg/s) and G is Newton’s gravitational constant 
(= 6.670 x  10-8 cm3/(g-s2)) . The Planck length is an extrem ely sm all 
quantity (=8.09 x  10~33 cm) which at present is beyond any experim ental
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resolution. This m ay be im agined as the lattice constant of the world 
crystal. In the presence of torsion, particles with spin, move along the 
most straight possible path (called  auto para lle l) which m ay no longer be 
the shortest [see F .W . Hehl e t a l. (1976)].

2.6. DIFFERENTIAL GEO M ETRIC PROPERTIES OF M ETRIC- 
AFFINE SPACES WITH C U R V A T U R E  AND TORSION

At this juncture we have studied only such affine spaces which w ere 
obtained from a Minkowski space by introducing an infinitesim al am ount 
of defects. In rea lity , defects can pile up and the space must be described 
by the full nonlinear formulation of affine spaces. A t the linear level we 
have learned how dislocations and disclinations manifest them selves in 
certain non-vanishing contour integrals around Burgers circuits. In this 
section we discuss these geom etric aspects, emphasizing on their non
linear properties.

The metric-affine space will be characterized by the same type of 
integrab ility conditions as the space with infinitesimal defects. Explicitly, 
the metric and the connection are single-valued, tmce-differentiable 
functions which satisfy the integrability conditions

(aMa„-al,^jgAx = o, (2.94)

(амЭ„-в>,Эм)Г(гЛ«=0. (2.95)

Rem em ber that the first condition ensures the antisymmetry of the curva
ture tensor in the last two indices [see (2.64)]. By antisymmetrizing the 
second condition in crA it becomes the integrability condition for the 
torsion

(aMav - a vaM)5 (r*,‘ = o. (2 .95a ')

M oreover, using the decomposition (2 .55), the Christoffel symbol is seen 
to be integrable as well:

(dlxdv -  dvdM) A b (2.95b')

Since 3„ g A* can be expressed in terms of products of Christoffel symbols
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and metric tensors [see (2 .49)], and since products of in tegrab le functions 
are integrableh, this implies that the derivatives of gXx also satisfy

(aMew- a vaM) a ^ Ax = o. (2.95a")

Conversely, with the Christoffel symbol consisting of products of gAx and 
di*g\x, this condition implies (2.95b) and thus is com pletely equ ivalen t to 
it [in the presence of (2.94)].

In order to understand the geom etric properties of such a metric-affine 
space let us first introduce the concept of local parallelism. C onsider a 
vector field v (* ) = eava(x) which is paralle l in the inertial fram e in the 
naive sense that all vectors point in the sam e d irection . This sim ply means 
afcv(x) = eadhva = 0. When we change the coordinates to дгм, we find

dbva = a * ( e > M) = ebvdv{e\v») = ehve \ D vv »=  0. (2.96)

Thus parallel vector fields have their local components v ** change in such 
a way that their covariant derivatives vanish:

Dvv ’x= d vv» + r vÂ A = 0. (2 .97)

Sim ilarly,

-  Tmxvx -  0. (2 .98)

Notice that the basis tetrads eav, eav are para lle l vector fields, by construc
tion [see (2 .47)].

From the standpoint of a world crystal w ithout defects, paralle lism  
has a simple meaning. Consider Fig. 2.1b. Let the distorted coordinate 
system xa = const, (the dashed curves) be the crystal p lanes of an 
elastically  distorted crystal as seen from the local fram e A'M, which are 
identified with the coordinates of an outside observer. An observer w ith
in the distorted crystal orients him self by the planes xa -  const. He 
m easures distances and directions by counting atoms along the crystal 
directions efl. The above definition of parallelism  amounts to vectors 
being defined as paralle l if they are so from his point of view , i .e . ,  if they

hThis follows from the chain rule of differentiation

(a„a„- Э„ам)(/*) = [(aMa„ -  avaM)/lg +/(aMa. -  avaM)g.
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FIG. 2 .1a ,b . Illustration of crystal p lanes (xa = const.) before and a fte r an e lastic  
distortion , once seen from within the crystal (a ) and once from outside (b ).

=  с  o r is  I .

inside observer

l » i i i i
i i i i i i 

. j . j . j . j i j . j . .  i i i i i i
i i i i i i

со™.

x»{xa) i t * " ^ )

outside observer

have been parallel in the ideal reference crystal before distortion took 
place. Thus the normal vectors to the dashed coordinate planes 
xa = const, are parallel to each other. Indeed, they form the vector fields 
еям(дг), which always satisfy Dve„*= 0 [see (2.47)].

If the mapping х*\ха) contains defects, it is impossible, in general, to 
find a global definition of parallelism . Consider, for exam ple, a wedge 
disclination which is shown in Fig. 2 .2 ., say the -9 0 °  one. The crystal has 
been cut from the left, and new crystalline material has been inserted in 
the Volterra construction process. The crystalline coordinate planes de
fine parallel planes. With the right-hand piece stemming from the original 
crystal, there exists a completely consistent definition of local paral
lelism. For exam ple, the almost horizontal lines are all parallel. The lines 
cutting these vertically are also parallel by definition. On the left-hand 
side, the vertical lines continue smoothly into the inserted new crystalline 
m aterial from above and below. Where they meet they turn out to be 
orthogonal. This shows that there is no global parallelism . Still, the 
coordinate planes define local parallelism  in any small region inside the 
original as well as the inserted m aterial, except on the disclination line.

Let us study this situation more generally. Given an arbitrary
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FIG. 2.2. Lattice planes in a crystal in which two types of d isclinations of -9 0 °  and -1 8 0 °  
have been formed by V olterra process.

connection Гм„х we first inquire under what condition it is possible to find a 
parallel vector field in the whole space. For this we consider the vector 
field 1^(х) at a point jc(, where it has the value v^Xq). Let us now move 
to the neighboring position x0 + dx. There the field has components

r M(*0 + dx) = r M(jr0) + dvv^(x{))dxv.

If г д(дг) is a parallel vector field with Dvvf*= 0, then the derivative 
satisfies

dvv » = - r vx»v\  (2.99)

This differential equation is integrable over a finite region of space if and 
only if the condition of Schwarz' Lem m a, i .e . ,

(aAa„-ava*)r'1=o, (2 .Ш0)

is fulfilled. If we calculate

(aAa„- a„aA)i'', = -эл(Г„л-*) + эдгАх'Ч'х). (2.ioi)

we find

-(3Ar ra'‘ - a „rA„'‘)i’*- r„,/aAr*+ r ^ r *  (2.102)

(aAav-avaA)t>'* = - R ^ r * .

and thus, using once more (2.99),

(2.103)



FIG. 2 .3 . Illustration of p aralle l transport of a vector around a closed circu it A B C D .
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Thus the paralle l field v^x) exists in the whole space if and only if the 
curvature tensor vanishes everywhere.

If RAvxm is nonzero, the concept of parallel vectors cannot be carried 
over from Minkowski space to the affine space over any finite distance. In 
other words in curved spaces there exists no teleparalellism. Such spaces 
are called curved.

We illustrated earlier that this was the case in the presence of dis
clinations. Disclinations represent curvature, i .e ., a crystal containing 
disclinations is curved in the differential geometric sense. This is in 
accordance with the previous observation that the disclination density 0 ,y 
coincides with the Einstein tensor G/,.

In the illustration we also saw that even in the presence of a dis
clination it is still meaningful to define a vector field as locally parallel. 
The condition for this is that the covariant derivatives vanish at that point 
x0:Dvv tx(x0) = 0. If this condition is satisfied, the neighboring vector 
r % r), close to xQ, differs from r M(*0) by terms of order (x — x0)2 at most 
[rather than (дг -  x0) for non-parallel vectors]. In order to see this let us 
draw an infinitesimal quadrangle ABCD in the coordinate frame x M 
spanned by AB  = dxtx= DC and BC = dx* = AD  (see Fig. 2.3). We now 
calculate the change of direction of a vector as it makes a complete circuit 
around the quadrangle while being kept parallel. When passing from A at 

to В at jc^-i- dx* the vector components change from vA*(x) to
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FIG. 2 .4 . A tom ic positions in a crystal with and without a d islocation of the edge type.

ideal d islocated

Vв* = v ^ x  + dx) = Va * + = vA* -  bvk»v kdxv (2 .104)

On continuing to С at Xo* + dx* + dx** we have

= TvK»v kdx'’ -X 'rx»vA*dxr + r ^ T vS v A*dx',dxT 

= vAli-  f„A*V(<frv + dxv) -  d d f  

+ K ' i r i,b*vA,tdx''dxI + 0(<&3). (2.105)

W e can now repeat the sam e procedure, but along the line ADC  and find 
the sam e result with dx+*dx interchanged. The difference between the 
two results is

v ^ A B C -  v»ADC= - i R ^ v S d s ”  + 0 (d x 3), (2.106)

where dsVT = (dx^dxT -  dxTdxv) is the infinitesim al surface elem ent of the1 2 1 2
quadrangle. Thus the vectors v âbc and v^ADC differ indeed by terms of 
second order in dx. The second order difference is governed by the 
curvature tensor. For zero-curvature, the difference is of the third order.

There exists a sim ilar geom etric illustration for the torsion property 
SM„A Ф 0. Consider a crystal with an edge dislocation (see Fig. 2 .4). Let us 
focus attention upon a closed circuit with the form of a parallelogram  in
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FIG. 2.5. Illustration of non-closure of a paralle logram  a fte r in serting an ed ge  d is lo ca tio n .

an ideal reference crystal ( i .e .,  in the frame xa). Suppose its im age in x * 
space encloses the dislocation line (see Fig. 2 .5). We now recall that, in 
the Volterra process of constructing the dislocation, the reference crystal 
was cut open, and a layer of atoms was inserted. In this process, the 
original parallelogram  is opened so that the dislocated crystal has a gap 
between the open ends. The gap vector is precisely the Burgers vector. 
To be specific, let the parallelogram  in the ideal reference crystal be 
spanned by the vectors A В = dxa = DC, AD  = dx° = BC. In the
defected space x * these become AB = dx*, AD = dx*, D'C = dx'*, r 1 2  1
BC = dx'*. Since dx'*, dx'* are parallel in the ideal reference crystal, 
they are parallel vectors, i .e ., the vectors v*(x) = dx*, v *(x* + dx*) = 
dx'* satisfy (2.99) when going from A to B:

dx'*=dx*~ VvX*dxvdx\ (2.107)
2 2 1 2

Sim ilarly the vectors dx* and dx'* are parallel and therefore related by

d x '* = d x * - r vX*dxvdx\ (2.108)

From this follows the Burgers vector

b*=  (dx' + d x)* -(d x ' + dx)*= - S vX*dsv\ (2.109)

In Minkowski space, the torsion vanishes and the image is again a closed 
parallelogram . Einstein’s original theory of gravitation assumed the 
absence of torsion, SMI,A= 0 .
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2.7. CIRCU IT INTEGRALS IN M ETRIC-AFFIN E SPA C E S WITH 
C U R V A T U R E  AND TORSION

In order to establish contact with the circuit definitions of disclinations 
and dislocations in crystals, let us rephrase the d ifferential results (2.106) 
and (2.109) in terms of contour integrals. Given a vector field v*(x) 
which is locally parallel. i .e . ,  which has Dvv ti(x) = 0. C onsider the 
change sustained by i-M(x) as it is transported around a closed contour:

A rM = <p cfxudvv M(x). (2.110)
J  n.v>

By decomposing С into a large set of infinitesim al surface elem ents we 
can apply (2.106) and find

Д г»=<£ dx'’d„c» = f  ds™RTVX»(x)v*(x)- (2 -111 )
J  C U " ) J  5(.v^)

Notice that the tetrad fields e,,M are locally paralle l by definition, so that 
they satisfy

A e ^ = -< f d x ' 8 . e S ~ - i [  ds" RTm»(x)eu*(x). (2 .112)
J  C(jr“) ^ J  S{x»)

A ctually , this relation follows directly from Stokes' theorem :

tfi dx"d,.e,r= ( dsT"aTa,.e„»= Г dsTVR „.„“e,*.
J <(*-) J V(.V) -  J V(.v“)

(2.113)

For an infinitesimal circuit, we can remove the tetrad from the integral 
and find

Ле"М 4  5 - L  )dsr"Rr ^ y „ x ^ ^ ^ e >‘l,. (2 .114)

The matrix has the property that is antisym m etric, due
to the antisym m etry of RTVXp in xfx. Hence can be interpreted as the
param eters of an infinitesimal local Lorentz transform ation. In three
dimensions, it reduces to a local rotation, in agreem ent with what we
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observed previously: curvature is a signal for disclinations and these are 
rotational defects.

Let us now give an integral characterization of torsion. For this we 
consider an arb itrary closed contour C (xa) in the inertial frame (which 
generalizes the parallelogram  used in the previous discussion). In the 
defected space this contour has an image C'(xa) which does not 
necessarily close. In order to find how much is m issing, we form the 
integral

Ф dx* = Ф dx“ = Ф dxae^(x").
J  С(л") j  C(v") d x  J  C ( Л")

By Stokes’ theorem , this becomes

J f  ds“h(d„eh» -d he,f)= \  f  ds"\e,:dveh» -(a ~ b ))  = -  f  ds“hSahr
z j  S{ x") Z J  S(x“) J  S(X")

(2.115)

The quantity

-  -\eav(dveh* - ( a ~  b)) (2.116)

is called the anholonomity of the mapping x°^>x*. It is related to the 
torsion 5Axm by conversion of the lower indices from the local to the 
inertial form,

S„h* = e/ehxS ,S  = -k{e„xehx[ecx 3A er" -  (й «• 6)])

s  eh“ -<,a<r*b)\. (2.117)

If the tetrad vectors are known as functions of the external coordinates 
x° , we may also use ertAdA = d!dx(t = d(l and write the anholonomity in the 
form

« * м - - § ( в . в * ,‘ - ( « « * ) ) •  (2 .П 8)

Sometimes one also converts the upper Einstein index /x into a Lorentz 
index с and works with

Sabc = ec*Sl,h*= -Ц *„а веь* -(а * * Ь )).  (2.119)
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If there is no torsion, the integral (2.115) vanishes. O therw ise the image 
of the closed contour C(x°) has a gap and thus defines the Burgers vector

Ь*= ф dx*1 ~ —CD dsab S ^ .  (2.120)
J  C'(x*) J  C(.v")

Note that oftentimes the circuit integrals m easuring curvature and torsion 
are executed in the opposite way by forming closed circuits C (xM) around 
the defect in the space x* and studying the properties of the im age circuit 
C(x°) in the ideal reference crystal (this is the so-called Cartan 
transport). In the case of torsion, one m easures how much the image 
C(x°) fails to close. This gives the Burgers vector

Ь" = ф dx" = (f d x * ^ = < fi  dx>Me \ ,  (2 . 121 ) 
J  C'(-V") J  C(.v̂ ) dX J c ( дм)

which, by Stokes' theorem , can be rewritten as

b(,= f  dx»dve\  = [  ds^Sv/ e \ {x ).  (2.122)
J  S(.v**) J  S{x*)

The tensor SVfJL“ = S„MV A = (1/2)(Эм — bveâ ) is obviously a converse 
form of the anholonomity (2 .116), with Einstein indices exchanged for 
Lorentz indices.

There is an analogous circuit integral characterizing the curvature from 
the standpoint of the xa coordinates. For this, one introduces a partial 
Lorentz tensor related to R^Vf)x:

Rabxx= e c*(dadh - d hdtiy \ .  (2.123)

Then the circuit integral reads

A*‘V = “ f  ds"'Rc<l/e'\. (2.124)
S(x»)

If one wishes to calculate /?,f/,A*from  the usual curvature tensor /?M„Ax one 
must note that under the anholonomic mapping x °—»л*м, R is not a 
tensor. In fact, a simple manipulation shows that:
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R»v\*-  е<*(дцди -  д„дм)е 'л  = e,i*(e''txd„eh„dh - ( / * « - » v))edk

= -  dhd„)e\ + [e”liell*(dae\)(dhedx) -  ( м « •  v)]

= «•„ «** Л .м  * + «V  etl4 / T „ *  eh* ГгА" -  (M ♦* v)

= «*„ «*„* ,* »*  + Г ^ ' - O i h v )

= ^ ^ ^ 4  2 5 , / ^ » .  (2.125)

Let us define

/ и /  = е Л ' 'Л л л к =е/(Ч,<3,, -  Эла„)е"Д. (2.126)

The torsion S„/,r was expressed in terms of derivatives d/dx" = d„ in 
(2.119) as follows

Sab = = -{e ĉ S„eh»

= ie k4 f V  (2.127)

For the connection we define, sim ilarly,

г „ /  = e„»e,:e\ ГМ„А = - e ^ e ^ e " ^ /
A= ~ e*e\ ehK = -e \  d„ehx = e‘\ V„h 

= eh% e ‘x. (2.128)

Explicitly,

Г , A s  e A Г и = e *е, v Г A1 ab cc 1 ab ca cb 1 дк •

Then the R(lhc(l of (2.126) can be written as

Rabr = Э„ГЛ/  -  dhr„S  + [Г . .  Г »]/ . (2.129)

It should be pointed out that as a consequence of nonzero curvature the 
covariant derivatives no longer commute. If we form

DvDp vK- D p DvvK, (2.130)

we find after some algebra

DvZ)M rA — DpDvV\ = vx ~ 2SvtlpDpvx,

£>„£>„ v " - D tlD„vK = Rvux * v * -2 S v/ D p»* (2.131)
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2.8. SOME EXAM PLES OF COORDINATE SY STEM S W ITH 
DEFECTS

It may be useful to give a few explicit exam ples of defected mappings 
x*(xa). W e shall do so by appealing to actual physical situations. For 
simplicity, we consider two dimensions. Imagine an ideal crystal with 
atoms placed at xa = (и1, л2, и3) • b with infinitesim al lattice constant b. 
The simplest defect was shown in Fig. 2 .4 , nam ely, the edge dislocation. 
The mapping transforms the lattice points to new distorted positions of 
which x*(xa) are the cartesian coordinates. There exists no one-to-one 
mapping between the two figures since the excessive atoms in the m iddle 
horizontal layer x l < 0, x2 = 0 have no correspondence in xa space. In the 
continuum limit of an infinitesim ally small Burgers vector, the m apping 
can be described by multivalued function

T 1 2 2 ^ _I Xx - x  , x — x — —  tan г ’
2тт x

where the function tan -1 may be defined to be equal to ±тг for x l < 0 , 
j r  = ± г. We have used the notation xa = xa in order to distinguish xa=x'2 
from jcm=1' 2. In differential forms we have

dx̂  — dx *, dx2 = dx2 -f 1 2 * 2 2 (x2dxl - x l dx2)y
2tt (*  ) + (*  )

with the basis components8 = dxa!dxtx

* - (  1 0 ^  b x2 6  jcl
\2тг (x1)2 + (x2)2 2tt (x 1)2 + (x2)2/

The mapping (2.133) is not in stress equilibrium . It represents only a 
plastic deformation in a specific defect gauge. To reach equilibrium  an 
elastic deformation has to be superim posed' so as to minim ize the elastic 
energy. Incidentally the mapping x~l - x \  x2 = x2, дг3 = лс3 -h 
t a n '^ jr 2/*1) gives the plastic distortion of a screw dislocation which 
happens to be in stress equilibrium .

Let us now integrate dx* over a Burgers circuit which consists of a 
closed circuit C(xM) in x*  space around the origin ,

'Notice that - ( e -  5"M) is the analogue of the superflow around a vortex line of strength  b 
[see Part II. Eq. (1.58)1.

