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PREFACE

A Workshop on Infinity and Truth was held at the Institute for Mathemat
ical Sciences from 25 to 29 July 2011. The theme of the Workshop was on 
basic foundational questions such as: (i) What is the nature of mathemati
cal truth and how does one resolve questions that are formally unsolvable 
within ZFC, an example being the Continuum Hypothesis? And (ii) Do 
the discoveries in mathematics provide evidence favoring one philosophical 
view, such as Platonism or Formalism, over others? Leading experts repre
senting areas across the mathematical and philosophical logic participated 
in this Workshop. Altogether there were ten lectures delivered by Ilijas 
Farah, Joel Hamkins, Leo A. Harrington, Kai Hauser, Menachem Magidor, 
Stephen G. Simpson, Jouko Vaananen, Nik Weaver, W. Hugh Woodin, and 
Boris Zilber. The Workshop concluded with a special session on problems 
that would drive progress in foundational research (“Oracle Questions”).

This volume consists of two sections: (I) written articles of talks pre
sented at the Workshop received by the editors, and (II) a contribution by 
Stephen G. Simpson as well as a compendium of foundational questions 
discussed during the concluding session prepared by Theodore A. Slaman 
and W. Hugh Woodin. The volume also includes an article submitted by 
A. R. D. Mathias, who was invited but not able to attend the Workshop.

The meeting was supported by a grant from the John Templeton Foun
dation and formed part of the larger program Computational Prospects of 
Infinity II  hosted and funded by the Institute for Mathematical Sciences. 
We wish to record here our gratitude for the support.

August 2013 Chitat Chong
National University of Singapore, Singapore

Qi Feng*
National University of Singapore, Singapore

Theodore A. Slaman 
University of California at Berkeley, USA

W. Hugh Woodin 
University of California at Berkeley, USA

Editors

* Current address: Chinese Academy of Sciences, China.
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ABSOLUTENESS, TRUTH, AND QUOTIENTS

Ilijas Farah
Department of Mathematics and Statistics 

York University 
4700 Keele Street 

North York, Ontario 
Canada M3J 1P3 

and
Matematicki Institut, Kneza Mihaila 34 

Belgrade, Serbia 
ifarah@mathstat. yorku. ca

The infinite in mathematics has two manifestations. Its occurrence 
in analysis has been satisfactorily formalized and demystified by the 
e-6 method of Bolzano, Cauchy and Weierstrass. It is of course the 
‘set-theoretic infinite’ that concerns me here. Once the existence of an 
infinite set is accepted, the axioms of set theory imply the existence 
of a transfinite hierarchy of larger and larger orders of infinity. I shall 
review some well-known facts about the influence of these axioms of 
infinity to the everyday mathematical practice and point out to some, 
as of yet not understood, phenomena at the level of the third-order 
arithmetic. Technical details from both set theory and operator algebras 
are kept at the bare minimum. In the Appendix, I include definitions 
of arithmetical and analytical hierarchies in order to make this paper 
more accessible to non-logicians. In this paper I am taking a position 
intermediate between pluralism and non-pluralism (as defined by P. 
Koellner in the entry on large cardinals and determinacy of the Stanford 
Encyclopaedia of Philosophy) with an eye for applications outside of set 
theory.

1. Finitism , ‘CountabHsm’ and a Little B it Further

Let me recall von Neumann’s definition of the cumulative hierarchy. We 
define sets Va for ordinals a  by recursion, so that Vq =  0 and VQ+i is the 
power-set of VQ for every a. If S is a limit ordinal, we let Vs =  Ua<a

1



I. Jharah

The Power-Set Axiom asserts the existence of Va+i> granted Va exists. The 
existence of У$ for a limit ordinal 5 follows from the Replacement Axiom. 
We therefore have an increasing collection of sets, indexed by all ordinals, 
that provides framework for all of mathematics as we know it. All of number 
theory is formalized within Уш. Every countable set, such as Z, Q-NQ, or the 
free group with two generators, has an isomorphic copy inside Vu (where и  is 
the least infinite ordinal). These sets, as well as all real numbers (defined via 
Dedekind cuts) belong to i- The set of real numbers therefore belongs 
to Уш+2 - If A  is a separable metric structure, such as 12, Tsirelson’s Banach 
space, or Cuntz algebra G2 , then it has a countable dense subset Aq that 
can be identified (equipped with all of its metric, algebraic, and relational 
structure) with an element of Уш+ Therefore, A  itself, identified with the 
equivalence classes of Cauchy sequences in Aq, belongs to Уш+3. This also 
applies to objects that are separable in at least one natural metric, e.g., Hi 
factors (£2 metric) or multipliers of separable C*-algebras (strict metric). 
Quotients, coronas, ultrapowers, or double duals of separable objects, as 
well as their automorphism groups, all belong to Уш+п for a relatively small 
natural number n. Therefore Уш+ш already provides framework for most of 
non-set-theoretic mathematics.21 Nevertheless, is not a model of ZFC 
since it fails the Replacement Axiom.

Accepting the existence of the empty set and the assertion that every 
set has the power-set has as a consequence the existence of Уп for all natu
ral numbers n. However, the cardinality of Ve is roughly 1019,738. Current 
estimates take number of fundamental particles in the observable universe 
to be less than 1085. While these estimates are based on our current under
standing of physics and are therefore subject to change, this shows that we 
have no concrete model of Ve. Can we nevertheless assert that Уе exists? 
Can we claim that the power-set axiom is true in the physical world? For 
example, consider the set X  of all electrons contained in this sheet of paper 
at this very moment. Does the power-set of X  exist? (The problem may be 
in the comprehension axiom, or rather the question whether X  is a set?)

The fact that most physical laws are only approximately true does 
not diminish their usefulness in concrete applications. (As von Neumann 
pointed out in [54], the truth is much too complicated to allow anything but 
approximations.) Regardless of whether the set of all reals R  (or any other 
infinite set) exists or not, its formal acceptance provides us with remark-

aBecause one can define a branch of mathematics to be ‘set-theoretic’ if it is concerned 
with objects that do not belong to Уш+ш-
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able mathematical tools. Accepting the transfinite hierarchy, together with 
some substantial large cardinal axioms, may be comparably illuminating. 
Present lack of arguments pro this view is fortunately counterbalanced by 
the complete absence of arguments against it.

2. Independence

By Godel’s Incompleteness Theorems, every consistent theory T  that in
cludes Peano Arithmetic and has a recursive set of axioms is incomplete. 
Moreover, the sentence constructed by Godel is а П} arithmetical sentence 
(see the Appendix). This means that it asserts that every natural number 
n  has a certain property that can can be verified by computation. Such a 
sentence can be independent from PA only if it is true, and it can be falsified 
only by a nonstandard natural number. Therefore, no consistent recursively 
enumerable theory can capture the truth of all П° arithmetic sentences. A 
straightforward recursive construction produces a complete and consistent 
extension of PA that is 11°. However, a non-recursive axiomatization can 
hardly be considered satisfactory or natural.

A theory T  is 1-consistent if all E j sentences provable in T  hold in 
the standard model of arithmetic (N, +,*,()). Every extension of ZFC that 
has an a;-model (i.e., a model whose set of natural numbers is standard) 
is 1-consistent. In particular, all ‘reasonable’ theories obtained by adjoin
ing large cardinal axioms to ZFC are 1-consistent. Moreover, the relative 
strength of large cardinal axioms is accurately measured by the inclusion 
between sets of their Ej consequences. This is because if ф and тр are large 
cardinal axioms and ф is stronger than ф then ф implies that -*ф is not 
consistent. Via the Godel coding, a statement Con(-i^) is equivalent to 
a П° statement and by Godel’s Incompleteness theorem it does not follow 
from тр.

Open problems of number theory could turn out to be independent 
from ZFC. Or rather, the only known way to prove that this is not the 
case seems to be to either prove or refute each one of them. However, 
the standard set theoretic tools for proving independence cannot prove 
independence of arithmetical statements (a notable exception here is the 
line of research starting with Paris-Harrington theorem developed further 
by Harvey Friedman [28]). This also applies to mathematical statements 
that have equivalent reformulation that is an arithmetical statement, such 
as for example the Kadison-Singer problem.
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The existence of true arithmetic statements that are not provable in 
any recursive extension of ZFC can be considered as a deficiency of the 
first-order logic. However, the generally accepted notion of ‘proof’ in math
ematics is the Hilbert-style proof in first-order logic, from some standard 
axiomatization of mathematics such as ZFC. Other prominent competing 
formalizations of mathematics, such as the intuitionism, are weaker than 
the first-order logic. The first-order logic is also model-theoretically the 
best-behaved of all logics, as Lindstrom’s theorem ([9]) characterizes the 
first-order logic as the strongest logic that satisfies both compactness and 
Lowenheim-Skolem theorems.

Since all well-founded models of PA are isomorphic, assuming that N 
exists (i.e., the axiom of infinity) implies that each arithmetical statement 
has a concrete truth value, regardless of whether it is independent from 
PA. The situation with the statements of the second-order arithmetic, i.e., 
those that require quantification over sets of natural numbers, is more com
plicated. Sets of natural numbers are naturally identified with elements of 
the Cantor set, or real numbers, or elements of any recursively defined 
Polish space. This extends to objects that can be coded by sets of natu
ral numbers, such as Borel sets or separable C*-algebras. Therefore most 
mathematical statements about separable objects that are elements of a 
standard Borel space are really statements of the second-order arithmetic.

At this point I will digress to retell the well-known story of one of the 
major achievements of pure set theory to this date.

2.1. The sto ry  o f projective sets

One does not know, and one will never know, of the family of projective 
sets, although it has cardinality 2H° and consists of effective sets, whether 
every member has cardinality 2H° if uncountable, has the Baire property, or 
is even Lebesgue measurable.

N. Luzin, 1925

Descriptive set theory started with the work of Lebesgue, who initiated 
the systematic study of definable sets of real numbers (see the introduction 
to [40]). Classical regularity properties of sets of reals, such as Lebesgue 
measurability, property of Baire, and the perfect set property, were quickly 
established for Borel, or equivalently A}, sets. Famously, Lebesgue claimed 
that continuous images of Borel sets are Borel. This assertion implies that 
all sets of reals that are first-order definable in second-order arithmetic 
have all the classical regularity properties. It also implies that 0 =  1 but
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the proof is slightly longer. The importance of, and benefit from, formal 
mistakes of this sort in mathematics can hardly be overstated.b

Fortunately, the truth happens to be much more exciting. Suslin noticed 
that Lebesgue’s assertion was false and named continuous images of Borel 
sets analytic sets. Suslin’s result gave rise to a proper hierarchy of projective 
sets. Lebesgue measurability and property of Baire of analytic sets was 
quickly established, but the progress was stalled at the very next level, of 
continuous images of complements of analytic sets (i.e., sets).

In 1925, when Luzin articulated his pessimistic thought, the central 
question of Descriptive Set Theory was whether T,\ sets are Lebesgue mea
surable. Fifteen years later, a partial solution to the problem was found. 
Kurt Godel introduced his constructible universe, L, and proved that it has 
a £ 3  well-ordering of the reals. This well-ordering also has the property that 
all of its proper initial segments are countable. A Fubini argument imme
diately implies that the well-ordering itself (when considered as a subset of 
the square) is not measurable. In addition, any transfinite construction of 
a set of reals that uses Continuum Hypothesis could be ran along this £2  
well-ordering to produce projective sets, resulting in projective sets with 
even more peculiar properties.

This only demonstrates that one cannot prove that projective sets have 
classical regularity properties starting from ZFC. Godel himself never con
sidered this as a solution to the problem of regularity properties of projec
tive sets of reals.

Another quarter of a century later, after the advent of forcing, Solovay 
constructed a model of ZFC in which all projective sets have all classical 
regularity properties. Unlike Godel’s, Solovay’s theorem still allows a the
oretical possibility that one can construct a non-measurable projective set 
of reals starting from ZFC alone. This is because Solovay’s model was con
structed from a model of ZFC in which there exists an inaccessible cardinal, 
and the existence of such a model is a strictly stronger assumption than 
the existence of a model of ZFC, used by Godel. By a result of Shelah, the 
use of an inaccessible cardinal is necessary in Solovay’s construction: Start
ing from a model in which all £ 3  sets are measurable one can construct a 
model of ZFC with an inaccessible cardinal. This, in particular, implies that 
in a strictly formal sense this result is weaker than Godel’s. While by the 
latter result in ZFC one cannot prove that all projective sets are Lebesgue 
measurable, the possibility that one can construct a non-measurable set of

bAn entertaining account can be found in [3].
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reals in ZFC cannot be ruled out by a formal reasoning starting from ZFC.
In light of these results it is fair to say that Luzin had little chance of re

solving the question of regularity properties of projective sets, as such a res
olution necessitates intricate metamathematical considerations unforeseen 
in Luzin’s time. However, the truth turns out to be even more compelling.

By a 1988 result of Martin and Steel, the existence of infinitely many 
Woodin cardinals implies Projective Determinacy. On the other hand, 
Woodin proved that Projective Determinacy implies the existence of models 
with arbitrarily large (finite) number of Woodin cardinals.

Therefore the question whether projective sets are Lebegue measurable 
has been completely answered from the formal point of view. The axioms of 
ZFC are too weak to provide an answer.0 Nevertheless, the picture provided 
by large cardinals is so coherent, robust, and beautiful that Projective De
terminacy has been accepted as a bona fide axiom, at least by the California 
school of set theory (see [57]).

But let us now go back to 1920’s and Luzin. He observed that proving 
measurability of E} or TL\ sets was not substantially more difficult than 
proving measurability of Borel sets. An attempt at proving that continuous 
images of these sets are measurable resulted in unsurmountable technical 
difficulties, a complete resolution of which required development of iteration 
trees for inner models of Woodin cardinals, which is some of the deepest and 
most intricate set theory as we know it. Therefore Luzin’s *... and one will 
never know... ’ was an educated, and even lucid (albeit somewhat arrogant) 
assessment of the problem.

3. A bsoluteness

Absoluteness phenomena are calibrated by the Levy hierarchy of formu
las ([38]). Levy proved that £ i statements are absolute between transitive 
models of ZFC. This was followed by Shoenfield who proved the absolute
ness of Eg statements between models of ZFC containing all countable 
ordinals (see the Appendix). This result predates results discussed in §2.1 
by two decades. By Shoenfield’s result, any statement in the language of 
ZFC that is provably equivalent to a £ 2  statement is absolute between ‘rea
sonable’ models of ZFC (reasonable meaning well-founded and containing 
all countable ordinals) and therefore arguably has a concrete truth value.

cUnless it turns out that the existence of infinitely many Woodin cardinals leads to a 
contradiction, a possibility that cannot be formally ruled out.
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I now proceed to give some flavour of the technical aspects of mathe
matics involved in this. A tree on a set X  is a set of finite sequences of 
elements of X  closed under taking initial segments. It is ordered by the 
end-extension. The use of trees in the following argument is the basis for 
practically all presently known absoluteness results.

Lem m a 3.1: Let M  be a transitive model of a large enough fragment of 
ZFC. I f T  is a tree in M , then T  has an infinite branch in M  if and only 
if  it has an infinite branch.

Proof: In M  recursively define a rank function from T  into the ordinals 
by setting p(s) =  0 if s is a terminal node of T, and

p(t) =  sup(p(s) +  1)

where s ranges over all immediate successors of £, i.e., nodes of the form t ^ x  
for some x  6 X.  This defines a strictly decreasing function from a subset 
of T  into the ordinals by transfinite recursion. Moreover, the complement 
of dom(p) has no terminal nodes. Therefore, if it is nonempty then by the 
axiom of Dependent Choices (a rather weak consequence of the Axiom of 
Choice) T  has an infinite branch.

Therefore, if T  has no infinite branches then there is a strictly decreasing 
function from T  into the ordinals, and such a function prevents T  from 
acquiring an infinite branch in any larger (well-founded) universe. □

A tree with no branches is said to be well-founded (visualize the tree 
growing downwards). Hence Lemma 3.1 states that the well-foundedness of 
trees is absolute between transitive models of a large enough fragment of 
ZFC.

3.1. Beyond projective sets

A closer introspection of the proof of Lemma 3.1 shows that the salient 
feature of analytic sets A is the fact that there are trees T  and S  such that
(i) T  projects to A , (ii) projection of S  is disjoint from the projection of T , 
and (iii) every real number is in the projection of one of these trees. The 
relevant tree S  is a tree of attempts to construct rank function on T  (see 
[32]). A subset A  of a Polish space is universally Baire ([26], [36]) if there 
exist trees T  and S  satisfying (i)-(iii) in all set forcing extensions (such 
trees are necessarily proper classes).

As pointed out by Steel ([25]), the invariance of the theory of L(R) under 
set forcing (an assertion that implies PD) is equivalent to the existence of
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an iterable model with w Woodin cardinals М ш. The latter is a countable 
transitive structure, and therefore coded by a real number. The iterability 
of М ш is witnessed by a set of real numbers that is universally Baire ([26]). 
Therefore all transitive models of ZFC (and even all cj-models of ZFC) 
containing M u that are correct about its iteration strategy (in a certain 
technical sense, see [58]) agree about the theory of projective sets.

For ZFC, or some stronger theory, one can consider only (appropriately 
defined) reasonable models of the theory and accept statements that hold in 
all reasonable models as true. This is Woodin’s approach to П-logic ([58]), 
in which he defines a class of ‘test structures’ and writes T  |=q Ф if Ф 
holds in all test structures in which T  holds. The technical definition of 
Woodin’s П-logic involves being Л-closed for a universaly Baire set A, and 
it is preserved by set-forcing. In case of ZFC, the minimum requirement on 
a test structure M  is that it is a transitive model of ZFC. This is captured 
by the notion of /3-logic. One defines T  \=p ф if every transitive model of 
theory T  satisfies ф. By Lemma 3.1, /З-logic decides all statements, but 
unfortunately there is no known notion of a proof in /?-logic.

A ‘phase transition’ for models of ZFC occurs when the following large 
cardinal axiom is assumed. I will not define Woodin cardinals; a non
technical (to the extent it is possible) introduction is given in [50].

(Wqo) There exist arbitrarily large Woodin cardinals.

This assumption is robust under forcing and implies the existence and it
erability of M w. Therefore Wqo implies all the regularity properties of pro
jective sets. It also implies that the сг-algebra of universally Baire sets ([26]) 
is closed under projections and that all of these sets share all the regular
ity properties, including one of the strongest determinacy axioms presently 
known, ADr +  О is regular (see [45] for a discussion of Solovay hierarchy).

Absoluteness results for universally Baire sets can be rephrased by ex
panding the language. Let £ ub denote the language obtained from the lan
guage of ZFC by adding predicates for all universally Baire sets and (redun
dantly) constants for all real numbers. Then implies that all formulas 
of £ ub axe absolute for set-forcing extensions. It also implies that all projec
tive formulas of £ uв (i.e., all formulas using predicates for universally 
Baire sets) are also absolute for set-forcing extensions. However, Woo im
plies that the a-algebra of universally Baire sets is closed under continuous 
images and therefore this is not a genuine strengthening (see [36]).
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3.2. Absoluteness and the uncountable

There is a notable absoluteness result which goes both beyond the second- 
order arithmetic and the theory of universally Baire sets and which does 
not require any large cardinal assumptions. It is a corollary of Keisler’s 
completeness theorem for non-standard logic ЬШхШ{0) ([33]). This is the 
extension of first-order logic obtained by allowing countable conjunctions 
and disjunctions, as well as the additional quantifier Qx which is inter
preted as ‘there exist uncountably many ж.’ Keisler introduced a finite set 
of logical axioms for ,W(Q) and proved that an L^^QJ-sentence ф has 
a standard model (i.e., a model in which Qx has its intended interpreta
tion) if and only if its negation -уф is not provable. While this logic has an 
infinite rule of inference (handling infinite conjunctions), proofs are well- 
founded trees tagged with formulas. Therefore by Lemma 3.1 the existence 
of uncountable structures whose properties can be described in u{Q) 
is absolute between transitive models of a large enough fragment of ZFC. 
A typical consequence states that for any fixed Borel subset В  of Rn the 
assertion that there exists an uncountable set X  such that X n С В is ab
solute between transitive models of ZFC. Every Borel set can be coded by 
an LUybJ sentence that describes its recursive definition, using some fixed 
recursive basis of open sets. The case n = 2 was used by Shelah to prove 
that the countable chain condition is absolute for Borel forcing notions.

Let us now expand £ uв by adding a predicate for the nonstationary ideal 
on и i (in this context we add this predicate primarily because we can). We 
shall denote this language by £ ub,ns- Via the work of Woodin ([58]), 
implies a strengthening of Keisler’s absoluteness theorem. If ф is a sen
tence £ ub,ns such that both ф and -»ф are provably equivalent to a £2 
sentence, then the assertion #(N 2) 1= Ф cannot be changed by set forcing 
(see [21], where other absoluteness results along similar lines were consid
ered) (see the Appendix for definition of #(«))• Therefore implies that 
the provably Д 2-fragment of the £ ub,ns theory of #(N 2) is absolute under 
set forcing. This implies, for example, that for any projective, or even uni
versally Baire В  С M<N (the finite sequences of reals) the existence of an 
uncountable X  such that X <N С £  is absolute under set forcing (see [21] 
for other applications).

3.3. Level by level

The relative consistency of a sentence ф is, via Godel coding, equivalent to 
a IlJ arithmetic statement. Therefore an oracle with access to П? theory
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of the natural numbers would give full insight into the relative consistency 
of large cardinal axioms. However, the relevant question (from the point of 
view of Descriptive Set Theory) is that of the existence of (necessarily well- 
founded) iter able models of large cardinal axioms. The existence of well- 
founded models is a statement of the second-order arithmetic. However, the 
iterability of these models is witnessed by (ideally universally Baire) sets of 
reals. The existence of such sets is already the statement of the third-order 
arithmetic. However, their universal Baireness is witnessed by class-sized 
trees, and therefore it transcends any fixed VQ.

4. Third-Order A rithm etic

We move one level up and consider the third-order arithmetic. With the 
identification of sets of natural numbers with the reals, this means that we 
are quantifying over sets of real numbers. More generally, if X  is any Polish 
space ([32]) then we allow quantification over subsets of X .

The setting for the third-order arithmetic is provided by the struc
ture H(c+) of all sets whose transitive closure has cardinality no larger 
than c, the cardinality of R. All Polish spaces and all of their subsets have 
a isomorphic copies inside this structure. A compelling motivation for study 
of H ( c+ ) is given by the fact that this is a reasonably small structure in 
which most of the mainstream mathematical practice takes place.

4.1. C onditional absoluteness  

A statement is 5^ if it is of the form

(ЗХ  С Ж)ф{Х)

where ф is an analytical statement (see Appendix §A.3) of the language 
£uB,ns- An example of a £ \  statement is the Continuum Hypothesis, CH, 
since it is equivalent to the assertion that there exists a well-ordering of R 
all of whose proper initial segments are countable.

Every model of ZFC has a set-forcing extension in which CH fails and 
a set-forcing extension in which CH holds. Therefore the unconditional 
absoluteness results of §3.2 cannot be extended to £? statements.

A large cardinal axiom substantially stronger than implies that a 
new phenomenon takes place.



Absoluteness, TYuth, and Quotients 11

(MWqo) There exist arbitrarily large measurable Woodin cardinals.

Although the existence of a Woodin cardinal implies the existence of 
many measurable cardinals, a Woodin cardinal is not necessarily measur
able. While Wqo is a relatively mild large cardinal assumption with well- 
understood inner models by results of Mitchell-Steel and Neeman ([41]), 
the assumption that there exists a single measurable Woodin cardinal is far 
beyond the reach of the present inner model theory. Woodin proved ([56], 
for a proof see [36]) that MWqo implies all statements of the form CH => ф, 
for a £f-statement ф in AjB.ns, are set-forcing absolute. Even stronger, for 
every £? sentence ф in £ ub,ns we have either that |=п CH => ф or \=n -уф.

One should note that this result is not stating that a £ f statement is 
either inconsistent or it follows from CH. It is not even stating that MWqo 
implies every £? statement is either inconsistent or it follows from CH; 
there are easy metamathematical counterexamples to this assertion. What 
it says is that MWqo implies that if consistency of a £ j statement can be 
proved in ZFC (possibly augmented by a large cardinal axiom) by standard 
presently available set-theoretic tools (i.e., by forcing—but not by passing 
to an inner model such as Godel’s L), then it follows from CH. Note that 
this excludes proofs obtained by forcing over L, or a model of some other 
anti-large cardinal axiom.

Remarkably, this theorem has practical consequences. For example, its 
consequence is that MWqo +  CH imply for any Ef formula ф(х) in £ ub,ns 
the set {x e R : ф{х)} is Lebesgue measurable and has the property of 
Baire. This is proved by using Solovay’s amoeba forcing argument ([49]).

It was conjectured by John Steel that a sufficiently strong large cardi
nal assumption implies analogous result for 0  in place of CH and for all £2 
sentences ф: either \=q 0  => Ф or |=q CH => -уф (note that the more simple- 
minded analogy is outright false, since -«CH is П? and therefore £ 3. This 
conjecture is wide open and the current understanding of the Inner Model 
Theory suggests that its confirmation may require very substantial large 
cardinal axioms ([59]). A result of Magidor and Malitz ([39]) is relevant to 
this problem. Logic LUxUJ(Q<w) can be extended by adding Ramseyan quan
tifiers (Qnx  1, . . . ,  xn) for all n € N. Formula (Qnx  1, . . . ,  хп)ф(х 1, . . . ,  xn) is 
interpreted as ‘there exists an uncountable set X  such that ф(хi ,...,a ? n) 
holds for every n-tuple of elements x i , . * . , x n in X .’ In [39] a complete
ness theorem for this logic analogous to Keisler’s was proved, assuming 0 . 
This shows that for a restricted class of £2  sentences Steel’s question has 
a positive answer. An extension of Magidor-Malitz result for £ ub,ns which
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also allows Ramseyan quantifier of unbounded dimension was proved from 
MWoo in [20]. An another test question for Steel’s conjecture was answered 
affirmatively by Woodin: M W ^ implies there exists a model of ZFC in 
which all E 2 statements that can be forced to hold with 0  are simultane
ously true ([34]).

4.2. П??

Is there a conditional absoluteness result dual to Woodin’s E* absoluteness 
theorem, based on some other axiom instead of the Continuum Hypothesis? 
We need to put this question in a proper context. One has to note that 
in the presence of CH Ef statements are really Ei statements of #(N 2). 
The proof of Woodin’s theorem hinges of this fact—it proceeds by starting 
from a countable model M  of the desired Ef statement and constructing 
an elementary chain of length of well-founded models extending M. 
Strong large cardinal assumption is needed to assure that every real can be 
absorbed in the direct limit of this chain.

Definition 4.1: If H is a given class of Hausdorff spaces, then FA(H) is 
the assertion that for every Q G H the intersection of any collection of Hi 
dense open subsets of Cl is dense.

Even the weakest nontrivial forcing axiom, FA({[0,1]}), clearly contra
dicts CH. (This axiom is true in Cohen’s original model for the negation 
of the Continuum Hypothesis.) The popular Martin’s Axiom. MA*^, is the 
prototype for forcing axioms. Martin’s Maximum, MM, ([27]) is provably 
the strongest forcing axiom consistent relative to large cardinals. MM++ is 
a technical strengthening of MM.

In [58] Woodin proved that implies there exists a model that maxi
mizes the n 2-theory of #(N 2) in £ ub ,n s - This model is obtained by forcing 
over an inner model of the Axiom of Determinacy. A salient feature of this 
model is that it an extension of a model £(Г, R) of the Axiom of Determi
nacy by a homogeneous forcing notion. By the homogeneity of this forcing, 
the theory of the model is decided in the ground model L(T} R). But 
implies that the theory of L (r, R) is not changeable by forcing, and therefore 
the theory of Woodin’s model is canonical. Woodin’s axiom (*) captures 
the essence of this model.

This axiom and forcing axioms have very similar effect to the truth 
of n f  statements. As a matter of fact, a bounded version of the latter, 
MM++ (c) (a n f  statement in language with a predicate for the nonstation- 
ary ideal on cji), is a consequence of a strong version of (*) ([58]). An
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important open problem is to reconcile the theories of (*) and forcing 
axioms (see [37]). At present it is not known whether the conjunction of 
these axioms is consistent. The only available models of (*) are obtained 
only by forcing over models of the Axiom of Determinacy, AD, (where the 
Axiom of Choice necessarily fails) or over some fine-structural models of 
relatively mild large cardinal axioms by using the extender algebra (see 
[19]). Presently known models of AD fall short of having the consistency 
strength of supercompact cardinal, that appears to be needed for forcing 
MM++ (see [53]). However, in [45] Sargsyan conjectured the existence of 
models of determinacy that capture arbitrarily large cardinal axioms. A 
confirmation of Sargsyan’s conjecture could be a step towards proving the 
joint consistency of (*) and strong forcing axioms.

P rob lem  4.2: Find a reasonably strong analogue of Woodin’s £ f absolute
ness theorem for some class of Л \ statements based on MM++ or (*).

Large cardinal strength of forcing axioms largely stems from their reflec
tion properties. Bounded forcing axioms are technical weakenings of forcing 
axioms with the reflection component diminished (but still present to some 
extent). The precise definition of bounded forcing axioms can be omitted 
here since in [4], Bagaria proved that they can be reformulated as princi
ples of generic absoluteness. By his results, a bounded forcing axiom for 
class H is equivalent to the assertion that for every stationary preserving 
forcing notion P in class 1HI every a € #(N 2), and every £1 formula ф(х) of 
£ uB,ns the truth of the statement #(N 2) 1= Ф{а) cannot be changed by P. 
In symbols,

H(*2)v -< ! н т уГ.
See also [11]. As pointed out earlier, by Woodin’s results Woo implies that 
the £ 2-theory of #(N 2) expressed in £ ub ,ns cannot be changed by forcing.

A result along similar lines was proved by Viale ([52]) from a very strong 
large cardinal assumption. If there are class many supercompact cardinals 
and MM++ holds and P is stationary-preserving forcing that forces MM++ 
then Я(К2)У -< Н(Н2)уГ in £ ub ,n s - b* other words, MM++ fixes the theory 
of #(N 2) in a way similar to the way that Wqo fixes the theory of L(R).  The 
resolution of Problem 4.2, if any, will be of a rather restricted nature. A 
number of I lf  statements relatively consistent with ZFC and large cardinals 
imply that MM, or even the weaker MA*^, fails. Among such statements 
are b < D or ‘there are no P-points in /3N.’ Here is a working conjecture.
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C o n jec tu re  4.3: Assume MWqo. I f  ф is £ ub,ns sentence which is both П2 
and Ilf and it is true in some forcing extension, then ф is true in every 
forcing extension that satisfies MM++.

A rather coherent rigidity theory of quotient structures (see §5) devel
oped over the last thirty years suggests that such conditional absoluteness 
theorem is true for some restricted class of П* sentences.. I will proceed 
to describe a set of results that appear to be instances of a yet unknown 
general rigidity theorem.

5. Q uo tien t B orel S tru c tu re s

I will now make a deliberately vague definition that encompasses some phe
nomena observed in areas of mathematics fairly distant from one another 
(or so we thought).

5.1. Trivial autom orphism s

Assume 21 and are models of the same signature whose universes are Pol
ish spaces and all relations and functions are continuous functions. Further 
assume that I  and J  are Borel ideals of 21 and 93, respectively and

Ф: 21 //-> <B /J

is an isomorphism. We say Ф is topologically trivial if there exists a Borel- 
measurable map Ф: 21 —> 05 such that the diagram commutes.

v i — t + k / j

This is a bit weaker than the triviality requirement given in [12] and [16], 
where it was required that in addition Ф is a homomorphism. The question 
when ‘Borel’ triviality implies this ‘algebraic’ triviality was studied in the 
context of both groups and Boolean algebras ([30], [31]). As interesting as 
they are, these ‘Ulam stability’ problems have little to do with the theme 
pursued in this article, in particular because the assertion ‘every topolog
ically trivial homomorphism between 21 / I  and *B/ J  is trivial’ is П 2 and 
therefore absolute (see the Appendix). My reason for considering only the 
Borel triviality in the present context is that in the case of C*-algebras it
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is still unclear what the right definition of algebraic triviality is (see the 
discussion in [10]).

These definitions provide a general framework for rigidity theory of 
Cech-Stone remainders, rigidity of analytic quotients and rigidity of coro
nas of C*-algebras (see [12], [16], [18] and below).

The assertion that two quotient Borel structures are isomorphic, or that 
a quotient Borel structure has a nontrivial automorphism, is a T,\ statement. 
On the other hand, the assertion that two quotient Borel structures are 
isomorphic via a trivial, or a topologically trivial, automorphism, is Щ in 
the codes for the structures.

5.2. С *-algebras and their m ultip liers

A particularly interesting and well-studied class of quotient structures are 
corona algebras of separable C*-algebras, also called outer multiplier alge
bras (see [6] for this and other background on operator algebras). Recall 
that an abstract C*-algebra is a complex Banach algebra A with involu
tion * that satisfies the C*-equality, ||a ||2 =  ||aa*|| for all a e A. A con
crete C*-algebra is a norm-closed, self-adjoint subalgebra of the algebra 
B(H)  of bounded operators on a complex Hilbert space # .  Every concrete 
C*-algebra is an abstract C*-algebra and by the Gelfand-Naimark-Segal 
theorem every abstract C*-algebra is isomorphic to a concrete C*-algebra. 
The category of abelian C*-algebras is equivalent to the category of lo
cally compact Hausdorff spaces. More precisely, every abelian C*-algebra 
A  is isomorphic to Co(X), where X  is the spectrum of A: the space of 
all *-homomorphisms of A  into С (such homomorphisms are automatically 
continuous!) equipped with the weak* topology. If A is in addition unital, 
then X  is compact and A = C(X).  *-homomorphisms between abelian 
C*-algebras contravariantly correspond to continuous maps between their 
spectra.

The operation of taking Cech-Stone compactification of a locally com
pact Hausdorff space has the construction of a multiplier algebra as its 
(non-functorial) analogue in the category of C*-algebras. If A  is a subalge
bra of /?(#), then the idealizer of A is

{b e B(H) : b A C A  and Ab С A}.

This is easily checked to be a norm-closed, selfadjoint subalgebra of B(H).  
If moreover A  acts nondegenerately on H  (i.e., bA =  {0} only if b =  0), then 
the isomorphism type of this idealizer depends only on A , and not on the
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representation of A  in B(H).  Therefore one can define the multiplier algebra 
M(A)  of an abstract C*-algebra A  to be the idealizer of some (any) of its 
nondegenerate representations. (By the Gelfand-Naimark-Segal theorem 
one has plenty of such representations.)

It is clear that M(A)  =  A  if A  is unital. Also, M(Co(X))  is isomorphic 
to Сь(СЬ(Х)), the algebra of bounded continuous functions on X , and the 
latter is in turn isomorphic to С(рХ) ,  the space of continuous functions 
on the Cech-Stone compactification of X.  By the construction, A  is always 
a norm-closed, two-sided and self-adjoint ideal and the quotient algebra 
Q(A) := M( A) / A  is the corona algebra of A. Note that M( C q( X) ) / Co(X)  
is isomorphic to C((3X \ X ) ,  the space of continuous functions on the re
mainder (also called corona) of locally compact space X.

While the multiplier of a non-unital separable algebra is necessarily 
nonseparable, it does carry a natural Polish topology. The strict topology 
on M(A)  is the topology induced by the seminorms b »-> ||fom*||, for a G A. 
If A  is separable then this topology is induced by a single (carefully chosen) 
a € A,  and d(b, c) =  || (6 — c)a|| is a complete separable metric on M(A)  that 
has A  as a dense subset. Therefore the corona M( A) / A  is subject to the 
considerations given in §5.1. For more on connections between C*-algebras 
and set theory see [55].

5.3. General rig id ity  conjectures

The following two conjectures are deliberately vague. As in §5, 21 and Ъ  
are Polish models and I  and J  are their Borel ideals.

C on jec tu re  5.1: I f  the assertion levery isomorphism between 21 / I  and 
*B/J is trivial’ can be forced then it follows from Martin’s Maximum.

C on jec tu re  5.2: For a large class of Borel quotients 21// and *B/J, the 
assertion 1 every isomorphism between 21/ 1 and *B/J is triviaV is relatively 
consistent with ZFC.

MM (and much less than MM) implies all isomorphisms between the 
following are trivial, and even algebraically trivial (see [46], [16], [51] for 
(l)-(2), [22] for (3), [14] for (4), and [18] and [17] for (5)).

(1) Boolean algebras V(N ) / / ,  for a large class of Borel ideals I.
(2) Boolean algebras V( k) /  Fin.
(3) Corona algebras М (Л)/Л, for A  separable abelian C*-algebra generated 

by projections.
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(4) Tensor products of algebras as in (3).
(5) Calkin algebra associated with an arbitrary Hilbert space.

Note that (2) and the nonseparable case of (5) belong to an extension of 
the context given in §5.1 to nonseparable yet ‘definable’ quotient structures. 
What assumptions on 21,05, /  and J  agree with the conjecture ‘all isomor
phisms between 21// and 23/J  are trivial?’ In the known cases it is the 
existence of a (definable) partial ordering with rich gap structure on these 
quotients. An ability to freeze these gaps (i.e., to make them indestructible 
by Ni-preserving forcing) appears as a requirement for Conjecture 5 .2.

Here is an example (taken from [13]) that shows that in the category 
of groups nontrivial automorphisms can be constructed in ZFC. Consider 
the group G — {Ъ/2Ъ)п and let Go =  ® W(Z/2Z). Then G/Gq is a vector 
space over F2 of dimension 2K° and it therefore has 2C automorphisms, most 
of them nontrivial. However, all automorphisms with a Borel-measurable 
representation are trivial ([13]).

A question closely related to the above is whether two Borel quotient 
structures are isomorphic, and what does the automorphism group of a 
Borel quotient structure look like? Special cases of this rigidity problem 
were asked in different categories. The case of quotient Boolean algebras 
V( N) / I  was considered in [12] and there was not much progress on this 
question since [16]. The most general case of a question of this sort that is 
reasonably manageable by current methods is its C*-algebraic case. This is 
because by Gelfand-Naimark duality the categories of abelian C*-algebras 
and locally compact Hausdorff spaces are equivalent, and by the Stone du
ality the category of Stonian spaces is equivalent to the category of Boolean 
algebras.

These algebras belong to our framework of Borel quotient structures. 
Little is known about the question of P. W. Ng, when the isomorphism of 
coronas of separable C*-algebras A and В  implies A and В  are isomorphic? 
At present it is not known whether there are coronas that are isomorphic 
via a nontrivial isomorphism n ZFC. While nontrivial automorphisms of 
coronas have been constructed using the Continuum Hypothesis ([44], [10]), 
they are all ‘locally trivial’ (cf. Brown-Douglas-Fillmore problem on K- 
theory reversing automorphisms mentioned in §A.4.).

Under what assumptions is every automorphism of 2t/ I  topologically 
trivial? In [46], Shelah constructed a model of ZFC in which all automor
phisms of P (N )/F in  are trivial. The feature of ^(N J/F in  most important 
for the proof is the existence of gaps. Every nontrivial au tom o^hT ^^
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is destroyed by adding a new element of V ( N ) / I  whose image would nec
essarily fill a gap in V(N)/Fin.  Shelah’s proof used oracle-cc, a delicate 
iteration of mild forcing notions, to assure that these gaps are not filled by 
subsequent forcings. The technique of freezing gaps ([47], [51]) is then used 
to conclude that forcing axioms imply the triviality of all automorphisms. 
This technique produces an object of cardinality Ni witnessing that a given 
partial map cannot be extended to an isomorphism between given quotient 
structures (see [15]).

Triviality of isomorphisms between Borel quotient structures is usually 
proved using modifications of Shelah’s technique. However, in [23] a dif
ferent method was used, building on [48] to prove that the assertion ‘all 
isomorphisms between quotients V( N) / I  over Borel ideal are topologically 
trivial’ is relatively consistent with ZFC. It is not known whether this con
clusion follows from forcing axioms or from Woodin’s (*), and we therefore 
have a test question for Conjecture 5.2.

An another statement with similar flavour is ‘Lebesgue measure al
gebra does not have a Borel lifting.’ Continuum Hypothesis implies the 
negation, and Shelah proved that this is relatively consistent with ZFC 
([46]). It is, however, not known whether forcing axioms imply this conclu
sion.
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A ppend ix

I will attempt to strike a balance between formality and clarity. In partic
ular, I will neither specify the language nor provide a complete recursive 
definition of a formula. In many of the instances considered below the lan
guage of ZFC is tacitly expanded to include operations or relations of the 
structure in question.
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A .I. H ereditary sets

A set X  is transitive if every element of X  is a subset of X . A closure 
argument shows that every set is a subset of a transitive set. The minimal 
such set is the transitive closure of X . If к is a cardinal then H( k) denotes 
the set of all sets whose transitive closure has cardinality < к. In this 
paper we consider four structures of this form. #(No) (or HF), the set of 
hereditarily finite sets, #(N i) (or HC), the set of hereditarily countable 
sets, # (H 2) and # (c +) (here c+ =  (2N°)+ , the least cardinal greater than 
the continuum). A simple coding argument shows that (#(No)>€) is bi
interpretable with (N ,+ ,-,0) and that (# (N i),e ) is bi-interpretable with 
CP(N),N,€).

Г
A .2 . A rithm etical form ulas

Arithmetical formulas are the ones in which all quantifiers range over N. 
Since there is a recursive bijection between N and #(N 0), such formulas 
are provably equivalent to ones in which all quantifiers range over #(N 0)* 
A quantification is bounded if it is of the form (3x < n) or (Vx < n) 
(or (Зх € у) and (Vx € у ), when considering x and у in Н(Щ)).  An 
arithmetical formula is £§ and ^0  if it involves only bounded quantifiers. 
An arithmetical formula is £ ° +1 if it is of the form (3x i)(3x2) • • • (3x^)0, 
where ф is а П® formula. An arithmetical formula is П° +1 if it is of the 
form (Vxi)(Vx2) . • • (Vxfc)0, where ф is a £° formula. In both cases a block 
of quantifiers of the same type can be replaced by a single quantifier by 
using some fixed coding of finite sequences of natural numbers by natural 
numbers.

For example, lm is a prime number’ or {m is a sum of two squares’ 
are both Пд and £§> hence Goldbach’s conjecture is П? and Twin Prime 
Conjecture is П2. One can expand the language and consider formulas that 
are, provably in ZFC, equivalent to arithmetical formulas. In particular, 
quantification over any fixed countable set (such as Q, SL2(Z), Mn(Q-HQ)
. . . ) ,  counts as quantification over N.

A.3. Analytical form ulas

In this context quantification is bounded if it is of the form (3x G N) or 
(Vx e  N). An analytical formula is and IlJ if it involves only bounded 
quantification. Quantification in analytical formulas is over the real num
bers. An analytical formula is l £ +1 if it is of the form (3x i)(3x2) • • • (3х&)</>,
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ф is a П* formula. An analytical formula is П^+1 if it is of the form 
(Vxi)(Vrc2) • • • (Vrcjt)</>, where ф is a formula. Like in the case of arith
metic formulas, in both cases a block of quantifiers of the same type can 
be replaced by a single quantifier. Also, quantification over N (or any fixed 
countable set) can be absorbed into quantification over К without increas
ing the complexity.

Since any two uncountable standard Borel spaces are Borel-isomorphic, 
by expanding the language by a predicate for the Borel isomorphism, it is 
no loss of generality to allow quantification over any standard Borel space 
instead of JR.

A .4. Exam ples

I list some well-known problems that are equivalent to absolute formulas, 
and therefore unlikely to be independent from ZFC. The choice of problems 
is obviously biased towards my own research interests, but they should pro
vide some idea of the concepts. Moreover, a standard absoluteness argument 
shows that if any of these statements can be forced over a model M  of ZFC 
then it is already true in M. This for example implies that if CH is used to 
prove some of these statements then the use of CH can be removed from 
the proof.

Free Group Factors The assertion that the free group factors L(F2 ) and 
L(Fs) are isomorphic is a S j statement. This is because the isomorphism is 
coded by a homeomorphism between two Polish spaces (e.g., the unit balls 
equipped with the ^-m etric) which is also an algebraic isomorphism. Such 
a homeomorphism can be coded by a real number, and checking that it is 
a homeomorphism does not require quantification over uncountable sets.

Invariant Subspace Problem This is the assertion that every bounded 
linear operator on a separable Hilbert space has a nontrivial invariant sub
space. It is easily seen to be Щ.

Riemann’s Hypothesis asserts that all zeros of a continuous function 
belong to a closed set. It is а П} statement. It is, however, known to be 
equivalent to а П? statement (essentially because the of Riemann’s С func
tion zeros can be enumerated).

Each of the assertions that every countable group is sofic, every count
able group is hyperfinite, or every countable hyperfinite group is sofic, ([43]) 
is а П} statement. This is because expressing that a group is sofic (or hy
perfinite) requires only quantification over countable sets: finite subsets of 
the group, rationals, and finite permutation groups.
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Kadison-Singer problem.d is in its original formulation a Ilf statement 
but it is known to be equivalent to Anderson’s paving conjecture (see [8]). 
The latter asserts that for every e > 0 there exists к G N such that every 
n and every n  x n  matrix A  over С with all diagonal entries equal to zero 
there exist projections pj, for 1 < j  < k, spanned by basic vectors in ^(^)) 
such that for each j  we have < e\\A\\ (the operator norm). While
the statement is, as stated, П3, it is equivalent to а П3 statement. This is 
because e can be taken to be a rational, and A can be taken to be a matrix 
over the countable field Q + zQ.

A problem superfluously similar to the Kadison-Singer problem is An
derson’s conjecture (see below).

Connes Embedding Problem states that every Hi factor with separable 
predual can be embedded into an ultrapower (associated with a nonprinci
pal ultrafilter on N) of the hyperfinite Hi factor (the latter object is usually 
denoted by Rw, but set theorists may want to take note that R  does not 
stand for R and и  is not u). While this formulation involves quantification 
over ultrafilters on N, it is well-known that the choice of the ultafilter is ir
relevant. Moreover, CEP is equivalent to the assertion that all ‘microstates’ 
computed in an arbitrary III factor can be approximated by microstates 
computed in sufficiently large matrix algebras ([42]). For a fixed Hi factor 
this is an arithmetic (more precisely, П®) statement and therefore CEP is 
equivalent to а П} statement.

I now proceed to discuss some open problems that do not have a known 
reformulation as an absolute statement. They are more likely candidates 
for statements independent from ZFC than the above.

The statement of Brown-Douglas-Fillmore problem ([7]) whether there 
exists a К-theory reversing automorphism of the Calkin algebra is £ |.  Sim
ilarly, statement that two fixed Borel quotient structures (as in §5.1) are 
isomorphic is £ f. The negative answer to the Brown-Douglas-Fillmore 
question is relatively consistent with ZFC. This is because by a simple 
Fredholm index argument such an automorphism cannot be inner and by 
[18] all automorphisms of the Calkin algebra are consistently inner.

Anderson’s conjecture ([2]), that every pure state of the Calkin algebra 
can be diagonalized, is a n f  statement. It is known that its negation follows 
from CH ([2]) as well as some weaker statements ([24]).

d Added in proof: An affirmative answer to the Kadison-Singer problem has been recently 
given in Marcus, Adam, Daniel A. Spielman, and Nikhil Srivastava, Interlacing families 
II: Mixed characteristic polynomials and the Kadison-Singer problem, arXiv: 1306.3969 
(2013).
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Unlike all of the above problems, Naimark’s problem ([1]) is not a state
ment of H(c+), or H ( k) for any fixed к. It asserts that all C*-algebras 
have certain property, and therefore requires unbounded quantification over 
the universe. By [1] a negative answer to Naimark’s problem follows from 
Jensen’s $ Ш1. It is not known whether a positive answer to Naimark’s prob
lem is relatively consistent with ZFC or whether 0*  for some к > Hi implies 
the existence of a counterexample. At present the minimal cardinality of 
a purported counterexample can be bounded only by using some of the 
strongest known large cardinal axioms (see [5]).
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I shall argue that the commonly held V ф L via maximize position, 
which rejects the axiom of constructibility V — L on the basis that 
it is restrictive, implicitly takes a stand in the pluralist debate in the 
philosophy of set theory by presuming an absolute background concept 
of ordinal. The argument appears to lose its force, in contrast, on an 
upwardly extensible concept of set, in light of the various facts showing 
that models of set theory generally have extensions to models of V = L 
inside larger set-theoretic universes.

1 . In tro d u c tio n

Set theorists often argue against the axiom of constructibility V  =  L  on the 
basis that it is restrictive. Some axgue that we have no reason to think that 
every set should be constructible, or as Shelah puts it, “Why the hell should 
it be true?” [20]. To suppose that every set is constructible is seen as an 
artificial limitation on set-theoretic possibility, and perhaps it is a mistaken 
principle generally to suppose that all structure is definable. Furthermore,

aThis article expands on an argument that I made during my talk at the Asian Ini
tiative for Infinity: Workshop on Infinity and Truth, held in July 25-29, 2011 at the 
Institute for Mathematical Sciences, National University of Singapore. This work was 
undertaken during my subsequent visit at NYU in Summer and Fall, 2011, and com
pleted when I returned to CUNY. My research has been supported in part by NSF grant 
DMS-0800762, PSC-CUNY grant 64732-00-42 and Simons Foundation grant 209252. 
Commentary concerning this paper can be made at http://jdh.hamkins.org/multiverse- 
perspective-on-constructibility.

25

http://jdh.hamkins.org
http://jdh.hamkins.org/multiverse-


26 J. D. Hamkins

although V  =  L settles many set-theoretic questions, it seems so often to 
settle them in the ‘wrong’ way, without the elegant smoothness and uni
fying vision of competing theories, such as the situation of descriptive set 
theory under V  =  L  in comparison with that under projective determinacy. 
As a result, the constructible universe becomes a pathological land of coun
terexamples. That is bad news, but it could be overlooked, in my opinion, 
were it not for the much worse related news that V = L is inconsistent 
with all the strongest large cardinal axioms. The boundary between those 
large cardinals that can exist in L  and those that cannot is the threshold 
of set-theoretic strength, the entry way to the upper realm of infinity. Since 
the V  =  L  hypothesis is inconsistent with the largest large cardinals, it 
blocks access to that realm, and this is perceived as intolerably limiting. 
This incompatibility, I believe, rather than any issue of definabilism or de
scriptive set-theoretic consequentialism, is the source of the most strident 
end-of-the-line deal-breaking objections to the axiom of constructibility. Set 
theorists simply cannot accept an axiom that prevents access to their best 
and strongest theories, the large cardinal hypotheses, which encapsulate 
their dreams of what our set theory can achieve and express.

Maddy [14,15] articulates the grounds that mathematicians often use in 
reaching this conclusion, mentioning especially the maximize maxim, saying 
“the view that V  =  L contradicts maximize is widespread,” citing Drake, 
Moschovakis and Scott. Steel argues that “V — L is restrictive, in that 
adopting it limits the interpretative power of our language.” He points out 
that the large cardinal set theorist can still understand the V — L believer 
by means of the translation ip »-> ipL, but “there is no translation in the 
other direction” and that “adding V  =  L  . . .  just prevents us from asking 
as many questions!” [21]. At bottom, the axiom of constructibility appears 
to be incompatible with strength in our set theory, and since we would like 
to study this strength, we reject the axiom.

Let me refer to this general line of reasoning as the V Ф L via maxi
mize argument. The thesis of this article is that the V Ф L  via maximize 
argument relies on a singularist as opposed to pluralist stand on the ques
tion whether there is an absolute background concept of ordinal, that is, 
whether the ordinals can be viewed as forming a unique completed totality. 
The argument, therefore, implicitly takes sides in the universe versus mul- 
tiverse debate, and I shall argue that without that stand, the V Ф L via 
maximize argument lacks force.

In [17,16], Maddy gives the V Ф L  via maximize argument sturdier 
legs, fleshing out a more detailed mathematical account of it, based on a
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methodology of mathematical naturalism and using the idea that maxi
mization involves realizing more isomorphism types. She begins with the 
‘crude version’ of the argument:

The idea is simply this: there are things like 0й that are not in L.
And not only is 0*1 not in L\ its existence implies the existence of 
an isomorphism type that is not realized by anything in L. . . .  So 
it seems that ZFC + V — L is restrictive because it rules out the 
extra isomorphism types available from ZFC -f 30tt. [17]

For the full-blown argument, she introduces the concept of a ‘fair interpre
tation’ of one theory in another and the idea of one theory maximizing over 
another, leading eventually to a proposal of what it means for a theory to 
be ‘restrictive’ (see the details in Section 2), showing that ZFC 4 - V  =  L 
and other theories are restrictive, as expected, in that sense.

My thesis in this article is that the general line of the V ф L via maxi
mize argument presumes that we have an absolute background concept of 
ordinal, that the ordinals build up to form an absolute completed totality. 
Of course, many set-theorists do take that stand, particularly set theorists 
in the California school. The view that the ordinals form an absolute com
pleted totality follows, of course, from the closely related view that there is 
a unique absolute background concept of set, by which the sets accumulate 
to form the entire set-theoretic universe V, in which every set-theoretic as
sertion has a definitive final truth value. Martin essentially argues for the 
equivalence of these two commitments in his categoricity argument [18], 
where he argues for the uniqueness of the set-theoretic universe, an argu
ment that is a modern-day version of Zermelo’s categoricity argument with 
strong parallels in Isaacson’s [11]. Martin’s argument is founded on the 
idea of an absolute unending well-ordered sequence of set-formation stages, 
an ‘Absolute Infinity’ as with Cantor. Although Martin admits that ‘it is 
of course possible to have doubts about the sharpness of the concept of 
wellordering,” [18], his argument presumes that the concept is sharp, just 
as I claim the V ф L  via maximize argument does.

