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Preface

Linear algebra and matrix theory are among the most important and most 
frequently applied branches of mathematics. They are especially important 
in economic models, where either the model is assumed linear, or the 
nonlinear model is approximated by a linear model, and the resulting linear 
model is examined.

This book is mainly a textbook, that covers a one-semester upper 
division course or a two-semester lower division course on the subject. The 
book is written for students studying economics and business, however it 
can also be used in courses offered by the mathematics department, or any 
kind of engineering departments.

Each chapter consists of three major parts. The first part introduces the 
new concepts, discusses and proves the main theorems. The new concepts 
and theoretical results are always illustrated by easy-to-follow numerical 
examples. The second part of each chapter presents some applications of the 
material of the chapter. We have selected these applications from special 
methodology of linear algebra and matrix theory (such as block matrices, 
matrix exponential, singular value decomposition, pseudoinverses, etc.), 
linear systems theory (such as discrete and continuous systems), statistics 
(for example, the least squares method), numerical analysis (such as 
interpolation polynomials, integral equations), as well as economic 
modelling (for example, oligopoly, and producer-consumer models). The 
last section of each chapter offers exercises to improve understanding of the 
material and to help students to gain experience in problem solving. In each 
set of exercises we have presented some simple examples which can be 
solved easily by using the methodology of that chapter, however in each set 
we also offer some more difficult problems which require deeper 
understanding and skill in mathematical developments.

The book is organized as follows. Chapter 1 introduces the concept of 
vectors and matrices, and discusses the elements of matrix algebra. Vector 
spaces, subspaces, linear independence, basis, and inner-product spaces are 
examined in Chapter 2. The most important application of linear algebra is
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the solution of systems of linear algebraic equations. In Chapter 3 the 
elimination method is introduced and we demonstrate how to use this 
method to determine inverses of square matrices. Determinants and their 
main properties are discussed in Chapter 4. Linear mappings, linear 
transformations, the vector space of linear mappings, and matrix 
representations are investigated in Chapter 5. The discussion on diagonal, 
triangular, and Jordan canonical forms of matrices is based on the theory of 
eigenvalues and eigenvectors as well as on the main properties of invariant 
subspaces. The fundamentals of these topics are given in Chapter 6, and 
special matrices are introduced and examined in Chapter 7. Here we discuss 
the special properties of diagonal, tridiagonal, triangular, selfadjoint, 
unitary, and normal matrices, and introduce different kinds of definite 
matrices and related special matrix classes (such as quasi-defmite, quasi- 
semi-defmite, N-, P-, N-P, and P-N matrices). The last chapter of the book 
introduces and discusses the elements of matrix analysis including vector 
and matrix norms, and related topics. In a one-semester introductory course 
we suggest to cover Chapters 1, 2, 3 and large part of Chapters 6. In a one- 
semester higher level (or in a second) course on the subject we suggest to 
cover Chapters 4, 5, part of 6, 7, and 8.

It is our pleasure to acknowledge encouragement we have received 
from our colleagues and friends in both Hungary and the USA. In preparing 
the manuscript we obtained significant help from our students, and 
colleagues. Our special thanks should be addressed to Dr. Zoltan Varga for 
providing us with helpful critique, and to Mark Molnar for all the editorial 
help we needed in finalizing the manuscript. Finally we mention that it was 
through various grants from the National Science Foundation and the Joint 
U.S.-Hungarian Research and Technology Fund that the authors were able 
to enjoy the continuation of their productive and happy collaboration.

Ferenc Szidarovszky 
Tucson, Arizona, USA

Sandor Molnar 
Budapest, Hungary
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Chapter 1 

Vectors and Matrices

1.1 Introduction
In modeling and solving problems in engineering, economics, and in any 
other field of applied sciences there is often a need to present data in an 
organized way of a rectangular array. For example, if the prices of five items 
are listed as (р \9р 2 ,р з ,р л ,р 5) then such an array is constructed. This 
array has the specialty that it consists of only one row, therefore it is often 
called a row vector. Assume next, that a small firm produces three kinds of 
products. If the production levels are denoted by X\,X2 , and *3, then 
another type of special array

*2

can be constructed, which consists of only one column. Therefore it is 
sometimes called a column vector. Consider again the same small firm and 
assume that for the next week the management considers two alternative 
production plans. Let х\,х2 ,х^ and у ь у 2,у 3 denote the alternative 
production volumes. The data can be conveniently summarized in a 
rectangular array form:

*1 У i
*2 У2
*3 Уз

(1.1)

where the rows correspond to the different products, and the columns 
correspond to the alternative plans. This array consists of 3 rows and 2 
columns, therefore it is usually called a 3 * 2 matrix (pronounced ‘‘three by

1



2 Introduction to Matrix Theory

two” matrix). By constructing such arrays a new mathematical structure is 
developed.