(2.132)

(2.133)
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ь°=  [  dx“ = [  d x ^ ~ =  [  dx»e\.
J  С(дги) J  C(jr>*) OX J  C (X»)

Inserting (2.132) we see that

bl = Ф t f s O ,  b2 = Ф  dx2 = - b .  (2.134)
J  C(.vm) J  C(^)

It is easy to calcu late the torsion tensor SM„A of (2.132). Because of its 
antisym m etry, only S ^ 1 and S ,22 are independent:

с 2 _   ̂ 5 a 2 dx2  ̂ dx212 — д\в 2 — д2е i -  d | - ~ 2  — d2 f 
dx dx

5 ,2! = -  d2e\ = d, —2 -  d2— j. (2.135)
OX cu

Sm earing out the singularity in the denominator of (2.132) by adding a 
sm all e2, as in Part II, Eq. (1 .64), we find

S I22=  -Ь8<2\х *)ч S 12r = 0. (2.136)

We may write this result, with the Burgers vector ba = (0, —b) , in the 
form

SpS = e^b* i5(2)( * A). (2.137)

Let us now calculate the curvature tensor for this defect,

= ***(№„ -  dvdp)e\ . (2.138)

Since e°p in (2.133) is single-valued, derivatives in front of it commute. 
Hence, RpvXx vanishes identically,

* * * « - 0 .  (2.139)

Thus a pure dislocation gives rise to torsion but not to curvature.
In contrast to this, consider now a wedge disclination (see Fig. 2.2). A 

cut has been made along the left half x2 axis, the lips separated by an 
angle a ,  and new m aterial has been filled in, fitting into the crystalline 
structure and balancing the forces. The lattice unit vectors = еаеац in 
x M space are obviously rotated with respect to ea in xa space even at a 
large distance away from the origin. At the wedge, i.e ., for x2 < 0 ,x I ~ 0, 
they are rotated by ± a i2 for x~l = ± e . For x2 > 0 , they remain
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unchanged. We can represent this operation m athem atically by using 
(p = tan -1 (x2/xl) defined to have the jum p from 180° to -1 8 0 °  for x2 < 0 , 
j c 1 =  ±0 and taking

as the desired mapping, with n = 2tt/(x. In order for real crysta lline 
m aterial to fit in between the lips, a must be a m ultiple of 7t/4 . The cases 
a = - 7r/2 , - 7Г are displayed in Fig. 2.2. A t the level of d ifferential 
geom etry, however, a is assumed to be infinitesim al, i .e . ,  n —» » .  The 
need for this unphysical limit represents a basic w eakness of the 
differential geom etric approach to defects.

It can now be easily  verified that the mapping (2.140) gives rise to 
curvature. D ifferentiating once we find

Only one independent component of the curvature tensor em erges,

cos ((p/n) —sin ((p/n) у  __ 
sin ((p/n) cos ((p/n) )  A 6aX

cos(<pln) —sin(<p//i)\ л = е„л
sin (<p//i) cos ((p/n))„ (2.140)

dve<,\ /? ^ COS ((p/n) -S in  ((p/n)
1 I —sin (cp/n) - c o s  ((p/n)

d M *)  (2 .141)

and

= еах(дцdv - a„aM)e„A =
A
(aMau - at,aM) <?(*)•

(2.142)

Indeed, d^dv(p — (fiv) is nonzero, since

(ar, d2)(p =

and

di д2(р — d2d\(p = 2
1________ 2Г(л')2 + (*2)2]

( x 1)2 + (дг2)2 + e2 (( jr1)2 + (дг2)2 + e2]2

= 2тга(2)(л л). (2 .144)
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R\2i2= -^ 2 7 г6 (2)(л:а) = - a S (2)( * A).

As before, the small param eter e sm ears out the singularity and helps to 
d isplay the 8 function at the origin. Of course, the sam e result could have 
been deduced without an e by applying Stokes’ theorem:

Ф <£t4<p= | dsXxd„dx<p= bq>= = - a .  (2.145)
j  C{x») J  S(x») n

2.9. IDENTITIES FOR C U R V A T U R E  AND TORSION TENSORS

Because of their physical importance, it is useful to derive a few 
important properties of curvature and torsion tensors. As noted before, 
the curvature tensor is antisym metric in /jlv, by construction, and in Ax, 
due to the integrability condition (2 .7) of the m etric tensor. In addition, it 
satisfies a fundamental identity] which follows d irectly from the represen
tation (2 .59), by adding terms in which jjlvA are interchanged cyclically:

(2.146)

where the symbol i i i means the sum of cyclic perm utations. In 
sym metric spaces ( i .e .,  spaces with no torsion), this im plies an additional 
sym m etry property,

RfivXx + RvXfxx + R\fj.vx -  0 . (2.147)

Using the antisym metry in /jlv and Ax we are led once more to the 
property (2 .70),

R/jlvAx = ^Ax/xv» (2.148)
{ }

as it should, since in symmetric spaces /?Ml)Ax = R̂ v.ax*
Another important identity is the Bianchi identity.-* It follows from 

the global existence of the affine connection which implies, as we had 
postulated previously in (2.76), that the connection also satisfies the 
integrability condition

(ЭМЭ „ -  д „ Э „ ) Г Дхр = 0 .  ( 2 .1 4 9 )

^Schouten has called the antisym m etry in \xv the first identity and (2.146) the second. The 
Bianchi identity was first found by Voss in 1880, by Ricci in 1889, and by Bianchi in 1902.
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To derive it, consider the mixed object

с̂гк/х (.dcr̂ v * (2.150)

which determ ines the curvature tensor RavtJLx via its sca lar product with 
e\  Applying the covariant derivative we have

Invoking the integrab ility condition for the connection, (2 .149), and 
perform ing cyclic sums over zcrv while using the antisym m etry of in 
( tv  leads to

Inserting this into (2.152) and m ultiplying by e x we obtain an expression 
involving the covariant derivative of the curvature tensor,

This is the Bianchi identity, which guarantees the in tegrab ility of the 
connection.

Within the defect interpretation of torsion and curvature, we are 
now prepared to demonstrate that these two identities have a simple 
physical interpretation. They are just the nonlinear versions of the Con

or

Now we use

а„а„ед = Э„(Г„,/е*) = Г vflxd(7ex + д„Г„м*е* (2.153)

to derive

A ntisym m etrizing in a r  gives

-  да дг9 ^  = Г „M*Rrcr* + [ ( a ^ -  a . A J I V K .  (2 .155)

- ly n ^ x = o. (2 .156)

(2 .157)
U____1
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servation laws for dislocation and disclination densities. R ecall that these 
were given in Part III, Eqs. (2 .45), (2.46) as follows,

d(x/j = -  ejkc 0 *<, (2.158)

3,0,/ = 0. (2.159)

They state that disclination lines never end while dislocation lines can end 
at most at a disclination line.

Consider first Eq. (2.157). L inearizing, we deduce

dTRirvfxX + d(rRvmA + dvRrtlcrx = 0. (2.160)

Contracting v with fx and r with A, we obtain,

*rR<rVVT + d(rRvXvA + dvRrV  = 0 = 2dTR J  4- da R = 2ar G /  = 0. (2.161)

Since in three dimensions, the Einstein tensor GMV is the same as the 
disclination density 0 Mir [see (2 .93)] we see that (2.161) indeed coincides 
with the conservation law (2.159).

Equation (2.146) on the other hand has the linearized form

2(Э„5мЛ*+  ЭМ5А/ +  3AS„M*) = (/?^AX+ /?а,д Х). (2.162)

Contracting v and x we find

2(3„SmAv 4- Эм5а/  “  dKSpvv) = RvfiKv 4- RfxXxx * а „ /  = Яда "  R a .
(2.163)

where we have used the antisymmetry of RVfJL\x in the last two indices 
(which was a consequence of the integrability condition for the metric 
tensor). The right-hand side is the same as GmA -  GAp.

In three dimensions we may contract this equation with the e tensor 
and obtain

£jke(diSka  + dkS(nn -  d(Skrw) = £jkeGk ( . (2.164)

R ecalling the identification [see (2 .92a), (2.93)]

G ( k =  S k( , S k£j =  2 £kCia ij »
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we find

aij ~ ~ £jk i (2.165 )

which is just (2.158).
This is no m iracle, since in Eqs. ( I l l .2 .45 )—(III .2 .46) we derived the 

conservation laws from the integrability conditions (III .2 .47 ), (III .2.50) 
which are the same as Eqs. (2.76) in the present discussion. In general 
curved space, the corresponding integrab ility conditions are those of the 
metric and the connection. In the context of E instein ’s theory of the 
gravitational field, to be discussed below, Eqs. (2 .146), (2 .157) appear 
once more with the physical meaning of being the conservation laws for 
the angular momentum and energy-m omentum density , respectively.

2.10. CU RV A TU RE  FROM EMBEDDING

Instead of mappings from the space x° to x*  with rotational defects, there 
is another way of obtaining curvature. This is by em bedding the space x M 
into a higher dimensional “M inkowski” space xA, A = 1, . . . ,  N with 
metric tjab consisting only of diagonal elem ents ±1. The m apping xA(x*) 
is smooth but cannot be inverted to x*(xA). Thus there are N basis 
vectors ел in the embedding space and

eA (x ") = eA e \  (x »*) = ел ^ 7  (2 -166>

form four local tangent vectors in the 4-dimensional subm anifold xA(x*)■ 
They induce a metric

§\x (x *) = eA (x M) ex ( jrM) , (2 .167)

which we employ to define the contravariant components of eAK,

eA\x*) = g AX\x*)eAy (x*). (2 .168)

But these are no longer reciprocal to еАк(х*)У i .e . ,

(2-169)

since there are not enough of them to span the ^-d im ensional space. 
They do fulfill, however, the com pleteness relation in the four- 
dimensional subspace:



eAxeAx= 8x*. (2 .170)

Let us take an exam ple: the surface of a sphere of radius a in three 
dimensions with the mapping

xA -  (дг1, jt2, X3) = tf(sin©cos<p, s in 0 sin<p, cos© ) (2.171) 

has the tangent vectors

eA\(x*) = tf(cos0 cos<p, co s0 sin<p, —s in 0 ) = eAl,

eA2{x*) = a ( - s in  0 s in  </?, sin 0cos<p, 0) = eA2, (2.172)

where we have set x*=l = 0 ,  x*=2 = <p. The metric is

1 0
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8ni

so that

■> i a 2 1 1 s in (p co s<p n\ /n 1>7/14а-ел '= е А 1= е „  ^  = , 0j .  (2 .174)

It follows that

Г221 = eAid2eA2 = e ^ ,f l ( - s in 0 cos<p, - s i n 0 sin<p, 0)

= - a 2 sin 0  cos 0  = Г212 = — Г122. (2.175)

A ll other components vanish. The space is obviously symmetric; it carries 
no torsion. For raised components we find

Г221 = - s in  0  cos 0 ,  r 212 = c o t0 . (2.176)

The curvature tensor is simply

Я , 221 = a , r 22' -  д2 rI2' -  rn‘ r v  -  r122 r22* + rv  r,,1 + r 222 rV 
= -c o s 20  + sin20  + cot 0  sin 0  cos 0  = sin20 ,  (2.177)

and
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Rt 22, = ^ -  (2.178)

All other components can be obtained by using the antisym m etry of
in /*-» v, A —» x, and the sym m etry under /jlv Ax, Eq. (2 .64 ). Thus 

we can form the Ricci tensor

j ) ,  (2.179)

and the curvature scalar

R = R" = ~  (2 .180)

Observe that for noninvertible vectors елА, the curvature has to be 
calculated from (2.59). Formula (2.61) can no longer be used since in the 
derivation of this formula one must have

л p° = гVp с V 1 fi. v c A »

which no longer follows from the correct relation

Г A = eл eA 

due to the noninvertibility еАхев*Ф ЬА B.

2.11. GEODESIC COORDINATES IN CU RV ED  SPACE

To a local observer, curved space looks flat in his im m ediate neighbor
hood. A fter a ll, this was why man believed for a long time that the earth  
was a flat disc. In four-dimensional space-tim e, the equivalent statem ent 
is that, in a freely-falling elevator cabin , an observer would not 
experience any gravitational force, as long as the cabin is sm all enough to 
make higher nonlinear effects negligib le. The cabin constitutes an inertial 
frame of reference for the motion of a mass point. Its coordinates in a 
curved geom etry can be determ ined from the requirem ent that the 
Christoffel sym bol, {/х'А\ х'} , vanishes [recall (2 .9 )], which, in turn, 
amounts to

(2.181)

(2.182)

д л -^ л ’С*') = 0, 5 v g * ' V ) = - S * V > AV3 A ^ v ( * ' )  = 0. (2 .183)
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Given an arb itrary set of coordinates дг, the derivatives of the metric are 
related by ^

* a 'S mV(* ')  = ( o t^ a v\ g ^ x ))

= + a *  ,g»*(x:) + а ^ а ' . а ^ П -
(2.184)

These are n2(n + l)/2 partial differential equations for the n coordinates 
x (д:) which cannot, in general, have a solution over a finite region. This 
fact is also obvious from (2.71) since, if d\• »A• were to vanish over a

{)
finite region, the space would necessarily have R^vxx = 0. So we can, at 
best, achieve

Эл'£д'Л*о') = 0 (2.185)

at some point дг(>' = дг0.
In this situation, a mass point would move force free at x0. Any 

deviation from x() would lead to gravitational forces which are sm all, i .e . ,  
of order 0 (x  — дс0) . Let us try and solve (2.185) by an expansion

x'»' = AT,,'1 + a \ ( x -  дг„)А + x -  x0)\ x  -  x0) *

+ j i^ « s ( x - x 0) 4 x - x „ n x - x „ ) s + . . .  (2.186)

By definition, the matrix = дх'^/дх*1 becomes

о %  = a MM + «"'„л (x -  x„)A + ^ а % А * (*  -  *o)A(*  -  -t0)x + • • • >

Эл «  мм = а “ кА + я "  дл» (*  -  *»)* + • • • • (2.187)

Inserting this into (2.184) we find

dAg “V |,v„ = + (otlar\a'‘ r^g^lx,, + (#*' «  •"))

= 0 + 0 (x  -JT0), (2.188)
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which is solved by /

(2.189)

as a direct consequence of (2.49). Hence the coordinates which are locally 
geodesic at xQ are given by

Notice that while the Christoffel symbols vanish in the geodesic frame at 
*o, their derivatives do not, due to the nonzero curvature at jc0.

As far as the crystalline defects are concerned, the possib ility of con
structing geodesic coordinates is related to the fact th at, in the regions 
between defects, the crystal can alw ays be distorted to form a regu lar 
array of atoms. In the continuum lim it, these regions shrink to zero but so 
do the Burgers vectors of the defects. Therefore even if an arb itrarily  
small neighborhood did contain some defects, these them selves would 
be infinitesimal so that the regu larity of the crystal would be disturbed 
only to higher orders in (jt - jc()).

X'“ = * 0"  + i (x  -  *o)A(*  -  r +  0{(X  -  * , ) ’ ]. (2.190)



FIELD EQUATIONS FOR GRAVITATION

CH APTER THREE

3.1. IN VARIAN T ACTION

In the last chapter, we analyzed the space in which a particle in a 
gravitational field follows the same equations of motion (when expressed 
in general curvilinear coordinates) as a particle in Minkowski space. The 
only difference lay in certain properties of the metric. We m ay now ask 
how such a metric associated with a gravitational massive object is to be 
calculated. For this, the ten components of the metric tensor g^v(x) have 
to be considered as dynamical variables and we will need an action 
principle for it.

Since the equation of motion for gpV(x) must also be independent of 
the general coordinates em ployed, this action must be an invariant under 
Einstein transformations,

x*^x'*\x*), dx*-> d x = a*,fl(x)dx* (3 .1)

An action involves an integral over the full space,

(3.2)

where dx is a short notation for the volume element d4x in four- 
dimensional space-time, and which transforms as
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dx —► dx' = dx det a. (3.3)

The simplest object L(x) which leaves s f  invariant can be formed from 
the determ inant of the metric

g = det (g„„). (3.4)

Since g 'Mv (* ')  = gM„ ( a r l) Mtl- ( a _ l)V  [see Eq. (2 .36)] we have

«-»«' =g deter2. (3.5)

Therefore, an action proportional to the 4-volume of space,

ssC. = A J dx V^g, (3 .6)

is an invariant. It is referred to as the “ cosmological te rm ."  H owever, this 
action is not capable of giving equations of motion for the grav itational 
field since it contains no derivatives of so that the field cannot 
propagate. We must find some scalar Lagrangian L contain ing gM„ and 
agMIJ. Then

j y =  J  dxV^g L(g, dg) (3 .7 )

will be a possible gravitational action.
Now, the only scalar which occurred in the previous geom etric analysis 

and which involved was the scalar curvature. T herefore,
Einstein postulated, with H ilbert, the following grav itational field action ,

j/f - - ^ ~ J d x V = g R  (3 .8 )

Here к is a constant related to Newton's gravitational coupling G = 
6.670 x  10-8  cm3g _ ls“2 via

1 й (3.9)
к 87tG t p2

where G is defined such that the force between two mass points is given 
by

F= -G m m 'lr2. (3.10)
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With (3 .8 ), a system  consisting of a set of mass points with world lines 
*,-M(j/) and their gravitational fields has the total action [recall Eq. (2 .2)]

For the following formulas it will be convenient to set к = 1 since it can 
always be reintroduced as a relative factor between the field and matter 
parts in all field equations to be derived.

Variation with respect to 8x,M(s,) at fixed gpV gives the equations of 
motion discussed in the beginning. In addition, the action (3.11) permits 
us to find the gravitational field generated by the presence of these mass 
points'1. The equations of motion for g^ ix)  are

with ten independent components. These are not the only equations. The 
curvature tensor ЛМ„А* also contains the torsion tensor SM/ , via the 
contortion tensor /СД1Л  These are 24 more independent degrees of 
freedom of the geom etry to be determined by the second set of equations 
of motion

We had seen in Eq. (2.10) that point particles do not couple to torsion; 
conversely, we do not expect these particles to generate a space with 
nonvanishing torsion. This is why Einstein considered only symmetric 
(R iem annian) spaces from the outset. For spinning m atter, however, the 
situation is different and torsion is necessary for a complete dynamical 
theory. The action (3.8) in a space without torsion is called a Hilbert- 
Einstein action, in a space with torsion an Einstein-Cartan action.

3.2. ENERGY-MOMENTUM TENSOR AND SPIN DENSITY

It is useful to study the derivatives of the different pieces of the action 
with respect to g*v and separately. In view of the physical inter
pretations to be given later we shall introduce the tensors T*v, EvA,M via

(3.11)

“It is worth noting that, strictly speaking, there cannot be any point particles in general 
re lativ ity . They have to be much larger than their Schwarzschild radius, i .e ., ^ KtrtjC.
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8gfJ.V

bsff
88»v

1 ,— »' 
- - r

S  A l*

1 /— >
= - r  V = gT »\

(3.14)

(3.15)

as the matter and field symmetric energy-momentum tensors and via

s a ; /

8stf
8K ^ k

я...

1 I------  m

ft...

(3.16)

(3.17)

as the spin current density of m atter and field, respectively. The field 
equations (3 .12), (3.13) can then be simply stated as

T + T = 01 fJLV 1 * Ц V (3.18)

(3 .19)

i.e . the total energy momentum and spin densities vanish.
Consider first the action of m atter. In order to exhibit the dependence 

on the metric tensor, we param etrize each world line by an arb itrary 
variable s/ (not equal to the invariant length ds,) and write

ds, = = ^ g M„ ( x , ( v ) ) f f J v * /

so that the m atter action becomes

= - S  rn, J  ds,- = - S m J  ^g„ „ (jc, (s/)) ̂ 7 ^ 7 * ,'-

Variation with respect to gMl; and KMVA gives
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0. (3.21)

W e may therefore m ake the identification

E V ^ O . (3.23)

Let us calculate these quantities for the gravitational field. We first 
perform the variation of V - g  with respect to 8g„v. For this we write

S V =8 = ~ 5 V ^ SS (3.24)

and observe that, by varying gM„(jc), the variation of the determ inant g 
involves the cofactors, which in fact are equal to g times the inverse,
i .e . ,

Sg = ggMVSg/JLV. (3.25)

M oreover, due to g ^ g va = we have

g X/lS g ^ = - gvx8gAft 

so that 8gXx = - g KhLg xv8ĝ LV and

t g - g g ^ S g ^ - g g ^ S g " ,

5 v = i  = {V ^gg^ dg^  = -{V ^ g g ^ S g ^ .

(3.26)

(3 .27)

Notice that (3.26) implies a change of sign [compared with (3 .14), (3 .15)] 
if we calculate the energy-momentum tensor from the variation with 
respect to Sg1*

8sfn
8ghIi

8s/f 
8g^

С  AI'

= j v = i i v .
s *  1

(3 .14 ')

(3.15')



1 3 9 0 IV. DIFFERENTIAL GEOM ETRY OF DEFECTS AN D G R A V IT Y  WITH TORSION

Therefore, we can write the variation o f j/ y  = — (H 2)jd xV ^ ggfiVRtlv as

In general this tensor is not necessarily sym m etric (on ly in sym m etric 
spaces would this be true). The variation with respect to 6 g Mi\ however, 
picks out only the sym m etrized part of it [in contrast, see (6 .13 )]. 