Let me briefly summarize the position I am defending in this article, 
which I shall describe more fully in Section 4. On the upwardly extensible 
concept of set, one holds that any given concept of set or set-theoretic uni
verse may always be extended to a much better one, with more sets and 
larger ordinals. Perhaps the original universe even becomes a mere count
able set in the extended universe. The ‘class of all ordinals’, on this view, 
makes sense only relative to a particular set-theoretic universe, for there is
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no expectation that these extensions cohere or converge. This multi verse 
perspective resonates with or even follows from a higher-order version of 
the maximize principle, where we maximize not merely which sets exist, 
but also which set-theoretic universes exist. Specifically, it would be lim
iting for one set-theoretic universe to have all the ordinals, when we can 
imagine another universe looking upon it as countable. Maximize thereby 
leads us to expect that every set-theoretic universe should not only have 
extensions, but extremely rich extensions, satisfying extremely strong the
ories, with a full range of large cardinals. Meanwhile, I shall argue, the 
mathematical results of Section 3 lead naturally to the additional conclu
sion that every set-theoretic universe should also have extensions satisfying
V  = L. In particular, even if we have very strong large cardinal axioms in 
our current set-theoretic universe V, there is a much larger universe V + in 
which the former universe V  is a countable transitive set and the axiom 
of constructibility holds. This perspective, by accommodating both large 
cardinals and V  =  L in the multiverse, appears to dissolve the principal 
thrust of the V Ф L via maximize argument. The idea that V  = L  is per
manently incompatible with large cardinals evaporates when we can have 
large cardinals and reattain V — L  in a larger domain. In this way, V = L 
no longer seems restrictive, and the upward extensible concept of set reveals 
how large cardinals and other strong theories, as well as V =  L, may all be 
pervasive as one moves up in the multiverse.

2 . Som e N ew  P rob lem s w ith  M ad d y ’s P roposal

Although my main argument is concerned only with the general line of the
V  Ф L  via maximize position, rather than with Maddy’s much more specific 
account of it in [17], before continuing with my main agument I would 
nevertheless like to mention a few problems with that specific proposal.

To quickly summarize the details, she defines that a theory T  shows ip is 
an inner model if T  proves that <p defines a transitive class satisfying every 
instance of an axiom of ZFC, and either T  proves every ordinal is in the 
class, or T  proves that there is an inaccessible cardinal /с, such that every 
ordinal less than к is in the class. Next, ip is a fair interpretation of T  in T ', 
where T  extends ZFC, if V  shows ip is an inner model and T ' proves every 
axiom of T  for this inner model. A theory V  maximizes over T, if there 
is a fair interpretation ip of T in T ', and V  proves that this inner model 
is not everything (let’s assume V  includes ZFC). The theory T ' properly 
maximizes over T  if it maximizes over T, but not conversely. The theory
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T ' strongly maximizes over T  if the theories contradict one another, V  
maximizes over T  and no consistent extension T"  of T  properly maximizes 
over T'. All of this culminates in her final proposal, which is to say that 
a theory T  is restrictive if and only if there is a consistent theory T' that 
strongly maximizes over it.

Let me begin with a quibble concerning the syntactic form of her def
inition of ‘shows tp is an inner model’, which in effect requires T  to settle 
the question of whether the inner model is to contain all ordinals or instead 
merely all ordinals up to an inaccessible cardinal. That is, she requires that 
either T  proves that (p is in the first case or that T  proves that ip is in the 
second case, rather than the weaker requirement that T  prove merely that 
ip is in one of the two cases (so the distinction is between ( T h i ) V ( T h  В ) 
and T  I- A V B). To illustrate how this distinction plays out in her proposal, 
consider the theory Inacc =  ZFC + ‘there are unboundedly many inaccessi
ble cardinals’ and the theory T  =  ZFC -I- ‘either there is a Mahlo cardinal 
or there are unboundedly many inaccessible cardinals in L.’ (I shall assume 
without further remark that these large cardinal theories and the others I 
mention are consistent.) Every model of T  has an inner model of Inacc, ei
ther by truncating at the Mahlo cardinal, if there is one, or by going to L, if 
there is not. Thus, we seem to have inner models of the form Maddy desires. 
Unfortunately, however, this is not good enough, and I claim that Inacc is 
actually not fairly interpreted in T. To see this, notice first that T  does not 
prove the existence of an inaccessible cardinal, since we can force over any 
model of Inacc by destroying all inaccessible cardinals and thereby produce 
a model of T  having no inaccessible cardinals.a Consequently, if T  shows <p 
is an inner model, it cannot be because of the second clause, which requires 
T  to prove the existence of an inaccessible cardinal. Thus, T  must prove <p 
holds of all ordinals. But notice also that T  does not prove that there are 
unboundedly many inaccessible cardinals in L, since by truncation we can 
easily have a Mahlo cardinal in L with no inaccessible cardinals above it. 
So T  also cannot prove that ip defines a proper class model of Inacc. Thus, 
Inacc is not fairly interpreted in T, even though we might have wished it 
to be. This issue can be addressed, of course, by modifying the definition 
of shows-an-inner-model to subsume the disjunction under the provability 
sign, that is, by requiring instead that T  prove the disjunction that either

aFirst force ‘Ord is not Mahlo’ by adding a closed unbounded class С  of non-inaccessible 
cardinals—this forcing adds no new sets—and then perform Easton forcing to ensure 
2^ =  5+ whenever 7 is regular and S is the next element of С .
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(p holds of all ordinals or that it holds of all ordinals up to an inaccessible 
cardinal. But let me leave this issue; it does not affect my later comments.

My next objection is that the fairly-interpreted-in relation is not tran
sitive, whereas our pre-reflective ideas for an interpreted-in relation would 
call for it to be transitive. That is, I claim that it can happen that a first 
theory has a fair interpretation in a second, which has a fair interpretation 
in a third, but the first theory has no fair interpretation in the third. Here 
is a specific example showing the lack of transitivity:

Я =  Z F C +  V  =  L  +  there is no inaccessible cardinal,
S  =  ZFC 4- V  =  L +  there is an inaccessible cardinal,
T  =  ZFC +  lji is inaccessible in L.

The reader may easily verify that Я has a fair interpretation in S  by trun
cating the universe at the first inaccessible cardinal, and S  has a fair inter
pretation in T  by going to L. Furthermore, every model of S  has forcing 
extensions satisfying T, by the Levy collapse. Meanwhile, I claim that R  
has no fair interpretation in T. The reason is that T  is consistent with the 
lack of inaccessible cardinals, and so if T  shows is an inner model, then 
in any model of T  having no inaccessible cardinals, this inner model must 
contain all the ordinals. In this case, in order for it to have Я^, the inner 
model must be all of L, which according to T  has an inaccessible cardinal, 
and therefore does not satisfy Я after all. So Я is not fairly interpreted 
in T. The reader may construct many similar examples of intransitivity. 
The essence here is that the first theory is fairly interpreted in the second 
only by truncating, and the second is fairly interpreted in the third only by 
going to an inner model containing all the ordinals, but there is no way to 
interpret the first in the third except by doing both, which is not allowed in 
the definition if the truncation point is inaccessible only in the inner model 
and not in the larger universe.

The same example shows that the maximizing-over relation also is not 
transitive, since T  maximizes over S  and S  maximizes over Я, by the fair 
interpretations mentioned above (note that these theories are mutually ex
clusive), but T  does not maximize over Я, since Я has no fair interpreta
tion in T. Similarly, the reader may verify that the example shows that the 
properly-maximizes-over and the strongly-maximizes-over relations also are 
not transitive.

Let me turn now to give a few additional examples of what Maddy calls 
a ‘false positive,’ a theory deemed formally restrictive, which we do not find 
intuitively to be restrictive. As I see it, the main purpose of [17] is to give
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precise mathematical substance to the intuitive idea that some set theories 
seem restrictive in a way that others do not. We view V =  L  and ‘there 
is a largest inaccessible cardinal’ as limiting, while ‘there are unboundedly 
many inaccessible cardinals’ seems open-ended and unrestrictive. Maddy 
presents some false positives, including an example of Steel’s showing that 
ZFC + ‘there is a measurable cardinal’ is restrictive because it is strongly 
maximized by the theory ZFC 4- 0* exists +  Va < u\ La[0*] \£ ZFC. Lowe 
points out that “this example can be generalized to at least every inter
esting theory in large cardinal form extending ZFC. Thus, most theories 
are restrictive in a formal sense,” [12] and he shows in [13] that ZFC itself 
is formally restrictive because it is maximized by the theory ZF +  ‘every 
uncountable cardinal is singular’.

I would like to present examples of a different type, which involve what
I believe to be more attractive maximizing theories that seem to avoid the 
counterarguments that have been made to the previous examples of false 
positives. First, consider again the theory Inacc, asserting ZFC +  ‘there are 
unboundedly many inaccessible cardinals’, a theory Maddy wants to regard 
as not restrictive. Let T  be the theory asserting ZFC + ‘there are unbound
edly many inaccessible cardinals in L, but no worldly cardinals in V .’ A 
cardinal к is worldly when VK (= ZFC. Worldliness is a weakening of inac
cessibility, since every inaccessible cardinal is worldly and in fact a limit 
of worldly cardinals; but meanwhile, worldly cardinals need not be regu
lar, and the regular worldly cardinals are exactly the inaccessible cardinals. 
The worldly cardinals often serve as a substitute for inaccessible cardinals, 
allowing one to weaken the large cardinal commitment of a hypothesis. For 
example, one may carry out most uses of the Grothendieck universe axiom 
in category theory by using mere worldly cardinals in place of inaccessible 
cardinals. The theory Inacc has a fair interpretation in T, by going to L, and 
as a result, T  maximizes over Inacc. Meanwhile, I claim that no strength
ening of Inacc properly maximizes over T. To see this, suppose that lnacc+ 
contains Inacc and shows (p is an inner model M  satisfying T. If M  contains 
all the ordinals, then since Inacc proves that the inaccessible cardinals are 
unbounded, M  would have to contain all those inaccessible cardinals, which 
would remain inaccessible in M  since inaccessibility is downward absolute, 
and therefore violate the claim of T  that there are no worldly cardinals. 
So by the definition of fair interpretation, therefore, M  would have to con
tain all the ordinals up to an inaccessible cardinal к. But in this case, a 
Loweheim-Skolem argument shows that there is a closed unbounded set 
of 7  < к with V"7M -< V^f , and all such 7  would be worldly cardinals in
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M , violating T. Thus, Inacc is strongly maximized by T, and so Inacc is 
restrictive.

Let me improve the example to make it more attractive, provided that 
we read Maddy’s definition of ‘fair interpretation’ in a way that I believe 
she may have intended. The issue is that although Maddy refers to ‘trun
cation. .. at inaccessible levels’ and her definition is typically described by 
others using that phrase, nevertheless the particular way that she wrote her 
definition does not actually ensure that the truncation occurs at an inac
cessible level. Specifically, in the truncation case, she writes that T  should 
prove that there is an inaccessible cardinal к, for which Va(a: < к —>
But should this implication be a biconditional? Otherwise, of course, noth
ing prevents ip from continuing past к , and the definition would be more 
accurately described as ‘truncation at, or somewhere above, an inaccessible 
cardinal’. If one wants to allow truncation at non-inaccessible cardinals, 
why should we bother to insist that the height should exceed some inac
cessible cardinal? Replacing this implication with a biconditional would 
indeed ensure that when the inner model arises by truncation, it does so by 
truncating at an inaccessible cardinal level. So let us modify the reading of 
‘fair interpretation’ so that truncation, if it occurs, does so at an inaccessi
ble cardinal level. In this case, consider the theory Inacc as before, and let 
MC* be the theory ZFC +  ‘there is a measurable cardinal with no worldly 
cardinals above it’. By truncating at a measurable cardinal, we produce a 
model of Inacc, and so MC* offers a fair interpretation of Inacc, and con
sequently MC* maximizes over Inacc. But no consistent strengthening of 
Inacc can maximize over MC*, since if V  f= Inacc and W  is an inner model 
of V  satisfying MC*, then W  cannot contain all the ordinals of V, since the 
inaccessible cardinals would be worldly in W,  and neither can the height 
of W  be inaccessible in V, since if к =  W  П Ord is inaccessible in V,  then 
by a Lowenheim-Skolem argument there must be a closed unbounded set of 
7  < к such that W1 -< W,  and this will cause unboundedly many worldly 
cardinals in W,  contrary to MC*. Thus, on the modified definition of fair 
interpretation, we conclude that MC* strongly maximizes over Inacc, and 
so Inacc is restricted.

One may construct similar examples using the theory ZFC -I- ‘there is 
a proper class of measurable cardinals’, which is strongly maximized by 
SC* =  ZFC 4- ‘there is a supercompact cardinal with no worldly cardinals 
above it’. Truncating at the supercompact cardinal produces a model of the 
former theory, but no strengthening of the former theory can show SC* in 
an inner model, since the unboundedly many measurable cardinals of the
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former theory prevent the showing of any proper class model of SC*, and 
the eventual lack of worldly cardinals in SC* prevents it from being shown 
in any truncation at an inaccessible level of any model of ZFC. A general 
format for these examples would be ZFC + ‘there is a proper class of large 
cardinals of type LC and T  =  ZFC +  ‘there is an inaccessible limit of LC 
cardinals, with no worldly cardinals above.’ Such examples work for any 
large cardinal notion LC that implies worldliness, is absolute to truncations 
at inaccessible levels and is consistent with a lack of worldly cardinals above. 
Almost all (but not all) of the standard large cardinal notions have these 
features.

Maddy has rejected some of the false positives on the grounds that 
the strongly maximizing theory involved is a ‘dud’ theory, such as ZFC + 
->Con(ZFC). Are the theories above, MC* and SC*, duds in this sense? It 
seems hard to argue that they axe. For various reasons, set theorists often 
consider models of set theory with largest instances of large cardinals and no 
large cardinals above, often obtaining such models by truncation, in order to 
facilitate certain constructions. Indeed, the idea of truncating the universe 
at an inaccessible cardinal level lies at the heart of Maddy’s definitions. But 
much of the value of that idea is already obtained when one truncates at the 
worldly cardinals instead. The theory MC* can be obtained from any model 
of measurable cardinal by truncating at the least worldly cardinal above it, 
if there is one, and similarly in the case of SC*. Furthermore, since we can 
also often obtain MC* and SC* by moving from a large cardinal model 
to a forcing extension, where all the previous context and strength seems 
still available, these theories do not seem to be duds in any obvious way. 
Nevertheless, the theories MC* and SC* are restrictive, of course, in the 
intuitive sense that Maddy’s project is concerned with. But to object that 
these theories are duds on the grounds that they are restrictive would be 
to give up the entire project; the point was to give precise substance to our 
notion of ‘restrictive’, and it would beg the question to define that a theory 
is restrictive if it is strongly maximized by a theory that is not ‘restrictive.’

3. Several W ays in which V  = L  is C om patib le w ith  S tren g th

In order to support my main thesis, I would like next to survey a series of 
mathematical results, most of them a part of set-theoretic folklore, which 
reveal various senses in which the axiom of constructibility V  =  L  is com
patible with strength in set theory, particularly if one has in mind the 
possibility of moving from one universe of set theory to a much larger one.
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First, there is the easy observation, expressed in Observation 3.1, that 
L  and V  satisfy the same consistency assertions. For any constructible 
theory T in any language—and by a ‘constructible’ theory I mean just that 
T  € L, which is true of any c.e. theory, such as ZFC plus any of the usual 
large cardinal hypotheses—the constructible universe L and V  agree on 
the consistency of T  because they have exactly the same proofs from T.  It 
follows from this, by the completeness theorem, that they also have models 
of exactly the same constructible theories.

O bservation  3.1: The constructible universe L and V  agree on the con
sistency of any constructible theory. They have models of the same con
structible theories.

W hat this easy fact shows, therefore, is that while asserting V — L  
we may continue to make all the same consistency assertions, such as 
Con(ZFC +  3 measurable cardinal), with exactly the same confidence that 
we might hope to do so in V,  and we correspondingly find models of our 
favorite strong theories inside L. Perhaps a skeptic worries that those mod
els in L  are somehow defective? Perhaps we find only ill-founded models of 
our strong theory in L? Not at all, in light of the following theorem, a fact 
that I found eye-opening when I first came to know it years ago.

T h eo rem  3.2: The constructible universe L and V  have transitive models 
of exactly the same constructible theories in the language of set theory.

Proof: The assertion that a given theory T  has a transitive model has 
complexity Е£(ЭГ), in the form “there is a real coding a well founded struc
ture satisfying T,” and so it is absolute between L and V  by the Shoenfield 
absoluteness theorem, provided the theory itself is in L. □

Consequently, one can have transitive models of extremely strong large 
cardinal theories without ever leaving L. For example, if there is a transitive 
model of the theory ZFC 4 - “there is a proper class of Woodin cardinals,” 
then there is such a transitive model inside L. The theorem has the following 
interesting consequence.

C oro llary  3.3: (Levy-Shoenfield absoluteness theorem) In particular, L 
and V satisfy the same £ i  sentences, with parameters hereditarily countable 
in L. Indeed, L u l and V satisfy the same such sentences.
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Proof: Since L is a transitive class, it follows that L is a До-elementary 
substructure of V, and so £1 truth easily goes upward from L to V. Con
versely, suppose V  satisfies 3x<p(x, z), where ip is До and 2 is hereditarily 
countable in L. Thus, V  has a transitive model of the theory 3xip(x,z)y 
together with the atomic diagram of the transitive closure z and a bijection 
of it to u.  By Observation 3.1, it follows that L has such a model as well. 
But a transitive model of this theory in L implies that there really is an 
x e L with (p(x, z), as desired. Since the witness is countable in L, we find 
the witness in Lul . □

One may conversely supply a direct proof of Corollary 3.3 via the Shoen
field absoluteness theorem and then view Theorem 3.2 as the consequence, 
because the assertion that there is a transitive model of a given theory in 
L is Ei assertion about that theory.

I should like now to go further. Not only do L and V  have transitive 
models of the same strong theories, but what is more, any given model of 
set theory can, in principle, be continued to a model of V — L. Consider 
first the case of a countable transitive model (M, €).

T heorem  3.4: Every countable transitive set is a countable transitive set 
in the well-founded part of an и -model of V  =  L.

Proof: The statement is true inside L , since every countable transitive set 
in L is an element of some countable La , which is transitive and satisfies
V  =  L. Further, the complexity of the assertion is Щ, since it asserts 
that for every countable transitive set, there is another countable object 
satisfying a certain arithmetic property in relation to it. Consequently, by 
the Shoenfield absoluteness theorem, the statement is true. □

Thus, every countable transitive set has an end-extension to a model of
V  =  L in which it is a set. In particular, if we have a countable transitive 
model (M, €) |= ZFC, and perhaps this is a model of some very strong 
large cardinal theory, such as a proper class of supercompact cardinals, 
then nevertheless there is a model (N , € ^ ) f= V  =  L which has M  as an

Lv
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element, in such a way that the membership relation of e N agrees with € 
on the members of M. This implies that the ordinals of N  are well-founded 
at least to the height of M , and so not only is N  an cj-model, but it is an £- 
model where £ =  OrdM, and we may assume that the membership relation 

of TV is the standard relation € for sets of rank up to and far exceeding 
£. Furthermore, we may additionally arrange that the model satisfies ZFC” , 
or any desired finite fragment of ZFC, since this additional requirement is 
achievable in L  and the assertion that it is met still has complexity П2. 
If there are arbitrarily large A < cjf with L \  |= ZFC, a hypothesis that 
follows from the existence of a single inaccessible cardinal (or merely from 
an uncountable transitive model of ZF), then one can similarly obtain ZFC 
in the desired end-extension.

A model of set theory is pointwise definable if every object in the model 
is definable there without parameters. This implies V = HOD, since in fact 
no ordinal parameters are required, and one should view it as an extremely 
strong form of V  =  HOD, although the pointwise definability property, 
since it implies that the model is countable, is not first-order expressible. 
The main theorem of [10] is that every countable model of ZFC (and simi
larly for GBC) has a class forcing extension that is pointwise definable.

Theorem  3.5: I f  there are arbitrarily large A < wf with L \  |= ZFC, then 
every countable transitive set M  is a countable transitive set inside a struc
ture M+ that is a pointwise-definable model of ZFC +  V  =  L, and M + is 
well founded as high in the countable ordinals as desired.

Proof: See [10] for further details. First, note that every real 2: in L is in a 
pointwise definable La , since otherwise, the L-least counterexample z would 
be definable in ЬШ1 and hence in the Skolem hull of 0 in , which collapses 
to a pointwise definable La in which z is definable, a contradiction. For any 
such a , let L \  [= ZFC have exactly a  many smaller Lp satisfying ZFC, and 
so a  and hence also 2 is definable in La, whose Skolem hull of 0 therefore 
collapses to a pointwise definable model of ZFC +  V  =  L containing 2г. So 
the conclusion of the theorem is true in L. Since the complexity of this 
assertion is П2, it is therefore absolute to V  by the Shoenfield absoluteness 
theorem. □

Theorems 3.4 and 3.5 admit of some striking examples. Suppose for 
instance that 0й exists. Considering it as a real, the argument shows that 
0tt exists inside a pointwise definable model of ZFC +  V  =  L, well-founded 
far beyond u)[. So we achieve the bizarre situation in which the true 0tt sits
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unrecognized, yet definable, inside a model of V = L which is well-founded 
a long way. For a second example, consider a forcing extension V[g] by the 
forcing to collapse ui  to u. The generic filter g is coded by a real, and so in 
V[g\ there is a model M  f= ZFC + V  =  L with g e M  and M well-founded 
beyond u>Y • The model M  believes that the generic object g is actually 
constructible, constructed at some (necessarily nonstandard) stage beyond
u . Surely these models are unusual.

The theme of these arguments goes back, of course, to an elegant theo
rem of Barwise, Theorem 3.6, asserting that every countable model of ZF 
has an end-extension to a model of ZFC 4- V — L. In Barwise’s theorem, 
the original model becomes merely a subset of the end-extension, rather 
than an element of the end-extension as in Theorems 3.4 and 3.5. By giv
ing up on the goal of making the original universe itself a set in the end- 
extension, Barwise seeks only to make the elements of the original universe 
constructible in the extension, and is thereby able to achieve the full theory 
of ZFC + V  = L i n  the end-extension, without the extra hypothesis as in 
theorem 3.5, which cannot be omitted there. Another important difference 
is that Bar wise’s Theorem 3.6 also applies to nonstandard models.

T heorem  3.6: (Barwise [2]) Every countable model of ZF has an end- 
extension to a model of ZFC -1- V  =  L.

L

Let me briefly outline a proof in the case of a countable transitive model 
M  |= ZF. For such an M, let T  be the theory ZFC plus the infinitary 
assertions cra — \/z (z € a <=> \ /b€a z  =  6), for every a G M, in the Lu 
language of set theory with constant symbol a for every element a € M. 
The aa assertions, which are expressible in L0 logic in the sense of M, 
ensure that the models of T  are precisely (up to isomorphism) the end- 
extensions of M  satisfying ZFC. What we seek, therefore, is a model of the 
theory Г -4- V  =  L. Suppose toward contradiction that there is none. I claim 
consequently that there is a proof of a contradiction from T  +  V  =  L  in the 
infinitary deduction system for Ьоо>ш logic, with such infinitary rules as: 
from (j{ for i £ / ,  deduce Д Furthermore, I claim that there is such a 
proof inside M . Suppose not. Then M  thinks that the theory T  + V  =  L is
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consistent in Loo,w logic. We may therefore carry out a Henkin construction 
over M  by building a new theory T + С M  extending T  + V  — L, with 
infinitely many new constant symbols, adding one new sentence at a time, 
each involving only finitely many of the new constants, in such a way so 
as to ensure that (i) the extension at each stage remains M-consistent; (ii) 
T + eventually includes any given Loo,w sentence in M  or its negation, for 
sentences involving only finitely many of the new constants; (iii) T + has 
the Henkin property in that it contains 3xip(x,c) ==> c), where d is 
a new constant symbol used expressly for this formula; and (iv) whenever a 
disjunct Vi ai is m  then a ŝo some particular cr* is in T +. We may build 
such a T + in uj many steps just as in the classical Henkin construction. If 
N  is the Henkin model derived from T + , then an inductive argument shows 
that N  satisfies every sentence in T + , and in particular, it is a model of 
T  +  V  =  £ , which contradicts our assumption that this theory had no 
model. So there must be a proof of a contradiction from T  +  V  =  L in the 
deductive system for Loo)U> logic inside M. Since the assertion that there is 
such a proof is Ei assertion in the language of set theory, it follows by the 
Levy-Shoenfield theorem (Corollary 3.3) that there is such a proof inside 
LM, and indeed, inside L ^ .  This proof is a countable object in L M and 
uses the axioms cra only for a e . But L M satisfies the theory T + V  =  L 
and also cra for all such a and hence is a model of the theory from which 
we had derived a contradiction. This violates soundness for the deduction 
system, and so T  + V  = L  has a model after all. Consequently, M  has an 
end-extension satisfying ZFC +  V  =  L, as desired, and this completes the 
proof.

We may attain a stronger theorem, where every a G M  becomes count
able in the end-extension model, simply by adding the assertions la is 
countable’ to the theory T. The point is that ultimately the proof of a 
contradiction exists inside , and so the model L M satisfies these addi
tional assertions for the relevant a. Similarly, we may also arrange that the 
end-extension model is pointwise definable, meaning that every element in 
it is definable without parameters. This is accomplished by adding to T  the 
infinitary assertions Vz \ / ^ х ( ( р ( х )  <=$■ x = z), taking the disjunct over 
all first-order formulas ip. These assertions ensure that every z is defined by 
a first-order formula, and the point is that the aa arising in the proof can 
be taken not only from L M, but also from amongst the definable elements 
of L M, since these constitute an elementary substructure of LM.

Remarkably, the theorem is true even for nonstandard models M , but 
the proof above requires modification, since the infinitary deductions of M
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may not be well-founded deductions, and this prevents the use of soundness 
to achieve the final contradiction. (One can internalize the contradiction to 
soundness, if M  should happen to have an uncountable Lp f= ZFC, or 
even merely arbitrarily large such /3 below (wf)M.) To achieve the general 
case, however, Barwise uses his compactness theorem [1] and the theory of 
admissible covers to replace the ill-founded model M  with a closely related 
admissible set in which one may find the desired well-founded deductions 
and ultimately carry out an essentially similar argument. I refer the reader 
to the accounts in [2] and in [3).

It turns out, however, that one does not need this extra technology 
in the case of an cj-nonstandard model M  of ZF, and so let me ex
plain this case. Suppose that M  =  (M, EM ) is an w-nonstandard model 
of ZF. Let T  again be the theory ZFC +  oa for a € M, where again 
&a — V-г (z 6  a <—> Wb€Ma Z = b). Suppose there is no model of T+V  =  L. 
Consider the nonstandard theory ZFCM, which includes many nonstandard 
formulas. By the reflection theorem, every finite collection of ZFC axioms 
is true in arbitrarily large L ^ , and so by overspill there must be a non
standard finite theory ZFC* in M  that includes every standard ZFC axiom 
and which M  believes to hold in some L ^  for some uncountable ordinal /? 
in M .  Let T* be the theory ZFC* plus all the <ra for a e M.  This theory is 
Ei definable in M , and I claim that M  must have a proof of a contradic
tion from T* +  V = L  in the infinitary logic If not, then the same 
Henkin construction as above still works, working with nonstandard formu
las inside M , and the corresponding Henkin model satisfies all the actual 
(well-founded) assertions in T* +  V  =  L, which includes all of T  +  V  =  L, 
contradicting our preliminary assumption. So M  has a proof of a contra
diction from T* +  V  =  L. Since the assertion that there is such a proof is 
E i, we again find a proof in L M and even in L%[. But we may now appeal 
to the fact that M  thinks L is a model of ZFC* plus cra for every a 6  L , 
which contradicts the soundness principle of the infinitary deduction system 
inside M . The point is that even though the deduction is nonstandard, this 
doesn’t matter since we axe applying soundness not externally but inside 
M . The contradiction shows that T  +  V  =  L must have a model after all, 
and so M  has an end-extension satisfying ZFC 4* V  =  L, as desired. Fur
thermore, we may also ensure that every element of M  becomes countable 
in the end-extension as before.

Let me conclude this section by mentioning another sense in which every 
countable model of set theory is compatible in principle with V — L.
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T h eo rem  3.7: (Hamkins [6]j Every countable model of set theory 
(M, € M), including every transitive model, is isomorphic to a submodel 
of its own constructible universe (LM,6 M). In other words, there is an 
embedding j  : M  —> L M, which is elementary for quantifier-free assertions.

Another way to say this is that every countable model of set theory is 
a submodel of a model isomorphic to L M . If we lived inside M, then by 
adding new sets and elements, our universe could be transformed into a 
copy of the constructible universe L M.

4. A n  U pw ard ly  E x tensib le  C oncep t of Set

I would like now to explain how the mathematical facts identified in the 
previous section weaken support for the V Ф L via maximize position, 
particularly for those set theorists inclined toward a pluralist or multiverse 
conception of the subject.

To my way of thinking, Theorem 3.2 already provides serious resistance 
to the V Ф L via maximize argument, even without the multiverse ideas I 
shall subsequently discuss. The point is simply that much of the force and 
content of large cardinal set theory, presumed lost under V  =  L, is never
theless still provided when the large cardinal theory is undertaken merely 
with countable transitive models, and Theorem 3.2 shows that this can be 
done while retaining V  =  L. We often regard a large cardinal argument or 
construction as important—such as Baumgartner’s forcing of PFA over a 
model with a supercompact cardinal—because it helps us to understand a 
greater range for set-theoretic possibility. The fact that there is indeed an 
enormous range of set-theoretic possibility is the central discovery of the 
last half-century of set theory, and one wants a philosophical account of 
the phenomenon. The large cardinal arguments enlarge us by revealing the 
set-theoretic situations to which we might aspire. Because of the Baum
gartner argument, for example, we may freely assert ZFC +  PFA with the 
same gusto and confidence that we had for ZFC plus a supercompact car
dinal, and furthermore we gain detailed knowledge about how to transform 
a universe of the latter theory to one of the former and how these worlds
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are related.b Modifications of that construction are what led us to worlds 
where MM holds and MM+ and so on. From this perspective, a large part 
of the value of large cardinal argument is supplied already by our ability 
to carry it out over a transitive model of ZFC, rather than over the full 
universe V.

The observation that we gain genuine set-theoretic insights when work
ing merely over countable transitive models is reinforced by the fact that 
the move to countable transitive models is or at least was, for many set 
theorists, a traditional part of the official procedure by which the forcing 
technique was formalized. (Perhaps a more common contemporary view is 
that this is an unnecessary pedagogical simplification, for one can formal
ize forcing over V  internally as a ZFC construction.) Another supporting 
example is provided by the inner model hypothesis of [4], a maximality- 
type principle whose very formalization seems to require one to think of 
the universe as a toy model, for the axiom is stated about V  as it exists as 
a countable transitive model in a larger universe. In short, much of what 
we hope to achieve with our strong set theories is already achieved merely 
by having transitive models of those theories, and Theorem 3.2 shows that 
the existence of any and all such kind of transitive models is fully and 
equally consistent with our retaining V  =  L. Because of this, the V Ф L 
via maximize argument begins to lose its force.

Nearly every set theorist entertaining some strong set-theoretic hypoth
esis ф is generally also willing to entertain the hypothesis that ZFC + ф 
holds in a transitive model. To be sure, the move from a hypothesis ф to 
the assertion ‘there is a transitive model of ZFC +  ф’ is strictly increasing 
in consistency strength, a definite step up, but a small step. Just as philo
sophical logicians have often discussed the general principle that if you are 
willing to assert a theory T, then you are also or should also be willing 
to assert that ‘T is consistent,’ in set theory we have the similar principle, 
that if you are willing to assert T, then you are or should be willing to 
assert that ‘there is a transitive model of T \  What is more, such a prin
ciple amounts essentially to the mathematical content of the philosophical 
reflection arguments, such as in [19], that are often used to justify large 
cardinal axioms. As a result, one has a kind of translation that maps any 
strong set-theoretic hypothesis ф to an assertion ‘there is a transitive model

bThe converse question, however, whether we may transform models of PFA to models 
of ZFC +  3 supercompact cardinal, remains open. Many set theorists have conjectured 
that these theories are equiconsistent.
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of ZFC +  ip\ which has the same explanatory force in terms of describing 
the range of set-theoretic possibility, but which because of the theorems of 
Section 3 remains compatible with V  — L.

This perspective appears to rebut Steel’s claims, mentioned in the open
ing section of this article, that “there is no translation” from the large car
dinal realm to the V  =  L  context and that “adding V  =  L . . .  prevents us 
from asking as many questions.” Namely, the believer in V  =  L  seems fully 
able to converse meaningfully with any large cardinal set theorist, simply 
by imagining that the large cardinal set theorist is currently living inside a 
countable transitive model. By applying the translation

гр i— > ‘there is a transitive model of ZFC +  ip\

the V  =  L  believer steps up in strength above the large cardinal set theorist, 
while retaining V  — L  and while remaining fully able to analyze and carry 
out the large cardinal set theorist’s arguments and constructions inside that 
transitive model. Furthermore, if the large cardinal set theorist believes in 
her axiom because of the philosophical reflection principle arguments, then 
she agrees that set-theoretic truth is ultimately captured inside transitive 
sets, and so ultimately she agrees with the step up that the V  =  L  believer 
made, to put the large cardinal theory inside a transitive set. This simply 
reinforces the accuracy with which the V — L  believer has captured the 
situation.

Although the translation I am discussing is not a ‘fair interpretation’ 
in the technical sense of [17], as discussed in Section 2, nevertheless it does 
seem to me to be a fair interpretation in a sense that matters, because it 
allows the V — L believer to understand and appreciate the large cardinal 
set theorist’s arguments and constructions.

Let me now go a bit further. My claim is that on the multiverse view as I 
describe it in [9] (see also [5,8 ,7]), the nature of the full outer multiverse of
V  is revealed in part by the toy simulacrum of it that we find amongst the 
countable models of set theory. For all we know, our current set-theoretic 
universe V  is merely a countable transitive set inside another much larger 
universe V+ , which looks upon V  as a mere toy. And so when we can prove 
that a certain behavior is pervasive in the toy multiverse of any model 
of set theory, then we should expect to find this behavior also in the toy 
multiverse of V+ , which includes a meaningfully large part of the actual 
multiverse of V. In this way, we come to learn about the full multiverse 
of V  by undertaking a general study of the toy model multiverses. Just 
as every countable model has actual forcing extensions, we expect our full
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universe to have actual forcing extensions; just as every countable model 
can be end-extended to a model of V  =  L, we expect the full universe V  
can be end-extended to a universe in which V  =  L holds; and so on. How 
fortunate it is that the study of the connections between the countable 
models of set theory is a purely mathematical activity that can be carried 
out within our theory. This mathematical knowledge, such as the results 
mentioned in Section 3 or the results of [5], which show that the multiverse 
axioms of [9] are true amongst the countable computably-saturated models 
of set theory, in turn supports philosophical conclusions about the nature 
of the full set-theoretic multiverse.

The principle that pervasive features of the toy multiverses are evidence 
for the truth of those features in the full multiverse is a reflection principle 
similar in kind to those that are often used to provide philosophical jus
tification for large cardinals. Just as those reflection principles regard the 
full universe V  as fundamentally inaccessible, yet reflected in various much 
smaller pieces of the universe, the principle here regards the full multiverse 
as fundamentally inaccessible, yet appearing in part locally as a toy mul
tiverse within a given universe. So our knowledge of what happens in the 
toy multiverses becomes evidence of what the full multiverse may be like.

Ultimately, the multiverse vision entails an upwardly extensible con
cept of set, where any current set-theoretic universe may be extended to 
a much larger, taller universe. The current universe becomes a countable 
model inside a larger universe, which has still larger extensions, some with 
large cardinals, some without, some with the continuum hypothesis, some 
without, some with V = L  and some without, in a series of further exten
sions continuing longer than we can imagine. Models that seem to have 0** 
are extended to larger models where that version of 01* no longer works as 
01*, in light of the new ordinals. Any given set-theoretic situation is seen 
as fundamentally compatible with V  =  L, if one is willing to make the 
move to a better, taller universe. Every set, every universe of sets, becomes 
both countable and constructible, if we wait long enough. Thus, the con
structible universe L becomes a rewarder of the patient, revealing hidden 
constructibility structure for any given mathematical object or universe, if 
one should only extend the ordinals far enough beyond one’s current set- 
theoretic universe. This perspective turns the V Ф L  via maximize argu
ment on its head, for by maximizing the ordinals, we seem able to recover
V =  L as often as we like, extending our current universe to larger and 
taller universes in diverse ways, attaining V = L and destroying it in an 
on-again, off-again pattern, upward densely in the set-theoretic multiverse,
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as the ordinals build eternally upward, eventually exceeding any particular 
conception of them.
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THE ARGUM ENT

Those who wish to teach in the lycees and colleges of France must obtain 
a Certificat d ’Aptitude au Professorat de VEnseignement du Second Degre, 
commonly called the CAPES. For that certificate, the first hurdle to be 
passed is a written examination. In at least ten recent years the syllabus 
for the mathematics section of that examination, as specified in the relevant 
special numbers of the Bulletin Officiel, has contained the line

Tout expose de logique formelle est exclu.

That remarkable ban, still in force though latterly softened to liAucun ex
pose de logique formelle n’est envisage”, is a sign in the context of teacher- 
training of a more widely spread phenomenon. My main point will be 
pedagogical, that the teaching of logic, in France and elsewhere, at all aca
demic levels, has over several decades been hampered, not to say crippled, 
by policies stemming from the lack, among members of the Bourbaki group,
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of interest in and understanding of the foundations of mathematics; to put 
it starkly,

1. widely-read texts contain falsehoods and misconceptions 
about logic;

2 . the prestige of their authors means that these errors are 
meekly accepted;

3. correct teaching of logic is thereby blocked.

Bourbaki in many things took Hilbert as their model, and it appears 
that their difficulties with logic are rooted in Hilbert’s pre-Godelian mis
conception of the relationship of tru th  to consistency. The story that I shall 
tell is this:

A: Hilbert in 1922, in joint work with Bernays, proposed an
alternative treatment of predicate logic .........................................  49

B: ... which, despite its many unsatisfactory aspects, was adopted
by Bourbaki for their series of books .............................................  63

C: ... and by Godement for his treatise on algebra, though
leading him to express distrust of logic...............................................  72

D: It is this distrust, intensified to a phobia by the vehemence
of Dieudonne’s writings, ..................................................................  88

E: ... and fostered by, for example, the errors and obscurities of
a well-known undergraduate textbook, .........................................  98

F: ... that has, I suggest, led to the exclusion of logic from the
CAPES examination..............................................................................116

G: Centralist rigidity has preserved the underlying confusion
and consequently flawed teaching; ................................................ 121

H: ... the recovery will start when mathematicians adopt a post-
Godelian treatment of logic.................................................................. 127

Sections C, D, and E may be regarded as case stud
ies, containing detailed criticisms of the logic portions 
of two algebra textbooks of the Bourbaki school and of 
various pronouncements on logic by Bourbaki’s leading 
spokesman. The reader who wishes to defer reading such 
details should perhaps first read Sections A and В and 
then pass directly to Sections F, G, and H.
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A: Hilbert in 1922 proposes an alternative treatment 
of predicate log ic ...

THE CURTAIN RISES in Gottingen on 29-xii-i8g9 ,* to reveal Hilbert1 
writing to Frege2 that

i f  the arbitrarily given axioms do not contradict each 
other with all their consequences, then they are true and 
the things defined by the axioms exist This is for me 
the criterion of truth and existence.1

А-l It is hard to judge at this distance what Hilbert would have made of 
the many independence results found by set theorists in the later twentieth 
century. Though he knew very well that there are mutually inconsistent 
systems of geometry, he seems not to have considered that there might be 
two mutually contradictory systems of set theory, or even of arithmetic, 
each in itself consistent, so that the objects defined by the two sets of 
axioms cannot co-exist in the same mathematical universe.

Let us give some examples from set theory. Suppose we accept the 
system ZFC. Consider the following pairs of existential statements that 
might be added to it.

[A i] the real number 0й exists.
[i?i] there are two sets of reals, neither of them a Borel 

set, and neither reducible to the other by a Borel iso
morphism.

[A2] there is a measurable cardinal.
[B2] there is an undetermined analytic game.

[A3] there is a supercompact cardinal.
[£3] there is a projective well ordering of the continuum.

* To place the events of 1922, and their consequences for our enquiry, in con
text, we must mention some of the milestones in the development of logic and set 
theory in the early twentieth century. A complete account would be impossible, 
as each of the giants involved stood on the shoulders of other, earlier, giants; I 
ask the reader, and the historians of science whom I have consulted, to forgive 
the crudities of my perforce simplified narrative.

1 David Hilbert, 1862-1943; Ph.D. Konigsberg 1885; there till his move to 
Gottingen in 1895.

2 Gottlob Frege, 1848-1925; Ph.D. Gottingen 1873; in Jena from 1874. Ac
cording to [OH], a reluctant conferencier but an indefatigable correspondent.

1 I quote the translation given in Kennedy [Ke], who there coins the apt phrase 
“Hilbert’s Principle” .



50 A. R. D. Mathias

For each г, the statement Ai refutes the statement B{ in ZFC; but so 
far as is known each of the statements may consistently be added to ZFC, 
though some of them are stronger than others.

So Hilbert’s Principle, that consistency is a ground for existence, should 
be taken to mean that a consistent theory describes something.

A*2 In 1900, at the Paris International Congress of Mathematicians, Hilbert 
said

“This conviction of the solubility of every mathematical 
problem is a powerful incentive to the worker. We hear 
within us the perpetual call: There is the problem. Seek 
its solution. You can find it by pure reason, for in math
ematics there is no ignorabimus. ”

A-3 On i 6 -vi-i902, Russell wrote to Frege to communicate his discovery, in 
1901, of a contradiction in Frege’s theory of classes; Frege acknowledged 
the contradiction in the second volume of his Grundgesetze der Arithmetik, 
published in 1903; on 7 x1-1903 Hilbert wrote to Frege to say that such 
paradoxes were already known in Gottingen, discovered by Hilbert and by 
Zermelo3,2 and that

“they led me to the conviction that traditional logic is in
adequate and that the theory of concept-formation needs 
to be sharpened and refined.”

A-4 On i 8*ix*i904, Zermelo wrote to Hilbert to communicate his first proof 
that every set can be well ordered; his letter was published as [Zel]. In 
response to criticisms of his proof, Zermelo in 1908 published in [Ze2] a 
re-working of it and in [Ze3] a proposal for a system of axioms for basing 
mathematics on set theory, though it should be remembered that as the 
process of formalising such systems was still in its infancy, Zermelo had to 
leave undefined the concept of definite Eigenschaft invoked in his Separation 
scheme.
A*5 In lectures at Gottingen in 1905, Hilbert, after discussing set theory 
and the paradoxes, said3

“The paradoxes we have just introduced show sufficiently 
that an examination and redevelopment of the founda
tions of mathematics and logic is urgently necessary.”

3 Ernst Zermelo, 1871-1953; Ph.D. Berlin 1894; in Gottingen 1897-1910, 
Zurich 1910-1916, (retirement, with a Cantonal pension, forced by ill-health); 
honorary Professor, Freiburg 1926-35 and 1946-53.

2 See [RaTh] and, for a more recent discussion, [Pec].
3 as translated in [Zal], page 333.
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A-6 But from 1905 for twelve years or so Hilbert was absorbed in other 
projects, such as his work on the axiomatization of physics, described in 
[Cor4], and his work on integral equations. To illustrate the breadth of his 
interests we quote three trenchant remarks from various periods of his life.

On the eternally shifting balance between geometry and arithmetic: 
Weierstrass thought all reduced to number;4 but Hilbert countered by say
ing in his lectures, in Konigsberg in 1891, that “Geometry deals with the 
properties of space, [perception of which comes to us] through the senses.” 5

Hilbert’s remark, in lecture notes of 1894,6 that “Geometry is a science 
whose essentials are developed to such a degree that all its facts can already 
be logically deduced from earlier ones. Much different is the case with the 
theory of electricity” suggests that to him axiomatisation is the last stage 
of a process which begins with the amassing of data and ideas.

Hilbert’s enthusiasm for physics is evident: “Newtonian attraction 
turned into a property of the world-geometry, and the Pythagorean the
orem into a special approximated consequence of a physical law.” 7

1917: H ilb ert re tu rn s  to  th e  foundations of m athem atics

A-7 Fast forward now to Gottingen in the Winter Semester of 1917, to dis
cover Hilbert giving a course of lectures on the foundations of mathematics.

That is in itself noteworthy. Many modern mathematicians of distinc
tion would decline to devote time and effort to the foundations of their 
subject; but plainly Hilbert would not waste his time on things he judged 
unimportant. In his earlier days he had been thrilled to adopt the set- 
theoretical ideas of Cantor as a framework for mathematics; and his much- 
quoted remark of 1926 that no one shall drive us from the paradise that 
Cantor created, though directed against the intuitionist and constructivist 
reactions of Brouwer4 and Weyl5, of 1910 and 1918 respectively, may per
haps be seen as an affirmation that the foundations of classical mathematics 
have been re-built and rendered impregnable after the set-back of the dis
covery of paradoxes in Frege’s detailed treatment of the theory of classes.

4 [Cor5], p 168.
5 [Cor5], p 156-7.
6 translated in [Cor3], page 257.
7 In Wissen und mathematisches Denken, 1922-3, translated in [Cor5], p 173.
4 Luitzen Egbertus Jan Brouwer, 1881-1966; Ph.D. 1907, Amsterdam; extr. 

professor, Amsterdam 1912-1951.
5 Hermann Klaus Hugo Weyl, 1885-1955; Ph.D. Gottingen, 1908; there till 

1913 and 1930-33; Professor, ETH, Zurich 1913-1930; IAS Princeton, 1933-1952.



52 A. R. D. Mathias

As Hilbert’s course progressed, typewritten notes of his lectures were 
prepared with scrupulous care by his assistant, Bernays6; these notes are 
preserved in the archives of Gottingen, and, some years later, were used 
by Ackermann,7 a pupil of Hilbert, in preparing the text [HiA], to which 
we return below, for its publication in 1928. Their continued influence can 
perhaps be detected in the first volume of the much larger, two-volume, 
treatise [HiBl,2], discussed towards the end of this section.

The notes of 1917/18 then gradually disappeared from view, until in 
recent years Sieg and his collaborators Ewald, Hallett and Majer have ini
tiated and nearly completed their re-appraisal.8

The reader of these lecture notes9 will notice, underneath the period 
style, the modernity of the conception of logic that is being expounded, 
though of course many results, such as the completeness theorem for pred
icate logic, had not yet been proved and still had the status of open ques
tions; and other results, particularly the incompleteness theorems for sys
tems of mathematics, were undreamt of.

Som e term ino logy

Indeed, the notion of a formal system of mathematics had made great 
strides since 1905, and it will be helpful, without going into either detail or 
history, to review some of the vocabulary of modern logic. We suppose that 
we have already specified an appropriate formal language (which means 
specifying the symbols of the language and the rules of formation of its 
formulae), and that we have specified the underlying logic and rules of 
inference. A sentence of such a language is a formula without free variables. 
A theory in such a language will then be specified by choosing the sentences 
that are to be its axioms.

Four possible properties of such a theory are consistency, syntactic 
completeness, semantic completeness and decidability.
A-8 DEFINITION A theory is consistent if no contradiction can be derived 
in it; a consistent theory is said to be syntactically complete if no further

6 Paul Bernays, 1888-1977; Ph.D. Berlin 1912; Zurich 1912-1917 (Habil. 1912; 
assistant to Zermelo) and from 1934; Gottingen 1917-1933, (Habil. 1918, Ex
traordinary Professor from 1922).

7 Wilhelm Ackermann, 1896-1962; Ph.D. Gottingen 1925; from 1929 school
master at Burgsteinfurt & Ludenscheid.

8 A critical edition [ES] of these notes is being prepared by Ewald and Sieg 
for publication; pending their publication, Sieg’s paper [Sil] may be consulted for 
much historical and mathematical detail.

9 I am grateful to Professor Sieg for placing a copy at my disposal.
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axioms can be added without an inconsistency resulting. Thus in a syntac
tically complete theory every sentence of its language is either provable or 
refutable.

The above properties of a theory can be understood knowing only its 
axioms and rules of inference without knowing anything about its intended 
interpretations.

The semantic counterparts to those properties are defined in terms of 
the intended interpretations of the theory in question, which must therefore 
be specified; often it is enough to consider interpretations in finite non
empty domains and in a countably infinite domain.

A-9 DEFINITION A sentence of the theory is universally valid if true in 
all its intended interpretations. A theory is sound if all its theorems are 
universally valid. The theory is semantically complete if its every universally 
valid sentence is a theorem. Put another way, if a sentence is irrefutable it 
is true in at least one of the theory’s intended interpretations.

The above are thus properties of the theory relative to its specified 
family of intended interpretations.

The completeness theorem of Godel, proved in his dissertation of 1929 
and published in 1930, says that every consistent first-order theory in a 
countable language has a countably infinite model (or possibly a finite one, 
if one has undertaken to interpret the equality predicate = as identity.)

Thus if all such models are counted as intended interpretations, the 
theory is semantically complete; and the completeness theorem for such 
theories yields Hilbert’s Principle.

A-10 EXAMPLE The theory of non-empty endless dense linear orderings. 
There are no finite models of this theory, and Cantor proved that any 
denumerable such must be isomorphic to Q, the set of rational numbers 
with its usual ordering; so the theorems of this theory are precisely the 
sentences in the language of linear orderings true in Q; as every sentence is 
either true or false in that model, the theory is syntactically complete.

A-ll Rem ark  The reader should be warned that “complete” was often 
used by Hilbert to mean “covers everything known so far”; so a theory 
thought to be complete in his sense today might be seen as incomplete 
tomorrow.

A-12 DEFINITION A theory is decidable if there is an algorithm which given 
any sentence of the theory will decide in finite time whether or not it is a 
theorem. For classical propositional logic, such an algorithm exists; but 
that is not true for classical first-order predicate logic.
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We mention this text here as it belongs to a stage in the development 
of logic rather earlier than its date of publication: Hilbert in his foreword, 
dated 16^*1928, states that the sources used are the 1917/18 notes, together 
with notes on courses given in the winter semesters of 1920 and 1921/2. The 
delay in its publication may perhaps be attributed to Hilbert’s absorption in 
the e-operator that he defined in 1922: for he remarks that the book should 
serve as preparation and lightening of a further book that he and Bernays 
wish to publish soon which will treat the foundations of mathematics using 
the epsilon symbol.

The contents of the book are well summarised in [Bu]; there is a thor
ough treatment of propositional logic in Chapter One, using essentially the 
axioms given in Principia Mathematics simplifications due to Bernays are 
used in the axiomatisation of predicate logic given in Chapter III, and its 
consistency and syntactic incompleteness proved; but the rest of the book 
largely consists of examples, as the semantic completeness of predicate logic 
had not yet been proved. Though that form of completeness is indeed men
tioned as an open problem, Hilbert’s Principle would seem to have been 
an article of faith: Hilbert thought in 1919 that “things cannot be other
wise” ;10 true of a complete theory, but not of an incomplete one, which 
might have more than one completion.

Logic in the twenties

The early years of the twentieth century were a time of intense activity 
in foundational research, and a sense of the variety of proposals for predicate 
logic may be obtained from Goldfarb’s 1979 paper [Gol].11

Besides those of Hilbert, Goldfarb discusses the accounts of predicate 
logic offered by Frege (1882, 1892), Russell (1903, 1919), Schroder (1895), 
Lowenheim (1915), Skolem8 (1920), (1922), Herbrand9 (1928, 1930), and 
Godel10 (1930). He sees the twenties as a period in which the ideas of two 
schools of logic originating in the nineteenth century:

10 [Cor5], page 156.
11 Goldfarb was writing without knowledge of the 1917/18 notes of Hilbert, and 

therefore, as shown by Sieg in [Si 1], his chronology in places requires correction.
8 Thoralf Skolem, 1887-1963; Gottingen 1915; Oslo 1916-1930 (late Ph.D. 

1926) and from 1938; Bergen 1930-38.
9 Jacques Herbrand, 1908-1931; Ph.D. Sorbonne, 1930; visited Berlin, Ham

burg, Gottingen 1931; killed climbing.
10 Kurt Godel, 1906-1978; in Vienna from ’24 (Ph.D. ’30, Habil. ’32); visited

US ’33, ’35; IAS, Princeton from ’39.

1928: publication of the treatise o f H ilbert and Ackermann
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1) the algebraists : de Morgan (1806-71), Boole (1815-64), Peirce 
(1839-1914), Schroder (1841-1902), Lowenheim (1878-1957);

2) the logicists : Frege, Peano (1858-1932), Russell (1872-1970).
merged to yield the modern theory of quantification. He writes:

The deficiencies in the two early traditions I  have been 
discussing may be summarized thus. To arrive at meta
mathematics from Russell’s approach we must add the 
“meta”, that is, the possibility o f examining logical sys
tems from an external stand point. To arrive at meta
mathematics from the algebra of logic we must add the 
“mathematics”, that is, an accurate appreciation of how 
the system may be used to encode mathematics, and 
hence of how our metasystematic analyses can be taken 
to be about mathematics.

One might add that the idea, so well-established today, that one might 
wish to interpret a formula in many different structures, came more easily 
to the algebraists than to the logicists. The two schools worked in partial 
knowledge of each other’s efforts;12 the discovery of the quantifier is gen
erally attributed to Frege (1879) but was made independently and slightly 
later ([Mi], 1883) by О. H. Mitchell, a student of Peirce, who further devel
oped the idea in a paper [Pei] of 1885.13

1922: the Hilbert operator is launched

We turn to the proposal made by Hilbert in 1922; not because of any 
alleged superiority to the other contemporary accounts of logic but because 
that was the one adopted by Bourbaki; and indeed the conclusion to which 
we shall come is that Bourbaki backed the wrong horse.

Hilbert’s 1922 proposal was based on what is often called the Hilbert 
e-operator, by which quantifiers could formally be avoided and predicate 
logic reduced to propositional.** The apparent simplicity of this proposal 
commended it to the members of Bourbaki, who made it, though in a 
different notation, the basis of their Volume One, on the theory of sets, 
and developed it as the logical basis of their series of books. We review its 
history now and defer to Section В a discussion of its demerits.

12 For a portrait of the mutual non-admiration of Peirce and Russell, see the 
paper [An].

13 A helpful introduction to the early history of the quantifier is the paper [Pu]. 
** But something is being concealed, as propositional logic is decidable whereas

predicate logic is not.
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r  versus e:14

A-13 In a lecture [Hil]15 given in September 1922, Hilbert, describing joint 
work with Bernays, introduced what he called a logical function which he 
wrote as r ( 01) or ra (01(a)), which associates to each one-place predicate 01(a) 
an object r ( 01). He gave its intended meaning in his Axiom 11, (which he 
credits to Bernays)

Ol(rOl) = >  01(a)

and illustrated its use by saying that if 01 were the predicate “is bribable” , 
then rOl would be understood to denote a man of such unassailable up
rightness that were he bribable then must all mankind be too.