Consider now the variation of the Ricci tensor,

In treating this relation further it is useful to realize that un like ГД1Л  
5ГМ„Х is a tensor [observe that 5TMVX is not!]. This follows d irectly from 
the transformation law (2.50c): The last, non-holonomic p iece , dMd„£x in 
Гм„* cancels out in STMl,x since it is the same for Г and Г + 8Г. Therefore 
we may rewrite (3.30) in terms of covariant derivatives,

which is obviously the same as (3.30). In sym m etric spaces this relation  
was first used by Palatin i.

W e must now express this variation in terms of 8g*v and It is
useful to perform all operations inside the action integra l,

The factor accompanying 8g*v is the Einstein tensor,

(3.29)

(3 .30)

Dp8Vxv*+ 2SXfJiTb r X
T V  •

(3 .31)

This gives

(3.32a)
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Because of the tensor nature of 6ГМ„Х we can take g ^  
covariant derivative and write this as

4 / d xV = i(D x8 T S * -  + 2 S ^ TSVmx)

= ~ J d x V ^ ( d x S r ^  -  дм8Гх^  + 

- Г мА'‘8ГхЛх+25х' ' 'г Г г,,х).

Further, we use

a„ V r i  = V = « r r i A

to rewrite V - g d x S r M„x as

bx{y/=g»r̂ 4 - V=£rvaiv
and split (3.32b) into a pure surface term

— J  * { a , V = i * r M'“ - d ^ V = j e r >1'u'} t

plus terms originating from the connection,

4 / <it' / - I ( - r*AAS r V +  Г АЛ«ГХ„Х + ГхА* 5 Г / л

-  Г(1А'*5ГхАх+ 25Х|'Г5ГГ„Х)

= 4 / V —g(-25x5 r i'vx+  25‘,S rx„x+ 25x‘'гSГrl,, 

where we have abbreviated

5 =  C A Cx =  Cx A x — ‘JxA > °  °  A 1

It is useful to state the result as follows

4 / < *V = I^ = 4J  ̂ V=i5^r5rr(1x.

valid up to irrelevant surface terms, where

through the

(3.32b)

(3 .33)

(3-34)

(3.35)

% (3.36)

(3.37)

(3.38)

1 3 9 1
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+ V £ « - W  (3 -39)

This combination of torsion tensors is referred to as the Palatini tensor.
We are now going to express 6Ггрх in term s of 6gp „ and To do

this we note that the varied m etric gpp + Sgpp certa in ly  satisfies the 
identity (2.48),

r+«r
0 Л & Р + « & * ) “  0 , (3.40)

Г+6Г
where D is the covariant derivative formed with the varied  con
nection. For the variations SgMP this im plies,

Рц^тр = <5Гмгр 4- 6Гмрг, (3.41)

where we have introduced

ЗГргр = £рАЗГргА. (3 .42)

This gives

г r r
К DrSgw + D^Sgpr -  Dp8gTfJL) = 5Г грр -  8Smp + &SMpr -  8SpryL

= 8 r w - 8 K w >  (3.43)

where 8SrMP = gpASSr/  = gpA- (1/2)5(Г\.МA -  Г ,,/ ) and SKrf4>« S S W -  
5>SMpr + 5Sprp is the result of a variation of SM„A at fixed gp„. Notice that 
even though Гр/  = {Д} + /СД1Л  the left-hand side cannot be identified 
with gp*6 { Tx }, since 8К ^ А contains contributions from &SM„A at fixed 
gpV and from gpv at fixed Spp\

Using (3.43) we can rewrite (3.38) as

- ~ j  dxV—gg^SR^

- j J d x V ^ S ^ l s K ^  + \{DT5U „ + D^SgpT -  Z>pSgr„ ) j  .

The first term at the right-hand side shows that the Palatin i tensor S P>X'T
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plays the role of the spin current of the gravitational field [recall the 
definition (3 .17)] up to a factor -1/к,

г = — ~ *^мр.г* (3 .4 4 )

The second term is partia lly  integrated , with the result

surface term - i f  dx V^g  {D * S r8gpp

+ DfJL' S ^ 8 g pT- D p* S ^ T8gT>l }.
Here D is defined as

=  + (3 .4 5 )

This modified covariant derivative is a convenient tool for partial inte
gration in integrals containing the metric factor V —g. Take any tensors 
jjh. . . v i . y  vj and consider, for exam ple,

-  j  D ^ . . .  (3.46)

Partial integration gives

surface term + J ]  f  dx V ^ U * ’ ’ v‘ " V,

+ V=g U * " * -  ГМР,А' V.. .Af. .. , (3.47)

where E,TMl, A> indicates the sum of connections, each acting on one of 
the indices of K . .A#.. .  and contracted with v, in u tx- v' " .  But

V = I = V=g = V ^ ( 2 5 M + Гхр*) 

so that (3.47) becomes

surface term + £  J d x V ^
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Now, the terms in parentheses are just the covariant derivative of 
SQ t ^ a t  w e  a r r j v e  a t

Relabeling the indices in (3 .43), we arrive at the follow ing derivative of 
the actionb with respect to 8gtxv

Thus the complete energy-m omentum tensor of the field reads

A ctually , the variation 8g*v yields only the sym m etrized part of TpV. 
This specification is, however, unnecessary. We shall dem onstrate later

/
that total angular momentum conservation [cf. Eq. (5 .13)] m akes T*v 
sym metric as it stands (even though G*v is not).

We finally arrive at the following field equations:

(3.48)

G"" -  -  Da*(5'"' a -  S"A-" + 5 Afl-") | •

(3.49)

/

(3.50)

f III

- к Т т  = G '“' - i D A*(S '“' A-  5 ,,А м + S A" " )  = « Г ”. (3.51)

For a set of point particles we insert (3 .22 ), (3 .23) and have

(3 .50 ')

III
С м -  _  k T v > (3.5Г)

^Recall that 5 ^ “C MI.=  by (3.26).
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3.3. SY M M E TR IC  ENERGY-M OMENTUM TEN SOR OF THE 
G RA V ITATIO N A L FIELD AND DEFECT DENSITY

The field energy-m om entum  tensor obtained in (3 .49) has a d irect defect 
interpretation . For sim plicity, let us go to three dimensions. Then the 
linearized version of (3.49) reads 

/
-K  Ttj = Gjj -  Ja*C Sjj.k -  sjkJ -  Sk iJ ) , (3 .52)

with the spin density (3 .44), (3 .39),

“ 2 К £ ij.k = 2Sij. к ~ Sjjk + 8jkSj -  8jkS j . (3 .53)

We insert the dislocation density according to (2 .85), (2.92a)

Sijk = 2(djdj — djdj)uk = 4Ejj( a Lk. (3.54)

Then the Palatini tensor reads

S//. k SjjQaik + 8jk Ejp( cx(p 8jk £jp( ctcp • (3.55)

Since both sides are antisym metric in (/y), we can contract them with £,y„,

£ijn Sjj\ k — 2 a nk ■+■ £kjn Ejp( OC(p Ejkn Bjp( (X(p

=  2cx,ik 2(5^5,,/ — 8k ( 8,,p) d (p  2<xk„ , 

and Sjj k becomes simply

Sjj. к ~ £iji ak( • (3.56)

and the spin density coincides with the dislocation density up to a factor 
—k

r
- k Z ,y.k = Sjjf akf. (3.57)

Thus the spin density is related to the dislocation density whose indices 
appear in the transposed order with respect to (3.54). The transposition 
insures that the spin density has vanishing divergence, since

dkSjj' k = Ejji dk ak( = 0. (3.58)

In terms of the derivatives of the displacement field м ,(л), the Palatini 
tensor reads
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Sij,k~ &ij( £kmn д/п^цМс * (3.59)

a form which shows explicitly the conservation law  (3 .58).
Let us now form the three combinations of S,yt* requ ired  in (3 .52),

Sjf. j + SkiJ) — 2 (£ijl &k( ~ ZjkC&H “1“ Skil’&jt)' (3 .60)

The identity

£ij( &km “1" £jki dtnl +  SfcU'fym =  &ijk &l‘nt (3.61)

may be contracted with a„u giving

£ijl &kt "1" £jki aH "1" £kH &jl = £ijk &IC •> (3 .62)

so that

2 (•%* -  Sjk.i + Ski.j) = ~£jkl a i< + 2 £ijk a CC ■ (3 .63)

The right-hand side is recognized as

ejk(K(j (3 .64)

where K(J- = —ctj( (1/2) 8(j К kk is N ye’s contortion tensor which was 
defined in Part III, Eq. (2 .79a). W ith this notation, Eq. (3 .52) becomes

/
к Tjj Gjj £jk( dkK(j.

Now we recall that the Einstein curvature tensor G,y of a metric 
gij -  5,y + В,-Uj + djiif with the total (e lastic plus p lastic) d isplacem ent w,(x) 
coincides with the disclination density ©у, [see (2 .93)]. But then, 
comparison with Eq. (III.2 .80a) shows that the sym m etric energy- 
momentum tensor times - к  is nothing but the total defect density 17,,-:

~ K Tj j  =  TJ,y. (3.65)



SPIN N IN G  P A R T IC L E S

CH APT E R  FO U R

4 .1. LO CAL LORENTZ INVARIANCE AND NON-HOLONOMIC 
COORDINATES

Until now we have been discussing the gravitational field interacting with 
massive point particles without any intrinsic spin. Let us now see how 
spin can be incorporated into this geometric framework.

Spin was originally defined in Lorentz invariant theories as follows: 
A particle moving with velocity v is brought to rest by a Lorentz trans
formation. Then its quantum mechanical description requires several 
components which, under rotation, transform according to an irreducible 
representation of the rotation group. For spin 1/2, this property is auto
m atically accounted for by describing the spinning particles in terms of a 
Dirac field фа (х) which extremizes the action

Sfm = i jd Ax\j/(x)(i -  m) ф(х) + h.c. (4.1)

In order to allow for the presence of a gravitational field, this action has 
to be generalized to arbitrary curved space-time. Naively we would 
expect an expression like

13 9 7
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s/nl = ̂ fdx 'S-g '/'(*)(' Ум(х ) ~ m) ФМ + h .c . , (4 .2)

where the m atrices satisfy the Dirac algebra

{У Ч *). / (* )}  = 2 g '“’(* ) ,  (4 .3)

which can be solved by л'-dependent m atrices y ^ x ) .  W hat is unknown is 
the covariant derivative of a spinor which depends on the trans
formation properties of ф(х) under Lorentz transform ations.

The most convenient theoretical fram ework for solving this problem 
is based on the introduction of non-holonomic coordinates. T hey are 
related to x p by some differential coordinate transform ation,

dx a = dx ph Ct/JL (jc ), (4 .4)

which satisfies the following conditions.
1. It has an inverse

dx“ = rf.v'7i„“(.v) (4 .5)

i .e . .  the matrices h<rM. /?a M satisfy

Ллм Л / = 5 / .  (4 .6)

2. The transformation matrices h (.v), ЛсДлг) obey the integrab ility 
condition

(aMa „ - a l,aM)/rttA = o. (4 .7 )

This condition has the consequence that, if we define a curvature tensor
A
Rnv\* in terms of /?rtM in the same way as was defined in term s of еар 
[compare (2 .61)], this vanishes identically,

Лм,ля = Л Л Э мЭ ..-Э „Э д )А"л = 0. (4 .8 )

3. The matrix ha*(x) is chosen so as to bring the metric g„p to the flat 
form at every point in space.
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&af) C'O VaQ (4 .9 )

This implies that the metric gfJLV(x) is the square of the m atrices Иа̂ (х) in 
the same way as it is of the basis tetrads eap(x) [recall (2 .17)]:

S till, they are com pletely different objects with different in tegrab ility 
properties. W hile hL\ satisfies (4 .7 ), e{\ does not, with the com m utator of 
the derivatives determ ining the curvature tensor [see (2 .61)].

The 16 component transformation matrices ha*(x) are called vierbein 
fields and И\(х) the reciprocal vierbein fields. As in the case of the basis 
tetrads e**̂ , eaM we shall freely raise and lower the indices a ,  /3, y , . . .  
using the metric r)a(3 = r]ap and define

From the defect point of view, the matrices ha* create an interm ediate 
coordinate system dx" which, by the integrability condition (4 .7 ), has the 
same disclination content as the coordinates x* but is com pletely free of 
dislocations. We shall see later in Chapter 7 that hnX is the geom etric 
analogue of the plastic distortion discussed in Part III, Eq. (2.62). 
The metric in the new coordinate system x tr \s locally M inkowski-like, at 
each point in space. Still, the coordinates ,v<r do not form a Minkowski 
space since they differ from the inertial coordinates x“ by the presence of 
disclinations, i.e ., there are wedge-like pieces missing with respect to an 
ideal reference crystal.

Observe that in order to specify space-time points we have to para
metrize them in terms of the original variables x*. Only derivatives can be 
executed in л*‘* space and vector directions be fixed with respect to the 
interm ediate local axes.

& „ (* )  = Л"м (дг)Л ^ ( лг) 77о(3 = А“д (д:)Л(з„(л:). (4 .10)

f t » " -

e„ (x) = eM W ^ = e* (x) ha "(лт)

= (x)ha*(x) = e(JeaQ (* ), (4.11)

from which one can go back to the local basis via the reciprocal vierbein 
fields



ер (дг) = е „ ( д : ) ^ = е (>(дс)/1“м (лг). (4.12)

Thus, an arb itrary vector may be transformed as follows,

v(x) -  e„v"(x) = e„e"M v* = e<,e"„(/i“Mu w) = е„е"“Л„'‘ ум

= eae',a v a =e„eaava , (4.13)

where we have introduced the components

иа(х)=и*(х)Ь а̂ (х), va (x) s  vfJL(x)h<xit(x). (4.14)

The orthogonality relations (4 .6) imply the inverse relations

»n(x) = »a(x)han(x), v'Xx) = v a(x)ha^ x). (4 .15)

In the interm ediate basis ea (;t) the covariant derivatives of the vector 
fields Vp, v 13 is found to be

Da vp = da vp - T a^ o y , Da vp =da vP+Ta/ v y  (4.16)

where T ^ ^ is  calculated with eap rather than with eaH [com pare (2 .46)]:

Та? у = еаУдае% = -е% даеа\ (4 .17)

It is called the spin connection. W ritten out in terms of and h this 
becomes

г „ р ^ е / h W d ^ h p " )

= h W h ^ r ^  + h W S ^ h ^  (4 .18)

= h\ha*hei'’{?pivx + h\dH.hsK) 

= h \ h ^ h p\ V ^ ~  Г „ Л

where Г|ХУА is defined in terms of h in the sam e w ay as Г ^ /  is defined in 
terms of e [see (2 .46)]. A lternatively we may also write

r V =  h W h f r ^ - h . r h W ' .

1400 IV. DIFFERENTIAL GEOM ETRY OF DEFECTS AND G R A V IT Y  WITH TORSION
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I V -  A** W A V  -  hs\ h \ )

- A W V O V - r * / ) .  (4 .1 9 )

The second line implies that /?rtM satisfies identities like ea* in (2 .4 7 ):

D „ V = ° -  Dah \  = 0. (4 .20 )

If we now decompose the two connections on the right-hand side into 
Christoffel parts and contortion tensors [recall (2 .54), (2 .55 )] we rea lize  
that, by the identity

= e"„(x)e\(x) T)ab = ha,lx(x)heu(x)Vap, (4 .21)

A _
the two Christoffel parts in ГМ„А and ГМ„А are the sam e so that ГаРу 
becomes simply

= (4.22)

h
where KMl,A is the contortion as given in (2.54), (2.55) and K^VK the 
analogous expression in terms of ha* instead of e„*. Explicitly

^ /  = 5М/ - 5 Д  + 5 АМ1М (4.23)

(4 -24)

Notice that due to (4.21) the spin connection is antisymmetric in the last 
two indices.

It will be helpful to use ha* freely for changing indices a into fi, 
for instance,

* V - f t TA W * i « A. (425)

k„Py= h \ K » h ^ k .v\ (4.26)
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Observe that by introducing the vierbein fields h^a, hap the description 
of gravitational effects in terms of the 10 metric components g^v and the 
24 torsion components /См/  has been replaced by 16 components hpa and 
the 24 A W e mentioned earlier that the vierbein fields satisfy the same 
relation

(4.27)

as eotx(x). Thus they can be considered as another “ square root” of 
the metric g^v different from em. Obviously, such a “square root” is 
defined only up to an arb itrary local Lorentz transform ation which 
accounts for the six additional degrees of freedom of the hQp(x) with 
respect to the #мДл) description. In fact, by introducing Lorentz trans
formations with rotational defects dxa = dx°h(la{x), where А Д х )  are 
non-integrable functions of x we could make ha%x) coincide with the 
underlying fully defected coordinates dx°. W e shall not do so, however, 
since the intended introduction of spin into the gravitational field requires 
local Lorentz transformations without defects.

Local Lorentz transformations connecting dxa and the dislocated dxa 
are given precisely by the matrices e"a (* ) introduced previously [see
(4 .11)] as can be seen directly from Eq. (4 .9) which implies

= h ^ h 0ll = (4 .28)

= e“aehpr)„b = e"„ehp

1

1
(4 .29)

- 1 ab

Thus the matrix

A V W - e * „ ( x )  (4 .30)

satisfies indeed the defining equation of Lorentz transform ations.

V = Л(х)г)Лг(х). (4.31)
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Notice that, due to (4.17) e“a(x), eaa(x) satisfy identities like (2 .47), 
(4 .20),

Daeap = 0, Da e f =  0. (4.32)

A ny theory which is formulated in a generally invariant way can be 
recast in terms of non-holonomic coordinates dxa. Since the metric is 
rjapy M inkowskian invariant actions have the same form as those in a flat 
space except that the derivatives are replaced by covariant ones,

da vp -> Da vp = dQ vp -  Гар yvy.

For exam ple,

s f =  j  d \ aD„ v&(x»)Dao%x*) (4.33)

is the non-holonomic form of a generally covariant action. As we said in 
the beginning, the specification of space-time points must be made with 
the coordinates. For this reason the action is preferably written as

j d “x ,‘V=gDavi3(x,x)Davi3(x»). (4.34)

U nder a general coordinate transformation a la Einstein, dx,L-*d x ,fi‘ 
= dx^a^ ' , the indices a are inert. For instance, hap itself transforms as

hQ»{x)-+ ha*(x') = К > \х)а/ . (4.35)

Vectors and tensors with indices a ,  /3, . . .  experience only changes of 
their arguments x —> x -  £ so that their infinitesimal substantial changes 
are

8ev<* M  = £AdA M  (4 -36)

8EDa Vp(x) = edxD QVp(x). (4.37)

The freedom in choosing Л<Длг) UP to a Iocal Lorentz transformation, 
when taking the “square root" of g^v(x) in (4.27), implies that the theory 
should be invariant under
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8Ldxa =<oap(x)dxp, (4.38)

= w - (4 -39)

Here cDfta (jc) are the local versions of the infinitesimal angles introduced 
in (2.21) and (2.22).

Indeed the action (4.34) is autom atically invariant if every index a  is 
transformed accordingly.

^LVa M  = <Oaa'(x)Vaix ) ,  (4-40)

S,.D„ v0 (x) = <oaa\x)D„.vp(x) + <■,/'(*) D„ £>„.(*). (4 .4 0 ')

The variables x*  are unchanged since (4 .38) refers only to the 
differentials dxa and leaves dx* unchanged.

It is useful to verify explicitly how the covariant derivatives guarantee 
local Lorentz invariance. Consider

8Lva = SLda = 6>tta'(x)da:  (4 .41)

Then the derivative da Vp transforms as

^L âVf* = {^L^aJVp + da (8L Vp)

= <oaa'da»Vp + Эа Ц з Э*1у)

= d0>Vp + (Op*3 da Vp. 4- (da u)pp )vp>. (4 .42)

The spin connection behaves as follows: Due to the factors hxyha*hpv in 
(4 .19), the first piece of Т(фу, call it T’(tpy, transforms like a local Lorentz 
tensor:

'apy = о ) / 'Г '„ / +  (o\ T rttpy\ (4 .43)

it
But from the second piece ГМ„А there is a non-tensorial derivative con
tribution,

5 ,.Гм/ = ( 5 А « а)ДмЛ«„ + ЛяаДм(5 йл„)

= <ч,*’Л*.Ад„й*1, + A«Ae(1(«VA*rJ  

= <ов8'л я.Аамл*. + <Л-W , s .. + aMa)ss (/is A/is'„)

= = - 9 ^ . % xhr ,  (4 .44)
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the cancellation in the third line being due to the antisym m etry of 
(Ofi8 = —со*ь. Thus we arrive at

s j S L T„e y= 5 U TaP у + д „ ш 0 \ (4 .45)

where SL( denotes the proper Lorentz tensor transformation law  satisfied 
by r a/3y in (4 .43). The last term is precisely what is required to cancel the 
last non-tensorial piece of (4 .42), when transforming Da vp, so that we 
indeed obtain the covariant transformation law (4 .40 ').

Arm ed with these transformation laws it is now straightforward to 
introduce spinor fields into a gravitational theory. In a freely falling 
elevator, which is a local inertial frame, a spinor field ф(х) transforms 
like

5/. Ф(х) = -'-ш°%х)Т.„е ф{х). (4.46)

when locally changing from one such frame of reference to another 
Lorentz transformed one. Here Ert/3 are the spin representation matrices 
of the local Lorentz group. They are antisymmetric in a ,  /3 and satisfy the 
commutation relations

[E„p . E„v] = - / t)„„ . (4.47)

For spin-1 they are given explicitly by

( E « p W  = '(*)«..• Vpp' -( .a * *  /3)).

(E„P) „ 'J' = <■ f a » -  « / '  - ( « « ■ * « ) .  (4 '4« )

and (4.46) coincides with (4.40):

S/.va = -^ (oy8i(Vya8sP-  (<x*+P))vp ~ (4 -49)

For sp in 4 , Ел/3 is expressed in terms of Dirac matrices as
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= ^ [ , (4.50)

The derivative of ф changes as

81 д„ф=ша"'да ф + d" 8 1 ф

= Т.Ру)ф

= ш ," 'а „ .ф - ^ у ! :Руа „ ф - ^ д п(о^)Т.Руф. (4 .5 i)

The first two terms describe the normal Lorentz behavior of дпф. The last
term is due to the dependence of the angles со̂ у(х) on л\ It can be
removed by using the connection r<v/3Y and defining the covariant 
derivative by

D,A(x) -  а„ф(х) + ^ Т „ р ^ ру ФМ. (4 .52)

For, if we form

8 ^ Т „ РУ̂ УФ. (4 -53)

we obtain two terms. There is a term with the regu lar Lorentz trans
formation property

£РУФ = ~  ев *" £ ,„  ^  Г„р ̂  E ^  i/>j . (4 .54)

as follows from

\ SLr ,t(j 1?.<3УФ +  ̂T ,yy . »y SL Ф (4 .55)

after applying the commutation rule (4 .47). A second term arises from 
да (х)ру, which is

^да шруТ.руф (4 .56)

and cancels against the last term in (4.51). Thus Da i\i behaves like
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SLDa 4/= <oaa'(x)D„.Ф -  l-<oe\x) ZPyD„ф (4 .57)

and represents, therefore, a proper covariant derivative which generalizes 
the standard Lorentz transformation behavior to the case of local trans
formations o)ap(x).

We can now im m ediately construct the spin-? action for a Dirac particle 
in a gravitational field (dx is again short notation for d4x)

If we wish, we may change the derivatives from da to by using 
S„ = h„'xaix and y “ = /j‘^ (x )  y M(jr) so that (x) = (i/A)[y„(x), yp(x)\ 
and, expressing by (4 .19), the action reads

This is of the form (4 .2 ). Due to the x dependence of and 
this form is, however, not very convenient. Much more useful is the 
initial expression (4.58)

x  у м(лг)( aM + ^(K „,.A -  Z \J  -  m IИх) + h.c.

(4.59)

S/„,[h. К, t]  = ^ f d x \Г^ф{х){у"0„  -  m) ф(х) + h .c ., (4.60)

with the covariant derivative written in the form

involving the spin connection

Г ha Г ny* p/3 ”  p * at(3 • (4.61')

This can easily be generalized to any higher spin if desired.
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4.2. FIELD EQUATIONS WITH G R A V ITA TIO N A L SPINNING 
M ATTER

Consider the action of a spin-1/2 field interacting with a gravitation field:

s/\h. /С, ф] = J  dx V—g R + ^ j  dx V —g ф(уа Da -  т)ф{х)  + h.c.

= stf\lu K] + s fm[h4 К . ф]. (4 .62)

It is a functional of the vierbein field /?a M, the torsion /СМ1Л  and the Dirac 
field ф(х). V arying s f  with respect to ф we obtain the equation of motion

(У* A , -  m) ^ ( jc) = 0 (4 .63)

of a Dirac particle in a general affine space.
To obtain the gravitational field equations we again define the spin- 

current density, just as we did in (3 .17). by differentiating with respect to 
/СМ1Л  at fixed and find for the gravitational field

S^ = 4 v =i S V '* .  (4 .64)2

as given in (3.53).
From the m atter action (4.59) we obtain,

^ ^ л' м = 2 | | Ц  = V = l|  ~ Ф < х )У \ х П \ Ш (х ) + h.c.

Л/Лс/ V V - g 41 ф(х)уат,(3уф(х) + h.c.

__ 9П
= /iyA/i„MAe ‘’ V —g S ̂ y ' ". (4 .65)

/II
The expression " is recognized as the canonical spin current of a

MJ

Dirac particle in M inkowski space and is i*s generally  covariant
analogue. Thus, for the spin-1/2 field, the definition (3.16) of the spin 
current density is consistent with the canonical definition.
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E V *1-  ~i 2  4>, = -/
/ / (pi

(4.66)

where the sum over / covers all independent m atter fields of the system . 
This is also true, in genera l, by the fact that the general Einstein invariant 
matter action has the functional form [compare (4.59)]

K i <Pi] =  j dx'/-gL (hafl, <pi, Dp(pj), (4. 67)

so that indeed, for fixed h * ,

S s f n

/»-**

dL i 
7  dDp (Pi 2= 2 V ^ S t

(4.68)

The field equations associated with 8K^VK are therefore

(4.69)

thus extending Eq. (3.50) to systems with spinning matter.
Let us now turn to the equations for haM. It will be useful to define the 

total symmetric energy-momentum tensor as

V = I V M - 8ha*(x) 5/z' 5...*
(4.70)

with the derivative formed at fixed SM/ . For the pure gravitational action 
which depends only on g** = ha*hav and /CMV\ this definition leads tri
vially to the same symmetric energy-momentum tensor as that introduced 
earlier in (3.15) except that one index has the a form. This follows from 
the chain rule of differentiation together with (3.15)

y z j f  °=  8s*f = hax
8  “ Sh ^  SgA“ dha“ 8

(4.71)
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For m atter, the actual calculation of the sym m etric energy-m om entum  
tensor is most conveniently performed in two steps. T ake , for instance, 
the Dirac field. As a first step we d ifferentiate V - g  and у ahatLdfi_ with 
respect to /trtM while keeping, for the moment, = const. The result is 
the so-called canonical energy-m omentum tensor,

[фу ai D ^ -  hap L ) +  h .c. (4.72)

A moment's thought teaches us that this is a general feature : The 
derivative of (4.67) with respect to /?ftM which couples to the spin 
indices a gives

(473 )on a i oDv<Pi

while the derivative of the part adds

| ( 4. 74)  

Therefore one always obtains

<4,5)

which is indeed the canonical energy-m omentum tensor for an arb itrary 
Lagrangian containing covariant derivatives. In the particu lar case of a 
pure gravitational field we can compare this first step of d ifferentiation at 
fixed £>M with the variation (3.28) and find the sym m etric part of the 
equation

©M"=  (4.76)
К

W e will see below that this holds, in fact, without sym m etrization. Thus 
the canonical energy-m om entum  tensor of the gravitational field is equal 
to minus 1 /к times the Einstein tensor.

W e now turn to the second step, the calculation of the rem aining 
derivative with respect to /za M. This is somewhat tedious. Let us write the

in
additional contribution to as
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V ^ A e J = f d x
S T ^  

S K ^  5И>*
§Leel
Sh, V A •Л-"

(4.77)

and use for the spin connection the explicit form

Гм/37 = A W ( I V /  -  Гм/ ) = -h/D ph\  = Л * Ь М V  (4.78)

where DM denotes the part of the covariant derivative containing only the 
ordinary connection Г * .  If we vary S ^ ^ a n d  hold ГМ„А fixed we have

г r
)ц"Р "Г П „LŜ Urip+ hyuDl±ShBv (4.79)

Since Dph\ = 0 [recall (4.20)] we see that D^hpv = T ^ khkv and we may 
write

S f V I r ^  = h\Dp 8hpv (4.80)

Inserting this into (4.77), a partial integration gives the first contribution

Д ,0 „5 = ~ (U 2)D ^ xb » (4.81a)

We now include the contribution from 8 Г„„\ Using the decomposition 
(3.43) with SS„„A = 0, i.e .. S/CMvA = 0, we find

« - (

m n I

dhf
(4.81b)

With

d/7x

this gives, altogether,

/II / /71 777 /71 \
Д 0 х5(.г) = .(-l/2)Z )*M( Е4д.х + £"*.6 j  (4-82)



« г  ш п п т ш .  (4/№ШЪ ** *ЛИГП »tm  r#\>VJb

1 1т  к  pf'rovtly f.be ъ%гж type of vm M Um  b b / h * y that had
Ь*жп ъ&кА to  the canonical energy^momenturn tensor of the 
gravitational fittkl in 0 .4 9 ) . in order to produce the symmetric one 7 ^ .  
Here, ft к  obtained for arbitrary spinning matter fields;

f „ = S * ,+ де*, = 3 „ - -гD\(ix„-»-iЛ  + ! * , j . (4.83)

For spin-» this is the expression first found by Belinfante in 3939. We have 
lowered the index v on both sides which is permissible due to the 
covariant form of the equation.

m
In terms of T^v. the field equations which follows from variations of 

the action with respect to bh,s* have once more the simple form (3 .5 Г ):

—к T * 1’ = к 7'#"\ (4.84)

now derived in the presence of spinning matter.



COVARIANT CONSERVATION LAW S

C H A PT E R  FIVE

According Noether’s theorem, the invariance of the action under general 
coordinate transformations and local Lorentz transformations must be 
associated with certains conservation laws. For the following considera
tions, it will be convenient to consider ha*(\) and Гм/За as independent 
variables and rename Гм/За as Лм/За . Then, from the derivation in (4.71) 
and (4.72), it follows that varying the action in /za M at fixed /4M/3Ygives the 
canonical energy-momentum tensor

while the variation with respect to A ^ y produces the spin current 
density3

“Recall that the field Лм/3 Yhas the pure contortion form, y - h \ h pv(Klxvx -  K^vx) and thus 
is antisymmetric in /3, y, as is the case with ГпД1'.

8s f[h aA  A ^ y] _  /—
яь  м v (5.1)

8s f lh a^ A ^ y] 1 
8A ^ y *

(5.2)

h
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These quantities will now be shown to satisfy covariant conservation lam.

5.1. SPIN DENSITY

Consider first local Lorentz transformations. Under these the vierbein 
fields behave vectorially in the index a ,

= uaa\x)ha.»{x). (5.3)

Sim ilarly, the field A ^  is a tensor in /3, у plus a derivative term [see 
(4.49)]

SlA ^ =  o > / \ x )A ^  + » V ( x ) ^ ’ ' + а „ «* Д * ) . (5-4) 

The change of the action has to vanish. This gives

+ S A ^ \ x )  +

- | e V ' ‘ ( V ^ 1’+ " V ' W  + < W ) } -  (5.5)

Partially integrating the last term gives

|  & { v ^ 0 M> * ^ . *  + i a ^ V ^ E V ' ‘) V

-  iv = £ E V '* (“ / ' ' 4M0 -', + f t > V ^ y ) l ' <5 -6)

Since a)py(x') is an arbitrary antisymmetric function of x ’ it can be chosen 
to be zero everywhere except at some place x and we find



5. CO VA R IA N T  CONSERVATION L AW S 1 4 1 5

\ -  е мтл * э  + v = i  e v  *

- 5 V = e ( E V 4 , y e + E V ' 4 r f ' ’)- (5-7)

Defining

0 / ^ 0 / / i /  (5.8)

and raising the index у  with the Minkowski metric 7j r>' , this reads

I ( 0 * _  ((3y)) + 1  r<ur» Eft-.M + I E ^  = 0 . (5 .9 )

where DM is the covariant derivative for the local Lorentz index y, i.e ., 
for a vector

i v  t’„ = эм!■„ -  £ > p ( 5- 10)

Dlxv a =dl±v a - A ^ p V li=dllv a + A ^ av^ = h eIJlDpv a. (5.11)

I
The derivative £>ME^YMcan be made completely covariant also in the 

Einstein index д , by going to

ГмА" Е ^  Л. (5Л2>

But the last term cancels part of to the middle one in (5.9) and we have 
[recall (3.45)]

I (© ^ _ 0 / 3 -y )+ i D)i*E ^.M = o. (5.13)

Being a covariant relation, this can be multiplied by hpxhyx and the 
vierbeins can be moved under the derivative, yielding

0 1* 'л| + \hp% XDIX‘ E д = 0 1 ‘  A| + ^ £>/ E Ax-" = 0. (5.14)
Z, £

For a vector this type of operation is demonstrated as follows:
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W * - V ( V ,  + V « ' )

= 3M( V O  + А0 м ^ в» э -  ( d , A > “

+ V A “x V (rM »A-

(5.15)

and the extension to tensors is obvious.

5.2. ENERGY-MOMENTUM DENSITY

Let us now deduce the consequence of local Einstein invariance. In this 
case the space-time coordinates must be transformed as well and the 
action is invariant in the following sense (again dx stands for dAx)

j dx V - g f x )  L (/ i(x ), A (x ) )=  [d x 'V -g '(x ')L (h '(x ')' A'(x'))

(5.16)

If we change the variables x' to x in the second integral we see that the 
difference

J * | v = ^ t 4 A '( J f ) . ^ 'W ) - V = « ( ^ Z . ( A ( j r ) . i 4 ( x ) ) J  (5.17)

must be concentrated in the neighborhood of the surface of the integra
tion volume. This is because the original integrations J d V ,  jd Ax covered 
the same volume so that, after the change of variables x' —*x, the first 
integral runs through a slightly different region. Infinitesimally this 
amounts to the statement that

8EJ* = f d x 8EtV = iW L (ft(x ).A (x )))  (5.18)

is a pure surface term. Recall that SE is the substantial change at fixed 
argument x [see (2 .2 0 )].

Now, under Einstein transformations the metric transforms as

SEV = i = -V v = g g ^  SEg>“  = i V = i s M“ SEgllv, (5.19)
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which, upon inserting (2.37), yields

AaAgM„ + (aMf A)gAw + (a„fA)g„A]. (5.20)

Therefore

8£V= I = f AaAV ^  + V=IaAf A = aA( f AV^£) (5.21)

and

SEJ  dxrV=i = J  dxV~gD ,e= f  dxdx( i AV =g). (5.22)

This shows that the trivial action fd xV ^ g  indeed changes by a pure 
surface term. There is complete invariance if we require £a(jc) to vanish 
at the surface.

The same result holds for a general action if L is a scalar Lagrangian 
satisfying

Ц х 9) = L(x) (5.23)

and therefore

8EL(x) -  L'(x) -  L(x) = L\x ')  -  L(x’)

= L W - L M  = f 4 L ( 4  (5.24)

The variation of s/ is

S£sir = SEJ  dx(V—g L(x) = Jdxj^[SEV ^ ]L (x )  + V = i5 EL(x)

= | * { a A[ f AV = im x )  + V = i f 4 Z - w J

= j  <iraA( f AV = lLW ). (5.25)

We can now derive the covariant conservation law associated with 
Einstein invariance by using the substantial variations 5f/2a ^and 8E/ 
and calculating 8Es f  once more as follows:



= I dx + ^ SEA^ j

= (5.26)
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The substantial variations of the vierbein fields h and A ^ y are those of 
a vector in the index \x\

SfA S  = I хa* v * -  Sx ^ h „ \  8e A ^  = e ^ A ^ +  3Mf  M *,*.
(5.27)

Plugging these into (5.26). we have

5£.с / = | &  Я 0 / ( 5 * а 4 А / - а ^ Ч ’ )

- - V = l E V ' 4 f 4 ' ' V v + Эм { М л/, ”) } • (5.28)

After partial integrations and letting £л be zero everywhere, except for a 
5-function singularity at some place л\ gives

+ V z i © M"aA*„M 

+ ^ V ^ £ V m̂ 4 ~ 5 V ^ E V ' 4 A V = 0 .  (5.29)

The second line can be rewritten as

ey ' l)A kp-'+ ^ V = iE  O y ^ A ^ - d KA ^ ) .  (5.30)

If we introduce the covariant curl of the A field,

^ A ^ - i A ^ A ^ - (m «v)), (5.31)

then (5.30) becomes



fa(V=gZl>y-nAvy+l'S=gZ\-'L{Al* eA*ty- <M**A>)

+ ^ V = £ E V " W -  (5.32)

But the first three terms can be collected into a covariant derivative, i.e .,

E (5.33)

so that the second line in (5.29) becomes, with the conservation law
(5.13)

- v ^ e / A ^ + l v ^ E V ' W ' .  (5.34)

In the first line of (5.31) we write

0 „ “йд A„M = % ° D \ h a* + % aAka% »  (5.35)

and (5.29) takes the form

a « (V = g © Ax) +  =  o. (5.36)

This equation is covariant under local Lorentz transformations but not yet 
manifestly so under Einstein transformations. In order to verify the latter 
we observe that the derivative DL of h can be rewritten as

1>/-лА(/  = дАЛ0 ' ‘ - Л л„ % 3'‘

= - Г * . " * . " -  0 V -  Г* ,* ) Л . ' -  - Г \S h a°, (5.37) 

in accordance with the identity DaA0m= 0. Then the second term is

- V = i r A<7“0 A", (5.38)
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we now rew rite the first term  as

V ^ K O W + r V © , * ) .  (5 .39 )
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Then the completely covariant conservation law for the energy- 
momentum tensor is

D\ 0* * + 2Sx/ 0 r* -  i  “Fw  * = 0. (5.40)

5.3. COVARIANT DERIVATION OF CONSERVATION LAWS

It should be noted that the conservation laws of energy, momentum and 
angular momentum can be derived somewhat more efficiently, if some 
initial effort is spent in preparing the Einstein and local Lorentz 
transformations (5.27), (5 .3), (5.4) of ha M and A ^  in covariant form. 
Take bEha*. It can be rewritten as

D ,^hax + r Ax^ / r  (5.41)

where as

aAA„M= -  Г л Л С  = AKa% » ~  r KS h a\ (5.42)

so that we arrive at the covariant form

5Eha*=  -D a ^ +  (ЛА„ " -  2SA</ ) f A (5.43)

The reciprocal field h transforms via

SEh \  = D ^ ° -  ( A ^ - 2 S ^ a)^ .  (5 .43 ')

Sim ilarly, we find

SEApLJ = e ^ A ltap + Г; xX / f

= D ^ A , ae) -  -  ГмхМ А/ Г

= Ом« аЛл„р) - ^ а/ .  (5 44)

Under local Lorentz transformations, the vierbein field has already its 
simplest possible form,

ЗгЛ," =<*«% '*, (5-45)
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while А acquires the typical additive term of a gauge field

8LAPJ =  (5.46)

Using these covariant transformation rules, the variations of the action 
(5.5), (5.28) become

SLs/ = J  1 / 2 ) E V 4 " « S}. (5.47)

SEs / = J Da^ a + (ЛДл" -  25а<Л О

-  (1/2) E V M[£V(f а/4А(/ )  -  f AF(lA„'3]}. (5.48)

A partial integration of (5.47) [using (3.46), (3.48)] then gives directly 
the divergence of the spin current (5.13). A partial integration of (5.48) 
leads to

D \ 0 / +  ( A ^ J - 2SM</ )  ©fl“+ ( 1/2 ) D\ E  Y М м/ +  (1/2) E у  ' F ^ = 0
(5.49)

which, after inserting (5.13), reduces correctly to the covariant, 
conservation law for the canonical energy-momentum tensor (5.40).

5.4. MATTER WITH INTEGER SPIN

If matter fields only carried integer spin it would not be necessary to 
introduce the AaM, A ^  fields. Then there would only be invariance 
under Einstein transformations from symmetry considerations. The 
law of angular momentum conservation requires the use of equation 
of motion. The action may be written in terms of gfJLV and Kpvk with the 
aid of ГМ1/Л= {Д} + АГД„Л and Einstein invariance amounts to

8Est=(dx(-—- 8Egpv + A
J \ogpv oKpv 8tiv )

+ E V * ( f AaAK *+ a„| AKA/ + a „ f A/cMAx- a Ar<K,i..A)}. (5.50)
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where we have used the definition (3.14)—(3.17) and inserted the trans
formation laws under general coordinate transformations. We have 
omitted the matter label m since the equations in this section apply just as 
well to the gravitational action s/f. The calculations are simplified if we 
define the symmetrized canonical energy-momentum tensor by

8s/
Sg„, Г . *=const.