Hilbert then defines the quantifiers in terms of his operator.
Using his operator Hilbert went on to sketch a proof of the consistency 

of a weak version of arithmetic with a single function symbol ф defined by 
recursion equations not involving the symbol r .  His idea was, roughly, a 
priority argument: start by assigning 0 as the value to all т-terms; redefine 
whenever a contradiction is reached; end by showing that you cannot have
(M0.

Hilbert plainly intended his operator to be the lynchpin of the new 
proof theory that he and his collaborator Bernays had set themselves to 
develop; he apologises for lacking the space in which to give all the details, 
but is evidently confident that their new theory will be able to dispel all 
the recent doubts about the certainty of mathematics.

A -14 In his inaugural dissertation, [Ackl]16, Ackermann reworked Hilbert’s 
proof with greater care, found he needed to restrict the system yet further 
for the proof to work, and worked with the dual operator, which supplies 
a witness to an existential statement rather than a counter-example to a 
universal one; he named that operator e, not r . Thus his corresponding 
axiom reads

01(a) = >  0l(ea0l(a)).

This change of letter and operator was thenceforth adopted, except by 
Bourbaki who followed the change of operator without changing the letter.

14 Much of this subsection has been gleaned from van Heijenoort’s anthology 
[vHe]. For vastly improved detail, see [Zac2].

15 manuscript received by Mathematische Annalen on 29.ix. 1922 and published 
the following year.

16 manuscript received 30.iii.1924 and published that year.
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In [vN],1T von Neumann11 criticised Ackermann’s paper and gave a 
consistency proof for first-order number theory with induction for quantifier- 
free formulae. Hilbert in 1927 gave a lecture [Hi3], outlining Ackermann’s 
paper and the method of “assign values then change your mind”.

1928: Hilbert at Bologna

In his address [Hi4] on 3*ix-i928, to the International Congress of Math
ematicians at Bologna,* Hilbert reiterated his belief in the consistency, 
completeness and decidability of mathematics. He remarks that as math
ematics is needed as the foundation of all the sciences, it is incumbent on 
mathematicians to secure its foundations. He hints at Skolem and Fraenkel 
having completed the axiomatisation of Zermelo; he mentions the e-axiom, 
in Ackermann’s notation, and the work of Ackermann and von Neumann’s 
work on £, which he seems to think has established the consistency of arith
metic; and he discusses four problems.

The first is to extend the proof of consistency of his e-axioms to a wider 
class of formulae; the second is to establish the consistency of a global, ex- 
tensional, form of choice as expressed through his symbol; the third is to 
establish the completeness of axiom systems for arithmetic and for anal
ysis; and the fourth is to establish the completeness of predicate logic: is 
everything that is always true a theorem?

In closing he remarks that we need mathematics to be absolutely true, 
otherwise Okkultismus might result; and he repeats his belief that in der 
Mathematik gibt es kein Ignorabimus.

1928: the war of the Frogs and the Mice

Brouwer gave two lectures in Vienna early in 1928 which according to 
an entry in Carnap’s diary stimulated the young Godel. Though Hilbert 
had helped Brouwer in his early career, their relationship had soured; per
sonal tensions mounted in 1928, when Hilbert campaigned for and Brouwer 
against German participation in the Bologna Congress18; and matters came 
to a head in October 1928.19 Even though Einstein chaffed Hilbert with the

17 manuscript received 29.vii.1925 and published in 1927.
11 Johann von Neumann, (1903-1957); Gottingen 1926/7 then Berlin; Hamburg 

1929/30, thereafter in Princeton.
*  with Henri Cartan present, but not Godel, who spent that summer in Brno 

reading Principia Mathematica.
18 (Seg2), pp 352, 354.
19 [vDal; vDa2, Volume II].
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phrase Froschmaiisekrieg, in the hope of restoring calm, the outcome was 
the expulsion of Brouwer, after thirteen years’ service, from the Editorial 
Board of the Mathematische Annalen.

Brouwer retaliated by launching the journal Compositio Mathematica.

1929: the com pleteness theorem

The fourth of Hilbert’s Bologna problems was solved affirmatively the 
following year by Godel in his doctoral dissertation.20 It would seem that 
Skolem had earlier come close to a proof, and that to some extent his 
modesty has obscured the chronicle:* Godel in 1964 wrote that Skolem in 
his 1922 paper [Sk] proved (but did not clearly state) the result that if a 
formula is not a theorem its negation is satisfiable. Syntactic completeness 
might be finitistic: one could imagine an algorithm which given a non
theorem finds a proof of its negation. But semantic completeness is not: 
as the models in which formulae are to be tested are countable but perhaps 
not finite, an infinite sequence of admittedly finitistic steps is needed to 
build one. Godel thought that Skolem had the steps but not the sequence. 
Goldfarb [Gol] writes:

“Godel’s doctoral dissertation and its shorter published 
version . . .  is a fitting conclusion to the logic o f the twen
ties. [ . . .  ] Although Godel [worked] independently, the 
mathematics is not new: it was substantially present in 
the work of both Skolem and Herbrand. What is new is 
the absolute clarity Godel brings to the discussion.”

For a more recent study that also conveys very clearly the impact of 
Godel’s dissertation, see [Ke].

1930/31: the incom pleteness theorem s

The third of Hilbert’s Bologna problems was solved negatively by the 
two incompleteness theorems of Godel. It is tempting to speculate that 
Hilbert was initially misled by his success in giving a formal treatment 
of Euclidean plane geometry into thinking that the corresponding foun
dational problem posed by arithmetic would prove to be similar, so that 
the consistency and completeness of mathematics could be established by 
finitistic means. Goldfarb [Gol] highlights that misconception:

20 All cited papers and correspondence of Godel will be found in the Collected 
Works [Go].

* as has Bernays’ modesty, as shown by Zach [Zal], the history of propositional 
logic.
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“By the end of the decade the Hilbert school was quite cer
tain that they had in all essentials a [consistency] proof 
for full number theory. Godel’s Second Incompleteness 
Theorem came as a terrible shock.”

1931/34: H ilbert’s delayed response to the incompleteness theo
rems

None perhaps was more shocked than Hilbert. A recent paper of Sieg 
[Si4] documents the strange contrast between the admirably enthusiastic 
and generous response of von Neumann to Godel’s results and the rather 
less admirable state of denial that was Hilbert’s initial response.

Hilbert and Godel were at two different meetings in Konigsberg in 
East Prussia in September 1930. On September 7th, at a round-table dis
cussion, moderated by Hans Hahn and attended by von Neumann and 
Carnap among others, which discussion formed part of the second Tagung 
fur Erkenntnislehre der exakten Wissenschaften, Godel announced his first 
incompleteness theorem. Godel and von Neumann discussed this result im
mediately after the session, and then by mid-November each of them had 
independently found the second incompleteness theorem.

On September 8th, Hilbert gave his famous lecture Naturerkennen und 
Logik to a meeting of the Gesellschaft Deutscher Naturforscher und Arzte.

Godel left Konigsberg on September 9th, without, it seems, having 
discussed his new result with Hilbert.21

I follow Sieg in thinking that it is implausible that von Neumann should 
not have spoken to Hilbert about it, for given that Hilbert had said at 
Bologna that von Neumann and Ackermann had a proof of the consistency 
of arithmetic, then undoubtedly von Neumann, once its impossibility was 
clear to him, would immediately have disabused him of this idea.

The strange thing is that Hilbert published two papers [Hi5] and [Hi6], 
on foundational themes after Godel’s announcement without explicitly men
tioning Godel’s work. Both were published in 1931; [Hi5] is the text of a 
lecture given to the Philosophischen Gesellschaft of Hamburg in December 
1930 and was received by the editorial board of Mathematische Annalen 
on December 21st, 1930; whereas [Hi6] was presented to the Gottingen 
Gesellschaft der Wissenschaften on July 17th, 1931.

In [Hi5] from page 492 on, Hilbert gets defensive, suggesting an aware
ness of Godel’s results, but writes defiantly on page 494:

21 In a letter cited in footnote 4 of [Daw], Godel states that he neither met nor 
ever corresponded with Hilbert.
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“Ich glaube, das, was ich wollte and versprach, durch die 
Beweistheorie vollstandig erreicht zu haben: Die mathe- 
matische Grundlagenfrage als solche ist dadurch, wie ich 
glaube, endgiiltig aus der Welt geschafft. ” 1

In [Hi6], on page 122, he writes:
“Nunmehr behaupte ich, daft “widerspruchsfrei” mit “richtig” 
identisch is t  ”i]

When Bernays in an interview given on August 17th, 1977, three weeks 
before his death, cited in [Si4], was asked “Wie hat Hilbert reagiert, als er 
von Godels Beweis der Unmoglichkeit, einen Widerspruchsfreiheitsbeweis 
fur die Zahlentheorie im Rahmen der Zahlentheorie selbst zu fiihren, er- 
fuhr?”m , he replied “Ja, ja, er war ziemlich argerlich dariiber ... Aber 
er hat nicht bloss negativ reagiert, sondem er hat ja dann eben auch Er- 
weiterungen vorgenommen, z.B. schon im Hamburger Vortrag von 1930”lv.

H ilbert’s programm e after Godel

It took some years for Godel’s 1931 paper to be generally taken on 
board22: although von Neumann and Herbrand grasped the point quickly, 
Zermelo did not. One might ask, “After this check, what is left of Hilbert’s 
programme?”

The first reaction of many, including Herbrand,23 was to think that the 
incompleteness theorem showed the impossibility of Hilbert’s programme. 
The view taken by Bernays and Godel was that suggested by Hilbert in his 
foreword to [HiB 1]: there might be finitist arguments not formalisable in 
Peano arithmetic.

Goldfarb writes that Herbrand’s papers (1929, 1930) made an impor
tant contribution to Hilbert’s programme which led to the Hilbert-Bernays 
e theorems, even though one of Herbrand’s arguments is fallacious; further,

I “I believe that through proof theory I have completely achieved what I 
wanted and promised: foundational questions about mathematics are, so I believe, 
finally expelled from the world.”

II “Further, I assert that “consistent” is identical with “true”.
1JJ “How did Hilbert react when he realised that Godel’s proof showed that a 

consistency proof for number theory could not be given within number theory?”
lv “Yes, yes, he was fairly cross about it .... but his reactions weren’t only 

negative: already in his lecture in Hamburg in 1930, he developed extensions of 
it.”

22 See [Daw].
23 Sieg in [Si2] examines the brief exchange of letters in 1931 between Herbrand 

and Godel.
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Herbrand’s work was largely the foundation for Gentzen’s Hauptsatz, which 
substantiated Hilbert’s hope that finitism would go further.24 Ackermann 
in [Ack2] showed that Gentzen’s 1936 proof [G2] of the consistency of arith
metic by an induction up to the ordinal во could be presented in terms of 
the Hilbert-Bernays-Ackermann operator.25

Sieg in [Si4] describes not only the discomfiture of Hilbert but on the 
positive side the advent of the young Gentzen and the further growth of 
proof theory in a new direction beyond Hilbert’s original conception.

Thus Hilbert’s programme [Sil] was not wasted but developed into 
proof theory [Si3].

1934, 1939: publication in two volumes of the treatise of Hilbert 
and Bernays

Both these volumes were, in fact, written entirely by Bernays, by 1934 
expelled from Gottingen by the newly-elected Nazi Government of Ger
many, and residing once more in Zurich.
A-15 The first volume [HiBl], of 1934, of the treatise of Hilbert and Bernays, 
which may be regarded as an expanded version of [HiA], presents a treat
ment of first-order logic without the operator, and includes a mature ac
count of the theory of recursion.

Hilbert in his foreword maintains that the view that the results of 
Godel entail the impossibility of Hilbert’s programme of proof theory is 
erroneous: they merely make necessary a more precise account of finitism. 
Bernays in his explains that it had become necessary to divide the projected 
book mentioned in the foreword to [HiA] into two parts, partly as a result 
of the works of Herbrand and of Godel. Both forewords are dated March 
1934, with no exact day given.
A-16 The foreword of Paul Bernays to [HiB2] is dated February 1939. This 
second volume gives a detailed development of the epsilon calculus and 
proof of the two epsilon theorems; then proofs of Godel’s two incompleteness 
theorems. The very brief foreword of Hilbert to that second volume is dated 
March 1939 and makes no mention of Godel.

In §2, 4 , f), starting on page 121, Bernays presents an example due to 
von Neumann which pinpoints the error in the earlier alleged consistency 
proof for arithmetic.

24 Black’s review [Bll] of both [HiB2] and a 1938 survey paper [G3] of Gentzen 
explains this point very clearly.

25 For a later study of Hilbert’s operator, see Leisenring [L], and for further 
historical perspective, see [DrKa].
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It was at this delicate period in the history of mathematical logic, 
when the subject was realigning itself following Godel’s discoveries, that 
the Bourbaki group was formed. There are many accounts in print of the 
group’s inception, character and achievements,26 so it is not necessary to 
repeat that saga here.*7 Our concern is with the group’s chosen treatment 
of logic.

Hilbert’s account of logic had received a considerable set-back. He had 
based his strategy on the belief that all problems could be solved within a 
single framework. There were substantial texts expounding his ideas; but 
the hope of a single proof of the consistency and completeness of mathemat
ics, in my view the only justification for basing an encyclopaedic account of 
mathematics on Hilbert’s operator, had been dashed.

Constance Reid in Chapter XXI of her life [Rel] of Hilbert discusses 
the pernicious anaemia diagnosed in him in late 1925. A diet of raw liver 
seems to have saved him from the worst consequences, but the disease might 
well have sapped his strength, and more and more he relied on his younger 
colleagues to carry out his research programmes. When the incompleteness 
theorems appeared, he did respond to them in time, but, it would seem, 
only with reluctance.

Undeterred, and unfortunately, Bourbaki, as we shall see, adopted 
Hilbert’s pre-Godelian stance. In the next section we shall examine Bour
baki’s account as finally presented; and in Section H explore the soul- 
searching, revealed in the recently available archives of Bourbaki, among 
members of the Bourbaki group that led to that final chosen position.

1935: the naissance o f Bourbaki

26 such as [Beal], [Bea2], [Corl], [Cor2], [СогЗ], [Masl], [Mas2], [Bor], [Cho], 
[PIS], and [Sen].

^ We record a recent suggestion concerning the choice of the group’s pseudonym. 
The name Bourbaki(s), though a Cretan surname, is composed of (the French 
transliteration of) the two Hebrew words ‘bour’, meaning an ignoramus, and 
‘baki’, meaning a wise man, so that certain members of the French group might 
have been enjoying a private joke in so modestly calling their collective self a 
sage dunce or an ignorant savant. The link with the general of Cretan descent in 
the service of Napoleon III might then have been a convenient cover story, very 
necessary in Nazi-occupied Paris.
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B: ... which is adopted by Bourbaki...

BOURBAKI’S SYNTAX, which we shall now outline, was followed by 
Godement, whose treatment of logic in his Cours d ’Algebre we exam

ine in the next section; we follow their notation in our discussion. Citations 
such as E 1.34 are from Bourbaki’s text Theorie des ensembles [Bou54].27

There were position papers on the foundations of mathematics, pub
lished in 1939 and 1943, by members of the Bourbaki group; and on De
cember 31st, 1948, in Columbus, Ohio, Nicolas Bourbaki, by invitation, ad
dressed the eleventh meeting of the Association for Symbolic Logic. That 
address, [Bou49], chaired by Saunders Mac Lane, delivered by Andre Weil 
and published the following year, presents the system that is discussed in 
[M10] and there called Bou49. The book on logic and set theory that Bour
baki had, after an initial reluctance28, by then decided to include as Livre
I of their projected series, was published by chapters, in 1954, ’56 and ’57. 
We denote by Bou54 the system of set theory developed in [Bou54].

Some differences between the two: in 1949, Bourbaki made no men
tion of the Hilbert operator, and claimed to be able to base “all existing 
mathematics” on an axiomatic system broadly similar to that of Zermelo 
1908, a claim modestly reduced to “modern analysis” in [Dil]. They take 
ordered pair as a primitive, and appear to believe that the existence of un
ordered pairs will then follow, a belief refuted in [М10]. They present their 
underlying system of logic by introducing the notion of a true formula and 
of the synonymy of two formulae; they, in effect, state that all propositional 
tautologies are to be axioms; and they give axioms for quantifier logic, their 
treatment differing both from [HiA] and from Godel’s completeness paper.

By 1954 on the other hand, they had enhanced their axiom scheme 
of union to imply a form of the axiom scheme of replacement, they had 
refined their treatment of propositional logic, H giving the same four axioms 
as those on page 22 of [HiA], which itself follows closely the treatment in 
Principia Mathematica [WR], where these four axioms are given, besides a 
fifth shown in 1918 by Bernays [Berl] to be redundant:

27 We shall occasionally refer to Bourbaki’s in-house journal La Tribu, but defer 
comment on these and other revealing archives, now on-line, till Section H, as our 
immediate concern is with Bourbaki’s books as published.

28 The first formal gathering of Bourbaki, at Besse-en-Chandesse in 1935, re
solved to give no axioms for set theory.

II possibly encouraged by the proof in [Hu] that the propositional logics of 
[WR] and [HiBl] coincide.
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and, most significantly, they based their predicate logic no longer on quan
tifiers but on the Hilbert operator,^ a puzzling change as Hilbert himself, 
in his text with Ackermann and in the first volume of his text with Bernays, 
presented a development of predicate logic that is operator-free. According 
to the archives of Bourbaki, the Hilbert operation was missing from Draft 
4 of Chapter I, but is found in Draft 5, presumably by Chevalley, of July 
1950, and kept in Draft 6 , by Dixmier, of March 1951.

Bourbaki’s formal language admitted a potentially infinite supply of 
letters. In 1954 they kept ordered pair as a primitive, written Э, but in later 
editions followed Kuratowski and defined (x, у) =  {{ж}, {ж, у}}, where the 
unordered pair {ж, у} is the set whose sole members are x and y, and the 
singleton {x} is {x, x}.

Bourbaki’s syntax

В-l Bourbaki use Ackermann’s dual operator but write it for typographical 
reasons as r  rather than e.

Bourbaki use the word assemblage, or, in their English translation, 
assembly, to mean a finite sequence of signs or letters, the signs being r , □,
V, -i, = , € and, in their first edition, Э. The substitution of the assembly A 
for each occurrence of the letter x in the assembly В  is denoted by (A\x)B.

Bourbaki use the word relation to mean what Anglophones would call 
a well-formed formula.
B-2 The rules of formation for r-term s are these:

let R  be an assembly and x a letter; then the assembly тж(Я) is obtained 
in three steps:

(B-2-0) form t # ,  of length one more than that of R ;
(B-2 -1 ) link that first occurrence of r to all occurrences of x in R

(B-2-2) replace all those occurrences of x by an occurrence of □.
In the result x does not occur. The point of that is that there are no 

bound variables; as variables become bound (by an occurrence of r,) they 
are replaced by □, and those occurrences of □  axe linked to the occurrence 
of r  that binds them.

The intended meaning is that r x (R ) is some x of which R  is true.

^ They would not have desired the heavily type-theoretic treatment of predi
cate logic in Principia Mathematica.
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Certain assemblies are terms and certain are relations. These two 
classes are defined by a simultaneous recursion, presented in Godement 
[Gd] in nine clauses, thus:
T l: every letter is a term
T2: if A  and В  are terms, the assembly D A B , in practice written (A, £ ), 

is a term.
T3: if A  and T  are terms and x a letter, then (A\x)T  is a term.
T4: if R  is a relation, and x  a letter, then tx(R) is a term.
Rl: If R  and S  are relations, the assembly VRS  is a relation; in practice it 

will be written (Я V S).
R2: -yR is a relation if R  is.
R3: if Я is a relation, x  a letter, and A a term, then the assembly (A\x)R  

is a relation.
R4: If A  and В  are terms, =AB  is a relation, in practice written A — B. 
R5: If A and В  are terms, the assembly eA B  is a relation, in practice 

written A  6  B.
B-3 REMARK Clauses T3 and R3 are, as pointed out to me by Solovay, 
redundant — if omitted, they can be established as theorems — and were 
added to Bourbaki’s original definition by Godement, presumably for ped
agogical reasons.
В-4 REMARK Note that every term begins with a letter, Э or r; every 
relation begins with =, €, V, or Hence no term is a relation.

Quantifiers are introduced as follows:
B-5 Definition (Зж)Л is {rx (R) \ x )R ;
b -6 D e fin it io n  (Vx)R is ->(3x)-*R.

Thus in this formalism quantifiers are not primitive. Informally, the 
idea is to choose at the outset, for any formula Ф(ж) a witness, some a such 
that Ф(а); call it тхФ. If there is no such witness, let rxФ be anything you 
like, say the empty set.

B'7 We pause to consider some consequences of basing a formal system 
on the operator developed by Hilbert, Bernays and Ackermann, commonly 
called the Hilbert operator and used by Bourbaki.

The length of r-expansions

Notice first that if we translate ЗжФ as Ф(га:Ф), then in writing out that 
latter formula, we must replace every free occurrence of x  in Ф by the string 
тх Ф, so that formulae with many quantifiers become, when expanded, inor
dinately long. In [M8], it is shown that Bourbaki’s definition of the number
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one, when expanded to their primitive notation, requires 4523659424929 
symbols, together with 1179618517981 disambiguatory links.

To conceptualise the formalism becomes even more hopeless in later 
editions of Bourbaki, where the ordered pair (ж, у) is introduced by Kura- 
towski’s definition, not as a primitive, and the term for 1 takes an impressive 
2409875496393137472149767527877436912979508338752092897 symbols,29 
with 871880233733949069946182804910912227472430953034182177 links.

Strangely, the number 1 takes much longer to define than the concept 
of the Cartesian product of two sets: for example in that formalism of 
Bourbaki’s later editions, the term X  x Y  proves to be roughly of length 
3.185 x 1018 with 1.151 x 1018 links, and 6.982 x 1014 occurrences each of X  
and Y\ whereas the term defining 1 has over 2 x 1054 symbols with nearly 
9 x 1053 links.

Every null term  is equal to  a proper term
Let us, following Leisenring’s 1969 study [L], call a term rx (R) null if 

there is no x  with the property # ; and let us call it proper otherwise: we 
ignore the problem that there may be some terms of the status of which we 
know nothing. Is every term T, proper or otherwise, included in the range 
of variables? It is, and to see that, start from the 
в -s P r o p o s i t io n  Va36 b =  a.

Now Criterion C30 on page E 1.34 states that (Vx)R => (T  | x)R  
is a theorem whenever T  is a term, x  a letter and R  a relation. Hence we 
have, substituting T  for a, 
b-9 C o r o l l a r y  3b b  =  T.

Now let /? be the term тьЬ =  T. /3 is a proper term, for we have proved 
there is such a 6; and thus we have 
b  io C orollary  p = T.

Any two null term s are equal
The principle S7, on page E 1.38 of the Theorie des Ensembles, says

that
si R  et S  sont des relations de T  et x  une lettre, la 
relation

((¥*)(Я  <=►$)) = *  (tx( R ) = tx(S)) 

est un axiome.
They add, on page E 1.39, “le lecteur notera que la presence dans S7 

du quantificateur Vx est essentielle.”

29 according to a program written by Solovay in Allegro Common Lisp.
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В-ll REMARK A few lines lower, in small type, is the following remark: 
Par a bus de langage, lorsqu’on a demontre une relation 
de la forme T  = U dans une theorie T , on dit souvent que 
les termes T  e tU  sont ules mimes” ou sont l(identiques”.
De тёте, lorsque T  est vraie dans T , on dit que T  
et U sont “distincts” a и lieu de dire que T  est different 
deU.

I wish that Bourbaki had not said that; I wish that they had reserved 
“identical” for the stricter meaning, and been happy with the phrase “T- 
equivalent” for the looser meaning; because in a passage on page E II.4, 
which I quote below, they actually mean that two relations are identical, 
the very same formula, and not merely that they are provably equivalent.

В *12 We note a consequence of the axiom that if R  and S axe equivalent 
relations and ж is a letter then the relation rx(R) =  t x (S) is true.

Set theorists often wish to form the class of all sets with some property: 
{x | Ф(х)}; and a question whenever such a class is formed is whether it is 
a set. How does Bourbaki handle that?

Bourbaki has a notation for set formation; but it is introduced in an 
ambiguous way. I quote from page E II.4:

Tres frequemment, dans la suite, on disposer a d ’un theoreme 
de la forme CollxR  [defined on page E II.3 as (=h/)(Va;)((£ € 
у) <=>• Я), where у is a variable distinct from x  and not 
occurring in Я]. On introduira, alors, pour representer le 
terme ry(Vx)((x G y) <=>• R) ... un symbole fonction- 
nel; dans ce qui suit, nous utilisons le symbole {x \ R}; le 
terme correspondant ne contient pas x. C ’est de ce terme 
qu’il s ’agira quand on parlera de ‘Tensemble des x tels que 
R ”. Par definition (I, p. 32) la relation (Vx)((x € {x |
R}) <*=> R) est identique a CollxR; par suite la relation 
R est equivalente a x  € {x \ R}.

I understand that to mean that the symbol {x | R} is to be introduced 
in all cases as an abbreviation for the term Ty(Vx)((x € у) Я), whether 
or not the relation R  is collectivising in x, for in that last sentence, “iden
tique” means what it says, the relation (Vx)((x € {x \ R} <*=> R) and the 
relation Со11х(Я) are actually the same relation; which is why I regret the 
remark cited above encouraging an a bus de langage: if the proposed laxity 
for terms were extended to relations, chaos would result.

On the other hand, the par suite remark will hold only for collectivised 
R: take R  to be x =  i ;  the class of such x  is not a set; as we saw above, 
every term will be some set, and therefore some x  will not be in the term 
ry(Vx)((x € y) R).
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В-13 Thus there is an acute difference between the normal use, in ZF and 
many other set theories, of the class-forming operator { | } with the Church 
conversion schema x  € {x \ R} <*=> R  holding for all classes whether sets 
or not, and the Bourbaki treatm ent whereby, magically, conversion holds 
for a  class if and only if that class is a set.
B-14 Now let Я{ж} and S{as} be two formulae such that R  and S  are, 
provably in B ou54, not collectivising in ж; for example Я{ж} might be x £ x 
and S{x} might be ux  is a von Neumann ordinal” and we could use the 
Russell paradox in the one case and the Burali-Forti paradox in the other 
to establish the non-set-hood of these classes.

Write C r  for (\fx)((x € у ) <=> R) and Cs  for (Vx)((x 6  y) <=> S ). 
Then Bou54 proves that for all y, C r  is false, and proves for all у that Cs 
is false; so it proves that C r  <==> C5 . Hence, by axiom S7, page E 1.38, 
tv C r  = TyCs' hence our notation is highly misleading in that all classes 
which are not sets have become “equal” .
B-15 EXAMPLE As illustration, let T  be a term which is certainly null, 
namely the universe. In Bourbaki’s notation the following is a theorem:
B-16 THEOREM 36 b =  {x  I x  =  ж}.

Any ZF-iste reading that assertion would interpret it as false. The 
following is also a theorem of Bou54:
B-17 THEOREM 3a a =  {x \ x  $ a}

and indeed the b of Theorem B-16 and the a of Theorem B-17 are equal.

Perverted interpretation of quantifiers

The step from an uninterpreted formal language to its possible interpre
tations is one of great epistemological importance. So, phenomenologically, 
the т-operator perverts the natural order of mental acts: to interpret 3 you 
look for witnesses and must first check whether a witness exists before you 
can pick an interpretation for rx (R); and then you define (3x )R  to mean 
that the witness witnesses that R(rx (R)): a strange way to justify what 
Bourbaki, if pressed30, would claim to be a meaningless text.

Discussion

В-18 Hilbert developed his operator in the belief that it would lead to con
sistency proofs for systems of arithmetic and of set theory; at the time 
he believed in the completeness of mathematics. In a complete system,

30 See the remarks below in D-ll and the anti-ontologist jibe in issue 15 of La 
Tribu quoted in H-8 .
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such as the theory of a particular model, the operator works happily as a 
formal version of a Skolem function; but it starts to behave strangely in 
incomplete systems; and work in logic has shown that the phenomenon of 
incompleteness is not something marginal but pervades mathematics.31

B-19 A second count against Hilbert’s operator is its blurring of subtleties 
concerning the various forms of the Axiom of Choice. If you then immerse 
yourself in a formalism based on it, how can you discuss models where AC 
is false? Indeed, the use of the r-operator in this fashion seems to render 
impossible discussion of non-AC models, and as Gandy remarked in his 
review [Gl] of Theorie des Ensembles, it makes it hard to tell when the 
Axiom of Choice is being used or not.
В -20 The strange way in which null terms behave makes the r-calculus pe
culiarly unsuitable for use in set theory, where the idea of a proper class 
is important; and, of course, proper classes are important to the way cat
egory theorists think about functors; so that my objections to Bourbaki’s 
logic apply both to a set-theory and to a category-theory based view of 
mathematics.

I am, I admit, being unfair to Hilbert in that I am writing eighty- 
nine years later, and benefitting from the enormous development of logic 
and set theory that has taken place in that time. But a modern account 
of foundational questions must allow for that development, and Bourbaki 
shut their eyes to it.
В-21 The idea of an expanding mathematical universe is essential to contem
porary set theory. Consider the construction by Godel of his inner model 
of AC and GCH. We have an iteration along the ordinals; at each successor 
stage we look at the class of those things definable over the previous stage; 
so the Bourbaki trick that a proper class “equals” some pre-assigned set is 
not the right mind-set for this construction. If you have immersed yourself 
in Bourbaki, Godel, or set-theoretic recursion in general, will make no sense 
to you.
В-22 The “intuitive interpretation” where you choose once and for all wit
nesses for every true existential statement: implicit in that is the idea 
that you will choose one universe once and for all, which is precisely the 
notion that, according to Goldfarb, was current at the start of the nineteen- 
twenties. But if you are imbued with that idea, how are you to understand 
arguments, common in contemporary set theory ever since Cohen’s an
nouncement [Cohl], which involve passing from one universe to a larger 
one obtained by a forcing extension? If you have immersed yourself in

31 The writings of Harvey Friedman give many examples; the paper [M5] de
scribes four from analysis.
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В-23 COMMENT So it might reasonably be said that Bourbaki’s Theorie 
des Ensembles provides a foundation for many parts of mathematics, but 
not for set theory. That in turn provokes the thought that a mathematician 
who takes the Bourbachiste shilling ipso facto switches off that portion of 
his mathematical intelligence that can respond to the insights of set theory.

Bourbaki’s remarks on progress in logic

Their historical remarks at the end of their set theory volume are well 
worth reading;0  it is only as their narrative comes up to modern times that 
one senses a pressure to adopt their view to the exclusion of all else. We 
quote various remarks that show that Bourbaki have a Uvely sense of logic 
as a developing subject.

They remark that philosophers do not have an up-to-date idea of math
ematics and that logic is concerned with many things outside mathematics; 
but the neglect by philosophers of mathematics helps block progress in for
mal logic. They acknowledge that mathematicians with a good grasp of 
philosophy are equally rare.

On E IV.37, a footnote mentions the legendary event when at a lecture 
at Princeton in the presence of Godel, the speaker said that there had been 
no progress in logic since Aristotle;* I sense a hint that the speaker might 
have been a philosopher. The speaker—and I would love to know who it 
was—was in good company: Bourbaki mention Kant’s dictum that there 
was no need for new ideas in logic.

On page IV.42, they mention the harm done to Peano by Poincare’s 
often unjust jibes. The seven enthusiastic collaborators of Peano in the 
creation of his Formulario Mathematico of 1895 are listed.
В-24 They mention that Leibniz had the idea of Godel numbering; that 
Frege had good ideas but bad notation; that Peano’s notation was good; 
that Russell and Whitehead created a formalised language that “happily 
combines the precision of Frege with the convenience of Peano”; and that 
among subsequent modifications “the most interesting is certainly the in
troduction by Hilbert of’ his symbol; they note that there was a shift to 
the dual; and that the symbol (apparently) bypasses the axiom of choice.
В-25 The paradoxes are discussed and the “Five letters” [Had] are men
tioned, as is, on page 70, without naming him, Hermann Weyl’s consequent 
resolve, quoted below in D-10, to avoid areas with paradoxes.

D According to La Tribu, Weil was to consult Rosser when preparing the Note 
Historique.

* Might Rosser have been the source of this information?

Bourbaki, Cohen will make no sense to you.
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В-26 They trace the history that culminated in the treatise of Hilbert and 
Bernays, with references to Poincare, Ackermann, Herbrand and von Neu
mann, but, strangely, in their bibliography list Hilbert-Ackermann but not 
Hilbert-Bernays. Kleene’s 1952 book [Kl] is listed; as (in the 1970 edition) 
are Cohen’s PNAS announcements [Cohl].

Bourbaki’s account of the incompleteness theorem

В-27 Their formulation of the incompleteness theorem is correct, if in their 
definition on page E 1.21, a theory is to be a deductive system with finitely 
many explicit axioms and finitely many axiom schemes, (such as Zermelo’s 
Aussonderungsprinzip), the substitution instances of which will be called 
the implicit axioms of the theory. Hence a theory, according to their defi
nition, will be recursively axiomatisable. They put much emphasis on the 
role of substitution; they have to consider the result of substituting terms 
for variables in the explicit axioms, but need not do so for the implicit ax
ioms, which by definition will form a class of wffs closed under the relevant 
substitutions.
В-28 Bourbaki define a formula to be false if its negation is provable. On 
page E IV 75, in footnote 1, they say that of any mathematical proposition 
it will eventually be known whether it is true, false or undecidable; so they 
are aware of the distinction between falsehood and unprovability. But their 
love of identifying truth with provability lands them in a tangle on Page 
E IV 74, in footnote 3: they say, incorrectly, that the proposition 5 (7 } 
affirms its own falsehood, but it actually affirms its own unprovability.
В-29 COMMENT We shall see that this idea that systems are complete, with 
its corollary that “unprovable” is the same as “refutable”, leads to repeated 
errors of logic in the works of members of the Bourbaki school.
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С: ... and by Godement, though with expressions of 
distrust.

ROGER GODEMENT is listed by Cartier in an interview [Sen] in the 
Mathematical Intelligencer as a member of the second generation 

of Bourbaki, in the same group as Dixmier, Eilenberg, Koszul, Samuel, 
Schwartz, and Serre. In 1963 his Cours d ’Algebre was published by Her
mann of Paris. An English translation, copyrighted by Hermann in 1968, 
was published by Kershaw of London in 1969, and runs to some 600 pages, 
of which the first hundred are devoted to an account of logic and set theory.

I used the last 500 pages of this text for many years during the time 
that I was teaching algebra to Cambridge undergraduates, and found it 
excellent. When, later, I read the first part, on Set Theory, consisting of 
§§0-5, I found, unhappily, that the account offered, although containing 
many tart remarks to delight the reader, is flawed in various ways: one 
finds errors of metamathematics, mis-statements of the results of Godel 
and Cohen, and an accumulation of negative messages about logic and set 
theory.

In this chapter I shall present my findings by combing quickly through 
his account and commenting as I go. I follow Godement in using the sign 
§ to indicate chapter and №  to indicate section within a chapter.

In the main he follows Bourbaki’s Theorie des Ensembles. I have re
arranged this material and simplified it in one or two places. Quotations, 
from the English 1968 translation of his book, are given in slanted type; 
the pagination follows that edition.

Godement has, pleasingly, in later French editions, moderated some of 
the provocative statements on which I comment, and I shall in such places 
draw attention to those revisions.

G odem ent’s formal system

Godement states that the opening chapter is “an introduction to math
ematical logic” , and then adds, somewhat alarmingly, that “in it we have 
tried to give a rough idea of the way mathematicians conceive of the objects 
they work with.” That opening chapter begins on page 20, where he writes:

In mathematics there are three fundamental processes: construc
tion of mathematical objects, the formation of relations between 
these objects, and the proof that certain o f these relations are 
true, or, as usually said, are theorems.

Examples of mathematical objects are numbers, functions, 
geometrical figures, and countless other things which mathemati
cians handle; strictly speaking these objects do not exist in Nature
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but are abstract models of physical objects, which may be com
plicated or simple, visible or not. Relations are assertions (true 
or not) which may be made about these objects, and which corre
spond to hypothetical properties of natural objects of which the 
mathematical objects are models. The true relations, as far as 
the mathematician is concerned, are those which may be logically 
deduced from a small number of axioms laid down once and for 
all. These axioms translate into mathematical language the most 
“self-evident” properties of the concrete objects under considera
tion; and the sequence of syllogisms by which one passes from the 
axioms (or, in practice, from theorems previously established) to 
a given theorem constitutes a proof of the latter.

O i COMMENT Notice the use of the phrase once and for all.
He continues:

Explanations of this sort, which may perhaps appear admirably 
clear to some beginners, have long since ceased to satisfy mathe
maticians: not only because mathematicians have small patience 
with vague phrases, but also and especially because mathematics 
itself has forced [mathematicians] to consider carefully the founda
tions o f their science and to replace generalities by formulas whose 
meaning should be altogether free from ambiguity, and such that it 
should be possible to decide in a quasi-mechanical fashion whether 
they are true or not; and whether they make sense or not.

C-2 COMMENT Notice the residual faith in the completeness and decidabil
ity of mathematics implicit in that last sentence.

After some further discussion he begins his presentation of the formal 
system Bou54. Broadly he uses the syntax summarised in my Section B, but 
where Bourbaki speaks of terms, he speaks of mathematical objects; other
wise he follows Bourbaki’s development, with, as in Bourbaki’s first edition, 
a primitive sign, Э, for the ordered pair of two objects. He immediately 
states that he will write (A , B) rather than DAB.

He departs from Bourbaki by seeking to soften the austerity of the 
formalism, which leads him to make mistakes of logic, for he blurs the 
distinction between a uninterpreted formal language and its interpretations; 
and by a strange reluctance to state the axioms of set theory.
C-3 To introduce the axioms of logic, he writes, at the bottom of page 21:

Once the list o f fundamental signs has been fixed, and the list 
of criteria o f formation of mathematical objects and relations, it 
remains to state the axioms. Some will be purely logical, others 
of a strictly mathematical nature.
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On page 25, he says that
t ru e  relations or th eo re m s . . .  are those which can be ob

tained by repeated application o f the two rules:
(T R  1): Every relation obtained by applying an axiom is true 
(T R  2): i f  R  and S are relations, i f  the relation (R  ==> S) is true 

and i f  the relation R  is true, then the relation S  is true.
and on page 26, he says that

A relation is said to be false i f  its negation is true.
and then immediately in Remark 1 that:

what characterizes true relations is that they can be proved.
0 4  COMMENT This equation of tru th  and provability is the standard Bour- 
bachiste position, found in the papers of Cartan and of Dieudonne of 1939- 
43 cited in The Ignorance of Bourbaki [М3], and found again in Dieudonne’s 
last book [Di3, 1987, 1992]. But Godement then, in Remark 2 cautions the 
reader with the symbol for a toumant dangereux:

There is a natural tendency to think that a relation which is 
unot true” must necessarily be “false”. . . .  Unfortunately there is 
every reason to believe that in principle this is not so.
We shall return to the rest of Remark 2 later.

C-5 REMARK Thus words like “true” and “satisfies”, as for example in the 
sentence

The mathematical object A  is said to satisfy the relation R  i f  the 
relation (Л|ж)Я is true,

are being defined in terms of the provability relation Ьв0и54 that Godement 
is developing. Note, too, his comment in Remark 4 of §0, on page 28:

[from (TL 2)] ... the relation R  ou  (non R) is true. It does not 
follow that at least one of the relations R, non  R is true: this is 
precisely the question of whether there exist undecidable relations!

C-6 Of (TL 7), which says that if R(x) is true so is (A\x)R , Godement 
comments at the top of page 31 that

[its] purpose . . .  is precisely to justify this interpretation of letters 
as “undetermined objects”;

C-7 COMMENT We were told on page 21 that assemblies are built up from 
fundamental signs and letters, which suggests that a letter is a symbol, but 
at the top of page 30 we read

Let R  be a relation, A a mathematical object, and x a letter (i.e. 
a “totally indeterminate” mathematical object),
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so by page 30 a letter is not a symbol: Godement is slipping away from 
treating his system as an uninterpreted calculus, and moving towards an 
informal Platonism.

C*8 Quantifiers are introduced on page 31 exactly as in Bourbaki, and need 
little comment beyond our remarks in Section B. He remarks on page 37 
that

we shall now be able, by using the Hilbert operation, to introduce 
them as simple abbreviations

— a phrase which in the light of the calculations of [M8] may strike the 
reader as a bit rich; and he ends the chapter with this pleasing remark:

Like the God of the philosophers, the Hilbert operation is incom
prehensible and invisible; but it governs everything, and its visible 
manifestations are everywhere.

G odem en t’s se t-theo re tic  axiom s

Early in the next chapter, §1, he says
... i f  a and b are mathematical objects (or se ts— the two terms are 
synonymous) ...

We shall see that that phrase causes trouble. A footnote on page 41 de
scribes the less formal style he now wishes to adopt.

He introduces the axioms of equality in Theorem 1 on pages 41/42:
... intuitively this relation, when it is true, means that the con
crete objects which a and b are thought of as representing are 
“identical”. We do not enter into a philosophical discussion of the 
meaning of “identity” . . .

THEOREM 1: a) The relation x  =  x  is true for all x.
b) The relations x  — y and у =  x are equivalent, for all x and 

all y.
c) For all x, y, z, the relations x  =  у and у = z imply the 

relation x = z.
d) Let u, v be objects such that и = v and let #{#} be a 

relation containing a letter x. Then the relations i2{«} and R{v}
. . .  are equivalent.

He comments that part d) is an axiom, while parts a), b) and c) can be 
deduced from

a single much more complicated axiom, (which the beginner should 
not attempt to understand) namely that i f  R  and S  are equivalent 
relations and x is a letter then the relation tx(R) — rx (S) is true.
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C-9 CO M M ENT In Part d), formal system and informal interpretation are 
confused: otherwise “such that и =  v” has no meaning. His definitions, 
taken au pied de la lettre, would imply that he means that if Ьвои54 fa =  v\ 
then Hbou54 [^{u} -R{w}], which is weaker than what I suspect he 
intended, namely that bgOU54 [u =  v = >  (#{u} <=> Л{г>})]—& point 
with consequences for the notion of cardinal number.

C-io COMMENT It may be for pedagogical reasons that he introduces the 
axioms one by one, but it is regrettable that there is no signal to the reader 
when the presentation is complete.

Nothing is said about the origins of the axioms: they are presented as 
oracular pronouncements.

So far as I can tell, searching the first hundred pages and assuming 
that no further axioms will be introduced once he starts on the algebra, his 
set-theoretic axioms are these:

First, the axiom of extensionality , which appears on page 42:
... In fact there is only one axiom governing the use o f G, namely: 

THEOREM 2: Let A and В be two sets. Then we have
A — В if and only if  the relations x € A and x E В  are equivalent.

I take the preamble to Theorem 2 to mean that he considers it to be an ax
iom: thus we have had one set-theoretic axiom so far, that of extensionality, 
but stated as a theorem.

O il COMMENT Note the further slipping between languages: “the rela
tions are equivalent” means that a certain formula is provable in the system 
B ou54 we are building up. That is a clear assertion, and is said to hold iff 
A =  B; but A = В  is an (uninterpreted) relation. Does he mean “A =  В  
is true iff the relations are equivalent” , or does he mean “it is provable in 
Bou54 that (Л =  В  <=> (x e  A x  G B))”l  That he is aware of the 
difference is evident from part (2) of Remark 7 on page 34.
C-12 COMMENT Theorem 2 as stated is false. Let x  and у be distinct 
letters. Looking ahead to pages 46-7, where Godement adds the axiom 
of pairing, let A  be {я} and let В  be {x,y}.  I believe that A and В  are 
mathematical objects; indeed a definition using r  can be given, though 
Godement does not do so: I assume that formally he would put {x} =df 
*у(0^)((* G y) <=> z = ж)) and {x, y} = df rz{(\fw)((w G z) <=> w =  
x  ou w = y)). On page 41 he says that the terms mathematical object 
and set are synonymous. Very well, A  and В  are sets, and the following is 
provable in Bou54: x € A <=> x  € £ , so that the relations x  G A and x  G В  
are equivalent. If Theorem 2 were provable, we could infer that A  =  В  and 
thus that x  = y\ so we would have proved that any two sets are equal!



Hilbert, Bourbaki and the Scorning of Logic 77

Of course, what is lacking is a requirement that the letter x  has no 
occurrence in A or in That slip is strange in that in the statement of 
Theorem 4 on page 44 (a version of the scheme of separation) he is careful 
to say that the relation R  is to contain a variable x: though there the 
theorem would still be true if it did not. On the other hand the further 
statement of Theorem 4, that for every set X  there exists a unique subset 
A of X , ... shows further confusion of language; “for every set X ” might 
mean “for every mathematical object” , that is “for every term ” , but “there 
exists a unique subset” certainly is using “there exists” mathematically; A 
is a variable here not a term, and will be the subject of various assertions.
C-13 Of his version of the scheme of separation given in Theorem 4 of §1, 
on page 44, Godement says in Remark 4 on that page that

Mathematically, Theorem 4 cannot be proved without using ax
ioms which are far less self-evident, and the beginner is therefore 
advised to assume Theorem 4 as an axiom

so, so far, we have had extensionality and separation.
014  Then Godement, wishing to comment on the necessity of giving a 
scheme of separation rather than of comprehension, writes on page 44:

Remark 5: In spite of the dictates of common sense, it is not true that 
for every relation Я{ж} there exists a set (in the precise sense of §0j 
whose elements are all the objects x for which R{x} is true.

015 Comment When I turn to §0,1 find that the word “set” occurs only 
thrice, namely on page 20 in № 1, in the phrases the development of the 
“theory of sets”, Set theory was created by Cantor, and set theory had 
given rise to genuine internal contradictions; I can find it nowhere else in 
§0, although there is a lot of talk about objects. The word sets appears, 
in bold face, early in §1, suggesting that that is its definition, namely that 
a set is the same as a mathematical object. So, as I can find no precise 
sense of “set” in §0 , whereas “mathematical object” is given a very precise 
sense in that section, namely that it is a term in a certain carefully specified 
formal language, and as I am told that a set is the same as a mathematical 
object, so be it: I shall take ‘set’ to mean ‘term in Godement’s formal 
language’.

Remark 5 continues:
Suppose that there exists a set A such that the relations x € A 
and x £ x are equivalent.

He hopes to get a contradiction, but there is nothing wrong with that, as 
it stands: let A be

Ty((V2)((-2 € y) <=* { z = x k z < £  z))).
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Then A  is a mathematical object, therefore a set, and the relation x  € 
A <=> x  ^ x  is true.
C-16 REMARK Again, what is missing is the requirement that the mathe
matical object A have no occurrence of the letter ж; then his remark that 
the supposition of the existence of such an A  leads to contradiction would 
become correct.

017  We shall refer below to his Remark 6 , on page 45, in which he says that 
apparently obvious assertions cease to be so simple when it is a question of 
effectively proving them.

The empty set is discussed in №4: if there is a set then the empty 
set exists, by the scheme of separation: no axiom so far asserts the un
conditional existence of any set; but the т-formalism guarantees that the 
existence of something is provable.

Godement goes on in №5 to discuss sets of one and two elements, and 
then says In the same way we can define sets of three, four ... elements. The 
sets so obtained are called finite sets, and all other sets are called infinite 
sets. These two notions will be considered afresh in §5.
018 COMMENT Note that that is not a formal definition of “finite”, the use 
of dots constituting an appeal to the reader’s intuitive notion of finiteness.

C-19 In §1, № 5, Remark 8 , on page 47, he states that the existence of the 
pair set of two objects is an axiom, and goes on to say that the existence 
of infinite sets is also an axiom, and acknowledges that we have yet to 
define the natural numbers, which will be done in §5; so far we have had 
axioms of extensionality, separation, pairing and infinity, but we await a 
definition of finite.

In № 6 the set of subsets of a given set is introduced thus:
Let X  be a set. Then there exists — this again is one o f the 
axioms of mathematics — one and only one set, denoted by

P(X)

with the following property: the elements o fV (X )  are the subsets 
o f X ,

so hitherto we have had extensionality, separation, pairing, infinity, and 
power set; we await a definition of finite.
C-20 In §2 he discusses ordered pairs and Cartesian products, no new axioms 
being introduced till §3. In Remark 1 of §2 on page 50, he writes:

The [Kuratowski method of defining] ordered pair is totally devoid of 
interest. . . .  The one and only question of mathematical importance is 
to know the conditions under which two ordered pairs are equal.
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C- 2 1  COMMENT To an algebraist, that might be true. But to a set-theorist 
interested in doing abstract recursion theory, it is very natural to ask 
whether a given set is closed under pairing. For that reason, an economical 
definition of ordered pair is desirable, such as is furnished by Kuratowski’s 
definition: otherwise one might find that the class of hereditarily finite 
sets is not closed under pairing, or even that no countable transitive set 
is. Bourbaki in their later editions have indeed adopted the Kuratowski 
ordered pair.

In §2 № 2 he declares that
using the methods of §0 , cartesian products can be proved to exist.

022 COMMENT I deny that that can be proved from the axioms he has 
stated so far, given that he has refused to define ordered pair — hence we 
do not know where the values of the unpairing functions (projections) lie
— and he has not stated a scheme of replacement.

Write (ж, у )к  for the Kuratowski ordered pair {{ж}, {ж, г/}}, and и x к  
v for {(ж, у)к  | ж G и & у G и}, the correspondingly defined Cartesian 
product.

Let 11F  defines a possible pairing function”, where F  is a three-place 
Bourbaki relation, abbreviate the conjunction of these statements:

(C-22-0) VxVy3 exactly one z with F(x,  г/, z)
(C-22-1) VzVuVv\/xVy(F(u, v,z)  & F(x,y ,z )  =Ф [u =  ж&и = у]).

Let “X  x F Y  e V ” denote the formula 3WVw(w G W  <=> 3x3y(x G 
X  foy e Y & F(x }y,w)).

Consider the following argument, which I present in ZF-style set theory. 
C-23 Lemma Suppose x  t-> G(x) is a one-place function with domain V. 
Define F(x ,y ,z )  <*=»df z  = (G(ж), (ж, у)к)к-  Then F  defines a possible 
pairing function.
Proo f : Write (ж, y)F for (G(ж), (ж, у)к)к-  We have only to check that 
the crucial property (ж, y)F =  (z, w)F = »  ж = z & у = w is provable. 
But that is immediate from the properties of the Kuratowski ordered pair.

4 (C-23)

024 Lemma Now let A be a set, and let В =  { 0 } ;  let G and F be as 
above; then if A x F В  G V, then the image G “A of the set of points in A  
under G is a set.
Proof: If A x F В e V ,

A x f B  = {(a, b)F | a G A, b G B]  =  {(G(a), (a, b)K)K | a G A, 6 G B}.

G “A =  {G(a) | a G A} С 1JU(^ x f B), s o  the lemma will follow from two 
applications of the axiom of union, which will be become available to us on
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a second reading of §3 №2, and an application of the scheme of separation, 
which we have been advised to take as an axiom. H (C-24)

Now let GT be the system comprising the axioms of extensionality, 
pairing and power set, together with the scheme of separation: since I~gt 
u x K v С V(V(\J{u,  v})), the set-hood oi u x k  v when и and v are sets 
can be proved in GT plus the axiom that u U v  (E V,  a weak form of the 
axiom of union.

025 Metatheorem The following systems are equivalent over GT: 
(C-25-0) Bourbaki’s scheme S8 of selection and union;
(025*1) Godement’s scheme of union, discussed below;
(025-2) the axiom of union plus the scheme of replacement;
(C-25-3) the axiom of union plus the scheme that for each formula F  

with three free variables, the sentence expressing “if  F defines a possible 
pairing function then for each A and В , A Хр В is a set” is an axiom.

Since GT is a subsystem of Z, in which many instances of replacement 
fail, Godement’s claim to prove the existence of cartesian products, no 
matter what definition of ordered pair is used, must also fail.

026  In Remark 4 on page 56, the existence of the set of natural numbers 
is assumed (and referred to the existence of infinite sets, stated to be an 
axiom, but not formulated: so far there has been no proper definition of 
fin ite).

C'27 The Axiom  of Choice sneaks in via  the т-operator, about which 
Godement has said, on page 37, §0 №9:

It is also used nowadays in place of the Axiom of Choice. (§2 
Remark 7).

Turning to §2 № 8 , on page 63, we find in Remark 8 , not 7, a demonstration 
of the use of r  to get AC:

... for want of anything better we can define a function h by 
h(y) =  Tx (f{x) = y) ...

C-28 In §3 he turns to unions and intersections. In Remark 1 on page 
70 it is mentioned that we need an axiom of union to form X  \JY ,  with 
forward reference to № 2 . Of № 2 it is said that it may be omitted at a first 
reading. It is stated that the existence of the union of an arbitrary family 
is an axiom of mathematics. But ZF-istes must beware! for Godement’s 
axiom of union is really a scheme which is much stronger than the simple 
axiom of union, and therefore I shall speak of it as Godement’s scheme of 
union.
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With that point in mind, we have now had the axioms of extensionality, 
pairing, infinity, and power set, and the schemes of separation and union; 
we continue to await a definition of finite.
029  That his system is equivalent to Bourbaki’s follows from an examina
tion of Bourbaki’s schema de selection et reunion found as S8 of the Theorie 
des Ensembles, on page E II.4:

Soient R une relation, x et у des lettres distinctes, X  e tY  des 
lettres distinctes de x et у et ne figurant pas dans R. La relation

(Vy)(3X)(Vx)(R = *  (* € X))  = >  (VY)Coll*((3y)((y 6  Y) et R)) 

est un axiome.
Bourbaki is aware of the power of S8 , drawing attention to the differ

ence between the union of a family of subsets of a given set and the union of 
a family of sets where no containing set is known. Thus the ZF-ists’ axiom 
of union together with schemes of separation and replacement is equivalent 
to Godement’s scheme of union and to Bourbaki’s scheme of selection and 
union.

030  §4, on equivalence relations, calls for little comment. Example 4 on 
page 78 speaks of the set of rational integers, though we still await a defi
nition of N.

031  In §5, on Finite sets and integers the concept of finiteness will be at last 
defined. Kronecker’s witticism is here attributed to Dedekind. Godement 
remarks that the integers with which we are concerned here are mathemat
ical objects, not concrete integers, which underlines the need for a formal 
definition of finite.

In №1, he introduces the notion of equipotence; his Theorem 1 is a 
version of AC: any two sets are comparable. (Bernstein’s proof is given in 
Exercise 5).
032  In §5 №2, the cardinal of X  is elegantly defined as ry(Eq{X,  У)), 
emphasizing the reliance on the identity of т-selected witnesses to equivalent 
propositions: my readers should bear C-9 in mind.