= - ^ V = I ( 0 M„ + 0 * .) . (5.51)

It is easy to see that this definition agrees with (4.72) (by differentiating 
with respect to ha M at fixed А and changing the index a  to v) if there 
are no spin4 fields. It may also be verified by forming

8s/ 8s/
Suvx~  const.

8s*
J d y 8Г,г/(х)

/ “ Const. 

A
(5.52)

•V * « const.

so that one obtains the standard Belinfante relation (4.83) between T^v 
and ©м„. For pure gravity, (5.51) is in accord with (4.76) which states 
that ©M„ is the Einstein tensor [recall (4.76)] up to a factor - к

K©pl, G/xv RfJiV

as can be seen from (3.28) and the Belinfante relation (4.83) again 
coincides with (3.49).

Thus we can evaluate the consequences of Einstein invariance by using 
© and E and considering, instead of (5.50), the variation

0 = 8FsZ
- I

dx
8s/\
%/ivF

Bsf
Oe S h v +  g p  A Se IV /

= - ^ J  ^ V z i { 0 ,u'( ^ AaAgMl. + a(<̂ AgA„ + a l,^ AgMA)

-  £ ’х ,‘ ( ^ Й А Г , ;+ з „ ^ г А/ + з ( |<г )1А' ' - а Аг г )1„ Ч а ца » Г )}

It is again useful to bring the variations Szg^, 8EГм/  into covariant 
form. We rewrite the Einstein variation of the metric as
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+ Di'tv = Dn£v + Dvt». + [KM/  + (/i, <-> v)]£A 

= DM£, + D„fM + 2[5Am„ + (M ~  v)]£\ (5.53)

and the variation of the connection

= D p D ^  -  2 (5.54)

Inserting this into (5.52) gives

5 Е .яГ  =  J d 4x V = g  { ( © * " '  +  & n ( D &  +  2 S AMv ) f A

+ E V M[DMD , r  -  2 0 М(5„А̂ А) + /?Amvx^a]}-

By partially integrating the E term and using the spin divergence law
(5.13), we obtain immediately

Ses / = 2 J Л У = £ { - О м0 а“ - 2 5 мД- 0 / + ( 1 / 2 ) ^ мЛ л м Л £ Л. (5-55) 

leading directly to the covariant conservation law

V © A" +  2S„ax0 „ ‘' -  i E V X . / =  0- (5-56)

This is not in manifest agreement with (5.40) since the last term is 
E V m/?a^x, while we had Lpy'*FXtlPy in (5.40).

We shall now demonstrate that

R^»x= F w yhpvhy* (5.57)

and hence that both formulas coincide. This is a direct consequence 
of the fact that the vierbein fields ha are integrable, i.e ., 
(dpdv -  dl>dfl)hQx= 0. Consider

F„vey= d . A ^ - A ^ A , j y + A ^ A ^

- « „ [ ( t v -  r * “) V * " J - & * ~ ,'>
-  (Г -  Г)мАг(Г -  T )„*hSh\  -  0* «  v)

= [дм ГиЛ* — (ГМГ„)*Х-  (/х<-> v ) J АЛ



+ { r  „ A 4 ( V '> r*) -  ^ ( r  - 0 * « v )

+ (Гм Г„ + Гм Г, -  Гм rv)\*hp*h'rx -  (fj.«v)}. (5.58)

Once we have demonstrated the vanishing of the terms in curly brackets, 
(5.57) is verified. The first term inside these brackets is

Г„л 4  V * 7x + Г vS h p\ h \ - ( n ~ v )

= + I V V  + (/*** v). (5.59)
and the second gives [using (2.46) in terms of h\]

-a„ (/ip Аа„л rA) - (/*<-> v) = г„рA r„A y-  (^«-»v) - hp A(aM a„ - a„aM )A VA
(5.60)

and, indeed, by recalling (4.8)

W =  t ^ V AT« = ^ ^ AAV (5.61)

This identity between the curls of /4 and Г is related to a fundamental 
algebraic property of covariant derivatives. Consider a vector field rA and 
apply DfxDv -  DvDp to it. We find

[DM, D J r A = ам(Эу.рА -  ГvAxrx) -  Гp D Ti\

-  r wAr(a„rr -  Г Л )  -  (M ** *0- (5-62)

Since (ама„ — a„a„ )rA = 0 we obtain the so-called Ricci identity

U V  -  2SpJ DTrA. (5.63)

For a general tensor, acts additively on each index. Now, a similar 
relation may be calculated for the vector v in the dislocated basis, Vp:

[DM, D Jtfc = dp{dvvp -  i4p/37r r ) -  r M„r Dr P0

-  A„py(dv Vy -  Avyh's) ~(ji++v)

= -FpVpyvy -  IS^JD,vp. (5-64)

For a field of arbitrary spin this generalizes to
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[£>„, —2SM/ 0 r <A. (5 65>
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From the complete covariance of (5.62) and (5.64) we may multiply 
(5.62) by Ицк and move this factor through the covariant derivatives 
(which, in this process, change their connection since they are applied to 
different objects before and after). But then the R term in (5.63) and the 
F term in (5.65) must be simply related by (5.57).

When expressing the energy-momentum tensor and the spin-current 
density in terms of the Einstein and Palatini tensor, the two covariant 
conservation laws (5.13) and (5.56) of a pure gravitational field take the 
form [recall (3.44), (4.76)]

5.5. RELATION BETWEEN CONSERVATION LAWS AND 
FUNDAMENTAL IDENTITIES

It is a fact that for the gravitational field, by itself, both covariant laws are 
automatically satisfied irrespective of the presence of matter due to the 
fundamental identities (2.146) and (2.157). To see this we apply (3.45) to 
(3.39) and obtain

(5.66)

/ V Ga*+  2S„a xG / "  2 ^ * 'мД а^*=  0 *

with (1/2)S \ '»=  S \ *  + g^S* -  GMV= R ^ - g ^ R .

(5.67)

= 2 ( А Л л х + D^S,„*+ D,SXI±X)

~ 4(5>ч/5л(,“ + + 5Д/ 5 М/ ) ,  (5.69)

from which follows

GM* -  C*M = 2 (DX5мД *+ 5* -  D ,S„) + 4SPS„*p. (5.70) 

Equation (5.68) now takes the form
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/ V V A= C vm- < V v (5.71)

in agreement with (5.66). Sim ilarly, using (2.157) and permuting the 
indices we have

+ Д ,Л „Г/  + D„RTallT = 2Sr̂ R v̂ T + 25<7VA« rA(1r + 2 S„/R„x/ .  
(5.72)

Contracting v and /x, this becomes

2Z W  -  Da R = 2D,GaT = - 2 5 Г/ Л /  + 25cr"A/?A(1 + 2 5 " / / ?^ /

= - 4 S r/ « /  + 2 S V / U /  (5.73)

or

Dp Gir* -  2Sp (R ^ -\ 8 X*R) + 2Sr,/(G Ar + | V * )  ~ S'VA W  = °<
(5.74)

in agreement with (5.67).
Within the defect interpretation, we had observed before that the 

fundamental identities were a nonlinear generalization of the conser
vation laws of defect densities. From what we have just learned, these 
conservation laws can be obtained as the conservation laws of energy- 
momentum and angular momentum from an Einstein action.

The two laws follow from the invariance of the Einstein action under 
general coordinate (Einstein) transformations, which may be considered 
as local translations, and under local Lorentz transformations, re
spectively.

These transformations correspond to elastic deformations (translational 
and rotational) of the “world crystal” and the invariance of the action 
expresses the fact that elastic deformations do not change the defect 
structure.

It is important to realize that due to the relation between the 
conservation laws and the fundamental identities, they remain valid in the 
presence of any matter distribution. Then, by the field equations (4.69), 
(4.84), the spin density and energy-momentum tensor of the matter fields 
have to satisfy the same divergence laws once more by themselves. 
Indeed, it can easily be seen that this is a direct consequence of the 
Einstein invariance of the matter action in a fixed arbitrary affine space, 
i.e ., a space whose geometry is not determined by the matter fields under 
consideration.



CH A P T E R  SIX

G R A V IT A T IO N  OF SPINNING M A T T E R  
A S  A  G A U G E  T H E O R Y

6.1. LOCAL LORENTZ TRANSFORMATIONS

The alert reader will have noticed that the theory of gravity of spinning 
matter, when formulated in terms of fields /?а м, is really a gauge 
theory of local Lorentz transformations. Gauge properties had shown up 
before in (2.50c) when we observed that the connection ГМ„А transformed 
like a non-Abelian gauge field under general coordinate transformations. 
But, at that early stage, we could not have properly spoken about a gauge 
theory since the connection ГМ„А was not an independent field. In the 
present formulation the situation has changed. Now it is easy to convince 
ourselves that A is an independent field and, according to Eq. (5.4), 
Ара  ̂ is a gauge field with respect to local Lorentz transformation.

Let us recall that under infinitesimal Lorentz transformations a vector 
behaves like

8 va = o)n , 8v a = o) ap и?. (6 . 1)

From the antisymmetry of the matrix a> this can also be written as

For a tensor this amounts to

8 v a = - v p(Opa. ( 6 . 2 )

1427
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dt„*= ov.* V  + 0 = (< *)«*“  (/«)„* (6.3)

In order to compare this with the general discussion of Section 3.4 of Part 
I we may identify the representation matrices of the Lorentz group as

V O -  (6.4)

Indeed, in terms of these matrices the infinitesimal Lorentz transfor
mation,

dx'a = A “p dxfi= dxa +w "p dx * (6.5)

can be written in the general form

8dx“ = i(a)yal2)(eyfiy^dxp (6.6)

just as in (1.3.122), with €yfi playing the role of the matrices t n and 
iDy*l2 that of the rotation angles cv". Thus (Cyawyfil2 y xli coincides with the 
infinitesimal matrix ( i (ta“) in (1.3.73). Now. by (6.4) this matrix is 
nothing but

This shows that the transformation law (1 .3 .108b) coincides precisely 
with (5.4) for the special case of the local Lorentz group,

8 ,  A f i p y =  (D p 1* А Р р > у  + ( o yy ' A p p y  + d ^ c o p y . (6.7)

Observe that the space-time variables л*м are not transformed so that the 
Lorentz group plays the same role as an internal symmetry group. There is. 
however, a certain similarity with external gauge symmetries discussed in 
Section 3.5. Part I. This is because hirp can couple Lorentz and Einstein 
indices, just as in (1.3.135). thus giving rise to more invariants. For instance, 
there is no need of forming (FMm^)2 in order to get an invariant action. 
There also exists an invariant expression linear in the field strength,

s/f = —  J  dxV^gh'^hi F ^ J .  (6.8)

In fact, from (5.57) this is just the Einstein-Cartan action (3.8).
For completeness, let us see once more how the spin current and 

energy-momentum tensor follow from this action with independent fields 
А рар. First we calculate the spin current of the field. By definition.
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= 2к 8А/ф(х) f  s*f'S~8ha "  V "  (ev'V<.'<5

-  V ' ' W r -  А „ .у А ^ / ‘+ Лм.„-М „./ ')

= —  {a„V ^(/7r/ v  -  ( « « « )  + V ^ ( A ^ .„ h a> h/

+ A„p v h,Shl, '" ) -(a ~ (} ) } .  (6.9)

We may write this in terms of the partially covariant derivatives (5.10), 
(5.11) as

- к Е а/3̂ =  D „(/7,/V  -  + W V  “  ( « - « ) •

Applying the chain rule of differentiation this becomes

- к  E , * M = (b fih" *- haMDvhfiv + К »Т Р<П  - ( a ~  p). (6 . 10)

We now observe that, due to the identity Dm/i,y‘’ = 0, the connection can 
be rewritten as

r M,.A = /7"ADM/2tr,.= - h avb„h„\ (6.11)

_  r
This relation is complementary to the relation (4.78), Г/х(3у=ИyvDtxhpv. 
Using (6.11), the spin current of the field becomes

- к L p  * = 2(5<r/3M + ha »S0 -  hp»Sa ) = S .,,*  (6.12)

in agreement with (3.44), (3.39).
We now calculate the functional derivative of the action with respect to 

hn**. It shows directly that the canonical energy-momentum tensor of the 
gravitational field coincides with the Einstein tensor,

У = 1© ц“ = (Ss/f l8h(,n  =

= A“" V = i(^ „  -  &,„/?) = V = *G „e. (6-13)
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The use of the field ha M has made it possible to retrieve the Einstein 
tensor without projecting out the symmetric part of it, as in the previous 
formulas, (3.28) and (5.51).

6.2. LOCAL TRANSLATIONS

In the literature one often finds the statement that the vierbein field may 
be considered as a gauge field of local translations. In fact, Einstein’s 
transformations

x ' = x - £ ( x )  (6.14)

can be considered as local translations and the vierbein field does ensure 
that the theory is invariant under these, just as any bona fide gauge field 
is supposed to. The covariant derivative

D „ ^ h , ^ + l- A „ ^ y (6.15)

may be viewed as a combination of h„M times the translational “matrix” 
3̂  and (H2)A(tf3y times the Lorentz matrix E py. This viewpoint becomes 
most transparent by considering the expression in (5.65), the commu
tator of two covariant derivatives with respect to the dislocation 
coordinates,

[D„. Dg] ,/, = ^ F„pys + i 2S„pVDyф. (6.16)

Since the factor of F(t[)ya is the curl of the gauge field of Lorentz trans
formations, the factor 25<y/3v of Dy tj/ may be considered as the curl of the 
gauge field of translations. Indeed, if we write 2Sa(jy in the form

2SaPy = - h yv( ha»Dph(3'’ - ( a ~ p ) )

= ^ V ( ^ Y. - 0 * ~ v ) ) ,  (6.17)

we arrive at the standard form of a curl and the present formulation of 
gravity of spinning matter can be considered as a gauge theory of both 
local Lorentz transformations and local translations.

In recent years, this aspect of gravitational theory has received
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increasing attention, due to the shift in emphasis from geometric 
principles to gauge principles. There is no space here to go into more 
details and the interested reader should consult the Notes and References 
for further reading.

6.3. LOCAL FOUR-FERMION INTERACTION DUE 
TO TORSION

What additional physics is brought about by torsion? If the field action 
is of the Einstein-Cartan type (6 .8 ), the consequences are not very

/ hi
dramatic. The field equation (4.69) for the spin density, E Y M= — 
together with (3.44) determines the Palatini tensor (3.39) as being x =

in
- k ^ .  a and therefore also the torsion

• W  = ( 1 2̂ ) f a , . A  + a S „ x -

(
I I I  1 II I  1 H I \

S m, .a + 2 «mae «  * “ 2 (618)

It is obvious that scalar fields which describe spinless particles do not give 
rise to torsion. A little more surprising is that the same thing holds also 
for electromagnetic fields even though they describe spin-1 particles. The 
reason is the absence of the gauge field A in the electromagnetic 
action,

„<.m = ( - 1/4) f  d ' x V ^ F r S * ' .  (6.19a)

with the field strengths

^  = (6-19b) 

which is invariant under the usual electromagnetic gauge transformation

Ар-*Ар + dpA. (6 .20)

This invariance forbids replacing the derivatives in FfJLV by covariant 
derivatives DM, since this would introduce an additional term
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{ )
- 2 5 M„A/4A. Only the covariant derivative is permissible, but the 
Christoffel symbols are symmetric so they can be omitted, leaving only 
(6 .2 1 ) as an object which is gauge invariant under electromagnetic, 
Einstein, and local Lorentz transformations.

The first non-trivial effects of torsion arise for Dirac fields. The spin 
density of matter is, from (4.66),

_

£«/3.y=  -№ )ф [уу л „ р ] +ф, (6 .2 1 a)

(with L(Xp = (//4)[y(V, y^]). This can be written as

M l __  _

= {№)ФУ\аУрУу\Ф = ( 1/2 )еа0УА Фу У5Ф (6.21b)

(with y5 s  (l/4!)ea/3ySy ‘V ,y 7y fi), where the brackets around the sub
scripts denote their complete antisymmetrization. Due to antisymmetry, 
the Palatini tensor (divided by 2). the torsion, and the contortion

ni
tensor are all equal to (к/2 )E aj8>y

W
(l/2)S„„.y = S<tl3y = К,ф.у = (к/2) Z„p.y . (6.22)

In Eq. (2.69) we have expressed the curvature tensor in terms of the 
Riemannian curvature tensor plus the contortion. Two contractions give 
the corresponding decomposition of the scalar curvature

i i  i t  i i

r  = r  + d i1 к ,:*  -  d „ v "  + (6.23)

I *
We integrated over the invariant volume, the D K's produce irrelevant 
surface terms and can be ignored. The Einstein-Cartan action can 
therefore be separated into a Hilbert-Einstein action

Г 1 J
s i {  = — (1/2k) dxV ^gR  (6.24)

plus a field torsion action

•«/,=  f  dxV = gL fi . (6.25)
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with a Lagraugian

Lf, = ~ (II2k)(K ^K ^ -  K ” K ^ ).  (6 .25')

This can be rearranged to

Lf, = (1/4/c) (6.26)

where S^v X is the Palatini tensor. As a cross check we differentiate this 
with respect to KAvft and obtain

dLf,/dKXv*=  (1/2/c)5mp.a . (6.27)

in accordance with (3.17) and (3.44) (the factor 2 comes from the K’s 
inside SM„A).

We now add to (6.26) the matter-torsion Lagrangian extracted from the 
Dirac action (4.59),

m
Lmt= ( 1/2 ) EMU>A K*vtt. (6.28)

Extremizing the combined torsion Lagrangian L, = Lft + L,„, we recover 
once more (6.22). Inserting this back into L, gives, at the extremum, the 
effective torsion Lagrangian

m m m
L,c(f = (к/4) EmpA K Kv* = (/c/8 ) EM„A E (6.29)

or explicitly, with (6.21b) [see Hehl and Datta (1970)]

L,c[{ = (Зк/\6)фуру5ффу*у5ф. (6.30)

Unfortunately, this interaction is too weak to be detectable by present- 
day experiments. Moreover, it is not renormalizable, so that it cannot 
possibly be a fundamental interaction, but at best a phenomenological 
approximation to some more fundamental theory.

NOTES AND REFERENCES
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GEOMETRIC THEORY OF STRESSES AND DEFECTS

C H A PT E R  SEVEN

After the preparations in the previous chapters it is now easy to construct 
a geometric theory of stresses and defects. With the defects described by 
the geometry of an affine space, we have to find an appropriate way of 
incorporating the correct long-range elastic interactions between the 
defects into the theory.

7 .1 . CLASSICAL ELASTICITY

First we look at the simplest case of classical elasticity which involves only 
the strain tensor щ. The defects are characterized completely in terms of 
the plastic strain tensor u%. Recall the partition function of elastic fluctua
tions in the presence of a given defect configuration ufj [Eq. (III. 10.32)]

Integrating out the displacement field w, gave the stress conservation law,

д,огу — 0. (7.2)

1435
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This led to the introduction of a stress gauge field Xij so that,

&ij ~ BikcBjmn̂ n̂ mXCn » (7-3)

and to a reformulation of (7.1) as a gauge theory [cf. (9.40), Part III]

(7.4)

where

Vij £j,tlndndmUjj (7-5)

was the defect density, which satisfies the same conservation law as the 
stresses

diVij = 0 .

We saw in (2.83), that the role of the plastic gauge field ujj is played by 
the metric g,y, apart from a factor 1/2. An elastic distortion of the crystal 
changes ujj by a plastic gauge transformation

Щ  -> lu'i’j  + d,$ + a,f;,  (7.6)

An obvious task now is to find the nonlinear geometric generalization of 
this structure in a Riemannian space: In such a space, the metric changes 
under coordinate transformations (local translations) as

£//-» gij + D&j + Dj£h (7.7)

I )
where D, are the covariant derivatives formed with the Christoffel sym
bols of the metrics. Now, the usual, elastic strains are obtained as

и*} = djUj + djUj -  2uj-. (7.8)

Thus they are obtained from the transformation law of the plastic strains 
- 2 u?j~* — d/gj — djgj — 2 ufj by simply replacing on the right-hand side the 
transformation functions — £ by the total displacement field и,-. The elastic 
strains are then automatically defect gauge invariant since the transforma
tion functions in (7.6) can be absorbed, by an elastic deformation, into 
the total displacement field uh
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и,~> u; 4- £ , (7.9)

By analogy we conclude that in the nonlinear theory in affine space, the 
elastic strain tensor must be given by minus the right-hand side of (7 .7 ) 
with £ replaced by -w,-, i .e .,

Ufi = D,Uj + D/Uj -  gij. (7.10)

The generalized partition function should therefore read

Z = J ®  of 3> uf exp | -  j  d3x Vg ̂  (o i?  -  o '/ j

+ io''(DiUj + D,u, -  g(>) j |  • (7.11)

The factor Vg ensures an invariant volume integral under general co
ordinate transformations.

If we integrate out the щ field, we obtain the covariant conservation 
lawa

Ditr'j- 0. (7.12)
{>

The generalized defect density is given by the Einstein tensor Glf 
formed with the Christoffel symbols [see Eqs. (2.89), (2.91)]. It satisfies a 
covariant conservation law of the same form as cri},

= 0. (7.13)

In principle, it is possible to consider <т,у as the linearized version of 
another dual geometry, in which Хц plays the role of the metric, say gijy

C)
(called, say, stress metric) and cr,y that of the Einstein tensor C,y (called, 
say, Einstein tensor in stress space). In this way, the stress energy 
can also be cast into a geometric form. The result would be a geometric 
version of the double gauge theory (III.9.49) (“double geometry”).

aIt is a useful exercise to verify the invariance of the energy in (7.11) under local translations at 
this stage. For the transformations o fg,-,, Eq. 7.7, this is trivial; but also the transformations of 
Vgcr" gives no change.
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7.2. SECOND GRADIENT ELASTICITY

If the elastic energy also involves a rotational stiffness, as in Part III Chapter 
18, a geometric theory of stresses and defects requires an affine space with 
curvature and torsion. We take the partition function (18.23) of a given 
defect distribution /3,y, </>,y

Z = J s *  ai}Q) TyW Ui<2) d)j exp j  -  j  d3x ĵ ^—
V 5

07? — ------- С7ti I + 1 _2
ll’T 4

+ i<rv(diUj -  Bijkwk -  f3?j) + (г,у(Э,а); -  ф?,) (7.14)

(where we have assumed 82 = 0, 6 , = 1, for simplicity). Integrating out 
the Uj and w, fields gave the stress conservation laws

d,07, = 0, d,r,y = -  ejk(orkl. (7.15)

They are of the same form as those of the defect densities [recall Eqs. (2.68), 
(2.69), Part III]

а,у = CiktdkPij + 6цфрк  ~ ф% ©iy = е1ке8кф(/, (7-16)

which read [see Eqs. (2.45), (2.46)]

d,-«,y = - e ;A£©H-, di®ij = 0- (7-17)

When generalizing the partition function (7.14) to affine space, we want to 
preserve the structural identity between the conservation laws (7.15) and
(7.17). This is achieved by the following partition function,

Z= | ® с г ',0 г дао2>ы“@й>л'5ех р | - J d 3Vg s /2 V L-i 2 cr/ — cr.

+ 16/i€27^ Tiof̂

4М7Д  ' 1 + v ' 

+ i<r'a (D,ua- o>,“ -  2 A»,)

7 » ' ,( D A J - 4 J  + D ,(« ,A№s) - i i ^ s ) J '  (7-18)

Here ма, are the displacement and rotation fields in non-holonomic 
coordinates dxa, and /*“, /4 ,а  ̂are the gauge fields of local translations and 
rotations in affine space.
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The stress field a'a carries one non-holonomic index a and one Einstein 
index /. From this we calculate the tensor a )  in the stress energy as

</, = /*“< .  (7.19)

The covariant derivatives D, are formed using the gauge field of rotations 
Aia ,̂ for instance,

Diua = diu a + A ipau/). (7.20)

The nonlinear strain tensors in (7.18) are the result of the following 
consideration: The gauge fields of translations and rotations are the 
nonlinear generalizations of the plastic dislocation and disclinations (3% 
and 0,y. At first sight, the generalization of the elastic strain tensors 
coupled to the stress tensors in (7.14) seems to be [(о“ = hfu>pa]

ис}« = DjUa — ( o f - h *., a>£*= DtcoJ1- A io? y (7.21)

where we have exchanged the vector шу by the antisymmetric tensor 
ша/з — Eapyb>y and introduced, similarly, ф?аР = еаруФ1!а-

Our strain tensors ue\a and afjj? differs from this naive choice by the 
additional nonlinear terms,

- O V " -  2V ) « I * +  D,(uMyJ )  -  « V .  p .22)

respectively. Certainly both choices of strain tensors have the same limit 
of linear elasticity. There is an important geometric reason for our choice. 
Elastic distortions of the solid must correspond precisely to the local 
translation and rotations of the coordinate system (which do not change 
the defect content of the geometry). These were given in (5.43) and 
(5.46) and read as follows [see also (5.47), (5.48)]

SEx “ = x°  + Г . SEhr  = -  (Apia -  2V ) f *

bEA j =  D,(^Ayrf )  -  PFiyJ  (7.23)

and

8Lx a = A (oapXpt 8LA iap = D A u J , 8Lhai = A (oa% iy (7.24)

where ga and А(ора and the local displacements and rotations. We have 
written До>ap instead of (оар to distinguish the local rotations of the
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coordinates from the total rotational distortions of the solid. Just as in 
Eq. (7.10). the elastic strain tensors are found from transformation laws
(7.23). (7.24). replacing, on the right-hand sides, by the displacement 
fields —ua. and by Then the transformed — ы Д  —A lc?  give 
precisely the elastic strain tensors of (7.18) [i.e . with the terms (7.22)).

These tensors are manifestly gauge invariant under the transformation
(7.23). (7.24) if the total distortions of the crystal ua. are simul
taneously changed by

w"-* ua + bu jJ. (7.25)

This construction principle has the virtue of maintaining the structural 
identity between the stress and defect conservation laws (7.15) and (7.17) 
at the nonlinear level. Indeed, if we integrate out the ua and ша  ̂fields in
(7.18). we find the stress conservation laws

D ?ai = - 2 S alf V 7 -  М у*Яаф\  DfT'p* = (<г*э -  cr&a). (7.26)

These have exactly the same form as the conservation laws of the defect 
densities (5.67). (5.66), the dislocation density, air being equal to the 
Palatini tensor via

j (/.к — £ijl ak( = Тцк (7.27)

and the disclination density 0 ,y to the Einstein tensor [recall (3.56) and 
(2.93)] via

G„ = 0„ = сг„. (T.28)

There they appeared as a consequence of the first anti the Bronchi 
Identity (see Section 1.9). The same conservation laws were obtained tor 
the energy-momentum tensor and the spin density Z#*' a t  arbitrary 
matter moving in the affine space. One merely has to replace

[aPeeaH (S. 'Л\. Я-- Witfc die narse drofcg of cfse serais. censcc о*
? h i*  ш & одз& Ш вр o t  ш ш ьйгвзЕ азсв Ыr*$ s s  ш. ай зш е s c o c ?
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have been lost for the stresses and with it the invariance of (7.18 ).b
This universality is of special importance if one wants to construct the 

full geometric generalization of the double gauge theory (III.9.49). Due 
to the conservation laws it is possible to describe the stresses by means of 
an extra set of translational and rotational gauge fields, say, /z", A?a. As 
in the Riemannian geometry of defects, discussed of the end of the last 
section. We may think of these as defining a second geometric description 
of space, with a metric g,j = h,ahai. The stresses o f  and rfj3a correspond to 
the Einstein tensor Ga‘ and the Palatini tensor 5^"',- within this “stress 
geometry” . The stress-conservation laws are then the first and Bianchi 
identities in this geometry. This leads to a double geometric formulation 
of stresses and defects involving A", Aipa, h,a, A if3a. We leave it to the 
reader to write down the explicit partition function.

7.3. SUMMING OVER DEFECT CONFIGURATIONS

The above partition function collects the elastic fluctuations of the solid at 
a given defect distribution. For the statistical mechanics of the solid we 
have to sum over all possible defect configurations. In Part III we saw 
that for a proper inclusion of the defects, the plastic gauge fields had to 
be discrete-valued, as a reflection of the finite size of the Burgers vectors. 
If we ignore this important fact, the statistical mechanics of a realistic 
solid cannot be correctly reproduced. It is conceivable, however, that a 
nonlinear continuum theory of defects has some means of effectively 
accounting for the size of the Burgers vectors. We can add, in the energy 
of (7.11) or (7.18), a core energy of defects: in the first case quadratic in

the defect density щ = G,y; in the second case quadratic in aiai3 = SaPJ 
and 0 ,y = Gjf . Then the continuous defect gauge fields will follow non
linear field equations. Then nonlinearities will, in general, introduce a 
core region into every defect line, and its radius can set the scale for 
Burgers’ vectors. Thus it is not entirely unphysical if we set up a path 
integral over all defect configurations in the continuum formulation of the 
theory. If Ф[#,у], Ф[ЛД Ajafi] denote arbitrary gauge fixing functionals, 
we simply put in front of the partition function (7.11) the measure

bIt is instructive to verify how, after integrating out ua(лг), in (7.18), the conservation
laws (7.26) ensure the invariance of the energy under Einstein and local Lorentz trans
formations.

{ }

(7.30)



1 4 4 2 IV. DIFFERENTIAL GEOM ETRY OF DEFECTS AND G R A V IT Y  WITH TORSION

or, in front of (7.18)

|@ A “ Js> A ia^ [h ^ A ," * } .  (7.31)

It is an interesting open question whether it will be possible to explain the 
melting transition on the basis of such a continuum partition function.
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SU M M ARY AND OUTLOOK

Let us try to summarize some of the highlights described in this book. 
After a resume of the basic field theoretic tools, Part I laid the back
ground for a disorder field theory of ensembles of line-like objects. The 
statistical mechanics of such objects was shown to be equivalent to the 
statistical mechanics of a single scalar field which, in this context, was 
called a disorder field. In Parts II and III such fields were used to develop 
the statistical mechanics of ensembles of vortex and defect lines in super- 
fluids and solids. In the condensed, ordered phase, the quantitative con
tribution of such lines to the equations of state is very small since they are 
practically frozen out, and the disorder field has a zero expectation value. 
Nevertheless, at a certain temperature the lines proliferate due to an 
excess of their configurational entropy, thereby destroying the order of 
the system. This is signalled by a non-vanishing expectation values of the 
disorder fields.

The distribution of the lines in the ensemble is influenced by two types 
of interactions, one is of short range and of “steric” origin, and the other 
of long range and “elastic” origin. The former can be described within 
purely disorder field theory by means of a field self-coupling. By inter
actions of “elastic” origin we mean, in general, those which are mediated 
by the long-range excitations of the system. These are usually the Nambu- 
Goldstone bosons of some spontaneously broken symmetry in the con

1443
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densed phase. In superfluids, they are the phase fluctuations of the 
superfluid condensate and are related to the invariance of the condensate 
energy under overall phase rotations. In solids they are the phonons 
resulting from the breakdown of translational symmetry. Their long-range 
properties make it possible to take their conventional description in terms 
of a phase angle or of a lattice displacement field and reformulate it in 
terms of gauge fields. The general way in which they enter into the theory 
went as follows.

For massless fields the energy does not depend on the fields but on the 
gradients only. The simplest example is superfluid 4He in which the phase 
fluctuations have, to lowest order, the energy

E = ~ j d 3x(d,y)2. (1)

This can be reexpressed in terms of an auxiliary conjugate field, the 
supercurrent bh as

E = J dh (̂ b,2 - ibrf,yj ■ (2)

Variation with respect to bt l у  gives the equations of motion,

bj = ibjj. (3a)

djbj = 0. (3b)

Equation (3b) for the conjugate field is solved by the introduction of a 
gauge field я,-(х) so that

b = д x  a. (4)

This gauge field is the phototype of what we have called an elastic gauge 
field, or in reference to its significance in solids, a stress gauge field.

Equation (4) is invariant under stress gauge transformations, i .e ., under 
the gauge transformation

aj(x) -> aj(x) -I- djA(x). (5)

The vortex lines or the defect lines act as sources to the gauge fields with 
a simple linear coupling between the gauge fields and certain source
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currents, as in electrodynamics. The gauge invariance of the couplings is 
guaranteed by vanishing divergences of the currents which amount to 
conservation laws sim ilar to Kirchhoffs laws in electrodynamics. In the 
present context, these laws reflect the fact that vortex lines can never end 
and that defect lines in solids have certain branching rules. The vanishing 
divergence of the currents allows for the introduction of a second set of 
gauge fields, the vortex or defect gauge fields. In the case of solids, they 
coincide with the plastic distortions that have conventionally been used to 
describe the plastic properties of materials. This is why we have called 
them also plastic gauge fields.

The plastic gauge fields describe the discrete jumps of the condensate 
phase or the displacement field across the Volterra surfaces, whose 
boundaries are the defect lines. The plastic gauge transformations move 
the Volterra sheets through space, while keeping the boundaries fixed, so 
that the defect lines are gauge invariant. The fundamental equation which 
expresses the essence of the defect gauge transformations was then found 
as follows. A б-function singular across some Volterra surface 5, 5,(x, S) 
[short notation will be 5,(5), see Part II, Eq. (8.20)] changes under a shift 
of the surface S with a fixed boundary line L as

S,(S) s-*r  5 ,(5 ') -  d,6(V) (6 )

where 5,(K) [short for 5,(x, V)] is the 5-function on the volume V [defined 
in Part II, (8.21)] over which the surface has swept. All plastic gauge 
fields describing defects are characterized by a 5-function on a Volterra 
surface. For example, the plastic gauge field in the example (1) above is 
directly y f  = 27t5/(5). It changes by a pure divergence when this surface is 
moved.

The gauge invariant defect density is the boundary line. It is obtained 
by Stokes’ theorem when formulated in terms of 5-functions,

(d x  5), (5) = 5,(L), (7)

where 5,(L) [short for 5,(x, L)] is singular on boundary line. Obviously, 
(7) is defect gauge invariant under (6 ). The defect conservation law 
follows directly from (2 ),

a , 5 , ( L )  =  0 . ( 8 )
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Qj —* a, + (9, Л

gauge fields 

gauge transformations « ,($)->  8,(S) -d M V )

MS)

coupling aML) 
= M,(S)

coupling

b = Э x a invariant field strengths 

conservation laws

8(L) = d x  S(S) 

BML) = 0

FIG 1. Graphical illustration of the dual relationship between stress and defect gauge 
structures. Instead of 5,(5). S,(L) on the right-hand side we can write the plastic gauge field 
y'i and the density

The coupling of the gauge field of stress with the defect density along the 
line L is given by

Due to (8 ) it is automatically invariant under stress gauge transformations 
(5). Using (7) and (4) we can rewrite this also as

In the first case, the stress gauge field is coupled locally to the defect 
gauge invariant source of the defects, in the second the defect gauge field 
is coupled locally to the stress gauge invariant field b,(x). This shows that 
the plastic gauge fields are dual to the elastic ones. The currents of one 
are coupled to the gauge invariant field strength of the other, and vice 
versa. This dual relationship is illustrated in Fig. 1.

In spite of its symmetry, the duality does not imply a complete struc
tural equivalence. This is due to an important property of the fields, 
namely, the cyclic property of the phase of the condensate (phase and 
phase 4- 2iг are indistinguishable) and a similar property of the displace
ment field (the displacement field is defined modulo lattice vectors). It

(9)

(10)
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causes the vortex lines to have a discrete strength (in integer multiples of 
2ir) and the defect lines to be characterized by discrete Burgers vectors 
(= lattice vectors). For this reason, the plastic gauge fields cannot be 
assumed to be continuous. They must be discrete-valued, carrying either 
multiples of 2тг in the superfluid or linear combinations of the lattice 
vectors in solids.

The discrete nature of the plastic fields, which destroys the complete 
equivalence between elastic and plastic gauge structures, had an impor
tant virtue. It made it possible to transform these fields into a disorder 
field theory (with continuous fields) of line-like objects of the same type 
as had been developed in Part I on general grounds. Their introduction 
was based on the observation that the correlation function of a massive 
scalar field,

G(x, x ') = j d3P 1
(27r)3 p2 4- m2

can be written as

d(T/2)e-mH,n) J -| JL e-x//2)g-po-«') = d(T/2)e-™V2_ _ _ L _ g-<i/2)(,- ^

In this form it was seen to describe the probability of a random line of 
length т to run from x to x ', with e~m'Tl2 describing the distribution of the 
lengths. The random lines were identified with the vortex or defect lines. 
Feynman graphs of the disorder field theory became the direct pictures of 
the vortex or defect lines. Thus we saw that, while the continuum theory 
of the superfluids and solids is most naturally described by a dual double 
gauge theory of elastic and plastic distortions, the properly discretized 
system finds its most convenient field theoretic formulation when its 
discrete-valued plastic gauge fields are replaced by disorder fields.

Apart from these structural developments, Parts II and III contained 
detailed statistical investigations of the superfluid-normal and solid-liquid 
phase transitions viewed as resulting from a proliferation of vortex or 
defect lines. Graphical low- and high-temperature expansions were de
veloped and detailed comparisons with extensive Monte-Carlo simula
tions were given.

Part IV, finally, was devoted to the differential geometric aspects of the 
plastic defect gauge fields. These apply only to the continuum approxima-
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tion of defects. We began by reviewing the standard Einstein-Cartan 
theory of gravity in spaces with curvature and torsion and showed that 
disclination and dislocation densities correspond to the Einstein contrac
tion of the curvature tensor and to the Palatini combination of the torsion 
tensor, respectively. In general relativity, these describe the canonical 
energy-momentum tensor and the spin current of the gravitational field. 
The defect conservation laws were shown to be intimately related to 
energy- and angular-momentum conservation in gravity. We extended 
this geometrical description of defects by the appropriate stress inter
actions. In most straightforward formulation, they play a role sim ilar to 
the matter fields in general relativity. Gauge transformations of the de
fects corresponded to Einstein’s local translations of the coordinates and 
to the rotations of the local reference frames in general relativity.

Still in the geometric approach, the particular properties of the 
couplings between stresses and gauge fields and their defect gauge in
variance imply conservation laws for the stress tensors. These are dual 
and structurally equivalent to the divergence relations for the defects 
densities. This duality permits the construction of another, dual, dif
ferential geometry, corresponding to the gauge fields of stresses, with the 
geometric objects living in “stress space” rather than in the previous 
“defect space” . Such a geometric formulation could, in principle, be 
extended beyond the continuum approximation for which the gauge fields 
of defects must eventually be taken to be discrete-valued and the dif
ferential geometric description of defects breaks down (to be replaced 
by an appropriate disorder field theory). The differential geometry of 
stresses remains always continuous and applicable also when the geo
metry of defect becomes discrete.

It is worthwhile displaying the mutually dual gauge structures and the 
associated differential geometry once more in a unified way. They may be 
expressed most concisely in the form of what we may call fundamental 
phase space identities. We recall that the first and most important place 
where such an identity plays a significant role, is in quantum mechanics. 
There it regulates the fluctuation arena of quantum mechanics and quan
tum statistics via the relation

1 = J dx" {x\t'\xj) = j@ x  J(^p/27rft)exp|///i J  dtp'x

-  J(dp"/27Th)(p‘,l'\ p ,t)= j(&р/2ттй)J@jcexp|(-j7ft)J '  dfpxj - (И)
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This is the path integral equivalent of Heisenberg’s operator uncertainty 
relation [p,x] = —ih of quantum physics and specifies the Hilbert space 
in which the state vectors evolve. It is applicable to arbitrary quantum 
systems. Whatever the specific dynamics, it is imposed by subtracting, 
from the exponent in (I I ) , an imaginary time integral of the total energy, 
(i/h) J  dt[K(p) 4- К(дг)], so that the total exponent becomes i!h times the 
classical action. Then, by dropping in (11) the left-hand integral J dx” or 
J dp"/2 irh, one obtains the quantum mechanical amplitudes in the x- 
or ^-representations. Furthermore, by placing under the integral a 8- 
function, £ ( * - * ' )  or 2ттй8(р -  p'), thereby making the paths in the 
action periodic in t' -  t, and by continuing /' -  / to imaginary - ih/kBT, 
one obtains the full quantum partition function of the system at tempera
ture T. The phase space identity ( 1 1 ) is therefore truly fundamental in 
quantum and statistical physics and fully deserves its name.