On page 90, discussing equipotence, he emphasizes that the “ordinary” 
numbers are metaphysical ideas derived from concrete experience, whereas 
“Mathematical” numbers are objects defined by following the procedures 
of §0 .

His treatment of cardinals follows Bourbaki. Thus 0 is defined on page 
90 to be the cardinal of the empty set, therefore some object equipollent to 
the empty set; therefore (as remarked by Bourbaki but not by Godement) 
the empty set itself.
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1 is the cardinal of the singleton of the empty set, so is some object 
with exactly one element and therefore not equal to 0. The paper [M8] 
shows how this definition gets out of hand.

2 is the cardinal of the von Neumann ordinal 2, so is some object with 
exactly two elements. The calculations of [M8] would presumably yield 
even more monstrously long assemblies for this and other finite cardinals. 
There is a forward reference to §5 №4. Finally he assumes without proof:

Theorem 2: any set o f cardinal numbers has a sup and an inf.
C-33 COMMENT That too involves an appeal to replacement. Without it, 
curious things happen. Suppose we define Card(ri) to be the set {Nfc | к < 
n}, where we take to be an initial ordinal: a reasonable definition, by 
Bourbachiste standards, as it is indeed a set of cardinality n. But then in a 
set theory without some version of the axiom of replacement, (for example, 
in Zermelo set theory) the class of finite cardinals as we have just defined 
them need not be a set.
C-34 COMMENT There will be other unheralded uses of replacement: for 
example, the construction on page 97 of the set U n e N ^ 71’ anc* m  the 
footnote on the same page, the proof that the class of cardinals less than a 
given cardinal is a set.

His exercise 3 page 108 asks the reader to prove that the countable 
union of countable sets is countable: another covert use of AC!
C-35 In §5 №3, he defines the sum of a family of cardinals. That enables 
him, in № 4 on page 95, to follow Dedekind’s approach and define a cardinal 
x  to be finite if x Ф x 4- 1; a natural number is then defined to be a finite 
cardinal; and a set is finite if its cardinal is finite.

С-36 In № 5 Godement derives the existence of the set of natural numbers 
from the existence of infinite sets, which he has previously stated to be one 
of the axioms of mathematics. Thus his axiom of infinity would state that 
there is a cardinal x  which equals x  +  1.
C-37 REMARK His definition of finite relies on a mild form of the Axiom 
of Choice to be correct; a set is Dedekind-infinite iff there is an injection of 
N into it; and if ZF is consistent, then there are models of the ZF axioms 
without AC in which there are Dedekind-finite sets not equipotent to any 
finite ordinal.
С-38 That appears to be all the axioms given by Godement. I find no 
mention of an axiom of foundation; but, as we have seen, the scheme of 
replacement is embedded in his scheme of union.
C-39 COMMENT Mathematicians, wrote Godement, have small patience 
with vague phrases; why then should they tolerate the purposeless im
precision of the Bourbaki-Godement treatment of finite cardinals and AC?
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M isunderstandings of work of logicians

When Godement comes to the work of Godel and other logicians, he 
makes more serious errors. For example, on page 26, §0, №4, Remark 2 , 
after defining the notion of an undecidable relation, he wrote:

A t the present time no example is known of a relation which can 
be proved to be undecidable (so that the reader is unlikely to meet 
one in practice ...) But on the other hand the logicians (especially 
K. Godel) showed thirty years ago that there is no hope of eventu
ally finding a “reasonable proof ’ of the fact that every relation is 
either true or false; and their arguments make it extremely prob
able that undecidable relations exist. Roughly speaking the usual 
axioms of mathematics are not sufficiently restrictive to prevent 
the manifestation of logical ambiguities.

C-40 Comment Notice the use of the word fact.
041 COMMENT The French original ... du fait que toute relation est soit 
vraie soit fausse ... of those words was written in 1963, thirty three years 
after the incompleteness theorems were announced. What is one to make 
of these statements? If he believes that theorems are deduced from a small 
number of axioms laid down once and for all, and if that means that the set 
of axioms is recursive, then if his chosen system is consistent, undecidable 
relations are certainly known; and given his definition of “true” as provable 
and “false” as refutable, it is simply not the case that every relation is 
either true or false. Why is he so reluctant to allow Godel’s discoveries to 
be established rather than be merely “extremely probable”?

The last sentence quoted above is perfectly correct, more so than per
haps Godement realised. Incompleteness pervades mathematics: the phe
nomenon may be found in almost any branch of mathematics and is not 
something confined to artificial and contrived assertions on the very margin 
of our science.
042  In §0 № 4, on page 26, he writes

Remark 3: ... contradictory relations are both true and false. The 
efforts of the logicians to establish a priori that no such relations 
exist have not so far met with success.

COMMENT That last statement wholly misrepresents the import of the 
Incompleteness Theorems.

С-43 We have seen that he follows Bourbaki in using r  to get the Axiom of 
Choice. His comment,

The possibility of constructing a [choice set] (which is obvious if 
one uses the Hilbert operation) is known as the Axiom of Choice.
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Until recent times it was regarded with suspicion by some mathe
maticians, but the work of Kurt Godel (1940) has established that 
the Axiom of Choice is not in contradiction to the other axioms 
(which of course does not in any way prove that the latter are 
non-contradictory)

is well-phrased, though it might leave the reader wondering what the prob
lem was that Godel solved.
C-44 The first French edition of Godement’s Cours d ’Algebre was written, 
presumably, just before the announcement of Cohen’s discoveries. In Re
mark 9 of §5 №7, on page 98 of the 1969 English translation, he mentions 
Cohen’s “magnificent result” that CH is undecidable, and acknowledges 
that his earlier assertion that the reader would not encounter an undecid
able relation should now be amended; but he makes no mention of Godel’s 
consistency proof for CH.

In his later French editions, such as the impressions of 1973 and 1980, 
he does mention Godel’s relative consistency proof for the continuum hy
pothesis, and also rewrites the other three Remarks that I have just quoted, 
so that his readers are now told something about the existence of undecid
able statements in normal mathematics.

Unease in the presence of logic

Besides the above mis-statements by Godement concerning the work 
of logicians, we find repeatedly an undertow of unhappiness about logic, 
which, sadly, has not been corrected in his later French editions.

He writes on page 22, in §0 №2,
It has been calculated that if one were to write down in formal
ized language a mathematical object so (apparently) simple as 
the number 1, the result would be an assembly of several tens o f 
thousands of signs.

045 COMMENT This remark goes back to Bourbaki, and it is shown in 
[M8] that the estimate given is too small by a factor of perhaps a hundred 
million. But even if their estimate were correct, what is the point of all 
those symbols? Why not follow Zermelo and von Neumann and define 0 
as 0  and 1 as {0}?

Poincare mocked Couturat for taking perhaps twenty symbols to define 
the number 1, in an attempt to reduce that arithmetical concept to one of 
logic; now Bourbaki is taking 4 European billions (= American trillions) of 
symbols to do the same thing: one million thousand-page books of densely 
packed symbols. Suppose an error occurred somewhere in those pages: 
would anyone notice? Would it matter? That is not where the mathematics 
resides.
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046  In short, the chosen formalism is ridiculous, and Godement knows that 
it is ridiculous, for he makes the excellent remark:

A mathematician who attempted to manipulate such assemblies 
of signs might be compared to a mountaineer who, in order to 
choose his footholds, first examined the rock face with an electron 
microscope.
Did it ever occur to him to wonder whether other formalisms might be 

possible? I fear that where logic is concerned, Godement’s state of mind 
is that imputed32 by Strachan-Davidson to the schoolboy who “believes in 
his heart that no nonsense is too enormous to be a possible translation of 
a classical author.”

Let us list the other symptoms:

On page 25, there is a footnote:
it is very difficult, in practice, to use the sign = >  correctlyv 

On page 31, another footnote:
it is very difficult to use the signs 3 and V correctly in practice, 
and it is therefore preferable to write “there exists” and “for all”, 
as has always been done.vl
What will he do, I asked myself, with the set-forming operator? The 

answer astonished me: he does not use it. I have been right through the 
book searching, and I cannot find it at all. He introduces signs for singletons 
and unordered pairs; but every time he wants to introduce a set, for example 
a coset in a group, he writes out in words “let F  be the set of 

In Remark 5 of §1 №3, on page 44, Godement says
these examples show that the use of the word “set” in mathematics 
is subject to limitations which are not indicated by intuition.™

In Remark 6 he says
... apparently obvious assertions cease to be so simple when it is 
a question of effectively proving them. The Greeks were already

32 according to Sir Donald Francis Tovey [T, page 10].
v II est du reste fort difficile, dans la pratique, d ’utiliser *correctement* le 

signe =Ф- .
VJ II est fort difficile d ’utiliser *correctement* les signes 3 and V dans la pratique 

courante; il est done preferable de se borner a ecrire “il existe” et “pour tou t” 
comme on l ’a toujours fait.

vii Ces exemples montrent que l ’usage du m ot “<ensemble” est soumis en Mathe-
matiques a des limitations que 1’intuition n ’enseigne pas.
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aware of this.vm
and on page 98, in commenting on Example 1 of §5 № 5, he says:

it is precisely one of Cantor’s greatest achievements that he dis
qualified the use o f “common sense” in mathematics.lx

C-47 COMMENT The cumulative effect of all these comments is this: Gode
ment tells the reader that a simple concept such as the number 1 can take 
thousands of signs to write out formally, that it is very difficult to use con
nectives correctly, and that it is very difficult to use quantifiers correctly. 
Coupled to this comprehensive group of negative messages about logic are 
some equally discouraging statements about set theory: that the concept 
of ‘set’ is counter-intuitive, that apparently obvious assertions are hard to 
prove, that common sense has been disqualified from set theory; further, 
he avoids the usual notation for forming sets and he evinces a remarkable 
reluctance even to state the axioms of set theory.

Can I be blamed for suspecting that Godement distrusts formalised 
reasoning? I know he says, in §0 № 1, on page 22, that
formalized mathematics exists only in the imagination of mathematiciansx
but I feel he would rather even that did not happen. He brings to mind a 
remark of Padoa:

Logic is not in a good state: philosophers speak of it with
out using it, and mathematicians use it without speaking 
of it, and even without desiring to hear it spoken of.

In sum, his message is that logic and set theory are a morass of con
fusion: but what has happened is that Bourbaki, whom he follows, have 
chosen a weird formalisation, they have noticed that in their chosen system 
proof is very awkward, and they have concluded that the whole thing is the 
fault of the logicians.

Nowhere, in Bourbaki or in Godement, is there any suggestion that 
other formalisations are possible. Godement says “mathematicians are im
patient of vague statements”, he explains that formality is a good thing, 
and then like a sharper forcing a card, offers you a choice of exactly one 
formalisation, and, at that, one that is cumbersome and destructive of in
tuition.

V1,i Ceci montre que des assertions en apparence 4videntes cessent d ’etre simples 
lorsqu’on veut effectivement les demontrer, c ’est ce que les Grecs avaient deja 
remarque.

“  C ’est precisement l ’une des plus grandes reussites de Cantor que d ’avoir pu  
disqualifier d ’emploi du “bon sens” en Mathematiques.

x Elies n ’existent bien entendu que dans rimagination des mathematiciens.
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C*48 If their chosen system, Bou54, is what the Bourbachistes think logic 
and set theory are like, it is no wonder that they and their disciples are 
against those subjects and shy away from them. But on reading through 
Godement one last time, I was left with the impression that he is not so 
much a disciple of Bourbaki as a victim: loyalty to the group has obliged him 
to follow the party presentation of logic and set theory, and his intelligence 
has rebelled against it. I would love to teach him.
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D: It is this distrust, intensified to a phobia by the 
vehemence of Dieudonne's writings, . . .

J EAN DIEUDONNE is acknowledged by many witnesses to have had 
a central, even a dominant, role in the successful functioning of the 

Bourbaki group: Armand Borel in his essay [Bor] mentions shouting matches, 
generally led by Dieudonne with his stentorian voice, and writes

“There were two reasons for the productivity o f the group: the 
unflinching commitment of the members, and the superhuman 
efficiency of Dieudonne. ”
Pierre Cartier in his interview [Sen] with the Mathematical Intelli

gencer describes Dieudonne as “the scribe of Bourbaki” , and also makes, 
among numerous thoughtful points, these significant assertions:

Bourbaki never seriously considered logic.
Dieudonne himself was very vocal against logic.

D-0 That last disclosure is endorsed by a passage in Quine’s autobiography 
[Q, page 433]:

“[In 1978] a Logic Colloquium was afoot in the Ecole Normale 
Superieure. [...] Dieudonne was there, a harsh reminder of the 
smug and uninformed disdain of mathematical logic that once 
prevailed in the rank and vile, one is tempted to say, of the math
ematical fraternity. His ever hostile interventions were directed 
at no detail o f the discussion, which he scorned, but against the 
enterprise as such. A t length one of the Frenchmen asked why he 
had come. He replied ‘J ’etais invite.’ ” 33

There is admittedly a tradition of hostility to logic in France: one can 
look back to the suppression of Port Royal in the 17th century, and yet 
earlier to Abelard who lamented that his logic had made him odious to the 
world; in the twentieth century, Poincare34 quipped that “la logique n ’est 
plus sterile, elle engendre des paradoxes” ; Alexandre Koyre in “Epimenide 
le menteur”35 wrote, less charitably: “la logique symbolique forme une 
discipline hybride, aussi ennuyeuse que sterile”; and papers of Tarski on 
the Axiom of Choice submitted to the Comptes Rendus in the late 1930s

33 An eye-witness has suggested that Quine might have been over-reacting to 
Dieudonne’s characteristic behaviour.

34 See Chapter II of [M-K] for some consequences for France of Poincare’s 
perceived position on logic.

35 Reviewed by Max Black in [В12].
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were rejected by Lebesgue as absurd and then by Hadamard on the grounds 
that AC is a trivially obvious fact.

But it might be said that Bourbaki have continued that tradition, 
perhaps taking their cue from Poincare without remarking that he was 
against logicism rather than against logic. We have seen the undertow in 
Godement’s treatise; and if we look for further evidence of the antipathy of 
the Bourbachistes to logic, we find that the finger points at Dieudonne. So 
whether or not the Bourbaki bias was due solely to one extremely energetic 
man, it seems desirable to examine Dieudonne’s position.

But that is easier said than done, for just as Leibniz has been spotted 
(notably by Couturat, following Vacca) saying one thing to the Queen of 
Sweden and saying another to his private diary, Dieudonne seems to have 
one opinion when he is thumping the tub on behalf of Bourbaki and another 
when he is musing as a private individual. Though his energy is evident, 
the coherence of his position is not.

Dieudonne’s earlier writings on foundational questions have been 
touched on in [М3]; here we look at his essay entitled La Philosophic des 
mathematiques de Bourbaki which is to be found on pages 27-39 of Tome I 
[Di2] of an anthology of his papers in two volumes published by Hermann of 
Paris in 1981 with the title Choix d ’CBuvres de Jean Dieudonne de Ulnstitut.

The essay contains many good debating points and delightful jibes 
at various figures such as Russell and (to my surprise) Poincare, but the 
title is strange, since it suggests that the essay will present or discuss the 
philosophy of mathematics of Bourbaki, yet the author is at pains to explain 
that Bourbaki have only ever made two statements about the philosophy 
of mathematics, and that the opinions expressed are his own.

I could find no reference, in that anthology, to any previous appearance 
of that essay, which on internal evidence seems to be the text of a talk given 
at, and towards the end of, a gathering of philosophers held not before 1977, 
since he cites his Panorama des mathematiques pures, which was published 
in that year.
D-l The first message of the paper is to warn his audience that philoso
phers of mathematics are unaware of the scope of modern mathematics, 
and whilst they believe they are discussing today’s mathematics, in fact 
they are discussing that of the day before yesterday.
D-2 COMMENT That chimes with my experience of joint seminars on this 
theme: the philosophers know no mathematics and the mathematicians no 
philosophy, so that the interaction is weak. My readers should be similarly 
warned that Dieudonne is not discussing logic and set theory as understood 
in the first decade of the twenty-first century, but the logic and set theory 
of the first quarter of the twentieth.
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D-3 So now Dieudonn<§ will tell the philosophers what mathematicians are 
up to, and his second message is that 95% of mathematicians agree with 
Bourbaki and the rest are crazy, and arrogant with it.

He has two ways of saying “almost all” mathematicians: one is to say 
that 95% of mathematicians do this or think that; and the other is to say 
that the quasi-totality of mathematicians do that and say this. I am not 
sure whether the quasi-totality means at least 99.9%.
D*4 He considers that whereas at the beginning of the twentieth century 
foundational questions commanded the attention of many of the greatest 
mathematicians of the day, from 1925 onwards that has ceased to be the 
case, and that logic and set theory have become marginal disciplines for 
the quasi-totality of mathematicians:

“Au debut du vingtieme siecle .. les plus grands mathematiciens se 
passionaient pour les questions des “fondements” des mathema- 
tiques; aujourd’hui le divorce est presque total entre ulogiciens” et 
“mathematiciens”. .. II ne faut pas cesser de redire que, pour la 
quasi totalite des mathematiciens d ’aujourd’hui, la logique et la 
theorie des ensembles sont devenues des disciplines marginales: 
elles se seraient definitivement arretees apres 1925 qu’ils ne s ’en 
apercevraient тёте pas.

... je ne parle pas d ’opinions mais de faits. Les travaux 
de Godel, Cohen, Tarski, J. Robinson et Matijasevich n ’exercent 
aucune influence.”
Dieudonne makes both his position, and his ignorance of developments 

in logic, very clear. His choice of the date 1925 is puzzling: does he allude 
to the completion of Ackermann’s thesis?
D-5 He pauses to swipe at the study of large cardinals.

“Les speculations sur les “grands” cardinaux ou ordinaux laissent 
froids 95% entre eux, car ils n ’en rencontrent jamais.”
Let me pause too, to remark that the paper [M5] gives examples to 

show that there are straightforward problems of ordinary mathematics in 
which large cardinal properties prove to be embedded, even if ordinary 
mathematicians are not aware of the fact.
D*6 He warns that many philosophers unconsciously identify two parts of 
mathematics, logic-and-set-theory on the one hand, and the rest on the 
other,* which, he believes, are in fact strongly separated in the practice of 
mathematics: paragraph I 3 of the essay reads, in part:

* I take that as an admission that logic-and-set-theory are indeed part of 
mathematics.
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le divorce est presque total entre les mathematiciens s ’occupant 
de Logique ou de Theorie des ensembles (que j ’appellerai pour 
abreger “logiciens”) et lesautres (que j ’appellerai simplement “ma
thematiciens”, pour ne pas toujours dire “mathimaticiens ne s ’oc
cupant pas de logique ni de theorie des ensembles.”)

D-7 Dieudonne then says he will give special meanings to the words “lo
gicians” and “mathematicians” ; I shall indicate those by capital letters; 
thus he defines Logicians to be mathematicians concerned with logic or set 
theory; and Mathematicians to be mathematicians-concerned-with-neither- 
logic-nor-set-theory.

Presumably from that point on in his essay, he intends those words to 
be used in that exclusive sense, and supposes that every mathematician is 
either a Mathematician or a Logician, but not both.

But how exclusive is it? A mathematician who works in several areas, 
one of which is logic, need not have logic on the brain the whole time. 
Littlewood, for example, once wrote a paper on cardinal arithmetic, but no 
one has ever accused him of being a logician. Everyone would call Shelah 
a logician; but when he solved Kuros’ problem by proving that there is 
an uncountable group with no uncountable subgroup, he harnessed small 
cancellation theory to ideas from combinatorial set theory. And when he 
gave primitive recursive bounds for van der Waerden’s theorem, was he 
doing number theory or was he doing recursion theory?

How, for example, would Dieudonne have categorized Louveau?
D-8 How, indeed, would he categorize himself? On pages 354-356 
in the same volume [Di2] of Selected Papers we find a short note called 
“Bounded sets in (F)-spaces” , first published in the Proceedings of the 
American Mathematical Society 6  (1955) 729-731.

He asks two questions about locally convex metric spaces, and using 
the Continuum Hypothesis -  ho, ho, ho -  gives a counterexample to 
each.**

He writes “It would be interesting to give negative answers without the 
continuum hypothesis”. Without looking at the specific questions asked, 
we might remark his implied belief that a positive answer without the con
tinuum hypothesis would not be interesting. Indeed it might place the 
question beyond mathematics, for it would then not have been answered 
within the scope of ZF.

Suppose his question had been equivalent to CH: would that be of

** He uses a lemma, assuming the Continuum Hypothesis, the conclusion of 
which is easily equivalent to the assertion that D, the dominating number, equals 
«1 .
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interest? Or is it that CH to him is only a prop for a pre-proof which, he 
hopes, will eventually discard that prop?

In his essay he declares that for the quasi-totality of today’s Mathe
maticians logic and set theory have become marginal disciplines. — How 
did he view his own use of the continuum hypothesis? He thought his paper 
worth including in a selection made 26 years after the paper was originally 
published.

D-9 We have heard Dieudonne say that Godel, Cohen, Tarski, Julia Robin
son and Matijasevic, profound though their work is, have exerted no in
fluence (positive or negative) on the solution of the immense majority of 
problems which interest Mathematicians.

Is that true? What one finds on surveying the mathematical scene is 
a slippery characteristic: a problem, thought to be Mathematical, which 
proves to have a solution using ideas from Logic, is liable to be declared 
by those formerly interested in it to have revealed itself to be unimpor
tant. One might cite here the response of the late J. Frank Adams to 
the information that Shelah had solved Whitehead’s problem concerning 
free Abelian groups: “Whitehead would only have been interested in the 
countable case” .*

There are many problems stated by Mathematicians to be of interest 
and which are later proved, usually by Logicians, to have a Logical compo
nent. The continuum hypothesis was included by Hilbert — a Mathemati
cian or a Logician in Dieudonne’s eyes? — in his famous list of 1900, and so 
was the search for an algorithm for the solution of Diophantine equations. 
W hat is this strange interest that is extinguished should the problem prove 
not to have an answer of the kind simple Mathematicians seem to expect?
D-io Dieudonne claims to be speaking of facts; indeed he might almost be 
claiming, in Sir Herbert Butterfield’s immortal phrase, that the ‘facts’ are 
being allowed to ‘speak for themselves’. But the facts are not that clear. 
On pages 4 and 5 of their 1958 book on the Foundations o f Set Theory, (and 
on page 4 of the revised edition [Fr-bH-L]), Fraenkel and Bar-Hillel write 
that “Nevertheless, even today the psychological effect of the antinomies 
on many mathematicians should not be underestimated. In 1946, almost 
half a century after the despairing gestures of Dedekind and Frege, one of 
the outstanding scholars of our times made the following confession” , and 
they then quote these words of Hermann Weyl36:

*  Have any of my readers seen anything in Whitehead’s writings to support 
Adams’ contention?

36 in Mathematics and Logic, a brief survey serving as preface to a review of 
“The philosophy of Bertrand Russell”, Am. Math. Monthly 53 (1946) 2-13.
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“We are less certain than ever about the ultimate foundations of 
(logic and) mathematics. Like everybody and everything in the 
world today, we have our “crisis”. We have had it for nearly fifty 
years. Outwardly it does not seem to hamper our daily work, 
and yet I  for one confess that it has had a considerable practical 
influence on my mathematical life: it directed my interests to 
fields I  considered relatively “safe”, and has been a constant drain 
on the enthusiasm and determination with which I pursued my 
research work.”
Weyl’s statement rebuts Dieudonne’s suggestion that foundational work 

has had no influence: Weyl, for one, was influenced to move away from areas 
where the paradoxes had manifested themselves.

So I am not convinced by Dieudonne’s attempt to link logic and set the
ory and separate them from the rest of mathematics; each mathematician 
sets his own boundaries; there are among my acquaintanceship mathemati
cians with whom I have fruitful exchanges when I am in set-theorist mode, 
but whose eyes glaze over should I ever say anything to them when I am in 
logician mode.

D-ll In the section on les conceptions de Bourbaki, he says that Bourbaki 
have invented nothing but have restricted themselves to making explicit the 
practice of those mathematicians called “formalists”, who, as we shall see, 
(or rather, as Dieudonne will tell us) form the quasi-totality of mathemati
cians of today.

II.7: Bourbaki has only two things to say: all are free to think what 
they will about the nature of mathematical entities or about the truth of 
the theorems they use, so long as their proofs can be transcribed into the 
common language
D 12 ASIDE — the common language being that imposed by Bourbaki —
and as for contradictions, Bourbaki believes in doing nothing till an actual 
contradiction occurs.
D-13 COMMENT Really what he is saying is that most mathematicians axe 
content to be ignorant, and Bourbaki wishes to reinforce that ignorance.

Formalists are interested in objects ... the interpretations 
of a system o f signs that is subject to a rigorous syntax that is 
independent of any interpretation.

D-14 COMMENT I suspect Dieudonne thinks, reasonably enough, that all 
minds are different and that the common ground is to be subscription to a 
particular syntax.

In the syntax are the rules o f classical logic and axioms of ZF.
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D-15 COMMENT That statement is false, for Bourbaki omit the axiom of 
foundation, which is not derivable from the axioms that they give: the 
issue, for Logicians, here is that of collection versus replacement.

Dieudonne shirks the question of why these particular rules should be 
adopted; the “common language” appears to be one imposed by fiat, of 
which no discussion is permitted, and hence the intuition is paralysed.

II.3: ZF gives only the bare theory o f sets, which 95% at least o f today’s 
Mathematicians consider to be without interest.
D-16 COMMENT I wonder what Dieudonne means by “the bare theory of 
sets” . It might be that Dieudonne is confusing two things: the theory of sets 
and the theory of Set, the category of sets, of which the objects axe indeed 
sets without any structure, about which, taken in isolation, there would be 
little to say. But post-Zermelo set theory studies the membership relation 
€, and that relation, when the axioms of ZF are assumed, provides so rich 
a universe that large amounts of mathematics can be expressed within it.

II.4: the axioms of a structure are disguised definitions.
D-17 COMMENT One feels that for Dieudonne a structure is a type rather 
than a token.
D-18 Bourbaki evidently believe they have provided a formalism that is 
adequate for the quasi-totality of Mathematicians. They also seem very 
keen that no-one should examine the formalism that they provide. They 
have not explained why their chosen axiomatisation—somewhere between 
ZFC without foundation and ZF with global choice—is to be the standard. 
Indeed, given that Bourbaki, as Corry [Corl, 2] has shown, ignore their 
own foundations, why should others be expected to use them?

II.6: the quasi totality of Mathematicians are naif pre-Cantorians.
D-19 COMMENT Is that desirable? Grothendieck in his re-structuring of 
algebraic geometry needed some set theory, but he only knew the cruder 
parts of set theory as presented in Bourbaki’s book: how might his work 
have advanced if he had had the subtler parts of set theory at his fingertips?

D-20 COMMENT As for the “pragmatic” suggestion that no one should 
think about possible contradictions: in one way it is sensible; in another it 
is idiotic. Dieudonne has used CH: was Godel wasting his time in seeking 
and finding a consistency proof for it? I am not saying that people should 
go out of their way to think about possible contradictions; but, as Saccheri 
found, looking for a consistency proof is much the same as looking for an 
inconsistency proof; and sometimes one finds a “proof” of a contradiction 
which turns out to be a proof of something quite different.
D-21 In the resume Dieudonne says that Bourbaki’s system is implicit in
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the work of the quasi-totality of mathematicians; and they are all happy to 
be naive about philosophical questions. Is that really so desirable?

Dieudonne in effect is saying in a patronising manner,
“NO NEED FOR AN Y  OF YOU YOUNG CHAPS TO 
W ORRY YO UR HEADS ABOUT FOUNDATIONS, WE 
HAVE DONE IT ALL FOR YO U.”
That is a dangerous position, for it is an attempt to gag the future. 

Look how Gordan criticised Hilbert for his refusal to present a certain proof 
within the then accepted rules; or turn to the book [Ad] of J. Frank Adams. 
On page 293, in section 14, “A category of fractions”, he writes:

“(Added later.) I  owe to A.K.Bousfield the remark that the proce
dure below involves very serious set-theoretical difficulties. There
fore it will be best to interpret this section not as a set of theorems, 
but as a programme, that is, as a guide to what one might wish 
to prove.”

and on page 295, presumably discussing the same difficulty, he writes:
“(Added later: unfortunately there is no reason why the result 
should be a small category.)”
In other words, he has essayed a localisation construction, and it 

founders on his inadequate grasp of set theory. Later Bousfield [Bousl,2] 
found a rigorous, set-theoretically correct replacement for Adams’ ill-founded 
argument, and very recently Fiedorowicz [AF] has shown how to correct 
Adams’ original lectures.
D-22 The point is enriched by a paper of Casacuberta, Scevenels and Smith 
[CaScS] entitled “Implications of large-cardinal principles in homotopical 
localization.” They find that the question “Is every homotopy idempotent 
functor equivalent to localization with respect to some single map?”, which 
was motivated by Bousfield’s discovery, cannot be answered in ZFC, for 
they find that their localisation principle actually implies the existence of 
fairly large cardinals, and follows from the existence of the even stronger 
hypothesis known as Vopenka’s principle; thus their localisation principle 
inescapably involves those same large cardinals that Dieudonne was so con
fident* the quasi-totality of mathematicians would never encounter.

More recently [BCM, BCMR], Bagaria, Casacuberta, Rosicky and the 
present author have obtained similar results from a weaker hypothesis 
than Vopenka’s principle, namely the existence of a supercompact cardinal. 
Casacuberta and Rosicky think in terms of categories, whereas Bagaria and
I are set theorists, and we have had to keep translating from one perspective

* as was Mac Lane.
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to the other, each perspective contributing to the outcome; a set-theoretical 
argument having to be re-worded so that it might have meaning in cate
gories where the objects do not have members; an example from category 
theory having to be explained to set theorists. The experience has only re
inforced my belief in the necessity of a pluralist account of the foundations 
of mathematics.
D-23 To look briefly at the other non-mathematical essays in [Di2]: in his 
piece on L ’evolution de la pensee mathematique dans la Grece ancienne, 
Dieudonne argues against Launcelot Hogben’s view that mathematics is 
utilitarian. Thus he attacks logic using the same weapons that others use 
to attack mathematics, attacks he would wish to repulse.

In his essay, Liberte et Science Modeme, he writes: “li faut, pour 
pouvoir faire des decouvertes en science, avoir l ’audace de contredire les 
idees regues” — a bit rich, that, but not as rich as his final paragraph on 
the philosophy of Bourbaki:

“La plus charitable hypothese est de penser que cela n ’est du qu’a 
rignorance, ou au refus de s ’informer, ou a l ’incomprehension; 
sinon, il faudrait concluire qu’il s ’agit d ’illumines aveugles par leur 
fanatisme, et que la “crise” qu’ils croient voir dans les mathema- 
tiques d ’aujourd’hui ne se trouve que dans leur cerveau.”
In L ’abstraction et Vintuition mathematique he talks sense: he says 

there is more than one intuition—precisely the grounds on which I argue 
for a pluralist view of the foundations of mathematics—and that there are 
transfers between intuitions; here and in Liberte he is arguing in favour of 
those conditions that favour creativity; precisely those conditions which, if 
claimed by logicians, he so strongly rejects.
D-24 It should perhaps be remarked that in the first volume Foundations 
of modem Analysis [Dil] of his treatise, Dieudonne, though referring the 
reader to [Bou54] for a formal axiomatisation, lists in his Chapter I axioms 
of a system that is, one ambiguity aside, essentially Bou49 and not Bou54: 
the axioms he mentions are extensionality, singleton, power set, the scheme 
of separation, ordered pairs, cartesian products, and the axiom of choice. 
He discusses families of subsets of a given set; the ambiguity is that when, 
later, he enunciates the principle that the union of a countable family of 
countable sets is countable he does not state that the elements of the family 
are required to be subsets of a given set, though he might have intended 
that restriction, since he offers a proof. But the proof reads slightly oddly, 
since it uses, as it must, the axiom of choice, but does not mention it. On 
the other hand Dieudonne quite unnecessarily states as an additional axiom 
the easy consequence of the axiom of choice, that each infinite set has a 
denumerably infinite subset.
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D-25 In his last book, [Di3], Dieudonne makes the same mistake that he 
made in his position papers of fifty years previously: he went to his grave 
believing that truth and provability are identical.



98 A. R. D. Mathias

E: ... and fostered by the errors and obscurities of a 
well-known undergraduate textbook,

T URN NOW TO A TEXTBOOK that has had a wide following in France: 
Tome 1, Algebre, of the Cours de mathematiques by Jacqueline 

Lelong-Ferrand and Jean-Marie Arnaudies, anciens eleves de l’Ecole nor- 
male superieure. This book is the first of a four-volume treatise of mathe
matics, which is described by Alain Pajor as a classic which students often 
consider to be difficult and use like a dictionary. Its first edition was in 
1978; I work from the third edition, of 1995. Ominously, among the works 
cited in its Bibliographie are these two:

N. Bourbaki, Theorie des ensembles, published by Hermann in 1957;
R. Godement, Cours d ’algebre, Hermann, edition of 1966;

and the influence of those two works reveals itself in the choice and the 
bias of the presentation of logic and set theory in Chapter I of this text
book, which chapter, though, displays a further degeneration of clarity, 
correctness and coherence as compared with the above two sources. In
deed I propose to criticise Chapter I rather severely. In doing so I aim to 
show, first, that what the authors have to say on foundational themes is 
often lamentably vague and, worse, in places actually false; and, secondly, 
that, some of their Delphic pronouncements being only interpretable in the 
light of their sources, their account must be seen as deriving from those of 
Hilbert, Bourbaki and Godement, and thus as continuing the descent into 
incoherence; from this perspective the banning of logic from the CAPES 
might be a reasonable consequence of the belief that seems to have taken 
hold, that the subject is too messy to inflict on the young and on their 
teachers.

My typographical conventions in this section: passages in slanted type, 
if in French, are taken direct from their text; if in English, are my translation 
of a passage from the text. Passages in roman type are my commentary on 
their text, with bold  face used to emphasize certain of my comments. I use 
italic type to highlight certain phrases, most often reproducing a highlight 
in their text. A centred section heading [L-F,A] 1.2 marks the beginning 
of my main criticism of their Chapter I, section 2. A marginal reference 
[LFA] p2,-6 will be to page two of their book, fine six from the bottom.

The first four divisions of [L-F, A] Chapter I are labelled
1. Notions sur la formalisation
2. Regies de logique formelle
3. QuantiGcateurs
4. Operations sur les ensembles
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and contain respectively

1. remarks on the need for formalisation, and some com
ments on syntax
2 . remarks on and some axioms for propositional logic
3. remarks on the meaning of 3 and on the Axiom of
Choice
4. introduction of certain set-theoretic axioms.

Each of those four requires criticism; in the rest of the chapter, as the 
authors get closer to areas of mathematics with which they are familiar, 
the need for comment diminishes but a few remarks will still be necessary.

The order in which topics are treated is sometimes unexpected; there 
is an early mention, on page 2, of the need for an axiom asserting the 
existence of the set of natural numbers; on the other hand a definition of 
“finite” is not given till page 32, though at some language level the concept 
is being used on many previous pages, such as 10, 11, 12, 17, 20, 21.

The bulk of the discussion of the Axiom of Choice takes place before 
most of the axioms of set theory have been presented; this ordering of topics 
might be the result of the implicit reliance on the epsilon operator and its 
consequent representation of the Axiom of Choice as a principle of logic 
rather than of set theory.

[L-F,A] 1.1: sy n ta x

The authors begin by commenting briefly that certain paradoxes can 
be avoided by constructing formalised languages, which are less expressive 
than natural languages, and then developing formal logics. Thus the theory 
of sets may be built up by the axiomatic method:

[LFA] On se donne un p e tit nombre de 
p 1 signes logiques, et un p e tit nombre 

de regies perm ettant, a 1’aide de 
ces signes, et des lettres des divers 
alphabets, d ’ecrire des “m ots per- 
m is”. (Le plus souvent, les mots 
per mis s ’appellent des assemblages.)

One gives oneself a small number 
of logical signs, and a small num
ber of rules perm itting with the 
aid of these signs and letters of 
various alphabets, the writing of 
“perm itted words”. (The perm it
ted words are most often called 
assemblies.)

Е-l COMMENT Although they do not set out the rules of formation of 
languages, I suspect they intend only formulae with quantified set variables 
to be considered.
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[LFA] On se donne un moyen de distinguer 
p 1 deux sortes de m ots permis: les uns, 

appeles termes, seront les represen- 
tants abstracts des objets sur lesquels 
on fera des raisonnements; les autres, 
appeles relations representeront les 
assertions que Гоп peut faire sur 
ces objets. Puis on se donne des 
regies regissant l ’usage des relations, 
perm ettant de construire de nou- 
velles relations a parfcir de relations 
donnees, &c; ces regies sont les regies 
de logique formelle.

Am ong the perm itted  words or as
semblies there are terms, (which 
are abstract representations of the 
objects about which one will rea
son) and there are relations which 
represent the assertions that one 
can make about these objects. .. 
then one gives oneself some rules 
governing the usage of relations, 
perm itting the construction o f new  
from old; these are the rules o f for
mal logic.

E-2 COMMENT We see that whereas Bourbaki held to a strictly formalist 
Une that their system was ал uninterpreted calculus, the present authors al
low a difference between terms and the objects that are their interpretation. 
However they give no rules for deciding which assemblies are terms.

[LFA] Ceia etant fait, la notion de verite 
p 1 m athem atique est “relativisee” de 

la maniere suivante: on pose un 
p e tit nombre de relations, appelees 
axiomes, comme vraies a priori. Puis 
on definit la notion de demonstration.

The notion o f mathematical truth  
is “relativised” in the following 
manner: a small number o f rela
tions, called axioms, are supposed  
true a priori. Then one defines 
the concept o f a formal proof.

E-3 Co m m en t  As with defining the notion of “term”, the authors leave 
the notion of a formal proof all too vague. It is not clear what are the 
axioms nor what are the rules of inference.

Two most revealing remarks are these:

[LFA] une relation est alors dite vraie si 
p 2 elle peut etre inseree dans une 

demonstration.

[LFA] une relation est vraie si on peut l ’in- 
p 3 serer dans un texte demonstratif.

A relation is called true if  it m ay  
be inserted in a proof.

A relation is true if  one m ay in
sert it in a demonstrative text.

E-4 COMMENT This equation of truth and provability is, of course, stan
dard for horses from the Bourbachiste stable. But it is far from satisfactory.
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There has been a suggestion that any relation might be taken to be an 
axiom, and therefore might be used in a proof. For example, both the Con
tinuum Hypothesis, CH, and its negation have interesting consequences. So 
either of them might be used in a proof, and therefore, in this odd meaning 
of “true” , both are true.

Thus the notion of “true” is imprecise; mutually contradictory systems 
certainly exist.

On page 5, they speak of axiomes momentanes, thus acknowledging 
that one might wish to postulate hypotheses for an argument, to be dis
charged once the argument is complete.

[LFA] Lorsqu’on dispose d ’un langage for- 
p2, 6 malise coherent pour fonder une 

theorie (la theorie des ensembles, 
ou toute autre theorie mathema- 
tique), le developpement de cette  
theorie consiste a en trouver les re
lations vraies, auxquelles on donne 
le nom de theoremes, propositions, 
lemmes, scholies etc.

[LFA] Signalons qu ’on peu t construire tou- 
p2,-6 tes les mathematiques connues a ce 

jour а Г aide des axiomes et du lan
gage formalise de la theorie des en
sembles; Гаxiome fondamental etant 
l ’existence d ’au moins un ensemble 
de nature mathematique: celui des 
nombres entiers.

[LFA] Mais en pratique, il est impossible 
p 3 d ’ecrire toutes les mathematiques 

en langage formalisi: pour le moin- 
dre theoreme facile, il faudrait des 
livres entiers. On est done amene a 
utiliser des abreviations et du lan
gage courant; et on se contente 
d ’4crire des textes “dont on est sur” 
qu ’on pourrait les formaliser.

Once one has a formalised language 
available for basing a theory (such 
as the theory of sets, or any other 
mathematical theory) the devel
opment of that theory consists of 
finding true relations which one 
calls theorems, propositions, lem
mata, scholia, &c.

Let us note that one can construct 
all the mathematics known today 
with the aid of the axioms and for
malised language of the theory of  
sets; the fundamental axiom (for 
mathematicians, at least) is the 
assertion of the existence of at least 
one set o f a mathematical kind, 
namely the set of whole numbers.

But in practice it is impossible 
to write mathematics entirely in a 
formal language; for even the eas
iest theorem it would need whole 
books. So one contents oneself with 
writing texts o f which one m ay be 
sure that they could be formalised.

E-5 COMMENT The claim made in the second of those three paragraphs 
echoes that at the end of Bourbaki’s address [Bou49] and is shown in [M10] 
to be erroneous. We shall also see that, curiously, the authors do not give
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the existence of N, the set of natural numbers, as an axiom, but state that 
its existence can be derived from a less precisely phrased assertion of the 
existence of an infinite set.

E-6 COMMENT The third paragraph, of course, echoes the remarks of Bour
baki and Godement about the length of expansions of the formulae of their 
chosen language.

[L-F,A] 1.2: propositional logic

[LFA] Etant donnee une relation A, on 
p 3 definit son contraire, notee non A; 

(non A ) est aussi appelee la negation 
de A. Par definition, A est fausse si 
(non A ) est vraie.

Given a relation A, one defines its  
contrary, written (not A); (not A) 
is also called the negation of A. 
B y definition, A is false if  not-A  
is true.

E-7 COMMENT W hat does “false” mean? Perhaps that is a definition. But 
how to know if not-A can be used in a proof?

[LFA] S ’il existe A telle que A et (non A) 
p 3 soient vraies, la theorie est d ite  con- 

tradictoire et on demontre qu ’alors 
toute relation de la theorie est vraie. 
Bien que cela n ’ait pas ete demontre, 
on pense generalement que la theorie 
des ensembles n ’est pas contradic- 
toire, de sorte que pour toute re
lation A de cette theorie, l ’une a и 
plus des relations A et (non A) est 
vraie.

If for some A, both A and not-A  
are true the theory is called con
tradictory, and then every relation 
of the theory m ay be proved to be 
true. It is generally supposed that 
the theory o f sets is not contradic
tory, although that has not been 
demonstrated, so that for each re
lation of this theory at m ost one 
of the relations A and (not A ) is 
true.

E-8 COMMENT As often for writers of the Bourbachiste persuasion, Godel 
is a non-person and no mention is made of the reason why the consistency 
of set theory has not been demonstrated.

They go on to mention the possibility that there are some statements 
that are neither provable nor refutable; and seek to marginalise this shock
ing phenomenon in the standard Bourbachiste way:
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[LFA] II ne faut pas croire que Гипе des 
p 3 deux relations A et (non A) soit 

forcement vraie: il pourrait exis- 
tait en effet des relations contraires 
A et (non A) telles qu’aucune des 
deux ne puisse etre inseree dans une 
texte demonstratif; A est alors dite 
indecidable. En pratique nous ne 
rencontrerons pas de relation inde
cidable !

It should not be thought that nec
essarily one of the relations A and 
(not A) is true: there might exist 
in fact contrary relations A and 
(not A) such that neither of them 
can be inserted in a demonstrative 
text; A is then said to be undecid
able. In practice we do not meet 
them.

E-9 COMMENT That was Godement’s original hope and also Dieudonne’s, 
except of course when he found he could use the Continuum Hypothesis 
to construct a counterexample to something. But whereas Godement by 
1969 was acknowledging the existence of undecidable statements of ordinary 
mathematics, these followers of his were still denying that existence in 1995.

Given two relations A and B, one 
defines their disjunction, written 
A-or-B. If at least one of A or В 
is true then (A-or-B) is true.

[LFA] Etant donnies deux relations 
p 3 A et В on definit la disjonc- 

tion de A et B, notee: (A ou 
B). Si Гипе a и moins des re
lations A, В est vraie, (A ou 
B) est vraie.

E-10 COMMENT That seems much too vague; how might one say that A- 
or-B is the strongest such statement? Indeed below, they remark that (A or 
(not A)) is always true, whereas above they have admitted that for certain 
A, neither A nor (not A) is true.

[LFA] La relation ((non A) ouB) s’appelle 
p 3 l’implication de В par A, et se note

A => B.

Si A et (A => B) sont vraies, В 
est vraie; si В est vraie, (A =Ф B) 
est vraie pour toute relation A.

The relation (not-A or B) is called 
the implication of В by A, and is 
written

A ==> B.

If A and A = >  В are true, so is 
В; if В is true, A ==> В is true 
for every A.

Е-ll COMMENT Of those two comments, the first is Modus Ponens, the 
rule of inference given in Bourbaki and used in Principia Mathematica. 
The second is a derived rule, given as C9 in Bourbaki.
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[LFA] De plus, nous admettrons les rela- 
p 3 tions ci-dessous, qui fournissent des

regies de raisonnement:
1) A => A. Cette relation est tr£s 

interessante, car elle exprime que 
(A ou (non A)) est toujours vraie, 
(тёте si A est undecidable !)

2) (A ou A) = »  A.
3) A => (A ou B).
4) (A ou B) = »  (B ou A)
5) (A = >  B) => [(C ou A) 

=4> С ou В].
6) (A => В) => ((В =* C )  

—  ̂ (A => C)].
7) (A ==> (non(nonA)).
8) [A => В] ==> [(non В ) 

==> (non A)]
Parmi les regies ci-dessus, les regies 

numSros I), 2), 3), 4), 5) sont des 
axiomes dans la plupart des logiques 
formelles usuelles.

Further, we shall admit the fol
lowing relations, which supply the 
rules of reasoning:

1) A => A. This relation is 
very interesting, for it says that 
(A or (not A)) is always true 
(even if A is undecidable !)

2) (A or A) =>  A.
3) A = »  (A or B).
4) (A or B) = >  (B or A)
5) (А =Ф В) = >  [(С or A) 

==> С or В].
6) (A => В) => [(В => С) 

= >  (А =► С)].
7) (А = >  (not(notA)).
8) [А = >  В] => [(not В) 

==> (not А)]
Of the above rules, numbers 1) 

to 5) are axioms in most custom
ary logical systems.

E-12 COMMENT Of those axioms, 2) to 5) are exactly SI, S2, S3, S4 of 
Bourbaki and essentially *1.2, *1.3, *1.4 and *1.6 of Principia Mathematica 
and AL1, AL2, AL3 and AL4 of Godement. The others are consequences 
of them, 1), 6), 7), 8) being respectively C8 , C6 , СИ , C 12 of Bourbaki and 
TL2, TL1, and essentially TL3, and TL4 of Godement.

[LFA] Si A e t B  sont de relations, on dSfinit 
p 4 la conjonction de A et B, notee (A 

et В): с’est la relation:

non [(non A) ou (non jB)].

On dit que A e t B  sont equivalentes 
si (A => B) et (В  =Ф A) sont 
vraies, on ecrit alors (A <=> В ).

If A and В are relations, their con
junction, in symbols (A et B), is 
defined as the relation

not [(not A) or (not B)\.

One says that A and В are equiv
alent if the two implications are 
true. One then writes A <==> B .
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E-13 Comment As far as I can tell, that implies that (A <==> В ) <=> С 
is meaningless. According to the text, the sequence of symbols “A <=> B ” 
expresses the conjunction of the two statements

11A = >  В ” can be inserted in a proof
and

“В  ==» A” can be inserted in a proof

and is thus not a formula but a statement about two formulae and a theory. 
But if Ф is a statement about a system and С is a formula of the system, 
neither С  = >  Ф nor Ф = >  С can be inserted in a proof since neither is 
a formula of the system.

[L-F,A] 1.3: predicate logic amd the Axiom of Choice

[LFA] Nous ecrirons 
P 6

(1) 3x, A{x)

pour exprimer la relation “la rela
tion A(x) est vraie pour a и moins 
un objet x ”. Cette definition n ’est 
qu’intuitive, nous ne ferons que 
decrire les regies d’usage du sym
bole 3, appele quantificateur exis- 
tentiel.

We write

(1) 3x, A(x)

to express the relation “the rela
tion A(x) is true for at least one 
object x ”. This definition is only 
intuitive, we only make it to de
scribe the rules of use of the sym
bol 3, which is called the existen
tial quantifier.

E14 COMMENT Here we have a confusion of language levels. Relations 
have been defined as certain assemblies, that is certain strings of formal 
symbols. The statement within quotation marks is not a relation; it is a 
(French) phrase about relations and objects. So the authors have achieved 
precisely that confusion of language levels (as exploited by the paradoxes) 
that the introduction of formalised languages was intended to avoid.
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[LFA] Nous ecrirons 
p 6

Vx, A(x)

pour exprimer la relation

(2) non(3x, полЛ(х))

Cette relation signifie que la pro- 
priete A(x) est vraie de tous les 
objets x.

We write

Vx, A(x)

to express the relation

(2) not-(3x, not-A(x))

This relation signifies that the re
lation A(x) is true for all objects 
x.

E-15 COMMENT We verge on a problem of (^-incompleteness here. In a 
theory of arithmetic it could easily be the case that each A(n) is provable 
but that VnA(n)  is not; if objects are the same as terms and truth is 
provability, then “the relation A(x)  is true for all objects x” says that each 
A(n) is provable, but that does not mean that VnA(n) is provable.
E-16 REMARK The authors state that the formulae (1) and (2) and the rules 
of logic permit the mechanical use of quantifiers. But what are those rules? 
They are not stated, though some examples are given.

page 7: the problem of choice

We come now to the six paragraphs that Lelong-Ferrand and Arnaudies 
devote to commenting on the nature of the Axiom of Choice. Here I use the 
sign 1  to mark the start of my discussion of one of the six.

11 The first paragraph mentions the problem of the meaning of an ex
istential statement: some great mathematicians such as Emile Borel have 
not believed non-constructive proofs of an existential statement.

[LFA] Intuitivement, le probleme se pre- 
p 7 sente comme il suit: peut-on de- 

montrer, dans une theorie donnee, 
un theoreme de la forme:
(Эх, A(x)) sans construire, par 
un procede descriptif, un object x 
pour lequel la relation A(x) est ef- 
fectivement vraie?

Intuitively the problem is this: can 
one prove, in a given theory, a the
orem of the form (3x, -A(x)) with
out constructing, by a descriptive 
procedure, an object x  for which 
the relation A(x) is actually true?

E-17 Co m m ent  Those with a taste for constructive proofs usually eschew 
the Axiom of Choice.



Hilbert, Bourbaki and the Scorning of Logic 107

12 The second, dreadfully confused, and actually wrong (rather than 
stylistically undesirable or misleading) paragraph alleges that the axiom 
says that when an existential formula is true one can always formally con
struct a witness:

[LFA] On a vite reconnu la necessite d'in- 
p 7 troduire, en theorie des ensembles, 

un axiome appelle axiome du choix: 
grosso modo, cet axiome dit que 
lorsqu’une relation du type 3x, 
Л(ж), est vraie, on peut toujours 
construire formellement un objet X 
pour lequel A{ x)  est vraie.

The necessity of introducing an ax
iom called axiom of choice into the 
theory of sets was quickly recog
nised; roughly, the axiom says 
that when a relation of the type  
3x, A( x)  is true, one can always 
formally construct an object x  for 
which A( x)  is true.

E-18 COMMENT T h a t is false: the Axiom of Choice implies, for exam
ple, that there is a well-ordering of the continuum, but that is perfectly 
compatible with there being no definable such.

One wonders if this mistake is related to one noted by Alonzo Church 
in his 1948 review [Chu] of “L’enumeration transfinie. Livre I. La notion 
de rang”, by Arnaud Denjoy [De]:

“in an otherwise excellent work, the treatment (pp 5, 110- 
116) of the Axiom of Choice and of Zermelo’s theorem 
that every class can be well-ordered, is without value, 
because the author mistakenly identifies the Axiom of 
Choice with the proposition that every non-empty class 
has a unit subclass

13 The third paragraph says that this axiom has many equivalent formula
tions, of which the best known are Zermelo’s axiom concerning well-ordered 
sets, and the theorem of Zorn.
E-19 COMMENT True, in that the Axiom of Choice, as usually understood 
(but not as presented by our authors) is indeed equivalent, as proved by 
Zermelo, to the proposition that every set can be well-ordered, and as 
proved by Zorn, to the proposition known in Anglophone countries as Zorn’s 
Lemma.
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14 The fourth paragraph is highly revealing:

[LFA] Dans la mathem atique formelle 
p 7 usuelle, Vaxiome de choix est in- 

troduit des le depart, а Г aide d ’un 
signe logique. Dans la theorie des 
ensembles ainsi construite, le sym 
bole 3x, A( x )  n ’est qu ’une abre- 
viation pour exprimer, en quelque 
sorte, que l ’ob je t theorique qu’il est 
possible de construire et qui verifie 
A( x) ,  verifie effectivement cette  
relation.

In m athem atics as usually formal
ised, the Axiom of Choice is in
troduced a t the start by the aid 
of a logical sign. In this presenta
tion o f the theory of sets, the sym 
bol Эх, A( x )  is only an abbrevia
tion for expressing in some man
ner that the theoretical object that 
it is possible to construct and which 
satisfies A( x )  does indeed satisfy 
this relation.

E-20 COMMENT I have no idea how to interpret their remarks; but I can 
say where they came from, namely the use of the Hilbert e-operator, the 
one called r  by Bourbaki.
15 The fifth paragraph remarks correctly that set theories without the 
Axiom of Choice have been studied, and that one can therefore classify 
results according to their dependence or otherwise on that axiom.
16 The sixth and last paragraph on page 7 lists some example of existence 
statements that require the Axiom of Choice for their proof; their first 
example is erroneous, though the others are correct. The statement that 
the Axiom of Choice is needed to prove the existence of an arbitrary product 
is inaccurate; AC is needed to prove that the product is non-empty if the 
factors are, not that the product exists.

Fortunately, at the top of page 21, they state correctly that:

Si, pour tout i  €  I , A i  ф 0 ,

alors Y [ A i  ф 0 .
» € /

C ette propriete est un axiome Squivalent 
a Vaxiom e du choix.

If, for each i 6 / ,  A i Ф 0 ,

then A i Ф 0 .  
i e i

This property is an axiom equiv
alent to the Axiom of Choice.

[L-F,A] 1.4: operations on sets

The authors now discuss various operations on sets, and mention vari
ous justificatory axioms. But they make conflicting statements: at the top 
of page 8 they say that a set is a term equipped with a relation E. Lower 
down, they say that it is hard to tell which terms are sets.
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[LFA] Nous admettons la notion d ’en- 
p8, 1 semble. Un ensemble est done un 

ter me, muni d’une relation: €.

— La relation : a G E  se lit 
“ a appartient a E ”

[LFA] On n ’a aucun moyen effectif de re- 
p8,-ll connaitre si un terme donne est un 

ensemble; aussi la theorie des en
sembles procede par construction, 
a partir de termes dont on admet 
qu’ils sont des ensembles (par ex- 
emple, N).

We accept the notion of a set. A 
set is then a term, equipped with 
a relation: €•

— The relation : а € E is read 
“ a belongs to E  ”

We have no effective means of tell
ing whether a given term is a set; 
so the theory of sets proceeds by 
construction, starting from those 
terms that are acknowledged to be 
sets, (for example N).

E-21 COMMENT They ахе, I suspect, in the condition of the patient in 
Laing’s double-bind model: they have been given contradictory statements 
by people they regard as authorities. On the one hand, Zermelo held that 
sets are those classes which are small enough to be members of some class, 
whereas proper classes are those classes which are too big to be a member 
of any class. So if one has a class {x | R}, to say that it is a set is to say 
that Зу у = {x \ R}; and there are certain classes, such as the Russell class 
{x | x £ x} of which the set-hood is refutable. On the other hand, we saw 
in Section В that Bourbaki’s use of the symbol {x | R} is not the same as 
Zermelo’s. With Bourbaki, each term is, by syntactical trickery, provably 
equal to some set; thus

!-Bou54 З у у  = { х \ х £ х )  whereas hZF -.3 у у = {x | x <£ x} .

So at the top of page 8 , the authors axe with Bourbaki, but lower down 
they axe with Zermelo.

The translation into Bourbaki’s dialect of set theory of the assertion 
in Zermelo’s dialect that the class {x | R} is a set, is the formula Collx(R). 
Reassuringly,

*“ Bou54 -'Collxix £ x ) .

E*22 COMMJBNT In fact the authors аге cautious with the use they make 
of the { • | . . .} notation. They introduce at the top of page 9 the notation 
{x | x G E  et A(x)}, for use only when E  is a set and A(x) is a relation, 
to mean the set of those elements of the set E  which have the property A\
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and on page 8 , they use {a, 6, c , . . . ,  m} as a notation for (presumably) a 
finite set, though they do not explain their use of three dots to the reader.
E-23 COMMENT The use of the word “relation” , as used at the top of page 
8 , is abnormal: for example, a total ordering is a set together with a relation 
that might hold between two members of that set, but here the relation € 
is one that holds between a member of the set and the set itself. The same 
letter € is used for the relation associated to any set. Why, I wonder?

Then in the third line of text on page 8 , “relation” is used in the sense 
introduced on page 1, to mean a permitted word that is interpretable as an 
assertion.

On page 1 it is stated that a term is a permitted word that is an 
abstract representation of one of the objects about which we wish to reason;
I do not see how a word, a finite string of symbols, can be muni d ’une 
relation: 6 ; though I can believe that the entity abstractly represented by 
that word might be.

Discussion of equality
At the top of page 8 , а = b is informally introduced: no axioms for 

equality have hitherto been given, though the sign =  occurs in examples 
on page 5.

The authors say that а = b expresses that a and b are the same object, 
and that intuitively (page 8 again) a set E  is the collection of objects that 
are members of E.

On page 8 : unordered pairs, triplets, etc are stated to exist, though no 
axiomatic justification is given or claimed for that. Three dots are used, to 
suggest a finite but arbitrarily long sequence; the word “finite” is not used 
here.

On page 8 : what set theorists know as the axiom of extensionality, that 
two sets with the same members are equal, is formulated but not stated to 
be an axiom.
E-24 COMMENT On page 9, Theorem 1.4.1 is stated and “proved” , that 
the empty set exists and is unique. To prove its uniqueness some form 
of extensionality would normally be required. To prove its existence, the 
existence of some set must be asserted; and so far no axiom says that, so I 
suppose that the authors are tacitly relying on the fact that it is a theorem 
of Hilbertian logic with equality that something exists.

A list of axioms of set theory

Now the authors proceed to state various axioms of set theory, but 
there is nothing to indicate when their listing of axioms has reached its 
end.



Hilbert, Bourbaki and the Scorning of Logic 111

Ax io m  i On page 8 , near the bottom, the separation scheme is given.
Ax io m  2 On page 9, line —7, the power set axiom is given.
A x io m  3 At the top of page 10, the existence of the ordered pair, le 

couple, (a, b), of two terms a and 6, is stated to be an axiom; 
presumably the principle stated at the bottom of page 9,

((a', b') = (a, b)) *=> ((a =  a') к  (6 =  b%

should be included in this axiom.
A x io m  4 Page 10, line 6 , cartesian products: the existence of E  x F  is 

an axiom.
E-25 ASIDE Cartesian product is then stated to exist for any finite num
ber of terms, though nothing is said about associativity.
E-26 REMARK The existence of the intersection of two sets is, correctly, 
derived from the scheme of separation; the existence of the union of two 
sets is said to follow from an (unstated) axiom. The principal construction 
of [M10] shows that the statement, that if x  and у are sets then so is i l l y ,  
does not follow from the axioms that the authors actually formulate.
E-27 REMARK The axioms are stated to imply the existence of finite sets; 
whence, the authors say, one can define the integers and develop some 
number theory.
Ax io m  5 At the top of page 12, it is said that the existence of the set 

N  of whole numbers requires a new axiom, called the axiom of 
infinity, which states that “there is a set which is not finite”.

E-28 REMARK The authors state that once one has N, one can construct 
all the sets used in usual mathematics.

No definition is given at this point of “finite” , nor is entier defined; nor 
is any derivation offered from the stated axiom of infinity that the set of 
whole numbers exists,

No further axioms are listed: Thus their system is essentially Bou49, 
though presented with less precision.

The remaining divisions of [L-F,A] Chapter I

E-29 On page 17, the authors begin their discussion of indexed families of 
sets, but their families are always taken to be always subsets of some given 
set. Thus given two sets which are subsets of the same set X  say, their 
union, being a subclass of the set X , can be proved to be a set by separation; 
but, as mentioned in Remark E-26, their system fails to prove that the union
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of two arbitrary sets is a set. Bou49 is thus weaker than the system Bou54 
used in their two cited sources [Bou54] and Godement [Gd], who all admit 
indexed families of sets which are not necessarily subsets of a set given 
in advance, thus obtaining a system  that includes a form of the axiom of 
replacement; whereas Bou49 is essentially the system of Zermelo without 
foundation, without unordered pairing, but with ordered pairs, cartesian 
products and a global form of choice.
E-30 No definition of fin ite  is given before page 32: as with Godement the 
definition is very late in arrival, but is used earlier. Some of those earlier 
uses are really of finiteness in the metalanguage; but no such distinction is 
made by the authors.

N is mentioned on page 8 as an object that will be admitted to be a 
set. N is used on page 20, when sequences are introduced, and again on 
page 28, to provide an example of an ordered set; it is emphasized that that 
ordering is a well-ordering. Three pages later, our hopes of a definition of 
N are dashed:

[LFA] Nous supposons connues toutes les 
p 31 definitions et proprietes elementaires 

relatives aux nombres entiers na- 
turels. Tout a и long de l ’ou vrage, 
l’ensemble des nombres entiers sera 
designe par N.

We suppose known all the defi
nitions and elementary properties 
relating to the natural numbers. 
Throughout the work, the set of 
(non-negative) integers will be de
noted by N.

E-31 Finally, on page 32, we reach the long-awaited definition: a set is 
said to be fin ite  if it is in bijection with an initial segment of the natural 
numbers.
E-32 COMMENT T h a t is circular. The axiom of infinity was formulated 
as “There is a set which is not finite” , but without a definition of fin ite  
having been given. We were told that one can derive the existence of N 
from the existence of a set which is not finite, again without a definition of 
fin ite. Now we are told that a set is finite if it is in bijection with an initial 
segment of the natural numbers.

If one tries to interpret those statements in a way that removes the 
circularity, one arrives at the statement that there is a linearly ordered set 
which is not in bijection with any proper initial segment of itself. But that 
is insufficient: the set {0 ,1 ,2 ,3 ,4 }  has a linear ordering under which it is 
not in bijection with any proper initial segment of itself; but no one would 
say that set was infinite.
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E-33 REMARK Godement avoids this trap: he uses Dedekind’s definition of 
finite and then defines N as the set of finite cardinals. But our authors, on 
page 36, speak only of infinite cardinals.

On page 32, it is stated that if A is not finite there is an injection of 
N into A: a covert use of AC.

Discussing the continuum hypothesis, Lelong-Ferrand and Arnaudies 
write:

[LFA] Depuis 1966 (travaux de Vameri- 
p 37 cam Cohen) on doit considerer que 

cette proposition est indecidable. 
Mais ПпЛиепсе de cette hypothese 
sur les mathematiques est restee a 
peu pres nulle.

Since the work of the American 
Cohen in 1966, this proposition 
must be regarded as undecidable. 
But the influence of this hypothe
sis on mathematics has remained 
negligible.

E-34 COMMENT That last remark is an echo of the pronouncements of 
Dieudonne and of Godement on the foundations of mathematics. It is 
objectionable because they are using “true” relative to some set of axioms, 
which they might change at will, but pretend that “true” has some absolute 
meaning.
E-35 Comment 1966 is the date of Cohen’s book [Coh2]: the news of his 
discoveries, which only reached me as a Cambridge undergraduate in 1964, 
first broke in late 1962; two formal announcements followed [Cohl]. Precise 
dating will be found in [Ka], which accurately portrays the atmosphere of 
excitement created by Cohen’s break-through.
Е-36 REMARK On page 38, there is an unsignalled use of AC in the proof 
of Corollary 2 , about the countability of the union of a countable family. 
E'37 REMARK The model for their axioms in which unordered pairing fails, 
presented in [M10], refutes the contention at the end of [Bou49] that the 
system presented, Bou49, suffices for all the mathematics “of the present 
day”—even in 1949 one would have wished to prove that for each с and d, 
the set {c, d} exists—and, since {c, d} =  {c}u{rf}, confirms the misgivings 
of Rosser,12 who suggested in his review [Rol] that the existence of a U b 
for two arbitrary sets a, 6, would not be provable in Bou49.
E-38 HISTORICAL NOTE Entries in La Tribu show that Bourbaki consulted 
Rosser more than once in the early 1950’s: it might be that members of 
Bourbaki contacted him following the appearance of [Rol], but there may

12 J. Barkley Rosser, 1907-1989; Ph.D. Princeton 1934; at Cornell, 1936-1963; 
at Madison from 1963.
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have been earlier contact, as a paper by Rosser on the eliminability of 
t-terms is invoked, but without exact citation, in [Bou49]. Bourbaki and 
Rosser might also be linked through the young Halmos, who was in Chicago 
from 1946; he had been von Neumann’s assistant at Princeton for a spell, 
and, some years later, was instrumental, with Rosser, in bringing about 
the famed 1957 Logic Summer Institute at Cornell. Professor Derus writes 
that he found in a University of Chicago bookstore in 1991 a copy of [Lu] 
bearing Rosser’s stamp on the title page, and the inscription: “To Barkley 
Rosser, a /professional logician, /  from an amateur, /  Paul R. Halmos /  
July 1958.”

E-39 COMMENT Jacqueline Lelong-Ferrand and Jean-Marie Arnaudies are 
both archicubes, that is, former pupils of the Ecole Normale Superieure in 
the Rue d’Ulm in Paris.И Madame Ferrand entered that school in 1936 and 
in 1939 was ranked first equal with Roger Apery in the agregation mascu
line; Dieudonne was a member of the jury and later wrote that “Only two of 
the papers impressed me with their sense of analysis and precocious matu
rity very rare among candidates for the agregation. Those two were Roger 
Apery and Jacqueline Ferrand.” M. Arnaudies entered the Ecole Normale 
Superieure in the Rue d’Ulm in 1960. I am told that no logic was taught 
there in the early sixties, nor was any logic taught at the Rue D’Ulm when 
Madame Ferrand was there in the 1930’s, partly because of the tragically 
premature death of Jacques Herbrand in a mountaineering accident. The 
main subjects then being taught were differential geometry, mathemati
cal physics and probability, the protagonists being Elie Cartan, Louis de 
Broglie and Georges Darmois. Where, then, did our authors imbibe their 
particular view of logic? Who taught them? It would seem that they both 
originally learned the system of Bourbaki’s 1949 address, but that at some 
point awareness of the shortcomings of that system had filtered through, 
leading them to hint that certain unstated axioms are needed to supplement 
those stated.
E-40 HISTORICAL No t e  Indeed it appears that there was no teaching of 
mathematical logic at the Rue d’Ulm until 1989, since when it has been 
maintained, at fourth-year level, by a series of mainly three-year contracts: 
Jacques Stern 1989-1995; Jean-Louis Krivine 1995-1998; Alain Louveau

I' Originally the Ecole de la Rue d’Ulm admitted only men, and the Ecole 
de Sevres only women. Between the two world wars, the Rue d’Ulm admitted 
women and men, and a female student could try the entrance examination for 
either. Then there was a period in which the Rue d’Ulm returned to admitting 
only men. The two Ecoles were then merged and from 1986 have formed a single 
Ecole Normale Superieure.
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1998-2001; Elisabeth Bouscaren 2001-2004; Patrick Dehornoy 2004-2007; 
Frangois Loeser 2007-2010; Martin Hils 2010-2013; Zoe Chatzidakis 2013- 
2016.

At higher levels, the renaissance began in the 1950s with some courses 
by Jean Ville and Pierre Samuel, and talks in the seminar of algebra and 
number theory run by Paul Dubreil. While in Europe for his sabbatical 
year, 1955/56, from Berkeley, Tarski gave five lectures at the Institut Henri 
Poincare at the invitation of J.-L.Destouches, who started a logic seminar 
there, in connection with the Mathematical Physics that he taught at the 
Faculte des Sciences while teaching Modern Algebra at the Ecole Centrale; 
his assistants were Daniel Lacombe, Jean Porte and Roland Frai'sse.* The 
development of French logic was further helped by the two years, 1960/62 
that Georg Kreisel spent in Paris, invited by Henri Cartan to lecture at the 
Sorbonne. Tarski returned in 1962 to lecture at Clermont-Ferrand. Roger 
Martin taught logic in the philosophical faculty at the Sorbonne from 1964, 
and at Paris-V from 1969 till his death ten years later.

* Information from French colleagues, who further write: Lacombe—le pre
mier logicien a avoir une poste dans une Faculte des Sciences—est le premier 
specialiste frangais de la theorie des fonctions recursives et oriente rapidement 
des etudiants vers Vemploi des ordinateurs et le langage Lisp pour tester des 
hypotheses. Porte, forme par Jean Ville et charge de 1’exploitation d ’un ordi- 
nateur de l ’institut Blaise-Pascal, enseigne a la fois la statistique et la theorie 
des system es formels. Frai'sse, forme par 1’ancien Bourbachiste RenS de Possel, 
enseigne le calcul des formules logiques et la theorie des relations.
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F: ... that has, I suggest, led to the exclusion of logic 
from the CAPES examination.

IN THE FRENCH EDUCATIONAL SYSTEM, there are colleges for pupils 
aged 12-15 and lycees for pupils aged 16-18. If you wish to teach in 

a college you must have done successfully a third-year university course, 
called a licence, and obtained the Certificat d ’Aptitude au Professorat de 
VEnseignement du Second Degre, commonly called the CAPES, for which 
in 2007, there were 5388 candidates in mathematics, of whom 952 passed; 
a success rate of about 18%. To teach in a lycee you must have done suc
cessfully a fourth-year university course, called a maitrise and pass another 
examination called the agregation. The written part of each of these ex
aminations is on a syllabus specified by a national committee; and these 
syllabi serve as paradigms for the content of university licence and maitrise 
courses, since universities seeking to attract students for these courses nat
urally wish to provide teaching on topics for the examinations CAPES and 
agregation, success in which is the aim of perhaps the bulk of those students.

Thus it comes about that the syllabi for CAPES and agregation have 
a profound influence on the whole educational system, and naturally a 
uniformising influence.

Come with me now to examine the syllabus for the CAPES, which for 
a given year is announced in April or May of the preceding year in a special 
number of the Bulletin Officiel; in many years details for some subjects 
are not given explicitly, but merely stated to be the same as in a previous 
year. A complete statement in the Bulletin Officiel of the programme for 
mathematics was published on 24 May 2001 (for the session of 2002) in 
Special Number 8 , pages 112-124, to which some minor modifications to 
the section on algebra and geometry were published on 20 May 2004 in 
Special Number 5, pages 57-58.
F -o  In the Bulletin of 2001, the programme is divided into four sections; 
three of the sections are further divided into chapters, as follows:

1- Notions sur la logique et les ensembles
I. Generalites sur le langage et le raisonnement mathematiques. Elements 

de logique.
II. Ensembles, relations, applications.

III. Rudiments de cardinalite.
2- Algebre et geometrie

I. Nombres et structures
II. Polynomes et fractions rationelles

III. Algebre lineaire
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IV. Espaces euclidiens, espaces hermitiens 
V. Geometrie affine et euclidienne

3- Analyse et geometrie differentielle
I. Suites et fonctions

II. Fonctions d ’une variable reelle: calcul differentiel et integral
111. Series
IV. Equations differentielles
V. Notions sur les fonctions de plusieurs variables reelles

VI. Notions de geometrie differentielle
4- Probabilites et statistiques

Section 4 is not divided into chapters. In all sections there is a further 
subdivision into paragraphs, which contain lists of topics. In the fourth 
section, one topic is “Parallele entre le vocabulaire probabiliste et le vocab- 
ulaire ensembliste a propos des operations sur les evenements.”

In Sections 2 , 3 and 4, the title of the section is immediately followed 
by the title of the first subdivision; but at that point in Section 1, on page
112, there is inserted the minatory sentence:

Tout expose de logique formelle est exclu.

That sentence is also to be found in the Bulletin Officiel Special Num
ber 3, of 29 April 1999, (the earliest year accessible to me), on page 97; and 
was left unaltered for ten years by subsequent Bulletins Officiels.37-38

F-1 Thus there was, officially, a ban on formal logic in each of the sessions 
2000-2009, and the ban, though now muted, continues. The objection seems 
to have been to the actual process of formalisation, for the topics listed in 
detail in paragraph I of section 1 form an entirely reasonable and coher
ent group, though their ordering might be challenged, as discussion of the 
distinction between free and bound variables is placed before discussion of 
the propositional calculus; and of course the subsection on probability will 
perforce contain much set theory and Boolean logic. Is it too far-fetched

37 Special Numbers 4, 18 May 2000, page 72; 13, 30 May 2002, page 41; 3, 22 
May 2003, page 87; 5, 19 May 2005, page 123; 3, 27 April 2006, page 138; 3, le 
17 May 2007, page 122; and 4, 29 May 2008, page 123.

38 In the annual reports of the Jury of the CAPES from 2003 onwards the 
minatory sentence is, interestingly, replaced by the more delicate disclaimer that 
Aucun expose de logique formelle n ’est envisage; which replacement has now been 
made in the very text of the CAPES mathematical syllabus itself, as witness its 
recent complete statement in Special Number 6, 25 June 2009, of the Bulletin 
Officiel. But, that possible softening and typographical improvements aside, the 
2009 syllabus hardly differs from that of 2001.
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to suggest that the origins of this nervousness about formalisation, and by 
extension, about logic, is the Bourbachiste confusion over quantification?
F-2 I hear (though may have difficulty in verifying, given the secrecy of 
much French decision-making) that the ban on logic was imposed by a 
CAPES committee comprised largely of disciples of Bourbaki.^ I am not 
privy to their secrets, and of the educational background of Inspecteurs 
Generaux de Mathematiques know only that some were themselves archi- 
cubes, and therefore can only guess that the committee’s action is rooted in 
the distrust of logic evinced by Godement, Dieudonne and their colleagues, 
as documented in Sections C, D and E, and not dispelled by other potential 
educational influences.

We have seen that in the nineteen-tens and twenties, there was a 
widespread effort to develop predicate logic. Hilbert made a proposal which 
was developed by his disciples and cast in concrete by Bourbaki; so that 
Bourbaki’s foundational ideas are rooted in logic as understood by follow
ers of Hilbert in the nineteen-twenties. Hilbert’s proposal is not the only 
possible treatment of predicate logic, but must be one of the clumsiest as 
measured by the lengths of formulae generated. We have seen in Section В 
various idiosyncrasies of the r  operator and its unsuitability in a formalism 
for set theory, and the inadequacy for functorial ideas of the concomitant 
treatment of classes.

Thus it would seem that the spiritual ancestor of all the oddities that 
I dislike in Bourbaki’s treatment of logic and set theory is that 1922 paper 
of Hilbert. The story seems to be that a great man became interested in 
an alternative but non-optimai approach to a problem; then, rather like 
newly-hatched ducklings, the early Bourbachistes followed him in adopting 
that approach; and when, later, they came to positions of influence and 
power, caused others to do likewise, even though the problem itself had by 
then been shown to be insoluble.

Bourbaki, in short, by uncritically taking the Hilbert-Bernays-Acker- 
mann operator as their cornerstone, created a nightmare. By working with 
a formalism that is the product of the enthusiasms of a pre-Godelian age, 
they arrived at a negative view of logic and thus created in the minds of their 
readers a barrier against understanding the aims and enthusiasms of post- 
Godelian foundational studies. But what they ought to have been hostile 
to is not logic but their own (or rather Hilbert’s 1922) twisted version of it.

^ Is it coincidence that the other area of mathematics subject to considerable 
reservations in the CAPES syllabus is probability and statistics, whereas one 
learns from the embarrassed reminiscence of Laurent Schwartz quoted by Maurice 
Mashaal [PIS, p.76] that probabilists were subjected to numerous public insults 
from followers of Bourbaki?



Hilbert, Bourbaki and the Scorning of Logic 119

F-3 For despite their fixation on the Hilbert-Bernays-Ackermann operator, 
Bourbaki did at least notice that logic based on it is seriously flawed, though 
they might not consciously have identified the nature and cause of the flaw. 
Rather, they appear to have reasoned that “Hilbert was a great man; his 
treatment of logic is messy; therefore logic is a mess.” Section С shows 
how a member of Bourbaki betrays in his remarks about logic and set 
theory numerous apprehensions and misapprehensions, and Sections D and 
E identify further coarsenings of the situation.

One would expect the degeneration that I have described to have been 
the subject of comment by concerned mathematicians: but not a peep; it 
appears that people are frightened to speak out. The Bourbachiste oeuvre 
constitutes a remarkable achievement, and the members of Bourbaki are 
individually so distinguished, each in his own sphere of competence, that 
one has to be extremely careful in criticising them; nevertheless I contend 
that they have infected mathematicians across many generations with their 
stunted conception and phobia of logic, and that this regrettable result is 
the consequence of their^inadequacy as logicians coupled to their eminence 
as mathematicians.
F-4 So the CAPES committee may well, in the short term, have made a 
realistic decision: distinguished and widely-read textbooks of algebra such 
as the two we have examined present accounts of logic that are repellent; 
so it is hardly to be expected that in teacher-training colleges, known in 
France as IUFMs, logic will be well-taught; so one can see why it might 
have been thought desirable to bar it from the examination.
F-5 But that policy in the long term will, I submit, be intellectually crip
pling. These syllabi govern to some extent the subjects that can be taught 
at University level in France; as most of the 3rd and 4th year students are 
aiming to teach. I im agine that there will be universities in France where 
no logic is taught, it not being thought necessary, not being in the CAPES, 
just as senior figures in British universities have been heard to say that 
“we don’t need logicians” therefore the next generation of schoolteachers 
will be giving their pupils a view of mathematics without formal logic in

^ To give this matter some international perspective: in 1984/5, when Cam
bridge was considering increasing the amount of teaching offered there of logic, 
including set theory, model theory and recursion theory, statistics from thir
teen American universites—Berkely, Boulder, CalTech, Chicago, Cornell, Har
vard, Madison, M.I.T., Penn State, Princeton, Stanford, UCLA, and Yale—were 
produced concerning the number of logic lectures offered to undergraduates and 
to graduates at these places. Taking as a unit the Cambridge standard lecture 
length of 50 minutes, it was found that for undergraduate teaching the mean and 
variance among those thirteen were 93.23 and 32.06 units respectively; at the time



120 A. R. D. Mathias

it. Indeed that particular piece of “dumbing down” has already happened: 
mid-career French mathematicians tell me that as fourteen-year-olds they 
were fascinated to be introduced to tru th  tables and formal reasoning, but 
that today introductory logic is no longer taught in French schools.

That in turn will lead to mathematics itself not being taught in many 
schools, as, I am told, is already the case in the educational systems of 
certain countries. So it would be much better to replace all that warped 
account with a sensible and correct account of logic and set theory.
F-6 REMARK W hat we have seen is an example of the “trickle-down” pro
cess in learning. A bad decision at research level leads in turn to bad teach
ing at university level, to bad preparation of school teachers, and to bad 
teaching at school level; thus the scorn for logic displayed by Dieudonne to 
Quine in a Parisian seminar became, some twenty years later, an entrenched 
global policy of the French educational system; with the result that French 
schoolchildren today are described as being angoisses by mathematics.

F*7 REMARK Beyond the CAPES is a higher examination called the Agre- 
gation, success in which guarantees a teaching appointment in a lycee. Until 
recently, the syllabus for the Agregation had not a word about logic, and 
was arranged under these headings:
I-Algebre lineaire
II-Groupes et geom etrie
III-Anneaux, corps, polynom es et fractions rationelles
IV-Formes bilineaires et quadratiques sur un espace vectoriel
V-G eom etrie affine, projective et euclidienne
VI-Analyse a une variable reelle
VII-Analyse a une variable complexe 
VU I-Calcul differentiel
IX-Calcul integral et probabilites
X-Analyse fonctionelle
XI-Geom etrie differentielle

But fortunately the need of computer science departments for logic 
courses of a particular kind has led to a revision of this syllabus. So the 
rigid stance portrayed above is, encouragingly, beginning to be modified; 
but how did it come about in the first place?

the offering in Cambridge was 16 units, and, it seems, in Paris 0. For graduates, 
the American mean and variance were 179.31 and 67.19 units; in Cambridge the 
amount varied annually, but averaged perhaps 36. What was available in Paris?
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G: Centralist rigidity sustains the confusion and 
consequently flawed teaching;...

EN AN EDUCATIONAL SYSTEM is prescriptive, what is to be taught
vill be laid down at the centre, thus negating the personal and indi

vidual nature of teaching. The undesirability of that is excellently expressed 
in the following passage from Feyerabend, Against Method [Fe]:
p  45: “Any method that encourages uniformity is in the last resort a 

method of deception. It enforces an unenlightened conformism 
and speaks of truth; it leads to a deterioration of intellectual ca
pabilities, and speaks of deep insight; it destroys the most precious 
gift of the young — their tremendous power of imagination — and 
speaks of education. Variety of opinion is necessary for objective 
knowledge. ”

The legacy of Napoleon: the foundation of the modern French 
university system

G-0 French dirigisme—the taste for strong orders from the centre—goes 
back at least to Richelieu; in 1789 as the monarchy tottered a prescient 
nobleman remarked that “If the king will not have an army, the army will 
have a king,” and within ten years a young general from Corsica had risen 
to supreme political power.
G-i Since coming to work in France I have found that in order to understand 
the way French academics behave, one should imagine that one is in the 
army; and it has seemed to me that there are no universities in France, only 
units in a university system. The reason emerged in 2008: the University 
from which is descended the contemporary French educational system was 
founded by decree two centuries ago, when the Emperor Napoleon I caused 
the Corps Legislatif to pass the decree/law of May 10 1806, visible at

h t t p : //w w w . in r p . f  r / s h e / u n i v e r s i t e  _ im p e r ia le _ b ic e n t e n a ir e _ lo i . htm

which enacted that:
A rt.ler. II sera forme, sous le nom d ’Universite imperiale, un

corps charge exclusivement de renseignement et de l ’education 
publique dans tout Г Empire.

Art 3. L ’organisation du corps enseignant sera presentee, en 
forme de loi, a и Corps legislatif, a la session de 1810.

But the Emperor could not wait so long and hurried things forward by 
a long and detailed decree of March 17, 1808, visible at

h t t p : //w w w . i n r p . f  r /s h e /u n iv e r s i t e _ im p e r ia le _ b ic e n t e n a ir e _ d e c r e t . htm
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which enacted that:
Art ler. L ’enseignement public, dans tout l ’empire, est confie ex- 

clusivement a l ’Universite.
A rt 2. Aucune ёсо1е, aucun etablissement quelconque d ’instruc- 

tion ne peut etre forme hors de I’Universite imperiale, et 
sans V alorisation de son chef.

A rt 3. Nul ne peut ouvrir d ’ecole, ni enseigner publiquement, 
sans etre membre de l ’Universite imperiale, et gradue 
d ’une de ses facultes. Neanmoins, l ’instruction dans les 
seminaires depend des archeviques et des eveques, cha- 
cun dans son diocese.

A rt 4. L ’universite imperiale sera composee d ’autant d ’acade
mies qu’il у  a de cours d ’appel.

This document makes fascinating reading: of the 144 articles, I draw 
attention to
Article 5, which shows the comprehensive character of the concept: all 
educational establishments, down to “Dames’ Schools” , are to come under 
the single umbrella;
Article 29, which fixes the rank of the various fonctionnaires: the university 
professors are at level 10; above them are the Grand Master, the Chancellor, 
the Treasurer, and assorted councillors, inspectors, rectors and deans; 
Article 38, which states that the base of the teaching at all levels is to 
be fourfold: the precepts of the Catholic religion; fidelity to the emperor 
and his dynasty; obedience to the statutes, of which the aim is to create 
citizens that are attached to their religion, their prince, their country and 
their family; conformity to the dispositions of the Edict of 1682 concerning 
the four propositions contained in the declaration of the clergy of that 
year;D
Article 101, which proposes something like an Oxbridge college in stating 
that teachers of junior rank will be constrained to be celibate and to live in 
community; more senior professors may be married, but if they are single 
they are encouraged to “live in” and benefit from communal life;
Article 102, which provided that no woman is to be lodged or received in 
any lycee or college; and
Articles 33, 128, 129, 130, which concern the robes to be worn by members 
of the various Faculties.

A professor is required, by clause 8 of Article 31, to be a doctor of his 
Faculty. To become a doctor in, for example, the Faculty of mathematical

^ the purpose of which was to limit the authority of the Pope in France and in 
effect to create a Church of France somewhat similar to the Church of England.
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sciences and physics, one must, by Article 24, submit two theses, in those 
subjects which one intends to teach. Mention of such theses aside, the 
Imperial decree, though frequently speaking of le corps enseignant, the 
teaching body, says not a word about research; but what might Napoleon, 
a soldier of genius but not an academic, be expected to know about that?

Politics and m athem atics

G-2 Despite the ceaseless tug-of-war between the pro- and anti-clerical par
ties over the educational system in France in the 19th century and the 
various perturbations in the 20th, the centralist conception of Napoleon 
remains. In our present discussion we see French dirigisme at work in the 
CAPES. I wonder how similar is this imposition of a regressive policy by 
an uncomprehending bureaucracy to the situation of logic in Eastern Eu
rope under Stalin, described in my essay Logic and Terror [М2], when, for 
example, in Poland the great Andrzej Mostowski dared not call himself a 
logician till the late nineteen-sixties.
G-3 When in 1871 the Third Republic began and Jules Ferry took control 
of the educational system, his concern was to ensure that only republican 
ideas would be taught. Try as I might, I can see no relationship between 
republican values and mathematics, but the French can; and, a hundred 
and forty years later, a section on “republican values” was included in the 
syllabus recently proposed in Reunion for the second year Master course in 
mathematics, which syllabus also mentions developments “since 1789”. Is 
this an echo of the course on arithmetique republicaine taught in Rouen in 
1794 by Caius-Gracchus Prud’homme?
G*4 A reader of The Ignorance of Bourbaki, the holder of a (C4) chair of 
pure mathematics at a leading German University, told me that as a young 
man he had been reduced to a state of intellectual paralysis by reading 
Bourbaki and that he had had to retire from mathematics for six months 
before making a fresh start. Fortunately, it is not necessary to worship at 
the Bourbachiste shrine in order to do serious mathematics.
G-5 That it might ever have been thought so necessary can be divined from 
fleeting remarks about intellectual terrorism by Miles Reid in his book 
[Re2]. I quote from the remarks on pages 114-117 of the 1994 reprint.

“Rigorous foundations for algebraic geometry were laid in the 1920s 
and 1930s by van der Waerden, Zariski and Weil, (van der Waer- 
den’s contribution is often suppressed, apparently because a num
ber of mathematicians of the immediate post-war period, including 
some of the leading algebraic geometers, considered him a Nazi col
laborator.)”



124 A. R. D. Mathias

“B y around 1950, Weil's system of foimdations was accepted as the 
norm, to the extent that traditional geometers (such as Hodge and 
Pedoe) felt compelled to base their books on it, much to the detri
ment, I believe, of their readability”

“From around 1955 to 1970, algebraic geometry was dominated by 
Paris mathematicians, first Serre then more especially Grothendieck.”

“On the other hand, the Grothendieck personality cult had serious 
side effects: many people who had devoted a large part of their lives 
to mastering Weil foundations suffered rejection and humiliation.
... The study of category theory for its own sake (surely one of the 
most sterile of all intellectual pursuits) also dates from this time.”

“I understand that some of the mathematicians now involved in 
administering French research money are individuals who suffered 
during this period of intellectual terrorism, and that applications 
for CNRS research projects are in consequence regularly dressed 
up to minimise their connection with algebraic geometry.”

G-6 Let us set against Reid’s remarks a comment of Armand Borel in [Bor]:

“Of course there were some grumblings against Bourbaki’s influence. 
We had witnessed progress in, and a unification of, a big chunk of 
mathematics, chiefly through rather sophisticated (at the time) es
sentially algebraic methods. The most successful lecturers in Paris 
were Cartan and Serre, who had a considerable following. The 
mathematical climate was not favourable to mathematicians with 
a different temperament, a different approach. This was indeed 
unfortunate, but could hardly be held against Bourbaki members, 
who did not force anyone to carry on research in their way.”

G-7 COMMENT I wonder if there is an element of complacency in that last 
statement of Borel. Suppose it were the case that over a certain period in 
numerous universities, in France, in Spain, in England, or elsewhere, the 
Bourbachistes seized power and pursued a policy of denying jobs to non- 
Bourbachistes. How would one obtain evidence of that? The poor non- 
Bourbachistes, being excluded from employment which would permit them 
to research would be likely to move away from universities and find jobs in 
industry or elsewhere, and indeed to lose touch with research mathematics. 
So they would be excluded from any figures that might be produced. People 
would be saying that the Bourbachiste view is the standard one; what 
would not be said is the subtext, that that state of affairs has come about 
because the opposition has been suppressed. There would thus be a political 
component to what has been called mathematical practice.
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An explicit example: Frangois Apery writes in [Apl,2] of his father 
Roger Apery, who at the age of 61 proved the irrationality of C(3), that he 
declined Dieudonne’s invitation to join Bourbaki, and that the dominance 
of Bourbaki meant marginalisation for an anti-Bourbakiste; despite, one 
might add, Apery pere having at the age of 23 impressed Dieudonne by his 
performance in the agregation masculine,39

G-8 That prudent would-be critics of Bourbaki should conceal their identity 
is suggested by the circumstance that in the special issue [PIS] of Pour la 
Science, published in 2000, dedicated to a study of Bourbaki, on page 78, 
where I am named and briefly quoted, and described, to my delight, as 
having pourfendu Vignorance bourbachique, a specialiste parisien is quoted 
at greater length but on condition of anonymity.
G-9 To that Parisian critic’s remarks, with which I am in complete agree
ment, I would add that it is not only in France that Bourbaki is regarded as 
an unchallengeable authority on logic. Their stifling influence is to be found 
elsewhere. Let me give a comparatively mild example. A mathematical lo
gician has confided in me that he obtained tenure at his University, in a 
European country other than France, by pretending that despite retaining 
an eccentric interest in logic, in reality he subscribed to his Department’s 
view that “real men don’t do logic”. He believes, and I with him, that had 
he revealed the depth of his commitment to logic he would not have been 
given tenure, for the reason that the quasi-totality of his decision-making 
colleagues were imbued with Bourbaki’s negative attitude. I could wish 
that now that he has landed safely in the Realm of the Blessed, he would 
speak up for logic, but it appears that the habit of caution is too deeply 
ingrained. Still, it is not for me to “out” him.
G-io Professor Segal in his Zentralblatt review [Segl] of my essay [М3] 
writes that I am unhappy with the neglect of logic by mathematicians. No, 
it is not the neglect — surely all are free to be as ignorant as they choose
— to which I object but the imposition, by the high-placed ignorant, of 
their ignorance on their subordinates, their interference with the teaching of 
logic to those who wish to learn it, and their denial, through the mechanism 
mendaciously called “peer review”^, of research funds for work in this area.
G-il COMMENT In 1851, at the Albany meeting of the American Asso
ciation for the Advancement of Science, Alexander Dallas Bache, in his 
address as out-going president, spoke of that modified charlatanism which

39 See [Ag] for further references and discussion, and [Ch] for a public protest 
by Che valley and others against the neo-Bourbachiste cosily repressive attitude 
lampooned by Moliere: Nul n’aura de Гesprit hors nous et nos amis.

^ “Clique review” would be more accurate.
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makes merit in one subject an excuse for asking authority in others, or in 
all. In 1974, in his Nobel Memorial Prize address The pretence of knowl
edge,40 PYiedrich August von Hayek describes the “scientistic” attitude as 
decidedly unscientific in the true sense of the word, since it involves a me
chanical and uncritical application of habits of thought to fields different 
from those in which they have been formed.

Somewhere between those two is what, in a nutshell, I fear has hap
pened with Bourbaki and logic.41

40 In English in [vHayl], in German translation in [vHay2].
41 The point is reinforced by the intriguing lecture [Du] given by Till Diippe at 

Siena in October 2007, entitled Gerard, Debreu from Nicolas Bourbaki to Adam  
Smith, exploring the harmful consequences for economics of Bourbaki’s influence 
on the psychological relationship of mathematical economists to their subject.
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H: ... the recovery will start when mathematicians 
adopt a post-Godelian treatment of logic.

THE MANY DEVELOPMENTS IN LOGIC and foundational studies since 
the 1920’s—it would be invidious to name names, but let me mention 

the incompleteness theorems, the relative consistency proofs for the Axiom 
of Choice, the evolution of category theory, in set theory the discovery and 
development of forcing, the emergence of large cardinal properties, the fine 
structure and core model programmes, and the work on infinitary games, 
to say nothing of the many advances in model theory, proof theory and 
recursion theory—have created a foundational arena so different from that 
envisaged in the 1920’s as to demand a new and positive approach to the 
teaching of logic in schools and universities.

Concerning that teaching, I would say that of course there are things 
in logic which are not yet understood, as in any living subject that tackles 
difficult problems, but there are ways of presenting logic and set theory 
which are far better than the Bourbachiste method. My message to the 
adventurous youth of today must be this: if you want to know what has 
happened in logic in the past century, do not go to Bourbaki, for they 
cannot tell you.

H-0 There is a widely held view, vehemently urged by Dieudonne and spread 
by the less enlightened of Bourbaki’s disciples, that mathematicians need 
trouble themselves no longer about foundational questions. But there are 
many examples of classical conjectures being proved both consistent and 
independent: one might mention Souslin’s hypothesis about a possible char
acterization of the real line as an ordered set, and Whitehead’s conjecture 
concerning free Abelian groups; one might also mention the use of set the
ory in elucidating the structure of weakly distributive Boolean algebras 
and in the study of the Lebesgue measurability of an arbitrary set of reals. 
And if one looks only for positive contributions of ideas from logic to other 
branches of mathematics, one finds that they too are legion. Immediately 
to mind, again without naming names, come the use of model theory in the 
proof of the near-truth of Artin’s conjecture and in the proof of the Lang- 
Mordell conjecture for fields of arbitrary characteristic; the use of Ramsey 
theory in the study of the subspace structure of Banach spaces and in the 
positive solution of Kuros’ problem concerning the existence of uncountable 
groups with only countable subgroups; the use of priority arguments from 
recursion theory in the construction of topological manifolds; and the use 
of proof theory in the study of sums of squares.



128 A. R. D. Mathias

So I think mathematicians would be unwise to tell themselves that they 
will never encounter foundational problems nor have a use for foundational 
ideas.

Bourbaki and French nationalism

H i In my essay The Ignorance of Bourbaki I wondered whether the atti
tudes of Bourbaki might stem from the influence of Hilbert or from some 
nationalist or chauvinist feeling, and Professor Segal, in his review [Segl], 
suggested that I was thereby contradicting myself.

Perhaps I should state that I see a distinction between nationalism 
and chauvinism. Consider, for example, Janiszewski, who at the end of 
the First World War called for a small poor country to make its mark in 
foundational studies: I see him as a Polish nationalist but not a chauvinist. 
It is one thing to say “Good things are going on elsewhere in the world: 
let us try to do as well or better.” It is another to say “Everything that is 
worth knowing is known by us; let us ignore the activities of others” .
H-2 Now Cartier’s interview [Sen] makes it clear that Hilbert and German 
philosophy were held up as models by Weil and others. He says

“The general philosophy is as developed by Kant. Bourbaki is 
the brainchild of German philosophy. Bourbaki was founded to 
develop and propagate German philosophical views in science. All 
these people ... were proponents of German philosophy ”

H-3 So I really do not see that there is a contradiction between wishing to 
strengthen French mathematics and saying that the Germans do it better. 
One might say that the Bourbachistes were nationalist but not chauvin
ist. They considered, indeed, that the French policy of putting scientists in 
trenches in World War I, when the Germans, wisely, protected their scien
tists, had retarded French mathematics by one full generation. Further ev
idence comes from Claude Chevalley described by his daughter, [Cho, pages 
36-39], where she says that the Bourbaki movement was started essentially 
because rigour was lacking among French mathematicians by comparison 
with the Germans, that is, the Hilbertians.

The chimera of completeness

H-4 Thus we come back to Hilbert. We began this essay with a translated 
excerpt of a letter from him to Frege. I suggest that Hilbert never shook 
off the illusion that a complete recursive axiomatisation of the whole of 
mathematics awaited discovery. It underlies his championing of the epsilon 
operator, the use of which seems to rest on a belief in the completeness of 
the system under discussion.
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It reappeared in his quarrel [vDal] with Brouwer: from the sources 
quoted in [Ke] it is evident that Brouwer had accepted some perhaps in
tuitive notion of the incompleteness of mathematics, and indeed Brouwer’s 
lectures in Vienna may have influenced the young Godel to probe further. 
Such a perception was anathema to Hilbert, whose battle-cry was Wir 
miissen wissen, wir werden wissen.
H*5 Bourbaki also were bedevilled by this mistake. Though Bourbaki in 
their Note Historique give a correct sketch of a proof of the incompleteness 
theorems, their residual identification of truth with provability produces 
problems. In a complete system, truth and provability are indeed identical; 
but they are not for recursively axiomatisable consistent systems extend
ing arithmetic. Bourbaki, indeed, are incoherent in their use of “true”. 
They have the idea that it is relative to a certain system; but they also at 
times wish to say that “true” means “known to be provable at the time of 
writing”.
H-6 A long-held belief, by the time it is shown to be false, may be too 
deeply embedded to be given up. We saw Hilbert, in his preface to [HiBl], 
doggedly maintaining that his programme would survive Godel’s unwelcome 
discovery of incompleteness. Corry, in [Cor3] and [Cor5], shows inter alia 
that Hilbert discarded the view that mathematics is a formal game with 
marks on paper. Hilbert himself developed his ideas about logic over twenty 
years or more, as the subject itself developed through the work of many 
people, leaving us with the problem of explaining Bourbaki’s strangely rigid, 
and indeed oppressive, attitude to logic.
H’7 Part of that oppressiveness may stem from the fact that Bourbaki was 
not a person but a group of people, so that the mind of Bourbaki is not 
an entity of the same kind as the mind of Hilbert, and would be subject to 
discontinuities in its development stemming from tensions between individ
ual members of the group. The archives of Bourbaki are, at least in part, 
available on-line,42 at

h t t p : //m a th d o c . em ath . f г / a r c h i v e s - b o u r b a k i / f e u i l l e t e r . php

They make poignant reading. The numerous drafts, by different hands, of 
the various sections of the book on set theory make manifest the extent of 
the effort that went into the preparation of the finished work.43 Among 
those drafts, my eye is caught by two typescript notes by Chevalley entitled 
Ensembles bien ordonnes and Le formaJisme de Godel. These two show 
that Chevalley was more in tune with mainstream set theory than are

42 I am greatly indebted to Professor William Messing for this information.
43 The names pencilled on copies of drafts prior to their distribution are of 

recipients rather than authors.

http://mathdoc.emath.f%d0%b3/archives-bourbaki/feuilleter.php
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Bourbaki’s books, and that he had gone so far as to read44 at least part of 
Godel’s monograph on the axiom of choice and the generalised continuum 
hypothesis.* Had Chevalley’s voice been louder than Dieudonne’s in the 
shouting matches that, Armand Borel tells us, were a regular feature of 
Bourbaki meetings, perhaps more of the insights of Godel would have got 
through the Bourbaki process, and the volume on logic and set theory 
would have been far more satisfactory, with fewer of its readers coming to 
feel that they had, in some sense, been cheated. When Bourbaki decided 
against the approach to set theory that Chevalley, following his reading of 
Godel, would, apparently, have favoured, the result was to create a breach 
between mathematics as conceived by Bourbaki and set theory as developed 
by Godel, and, following Cohen’s breakthrough, by Solovay, Jensen and 
their successors. If only . . .

La Tribu

H-8 But even more revealing than the drafts are the issues of La Tribu, the 
Bourbaki in-house journal that contained minutes of the various meetings, 
including commitments for the future, censures given to various members 
who had come to meetings ill-prepared, and, here and there, some excellent 
parodies and jokes. Hitherto in this essay we have treated, as we must, 
the works of Bourbaki as they were actually published, not as they might 
have been; but the copies of La Tribu enable us to penetrate beneath the 
surface and find out something of the personal interactions that led to the 
final choice of treatment.

One cannot know how faithfully the minutes of La Tribu recorded the 
discussions of the meetings; nevertheless it is noteworthy how many points 
made in earlier sections of this essay against the published logic texts of 
Bourbaki and their followers are reported to have been the subject of debate 
at their meetings. We cannot here examine all pertinent passages, illumi
nating though it be to observe the developing perception among members of 
the group of a need for a book on logic and set theory; to note the adoption 
in 1950 of the Hilbert operator; and to note the 1951 decision, apparently 
Dixmier’s, to replace the Lesniewski-Tarski system of propositional logic 
by that of Hilbert-Ackermann, “arrange a la sauce Chevalley”; we shall

44 As indeed did the young Cartier, who thereby was enabled to have a serious 
and lengthy conversation with Godel himself, in German, at Princeton in 1957.

* There are, though, inaccuracies in Chevalley’s summary of Godel’s consis
tency proof: he fails to distinguish between the class of all subsets of a con
structible set and the class of all its constructible subsets, and thus appears in 
places to think that every subset of a constructible set will itself necessarily be 
constructible.
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focus particularly on two further people, Eilenberg and Rosser, their views 
of logic and their relations with Weil.45
H-9 The reader of La Tribu will note the interest, expressed repeatedly, 
in the foundational proposals of Eilenberg, who is usually called Sammy. 
Eilenberg (1913-1998) had taken a logic course from Tarski in Warsaw in 
the early 1930’s; at his father’s urging, he left Poland for the U. S. in 1939, 
where he was received at Princeton and then appointed to Michigan.

He was recruited into the Bourbaki group at the instigation and urging 
of Weil as a result of Weil’s esteem for his work as a topologist.46

Prom later conversations with Eilenberg, Cartier had the strong im
pression that although Eilenberg indeed knew more about and took more 
interest in logic than other Bourbaki members, he was never very inter
ested in its role in foundations or even as mathematical hygiene but viewed 
it more as one further subject matter to which current abstract structural 
mathematics could bring deeper methods and concepts.47

Eilenberg in conversation with Michael Wright in 1990 said that he 
thought of foundations as something growing and evolving along with the 
main body of mathematics, concerned mainly with tracing the relationships 
within that and as “something coming into focus as we move from the 
inside outwards as mathematics grows and we come to see how the various 
directions of advance are connected”.

TRIBU 15: Compte-rendu du congres de Nancy (9 au 13 avril 1948)
[n b t_ 0 1 7 .p d f]48

PRESENTS: Chabauty Delsarte Dieudonne Godement Roger Samuel Schwartz 
Weil

Mornings at this meeting were devoted to Livre I. Its discussion opens 
with a revelatory pleasantry:

45 My discussion of the parts played by Chevailey, Rosser, Eilenberg and Dixmier 
owes much to the illuminating reminiscences of Pierre Cartier in conversation with 
Michael Wright in Paris on January 9th 2012.

46 Cartier gives another example of Weil’s influence: he says that the collab
oration, which in 1949-50 was already under way, of Eilenberg and Cartan in 
what became their famous text, was very much imposed—at the beginning—by 
Weil in the face of initial reluctance from Cartan. Cartan at that point would 
have preferred to write his own text single handed, although in the course of the 
collaboration he developed a great appreciation for all that Eilenberg brought to 
the work.

47 This attitude clearly marked Eilenberg’s student Lawvere.
48 The numbering of the on-line .pdf files is slightly out compared with the 

numbering of the issues of La Tribu.
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p 5 Malgre le soin constant de chacun de ne pas faire de philosophie ( “Phi
losophy is the systematic misuse of a language especially created for 
this purpose”), le Congres fut souvent menace d ’enlisement. Dieudonne 
rappela a l ’ordre les recalcitrants, et “ontologiste” fut l ’injure supreme. 
On nota une eclatante conversion de Schwartz a la Dialectique.
There follows a lengthy discussion of the difficulties to be encountered 

at the start of an exposition of logic. Weil is instructed to re-write the 
Introduction taking account of the discussion.

TRIBU 18: Congres oecumenique du cocotier (Royaumont, 13 au 25 avril 
1949) [nbt_020.pdf]

PRf-SENTS: Cartan Chevalley Delsarte Dieudonne Godement Pisot Roger 
Samuel Schwartz Weil, et le COBAYE Serre (en cour de metamorphose). 
ABSENTS: Chabauty, Ehresmann
p l Soucieux deVavenir, Bourbaki decida d ’envisager des situations de repli 

pour ses membres; la liste suivante a ete adopte: and then on page 2 , 
Eilenberg is in the list, proposed as a concierge in a college de filles, 
although his first attendance at a meeting seems to have been at Roy
aumont in October 1950. 

p 5 Eilenberg engages to make a report on ses vieux trues de multicoherence 
et d ’applications dans les cercles. 

p 6 Des la premiere seance de discussion, Chevalley souleve des objections 
relatives a la notion de texte formalise; celles-ci menacent d ’empecher 
toute publication. Apres une nuit de remords,** Chevalley revient a 
des opinions plus conciliantes, et on lui accorde qu’il у  a la une serieuse 
difficulte qu’on le charge de masquer le moins hypocritiquement possible 
dans Г introduction generale. . . .  

p 7 the system of G5del is mentioned.

TRIBU 19: Congres de la Reforme (Paris 2 au 8 octobre 1949) [nbt_02l .pdf] 
PRfiSENTS: Cartan Dieudonne Ehresmann Godement Roger Samuel Serre 
Schwartz Weil.
COBAYES: Blanchard Malgrange
p l Weil proposes that once the contents of a chapter have stabilised, its 

details should be discussed in committee rather than in plenary session. 
La foule applaudit ce projet. Cartan and Dieudonne ask to be on all 
the committees. On page 2 the committee for Chapters I and II is 
constituted as Dieudonne, Cartan and Weil, and for Chapter III as 
Dieudonne, Cartan and Samuel.

** Was that sleepless night the cause of Chevalley’s attending no further meet
ings till July 1952?
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TRIBU 20: [Congres des Comites de Decembre, Paris] 15 Decembre 1949 
Compte-rendu des comites de decembre (Paris, 3-5 Dec 1949)

[nbt_022 .p d f]

p l Weil raises objections to the axiom of families of sets (essentially the 
axiom of replacement); his chief objection is that Bourbaki would have 
no use for it;* but the congress repeats a Vunanimite its previous de
cision to reject any axiom system that forbids unrestricted cardinal 
arithmetic.

TRIBU 22: Congres de la revanche du Cocotier (5 au 17 avril 1950) Royau- 
mont [n b t_ 0 2 4 .p d f]

PR&5ENTS: Cartan Chabautey Delsarte Dieudonne Godement Mackey (au 
debut) Pisot Roger Samuel Schwartz Serre Weil.
p 2 Pour satisfaire les desirs inavoues de Che valley, on basera la logique sur 

le symbole “yoga” de Hilbert. Is this the first time that the Hilbert e 
symbol was discussed? Rosser’s review [Rol] was in the issue of the 
Journal of Symbolic Logic dated January 1950. But it is conceivable 
that he sent it earlier to Bourbaki and opened a dialogue, and perhaps 
suggested that they use the epsilon symbol. Et, on eut beau “chasser 
le Denombrable”, “il revint en trottant”. 

p 4 Drop the idea of publishing chapter III before Chaps I and II. 
p 5 Chevalley engages to do chapter II, in particular the section on struc

tures.
p 7 Review of state of Livre I: delete the confessions of Chevalley, and add 

a justification of the e of Hilbert.

TRIBU 23:49 Congres de l’horizon (Royaumont, 8-15 octobre 1950)
[a w t_ 0 0 2 .p d f]

PRESENTS: Cartan Dieudonne Dixmier Eilenberg Samuel Serre. 
RetardataireS: Godement Schwartz Koszul
p 1 La prisence d ’Eilenberg fut le fait marquant du Congres.......  il sera

appele “Sammy”.
La lecture de la logique souleva une indifference croissante, qui, 

apres Godement, Schwartz et Serre, commence a gagner Cartan et 
Dieudonne; il fallut l ’expulsion de la relation “x est un ensemble” pour 
faire quelque peu crier Samuel. Seuls Dixmier et Sammy montrerent 
un vif interet pour ces questions... 

p 2 Engagements du Congres:

*  This slightly suggests that Rosser’s critique [Rol] of [Bou49] had not yet 
reached Bourbaki.

49 Absent from the Delsarte collection, but in the Weil collection.



134 A. R. D. Mathias

DIXMIER: redige l ’etat 6 de la Logique et des premiers 
§ des Ensembles.

SAMMY: explique a Dixmier son system e pour les 
parentheses.