It is possible to give similar identities also for the two mutually dual 
gauge field systems of superflow and vortex lines in superfluids, and of 
stresses and defect lines in solids. We begin with the simpler case of 
superfluids where the fundamental phase space identity reads

Here у  is the phase variable of the superfluid condensate, b, is the 
canonically conjugate superfluid current, and y f  is the plastic deformation 
of the phase disortion, which carries the information on the distribution 
of vortex lines, i.e ., the vortex gauge field. The associated gauge trans
formations move Volterra sheets through space at fixed boundaries 
(which are the vortex lines) and read [compare (6 )]

y f - * y ?  + djN. (13a)

They can be absorbed by a shift in the phase variable,

r _>r + J /V. (13b)

The functional Ф[у,] serves to fix a convenient gauge, for instance -yf = 0 
(axial gauge). In analogy with Eqs. (2 )-(3 ) we see here that integrating 
out the у fluctuations leads to the conservation law of superflow,

d.b, •  0, (14a)
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which suggests introducing a gauge field of superflow, ah via

bj — Sjjk djQfr, (14b)

with bj being invariant under the superflow gauge transformation,

a, —> a, + д/A. (14c)

We can therefore go over to a double gauge field version of the identity 
( 12a),

1 = j^ ) a k4 [̂ak] |*0 у ?Ф [у? ]ех р  j - /  J  > ( 12 b)

where V[a*] is a gauge fixing functional of ak. A partial integration brings 
( 12b) to the form

1 = j ^ a k^[ak] J ^ 7 f 0 [7 f ]e x p | -/  j d x \ e f| » ( 12c)

where

£/ = Eijkd'Y (*5a)

is the gauge invariant curl of the vortex gauge field. It obviously satisfies 
the vortex conservation law

Bit, = 0, (14d)

and describes the vortex density of the superfluid. We can go one step 
further and rewrite ( 12c) in a form dual to ( 12a), i.e .

1 = J 2 >ak V[ak] J s K ,J s >  в exp ji J d3x(a, -  Э,0 )€(| - ( 12d)

where the auxiliary в integration enforces the vortex conservation law 
(14b). The full partition function of the superfluid with vortex lines is 
obtained by subtracting, in the exponent, 1 /kBT times the energy of 
superflow, the leading term being (with /3 = l/kBT)
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pE* = lPj  dixb‘- (15b)

In the double gauge version (12b) we might also subtract an extra core 
energy of vortex lines

/3£„= - l-p  J  d3x,tf. (15c)

If the field system is placed on a lattice and the vortex gauge field y f  
takes only discrete values (= integer multiples of 27t) the resulting parti
tion function becomes the familiar Villain model of the superfluid phase 
transition, which, in Part II, was shown to describe correctly the critical 
regime of superfluid He4.

We now turn to solids. If the molecules are small and there is little 
rotational stiffness, the fundamental phase space identity reads

1 s  a-.. u, j s )  Hg4>[w{y] exp jz  j  ЛгстуДд/М/ -I- djUj -  2wg) j  ’ (16a)

where a-,у are the stresses, u, the dislacement fields, and wg is the plastic 
strain field. The latter is a defect gauge field with the defect gauge trans
formations

u?j-+ ufj + d/Nj + djNj, Uj —> Uj 4- /V.

Integrating w, out shows the stress conservation law

djO-jj = 0 .

Thus, there exists a stress gauge field Xij with

CTjj = e ij t£ jm n d k d m X e n - 0 8b)

This relation is invariant under the stress gauge transformations,

X€n-^X€n + d(An + dnAc- 08c)

The stress gauge field permits rewriting (16a) in the double gauge form

(17a)

(18a)
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FIG 2. Illustration of stress and defect gauge structures in solids with classical first-gradient 
elasticity.

1 Ш j& XyVlXij] J ® exp i J  • (16b)

A partial integration gives the dual version

1 = J  dXiî [X\]\ J  ®  “//*[“? ] exp | - i  J  j  ’ ( 16c)

where

Vij = £ikl£jmndkdmufl,in (17b)

is the defect gauge invariant defect density. It satisfies the defect conserva
tion law

dilij = 0 . (17c)

The dual relationship between the two gauge structure is illustrated in 
Fig. 2.

If we subtract in the exponent the leading stress energy
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pE, = (l/4fj.kBT) J d ? x  ( a f  -  • (18)

where /1 is the shear modulus and v the Poisson ratio, the partition 
function describes ensembles of defects and their proper long-range inter
actions in the continuum approximation. If desired, we may also intro
duce extra core energies for the defects up to terms quadratic in 17, in 
analogy with (15c) for vortices. By placing the partition function on a 
lattice, and letting ufj be integer multiples of the lattice spacing, we obtain 
the simplest model of defect-mediated melting.

If, on the other hand, the molecules in the solid are large, there is 
rotational stiffness and we have to extend the field variables by the 
angular degree of freedom, шк = 5e,y*d,Wy and its canonical conjugate r fy, 
the torque stress. The fundamental identity now reads

1 - J® » #  J J J J J 'д>Ф%Ф1РЪ'Ф®

exp j/ J " d3x[(Tjj(d/Uj -  eijkoik -  pf,) + ~ Ф%)\ j  ’ ( 19a)

where and ф% are the plastic gauge fields of dislocations and disclina
tions. The defect gauge transformations are

ffij - »  P?j + d.Nj -  eijkMk, </>?• ->  ф% + dfMj, 

u, —> Uj + Nj, (i)k —> o)k + Mk.

Integrating over w, and a), gives the stress conservation law

djO-jj = 0, djTij = -£jk(CTkc.

They are solved in terms of the stress gauge fields A q , hy ,

dij = ejk(dkA ( j , r,y = Eik(dkh(j + 80А ее -  Ay,

with the stress gauge transformations,

hCj—> h(j + д(§  -  E/JkAky A ej- »  Aq + d€Ay. (21b)

Using the stress gauge fields, the fundamental identity (19a) takes the 
double gauge form

(20a)

(20b)

(2 1 a)
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1 = jg>hcij@ Acj<p[hcj, At,] J J 2>Ф?,Ф[РГ/, Ф?,]

exp ji J с13х((т0р?, + r,ŷ J')| • (19b)

A partial integration leads to the alternative dual expression for the 
exponent,

j i  J d3x(A(j<xcj + Af,©o) j  ’ (19c)

where

« 0  = erkidtpfj + s (j<t>pkk -  <t>fc, ®(j - etkidkф% (22a)

are the defect gauge invariant dislocation and disclination densities with 
the defect conservation laws

d(a (j = -£jki®ke, d(& Cj = 0 . (2 2b)

For an illustration of the dual relationship, see Fig. 3. By subtracting, in 
the exponent, a stress energy (18) plus terms quadratic in r w e  obtain 
the partition function of dislocations and disclinations with their proper 
long range interactions. If desired we may also subtract extra core ener
gies quadratic in the defect densities. Putting this partition function on a 
lattice, with discretized plastic gauge fields, has recently explained the 
two-step melting process in two dimensions at larger angular stiffness.

It is straightforward to write down the fundamental identity within the 
nonlinear geometric description of dislocations and disclinations de
veloped in Part IV. It reads

1 -  J Js>ha, J S>Aiâ [ha,,Aiap]

x  ex p j i  J d 3xVH<r‘a(DiUa - a , a - ( A e,a - 2 S pia)up -  * “,)

-  * t V ( / W -  A, J  + D,(uyA ya0) -  U^ ) ] J  > (23a)
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FIG 3. Illustration of stress and defect gauge structures in solids with second-gradient 
elasticity.

where the conjugate variables o-‘a and r ^ a are again stresses and torque 
stresses, as in (19a) [which is obviously a linearized version of (23a)]. 
Integrating out ua and coQfi gives the stress conservation laws [generalizing 
(2 0 b)],

D, V a = —25e, V y -  h D * v y =  (a ap -  crpa), (24)

which have the same form as those of the defect densities [aiaP = £apy<*iy]

A * 0 «  = —2SiayQ'y -  iA'yfiRa#*, £ /**«* = ( в *  ~ &а*) (25)

which hold on geometric grounds [cf. (5.67), (5.66)]. The stress gauge 
transformations

SEx ° ^ x°+  F , SEha, = Di£ °-  (Apia -  2 V ) * *

8eA , J  = D ,(rA rJ )  -  fTF*,*, (26a)

8Lx a =a>aex f‘, 8LA i J =  Dta>J, SLhai = <oa% i ,  (26b)

are absorbed in a corresponding transformations of the displacement 
field,
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$Е«а = Г ,  6Lua =(oapUp (27)

making (23a) defect gauge invariant. The crystal forces are now introduced 
by subtracting in the exponent of (19a) 1 /kBT times an elastic energy,

E^ v J d i y V ~g  ~ ( г + v ) ‘ г ‘2_ + i ^ F 2 ! d 3xVs T i W  (28)

where cr) is the symmetrized part of hajO-'a . We can also add a sim ilar term 
quadratic in the defect densities a ia(3 and ©/a to account for extra core 
energies. In this way, we obtain a complete non-linear gauge field 
description of defects with their correct long-range forces.

As mentioned in Chapter 7 of Part IV, it is possible to express the 
stresses in terms of stress gauge fields hai, A ,ap which obviously play the 
same role for the stresses as hai, A ia13 do for the defect densities. This 
would lead to a nonlinear extension of the double gauge theory (19b). 
Moreover, due to the identical form of defect and stress conservation laws, 
one may want to consider the gauge theory of stresses as defining the 
differential geometry of the space, with the defects being the extra matter 
fields. In this way one would arrive at a “double geometry” of stresses and 
defects. The interpretation of the stress metric in this formulation is, 
however, not very transparent.

We hope to have shown that gauge and disorder fields can be a powerful 
tool in the study of many condensed matter systems containing long-range 
excitations and line-like defects. The two systems, superfluids and solids, 
which we have selected for detailed analysis are only two particular 
examples of a wide variety of possible candidates. Most of the work has 
been done on these systems. We feel confident that the future will see the 
emergence of similar detailed applications to many other condensed 
systems, such as liquid crystals and the condensed states of nuclear matter. 
The first steps have already been made and the reader is challenged to 
participate in this exciting development.

NOTE AND REFERENCE
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H. Kleinert, Phys. Lett. A130 (1988) 59.
For gauge applications o f gauge and disorder fields to other systems such as liquid crystals, 
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353, Lett. Nuovo Cimento 34 (1982) 103 and Phys. Lett. 90A (1982) 259 respectively.
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cross slip 86 6 ,86 8 ,86 9  
crystal plane 1365



crystal system s, 
point groups 754 
seven 749 

crystal, ideal 745 
cubic crystal 748,757,996 

defect interaction energy 996 
elastic Green function 767 
elastic constants 757 
system 749

curvature 1 3 5 6 ,1 3 6 3 ,1 3 7 0 ,1 3 7 2 ,1 3 7 5 ,13 7 6 ,1 3 7 7 ,1 3 7 8 ,1 4 3 8
curvature and disclinations 1370,1378
curvature from embedding 1380
curvature tensor 1350,1352,1367
curved space 1367

Debye approximation 909
Debye frequencies 887,924
Debye temperature 888 ,890 ,896 ,909 ,925 ,927
Debye theory 924
D ebye-W aller factor 900
defect conservation 1380 ,1426 ,1436 ,1445 ,1452 ,1454  
defect degeneracy 1231
defect densities 804 ,808 ,938 ,1361 ,1395 ,1396 ,1436 ,1452  

2D 914
mnemonic ru les 804 
on lattice 1225,1233 
on lattice, 2D 123 

defect density and sym m etric energy momentum tensor 1396 
defect ensem ble 1237
defect gauge field 979 ,1013 ,1282 ,1445 ,1451 
defect gauge invariance 975 ,979 ,1020 ,1023 ,1025 ,1326 ,1454 ,1456  

physical content 1020 
defect gauge transformation 975 ,1000 ,1273 ,1447 ,1451 ,1453  
defect interaction energy, 

continuum 1228 
cubic lattice 996 
second-gradient theory 1283 

defect lines 1447,1449 
defect m elting 983 ,1084 ,1218 

2D 983 ,1083 ,1114 ,1162 ,1179  
defect neutrality 861 ,863 ,988 ,997 ,998 ,999 ,1064  
defect representation 1013 
defect space 1448 
defect tensor 979 
defects,

2D 814,862 
and curvature 1356,1370 
differential geometry 1334 
disclination 782 ,787 ,854 ,1237 ,1362  
dislocation line 779 ,781 ,782 ,794 ,939  
disorder fields 1322,1443 
disorder field theory 1319 
edge dislocation 779 ,786 ,1369



defects, 
general analysis 1225  
grain boundary 7 8 2 ,7 8 3 ,9 6 9 ,1 2 1 3  
interstitial 7 7 7 ,7 7 8  
in coordinate system s 1374  
line-like 1 1 1
mnemonic construction rules 804  
moment neutrality 1050  
on lattice, 2D 1238  
point 7 7 7 ,7 7 8  
screw disclination 78 6  
stacking fault 7 8 2 ,7 8 3  
topological invariant 786  
torsion 13 5 6 ,13 7 1  
vacancy 7 7 7 ,7 7 8  

degeneracy o f defect configurations 1231 
delta-function on line 8 0 5 ,14 4 5  

2D 8 16
delta-function on surface 8 0 5 ,14 4 5  

2D 8 1 6
delta-function on volum e 8 0 4 ,14 4 5  
delta-functional 846  
densities o f states 887  
density correlation function 1 1 5 2 ,1 15 3  
derivative, covariant 13 47 ,13 9 3  
destabilizing point 1 1 16  
differential geometry 1334  
dipole neutrality 863  
Dirac field 1408  
Dirac matrices 1405  
Dirac particle 1407  
disclination 7 8 2 ,7 8 7 ,8 5 4 ,12 3 7 ,1 3 6 2  

current 1327  
density 8 0 1 ,1 2 9 0 ,1 4 5 4  
Frank vector 7 8 7 ,7 8 8 ,7 9 0  
lines 865  
splay 788  
twist 788  
wedge 13 65 ,1375  

disclinations and curvature 13 67 ,1370  
disclinations, disorder fields 1322  
discrete Gaussian model 8 0 1 ,12 3 7 ,1 3 0 3 ,13 6 2 ,1 3 7 5
dislocation, Burgers vector 782,784,786,790,801,818,865,940,950,1237,1362,

13 6 9 ,13 7 2 ,13 7 4 ,13 7 5
dislocation current 95 3 ,13 2 7  
dislocation density 1290 ,1361  
dislocation density and spin density 1395  
dislocation line 7 7 9 ,7 8 1 ,7 8 2 ,7 9 4 ,9 3 9  

energy 8 1 7 ,8 1 8  
local gauge interaction 827,828  

dislocation neutrality 852  
dislocation pair, dissociation 1162



dislocation sources 869  
dislocation, disorder fields 1322
dislocations and disclinations, disorder field theory 1322  
dislocations and disclinations, interdependence 7 9 0 ,1 2 1 0 ,1 2 2 8  
dislocations and torsion 13 69 ,1371
disorder field theory 8 7 5 ,9 3 8 ,9 3 9 ,1 2 1 8 ,1 2 2 2 ,1 3 2 2 ,1 4 4 3 ,1 4 4 7  
disorder quantum field theory 1328  
displacement field 745  

integrability considerations 7 9 8 ,13 5 6  
smoothness properties 794  

distinguishability o f atoms 793  
distortion graph 11 14  
double curl 8 10 ,8 5 4 ,8 5 7
double gauge theory o f stresses and defects 9 8 2 ,1 4 4 1 ,1 4 5 0 ,1 4 5 1 ,1 4 5 3  
double geometry 14 3 7 ,14 5 6  
dual double gauge theory 1447  
Dulong-Petit law 901

edge dislocation 7 7 9 ,7 8 6 ,13 6 9  
effective action 9 15  
effective energy 903  
Einstein action 1386  
Einstein equation 1388  
Einstein invariance 13 4 6 ,1 4 16  
Einstein tensor 1 3 4 5 ,1 3 5 1 ,1 3 6 0 ,1 3 6 2 ,1 3 9 0 ,1 4 1 0 ,1441 

stress space 1437  
Einstein theory o f gravity 13 3 5 ,13 6 2 ,13 6 9  
Einstein transformation 1 3 3 7 ,1 3 4 3 ,1 3 4 5 ,1 4 1 8 ,1 4 2 0  
Einstein vector 13 45 ,1351  
Einstein-Cartan action 14 28 ,1431  
Einstein-Cartan theory 1448  
elastic Green function 76 2 ,76 5  
elastic constants 7 5 2 ,7 5 7 ,7 6 1 ,9 2 1  

cubic crystals 757  
relations between 761  

elastic distortions 8 0 5 ,14 3 9  
elastic energy 7 4 6 ,9 0 1 ,1 2 4 2  
elastic gauge field 1444  
elastic interaction, dislocation lines 825  
elastic partition function 828  
elastic stability o f crystal 747  
elastic strain 8 0 5 ,10 2 5 ,1 4 3 6  
elastic tensor 7 4 7 ,7 5 2  
elasticity, 2D 768  
elasticity, Hooke’s law 7 5 9 ,7 8 0  
elasticity, extended 1240  
elasticity, second-gradient 12 4 0 ,1 2 6 3 ,14 3 2  

canonical momenta 1262  
electron lattice 12 02 ,13 0 5  

incompressibility 1 2 0 3 ,1 3 17  
embedding 1380



energy, dislocation line 8 17  
energy-momentum conservation 1380  
energy-momentum density 14 16
energy-momentum tensor 1 3 8 7 ,1 3 8 8 ,1 3 9 5 ,1 4 0 9 ,1 4 1 0 ,1 4 1 2  

canonical 14 10 ,1 4 2 2
symm etric, Belinfante 1 3 8 8 ,1 3 9 4 ,1 3 9 5 ,1 4 0 9  

enthalpy, Lennard-Jones system 1200  
entropy jum p 881 
epsilon-tensor 1360  
equipartition theorem 894  
Euler-Lagrange equation, elasticity 75 9 ,76 2  
expansion, high-temperature 1 0 3 7 ,1 0 8 7 ,1 1 3 2 ,1 1 3 5 ,1 1 3 7  
expansion, low-temperature 10 4 8 ,1 0 4 9 ,1 0 8 6 ,1 0 8 7 ,1 0 8 9 ,1 1 3 1  
external force 7 5 8 ,1 2 4 0  
extremal principle 1337

Feynman graphs 1447  
field energy 848  
field equations 13 8 8 .14 0 8  

gravitational 1 3 8 5 ,1 3 8 7 ,13 9 4  
field transformation, vector 1342  
field, displacement 745  
first identity 1377  
first order transition 9 4 0 ,1 0 1 7 ,1 1 1 7  

Colem an-W einberg mechanism 95 8 ,96 0  
fluctuation determinant 9 9 1 ,1 1 2 7  
fluctuation modes, cosine melting model 1126  
fluctuations, cosine melting model 1121  
Frank-Read mechanism 870  
Frank-Read source 8 7 1 ,8 7 4  
Frank vector 7 8 7 ,7 8 8 ,7 9 0  
free energy 877  
freely falling frame 1336  
frozen lattice superconductor 1221 
fundamental defect lines 874
fundamental identity and integrability o f  metric 1377  
fundamental identity and spin density 1425 
fundamental identity and torque stress 1440  
fundamental phase space identities 14 4 8 ,14 5 1 ,14 5 3 ,

gauge degeneracy 975  
gauge field, 

defect 1 0 13 ,12 7 2 ,12 8 2 ,14 5 1  
integer valued 10 14 ,10 2 0  
local 1428
local translations 1430  
non-Aabelian 1351 
phonon 1327
stress 8 2 8 ,8 5 4 ,12 2 0 ,1 2 7 4 ,13 2 7 ,14 4 4 ,1 4 5 1 ,14 5 3  
superflow 1450  

gauge fixing 8 2 8 ,8 4 6 .9 8 9 ,10 14 ,1 2 7 2



gauge interaction, local, dislocation line 827,828 
gauge invariance 841,847 

defect 9 7 5 ,9 7 9 ,10 2 3 ,1 0 2 5 ,1 3 2 6 ,1454 ,1456 
local 953
stress 9 8 0 ,1 2 2 1 ,1 3 2 7  

gauge theory o f gravitation 1427  
gauge transformation 9 7 5 ,1 0 1 4  

defect 975 Л ООО, 12 7 2 ,1 4 3 6 ,1 4 5 1 ,14 53  
stress 8 4 5 ,8 5 4 ,9 7 8 ,12 7 3 ,1 4 5 1 ,14 5 3  

gauge, axial 980  
gauge, quasi-symmetric 9 7 5 ,1 0 1 4  
gauge, transverse 8 4 6 ,8 5 7 ,9 8 0 ,10 2 6  
general coordinate transformation 1 3 4 4 ,1 3 5 1 ,1 4 1 3 ,1 4 2 6  
general defect distributions 854  
geodesic coordinates 1382  
geometry and gravity 1335  
Ginzburg-Landau theory 958  
glide 8 6 5 ,86 6 ,86 8
grain boundary 7 8 2 ,7 8 3 ,9 6 9 ,1 2 1 0 ,1 2 1 3  
graphite 925
gravitational action 13 8 5 ,13 8 6  
gravitational constant 1386  
gravitational field equations 1387  
gravitational forces 1335  

universality 1335  
gravitational mass 1335  
gravity and geometry 1335  
gravity as a gauge theory 1427  
gravity with spinning matter 1408  
Green function, Coulomb 764  
Green function, elastic 762 ,76 5  