Pages 11-14 contain minutes of an extensive discussion of a version 
of Chapter I, E tat 5 that does not always agree in its numbering of 
sections with that available on-line, 

p 11 On adopte temporairement le symbole e de Hilbert. ... 
p 14 Pour le chap.II on rejette la proposition Chevalley de remonter les or- 

dinaux avant les structures.
Cartan voudrait le couple comme relation prim itive; d ’autres prefereL 

l ’astuce Godel (qui donne aussi 1’ensemble a deux elements). ... Mon- 
trer que {x, у} =  {у , x}.

H-ю On 19 January 1951, Weil wrote to Cartan50: 
uCi-joint une lettre de Barkley Rosser, commentant mes suggestions sur 
la logique de Bourbaki. Je te demanderai de la transmettre a Nancy, 
pour la faire tirer, apres en avoir pris connaissance. Chevalley m ’ecrit 
qu’il se rallie “avec enthousiasme” (sic!!!) a та proposition d ’employer
e pour deSnir les entiers et les cai'dinaux......

Je t ’envoie deux exemplaires de la lettre de Rosser, un pour Nancy 
et un pour que tu le transmettes des maintenant a Dixmier puisque 
(sauf erreur) с ’est celui-ci qui est charge de la logique.”

TRIBU24:51 Congres de Nancy 27 janvier au 3 fevrier 1951 [n b t_ 0 2 5 .p d f]  
PRfSENTS: Cartan Delsarte Dieudonne Dixmier Godement Koszul Sammy 
Samuel Serre Schwartz.
COBAYES: Glaesser, Grothendieck, un bresilien

Dixmier engages to finish Draft 6 of logic, for 1 May 1951. On page 3: 
Dixmier sees contradictions in Weil’s suggestions about e; it is noted that 
ceci cadre mal avec les assurances de Rosser.*
H-il Who, one wonders, first suggested using the epsilon operator? Dixmier 
voiced some reservations; and Cartier recalls Eilenberg saying in the 1960s 
that though he could see the defects of the Hilbert operator in risking am
biguity of type, that issue did not impinge on the constructions of algebraic

50 [CW], page 327: tantalisingly, the letter from Rosser sent in duplicate by 
Weil is nowhere to be found, despite the best efforts of, in Strasbourg, the editor, 
Michele Audin, of [CW); in Paris, Florence Greffe, Conservateur des Archives de 
l’Academie des Sciences; and in Austin, Carol Mead, Archivist of the Archives of 
American Mathematics.

51 Erroneously numbered 23 in the Delsarte collection.
* Conveyed presumably in the missing letter from Rosser.
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topology, so did not justify a fuss. Perhaps Eilenberg felt that since the 
other Bourbachistes were little interested in logic, and since his relations 
with Weil were excellent, and helpful to him in his work with Cartan in 
Topology, which he saw as his main business, it would have done him very 
little good—especially with Weil—to try to get the others interested.
TRIBU 25: Congres oecumenique de Pelvoux-le-Poёt (25 juin au 8 juillet 

1951) [n b t_ 0 2 6 .p d f]
PR6SENTS: Cartan Delsarte Dieudonne Dixmier Godement Sammy Samuel 
Schwartz Serre Weil.
ABSENT: Koszul VlSITEURS: Hochschild Borel COBAYES: Cartier Mirkic 
P 3 The plan of Livre I is confirmed as Introduction; I: description of formal 

mathematics; II: theory of sets; III: ordered sets, integers; IV: struc
tures.

The commitments made by members are listed on pages 4 and 5: 
in particular Dixmier engages to make the final version of the logic 
section two months after Rosser gives his imprimatur, 

p 5 Sammy: Rapport sur le role des foncteurs au Livre I, chapitre des 
Structures (janvier 52) Samuel promises to write the Introduction to 
Livre I, (with Weil) by December 1951; and Weil promises to write, 
with Rosser, the Note Historique for Livre I.

On pages 6-9 there is a detailed report on the set theory book; 
and the decision is there recorded to “send the list of all our axioms 
to Rosser: If he finds them “kosher” , we will proceed immediately to 
near-final versions.” WEIL a decanule le contre exemple de DIXMIER 
sur Vegalite des e de deux relations equivalentes (voir “Lamentations")

On page 7, the ordered pair will be taken as primitive. On page 8 , 
it is decided to speak of schemas rather them implicit axioms. On page 
9, it is noted that the opinion of Rosser is awaited, and that Weil will 
seek instruction from himJI

TRIBU 26: Congres Croupion (1 au 9 octobre 1951) [n b t_ 0 2 7 .p d f]
PRliSENTS: Cartan Dieudonne Dixmier Godement Samuel Schwartz Serre. 
p 3 It is resolved to include the last sentence of the JSL article, that—in 

effect—all can be done in ZC. 
p 4 Rosser trouve kosher notre systSme d ’axiomes avec Vegalite des r  (rem- 

placera e pour raisons typographiques) de deux relations equivalents 
(sous la forme WEIL).

N In the original, “WEIL se fera tapiriser par ROSSER”. In Normalien argot, 
a Tapir is a schoolchild whose parents pay a Normalien to give him evening lessons 
to catch up in Maths or in another discipline. A Cambridge translation would be 
that Weil would ask Rosser for a supervision on logic.
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Cartan wants to change Chapter II; so the meeting, feeling baffled, 
resolves to pursue discussion by letter and in a congress.

TRIBU 27: Congres Croupion des Vosges, (8 au 16 mars 1952). [nbt_028 .pdf] 
PRESENTS: Cartan Dieudonne Dixmier Godement Samuel Schwartz.
INVIT6: Grothendieck.

The minutes suggest that, much to the relief of certain others present, 
Grothendieck returned to Nancy in a huff after being told that all empty 
sets are equal but some are more equal than others.

TRIBU 28: Congres de la motorisation de l’ane qui trotte (Pelvoux-le-Poёt 
25-6 au 8-7 1952) [nbt_029.pdf]

PRESENTS: Cartan Chevalley Delsarte Dieudonne Dixmier Godement Sammy 
Samuel Schwartz Serre Weil.
NOBLES VISITEURSfiTRANGERS: Borel, de Rham, Hochschild
p 2 Livre I: Introduction finished; Chap I adopted; Chapter II: new version 

of Dieudonne to be examined in October; ditto Chapter III. Chapter 
IV (Structures): une nouvelle redaction sera polie cet automne par un 
Caucus Americain, puis envoye au Congres de Fevrier. Note Historique: 
Samuel se fera tapiriser par Rosser a Ithaca. On Logic, on a decide 
de rediger Гаppendice en style “intuitionistisable” (a la Dixmier). On 
structures, on decide d ’essay er le systeme Sammy. 

p 5 Eilenberg engages to draft Chapters 1 and 4 of Topologie Pederastique, 
and Serre to draft chapters 2 and 3 of the same. Samuel engages to 
prepare Chapter 4 (structures) and the Note Historique.

On pages 7-9 there is a further report on the book Theorie des 
ensembles. The problems addressed by category theory are starting to 
reveal themselves.

TRIBU 29: Congres de l’incarnation de l’ane qui trotte (Celles-sur-plaine, 
19-26.10.1952) [n b t_030 .p df]

P r£SENTS: Cartan Koszul Serre Weil. QUASI-PRESENTS: Dixmier Schwartz 
QUASI-ABSENT: Delsarte
p 4 Samuel reclamera Rosser pour qu’il donne rapidement son avis sur les 

chap.I-II.

Bourbaki consult Rosser

H-12 Thus, behind the scenes, Bourbaki seem to have hungered for reassur
ance about their foundational book. Rosser appears to have left no record of 
his meetings or correspondence with Weil or Samuel; nor is there any in the
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Weil archives in Paris.52 Perhaps the sequence of events began in Chicago, 
whither both Mac Lane and Weil were lured by Stone in 1947; perhaps it 
was Mac Lane, a founder member, who proposed that Weil be invited to 
present Bourbaki’s foundational ideas to the Association for Symbolic Logic 
in December 1948; perhaps Rosser’s review [Rol] of [Bou49] led Bourbaki 
to contact him; perhaps he saw his role as that of protecting Bourbaki from 
error rather than steering them towards any particular account of logic or 
set theory. He himself was willing to consider widely differing accounts: he 
published shortly afterwards a book [Ro2] expounding the development of 
mathematics within Quine’s system NF, of which the review [Cu] by Curry 
is illuminating; some years later he published a book [Ro3] expounding the 
Boolean-valued models approach to forcing, in something like a ZF con
text; and, once,53 in private and perhaps with provocative intent, declared 
himself a finitist who disbelieved in the existence of infinite sets.
H-13 Rosser’s son has written in [RoJr] of his father’s character and achieve
ments. The picture of the notoriously abrasive Weil presenting himself at 
Rosser’s door as a humble seeker after truth refuses to come into focus; 
but Cartier’s view is that Rosser was regarded by Bourbaki as arbiter of 
last resort in logic solely and simply because that is what Weil proclaimed 
him to be—Cartier recalls Weil describing Rosser as a good personal friend 
“who happens to know about logic”—and those members, such as Cheval
ley, Dixmier and Eilenberg, who knew enough of the work of Godel and 
Tarski to doubt this assurance, did not feel there was enough at stake to 
make an issue of it.
H-14 The friendship between Weil and Rosser rested on some non-mathema- 
tical tie or common interest—Weil had a very wide range of interests— 
which brought them together, perhaps from 1947 when Weil came to 
Chicago, perhaps from the period before Weil’s departure from the U.S. 
for Brazil in 1945. To quote Michael Wright, given Weil’s notorious dises- 
teem for logic, which he was scarcely reluctant to voice, it cannot have been 
founded on admiration for Rosser’s professional achievement as a logician. 
But Weil always spoke warmly of him.
H-15 The three significant changes to Bou49 that yielded the system finally 
adopted, Bou54, were:

(H-15-0) to follow the Hilbert-Ackermann treatment of propositional 
logic;

52 Cartier suggests that the absence of correspondence in the Weil archive may 
be due to the fact that most of the exchanges would have taken place through 
Rosser’s coming to Chicago to seek out Weil on his home ground.

53 According to the testimony of Gerald Sacks.
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(H-15-1) to treat quantifiers not as primitive signs but as derived from 
the Hilbert operator;

(H-15-2) to change the set-theoretic axioms from something like ZC to 
something like ZFC.

I can imagine Rosser suggesting (H-15-0) to Bourbaki, but not (H-15-1), 
unless in mischief; might the latter have been suggested by Mac Lane, the 
ex-pupil of Bernays, to Weil, the translator of [Hi2]? If not, perhaps the 
suggestion came from Chevalley in early 1950, as suggested by Tribu 22, and 
then was explored by Chevalley in his Draft 5; then adopted provisionally 
in October 1950 and definitively in Dixmier’s Draft 6 in 1951. Let us hope 
that Rosser’s missing letter will re-appear and settle these questions.

H-16 As for (H-15-2), Weil and Dieudonne thought the change unnecessary, 
despite the criticisms of Skolem [Sk], as would Mac Lane. The day was 
probably carried by Chevalley, who was interested in Godel’s work on AC 
and GCH, and Cartan, who was against too fixed and narrow an axiomatic 
base.

Consider these failings of ZC, documented in the papers cited:
(H-16-0) ZC cannot prove that every set has a rank: see Model 13 in 

section 7 of [M9, §7];
(H-16-1) ZC cannot prove that every set has a transitive closure: see [M9, 

§12];
(H-16-2) ZC cannot prove that the class of hereditarily finite sets is a set: 

see [Мб];
(H-16-3) Z cannot conveniently handle Godel’s concept of constructibil

ity: see [M7, §4];
(H-16-4) ZC cannot do Shoenfield-style forcing: see [Mil].
(H-16-5) ZC is unable to construct the direct limit discussed in [M7, Ex

ample 9.32, p.224];
(H-16-6) ZC cannot prove the determinacy of Borel games: see [Sta].

The reader may sense the problem common to the first five, namely, 
the absence in Z of explicit forms of replacement, even those supported by 
the Kripke-Platek system KP. But that amount is there in coded form: it 
is shown in [M7] that if Z is consistent, so is Z +  KP; and in Z+ KP, those 
first five objections melt away; further, adapting Godel’s proof for ZF to 
proving the consistency of AC relative to that of Z + KP is straightforward; 
so the declarations of Weil, Dieudonne and Mac Lane that ZC is plenty for 
their mathematics merely mean that their mathematics makes very little
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use of the recursion-theoretic side of mathematics. They missed a lot: had 
they added to their chosen ZC the axioms of KP, their enhanced theory 
would be no stronger, consistency-wise, and no nearer the large cardinal 
axioms they dreaded, but would have given, to them and their followers, 
conceptual access to the beauty and power of post-Godelian set theory.

With the last two, the problem is that proving the statement concerned 
necessarily goes beyond the consistency strength of ZC; very much so in 
the case of Borel determinacy and other assertions explored by Harvey 
Friedman; and therefore, if ZC is consistent, such proofs cannot exist even 
in ZC +  KP.
H-17 There is a final class of results which are provable in ZC, or even in 
MAC, but whose proofs would, conceptually, involve a voyage into the world 
of ZF. Here are three examples, derived from arguments of Godel, Solovay, 
Shelah, Raisonnier, H. Friedman and Martin about projective sets of reals:

if every £ 3  set is Lebesgue measurable, then every uncountable П* set 
has a perfect subset;

if every uncountable П} set has a perfect subset, then every £ 3  se  ̂
Lebesgue measurable;

every Borel game with integer moves is determined provided every 
Turing-closed such game is.

H-18 COMMENT The pages of La Tribu give the impression that Bourbaki 
finalised plans for a book only when the criticism and energies of the mem
bers had reached exhaustion. It is plain that individual members of the 
group did think, in their different ways, about foundational matters; one 
feels that a part, at least, of the oppressiveness of Bourbaki comes from the 
secrecy and anonymity of their activities, with the consequence that no one 
person would admit to responsibility for the outcome.

We must here leave our scrutiny of La Tribu and return to our discus
sion of the public consequences of Bourbaki’s publications; and as we do, 
we become aware of the change from the sensitivity of individual percep
tions to the crudity of collective decisions; much as Rostropovitch declared 
[Ste, p.249] a brutal entry of the brass in Lutoslawski’s Cello Concerto to 
conjure an image of the Central Committee at full strength.

W hy use B ourbak i’s form alisation?

H-19 Bourbaki were starting up before the dust had settled from Godel’s 
discoveries; they wanted to steer clear of the problem of incompleteness; 
so they made what they thought would be practical decisions; but they 
could have made better ones. And it is that last message that has not yet



140 A. R. D. Mathias

reached the public: formalised mathematics need not be the dog’s dinner 
that Bourbaki make of it.

The number 4523659424929 in the title of [M8], when inserted into 
Google, yields numerous hits, many of which are in Chinese or Japanese, 
and which, I am told, are contributions to an on-line discussion about the 
possibility of formalised mathematics on a computer, and that the conclu
sion being reached is that my calculations in [M8] show that automated 
theorem proving is an impossibility.

But that conclusion, though reinforced by the grotesque length of terms 
generated in Bourbaki’s later editions, seems premature. The review [Got] 
of [M8] in Mathematical Reviews hints at the existence of simpler formal
isations than even that of Bourbaki’s first edition; but let us be explicit. 
Suppose we formalise mathematics with two binary relations =  and G, 
propositional connectives & , individual variables x , . . . ,  the quantifier
V, and a primitive symbol У\ for the class forming operator, with syntax 
to match, so that У\х%[ is what is commonly written as {x  | 21}; then the 
empty set, 0 , can be defined in six symbols, as >i x->x =  x and its singleton, 
{0 }, as >\xVy->y € x; eight symbols in all, including just one quantifier.

I ask those who would treat mathematics as a formalised text: why 
use a formalisation that defines the number One not in eight symbols but 
in 2409875496393137472149767527877436912979508338752092897?

Structuralism: a part but not the whole of m athem atics

Mathematics and logic move on. After Hilbert and, in effect, after 
Bourbaki came Godel; and after Godel’s work of the thirties—his com
pleteness theorem, his incompleteness theorem and his relative consistency 
proof for AC and GCH^—came a further major development in founda
tional ideas, stemming from the Eilenberg-Mac Lane theory of categories. 
Though there are differences between Bourbaki and the school of Mac Lane, 
they are closer to each other than either are to the set-theoretic concep
tion of mathematics, and might conveniently be given the blanket label of 
structuralists.

H-20 Cartier again [Sen]:
“Most people agree now that you do need general foundations for 
mathematics, at least if you believe in the unity of mathematics.
I believe now that this unity should be organic, while Bourbaki 
advocated a structural point of view ”

^ For which, Bernays [Ber2] suggests, the inspiration may have been Hilbert’s 
attempt in [Hi2] to prove CH by enumerating definitions.



Hilbert, Bourbaki and the Scorning of Logic 141

“In accordance with Hilbert’s views, set theory was thought by 
Bourbaki to provide that badly needed general framework. If you 
need some logical foundations, categories are a more flexible tool 
than set theory. The point is that categories offer both a gen
eral philosophical foundation — that is, the encyclopaedic or tax
onomic part — and a very efficient mathematical tool to be used 
in mathematical situations. That set theory and structures are, 
by contrast, more rigid can be seen by reading the final chapter in 
Bourbaki’s Set Theory, with a monstrous endeavour to formulate 
categories without categories
In the second quotation it is plain that what Cartier means by set 

theory is the very limited contents of the Bourbaki volume of that name; 
a far cry from what set theorists mean by set theory. On the other hand, 
in the first one, Cartier may be echoing a point made in [M4], that unity 
is desirable but not uniformity.
H-21 In mentioning uniformity we touch on very dangerous topics; Solzhen
itsyn wrote that Stalin made people second-rate; a comment from Feyer- 
abend [Fe] is here relevant:
p 306: “It is not the interference of the state that is objectionable 

in the Lysenko case, but the totalitarian interference that 
kills the opponent instead of letting him go his own way.”

Even in less threatening circumstances uniformity leads to a failure of 
critical understanding, and I fear that something of that kind has happened 
in mathematics as a result of the excessive influence of Bourbaki. Once a 
mistake is embedded in a monolithic system, it is hard to remove.0

A possible and regrettable consequence of the uniformising tendency 
of Bourbaki is Grothendieck’s withdrawal from the group and subsequently 
from contact with other mathematicians: one wonders whether he felt 
threatened by Bourbaki in the same totalitarian way that Chevalley may 
have been shouted down by Dieudonne, Cantor was blocked by Kronecker, 
and Nikolai Lusin was menaced by, and Giordano Bruno54 actually suffered, 
a death sentence.
H-22 On the question of the unity of mathematics, I should stress that 
I see the advent of structuralism in mathematics as a bifurcation from, 
not a development of, set theory. In some areas of mathematics equality

°  The mathematical micro-society might here be suffering damage similar 
to that, analyzed by Hayek in [vHay3], done to macro-society by planning the 
unplannable.

54 Links between the conceptions of infinity of Nicholas of Cusa, Bruno and 
Cantor are discussed in the thoughtful essay of Hauser [Hau].
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up to an isomorphism is good enough whereas in others it is not, and 
structuralism and set theory are on opposite sides of this divide. So while 
in certain areas of mathematics, structuralism has had a great success, I 
believe that were the foundational ideas of the structuralists to extinguish 
all other ideas about the foundations of mathematics, it would be to the 
great impoverishment of mathematics.55 Equally, mathematics would be 
the poorer were set-theoretic ideas to extinguish structuralist ideas: and in 
[M13] I shall develop the approach outlined in [Ml2] to probe the nature 
of the above divide and argue for a pluralist account of the foundations of 
mathematics. Dieudonne once wrote that we have not begun to understand 
the relationship between combinatorics and geometry; and I shall hope in 
[M13] to show that as in a classical tragedy, the Bourbachistes do not realise 
that what they seek is already to hand.
H-23 Meanwhile something of the dual nature of mathematics is conveyed 
by the friendly exchange [M]* and [M4] between Mac Lane and myself; and 
the technically-minded will find in [M7] a close scrutiny of the system of 
set theory—a subsystem of ZC—that seemed natural to Mac Lane, and in 
[M9] an even closer scrutiny, if possible, of certain systems of set theory 
that are important to set theorists.

Mac Lane did not, be it noted, see the issue between topos theory and 
set theory as an ontological competition. My own view of set theory is 
that I think of particular superstructures of abstract ideas being called into 
being to solve particular problems, different superstructures being invoked 
at different times. I would not be perturbed if the superstructure that 
solves one problem is not right for another.

Personally I define set theory as the study of well-foundedness, and 
regard its foundational successes as occurring when it meets a need for a 
new framework for a “recursive” construction (in a suitably abstract sense). 
I don’t think it succeeds at all in accounting for geometric intuition. That 
failure should not be allowed to obscure its successes; but nor should its 
successes be judged a reason for sweeping its failures under the foundational 
carpet.

There remains the eternal challenge of conveying to others the limita
tions they are putting on their conceptual universe by adopting exclusively 
one mode of thought. How does one prove to someone that he is colour
blind? The victim has to be willing to notice that others have perceptions 
denied to him.**

55 and of economics, as discussed in [М12].
* Is its title an allusion to the “supreme insult” of La Tribu, №  15, page 5?

** A friendly critic of an earlier draft supplies the example of green and red 
tomatoes, which a red-green colour-blind person can distinguish by taste or by
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H-24 But, in mathematics at least, there are sifms nf ^  .i-rr
tions. Cartier writes in [Sen]: ^  °f these percep-

"Following the collapse of the Soviet Union, the Russians 
have brought a different style to the West, a different 
way of looking at the problems, a new blood.”

The group centred around Baire, E. Borel япН . г i • • ,  ana Lebesgue created a
view of analysis growing out of the insights of Cantor. Both Lusin and 
szewski came from the East to sit at their feet. япЯ г**-----j  u____

new view w auaijo,o .....ь — v xuaigfits or uantor. Both Lusin and
Janiszewski came from the East to sit at their feet, and returned home with 
a positive message. I wonder to what extent the Russian style that Cartier 
has noticed descends through Lusin from Baire. The writings of Graham 
and Kantor [GrKl, GrK2, GrK3] are here highly relevant, developing in 
detail, as they do, topics only touched on in [Sen] and [Ml].

Another collapse

H-25 There is a collapse of intellectual level in French schools: see [Coi]. 
So far as mathematics goes, I believe that the cause of the collapse of 
mathematical understanding is the suppression of the teaching of logic, 
which, I suggest, is the consequence of Bourbaki’s disastrous treatment of 
logic.
H-26 ASIDE I am not saying that nothing but logic should be taught, far 
from it, any more than I should say that an aspiring pianist should play 
nothing but scales. But training in logic will stand you in good stead in 
many fields, just as working at the studies of Liszt will give you greater 
command of the works of Beethoven and Chopin. Logic strengthens the 
mind just as Liszt strengthens the fingers; and both strengthenings then 
permit you to go on to greater things.
H-27 For further evidence, let us explore another story of intellectual col
lapse, namely that of the Italian school of geometry. Mumford writes56 
that the three leaders were Castelnuovo, Enriques and Severi; and that 
Castelnuovo was totally rigorous, whereas Enriques gave incomplete proofs 
but was aware of the gaps and tried to fill them; and Severi, after a brilliant 
start, wrote rubbish; and in effect killed the whole school.

Mumford thinks that the collapse started around 1930. The Italians 
were not short of ideas, but no one knew what had been proved. Zariski 
and Weil sorted out the mess; then Grothendieck revolutionised the sub
ject. With Zariski were associated the Bourbachistes Weil, Chevalley, and 
Samuel.

feel but not by sight alone, unlike fully-sighted persons.
56 Email to Thomas Forster of 23.xi.94, visible at

h t t p : / / f t p . m cs. a n l . g o v /p u b /q e d /a r c h iv e /2 0 9



144 A. R. D. Mathias

H-28 Peano died in 1932 and was teaching until the day before his death. 
Bourbaki listed in their historical note these co-workers of Peano: Vailati, 
Pieri, Padoa, Vacca, Vivanti, Fano and Burali-Forti. Peano’s biographer, 
Hubert Kennedy, comments that most of them were kept out of university 
life:

Vailati (1863 - 1909) read engineering at Turin 1880-84. He came under 
Peano’s influence and then read for a mathematics degree which he got in 
1888. He went home to Lode, then was assistant to Peano (1892) and then 
to Vito Volterra. He resigned his university position as assistant in 1899, 
and became a high school teacher. He then worked on logic and philosophy.

Pieri (1860-1913) graduated at Pisa in 1884, then taught at the Mili
tary Academy in Turin. He obtained a doctorate from Turin in 1891, and 
then taught projective geometry courses there. He got a job in 1900 at the 
University of Catania in Sicily, then in 1908 moved to Parma.

Padoa (1868-1937) taught in secondary schools and at a Technical In
stitute in Genoa. He applied unsuccessfully for university lectureships in 
1901, 1909 and 1912. Late in life he held a lectureship in mathematical 
logic at the University of Genoa 1932-1936.

Vacca (1872-1953) was left-wing in politics in his youth; graduated 
in mathematics from Genoa in 1897; moved to Turin and became Peano’s 
assistant. He discovered the importance of the unpublished works of Leibniz 
and told Couturat about them. He later took up Chinese language and 
literature.

I have been unable to discover anything about Vincenzo Vivanti.
Fano (1871-1952) had a rich father. He worked under Felix Klein, and 

then in Rome (1894) Messina (1899) and from 1901 as Professor at the 
university of Turin. He was expelled in 1938 by the Fascists. He worked 
mainly on projective and algebraic geometry.

Cesare Burali-Forti (1861-1931) graduated from Pisa in 1884; from 
1887 he taught at the military academy in Turin. He gave an informal series 
of lectures on mathematical logic at the University of Turin in 1893/4 and 
was Peano’s assistant 1894-6.

H-29 After the second world wax, logical studies in Italy revived with the 
1948 translation of and commentary on Frege by Ludovico Geymonat (1908- 
1991), and furthered by Ettore Casari, (1933- ) who learnt about the work 
in Vienna and Germany from Geymonat at Pavia and then completed his 
studies at Munster, where Heinrich Scholz had built up a school of logic. 
In the collection [GP] he asks:

“When - in the light of what later occurred - we look at Peano’s and 
his followers’ metalogical achievements, a crucial question arises:
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how could it be that these skills, these competences, not many 
years after what Hans Freudenthal liked to call “the Parisian tri
umph of the Italian phalanx” should have ceased not only to be 
a reference point for world-wide research, but even to appear on 
the Italian cultural scene?”

H-30 PROBLEM Is it possible that the collapse of Italian geometry was 
brought on by the suppression of Italian logic? The dates fit uncomfortably 
well.

Back to  S t B enedict

H-31 We must wind up our discussion. So far as Bourbaki’s treatment of 
logic is concerned, the picture is rather sad: Hilbert attacks an admittedly 
difficult problem, entrusts the work to younger colleagues, and can, perhaps 
from embarrassment, barely bring himself to acknowledge the Godel revo
lution. Bourbaki copy Hilbert’s pre-Godelian position, with its belief that 
foundational problems can be settled “once and for all”, its identification of 
consistency, truth and provability, and its attempt to declare mathematics 
to be an uninterpreted calculus; and others copy Bourbaki. Progressively 
the misunderstanding spreads.
H-32 Eilenberg acknowledged that Bourbaki hadn’t thought through their 
position on foundations clearly and that what they had provided was a 
mess. But then he felt foundations was always a work in progress, an 
outlook shared by several members of Bourbaki: but when, later, after the 
impact of category theory had become evident—especially after the adjoint 
functor theorem and Grothendieck’s work—it was suggested they go back 
and do a fresh treatment of foundations from scratch, Weil vetoed the 
idea as a mis-application of energy and resources. Thus Weil, the tyrant, 
imposed his static view of logic on his colleagues.

It is striking that Chevalley who (as did Cartier) exerted himself to 
read Godel’s monograph on AC and GCH, spoke out against the boorish 
conduct of “an ex-member of Bourbaki” in [Ch].

H-33 A distinguished, non-French, mathematician, on reading an earlier 
draft of this essay, wrote that whilst he had noticed that Bourbaki’s logic is 
very bad, and whilst he acknowledges that I have carefully explained how 
and why it is bad, nevertheless he does not understand how it is possible 
not to see the great unifying force and amplitude of the rest of Bourbaki’s 
work. In his view,

“Bourbaki’s epoch is gone, but it was a great epoch, and their 
achievements are as undying as Euclid’s. We go forward starting 
where they ended. ”
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Those comments summarise our dilemma. Bourbaki’s structuralist 
conception advanced certain areas of mathematics but tended to stifle oth
ers. How might we undo the admitted harm Bourbaki have done to the 
understanding and teaching of set theory and logic—subjects not at the 
forefront of their thought—whilst retaining the benefit of their work in the 
areas in which they were very much involved?
H*34 That is a non-trivial tactical problem, and I have little faith in the 
ability of a central committee to solve it by decree. Indeed this whole 
lamentable saga calls into question the intellectual adequacy of “modern” 
managerialist centralising universities. It would be better, as I suggest 
below, to have many independent scholarly bodies such as are almost called 
for in Article 101 of Napoleon’s university statutes.

H-35 One aspect of this problem, for votaries of mathematical logic, is the 
challenge of imbuing mathematicians with a lively post-Godelian sense of 
the vitality of logic. Two encouraging signs for France are the pleasing, if 
ironical, circumstance that despite Bourbaki’s dead hand, Paris has now 
acquired one of the largest concentrations of logicians on the planet, and 
the fact that since 2000, of the Sacks prizes bestowed by the Association for 
Symbolic Logic on doctoral dissertations of outstanding quality written on 
topics in logic, four have gone to dissertations written at French universities. 
It is greatly to be hoped that in consequence the trickle-down phenomenon 
will, over the next twenty years, work in the reverse direction, to restore 
the teaching of logic to schoolchildren in France and elsewhere.

Such a change is much needed, for on the educational front, a new 
dark age approaches. Following the dropping of logic in the curriculum, 
schoolchildren in France are no longer taught to prove theorems; they are 
given theorems as statements and then given exercises in their application. 
A generation is growing up without the urge towards rigour. When the 
battery of their calculator runs down and the calculator starts to make 
mistakes, how will they know?

H-36 The phenomenon of creativity being arrested by excessive bureaucratic 
control is well-known to historians of past cultures. I quote from The Fatal 
Conceit by F. A. von Hayek [vHay3] for the following information and 
references concerning Ancient Egypt, Byzantium and mediaeval China.
p 33 In his study of Egyptian institutions and private law, Jacques 

Pirenne describes the essentially individualistic character of the 
law at the end of the third dynasty, when property was ‘individual 
and inviolable, depending wholly on the proprietor’ but records the 
beginning of its decay already during the fifth dynasty.

Pirenne, J. (1934) Histoire des Institutions et du droit prive de
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Vancienne Egypte (Brussels: Edition de la Fondation Egyptologique 
Reine Elisabeth)

This led to the state socialism of the eighteenth dynasty described 
in another French work of the same date which prevailed for the 
next two thousand years and largely explains the stagnant charac
ter of Egyptian civilization during that period.

Dairanes, Serge (1934) Un Socialisme d ’Etat quinze Siecles avant 
Jesus-Christ (Paris: Libraire Orientaliste P.Geuthner)

p 44 It would seem as if, over and over again, powerful governments 
so badly damaged spontaneous improvement that the process of 
cultural evolution was brought to an early demise. The Byzantine 
government of the East Roman Empire may be one instance of this. 

Rostovtzeff M. (1930) ‘The Decline of the Ancient World and 
its Economic Explanation’, Economic History Review, //; A his
tory of the Ancient World (Oxford: Clarendon Press); L ’empereur 
Tibere et le culte imperial (Paris: F.Alcan), and Gesellschaft und 
Wirtschaft im Romischen Kaiserreich (Leipzig: Quelle & Meyer).

Einaudi, Luigi (1948) ‘Greatness and Decline of planned econ
omy in the Hellenic world*, Kyklos II, pp 193-210, 289-316.

p 45 And the history of China provides many instances of government 
attem pts to enforce so perfect an order that innovation became 
impossible

Needham, Joseph (1954-85) Science and Civilisation in China 
(Cambridge: Cambridge University Press), 

p 46 What led the greatly advanced civilisation of China to fall behind 
Europe was its governments* clamping down so tightly as to leave 
no room for new developments, while Europe probably owes its 
extraordinary expansion in the Middle Ages to its political anarchy. 

Baechler, Jean (1975) The origin of capitalism (Oxford: Black- 
well), page 77.

H-37 The general challenge to our mathematical culture might be seen as 
that of regeneration, such as, Charlemagne thought, faced Europe after 
barbarism engulfed Roman civilisation. But the “green shoots of recovery” 
spread only slowly from a centre: though the Institut Henri Poincare might 
have had logic seminars in 1956, even if not part of a degree course, the 
Rue d ’Ulm began teaching logic only 33 years later. So, like Charlemagne, 
let us turn for a solution to the decentralist Benedictine idea, the nature 
and strength of which is well-summarised in a passage [T-R, page 121] of a 
book by a former Master of Peterhouse:

“In the darkening, defensive days of the sixth century, the Bene
dictine monastery had been the cell of Christendom: every cell 
independent, so that if  one cell failed, another might survive.”
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That independence still holds today: though they all follow the Rule of 
St Benedict, the Benedictine abbeys do not form an order; each is indepen
dent and each abbot is sovereign. The Benedictine idea led, in Oxford and 
Cambridge, to the founding of colleges, the founding statutes of the oldest 
colleges being expressly based on the Rule of St Benedict. The strength 
of Oxford and Cambridge as universities derives from the traditional inde
pendence of each college within the university, exemplified by the comment 
of an earlier Master of Peterhouse, the mathematician Charles Burkill, on 
a University proposal to establish a centralised Needs Committee for the 
totality of colleges, that “such a committee can only be mischievous” .

There is no reason why the Oxbridge system of colleges, that is, of self- 
governing, self-recruiting, property-owning communities of scholars, should 
not be permitted to develop in other countries, and thereby encourage the 
“free market” approach to education expressed in my final quotation, from 
Feyerabend’s most famous book, Against Method:

p 30 “[Knowledge] is not a gradual approach to the truth. It is rather an 
ever increasing ocean of mutually incompatible and perhaps even 
incommensurable alternatives, each single theory, each fairy tale, 
each myth that is part of the collection forcing the others into 
greater articulation, and all of them contributing via this process 
of competition to the development of our consciousness.”
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We present some ideas in furtherance of objectivity in mathematics.
We call for closer integration of mathematics with the rest of human 
knowledge. We note some insights which can be drawn from current 
research programs in the foundations of mathematics.

1. O bjectivity and Objectivism

I am a mathematician, not a philosopher. However, as a mathematician 
and a human being, I have always had the greatest respect for philosophy, 
and I have always recognized the need for philosophical guidance.

My thinking is largely informed by a particular philosophical system:

Objectivism (with a capital “O”).

A key reference for me is Leonard Peikoff’s treatise [4]. By the way, Peikoff 
obtained his Ph.D. degree in Philosophy here at New York University in 
1964. His thesis advisor was Sidney Hook.

For those not familiar with Objectivism, let me say that it is a coherent, 
integrated, philosophical system which encompasses the five main branches 
of philosophy: metaphysics, epistemology, ethics, politics, aesthetics.

As the name “Objectivism” suggests, the concept of objectivity plays a 
central role in the system. Because objectivity is an epistemological concept, 
let me say a little about the Objectivist epistemology. Of course, my brief 
account of the Objectivist epistemology cannot be fully understood outside
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the context of certain other aspects of Objectivism which I do not plan to 
discuss here.

The main point is that Objectivist epistemology calls for a close relation
ship between existence (the reality which is “out there”) and consciousness 
(a volitional process that takes place within the human mind).

(1) According to Objectivism, knowledge (i.e., human, conceptual knowl
edge) is “grasp of an object by means of an active, reality-based process 
which is chosen by the subject.”

(2) According to Objectivism, objectivity is a specific kind of relationship 
between reality (“out there”) and consciousness (“in here”).

(3) All knowledge is contextual, i.e., it must be understood within a context. 
Moreover, the ultimate context is the totality of human knowledge. 
Thererore, all of human knowledge must be integrated into a coherent 
system. Compartmentalization is strongly discouraged (more about this 
later).

(4) In integrating human knowledge into a coherent whole, the method of 
integration is logic, defined as “the art of non-contradictory identifica
tion.” Here “identification” refers to the conceptual grasp of an object 
or entity in reality.

(5) All knowledge is hierarchical. Concepts must be justified or validated by 
reference to earlier concepts, which are based on still earlier concepts, 
etc., all the way down to the perceptual roots. This validation process 
is called reduction.

We may contrast Objectivism with two other types of philosophy: in- 
trinsicism  (e.g., Plato, Augustine) and subjectivism (e.g., Kant, Dewey).

(1) To their credit, the intrinsicists recognize that knowledge must con
form to reality. However, intrinsicism goes overboard by denying the 
active or volitional nature of consciousness. According to intrinsicism, 
the process of acquiring knowlege is essentially passive. It consists of 
“revelation” (Judeo-Christian theology) or “remembering” (Plato) or 
“intuition,” not volitional activity. The operative factor is existence 
rather than consciousness.

(2) To their credit, the subjectivists recognize that revelation is not a valid 
means of cognition. However, subjectivism goes too far by insisting that 
concepts are not based on reality but rather are created solely out of the 
resources of our own minds. There are several versions of subjectivism. 
In the personal version, each individual creates his own universe. In the
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social or collective version, concepts and facts are created by a group. 
In all versions of subjectivism, the operative factor is consciousness 
rather than existence.

Objectivism strikes a balance by emphasizing a close relationship between 
existence and consciousness. Each of these two factors is operative. Their 
close relationship is summarized in a slogan:

“Existence is identity; consciousness is identification.”

2. M athem atics as Part of Human Knowledge

A major problem in universities and in society generally is compartmental
ization. Compartmentalization is a kind of overspecialization in which one 
regards one’s own specialty as an isolated subject, unrelated to the rest of 
human knowledge. Thus, the teachings of one university department (e.g., 
the English department) may flatly contradict those of another (e.g., the 
business school) and this kind of situation is regarded as normal.

Compartmentalization can sometimes exist within a single individual. 
An example is the conservative economist who advocates the profit motive 
in economics and the Sermon on the Mount in church. Another example 
is the legislator who calls for strict government control of political advo
cacy and commercial activity, while at the same time paying lip service to 
freedom of speech and association.

Here I wish to focus on compartmentalization in the university context, 
with which I am very familiar.

I am a professor of mathematics at a large state university, Penn State. 
At our main campus in the appropriately named Happy Valley in Penn
sylvania, there are more than 40,000 undergraduate students as well as 
thousands of graduate students and postdocs.

At the Pennsylvania State University as at most other large universi
ties, much of the research activity is mathematical in nature. Mathematics, 
statistics, and large-scale computer simulations are heavily used as research 
tools. This applies to the majority of academic divisions of the university: 
not only physical sciences and engineering, but also biological sciences, agri
culture, business, social sciences, earth sciences, materials science, medicine, 
and even humanities. In addition Penn State has an Applied Research Lab
oratory which performs classified, defense-related research and has a huge 
annual budget. There also, mathematics is heavily used.
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W hat is interesting is that our Department of Mathematics is largely 
uninvolved in this kind of activity. When mathematicians and non
mathematicians try to collaborate, both sides are often frustrated by “com
munication difficulties” or “failure to find common ground,” due largely 
to lack of a common vocabulary and conceptual framework. To me this 
widespread frustration suggests a failure of integration.

As an aside, we can see the detrimental effects of a lack of mathematics 
in public affairs. Basic mathematical and statistical knowledge is astonish
ingly rare among the voting public. Lack of quantitative understanding of 
relative benefits and relative risks may stifle innovation. “A trillion is the 
new billion,” and angry mobs with pitchforks may lose sight of the decimal 
point.

But, back to the university context. From interactions with mathemati
cians and non-mathematicians at Penn State and elsewhere, I see a need 
for greater integration of mathematics with the rest of human knowledge. 
We need to somehow overcome the compartmentalization which isolates 
mathematics from application areas.

Philosophy is the branch of knowledge that deals with the widest pos
sible abstractions -  concepts such as justice, friendship, and objectivity. 
Therefore, only philosophy can act as the ultimate integrator of human 
knowledge. A crucial task for philosophers of mathematics is to provide 
general principles which can guide both mathematicians and users of math
ematics.

Some of the most pressing issues involve mathematical modeling. By a 
mathematical model I mean an abstract mathematical structure M  (e.g., 
a system of differential equations) together with a claimed relationship be
tween M and a real-world situation R  (e.g., a weather system). Typically, 
the mathematician designs the structure M, and the non-mathematician 
decides which assumptions (e.g., initial conditions) are to be fed into M  
and how to interpret the results in R. Such models are used extensively in 
engineering, finance, economics, climate studies, etc.

Some currently relevant questions about mathematical modeling are as 
follows. What are the appropriate uses of quantitative financial models in 
terms of risk and reward? Would it be ethical to incorporate the prospect 
of government bailouts into such models? What are appropriate limitations 
on the role of mathematical modeling in climate studies? Under what cir
cumstances is it ethically appropriate to base public policy on such models? 
Etc., etc.
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By nature such questions are highly interdisciplinary and require a broad 
perspective. Therefore, it seems reasonable to think that such questions may 
be a proper object of study for philosophers of mathematics. It would be 
wonderful if philosophers could provide a valid framework or standard for 
answering such questions. Of course, it goes without saying that this kind 
of philosophical activity would have to be based on a coherent philosophical 
system including an integrated view of human knowledge as a whole and 
the role of mathematics within it.

3. Set Theory and the Unity of M athematics

As is well known, mathematicians tend to group themselves into research 
specialties: analysis, algebra, number theory, geometry, topology, combina
torics, ordinary differential equations, partial differential equations, math
ematical logic, etc. Each of these groups holds its own conferences, edits its 
own journals, writes letters of recommendation for its own members, etc. 
Furthermore, among these groups there is frequent and occasionally bitter 
rivalry with respect to academic hiring, research professorships, awards, etc.

As an antidote to this kind of fragmentation, high-level mathematicians 
frequently express an interest in promoting the unity of mathematics. An 
11th commandment for mathematicians has been proposed:

“Thou shalt not criticize any branch of mathematics.”

A variant reads as follows:

“All mathematics is difficult; all mathematics is interesting.”

Partly as a result of such considerations, research programs which com
bine several branches of mathematics are highly valued. Examples of such 
programs are algebraic topology, geometric functional analysis, algebraic 
geometry, geometric group theory, etc. Such programs are regarded as 
valuable partly because they draw together two or more research sub
communities within the larger mathematical community.

As regards the unity of mathematics, set theory has made at least one 
crucial contribution. Namely, the well known formalism of ZFC, Zermelo- 
Fraenkel set theory (based on classical first-order logic and including the 
Axiom of Choice) is a huge achievement. The ZFC formalism provides two 
extremely important benefits for mathematics as a whole: a common frame
work, and a common standard of rigor.
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(1) ZFC provides the orthodox, commonly accepted framework for virtu
ally all of contemporary mathematics. Indeed, advanced undergraduate 
textbooks in almost all branches of mathematics frequently include ei
ther an appendix or an introductory chapter outlining the common set- 
theoretic notions: sets, functions, union, intersection, Cartesian prod
uct, etc.

(2) The ZFC framework is sufficiently simple and elegant so that all math
ematicians can easily gain a working knowledge of it. There is only 
one basic concept: sets. The axioms of ZFC consist of easily under
stood, plausible, self-evident assumptions concerning the universe of 
sets. Moreover, the ZFC framework is flexible and far-reaching; within 
it one can easily and quickly construct isomorphs of all familiar mathe
matical structures including the natural number system, the real num
ber system, Euclidean spaces, manifolds, topological spaces, Hilbert 
space, operator algebras, etc.

(3) Among mathematicians, there is little or no controversy about what 
it would mean to rigorously prove a mathematical theorem. All such 
questions are answered by saying that the proof must be formalizable 
in ZFC, i.e., deducible from the axioms of ZFC using standard logical 
axioms and rules. In his talk yesterday, Professor Gaifman gave an ad
mirably detailed description of how this ZFC-based verification process 
works in practice.
It is noteworthy that similarly clear standards of rigor do not currently 
exist in other sciences such as physics, economics, or philosophy.

(4) Mathematicians are highly appreciative of the existence of a common 
framework and standard of rigor such as ZFC provides.
For instance, there is currently little or no controversy surrounding the 
Axiom of Choice such as took place in the early 20th century. Virtually 
all mathematicians are happy and relieved to know that this and similar 
controversies have been laid to rest.

(5) This comfortable situation allows “working mathematicians” to get on 
with their research, secure in the belief that they will not be undercut by 
some obscure foundational brouhaha. Mathematicians appreciate ZFC 
because it seems to relieve them of the need to bother with foundational 
questions.

On the other hand, mathematicians have some justifiable reservations 
about set-theoretic foundations. The existence of a variety of models of ZFC 
(the set-theoretic “multiverse”) is somewhat unsettling, at least for those
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mathematicians who take foundations seriously. Some mathematicians deal 
with this kind of uncertainty by asserting that questions such as the Con
tinuum Hypothesis and large cardinals are unlikely to impinge on their own 
branch of mathematics, or at least their own research within that branch. 
Some mathematicians even make a point of avoiding higher set theory, for 
fear of running into such scary monsters. (Of course we mathematical logi
cians know or strongly suspect that they are whistling in the dark.)

Even worse, when we contemplate the philosophical task which was 
outlined in Section 2 above, the program of set-theoretic foundations based 
on systems such as ZFC seems unhelpful to say the least. There seems to 
be no clear path toward integration of set theory with the rest of human 
knowledge. Infinite sets and the cumulative hierarchy present a stumbling 
block. It is completely unclear how to reduce a concept such as to 
referents in “the real world out there.” We have no idea whatsoever of how 
to understand the Continuum Hypothesis as a question about “the real 
world out there.” What in “the real world out there” are the set theorists 
talking about? The answer seems unclear, and nobody can agree on how to 
proceed.

Thus it emerges that the program of set-theoretic foundations, useful 
though it has been in promoting the unity of mathematics and defining a 
standard of mathematical rigor, appears to stand as an obstacle in the way 
of a highly desirable unification of mathematics with the rest of human 
knowledge.

Indeed, by encouraging the mathematical community to live in rela
tive complacency with respect to foundational issues, the program of set- 
theoretic foundations may actually be leading us away from fundamental 
tasks which are clearly of great philosophical importance. The unity of 
mathematics is valuable, but the unity of human knowledge would be much 
more valuable.

4. Set-Theoretic Realism

4.1. An epistemological question
Some high-level set theorists such as Godel, Martin, Steel, and Woodin, 
as well as some high-level philosophers of mathematics such as Maddy, 
have advocated a philosophical position known as set-theoretic realism or 
Platonism. According to this program, set theory refers to certain definite, 
undeniable aspects of reality. For instance, cardinals such as are thought
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to exist in a certain domain of reality, and the Continuum Hypothesis is 
thought to be a meaningful statement about that domain.

An epistemological question which remains is:

How can we acquire knowledge of the set-theoretic reality?

We briefly consider three contemporary answers to this question.

4.2. The in tr in s ic is t  an sw er

One answer is that the set-theoretic reality is a non-spatial, non-temporal, 
irreducible kind of reality which reveals itself by means of pure intuition. 
I have no response to this, except to say that it seems to express an in
trinsicist viewpoint which is obviously incompatible with the requirement 
of objectivity as I understand it.

4.3. The “testab le  con sequ en ces” a n sw er

Another answer to our epistemological question says that the higher set- 
theoretic reality, although not directly observable, may reveal itself by 
means of “testable” logical consequences in the concrete mathematical 
realm. For instance, by Matiyasevich’s Theorem, the consistency of a large 
cardinal axiom can be recast as a number-theoretic statement to the effect 
that a certain Diophantine equation has no solution in the integers. The 
resulting justification process for large cardinals is said to be analogous 
to how the atomic theory of matter was originally discovered and verified, 
long before it became possible to observe individual atoms directly under 
an electron microscope.

I find this “testable consequences” viewpoint more appealing than the 
purely intrinsicist viewpoint, because it gives an active role to a human cog
nitive process, namely, the study of concrete mathematical problems such 
as Diophantine equations. Higher set theory is to be justified or reduced or 
“miniaturized” in terms of its applications to down-to-earth mathematical 
problems.

The major difficulty that I see with the “testable consequences” pro
gram involves its implemention. For instance, the Diophantine equations 
which have been produced in the manner outlined above are messy and 
complex and have thousands of terms. No number theorist would seriously 
study such an equation. Thus, the value of such equations for number theory 
seems remarkably tenuous. By contrast, the atomic theory from its incep
tion produced a powerful stream of striking consequences in chemistry and
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other fields of knowledge. These consequences greatly improved the human 
standard of living.

Attempting to overcome the implementation difficulty, set-theorists 
have worked very hard for many years trying to uncover consequences of 
higher set theory and large cardinals which are not only down-to-earth but 
also mathematically appealing and perhaps even useful in applications. I am 
thinking of the impressive results of Martin, Steel and Woodin [2] on pro
jective determinacy,a and of Harvey Friedman (unpublished) on Boolean 
relation theory.

And yet, appealing as they may be, these consequences of large car
dinal axioms remain quite remote from standard mathematical practice, 
especially in application areas. Partly for this reason, they have not led to 
an upsurge of interest in higher set theory and large cardinals within the 
mathematical community beyond set theory. Indeed, considering all the 
hard work that has already gone into this research direction, the prospect 
of serious impact in core mathematics or in mathematical application areas 
seems even more unlikely than before.

4.4. The Thin Realist answer

Another answer to our epistemological question is Maddy’s current phi
losophy of Thin Realism [3] (in contrast to her earlier Robust Realism,
i.e., pure intrinsicism). According to Thin Realism, set theory is in a very 
strong epistemological position, simply because it is deeply embedded in 
the “fabric of mathematical fruitfulness.” Here again I have my doubts, for 
the same reasons as above.

Maddy even goes so far as to compare large cardinals to tables and 
chairs, and set theory skeptics to evil daemon theorists. In other words,

large cardinals tables and chairs
set theory skepticism evil daemon theories

aHowever, Hugh Woodin notes that this research on projective determinacy was moti
vated not by the testable consequences” program, but rather by the desire to answer 
some long-standing structural questions in the branch of mathematics known as descrip
tive set theory (the study of projective sets in Euclidean space, going back to Souslin 
and Lusin).
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Indeed, according to Maddy, our knowledge of set theory is more reliable 
than our knowledge of tables and chairs, because sense perceptions are 
subject to skeptical doubts which cannot possibly apply to the “fabric of 
mathematical fruitfulness.”

My view is that, instead of comparing large cardinals to tables and 
chairs, it seems more appropriate to compare set theory to religion. In 
other words,

large cardinals _  gods and devils 
set theory skepticism religious skepticism

The point of my analogy is that both set theory and religious faith can claim 
to be in a “strong” position vis a vis skeptics, to the extent that they avoid 
dependence on underlying facts of reality which can be questioned. In my 
view, such claims must be rejected on grounds of their lack of objectivity.

Nevertheless, I applaud Maddy’s “Second Philosopher” for her earnest 
attempt to apply standard scientific or epistemological criteria following 
the lead of other sciences such as biology. It would be very desirable to 
flesh this out into a full-scale integration of mathematics with the rest of 
human knowledge.

5. Insights from Reverse M athem atics

For many years I have been involved in a foundational research program 
known as reverse mathematics. The purpose of reverse mathematics is to 
classify core mathematical theorems according to the set existence axioms 
which are needed to prove them. Frequently it turns out that a core math
ematical theorem is logically equivalent to the weakest such set existence 
axiom. Hence the name “reverse mathematics.” The program has revealed 
an interesting logical structure within core mathematics. In particular, a 
large number of core mathematical theorems fall into a small number of 
logical equivalence classes. Moreover, the set existence axioms which arise 
in this way are naturally arranged in a hierarchy corresponding roughly 
to Godel’s hierarchy of consistency strengths. The basic reference on re
verse mathematics is my book [6]. Table 1 is from my recent paper [7] and 
indicates some benchmarks in the Godel hierarchy.

I believe that many results of reverse mathematics are potentially use
ful for answering certain questions and evaluating certain programs in the 
philosophy of mathematics. As regards objectivity in mathematics, I see 
two insights to be drawn:
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strong <

Table 1

supercompact cardinal 

measurable cardinal

ZFC (Zermelo/Fraenkel set theory) 
ZC (Zermelo set theory) 
simple type theory

Z2 (second-order arithmetic)

medium <

weak

П2-СА0 (Щ comprehension)
IlJ-CAo (IlJ comprehension)
ATR0 (arithmetical transfinite recursion) 

ACAo (arithmetical comprehension)

WKL0 (weak Konig’s lemma)
RCAo (recursive comprehension)
PR A (primitive recursive arithmetic)
EFA (elementary function arithmetic) 

bounded arithmetic

(1) A series of reverse mathematics case studies has shown that the bulk of 
core mathematical theorems falls at the lowest levels of the hierarchy: 
WKLo and below. The full strength of first-order arithmetic appears 
often but not nearly so often as WKL0. The higher levels up to П2-СА0 
appear sometimes but rarely. For details see [6] and [7].
To me this strongly suggests that higher set theory is, in a sense, 
largely irrelevant to core mathematical practice. Thus the program of 
set-theoretic foundations is once again called into question.



168 S. G. Simpson

(2) It is known that the lowest levels of the Godel hierarchy (see Table 1) 
are conservative over PRA (primitive recursive arithmetic) for П§ sen
tences. This result combined with reverse mathematics is the basis of 
some rather strong partial realizations of Hilbert’s program of finitis
tic reductionism, as outlined in my paper [5]. The upshot is that a 
large portion of core mathematics, sufficient for applications, can be 
validated by reference to principles which are finitistically provable. It 
seems to me that these results may open a path toward objectivity in 
mathematics.

6. W ider Cultural Significance?

Throughout history we see various trends in the philosophy of mathemat
ics, and we see various trends in the culture at large. Are there parallels 
here? The intrinsicist/subjectivist dichotomy, to which I alluded earlier, 
may provide some clues.

Clearly mathematics played a large role in the philosophy of Plato and 
Aristotle and in the Renaissance, the Enlightenment, and the 19th century. 
However, let us skip ahead to the 20th century.

A thoroughly subjectivistic philosophy of mathematics was Brouwer’s 
Intuitionism. According to Brouwer, mathematics consists of constructions 
which are performed in the mind of a “creative subject,” with no neces
sary relation to reality. Surely there is a parallel with the subjectivism and 
collectivism of the early 20th century.

On the intrincist side, consider the rise of religious fundamentalism in 
the late 20th century: Islamic fundamentalism in the Muslim world, Chris
tian and Jewish fundamentalism in the west, Hindu fundamentalism in 
India. Could it be that the late 20th century trend toward set-theoretic re
alism parallels the worldwide rise of religious fundamentalism? This could 
make an interesting topic of dinner conversation this evening----

Acknowledgment

This paper is the text of my talk at a conference on philosophy of mathe
matics at New York University, April 3-5, 2009. I wish to thank the NYU 
Philosophy graduate students and particularly Justin Clarke-Doane and 
Shieva Kleinschmidt for their attention to detail in organizing the confer
ence. It was exciting to address a wonderful audience at a great urban 
university in the greatest city in the world.



Toward Objectivity in Mathematics 169

References
1. S. Feferman, C. Parsons, and S. G. Simpson, editors. Kurt Godel: Essays for 

his Centennial. Number 33 in Lecture Notes in Logic. Association for Symbolic 
Logic, Cambridge University Press, 2010. X +  373 pages.

2. Matthew D. Foreman. Review of papers by Donald A. Martin, John R. Steel, 
and W. Hugh Woodin. Journal of Symbolic Logic, 57:1132-1136, 1992.

3. Penelope Maddy. Second Philosophy: A Naturalistic Method. Oxford Univer
sity Press, 2007. XII +  448 pages.

4. Leonard Peikoff. Objectivism: The Philosophy of Ayn Rand. Dutton, New 
York, 1991. XV +  493 pages.

5. Stephen G. Simpson. Partial realizations of Hilbert’s program. Journal of Sym
bolic Logic, 53:349-363, 1988.

6. Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in 
Mathematical Logic. Springer-Verlag, 1999. XIV +  445 pages; Second Edition, 
Perspectives in Logic, Association for Symbolic Logic, Cambridge University 
Press, 2009, XVI-f- 444 pages.

7. Stephen G. Simpson. The Godel hierarchy and reverse mathematics. In [1], 
pages 109-127, 2010.



SORT LOGIC A N D  FOUNDATIONS OF MATHEMATICS

Jouko Vaananen
Department of Mathematics and Statistics 

University of Helsinki, Finland 
Institute for Logic, Language and Computation 

University of Amsterdam, The Netherlands 
jouko.vaananen@helsinki.fi

I have argued elsewhere [8] that second order logic provides a foundation 
for mathematics much in the same way as set theory does, despite the 
fact that the former is second order and the latter first order, but second 
order logic is marred by reliance on ad hoc large domain assumptions. In 
this chapter I argue that sort logic, a powerful extension of second order 
logic, provides a foundation for mathematics without any ad hoc large 
domain assumptions. The large domain assumptions are replaced by 
ZFC-like axioms. Despite this resemblance to set theory sort logic retains 
the structuralist approach to mathematics characteristic of second order 
logic. As a model-theoretic logic sort logic is the strongest logic. In fact, 
every model class definable in set theory is the class of models of a 
sentence of sort logic. Because of its strength sort logic can be used to 
formulate particularly strong reflection principles in set theory.

1. Introduction

Sort logic, introduced in [7], is a many-sorted extension of second order 
logic. In an exact sense it is the strongest logic that there is. In this paper 
sort logic is suggested as a foundation of mathematics and contrasted to 
second order logic and to set theory. It is argued that sort logic solves the 
problem of second order logic that existence proofs of structures rely on ad 
hoc large domain assumptions.

The new feature in sort logic over and above what first and second order 
logics have is the ability to “look outside” the model, as for a group to be the 
multiplicative group of a field requires reference to a zero element outside 
the group, or for a Turing machine, defined as a finite set of quadruples, to
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halt requires reference to a tape potentially much bigger than the Turing 
machine itself.

In computer science it is commonplace to regard a database as a many- 
sorted structure. Each column (attribute) of the database has its own range 
of values, be it a salary figure, gender, department, last name, zip code, or 
whatever. In fact, it would seem very unnatural to lump all these together 
into one domain which has a mixture of numbers, words, and strings of 
symbols. To state that a new column can be added to a database, e.g. a 
salary column, involves stating that new elements, namely the salary values, 
can be added to the overall set of objects referred to in the database.

In a sense ordinary second order logic also “looks outside” the model 
as well as one can think of the bound second order variables as first order 
variables ranging over the domain of all subsets and relations on the original 
domain. In fact, one of the best ways to understand second order logic is to 
think of it as a two-sorted first order logic in which one sort—the sort over 
which the second order variables range—is assumed to consist of all subsets 
and relations of the other sort. When “all subsets and relations” is replaced 
by “enough subsets and relations to satisfy the Comprehension Axioms” , 
we get semantics relative to which there is a Completeness Theorem of 
Henkin [2]. The same is true of sort logic.

To get a feeling of sort logic, let us consider the following formulation of 
the field axioms in a many-sorted first order logic with two sorts of variables. 
We use variables x, у and 2 for the sort of the multiplicative group, and и , v 
and w for the sort of the additive group. The function • and the constant 
1 are of the first sort and the function +  and the constant 0 of the second 
sort:

4>

ф =

1\/xVyVz((x ■ y) ■ z =  x • (y • z))
Vx(x • 1 =  1 • x =  x)

VxVy(x • у  =  у  • x)
Vx3y(x  • у  =  1)

Vx\/y\/z((x +  y) +  z =  x +  (y +  z)) 
Vx(x +  0 =  0 +  x =  x)
VxVy(x +  у  =  у +  x)

Vx3y(x +  у  =  0)
VxV2/Vz(x • (y +  z) =  x • у +  x • z)
 ̂Vx3u(x =  u) A Vu3x(w =  0 V и =  x)

(1.1)

We have separated the multiplicative group into the first sort and the ad-
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ditive group in the second sort. With this separation of the group and the 
bigger field part we can ask questions such as:

What kind of groups are the multiplicative group of a field?

And the answer is: exactly the groups that satisfy

For some -I- and for some 0: ip Л тр. (1.2)

The truth of the sentence (1.2) in a given group means that there is some
thing out there outside the group, in this case the element 0, which together 
with the new function 4- defines a field.

For a different type of example, suppose

4> (1-3)

is a finite second order axiomatization of some mathematical structure in 
the vocabulary { P i , ..., Rn}. Suppose we want to say that ip has a model.
So let us take a new unary predicate P  and consider the sentence

3P {3R l . . .3 R n^ p \  (1.4)

where means the relativization of ф to the unary predicate P. What 
(1.4) says in a model is that there are a subset P  and relations R \,...,R n  
on P  such that (P, R \ , ..., Rn) (=</?. So in any model which is big enough 
to include a model of ip the sentence (1.4) says that there indeed is such 
a model. But in smaller models (1.4) is simply false, even though ip may 
have models. So (1.4) does not really express the existence of a model for 
ip. The situation would be different if we allowed “ЗРЗЯх.. .  3Pn” to refer 
to outside the model. In sort logic, which we will introduce in detail below, 
the meaning of the sentence

3Ri...3Rn< p, (1.5)

is that there is a new domain of objects with new relations P i , R n  such 
that ip holds. Thus (1.5) expresses the semantic consistency of ip indepen
dently of the model where it is considered.

In algebra concepts such as a module P  being projective, a group F  be
ing free, etc, are defined by reference to arbitrary modules M  and arbitrary 
groups G with no concern as to whether such modules M can be realized 
inside P , or whether such groups G could be realized inside F. Even if it 
turned out that they could be so realized, the original concepts certainly 
referred to quite arbitrary objects N  and G in the universe of all mathe
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matical objects. Lesson: Apparently second order concepts in mathematics 
sometimes refer to outside the structure being considered.

Reference outside is, of course, most blatant in set theory where objects 
are defined by reference to the entire universe of sets. In practice one can in 
most cases limit the reference to some smaller part of the universe, but very 
often not to the elements or to the power-set of the object being defined.

2. Sort Logic

Many-sorted logic has several domains, and variables for each domain, much 
like vector spaces have a scalar-domain and a vector-domain and different 
variables for each, or as geometry has different variables for points and lines. 
It seems to have been first considered by Herbrand, and later by Schmidt, 
Feferman [1], and others.

2.1. Basic concepts

A (many-sorted) vocabulary is any set L of predicate symbols P, Q, # , —  
We leave function and constant symbols out for simplicity of presentation. 
We use natural numbers as names for sorts.

Each vocabulary L has an arity-function

a l : L —̂ N

which tells the arity of each predicate symbol, and a sort-function

s l - . L ^  | j N n,Sb('R ) € N ai'(*),
П

which tells what are the sorts of the elements of the tuple in a relation. 
Thus if P  € L, then P  is an ci£,(P)-ary predicate symbol for a relation of 
&l {P )-tuples of elements of sorts n i , . . .  ,п&, where (щ , . . . ,  п*) =  s(P ). So 
we can read off from every n-ary predicate symbol what the sorts of the 
elements are in the n-tuples of the intended relation. In other words, we do 
not have symbols for abstract relations between elements of arbitrary sorts 
(except identity =).

2.2. Syntax

The syntax of sort logic is very close to the syntax of second order logic. In 
effect we just add a new form of formula 3Pip with the intuitive meaning 
that there is a predicate P  of new sorts of elements such that <p.
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Suppose L is a vocabulary. Variable symbols for individuals are x, у, z>... 

with indexes xo,xi,... when necessary, and for relations X, Y, Z ,... with 

indexes Xo, X \,.... Each individual variable x has a sort s(x) G N associated 

to it, so it is a variable for elements of sort s(x). Each relation variable X  

has an arity a(X) and a sort s(X) G associated to it, so it is a

relation variable for a relation between elements of the sorts n i,... , n*, 

where s(X) = (щ , . . . ,  nk).

The logical symbols of sort logic of the vocabulary L are

-I, Л, V, V, 3, (,), x, 2/, 2, . . . ,  X , Y, Z ,__L-equations are of the form x — y

where x and у can be variables of any sorts. L- atomic formulas are either 

L-equations or of the form Rxi ... Xk, where R e L, si(R ) = (щ ,.. . , n*), 

and x i,..., Xk are individual variables such that s(xi) =  щ for i = 1 ,..., к. 

A basic formula is an atomic formula or the negation of an atomic formula. 

L-formulas are of the form:

(1) x = y.

(2) R (x i,...,x n), when sL{R) = (s(xi), ...,s(a;n)).

(3) X{xu ...,x n), when s(X) = (s(xi),...,s(zn)).
(4) -*<p.

(5) (cp V ip).

(6) 3x<p.

(7) 3Xip.

(8) 3X(p. New Sort Condition: If s(X) = (n i,... ,rifc), then </? has no 

free variables or symbols of L, other than X , of a sort щ or of the sort

with {mb ... ,mj} П {гц,... ,пк) ^0 .

The reason for the New Sort Condition is that the domains of the ele

ments referred to by the free variables of ip are fixed already so they should 

not be altered by the 3-quantifier.

We treat ip Л ф, ip —У ф, Vxip and \/X(p as shorthands obtained from 

disjunction and existential quantification by means of negation.

The concept of a free occurrence of a variable in a formula is defined as in 

first order logic. As a new concept we have the concept of a free occurrence 

of a sort in a formula. We define it as follows, following the intuition that if 

a sort occurs “free” in a formula, either as the sort of an individual variable, 

relation variable or predicate symbol, then to understand the meaning of 

the formula in a model we have to fix the domain of elements of that 

sort. Respectively, if a sort has only “bound” occurrences in a formula, we 

can understand the meaning of the formula in a model without fixing the 

domain of elements of that sort, rather, while evaluating the meaning of
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the formula in a model we most likely try different domains of elements of 

that sort.

The free sorts fs(</?) of a formula are defined as follows:

(1) fs(x =  2/) =  {s(i),s(y)}.

(2) ...x„) =  {s(xi),...,s(in)}.

(3) fs(Xx! = {s(xi),...,s(x„)}.

(4) f s ( - v )  =  fs(vp).
(5) fs(tp V ip )  =  fs(tp) U fs(ip).
(6) fs(3x<p) =  fs(<p) U {s(x)}.

(7) fs(3X¥>) =  fs(¥>)U{nb •• -,nk}, ifs(X) = (n i,... ,n k).

(8) fs(3*V) =  fs(tp) \ {nb .. . .rifc}, if s(X) =  (nb • • •, nk).

2.3. Axioms

Below ip(y/x) means the formula obtained from (p by replacing я by у in 

its free occurrencies. Substitution should respect sort.

Definition 2.1: The axioms of sort logic are as follows:

Logical axioms:

• Tautologies of propositional logic.

• Identity axioms: x  =  y , x  =  y - > y  =  x, ( z i  =  y\ A ... A  x n =  yn A  (p) —> 
^(yi-2/nM -Xn), for atomic кр

• Quantifier axioms:

— tp{y/x) — 3x(p, if у is free for x in in the usual sense.

— ip(Y/X) —> 3Xip, if У is free for X  in (p in the usual sense.

— ip(Y/X) —► 3X(p, if Y is free for X  in (p in the usual sense.

The rules of proof:

• Modus Ponens {</?, ip —>• ф} |= ф

• GeneraHzation

— {E, ip -» ф} |= 3xip —► ф, if x is not free in E U {ф}

— {E, ip -> ф} |= 3Xip ф, if X  is not free in E U {ф}

— {E, (p —> ф} (= 3Xip —> ф} if no free sorts of ф occur in s(X).

First Comprehension Axiom:

3XVyi...Vym(Xyi...ym о  ф) 

for any formula ф not containing X  free, whenever s(X) =
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Second Comprehension Axiom:

3 X \ /y l . .^ y Tn(X y i . . .y rn «-> Ф) 
for any formula ф not containing X  free, whenever s(X) =

The logical axioms and the rules of proof are clearly indispensable and 

are directly derived from corresponding axioms and rules of first order logic. 

The difference between the axioms <p(Y/X) —> 3Xip and (p(Y/X) -¥ 3X(p 

is the following: Both take tp(Y/X) as a hypothesis. The conclusion 3Xip 

says of the current sorts that a relation X  satisfying <p exists, namely, Y. 

If s(X) = (n i,... ,n/e), then the conclusion 3Xip says of the sorts other 

than n i, . . . ,  71* that domains for the sorts n\, . . . ,  nk exists so that in the 

combined structure of the old and new domains a relation X  satisfying <p 

exists, namely, Y. The Comprehension Axiom is the traditional (impred- 

icative) axiom schema which gives second order logic, and in our case sort 

logic, the necessary power to do mathematics [3]. In individual cases less 

comprehension may be sufficient but this is the general schema. The differ

ence between the First and the Second Comprehension Axioms is that the 

former stipulates the existence of a relation X  defined by ф in the structure 

consisting of the existing sorts, while the latter says that this is even true 

if the sorts of elements and relations that ф

If we limit ourselves to just one sort, for example 0, we get exactly the 

classical second order logic.

2.4. Semantics

We now define the semantics of sort logic. This is very much like the se

mantics of second order logic, except that we have to take care of the new 

domains that may arise from interpreting quantifiers of the form 3 and V.

Definition 2.2: An L-structure (or L-modet) is a function M  defined on 

L with the following properties:

(1) If R G L and s(R) = (nb ...,nk) then n* e dom(A'f) and Mni =df 

M(rii) is a non-empty set for each i G {1,...,&}.

(2) If R G L is an /г-relation symbol and s(i?) = (ni, ...,п/ь), then M (R) С 

Мщ x ... x МПк.

We usually shorten Ai(R) to RM . If no confusion arises, we use the 

notation



178 J. Vadndnen

for a many-sorted structure with universes Mn i, . . . ,  Mni and relations 

, . . . ,  between elements of some of the universes. A vector space 

with scalar field F  and vector group V would be denoted according to this 

convention (taking functions and constant relationally):

Definition 2.3: An assignment into an L-structure M  is any function s 

the domain of which is a set of individual variables, relation variables and 

natural numbers such that

(1) If x € dom(s), then s(x) € dom(.M) and s(x) € Ms(x).

(2) If X  € dom(s) with sl{X) =  (n i,. . . ,  nk), then щ ,. . . ,  € dom(.M) 

and s(X) С Mni x ... x Mnfc.

A modified assignment is defined as follows:

Suppose s(X) =  (щ ,. . . ,  nfc). A model M ! is an X-expansion of a model 

M  if { n i,.. . ,nfc}fldom(A^) = 0, dom(.M') = dom(.M )U{ni,... ,п^}, and 

M! \ dom(A4) =  M.

Definition 2.4: The truth of L-formulas in M  under s is defined as follows:

(1) M  \=s R{x i,...,® n) if and only if (s(xi) , . . . , s(xn)) e M {R),

(2) M  \=s x = у if and only if s(x) = s(y),

(3) M  f=s -чр if and only if M  ¥s tp,

(4) M  l=s {ip V гр) if and only if M  \=s ip or M  |=s

(5) M  |=s 3xip if and only if M  \=s[a/x] 4> for some a € Ms(x),

(6) M  |=s ^Xip if and only if M  \=s[A/x] f°r some А С Mni x ... x Mnfc, 

where s(X) = (nb .. . ,  nfc),

(7) M  (=s 3Xip if and only if M ! [=s[a/x] 4> f°r some X-expansion M ' of 

M  and some А С М ‘Пх x ... x M^fc, where з(Х) =  (n i,. . . ,  njt).

Since (7) of the above truth definition involves unbounded quantifiers 

over sets, the definition has to be given separately for formulas of quantifier- 

rank at most a fixed natural number n. When n increases, the definition 

itself gets more complicated in the sense of the quantifier rank.

(V,F; .,1 , + ,0).
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As in second order logic, there is a looser concept of a model, one relative 

to which we can prove a Completeness Theorem. This concept permits also 

a uniform definition.

Definition 2.5: A Henkin L-structure (or Henkin L-model) is a triple 

{M ,U} £), where M  is an L-structure, U is a set such that 0 £ U and 

G is a set of relations between elements of the domains of M  and the sets 

in U. We assume that the First and the Second Comprehension Axioms are 

satisfied by (M ,U , G) in the sense defined below.

The idea is that U gives a set of possible domains for the new sorts 

needed for the truth conditions of the 3-quantifiers, and Q gives a set of 

possible relations needed for the truth conditions of the 3-quantifiers. Since 

U is not the class of all sets (as it is a set) and G need not be the set of 

all relevant relations, the structures G) are more general than the

structures M . The original structures M  are called full.

An assignment and a modified assignment for a Henkin L-structure 

(M ,U ,G) is defined as for ordinary structures. Suppose s(X) = 

(п1,...,п * ). A model M ' is an X-expansion in U of a model M  if 

{n i,... ,7ifc} П dom(.M) = 0, dom(M ') = dom(Al) U {n i,.. .,71*}, M ! \ 

dom(.M) = M , and M l{ui) G U for all i =  1 ,..., A:.

Definition 2.6: The truth of L-formulas in (M ,U,G) under s is defined 

as follows:

(1) (M ,U ,G) К  #(xb .. • yXn) if and only if (s(xi),. . . , s(xn)) € M(R)>
(2) (M ,U ,G ) |=s x = у if and only if s(x) =  s(y),

(3) (M yU,Q) К  “V ^  and only if <p,

(4) (M,U,Q) (=s (y>VV0 if and only if {M,U,G) |=s (p or (M }U,G) (=* Ф*

(5) (M ,U ,G) |=s Зхуэ if and only if ( M ,U ,  G) \=a[a/x] for some a G M3(l),

(6) |=s 3Xip if and only if (M ,U ,G ) \=s[A/x] 4> for some A G 

V(Mni x ... x МПк) ПGy where s(X) = (n\, . . . , n*),

(7) (M ,U ,G) \=s 3Xip if and only if (M ,U ,G)' H [a / x ] 4> for s°me x ~ 
expansion M ' of M  in U and some A G V{M’nx x ... x M^k)nG, where 

$(X ) = (7ij, . . . ,  nk).

The following characterization of provability in sort logic is proved as 

the corresponding result for type theory [2]:

Theorem 2.7: (Completeness Theorem) The following conditions are 

equivalent for any sentence ip of sort logic and any countable theory T of 

sort logic:
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(1) T \= (p.

(2) Every Henkin model ofT satisfies ip.

(3) Every countable Henkin model ofT satisfies <p.

This characterization shows that our axioms for sort logic capture the 

intuition of sort logic in a perfect manner, at least if our Henkin semantics 

does. Our Henkin semantics is very much like that of second order logic.

3. Sort Logic and Set Theory

In this chapter we look at sort logic from the point of vies of set theory.

Definition 3.1: We use Дп to denote the set of formulas of sort logic 

which are (semantically) equivalent both to a £ n-formula of sort logic, and 

to a n n-formula of sort logic.

Theorem 3.2: [7] [6] The following conditions are equivalent for any model 

class К and for any n > 1:

(1) К is definable in the logic An.

(2) К is An-definable in the Levy-hierarchy.

Proof: We give the proof only in the case n =  2. The general case is similar. 

Suppose L is a finite vocabulary and A  is a second order characterizable 

L-structure. Suppose <j  is the conjunction of a large finite part of ZFC. Let 

us call a model (M, €) of в supertransitive if for every a € M  every element 

and every subset of a is in M. Let Sut(M) be а Пх-formula which says 

that M  is supertransitive. Let Voc(x) be the standard definition of “x is 

a vocabulary”. Let SO(L,x) be the set-theoretical definition of the class 

of second order L-formulas. Let Str(L, x) be the set-theoretical definition 

of L-structures. Let Sat(.4,y?) be an inductive truth-definition of the £ 2- 

fragment of sort logic written in the language of set theory. Let

P(z, x, y) =  Voc(z) A  Str(z, x) A  SO(z, y) A

3M (z,x, у 6  M  A A  Sut(M) A  (Sat(z, x, у •

Now if L is a vocabulary, A an L-structure, then A \= <=> P (L ,A , <p). 

This shows that A f= ip is a £2 property of A and L.

For the converse, suppose the predicate Ф is a £2  property of L- 

structures. There is a £ 2-sentence (p of sort logic such that for all M., 

M  € К off M  \= <p.
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Suppose Ф = 3x\/yP(x,y, A), a E2-property of A. Let i p  be a sort 

logic sentence the models of which are, up to isomorphism, exactly the 

models A for which there is (VQ,e ), with a = Da, А в Va, and 

(К*,€) |= BxVyP(x, y, A). If 3xVyP(x,y,A) holds, we can find a model 

for гр by means of the Levy Reflection principle. On the other hand, sup

pose i p  has a model A. W.l.o.g. it is of the form (^а ,е ) with A G Va. 

Let a G VQ such that (VQ> e) f= VyP(a,y,A). Since in this case Ha = Va, 

(Яа ,е) f= VyP(a,y,A), where Ha is the set of sets of hereditary cardi

nality < a. By another application of the Levy Reflection Principle we get 

(V, e) |= VyP(a, y, A ), and we have proved 3xVyP(x, y,A). □

By a model class we mean a class of structures of the same vocabulary, 

which is closed under isomorphisms. In the context of set theory classes are 

referred to by their set-theoretical definitions.

The following consequence was mentioned in [5] without proof:

Corollary 3.3: [7] [6] Every model class is definable in sort logic. Sort logic 

is therefore the strongest logic.

The logics Дп, n =  2 ,3 ,..., provide a sequence of stronger and stronger 

logics. Their model theoretic properties can be characterized in set theo

retical terms as the following results indicate:

Theorem 3.4: [7] The Hanf-number of the logic An is 6n. The Lowenheim 

number of the logic An is crn. The decision problem of the logic Дп is the 

complete Пп-definable set of natural numbers.

Theorem 3.5: [4] The LST-number of A2 is the first supercompact cardi

nal.

Theorem 3.6: The LST-number of A3 is at least the first extendible car

dinal.

Theorem 3.7: The decision problem of An is the complete Tln-set of nat

ural numbers.

4. Sort Logic and Foundations of Mathematics

We suggest that sort logic can provide a foundation of mathematics in the 

same way as second order logic, with the strong improvement that it does 

not depend on the ad hoc Large Domain Assumptions of set theory.
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We will now think of foundations of mathematics from the point of view 

of sort logic. Propositions of mathematics are—according to the sort logic 

view—either of the form

A f= </?,

where A is a structure, characterizable in sort logic, and ip is a sentence of 

sort logic, or else of the form

И v?»

where again ip is a sentence of sort logic. Thus a proposition of mathematics 

either states a specific truth, truth in a specific structure, or a general truth, 

truth in all structures. The specific truth can be reduced to the general truth 

as follows. Suppose 0д is a sort logic sentence which characterizes A up to 

isomorphism. Then

А И <p <=> И Oa -> </>•

Curiously, and quite unlike the case of second order logic, the con

verse holds, too. Suppose is a sort logic sentence in which the predicates 

Pi,...,Pfc occur only. Let X i, . . . ,X k be new unary predicate variables of 

sorts s(Pi), ...,s(Pfc) respectively. Then

\= 4> <=> A V X i.. .\/Хк1р(Хг .. .X k/P l ...P k)

P V  <=> A\=-VX1 ...V X k<p(X1 . . .X k/P l ...P k).

Intuitively this says that a sort logic sentence which talks about the pred

icates P i, . . . ,  Pk in some domains is valid if and only if whatever new 

domains and interpretations we take for P i,...,P fc, ip is true. Since the 

general truth is reducible to specific truth we may focus on specific truth 

only, without loss of generality.

What is the justification we can give to asserting A f= <̂ ? We can prove 

from the axioms of sort logic the sentence в a -> <P- Of course, we may have 

to go beyond the standard axioms of sort logic, but much of mathematics 

can be justified with the sort logic axioms that we have.

What is the justification for asserting that ip has a model, i.e. -чр is 

not valid? By the above it suffices to prove from the axioms the sentence 

-iVXi... \/Xkip(X\... X k/P\... Pfc). If we compare the situation of sort 

logic with that of second order logic the difference is that in second order 

logic we have to make so-called “large domain assumptions” to justify ex

istence of mathematical structures, while in sort logic we can simply prove 

them from the general Comprehension Axioms. But here comes a moment
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of truth. Can we actually prove the existence of the structures necessary in 

mathematics from the mere Comprehension Axioms?

In fact we need more axioms to supplement the First and the Second 

Comprehension Axiom.

Definition 4.1: Power Sort Axiom:

3Y(VuBzi(u =  zi) A Vzi3u(u = z\)A

VxVy(Vzi. . .Vzn(Yxzi ... zn ++ Yyzi ...z n)-*x  = y)A (4.1) 

VX3x\/Z l... Vzn(Xz l ... *n <-> YxZl ...z n)),

where

s(X) =  ( s ( * i s(zn))

*(Y ) =  О Ф О .Ф О . •••.*(*"))
s(l) =  s(y)

S(Zl) =  . . .  = S(2„).

Note that in the Power Sort Axiom only s(u) occurs free, so it is an 

axiom about models with one sort, namely s(u). Naturally the models may 

consist of other sorts as well, this axiom just does not say anything about 

those sorts. The sort s(zi) is just an auxiliary copy of the sort s(u), as the 

conjunct Vu3zi(u = zi) A Vz\3u(u = z{) stipulates. The sort s(x) is a new 

sort which codes the n-ary relations on the domain s(u). The coding is done 

by means of the predicate Y.

Lemma 4.2: Every full model satisfies the Power Sort Axiom.

Proof: Suppose M  is a (full) model and s is an assignment into M . Let 

us fix X , Y , and x, y ,z i, . . . , zn such that s(X) = (s(zi),... ,s(zn)), s(Y) = 

(s(z),s(2i), • • • ,s(zn)), s(x) = s(y) and s(z:) = ... = s(zn). Let M  be like 

M  except that there is a new sort s(u) (or if this sort existed in M. it is 

now replaced) with universe V(MS(ж)) and Afs(Zi) = -̂ s(u)- Let s' be like s 

except that

s'(Y) = {(a,&i,... ,&n) € Ars(x) x Ms(u, x ... x Ms(u) : (6 i,...,6 n) € a}.

Now s' satisfies in N  the formula

VxVyfVzi... \/zn(Yxzi ...z n *+Yyz\... zn)) -> x = y) A 

VX3xiz\.. ,Угп(Хг\... zn Yxz\... zn)),

Hence s satisfies in M  the formula (4.1). □
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Definition 4.3: Infinite Sort Axiom:

3X(\/xVyVz((Xxy A Xxz) —► у = z)

VxVyVz((Xxz A Xyz) -> x =  y) .

\fx3yXxy 1 * '

3zVxVy(Xxy -iу — z))

where s(X) = (s(x),s(x)) and s(s) = s(y) = s(z).

Lemma 4.4: Every full model satisfies the Infinite Sort Axiom.

Proof: Suppose M  is a (full) model and s is an assignment into M . Let us 

fix X , and x,y,z such that s(X) = (s(x),s(a:)), and s(x) =  s(y) = s(z). Let 

M ' be like M  except that there is a new sort s(x) (or if this sort existed 

in Л4 it is now replaced) with universe cu. Let s' be like s except that

s'(X) = {(n, n + l ) : n e  w}.

Now s' satisfies in M ' the formula

\/x\/yVz((Xxy A Xxz) у = z)

VxVy\/z((Xxz A Xyz) x = y)

Vx3 yXxy

3zVxVy{Xxy -> ~̂y =  z ) .

Hence s satisfies in M  the formula (4.2). □

The Power Sort Axiom, reminiscent of the Power Set Axiom of set 

theory, is necessary for arguing about the existence of new sorts of elements. 

The Infinite Sort Axiom is required for arguing about infinite domains, just 

as we need the Axiom of Infinity in set theory. Note that the Power Sort 

Axiom or the Infinite Sort Axiom do not imply that we have only infinite 

or uncountable models. By the above lemmas these axioms are true in all 

models, even finite ones.

With the above two new axioms we can construct mathematical struc

tures up to any cardinality < Д^, as if we were working in Zermelo’s set 

theory. For bigger structures we have to make stronger assumptions, and 

they probably have great similarity with the Replacement Axiom of set the

ory. The point is that in second (and higher) order logic we have to make 

ad hoc Large Domain Assumptions as we go from structure to structure, 

while in sort logic we need only make general assumptions about domains, 

as axioms of set theory postulate general properties of sets.

So what is the difference between sort logic and set theory? Despite its 

proximity to set theory, sort logic is still a logic, like first order logic, second
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order logic, infinitary logic, etc. Sort logic treats mathematical structures up 

to isomorphism only, there is no preference of one construction of a structure 

over another, and this is in line with common mathematical thinking about 

structures. In its model theoretic formulation sort logic gives rise to in

teresting reflection principles via its Lowenheim-Skolem-Tarski properties. 

Finally, sort logic provides a natural model theoretic forum for investigat

ing complicated set theoretical properties of models, without going into the 

nuts and bolts of the constructions of specific structures.

As the strongest logic sort logic is an ultimate yard-stick of definability 

in mathematics. Any property that is isomorphism invariant can be mea

sured by sort logic. The canonical hierarchy An (n < u) inside sort logic 

climbs up the large cardinal hierarchy by reference to Hanf-, Lowenheim- 

and Skolem-Lowenhem-Tarski-numbers, reaching all the way to Vopenka’s 

Principle. The model classes that are Д2 in the Levy-hierarchy are exactly 

the model classes definable in the А-extension of second order logic. Sort 

logic provides a similar characterization of model classes that are Дп in 

the Levy-hierarchy for n > 2. Is this too strong a logic to be useful? For 

logics as strong as sort logic the main use is in definability theory. But sort 

logic has also a natural axiomatization, complete with respect to a natural 

concept of a Henkin model, so we can also write inferences in sort logic. 

This is an alternative way of looking at mathematics to set theory, one in 

which definition rather than construction is the focus.
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We find that second order quantification is problematic when a quan

tified concept variable is supposed to function predicatively. This issue 

is analyzed and it is shown that a constructive interpretation of the 

falling under relation suffices to resolve the difficulty. We axe then able 

to present a formal system for reasoning about concepts. We prove that 

this system is consistent and we investigate the extent to which it is 
able to interpret set theoretic and number theoretic systems of a more 

standard type.

1.

Second order quantification becomes problematic when a quantified concept 

variable is supposed to function predicatively. There is a use/mention issue.

The distinction that comes into play is illustrated in Tarski’s classic 

biconditional [2]

“Snow is white” is true <-> snow is white.

The expression “snow is white” is mentioned on the left side; there it is 

linguistically inert and appears only as an object under discussion. On the 

right side it is in use and has assertoric force.

To see the sort of problem that can arise, suppose we try to define the 

truth of an arbitrary sentence by saying

ГЛГ is true <-> Л, (*)

where A is taken to range over all sentences and the use/mention distinction

187
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is indicated using corner brackets. Why is this one statement not a global 

definition of truth?

The answer depends on whether the variable A in (*) is understood 

as schematic or as being implicitly quantified. If we interpret (*) schemati

cally, that is, as a sort of template which is not itself an assertion but which 

becomes one when any sentence is substituted for A, then it cannot be a 

definition of truth since it is the wrong kind of object (a definition can be 

asserted, a template cannot). We could still use it as a tool to construct 

truth definitions in limited settings: given any target language, the conjunc

tion of all substitution instances of (*), as A ranges over all the sentences 

of the language, would define truth for that language. But this conjunction 

generally will not belong to the target language, so we cannot construct a 

global definition of truth for all sentences in this way. More to the point, we 

cannot use this approach to build a language in which we have the ability 

to discuss the truth of any sentence in that language.

The expression (*) could be directly interpreted as a truth definition 

for all sentences only by universally quantifying the variable A. However, 

this is impossible for straightforward syntactic reasons. In the quantifying 

phrase “for every sentence A” the symbol A has to represent a mention, not 

a use, of an arbitrary sentence, since here the arbitrary sentence is being 

referred to and not asserted. But we need A to represent a use in the right 

side of the biconditional. So there is no meaningful way to quantify over A 

in (*). This expression can only be understood as schematic.

(The general principle is that a schematic expression can be obtained 

by omitting any part of a well-formed sentence, but we can only quantify 

over omitted noun phrases. “Snow is white” can be schematized to either 

ux is white” or “Snow C”, but “(Зх)(ж is white)” is grammatical while 

“(3C)(snow С)” is not. In (*) the omission is not nominal.)

Since a quantified variable can only represent a mention of an arbitrary 

sentence, what we would need in order to formulate a global definition of 

truth is a disquotation operator n •r . Then we could let the variable A refer 

to an arbitrary sentence and write

For every sentence A, A is true <-* nAr .

In other words, we need some way to convert mention into use. But that is 

exactly what having a truth predicate does for us. The way we convert a 

mention of the sentence “snow is white” into an actual assertion that snow 

is white is by saying that the mentioned sentence is true. So in order to 

state a global definition of truth we would need to, in effect, already have
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a global notion of truth.

This is why no variant of (*) can succeed in globally defining truth. A 

quantified variable representing an arbitrary sentence in general cannot be 

invested with assertoric force unless we possess a notion of truth that applies 

to all sentences, but writing down a global definition of truth requires us 

to already be able to construe such a variable as having assertoric force.

Truth seems unproblematic because in any particular instance it really 

is unproblematic. Any meaningful sentence can be substituted for A in 

(*) with straightforward results. But the essentially grammatical problem 

with quantifying over A in (*) is definitive. There is no way to use this 

schematic condition to globally define truth, and we can be quite certain 

of this because any predicate which globally verified (*) would engender a 

contradiction. It would give rise to a liar paradox.

Similar comments can be made about what it means for an object to fall 

under a concept. Just as with truth, there is no difficulty in defining this 

relation in any particular case. For instance, we can define what it means 

to fall under the concept white by saying

The object x falls under the concept white ++ x is white.

But if we try to characterize the falling under relation globally by saying

The object x falls under the concept rC~* t* Cx (t)

then, just as with (*), a use/mention conflict arises when we try to quantify 

over C. We can use (f) as a template to produce a falling under definition for 

any particular concept; we can even take the conjunction of the substitution 

instances of (f) as С  ranges over all the concepts expressible in a given 

language, and thereby obtain a falling under definition for that language, 

but this definition could not itself belong to the language in question. As 

with (*), in order to put (f) in a form that would allow С  to be quantified, 

so that it could have global force, we would need some device for converting 

a mention of an arbitrary concept into a use of that concept. But that is 

exactly what the falling under relation does for us. That is to say, we need 

to already have a global notion of falling under before we can use (f) to 

define falling under globally. Thus, no variant of (f) can succeed in globally 

defining a falling under relation.

In fact, the twin difficulties with truth and falling under are not just 

analogous, they are effectively equivalent. If we had a globally applicable
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truth predicate, we could use it to define a global notion of falling under, 

viz., “An object falls under the concept С  f-» the atomic proposition formed 

from a name for that object and С  is true.” Conversely, given a globally 

applicable falling under relation, truth could be defined globally by saying 

“The sentence A is true every object falls under the predicate formed 

by concatenating ‘is such that’ with A”. We can now see that truth and 

falling under are practically identical notions. Falling under is to formulas 

with one free variable what truth is to sentences.

However, there is one striking difference between the two cases. The 

globally problematic nature of truth does not have any immediate implica

tions for our understanding of logic, but, in contrast, the globally problem

atic nature of falling under has severe consequences for general second order 

quantification. As we have seen, expressions like (3C)Cx are, taken at face 

value, syntactically ill-formed. The quantified concept variable С  cannot 

function predicatively because its appearance in the quantifying phrase is a 

mention, not a use. In order to make sense of expressions like this we need 

a global device for converting a mention of an arbitrary concept into a use 

of that concept, which is just to say that we need a global notion of falling 

under. But it should now be clear that a global notion of falling under, in 

the form of a relation which satisfies (f) for every concept С , is something 

we do not and cannot have. (Camiot, because it would give rise to Rus

sell’s paradox.) Now, if С  were restricted to range over only those concepts 

appearing in some given language, then we could use (f) as a template to 

define falling under for those concepts and thereby render quantification 

over them meaningful. But sentences employing these quantifiers would 

not belong to the target language, so this approach cannot be used to make 

sense of unrestricted second order quantification. Specifically, it cannot be 

used to build a language in which we have the ability to quantify over all 

concepts expressible in that language while allowing the quantified concept 

variable to predicate.

Thus, we are not straightforwardly able to assign meaning to statements 

in which a quantified concept variable is supposed to function predicatively.

3.

This negative conclusion is unsatisfying because our syntactic considera

tions forbid not only the paradoxical global definitions of truth and falling 

under which we want to exclude, but also other global statements which 

appear to be meaningful. For instance, we have remarked that in limited
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settings truth and falling under are unproblematic, but it is not obvious 

how to formalize this claim itself. We cannot say that for any sentence A 

there is a predicate T such that T(A) A, for the same reason that we 

cannot quantify over A in (*): the mentions of T and A in the quantifying 

phrases are followed by uses in the expression T(A) A. Reformulations 

like “such that T(A) A holds” or “such that T(A) A is the case” ac

complish nothing because they merely employ synonyms for truth. But this 

prohibition is confusing because there clearly is some sense in which it is 

correct, even trivially correct, to say that a truth definition can be given for 

any meaningful sentence. We either have to adopt the mystical (and rather 

self-contradictory) view that this is a fact which cannot be expressed, or 

else find some legitimate way to affirm it.

The way forward is to recognize that truth and falling under do make 

sense globally, but as constructive, not classical, notions. In both cases we 

can recognize an indefinitely extensible quality: we are able to produce 

partial classical characterizations of truth and falling under, but any such 

characterization can be extended. This fits with the intuitionistic concep

tion of mathematical reality as something which does not have a fixed 

global existence but instead is open-ended and can only be constructed in 

stages. The intuitionistic account may or may not be valid as a description 

of mathematics, but it unequivocally does capture the fundamental nature 

of truth and falling under. On pain of contradiction, these notions do not 

enjoy a global classical existence. However, they can indeed be built up in 

an open-ended sequence of stages.

The central concept in constructive mathematics is proof, not truth. 

And this is just the linguistic resource we need to make sense of second 

order quantification. Writing DA for “A is provable” and p h A for “p 

proves A”, we have

DA *+ (3p)(p h A).

Note that this expression can be universally quantified because no appear

ance of A is assertoric, so that it is a legitimate definition of the box opera

tor. Note also that there is no question about formulating a global definition 

of the proof relation, as this is a primitive notion which we do not expect to 

define in any simpler terms. We can therefore, following the intuitionists, 

give a global constructive definition of truth by saying

A is constructively true <-> A is provable (**)

and we can analogously give a global constructive definition of falling under
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by saying

x constructively falls under С  <-> C(x) is provable. (ft)

More generally, we can use provability to repair use/mention problems 

in expressions that quantify over all concepts. Such expressions can be in

terpreted constructively, and the self-referential capacity of global second 

order quantification makes it unreasonable to demand a classical interpre

tation. In particular, we can solve the problem raised at the beginning of 

this section. The way we say that any sentence can be given a truth defini

tion is: for every sentence A there is a predicate T such that the assertion 

T(A) f* A is provable. Again, no appearance of A or T is assertoric, so the 

quantification is legitimate. More substantially, we can affirm that for any 

language С there is a predicate Tc such that inserting any sentence of С in 

the template “Tc{-) •” yields a provable assertion. Thus, there is a global 

constructive definition of truth, and there are local classical definitions of 

truth, but the global affirmation that these local classical definitions always 

exist is constructive.

We can make the same points about falling under; here too we have 

both local classical and global constructive options. The new feature in this 

setting is that no local classical definition of falling under can be used to 

make sense of sentences in which quantified concept variables are supposed 

to function predicatively. In order to handle this problem we require a 

globally applicable notion of falling under, which means that the classical 

option is unworkable. We have to adopt a constructive approach.

4.

The global constructive versions of truth and falling under are not obviously 

paradoxical because the biconditional DA f* A is not tautological. We 

cannot simply assume that asserting A is equivalent to asserting that A is 

provable. The extent to which this law holds is a function of both the nature 

of provability and the constructive interpretation of implication. This issue 

is analyzed in [4] (see also [5]); we find that the law

(1) A ->• DA

is valid but the converse inference of A from DA is legitimate only as 

a deduction rule, not as an implication. Although the law DA -> A is 

superficially plausible, its justification is in fact subtly circular.

The relation of □ to the standard logical constants, interpreted con

structively, is also investigated in [4]; we find that the laws
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(2) D(A A B)<+ (□ A A □£)

(3) □ (A V B ) h  (DA V □£)

(4) D((3a;)A) о  (3x)DA

(5) D((Vx)A) (Vx)DA

(6) D(A ->£)-» (DA -► □£)

are all generally valid. There is no special law for negation; we take -»A to 

be an abbreviation of A -> J_ where X represents falsehood, so using (6) 

we can say, for instance,

□(-A) t* D(A (DA -> OJL).

But □(-’A) is not provably equivalent to -GA in general.

We can now present a formal system for reasoning about concepts that 

allows quantified concepts to predicate. The language is the language of set 

theory, augmented by the logical constant П. Formulas are built up in the 

usual way, with the one additional clause that if A is a formula then so is 
□A.

The variables are taken to range over concepts and € is read as “con

structively falls under”. Thus no appearance of a variable in any formula 

is assertoric and we can sensibly quantify over any variable in any formula. 

The system employs the usual axioms and deduction rules of an intuition

istic predicate calculus with equality, together with the axioms (l)-(6) 

above, the deduction rule which infers A from DA, the extensionality 

axiom

(7) x = у (Уи)(и € x <-> и 6  у), 

and the comprehension scheme

(8) (3x)(Vr)(r 6  x <->■ DA)

where x can be any variable and A can be any formula in which x does not 

appear freely. (In this scheme the variable r is fixed.) The motivation for 

the comprehension scheme is that any formula defines a concept (possibly 

with parameters, if A contains free variables besides r), and what it means 

to constructively fall under that concept is characterized by (ft). This is 

why we need the ability to explicitly reference the notion of provability. 

The ex falso law can be justified in this setting by taking _L to stand for 

the assertion (Vx, y)(x € y).

We call the formal system described in this section CC (Constructive 

Concepts). This is a “pure” concept system in the sense that there are
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no objects besides concepts. Alternatively, we could (say) take the natural 

numbers as given and write down a version of second order arithmetic in 

which the set variables are interpreted as concepts. From a predicative 

point of view a third order system, with number variables, set variables, 

and concept variables, would also be natural [3].

The system CC accomodates global reasoning about concepts. For instance, 

using comprehension we can define the concept concept which does not 

provably fall under itself Denoting this concept R, we have

r e R  □ (r £  r).

Assuming R& R then yields D(R R) by axiom (1), which entails R  G R 

by the definition of R. This shows that R $ R is contradictory, so we 

conclude -»(Я £  R). On the other hand, assuming R e R  immediately 

yields □ (R £ R)\ but since R G R also implies D(R  G Л), we infer CLL. So 

we have R  G R -> In the language of [4], the assertion R 0 R is false 

and the assertion R G R  is weakly false.

Thus, we can reason in CC about apparently paradoxical concepts and 

reach substantive conclusions. But no contradiction can be derived, as we 

will now show. (The proof of the following theorem is similar to the proof 

of Theorem 6.1 in [4].)

Theorem 5.1: CC is consistent.

Proof: We begin by adding countably many constants to the language of 

CC. Let £  be the smallest language which contains the language of CC and 

which contains, for every formula A of С in which no variable other than r 

appears freely, a constant symbol с a • Observe that С is countable.

We define the level 1(A) of a formula A of £  as follows. The level of 

every atomic formula and every formula of the form DA is 1. The level of 

А Л В, A V В , and A -» В is max(J(A), 1{B)) + 1. The level of (Vx)A and 

(3x)A is 1(A) + 1.

Now we define a transfinite sequence of sets of sentences Fa. These can 

be thought of as the sentences which we have determined not to accept as 

true. The definition of Fa proceeds by induction on level. For each a  the 

formula _L belongs to FQ\ cb G с a belongs to Fa if А(св) belongs to Fp 

for some /3 < а; с a = ca> belongs to Fa if for some cb, one but not both 

of А(св) and А'(св) belongs to Fp for some (3 < a; and □ A belongs to Fa
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if A belongs to Fp for some /3 < a. (Recall that the constants с a are only 

defined for formulas A in which no variable other than r appears freely. 

So expressions like A (cb ) are unambiguous.) For levels higher than 1, we 

apply the following rules. А Л В  belongs to Fa if either A or В belongs to 

Fa. АУ В  belongs to Fa if both A and В belong to Fa. (Vx)A belongs to 

Fq if A(cb) belongs to Fa for some constant с в , and (3x)A belongs to Fa 

if A{cb ) belongs to Fa for every constant cb. (Observe here that if (\/x)A is 

a sentence then A can contain no free variables other than x, so again the 

expression A(cb) is unambiguous.) Finally, A -» В  belongs to Fa if there 

exists (3 < a  such that В  belongs to Fp but A does not belong to Fp.

Since the language С is countable and the sequence (Fa) is increasing, 

this sequence must stabilize at some countable stage qo. It is obvious that 

_L belongs to Fao. The proof is completed by checking that the universal 

closure of no axiom of CC belongs to FQo, and that the set of formulas whose 

universal closure does not belong to FQo is stable under the deduction rules 

of CC. This is tedious but straightforward. □

The system CC gives correct expression to Frege’s idea of formalizing rea

soning about arbitrary concepts. Frege was impeded by the fact that the 

global notion of falling under is inherently constructive; treating this notion 

as if it were classical is the fatal mistake which gives rise to Russell’s para

dox. We can locate the essential error in Frege’s analysis not in his Basic 

Law V, or any of his other axioms, but rather in his use of a language whose 

cogency depends on a fictitious global classical notion of falling under.

Analyzing the proof theoretic strength of CC will show us the degree 

to which it is possible, as Frege hoped, to base mathematical reasoning on 

the pure logic of concepts. The result is disappointing. The simplicity of 

the consistency proof given in Theorem 5.1 already reveals that CC must 

be a very weak system. We now present two positive results which show 

how (conservative extensions of) CC can in a certain sense interpret more 

standard formal systems in which the box operator does not appear.

The relevant sense is the notion of weak interpretation introduced in [4]. 

We say that a theory T2 in which we are able to reason about provability 

weakly interprets another theory 7i in the same language minus the box 

operator if every theorem of 71 is a theorem of T2 with all boxes deleted. 

Observe that deleting all boxes in all theorems of CC yields an inconsis

tency: as we saw earlier, we can prove in CC the existence of a concept R
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which satisfies both e R ) and R G R —> П-L, and deleting the box

in the second formula produces the contradictory conclusions G R)

and -»(# G Я). Notwithstanding this phenomenon, no inconsistent theory 

can be weakly interpreted in CC. This is because _L is a theorem of every 

inconsistent theory, and weak interpret ability would imply that D^JL must 

be a theorem of CC for some value of k. Since CC implements the deduction 

rule which infers A from □ A, this would then imply that _L is a theorem of 

CC, i.e., that CC is inconsistent.

The first system we consider, Comp(PFr) + D, was discussed in [1], 

where its consistency was proven. Here we show that the intuitionistic ver

sion of this system is weakly interpretable in an extension of CC by defini

tions.

Comp(PFr) + D is a positive set theory. Its language is the ordinary 

language of set theory augmented by terms which are generated in the 

following way. Any variable is a term; if s and t are terms then s € t and 

s =  t are positive formulas; if A and В  are positive formulas then A A £ , 

A V  B, (Vx)A, and (3x)A are positive formulas; if A is a positive formula 

and x is a variable then {x : A(x)} is a term whose variables are the free 

variables of A other than x. The system consists of the comprehension 

scheme

у € {x : A(x)} A(y),

where A is a positive formula and x and у are variables, together with the 

axiom D which states

(3 х,у){хфу).

The desired conservative extension CC' of CC is obtained by recursively 

adding, for every formula A and variables x and y, the term {x : DA(x)} 

(whose variables are the free variables of A other than x) together with the 

axiom

у e {x : CL4(x)} CL4(y).

Say that a formula is increasing if no implication appears in the premise 

of any other implication. Note that since we take -'A to be an abbreviation 

of A -* _L, this also means that an increasing formula cannot position 

a negation within the premise of any implication, nor can it contain the 

negation of any implication.

Observe that the axiom у G {x : DA(x)} DA(y) is increasing if A is 

positive, and the formula (3x,y)(x = у Q I) , which is easily provable in



Reasoning about Constructive Concepts 197

CC, is also increasing. Since removing all boxes from these formulas recovers 

the axioms of Comp(PFT-) + D, the following result is now a consequence 

of ([4], Corollary 7.3).

Theorem 6.1: CC' weakly interprets intuitionistic Comp(PFr) + D.

It is interesting to note that the extensionality axiom of CC is not 

increasing, so that we cannot weakly interpret intuitionistic Comp(PFr) + 

EXT -I- D in CC'. The latter theory is in fact inconsistent [1].

We can also show that a different extension of CC by definitions weakly 

interprets intuitionistic second order Peano arithmetic minus the induc

tion axiom. The extension is defined by adding a constant symbol 0 which 
satisfies

г е О н  Ш_, 

a unary function symbol S which satisfies

r (E Sx Ш(г = x), 

and a constant symbol и which satisfies

r !II(V2)[(0 e z  A  (Vx)(x € z -> Sx e z)) -¥ r e z\.

The following formulas are easily proven in the resulting extension CC":

0 E cj;

x € и  -> Sx G (j;
Sx — 0 —У 0_L;

Sx = Sy -> m(x = y)]

(0 6 z A (Vz)(x e z Sx € z)) —> (Vy)(y € и —> □(!/ € z)).

Since the first four of these formulas are increasing, the claimed result again 

follows from ([4], Corollary 7.3).

Theorem 6.2: CC" weakly interprets intuitionistic second order Peano 

arithmetic minus induction.

Since the induction axiom is not increasing it has to be excluded from 

this result. Thus, although CC proves a version of full second order in

duction, it nonetheless appears to possess only meager number theoretic 

resources.



198 N. Weaver

References

1. M. Forti and R. Hinnion, The consistency problem for positive comprehension 

principles, J. Symbolic Logic 54 (1989), 1401-1418.

2. A. Tarski, The semantic conception of truth, Philosophy and Phenomenlo- 

logical Research 4 (1944), 13-47.

3. N. Weaver, Axiomatizing mathematical conceptualism in third order arith

metic, arXiv:0905.1675.

4.  , The semantic conception of proof, arXiv: 1112.6126.
5.  , Kinds of concepts, arXiv: 1112.6124.



PERFECT  IN F IN IT IES  AND FIN ITE  APPRO X IM A T IO N

Boris Zilber

Mathematical Insitute 

University of Oxford 

24-29 St Giles, Oxford, 0X1 3LB, UK 

zilber@maths. ox. ac. uk

In this chapter we present an analysis of uses of infinity in “applied 

mathematics”, by which we mean mathematics as a tool for understand

ing the real world (whatever the latter means). This analysis is based on 

certain developments in Model Theory, and lessons and question related 
to these developments.

1. Introduction

Model theory occupies a special position in mathematics, with its aim from 

the very outset being to study real mathematical structures from a logical 

point of view and, more ambitiously, to use its unorthodox methods and 

approaches in search of solutions to problems in core mathematics. Model- 

theorists made an impact and gained experience and some deep insights 

in many areas of mathematics: number theory, various fields of algebra, 

algebraic geometry, real and complex geometry, the theory of differential 

equations, real and complex analysis, measure theory. The present author 

believes that model theory is well-equipped to launch an attack on some 

prolems of modern physics. This article, in particular, discusses what sort 

of problems and challenges of physics can be tackled model-theoretically. 

Another topic of the discussion, in our view intrinsically related to the 

first one, is the way mathematical infinities arise from finite structures, the 

concept of limit and its variations.
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2. Continuity and its Alternatives 

2.1.
The mathematically best developed form of actual infinity is the notion of 

a continuous line and a continuous space. As we all well know this con

cept did not look indisputable to the ancient Greeks and has only become 

“intuitively obvious” perhaps since Newton made it a part of his Physics. 

In fact, the assumption that Newtonian physics takes place in a Euclidean 

space (and in a smooth form) is a powerful axiom from which most of 

the physics follows. Modern physics has moved away from the assumption 

that the space is Euclidean to a space being a manifold, but it is still the 

same idea of continuity. This causes a lot of trouble, e.g. showing up in 

non-convergent integral expressions that are dealt with by various heuristic 

tricks having no justification in continuous mathematics (see e.g. a very 

interesting example of such a calculation in [1]). These days a considerable 

proportion of physicists believe that the assumption of a continuous uni

verse is false. But the formulation of an alternative paradigm will have to 

wait at least till the solution of the problem of quantum gravity.

So, why continuity is so crucial? The answer lies in the practices of 

physics. Continuity organises the structure of the physical world and gives 

it a certain regularity, as opposed to a potential chaos. Indeed, if we assume 

that the trajectory of a particle is smooth we can predict its position in the 

(near) future based on the knowledge of the past. The alternative seems to 

be destroying any prospect of having a predictive theory at all.

2.2.