2D 7 7 2 ,10 5 9  
anisotropic 765  
cubic 765
second-gradient elasticity 1255  
square lattice 10 59 ,1065  
triangular lattice 10 69 ,1073  

Griineisen constants 9 0 5 ,9 1 0

Halperin-Lubensky-Ma mechanism 969  
helicity amplitudes 840  
helicity basis 83 0 ,83 2  

tensors 836  
vectors 832  

helicity components 833  
helicity decomposition, 

magnetic energy 8 4 0 ,84 2  
stress energy 8 4 5 ,8 5 6  
tensor field 830  
vector field 830



helicity matrix 8 3 4 ,8 3 5  
helicity rotation group 836  
helium 92 4
hexagonal, crystal system 74 9  
hexatic phase 1 1 8 9 ,1 1 9 0
high-temperature expansion 1 0 3 4 ,1 0 3 6 ,1 0 3 7 ,1 0 7 8 ,1 0 8 6 ,1 0 8 9 ,1 1 3 2 ,1 1 3 5 ,1 1 3 7
higher gradient Lagrangian 1250
higher gradient theories 1245
Hilbert-Einstein action 1387
Hooke’s law 7 5 9 ,7 8 0

ideal crystal 745
ideal reference crystal 1372
identity,

Bianchi 1 3 7 7 ,1 3 7 8 ,1 4 4 0  
first 1377  
fundamental 1377  

incompatibility o f strain field 8 0 8 ,8 1 0  
incom pressibility, electron lattice 12 0 3 ,13 17  
inertial frame 13 3 5 ,13 3 9  
inertial mass 1335  
inside observer 1365  
integer valued gauge fields 10 14 ,1 0 2 0  
integer valued gauge fixing 10 14
integrability condition 7 9 8 ,13 3 9 ,1 3 5 3 ,1 3 5 6 ,1 3 5 7 ,1 3 5 9 ,1 3 6 3 ,1 3 7 9 ,1 3 8 0  

connection 1378  
metric 1363

integrability o f connection and Bianchi identity 1377  
integrability o f metric and fundamental identity 1377  
interaction energy, second-gradient theory 1283  
interdependence o f dislocations and disclinations 7 9 0 ,12 10 ,1 2 2 8  
internal energy, Lennard-Jones system 1198  
intersecting defect lines 871 
interstitial 7 7 7 ,77 8  
invariance,

Einstein 1432  
gauge 1432  
local Lorentz 1432  
local translations 762  

invariant length 1336

Jacobi identity 911  
jogs 871 
jumps 881

kinematics 865  
kinks 86 6 ,86 7 ,87 1  
K irchhoff’s law 87 2 ,14 45
Kosterlitz-Thouless-Halperin-Nelson-Young (KNTHY) theory 1162



Lam6 constant 7 5 2 ,1 1 6 3  
Laplacian roughening model 1 1 0 3 ,1 1 0 5  
lattice Green function 1059  
lattice defect model 9 7 4 ,9 7 6 ,9 8 0 ,9 8 3 ,9 9 9  

cosine type 1 1 13  
second-gradient 1269  
Villain type 9 7 6 ,10 7 6  
AT type 1113  

lattice defects 1233  
general analysis 1225  

lattice o f electrons 12 02 ,1305  
lattice, simple cubic 745  
lattice superconductor, frozen 1221 
lattice, thermal expansion 902  
lattice, triangular 1173  
Legendre transform 1247  
Lennard-Jones potential 1 1 9 6 ,1 3 0 5 ,1 3 1 5  
Lennard-Jones system, 

atomic positions 1199  
enthalpy 1200  
internal energy 1198  
phase diagram 11 9 7 ,1 2 0 0  
stiffness constant 1200  

Levi-Civita tensor 1360  
light rays 1337
Lindemann criterion 8 7 8 ,9 0 0 ,9 3 8  
Lindemann parameter 8 8 1 ,8 9 2 ,8 9 3 ,1 0 7 7 ,1 1 4 1 ,1 1 4 2  
line-like defects 777  
little group 836  
local Burgers vector 784  
local Lorentz transformation 1 3 3 4 ,1 4 1 3 ,1 4 1 4  

connection 1405  
gauge field 1428  
spinor 1405  
tensor 1405  
vector 1427  

local basis tetrads 1339  
local basis vectors 1339  
local coordinate transformation 1337  
local coupling 829  
local field 82 7 ,82 8
local gauge interaction, dislocation line 82 7 ,82 8  
local gauge invariance 953  
local parallelism 1364  
local rotation 1334  

field 791  
local spin-spin interaction 1433  
local time displacements 1334  
local translations 13 3 4 ,14 3 0  
Lorentz covariance 1336  
Lorentz group 1428



Lorentz invariance, local 1 3 9 7 ,1 4 1 5  
Lorentz transform ation, 

connection 1405  
gauge field 1428  
local 1 4 0 5 ,1 4 1 4 ,1 4 2 7  
spinor 1405  
tensor 1405  
vector 1427

low-temperature expansion 1 0 4 8 ,1 0 4 9 ,1 0 8 6 ,1 0 8 9 ,1 1 3 1

macrocosmos 1335  
magnetic energy 840  

helicity decomposition 842  
mass, gravitational 1335  
mass, inertial 1335  
Matsubara frequencies 8 8 5 ,8 9 3  
maximal stress 78 0  
M axwell relations 911  
M axwell-Lorentz theory 1328  
mean-field approximation 11 14  
mean-field solution, cosine melting model 1121  
Meissner effect 961
melting model 9 7 6 ,1 0 1 3 .1 0 8 9 ,1 0 9 9 ,1 1 1 3 ,1 1 1 8 ,1 1 2 0 ,1 1 3 2 ,1 1 4 4  

Villain type, 9 7 6 ,1 0 3 4 ,1 0 7 6  
Villain type, 2D  9 8 3 ,10 7 8 ,1 0 9 9  
Villain type, 2D , high-7 expansion 1037 ,1087  
Villain type, 2D , low -Г expansion 1049 ,1087  
Villain type, 2D , Monte Carlo data 1083 ,1099  
Villain type, 3D  9 8 0 ,10 8 0 ,1 0 8 6 ,10 8 9  
Villain type, 3D, high-Г expansion 10 3 6 ,10 8 6 ,10 8 9  
Villain type, 3D , lo w -7  expansion 10 49 ,10 8 6 ,10 8 9  
Villain type, 3D , Monte Carlo data 1084,1091  
Villain type, h igh-7 expansion 1034  
Villain type, lo w -7  exansion 1048  
Villain type, thermodynamics 1034  
with two transitions 12 7 1 ,1 2 8 7 ,12 8 9 ,1 2 9 4 ,13 0 3  
XY type melting model 1 1 1 3 ,1 1 1 8 ,1 1 3 2 ,1 1 4 4  

melting model, cosine 1 1 1 3 ,1 1 3 2  
2D , h igh-7 expansion 1 1 3 2 ,1 13 7  
2D, loop expansion 1131  
2D , lo w -7  expansion 1131  
2D , mean field 1 1 16  
2D , Monte Carlo data 1 1 4 5 ,1 1 4 8 ,1 1 4 9  
3D 1 1 1 8 ,1 1 4 4
3D , h igh-7 expansion 1 13 2 ,1 13 7  
3D , loop expansion 1131 
3D, lo w -7  expansion 1131 
3D, mean field 1 1 16 
3D, Monte Carlo data 1 144  

melting point 11 17



melting, 2D 1 1 6 6 ,1 1 7 0 ,1 1 8 3 ,1 1 9 7 ,1 1 9 8 ,1 1 9 9 ,1 2 0 0  
phase diagram 1 9 1 1 ,1 1 9 4 ,1 1 9 6 ,1 2 0 0  
universal stiffness 1 1 9 8 ,1 2 0 2 ,1 2 0 4 ,1 2 0 7  

melting, defect, 2D critical temperature 1179  
melting, hexatic phase 1 1 8 9 ,1 19 0  
melting, two-step 1 1 8 9 ,1 2 7 1 ,1 2 8 7 ,1 2 8 9 ,1 2 9 4 ,1 3 0 3  
metric, covariant derivative 1348  
metric-affine space 13 3 5 ,1 3 4 7 ,1 3 6 0 ,1 3 6 3 ,1 3 7 0 ,1 4 3 8  
metric tensor 1333  
microcrystallites 1140  
Minkowski metric 13 37 ,13 3 9  
Minkowski space 1 3 3 6 ,1 3 3 7 ,1 3 3 9 ,1 3 6 2 ,1 3 6 9  
Misra functions 1 3 1 1 ,1 3 1 5  
mnemonic construction rules for defects 804  
modified Lindemann number 891 
modulus o f compression 754  
modulus o f shear 752  
modulus. Young’s 760
molecular dynamics, computer simulations 1195  
momentum conservation 1240  
monoclinic, crystal system 749
Monte Carlo simulation 1 0 3 8 ,1 0 8 4 ,1 0 9 1 ,1 0 9 9 ,1 1 4 4 ,1 1 4 5 ,1 1 4 8 ,1 1 4 9

Nambu-Goldstone bosons 9 5 6 ,14 4 3  
Nambu-Goldstone theorem 948  
Newton’s gravitational constant 1386  
Newton-Euler axioms 1240  
Noether’s theorem 1413  
non-holonomic coordinates 13 7 4 ,13 9 7  
Nye contortion 12 2 6 ,13 9 6

one-loop correction, cosine melting model 1127
order, rotational 78 7 ,96 1
order, translational 78 7 ,96 1
orientable media 1241
orientational field 790
orthorhombic, crystal system 749
outside observer 1365
overall Griineisen constants 9 0 9 ,9 13

pair correlations 1152  
pair distribution function, liquid 1154  
Palatini equation 1390  
Palatini tensor 13 9 2 ,1 3 9 5 ,14 3 2 ,1 4 4 1  
parallelism 13 3 3 ,13 6 4  
parallel transport 1367  
parallel vector fields 1364  
particles with spin 1397  
partition function, 

canonical 976  
elastic 1336
higher gradient 12 5 1 ,14 3 8



passive coordinate transformations 1336  
path integral 1449  
Peierls-Jensen inequality 1 1 15  
penetration depth 955  
permanent confinement 8 6 1 ,8 6 2  
phase diagram, Lennard-Jones system 1 1 9 7 ,1 2 0 0  
phase space identities, fundamental 14 4 8 ,1 4 5 1 ,14 5 3 ,  
phonon gauge field 1327  
piezoelectricity 1242  
planar slip 865  
Planck constant 1362  
Planck length 13 6 2 ,13 8 6  
plastic bend-twist 806  
plastic deformation * 13 6 2 ,14 3 9 ,14 4 9  
plastic distortion 8 0 5 ,8 2 4  

second-gradient elasticity, 1262  
plastic gauge fields 14 3 9 ,14 4 5  
plastic rotation 8 0 6 ,12 3 6  
plastic shear 781  
plastic strain 805  

tensor 824  
point defects 7 7 7 ,7 7 8  
point groups, 32 754  
Poisson ratio 7 5 5 ,7 5 9 ,9 8 4  
Poisson summation formula 13 10  
pressure 760
principle o f shortest path 13 62 ,13 3 7  
projection matrices 753  
projection operators 839

quantum corrections 893  
quantum defect dynamics 1325  
quasi-canonical representation 1252  
quasi-symmetric gauge 9 7 5 ,10 14

reciprocal basis vectors 1340  
reciprocal lattice vectors 9 18 ,9 2 3  
renormalization group equation 1 16 7 ,1 1 7 0 ,1 17 3  
renormalization group flow 1180  
Ricci identity 1424  
Ricci tensor 13 5 3 ,1 3 8 0 ,13 9 0 ,1 4 2 4  

variation 1390  
Riemann curvature tensor 13 54 ,1432  
Riemann space 13 50 ,1387
Riemann-Cartan space 13 3 5 ,1 3 4 7 ,13 5 0 ,1 3 6 0 ,13 6 3 ,13 7 0
rotation dislocations 791
rotational order 787 ,961
rotational stiffness 12 9 4 ,13 0 3 ,13 0 7 ,14 5 3
roughening temperature 1107
roughening transition 1 107



scalar curvature 1353 
Schwarz lemma 13 3 9 ,13 6 6  
Schonflies notation 749  
screw disclination 786  
screw dislocation 1374
second-gradient elasticity 12 5 8 ,1 2 6 2 ,12 6 5 ,1 2 8 6  

canonical momenta 1262  
linear 1263  
plastic distortions 1262  

second-gradient, lattice defect model 1269  
self-consistency equation 9 13  
self-consistent approximation 9 16 ,9 2 2  
self-diffusion 793  
separatrix 1180  
shear modulus 752
singular coordinate transformations 1362  
slip 866  

plane 865 .871  
smoothness properties o f displacement field 794  
solids 14 4 3 ,14 4 4 ,14 4 9  
space group 1334  
space, Riemann 1350
space, Riemann-Cartan 1 3 3 5 ,1 3 4 7 ,1 3 5 0 ,1 3 6 0 ,1 3 6 3 ,1 3 7 0  
space, m etric-affine 13 3 5 ,1 3 4 7 ,13 6 0 ,1 3 6 3 ,13 7 0  
space, symmetric 1350  
specific heat 890  
spherical components 832  
spin connection 1400  
spin current density 13 8 8 ,1 4 14  
spin current, canonical 13 87 ,1408  
spin density 13 8 7 ,14 14  

dislocation density 1395 
fundamental identity 1425  

spin projection matrices 762  
spin-spin interaction 1433  
spinning particles 1397  
spontaneous symmetry breakdown 1443  
stability wedge 942  
stability, elastic 74 7 ,7 4 9  
stacking fault 782 ,783  
stiffness constants 7 5 1 ,1 1 9 8 ,1 2 0 2  
stiffness, rotational 1453  
Stokes’ theorem 13 7 0 ,1 3 7 1 ,13 7 7 ,1 4 4 5  
straightest path 1363  
strain field, compatibility 8 10  
strain field, incompatibility 8 0 8 ,8 10  
strain tensor 7 4 5 ,10 2 5 ,1 4 3 6  
strain, elastic 1025 
strain, plastic 1025  
strain, total 1025
stress conservation 14 3 6 ,1 4 3 8 ,14 4 0 ,1 4 5 3 ,14 5 5 ,14 5 1



stress energy 7 5 7 ,8 4 2 ,8 5 4  
stress gauge 1047  

field 8 2 8 ,8 5 4 ,1 2 2 0 ,1 3 2 7 ,1 4 4 4 ,1 4 5 1 ,1 4 5 3  
invariance 9 8 0 ,1 2 2 1 ,1 3 2 7  
transformations 1 2 7 3 ,1 4 4 4 ,1 4 5 1 ,14 5 3  

stress, maximal 78 0  
stress metric 1437  
stress partition function 1268  
stress representation 1262  
stress space 1448  
stress tensor 7 5 4 ,9 7 9 ,1 2 4 0 ,1 4 4 9  
stresses and defects, double gauge theory 982  
structure factor, liquid 1156  
substantial variation 13 4 3 ,13 4 9  
superflow 1449  

gauge transformation o f 1450  
superfluid 14 4 3 ,1 4 4 4 ,1 4 4 9 ,1 4 5 0  

helium 9 6 9 ,14 5 1  
phase transition 10 34 ,1451  

symmetric energy-momentum tensor 13 9 4 ,13 9 5 ,14 12  
and defect density 1396  

symmetric space 1350  
symm etry classes 772  
symmetry elements o f 32 point groups 754

tangential approximation 12 35 .1334
teleparallellism  1367
tensor, elastic strain 747
tensor field 835
tensor, plastic strain 1025
tensor, strain 745
tensor, stress 754
tensor, total strain 1025
tensors and vectors 1340
tetragonal, crystal system 749
thermal expansion 90 2 ,90 6
thermal softening 921
thermodynamics o f melting model, Villain type 1034  
topological invariant 786  
torque balance 1264  
torque stress 12 4 0 ,12 8 8 .14 4 0  

and fundamental identity 1440  
torsion 13 6 3 ,13 7 0 ,1 3 7 2 ,13 7 5 .1 3 7 8 ,1 4 3 8  
torsion and dislocations 1356 ,1378  
torsion, sp in-1/2 field 1431 
torsion tensor 13 49 ,1377  
total distortion 824  
trace logs 9 9 1 
translational invariance 762  
translational order 787,961  
transverse gauge 980



triangular lattice 1173  
Green function 1059  

triclinic, crystal system 749  
tricritical point 9 5 8 .1 1 1 7  
trigonal, crystal system 749  
trivial Volterra operation 8 0 5 ,12 6 6  
true Burgers vector 785  
two-dimensional crystals 924  
two-step melting 1 189

uncertainty relation 1449  
universal melting mechanism 876  
universality 8 7 6 .1 1 6 5 ,1 1 6 6 ,1 2 0 4 ,1 3 3 5  

o f gravitational forces 1335

vacancy 77 7 ,77 8  
variation. substantial 13 4 3 ,13 4 9  
variational methods 1 114  
vector field 8 3 0 ,13 4 3  

parallel 1364  
transformation 1342  

vector, contravariant 1341 
vector, covariant 1341 
vectors and tensors 1340  
vierbein fields 1399  
vierbein, reciprocal field 1399  
Villian type melting model 9 7 4 ,9 7 6 ,10 7 6  

2D 9 8 3 ,10 7 8 ,1 0 9 9  
2D , high-7 expansion 10 37 ,1087  
2D , low -Г  expansion 10 49 ,1087  
2D . Monte Carlo data 10 83 ,10 9 9  
3D 9 8 0 ,10 8 0
3D, high-7 expansion 10 3 6 ,10 8 6 ,10 8 9  
3D, lo w -7  expansion 10 4 9 ,10 8 6 ,10 8 9  
3D, Monte Carlo data 1084 ,1091  

Volterra operation 10 2 3 ,12 3 3 ,12 3 6  
trivial 8 0 5 ,1 0 2 3 ,1 0 2 5 ,1 0 3 0 ,1 2 3 5 ,1 2 6 6  

Volterra process 7 8 8 ,1 2 6 6 ,1 3 6 5 ,1 3 6 6 ,1 3 6 9  
Volterra sheet 9 6 9 ,14 4 9  
Volterra surface 7 8 8 ,7 9 9 ,8 0 4 ,14 4 5  

closed 804  
irrelevance 10 23 ,13 3 3  

volume jump 881 
vortex conservation law 1450  
vortex density 1450  
vortex gauge 14 45 ,1447  

field 1449  
vortex lines 9 6 9 ,14 4 9 ,1 4 5 0

wedge disclination 13 65 ,1375  
Weingarten’s theorem 7 9 4 ,79 7 ,79 8



W igner crystal 13 17  
W igner electron lattice 12 0 2 ,13 0 5  

incompressibility 1 2 0 3 ,1 3 1 7  
W igner lattice 1 2 0 2 .1 2 0 3 ,1 3 1 3  
world crystal 1 3 6 2 ,1 3 6 4  
world invariance 1346  
world lines 1336  
world tensors 1345  
world vector 1345

XY type melting model 9 9 9 , 1 1 1 3 , 1 1 3 2  
2D , high-7’ expansion 1 1 3 2 , 1 1 3 7  
2D , loop expansion 1 131 
2D , lo w -7  expansion 1131  
2D , mean field 1 1 1 6  
2D , Monte Carlo data 1 1 4 5 , 1 1 48 , 1 1 49  
3D, h igh-7 expansion 1 1 32 , 1 1 3 5  
3D, loop expansion 1131  
3D , lo w -7  expansion 1131  
3D, mean field 1 1 1 6  
3D . Monte Carlo data 1144

Young’s modulus 760