A few words about spaces as manifolds: these are patched together from 

standard canonical pieces of a Euclidean space, such as an interval of a real 

Une, a cube in 3-space and the higher-dimensional versions of these (or their 

complex analogues). A defining feature of the construction is its high degree 

of homogeneity: a manifold M  looks the same in a small neighbourhood 

of any of its points. This can be expressed in more rigorous terms by saying 

that there is a local isomorphism between neighbourhoods of any two points 

of M.

2.3.

In fact, an alternative to continuity does exist and is well-known in mathe

matics and increasingly being used in physics. This is based on a topology
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of a different kind, the Zariski topology, which is coarse and in general does 

not allow metrisation.

Zariski topology enters mathematics and physics in at least two pos

sible ways. One is by formally restricting one’s study to the context of 

algebraic varieties and schemes (thus allowing only charts which are zero- 

sets of systems of polynomial equations over an abstract field, and maps 

which are rational). This seems to be unreasonably restrictive to physics al

though methods developed by Grothendieck’s school allow mimicking many 

notions of analysis in this context and calculate very delicate cohomologi- 

cal invariants that alternatively can be visualised in complex geometry. The 

other appearance of algebraic geometry comes via complex analysis and the 

study of complex manifolds. A crucial feature of complex functions is that 

differentiabily (even just once) implies a very strong form of smoothness - 

the function becomes analytic. This eventually entails that the behaviour 

of compact complex manifolds is very close to that of general algebraic va

rieties. A manifestation of this is the theorem by Riemann stating that any 

one-dimensional compact complex manifold can be realised as a complex 

algebraic curve. As a matter of fact this is a corollary of a stronger the

orem by Riemann about compact real surfaces with a Riemannian metric 

(Riemann surfaces): every such surface can be identified with a complex al

gebraic curve with a metric induced by the metric on the complex numbers. 

These sort of connections with metric geometry led physicists to appreci

ate the relevance of algebraic geometry. Recall that Calabi-Yau manifolds 

which, according to string theory, underpin the structure of physics are ob

jects of the same dual nature. By some definition (slightly stronger than 

the usual one, see [2]) they turn out to be algebraic.

2.4.

The shift from continuous geometry based on the reals towards algebraic 

geometry and an even more general algebraic and category-theoretic math

ematical setting in physics is characteristic of our time. Moreover, there is 

a growing realisation of the need to reconsider the mathematical constructs 

at the foundations of physics. In [3] we read: “Indeed, there has always been 

a school of thought asserting that quantum theory itself needs to be radi

cally changed/developed before it can be used in a fully coherent quantum 

theory of gravity. This iconoclastic stance has several roots, of which, for us, 

the most important is the use in the standard quantum formalism of certain 

critical mathematical ingredients that are taken for granted and yet which,
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we claim, implicitly assume certain properties of space and time. Such an 

a priori imposition of spatio-temporal concepts would be a major error if 

they turn out to be fundamentally incompatible with what is needed for a 

theory of quantum gravity. A prime example is the use of the continuum 

which, in this context, means the real and/or complex numbers.”

We suggest a way to approach this issue by aiming at identifying what 

logically perfect mathematical structures should be. Once this is achieved, 

these should be taken as background structures for physics. A successful 

definition of logical perfection must entail a degree of regularity for struc

tures enjoying the property that makes them classifiable enough to have a 

good mathematical theory and flexible enough to model physical systems.

The idea of having a perfect structure as a mathematical basis for 

physics is not very original. Certainly, the Euclidean space in the back

ground for Newtonian physics is perfect enough a structure. An even more 

characteritic example is provided by the perfect spheres underlying Ptole

maic astronomy, which later led to the introduction of more sophisticated 

structures, epicycles, approximating the motion of planets quite well. These 

may look totally inadequate today but one must keep in mind that the ap

proximation by epicycles is essentially Fourier analysis, fully respectable in 

modern physics.

We use a model-theoretic approach built around the analysis of inter

action of a mathematical structure and its description in a formal language 

(C.Isham and A.Doring in [3] start by discussing the type of language that 

can lie at the foundations of physics).

3. In  Search of Logically Perfect Structures

3.1.

The main developments in model theory in recent decades have been cen

tered around stability theory and the core of stability theory is the theory 

of categoricity in uncountable cardinals.

It is well-known that the first-order description of a structure M  can be 

(absolutely) categorical if and only if M  is finite, which is a quite trivial 

situation (unless we put a restriction on the size of the first order axioma- 

tisation), hence the need for a more subtle definition.

A structure M  is said to be categorical in cardinality X if there is exactly 

one, up to isomorphism, structure M  of cardinality X satisfying the (first- 

order) theory Th(M).
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In other words, if we add to Th(M) the (non first-order) statement that 

the cardinality of its universe is Л the description becomes categorical. Of 

special interest is the case of uncountable cardinality Л. In his seminal work

[4] on categoricity M.Morley proved that the categoricity of a theory in one 

uncountable Л implies the categoricity in all uncountable cardinalities, so 

in fact the actual value of Л does not matter. What we have is a large 

structure (of an uncountable cardinality) which has a concise (countable) 

categorical description.

There are purely mathematical arguments towards accepting the above 

for a definition of perfection. First, we note that the theory of the field 

of complex numbers (in fact any algebraically closed field) is uncountably 

categorical. So, the field of complex numbers is a perfect structure, and so 

are all objects of complex algebraic geometry by virtue of being definable 

in the field.

It is also remarkable that Morley’s theory of categoricity (and its exten

sions) exhibits strong regularities in models of categorical theories generally. 

First, the models have to be highly homogeneous, in the sense technically 

different from one discussed for manifolds in subsection 2.2 but similar in 

spirit (in fact, it follows from results of complex geometry that any com

pact complex manifold is w-stable of finite Morley rank; many such mani

folds are categorical). Moreover, a notion of dimension (the Morley rank) is 

applicable to definable subsets in categorical structures, which gives one a 

strong sense of working with curves, surfaces and so on in this very abstract 

setting. A theorem of the present author states more precisely that an un

countably categorical structure M  is either reducible to a 2-dimensional 

“pseudo-plane” with at least a 2-dimensional family of curves on it (so is 

non-linear), or is reducible to a linear structure like an (infinite-dimensional) 

vector space, or to a simpler structure like a G-set for a discrete group G. 

This led to a Trichotomy conjecture, [9], which specifies that the non-linear 

case is reducible to algebraically closed fields, that effectively implies that 

M  in this case is an object of algebraic geometry over an algebraically closed 

field.

There remains the question of whether the restriction to the first-order 

language is natural. Although we would like to keep this open there are 

good reasons that the ultimate logical perfection must be first-order. The 

use of first-order languages was effectively suggested by Hilbert for reasons 

of its finitarity, the ability (and the restriction) to use only expressions of 

finite length, which agrees well with practicalities of physics.
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Alternatively, we could extend the idea to dealing with very large finite 

structures as if they are infinite with (uncountably) categorical theories. 

This could be formalised provided a right notion of approximation is found. 

We develop this approach in the second part of the chapter.

3.2.

The arguments above sugest that because of the high degree of logical per

fection exhibited by uncountably categorical structures they must already 

be in the centre of mathematics. Certainly, abstract mathematics being 

based on pure logic finds a special interest in objects having a concise 

and complete description. Physics, supposedly based on objective reality, 

is different in this regard but many recent discussions about the possible 

interaction between human intelligence and the structure of physical reality 

as we perceive it (anthropic principle) may suggest a similar relevance of 

the notion of categoricity to physics. In particular, the notion of algorithmic 

compressibility (the idea and the term comes from [5]) seems to be in close 

relation to categoricity as expression for “concise and complete”. In [6] we 

read that “the existence of regularities [in the real world] may be expressed 

by saying that the world is algorithmically compressible.” And further on, 

“The fundamental laws of physics seem to be expressible as succinct math

ematical statements. ... does this fact tell us something important about 

the structure of the brain, or the physical world, or both?”.

3.3.

Although we now know that the Trichotomy conjecture is technically false, 

it is believed to be (in words of D.Marker) “morally true”. The significance 

and the limits of the conjecture are now understood much better.

E.Hrushovski showed that the Trichotomy conjecture in its full general

ity is false, producing a series of counter-examples, beginning in [8]. Since 

then other variations of counter-examples appeared exhibiting various pos

sibilities of how the Trichotomy conjecture may fail. Remarkably, after more 

than 20 years since [8] Hrushovski’s construction is the only source of coun

terexamples. So, what does this construction demonstrate - the failure of 

the philosophy behind the conjecture and existence of chaotic, pathological 

structures consistent with categoricity, or incompleteness of the conjecture 

itself?
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In [10] this author showed that Hrushovski’s construction when applied 

in the right mathematical context produces in fact quite perfect structures. 

The structure in [10] is an analogue of the field of complex numbers with 

exponentiation, (C, +, *,exp). It turns out that the LuuUt(Q)-theory of this 

structure (call it a perfect exponentiation) is categorical in uncountable 

cardinalities, so there is exactly one, up to isomorphism, such structure 

of cardinality continuum. On the other hand, all comparisons between the 

structure with perfect exponentiation and the actual complex numbers with 

exponentiations suggest that the one with perfect exponentiation may be 

isomorphic to the genuine one. This suggestion taken as a hypothesis has a 

number of important consequences, including the remarkable Schanuel con

jecture that, extended appropriately, covers practically all which is known 

or conjectured in the transcendental number theory.

Today this pattern of linking Hrushovski’s counter-examples to clas

sical analytic structures (based on classical transcendental functions) is 

supported by more case studies including the study of the Weierstrass ф- 

function and the modular function j  (the j-invariant for elliptic curves). So, 

one may suggest that although the Trichotomy version of the conjecture is 

false, there is another, more credible mathematical interpretation of the 

general principle of “logically perfect structures” with algebraic geometry 

replaced by its appropriate analytic extension.

In any case there is a feeling that something serious is going on around 

the principle of logical perfection. The above mentioned categoricity theo

rem for perfect exponentiation is not trivial. Its proof requires a considerable 

input from model theory (mainly Shelah’s theory of excellence for abstract 

elementary classes, [11]), but also a serious amount of results from transcen

dental and Diophantine number theory. A sense of magic is present when in 

order to prove the categoricity you identify the need of a number-theoretic 

fact not known to you prior to this work and you learn from experts that 

the fact indeed holds, but has been proven just a few years ago. In [12] we 

proved the equivalence of categoricity for some type of structures (universal 

covers of abelian varieites) to a conjunction of number-theoretic statements 

(among these the so called “hard theorem of Serre”). Most of the statements 

are known, either as facts or as conjectures. Some have been proved just 

recently.

To sum up this line of developments around categoricity we would like 

to stress a remarkable phenomenon. The assumption of categoricity led one 

to a construction (of perfect exponentiation) that is not based on conti
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nuity but nevertheless turned out to possess all the features observed for 

a classical analytic transcendental function and, moreover, predicted other 

properties that have been independently conjectured.

3.4. Topological structures

The crucial, in this author’s view, improvement to the notion of logical 

perfection has been introduced in [13] by Hrushovski and this author (a 

similar but weaker notion was already present in the paper [14] by Pillay 

and Srour). The idea is to account for a topological ingredient in logic, es

sentially by giving special significance to positive formulas, assuming that 

in the given structure positively definable sets give rise to a (coarse) topol

ogy. In [15] and in the second part of this chapter such structures are called 

topological structures.

Of course, the syntax of an axiomatisation has always been of impor

tance in logic and must have been part of any notion of logical perfection, 

but in model theory of the 1960 it was found convenient to abstract away 

from the syntax of formulas to the framework of Boolean algebras of de

finable sets. This now needs a correction, especially if one approaches the 

subject with a view of applications in physics. Clearly, a formulation of a 

physical low is expected to have the form of an equation rather than its 

negation. To even start thinking about the idea of approximation one needs 

to assume the possibility that certain type of statement, e.g. equations, can 

happen to fail in reality but be considered true in approximation.

Now looking back at our examples one can rephrase that model theory 

of algebraically closed fields becomes algebraic geometry if we pay special 

attention to positively definable sets, i.e. the sets closed in Zariski topology. 

This motivated the terminology in [13] where we called a 1-dimensional cat

egorical topological structure a Zariski structure provided the topological 

dimension agrees with Morley rank and the topology satisfies certain “di

mension theorem” which holds in algebaic geometry on smooth varieties: 

in an n-dimensional space M  every irreducible component of the inter

section of two closed irreducible sets S\ and S2 is of dimension at least 

dim Si + dim - n (we call the latter property presmoothness now).

In [15] this definition has been lifted to aribitrary dimensions. Note also 

that the Zariski topology in [13] and generally in first-order categorical 

structures where it can be defined is Noetherian. The field with perfect 

exponentiation of subsection 3.3 can also be treated as a topological struc

ture with a Zariski-type topology which is not Noetherian, and some of key
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questions about the topology on this field remain unanswered.

3.5.

The arguments above suggest a choice for the notion we have been looking 

for. From now on logically perfect structures will be identified as (Noethe- 

rian) Zariski structures.

This agrees with the hierarchy of classes of structures (theories) de

veloped by Shelah’s classification theory. Zariski structures rightly can be 

placed in the centre of the classification picture surrounded by “less per

fect” classes, such as classes of ^-stable, superstable, stable theories and 

so on. The theory of formally real fields has its place in the classification 

outside the class of stable theories but not very far from it.

Does this classification indicate an order of “importance” of mathemat

ical structures? Certainly not. Real analysis on complex algebraic varieties 

provides an invaluable insight in the mathematics of purely algebraically 

defined object. Yet, as far as physics is concerned, there may be good rea

sons to see certain structures (or certain choice of languages) as basic, and 

other structures as auxiliary. This would agree with now broadly accepted 

Heisenberg’s programme of basing the theory of quantum physics on “the 

relationships between magnitudes that are in principle observable”.

3.6.

By reducing our analysis of logical perfection to Zariski geometries we 

achieve at least one meaningful gain. Firstly, this class is rich in math

ematically significant examples, e.g. compact complex manifolds in their 

natural language are Zariski geometries. And secondly, this class allows 

a fine classification theory and, in particular, essentially satisfies the Tri

chotomy principle (that is the Trichotomy conjecture within the class is 

proven to be true).

The following is the main classification result by Hrushovski and this 

author [13]

Theorem. For a non-linear Zariski geometry M  there is an algebraically 

closed field F and a nonconstant Zariski-continuous “meromorphic” func

tion ф : M  -> F.

In particular, if dim M  = 1 then there is a smooth algebraic curve Cm 

and a Zariski-continuous finite covering map

p : M  —> Cm {F),
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the image of any relation on M  is just an algebraic relation on Cm •

The remarkable message of this theorem is that the purely logical criteria 

that lead to the definition of Zariski geometries materialise in an, in fact, 

uniquely defined by M  algebraically closed field F. The proof effectively 

reconstructs main ingredients of algebraic geometry starting from the most 

abstract ones and leading consequently to the reconstruction of the field 

itself. Note that the linear case which is not covered by the theorem, is 

reasonably classifiable, although the full account of this case has not been 

given yet.

The word “essentially” in the reference to the Trichotomy principle 

above is to indicate that the reduction to algebraic geometry is not as 

straightforward as one imagined when Zariski geometries were first intro

duced. Indeed, there is an example of non-classical Zariski geometries M  

of dimension 1 which is not reducible to an algebraic curve, but is only 

“finite over” the algebraic curve Cm . In other words, M  can be obtained 

by “inserting” a finite structure over each point of Cm in some uniform 

way, but so that the construction is not reducible to a direct product in 

any sensible form.

Note that one-dimensional Zariski geometries that originate from com

pact complex manifolds are classical also in the sense above due to the clas

sification of compact Riemann surfaces; they all can be identified as complex 

algebraic curves, that is F = С and the covering map p : M  —> Cm {F) is 

the identity.

3.7.

The defect of non-classicality seemed insignificant in the beginning, partly 

because it did not affect a number of applications that followed and partly 

because “finite” sounds almost as “trivial” in model theory.

But the situation is much more interesting if one tries to understand the 

non-classical examples from the geometer’s and even the physicst’s point 

of view.

The most comprehensive modern notion of a geometry is based on the 

consideration of a co-ordinate algebra of the geometric object. The classical 

meaning of a coordinate algebra comes from the algebra of co-ordinate 

functions on the object, that is functions ф : M  -> F as in subsection 3.6, of 

a certain class. The most natural algebra of functions for Zariski geometries 

seems to be the algebra F[M] of Zariski-continuous functions. But in a 

non-classical case by virtue of construction F[M] is naturally isomorphic
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to F[Cm], the algebra of Zariski-continuous (definable) functions on the 

algebraic curve Cm- That is the only geometry which we see by looking 

into F[M] is the geometry of the algebraic curve Cm -

In [16], in order to see the rest of the structure we extended F[M] by 

introducing auxiliary semi-definable functions, which satisfy certain equa

tions but are not uniquely defined by these equations. The F-algebra 'H(M) 

of semi-definable functions contains the necessary information about M  but 

is not canonically defined. On the other hand it is possible to define an F- 

algebra .4(M) of linear operators on the linear space %(M) in a canonical 

way, depending on M  only. Moreover, using a specific auxiliary function one 

can define a natural involutive mapping X  —> X* on generators of .Д(М) 

thus defining a weak version of adjoints. We wrote down explicit lists of 

generators and defining relations for algebras A(M) for some examples and 

demonstrated that A(M) as an abstract algebra with involution contains 

all the information needed to recover the “hidden” part of structure M .

Later studies in [17], [18] and yet unpublished theses of V.Solanki and 

D.Sustretov confirm that this is a typical situation. There are lessons that 

one learns from it:

• The class of Zariski geometries extends algebraic geometry over al

gebraically closed fields into the domain of non-commutative, quan

tum geometry.

• For large classes of quantum algebras Zariski geometries serve as 

counterparts in the duality “co-ordinate algebra - geometric ob

ject” extending the canonical duality of commutative geometry.

• The non-commutative co-ordinate algebras for Zariski geometries 

emerge essentially for the same reasons as they did in quantum 

physics.

3.8.

In [16] one more important observation was made. The examples of non- 

classical Zariski geometries come in uniform families with variations within 

a family given by the size of the fibre of the covering map p. It is natural 

to ask what can be seen when the size of the fibre tends to infinity. Is there 

a well-defined limit structure? For examples studied in [16] it is possible to 

introduce a discrete metric on the Zariski structures so that there is a well- 

defined limit structure that was identified as a real differential manifold 

with a non-trivial gauge field on it.

This example demonstrates that one can study non-classical Zariski ob-
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jects seeing them “from afar” in quite a classical way, as real metric, even 

differentiable manifolds. This agrees with the general principle of physics of 

how quantised theories must behave: when quantum mechanics is applied 

to big structures, it must give the results of classical mechanics.

Along with this the question arises, what is the appropriate version of 

approximation (limitJl The one used in [16] is the Hausdorff limit for se

quences of metric space. But to apply the Hausdorff (or Gromov-Hausdorff) 

limit one needs that the quantum structures already have a natural metric 

on them. Is it possible that a sequence of non-metrisable structures have a 

limit structure with a nice metric?

The questions above have also practical significance. As a matter of 

fact the structures in finite fibres hold key information, in essense they 

are finite-dimensional representations of the operator algebras involved, see 

[17]. The problem of limit to a large degree amounts to a choice of discrete 

(even finite) models of physical processes in question. Providing a solution 

to this problem one possibly will be solving problems with non-convergent 

calculations mentioned in subsection 2.1.

In the second part of this chapter we introduce a notion of a structural 

approximation that we believe has a potential to give a mathematically 

rigorous formalisation to often heuristic approximation procedures used by 

physicists. (A beautiful and honest account by a mathematician attemting 

to translate the physicist’s vision of “matrix algebras converging to the 

sphere” into a mathematical concept provides the introductory section of 

[20].)

The notion of structural approximation is closely linked to the idea of 

treating structures as topological, in topology induced by the choice of the 

language, see subsection 3.4. The example in [16] mentioned above demon

strate that there exists a possibility that beautiful and mathematically rich 

differential-geometric structures of physics could be just limits of discrete 

logically perfect ones. We prove in subsection 6.1 that algebraically closed 

fields, that shape the “classical part” of a logically perfect structure (see 

subsection 3.6), are approximable by finite fields. So one can even make a 

suggestion that structures central to physics have “perfect” finite approxi

mations, or even that they are finite. In this regard it is worth mentioning 

an attempt to build a physical theory based on a large finite field instead 

of the reals (P. Kustaanheimo and others). A non-trivial argument in sub

section 6.1 proves that this wouldn’t be possible. The complex numbers 

is the only locally compact field that can be approximated by finite fields
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preserving structural properties. One can say that if the physical world is 

indeed parametrised by a huge finite field, then it would look from afar as 

an object of complex algebraic geometry. Which agrees well with trends in 

modern mathematical physics.

In the last subsection of the second part we discuss an open problem 

regarding structural approximation of compact Lie groups, such as SO(3), 

by finite groups. We provide some references in literature that links this 

problem to key issues in quantum field theory.

4. Structural Approximation

4.1. Topological structures

Following [15] we consider structures M  endowed with a topology in a 

language C. We say that the language is topological meaning that it is a 

relational language which will be interpreted so that any n-ary P E С (basic 

С-predicate) defines a closed subset P(M ) of M n in the sense of a topology 

on M n, all n E N. Not every closed subset of the topology in question is 

necessarily assumed to have the form P(M ), so those which are will be 

called C-closed.

We assume that the equality is closed and all structures in question 

satisfy the C-theory which ascertains that

• if S{ E C} i = 1,2, then S1&S2 = P i3 Si V  S2 = Рг5 for Pi, P2 € С;

• if S E C, then Vx5 = P, for some P EC.

We say that a C-structure M  is complete if, for each S(x,y) E С there is 

Р(у) E С such that M  1= 3xS = P.

Note that we can always make M  = (M,C) complete by extending С 

with relations P5 corresponding to 3x5 for all S in the original C. We will 

call such an extension of the topology the formal completion of M.

We say M  is quasi-compact (often just compact) if M  is complete, 

every point in M  is closed and for any filter of closed subsets of M n the 

intersection is nonempty.

Remark 4.1: The family of С-closed sets forms a basis of a topology, the 

closed sets of which are just the infinite interestions of filters of C-closed 

sets (the topology generated by C).

If the topology generated by С is Noetherian then its closed sets are 

exactly the ones which are C-closed.
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4.2. Structural approximation

Definition 4.2: Given a structure M  in a topological language С and 

structures M i in the same language we say that M  is approximated by a 

family {M* = M  : i € 1} along an ultrafilter D  on I  if, for some elementary 

extension M D M i, there is a surjective homomorphism

lim  : M D -> M .

Proposition 4.3: Suppose every point of M  is closed and M  is approxi

mated by the sequence {M i = M  : i € 1} for some I  along an ultrafilter 

D on J, such that M D is saturated. Then the formal completion of M  is 

quasi-compact.

Proof: Consider the M i and M  formally completed, that is in the extended 

toplogy. Note that the given lim : M D —> M  is still a homomorphism in 

this language, since a homomorphism preserves positive formulas.

Closedness of points means that for every a € M  there is a positive 

one-variable С-formula Pa with the only realisation a in M . Under the as

sumptions for *M >- M , setting for a € M , i(a) to be the unique realisation 

a G *M of Pa we get an elementary embedding i : M  *M. Now lim be

comes a specialisation onto M . This implies by [22] (see also a proof in [15]) 

that M  is quasi-compact. □

In agreement with the proposition we will consider only approximations 

to quasi-compact structures.

Proposition 4.4: Suppose M  is a quasi-compact topological С-structure 

and N is an \M\-saturated С-structure such that N is complete and for 

every positive С-sentence cr

N  t= <r =* M  N <7.

Then there is a surjective homomorphism lim : N —> M.

Proof: Given ACJV,a  partial strong homomorphism lim^ : A —> M  is a 

map defined on A such that for every a € Ak, a =  lim^ a and S(x,y) € С 

such that N И 3yS(a, y), we have M  \= 3y 5(a, y).

When A = 0 the map is assumed empty but the condition still holds, 

for any sentence of the form 3yS(y). So it follows from our assumptions 

that lim® does exist.
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Claim  1: Suppose for some A С N  there is a partial strong homomor

phism Нгпл • A -» M , and b e N. Then lim^ can be extended to a partial 

strong homomorphism lim^b : Ab —> M .

Proof: Let N t= 3zS(a, 6, z), for S(x,y,z) a positive formula and a a 

tuple in N. Then N t= 3yz S(a, y, z)) and hence M  N 3yzS(a, y, z)).

It follows that the family of closed sets in M  defined by {3zS(ay y, z) : 

N 1=3zS(a, 6, z)} is a filter. By quasi-compactness of M  there is a point, 

say b in the intersection. Clearly, letting lim^*, : b b, we preserve formulas 

of the form 3zS(x, y, z). Claim proved.

C laim  2: For A С N } \A\ < |M|, assume lim^ exists and let b e M\A. 

Then there is a b e N  and an extension lim^fr : b ь-> b.

Proof: Consider the type over A,

V — {-*3z S(a,y,z) : M  И ->3z S(a, 6, z) : a = lima, a С A, S G C}.
A

This is consistent in N  since otherwise

к

NNVj/V3*Si(a,y,*0 
t=l

for some finite subset of the type. The formula on the right is equivalent to 

P(a), some P  e C, so

к

М И Vy \/ 3ziSi(a,y,Zi) 

i=l

к

Mf=\/ 3zi 5*(a, 6, Zi), 
i= i

the contradiction. Claim proved.

To finish the proof of the proposition consider a maximal partial strong 

homomorphism lim — Итд : A —> M. By Claim 1, A = TV, so lim is a total 

map on N. By Claim 2, lim is surjective. □

Theorem 4.5: Let M  *, i € I, be a family of formally completed topological 

С-structures. Letls/l be a formally complete quasi-compact С-structure. Then 

the following two conditions are equivalent,

(i) there is an unltrafilter D on I  such that lim/? M j = M,

(ii) for every sentence P  € С such that M  |= ->P there is an i € /,

M { |= ->P.
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Proof: (i) implies (ii) since positive formulas are preserved by homomor- 

phisms.

We now prove (ii)=>(i). For a given sentence P  G С let 

I P = {iE  I  :Mi\= -P}.

Let

Dm  =  {Ip : M  \= -P}.

Dm is a filter. Indeed, every element of Dm is nonempty by (ii). Also, 

the intersection of two elements of Dm is an element of Dm, since P\ VP2 = 

P  G C, for any P i,P 2 G C, by definition.

Take D to be any ultrafilter on I  extending Dm - The statement follows 

from Proposition 4.4. □

5. Examples

In this section we assume for simplicity that M D =

5.1. Metric spaces

Let M  and M* be metric spaces in the language of binary predicates 

dP(x, y) and d^(x, y), all r G Q, r > 0, with the interpretation dist(x, y) < 

r and dist(x, y) > r  correspondingly. The sets given by positive existential 

formulas in this language form our class C.

Proposition 5.1: Assume M  is compact and

M =  Gtf-lim M i,
D

the Gromov-Hausdorff limit of metric spaces along a non-principal ultrafil

ter D on I. Then

M  =  lim М г.
D

Proof: By definition, for any n there is an X n G D such that 

dist(M i,M ) < in a space containing both all the Mi for i G X n and 

M. For any a eYli Mi define a  to be an element of M 1 such that &(i) is 

an element of M  at a minimal distance from a{i) (choose one if there is 

more than one at the minimal distance). Let aa be the limit point of the 

sequence {&(г) : г G 1} along D in M. We define

lim a := aa.
D
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It follows from the construction that, for a, G UiMu

{г G /  : М{ И dr(a(i), f3(i))} € D => M  N dr(lima,lim/?). □

5.2. Cyclic groups in  profinite topology

Consider the coset-topology on Z and Z/nZ. The compactification of Z is 

then Z, the profinite completion. Choose a non-principal ultrafilter D on N 

so that mN € £> for every positive integer m (a profinite ultrafilter). 

C laim .

Z/nZ = Z-l-Q̂ -f-T, some cardinal к and the torsion subgroup T. (5.1)
D

Proof: Follows from the Eklof-Fisher classification of saturated models of 

Abelian groups [23]. □

Proposition 5.2: The group Z is approximated by Ъ/пЪ in the profinite 

topology. That is there is a surjective homomorphism

lim : Z/nZ —> Z.
D

Proof: Define lim : Z+QK4-T Z to be the projection (with kernel 

QK+T). □

As an example, consider the element (sequence) 7 (n) such that 7 (72) = 

j  modn, all n € 2N. Then 27 = 0 in П £>Z/nZ, a torsion element, so 

lim 7 = 0.

5.3. The ring of p-adic integers

Consider the sequence of finite rings Z/pnZ and its ultraproduct

Лр:= Д 2/Рп2
D

over a non-principal ultrafilter. Let Jp С Rp be the ideal of divisible el

ements, that is the maximal ideal with the property kJp = Jp for every 

integer k.

Claim . Rp/Jp is an integral domain.

Indeed, a • b € Jp if and only if a • b is p°°-divisible, if and only if a or b 

is p°°-divisible, if and only if a € Jp or 6 G Jp. Claim proved.
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Introduce a metric on Rp — Rp/Jp setting the distance d(a,b) < p~k if 

a — b € pkRp. Then

d{a, b) < p~k for all A: iff a —b is p°°-divisible iff a =  b.

Clearly, the diameter of the metric space is 1 and it follows (using the 

saturatedness of Rp) that Rp is compact in the corresponding topology.

It follows that

Rp/Jp ^ Zp,

the quotient is isomorphic to the ring of p-adic integers.

We thus have proved

Proposition 5.3: The ring Zp of p-adic integers is approximated by the 

finite rings Z/pnZ. That is there is a surejective homomorphism of rings

lim : Y\ Z/pnZ -» Zp.
D

5.4. Compactified groups

Call a compact topological structure M  a compactified group if there is 

a closed subset P  с  M 3 and an open dense subset G С M  such that the 

restriction of P  to G is a graph of a group operation on G, P(g\,92,gz) = 

9 i • 92 =  <?з> and P C\G x M 2 defines an action of G on M.

We usually write such an M  as 6 .

Example 5.4: The structure Z = Zu{—oo, +00} with the ternary relation 

S(x, у, z), defined as the closure of the graph of addition in the metric 

of the real line (the two-point compactification of Z). By this definition 

[= Vz S(—00, +00, z)} f= Vz S(z, +00, +00) and |= Vz S(z, —00, —00).

Example 5.5: The projective space Pn2(F), for F an algebraically closed 

field, is a compactified group GLn(F) in the Zariski topology of the projec

tive space.

Example 5.6: The projective space Pn(F), for F an algebraically closed 

field, is a compactified additive group Fn, in the Zariski topology of the 

projective space, and in the metric topology if F = C.

In particular, for n = 1, Example 5.5 is a 2-point compactification of 

the multiplicative group of the fields, and Example 5.6 is a 1-point com

pactification of the additive group.
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5.5. Cyclic groups in  metric topology and their 

compactifications

The compactification of Z in the metric topology corresponding to the usual 

embedding of integers into the Riemann sphere Р*(С) is obviously Z = 

ZU {00}, with the addition relation S(x, y} z) (see Example 5.4) extended 

to the extra element: |= Vx S(x, 00,00) and |= Vz S(00,00, z). We still write 

x + у = z instead of S(x, у, z).

For a finite cyclic group Z/nZ define a metric as the metric of the regular 

n-gon with side 1 on the plane, induced by the metric of the plane.

We identify elements of Z/nZ with sequences a = {a(n) 6 Z/nZ : 

n € N} modulo D, any given non-principal ultrafilter.

Define

lim a — I m' ^  e ^  : a^  = m П̂  e ^
\ 00, otherwise.

In other words, all bounded elements of П DZ/7iZ, which have to be 

eventually constant, specialise to their eventual value, and the rest go into

This is a surjective homomorphism onto Z  in the language {5} and so 

lim also preserves (the topology of) the positively definable subsets. But lim 

is not a homomorphism in the language for metric, since for an unbounded 

element a £ Z/nZ we have lima = 00 = lim(a + 1) but \= df(a, a -I-1) 

while |= -*df(00, 00).

The downside of the 1-point compactification is that Z “believes” that 

every its element is divisible, that is

Z f= Vx3y x = у + ... + у
Ч___ s/___ ✓

m

as one can always take 00 for y.

5.6. 2 -ends compactification of Z

Consider the additive group Z with its natural embedding into the reals. 

A natural compactification of the real line adds two points, +00 and —00 

with the obvious interpretation. It induces a compactification Z of Z,

Z = ZU {+00, —00},

with the graph S(x,yy z) of addition compactified so that

• (= S(x, - 00, —00), for all x Ф +00;
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• |= S(x, +00, +00), for all х ф  —oo;

• |= S(+oo, - 00, x), for any x.

The basic relations of language С are the relations defined from S by 

positive 3-formulas.

Note that among the latter relations there are unary predicates, for all 

n > 0,

Pn(x) =  3yx = y+ ... + y.
'V'
П

Note that, for n > 1 , -«Рп(д) holds.

Now we investigate for what ultrafilter D on N the family of finite cyclic 

groups Z/nZ, n G N, approximates Z along D. That is when

limZ/nZ = Z. (5.2)

Proposition 5.7: (5.2) holds if and only if for any natural number m,

{n G N : m\n} € D. (5.3)

Proof: Suppose the negation of (5.3) for some m, that is m does not divide 

n along the ultrafilter. Let тп =  т\Ш2 such that m\\n and (тг,п) = 1 for 

all n £ X, some X  G D, m2 ф 1. We may assume m — m2. For all n 6 X, 

let be the integers such that unm + vnn =  1. Correspondingly,

unm = 1 mod n.

It follows

Z/raZ f= VxPm(x)
D

holds, in contrast with Z f= -»Pm(l). So there is no homomorphism from 

the ultraproduct onto Z.

Conversely, suppose (5.3) holds. Consider the ultrapower *Z := ZN/D  

as an ordered additive group, Z ^  *Z, Z is convex subgroup of *Z. Define, 

for 7] G *Z,

{
+00, if 77 > Z 

—00, if r] < Z 

m, if 77 = m G Z.

This clearly is a homomorphism onto Z with respect to S and so all the 

relations in C.
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Note that D  is a profinite ultrafilter by (5.3). By subsection 5.2, factoring 

by the torsion subgroup we get a surjective group homomorphism

D

Now we use the surjective homomorphism

lim : Z —у /ti

constructed above and finally the composition lim оф is a requred limit map.

□

6 . Approximation by Some Finite Structures

6 .1 . Approximation by finite fields

In accordance with subsection 4.1 we discuss the approximation of a com

pactification К  = #и{оо} = P 1(K )i when speaking of an approximation of 

a field K. The standard topology that we will assume for К is the topology 

generated by the Zariski topology on К , that is the smallest quasi-compact 

topology T extending the Zariski topology. Equivalently, by [22], these are 

the fields К  such that for any elementary extension * К >■ К there is a 

specialisation (place) 7г : * К  -> К.

Remark 6 .1 : One may also consider the two-point compactification R U 

{—oo, +00} of the field of reals. But if this is approximable, then so is R, 

since there exists an obvious surjective homomorphism Ru{—00, +00} —> R 

taking ±00 to 00.

Conjecture: For an infinite field, К is quasi-compact iff К is algebraically 

closed or К is isomorphic to one of the known non algebraically closed 

locally compact fields: R or finite extension ofQp or Fp{£}.

Proposition 6 .2 : (i) Any algebraically closed field К with respect to the 

Zariski language is approximable by finite fields.

(ii) No locally compact field, other than algebraically closed, is approx

imable by finite fields.

Proof: (i) П о Mn = Mn finite fields, is a pseudofinite field. Choose 

Mn and D so that charF = char K. Let *F ^  F be a large enough elemen

tary extension.

We will construct a total surjective specialisation 7r: *F —> К = К U 

{00}. Obviously there is a partial specialisation, in fact embedding, of the
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prime field Fo of charF into K. So we have constructed partial 7r : *F —> К . 

It is easy to extend 7r to the transcendence basis В  of *F so that 7г(В) — К, 

since algebraically independent elements satisfy no nontrivial Zariski closed 

relation.

Now note that any partial 7r into К , for К  algebraically closed, can be 

extended to a total one. This is the case when 7r is a partial specialisation 

from K ' to К for K ' algrbraically closed, since К  s quasi-compact (see e.g. 

[15], Prop. 2.2.7) But *F С К' for some algebraically closed field, so the 

statement follows.

(ii) It is known ([24]) that F is a pseudo-algebraically closed field, that 

is any absolutely irreducible variety С over F has an F-point.

First we are going to prove (ii) for the case К = R, the field of reals.

C laim : The affine curve С given by the equations

x2 + y2 + 1 =  0; \ + z 2 + 2 =  0
X*

is irreducible over С and so is absolutely irreducible.

Proof: It is well known that x2 + y2 + a = 0, for а Ф 0, with any 

of the point removed is biregularly isomorphic to C, and so irreducible. 

For the same reason the subvariety of C2 given by ^  + z2 -f 2 = 0 is also 

irreducible. We also note that the natural embeddings of both varieties into 

P 2 are smooth.

The curve С  projects into (x, 2/)-plane as the curve Cxy given by x2 + 

y2+1 = 0 and into the (x, z)-plane as the curve Cxz given by -£s+z2+ 2  =  0.

Suppose towards a contradiction that С = C\ U C2 with C\ an irre

ducible curve, Ci Ф C, and C2 Zariski closed. We denote C, Ci and C2 the 

corresponding closures in the projective space P 3.

Consider the projection prXJ/ : Ci —» Cxy. This is surjective and the 

order of the projection is either 1 or 2. In the second case pr^fa) П Ci = 

pr“J(a) П С for all a 6 CXJ/, so С = Ci and we are left with the first case 

only. In this case prxy is an isomorphism between Ci and Cxy. It is also 

clear in this case that C2 must be a curve, and priy also an isomorphism 

from 62 to Cxy. The points of intersection of Ci and C2 are the points over 

a e Cxy where |рг“у(а) П C| = 1 . One immediately sees that this can only 

be the points where z — 0, x2 =  — y2 =

We can apply the same arguments to the projection ртХ2 onto Cxz and 

find that the points of intersection of Ci and C2 must satisfy у =  0, x2 = 1 

and z2 = —2 . The contradiction. Claim proved.

Now we prove that the existence of a total specialisation ir : *F 

E U {00} leads to a contradiction.
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By above there exist a point (x, yyz) in C(*F). Then either n(x) or 

?r(~) € M (are finite). Let us assume n(x) € R. Then necessarily ir(y) ф oo, 

since 7г(х)2 + 7г(у) 2 + 1=0,  but the latter contradicts that x2 +y2 > 0 in 

R. So (ii) for the reals is proved.

Now we prove (ii) for the remaining cases, that is locally compact nonar- 

chimedean valued fields K. If L is a residue field for a valued field К, then 

the residue map К —> L is a place. So assuming there is a sujective place 

*F ->  К we get a surjective place *F —> L. This is not possible for a 

PAC-field, by [24], Corollary 11.5.5. □

6 .2 . Approximation by finite groups

In physics interesting gauge field theories are based on compact Lie groups 

such as the orthogonal group SO(3) or SU(N). On the other hand, since 

calculations in this theory and the analytic justification of the theory en

counters enormous difficulties, there have been numerous attempts to de

velop a gauge field theory with finite group, see [25], or ear Her [26] where 

an approximation of SU(3) by its finite subgroups was discussed.

The following, we believe, is crucial.

Problem 6.3: Is the group SO(3) approximable by finite groups in the 

group language?

More generally, let G be a compact simple Lie group. Is G approximable 

by finite groups in the group language? Equivalently (assuming for simplicity 

the continuum hypothesis), is there a sequence of finite groups Gn, n € 

N, an ultrafilter D on N and a surjective group homomorphism from the 

ultraproduct onto G,

Gn —i► G.
D

Remark 6.4: This problem has an easy solution (in fact, well-known to 

physicists) if we are content with Gn to be quasi-groups, that is omit the 

requirement of associativity of the group operation:

For each n, choose an ^-dense finite subset G(n) С G of points. For

a, b 6 G(n) set a * b to be a point in G(n) which is at a distance less than 

£ from the actual product a • b in G. Now set, for 7 € Дп

lim7 = g iff j n e N : dist(7 (n), g) < i  j  € Д
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which is in fact the standard part map. Then clearly 

lim(7 i * 72) = lim 7 i ■ lim 72, 

that is the map is a homomorphism.

Remark 6.5: By Theorem 4.5 for a given compact Lie group G the prob

lem reduces to proving that for any positive sentence о  in the group lan

guage, such that G |= —>cr, there is a finite group Gn such that Gn [= -«o’.

Note that any compact simple Lie group G is definable in the field of 

reals in an explicit way, and hence the first order theory of G is decidable. 

This implies that the list of positive sentences о such that G \= -47, is 

recursive.

Finally, I would like to mention that in the last 2 years the problem 

was discussed with many people including M.Sapir, J.Wilson, C.Drutu and 

A.Muranov who made some valuable remarks, but no solution found as yet.
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This document is a record of my contribution to a panel discussion which 
took place on July 27, 2011 as part of the Infinity and Truth Workshop 

held at the Institute for Mathematical Sciences, National University of 
Singapore, July 25-29, 2011.

1. Introduction

In preparation for the panel discussion, Professor Woodin asked each pan

elist to formulate a yes/no question to be asked of a benevolent, omniscient 

mathematician. In addition, each panelist was asked to give reasons for his 

choice of a question.

Since I do not believe in omniscient mathematicians, I chose to inter

pret “omniscient mathematician” as “wise and thoughtful philosopher of 

mathematics.” With this change, my yes/no question reads as follows:

Can there be an objective justification for the concept “actual infinity”?

Of course this question would be incomprehensible without some un

derstanding of the key terms “objective” and “actual infinity.” Therefore, 

I shall now explain my views on objectivity in mathematics, and on poten

tial infinity versus actual infinity. After that, I shall point to some relevant 

results from contemporary foundational research, especially reverse math

ematics.
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2. Objectivity in Mathematics  ̂ real' 

Generally speaking, by objectivity I mean human unders ^ using 

ity* “the real world out there,” with an eye toward C0̂ r° ctivism [3], a 

aspects of reality for human purposes. I subscribe о central role 
well-known modern philosophical system which emphasizes

of objectivity. . naper [6],
My views on objectivity in mathematics are explaine in my 

which is the text of an invited talk that I gave at a philosop у о ^е^елге 

matics conference at New York University in April 2009. Brie у, 
that mathematicians ought to seek objective understanding о t e 

ematical aspects of reality. This makes it possible to apply mat em 
with varying degrees of success, for the betterment of human life on ea

Among the highly successful application areas for mathematics are. с 

sical physics, engineering (mechanical engineering, electrical engineering, 

etc.), modern physics (relativity, quantum theory, etc.), chemistry, micro 

biology, astronomy. Among the successful application areas are. biology, 

medicine, agriculture, meteorology. Among the application areas with mo 

erate to low success are: economics, social sciences, psychology, finance.

In all of these application areas, it is crucially important that our mathe

matical models should be objective, i.e., correspond closely to the underlying 

reality. Otherwise, success will be severely impaired. It would be desirable 

to place all of mathematics on an objective foundation. Failing that, it 

would be desirable to place at least the applicable parts of mathematics on 

an objective foundation.

3. Potential Infinity versus Actual Infinity

The distinction between potential infinity and actual infinity goes back to 

Aristotle. A detailed, nuanced discussion can be found in Books M and N 

of the Metaphysics [1,2], which constitute Aristotle’s treatise on the philos

ophy of mathematics. Aristotle’s position is that, while potential infinities 

have an objective existence in reality, actual infinities do not. This is in the 
context of a broader argument against Plato’s theology.

In modern mathematics, the prime example of potential infinity is the 

natural number sequence 1, 2, 3, ..., which manifests itself in reality as 

iteration, repeated processes, infinite divisibility,b etc. Another example in

aOf course reality is not limited to physical reality. For example, the United States 
government is a real entity but not a physical entity. 

bFor example, a piece of metal can be divided indefinitely.
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. П “^hematics is the full binary tree {0,1}<CX>, whose infinite paths 
spond roughly to the points on the unit interval [0,1]. 

n't 0n r̂as ê<̂ potential infinity is actual infinity, i.e., a completed infi- 
l e totality. There are many examples in modern mathematics, including 

ш. rnte sets such as ш = {0,1,2,...}, transfinite ordinals, [0,1], the real line,

V ' ê c* Thus my yes/no question comes down to asking whether cer
tain parts of modern mathematics can have an objective justification.

4. Insights from Reverse Mathematics

As regards the distinction between potential and actual infinity, it appears 

that reverse mathematics can teach us something. Recall from [5] that re

verse mathematics is a systematic attempt to classify specific mathematical 

theorms according to which set existence axioms are needed to prove them. 

The focus here is mainly on core mathematics, i.e., analysis, algebra, num

ber theory, differential equations, probability, geometry, combinatorics, etc. 

Among the specific core mathematical theorems considered are many which 

time and again have proved useful in applications.

Reverse mathematics has uncovered a hierarchy of formal systems which 

are relevant for this classification. Some of the most important formal sys

tems for reverse mathematics are, in order of increasing strength:

RCAJ, RCAo, WKLo, ACA0j ATRo, n}-CA0, ....

For our purposes here, recall [5] that there is a significant “break point 

between the first three systems and the others. Namely, while RCA0, RCAo, 

WKLo are conservative over primitive recursive arithmetic (= PRA) for П2 

sentences, the other systems ACAo, •. • are much stronger and therefore not 

conservative over PRA even for П? sentences. Moreover, Tait [7] has argued 

that PRA represents the outer limits of finitism. Recall also that PRA is 

based on the idea of iteration and so may be viewed as a formal theory of 

potential infinity.
Now, an important discovery of reverse mathematics is that large parts 

of contemporary mathematics are formalizable in RCAJ, RCA0, and WKL0. 

This seems to include the applicable parts of mathematics. See also my 

paper [41. Combining all of the above considerations, we see the possible 

outline of an objective justification of much of modern mathematics, es

pecially the applicable parts of it. However, the prospects for ал objective 

justification of actual infinity remain much more doubtful. This is the back

ground of my yes/no question.
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1. Introduction

The Infinity Workshop was focused on basic foundational questions. The 

participants were given the following lead questions prior to the meeting.

• What is the nature of mathematical truth and how does one resolve 

questions which are formally unsolvable within ZFC, such as the 

Continuum Hypothesis?

• Do the discoveries in Mathematics provide evidence favoring one 

philosophical view, such as Platonism or Formalism, over others?

During the meeting, we held an unusual problem session. Rather than 

asking the participants to share open problems to drive mathematical 

progress, we asked them to share questions to drive foundational progress 

and to facilitate this discussion we asked following question, inviting the 

workshop participants to respond.

You have an audience with the Oracle of Mathematics. You can 

ask one Yes-No question. What is your question?

Here we have the results. Some of these are exactly as given in the 

Oracle session; some have been altered or elaborated by the participants 

upon reflection.
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2. Questions

2.1. Ilijas Farah

Question 2.1: Is there a physical experiment whose outcome is indepen

dent from ZFC?

2.2. M oti G itik

Question 2.2: Con(3 strongly compact) <*=> Con(3 supercompact)?

2.3. Joel David Hamkins

Question 2.3: Are we correct in thinking we have an absolute concept of 

the finite?

I might mischievously ask the question my six-year-old daughter Hypa

tia often puts to our visitors: “Answer yes or no. Will you answer ‘no’?” 

They stammer, caught in the liar paradox, as she giggles. But my actual 

question is:

Are we correct in thinking we have an absolute concept of the finite?

An absolute concept of the finite underlies many mathematician’s under

standing of the nature of mathematical truth. Most mathematicians, for 

example, believe that we have an absolute concept of the finite, which de

termines the natural numbers as a unique mathematical structure—0 , 1,2, 

and so on—in which arithmetic assertions have definitive truth values. We 

can prove after all that the second-order Peano axioms characterize (N, 5,0) 

as the unique inductive structure, determined up to isomorphism by the fact 

that 0 is not a successor, the successor function S is one-to-one and every set 

containing 0 and closed under S is the whole of N. And to be finite means 

simply to be equinumerous with a proper initial segment of this structure. 

Doesn’t this categoricity proof therefore settle the matter?

I don’t think so. The categoricity proof, which takes place in set theory, 

seems to my way of thinking merely to push the absoluteness question for 

finiteness off to the absoluteness question for sets instead. And surely this 

is a murkier realm, where already mathematicians do not universally agree 

that we have a single absolute background concept of set. We know by forc

ing and other means how to construct alternative set concepts, which seem 

fully as legitimate and set-theoretic as the set concepts from which they
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are derived. Thus, we have a plurality of set concepts, and our confidence 

in a unique absolute set-theoretic background is weakened. How then can 

we sensibly base our confidence in an absolute concept of the finite on set 

theory? Perhaps this absoluteness is altogether illusory.

My worries are put to rest if the oracle should answer positively. A 

negative answer, meanwhile, would raise alarms. A negative answer could 

indicate, on the one hand, that our understanding of the finite is simply 

incoherent, a catastrophe, where our cherished mathematical theories are 

all inconsistent. But, more likely in my view, a negative answer could also 

mean that there is an undiscovered plurality of concepts of the finite. I 

imagine technical developments arising that would provide us with tools to 

modify the arithmetic of a model of set theory, for example, with the same 

power and flexibility that forcing currently allows us to modify higher-order 

features, while not providing us with any reason to prefer one arithmetic 

to another (unlike our current methods with non-standard models). The 

discovery of such tools would be an amazing development in mathematics 

and lead to radical changes in our conception of mathematical truth.

2.4. Juliette Kennedy

Question 2.4: Is there a natural/absolute/transcendent notion of proof?

In his 1946 Princeton Bicentennial Lecture Godel suggested the prob

lem of finding notions of provability and of definability for set theory, which 

are not “dependent on the formalism chosen.” What Godel is actually sug

gesting there is duplicating the Turing analysis of the notion of computable 

function — a notion which is very robust with respect to its various asso

ciated formalisms — in the cases of provability and definability. One way 

to interpret this suggestion vis a vis definability is to consider standard 

notions of definability in set theory, which are usually built over first order 

logic, and change the underlying logic. It turns out that constructibility is 

not very sensitive to the underlying logic, and the same goes for hereditary 

ordinal definability; this means that a large class of logics can be substi

tuted for first order logic in the construction of L, without changing L, 

and the same holds for second order logic in the case of HOD. (Joint work 

with Magidor and Vaananen.) The question I asked at the conference was 

whether there is a similar, formalism free notion of proof in set theory? 

Would this involve an analysis similar to the above, based on a change of 

logic? Or would a transfer of the Turing analysis to the case of provability 

involve a different test of robustness? Godel suggested in the lecture that
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“It is not impossible th a t... some completeness theorem would hold, which 

would say that every proposition expressible in set theory is decidable from 

the present axioms plus some true assertion about the largeness of the uni

verse of all sets.” We can regard Woodin’s theorem on £ 2 absoluteness as 

a result of this kind.

2.5. Steffen Lempp

Question 2.5: Are the computably enumerable Turing degrees an atomic 

model of their theory?

A positive answer would provide a partial solution a more widely circu

lated conjecture that each c.e. Turing degree is definable; so this question 

may be viewed as a step toward this widely believed conjecture.

2 .6 . Stephen G. Simpson

Question 2 .6 : Does there exist an objective justification for the concept 

of actual infinity?

2.7. Theodore Slaman

Question 2.7: Is there a non-trivial automorphism of the Turing degrees?

There are two fundamental open questions concerning the structural 

properties of relative computability. The first question is whether there is 

a non-trivial automorphism of the partial ordering of Turing degrees, D. If 

not, then D is bi-interpretable second-order arithmetic, thereby reducing 

the logical properties of the Turing degrees to those of the representatives 

of those degrees. The second question is to settle Martin’s Conjectured 

classification of the functions from 2W to 2W which are Turing invariant, i.e. 

induce functions from D to D. Martin Conjectured that AD implies that 

the non-constant such functions are well-ordered under eventual point-wise 

domination with successor given by the Turing jump. If so, then the degree 

invariant functions give a very fine hierarchy for the structure of arbitrary 

relative definability. See [2] for more information.

2 .8 . Jouko Vaananen

Question 2 .8 : Is there a largest tree of size Ni without uncountable 

branches?
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2.9. Nik Weaver

Question 2.9: Is there a consistent theory of QED in 3+1 dimensions?

A good background reference is [1].

2.10. W. Hugh Woodin

Question 2.10: It the following a true axiom for V?

(1) There is a supercompact cardinal.

(2) Suppose that ф is a Ез-sentence and ф is true in V. Then, there is a 

universally Baire set А С К such that (tf OD)L(A,R) f] Vq (= Ф, where 
0  is 0 L(̂ -R).

A weak extender model for S is a supercompact is simply a transitive 

inner model N  of ZFC containing all the ordinals such that <5 is supercom

pact in N  and this is witnessed by the supercompactness of S in V in the 

following sense. For each 7 > <5, there is a normal fine (̂ -complete ultrafilter 

U on <̂5(7 ) such that

Vs{7 ) П N  € U

and such that U П N  6 N. By the results of [3], N is necessarily close to V 

above 5 and moreover N  inherits essentially all large cardinals which hold 

in V above S (at least up to the level of Axiom 10). The suitable extender 

models of [3] are simply a refinement of weak extender models designed to 

pass through the 10 barrier, [5].

My question for the ORACLE is motivated by the following conjecture 

where

“V =  Ultimate-Ь”

is the axiom defined below.

Definition (V" = Ultimate-L).

(1) There is a strong cardinal and a proper class of Woodin cardinals.

(2) For each Ез-sentence ф, if ф holds in V then there is a universally Baire 

set A С R such that

HODL(i4’R) П Ve  И  Ф

where О = 0 L(j4>R). □
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Conjecture (Ultimate-L Conjecture). Suppose there is an extendible 

cardinal. Then there exists a suitable extender model M such that

(1 ) M С HOD,

(2) M \= “V = Ultimate-L ”. □

If the Ultimate-L Conjecture is true then one has a compelling candidate 

for an axiom for V. Hence the question.

There are some known consequences of the axiom, “V =  Ultimate-L”. 

The Generic-Multiverse is the generic-multiverse generated by V, [4].

Theorem (V = Ultimate-L).

(1) CH holds.

(2) The П Conjecture holds.

(3) V is the minimum universe of the Generic-Multiverse. □

2.11. Boris Zilber

Question 2.11: Is there a pseudo-finite group G that has a homomorphism 

onto 51/(3)?

Same question with SU(3) replaced by any simple compact Lie group. 

This question is about an approximation by finite groups of gauge groups, 

which is of fundamental importance in quantum field theory.
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