Definition 1.1. For a given pair (m, n) of positive integers, an 
m x n matrix is a rectangular array of real (or complex) numbers given as

a\\ a \2 ••• a\n 
a 2\ a 22 a 2n

\^ ^ m l ^ m 2  ^ m n  j

This matrix has m rows and n columns. Instead of saying that this 
matrix is m xn  we may say that its type is m x n  . The numbers а\\,а\гУ... 
are called the elements or entries of the matrix. Notice, that each matrix 
element has two subscripts. The first subscript indicates the row in which 
the element is located, and the second subscript shows the column in which 
the element is placed. The set of all real (or complex) m xn  matrices is 
denoted by RmXn (or Cmxn ), which is the obvious generalization of the usual 
notation R (or C) for the set of all real (or complex) numbers.

Example 1.1. The type of matrix

(1 2 3N
A =
~  4 5 6\  /

is 2 -3, since it consists of two rows and three columns, furthermore

Q\l — 1, #j2 — 2, 3,

2̂1 — a22 ~  2̂3 —
♦

4
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Matrices are usually denoted by underscore capital letters such as A, B,C, 
and so on. Sometimes we refer to the matrix element ay as the (/, j)  
element or (i,j)  entry of the matrix. In some applications it is convenient to 
use the notation A = (я,у), when a special emphasis is placed on the matrix 
elements. If one needs to indicate the type of matrix A , then the simple 
notation Amxn or the slightly more complicated A = (ay)mXn or

can be used, which shows that the value of i (the row-index) is between
1 and m , and the value of j  (the column-index) is between 1 and n .

In most applications the rows and columns of matrices refer to certain 
quantities, parameters, or alternatives. If the prices of different products are 
summarized in a row vector (as it was done previously), then the columns 
refer to the different products, and if the production volumes are 
summarized in a column vector, then the rows refer to the products. 
Similarly, in the case of matrix (1.1), the rows correspond to the three 
products and the columns refer to the two production plans. In many cases it 
is useful to interchange the meanings of the rows and columns. Then a new 
matrix is constructed in which each column is formed from the elements of 
the corresponding row placed in the same order. The same result is obtained, 
when the elements of each column are placed in the corresponding row of 
the new matrix.

This matrix operation can be formally defined as follows.

Definition 1.2. Let A be an m x n matrix, then the transpose of A is 
the nxm  matrix, the (/, j)  element of which is aJh The transpose of A is 
denoted by Ar, and this matrix operation is called transposition.

Example 1.2. The transpose of a row vector is a column vector:
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0,2,3 У  =

the transpose of a column vector is a row vector:

= (4,5,6);

and the transpose of an m x n  matrix is an n x m matrix:

' I  44 
2 5
3 6

Notice that (лг )Г = 4 ,  since the (/, j )  element of AT is ayt , and

therefore the (/,/) element of (д7)7 is a,y, which is the (/,/) element of the 
original matrix A . In several cases it is convenient to emphasize in the 
notation if a matrix is a column vector or a row vector. Column vectors are 
denoted by underscore lower case letters such as a,b,c, and so on. Since 
row vectors are the transposes of column vectors, they can be denoted as 
a r ,6r ,cr , and so on.

For an arbitrary matrix of the type m * n ,m o i  course, need not be equal 
to n. In the important special case of m = n, the matrix is called a square 
matrix. The common value of m and n is called the order of the matrix. The 
entries aUy a2 2, ,  amm of a square matrix of order m are called the diagonal 
elements, and they form the main diagonal or simply the diagonal of the 
matrix.
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Example 13. Matrix

'1 5 6>
7 2 8 

,9 10 3,

is a square matrix of order 3, and the elements 1, 2, and 3 form the diagonal 
of the matrix.

♦
A matrix composed entirely of zeros is called the zero (or null) matrix, 

and a vector of zeros is called a zero (or null) vector. A zero matrix is 
denoted by O, and a zero column (or row) vector is denoted by 0 (or 0 r ).

A square matrix with all off-diagonal elements equal to zero is a 
diagonal matrix. A special diagonal matrix, where all diagonal elements are 
equal to one, is called the identity matrix. The n x n  identity matrix is 
usually denoted by /  „ . A square matrix in which all elements below the
diagonal are equal to zero is called upper triangular, and similarly, a square 
matrix with all zero elements above the diagonal is called lower triangular.

Example 1.4. Consider matrices

rl 0 0" "0 1 г '0 0 o'
A = 0 2 0 , B  = 0 1 1 , c = 1 1 0

0 3, 0 V ,1 1

then A is diagonal, В is upper triangular, and С is lower triangular. Notice 
that A (like any other diagonal matrix) satisfies the definitions of both upper 
and lower triangular matrices, therefore it is also an upper and a lower 
triangular.

♦
Notice that the transpose of an upper triangular matrix is lower 

triangular, and the transpose of a lower triangular matrix is upper triangular. 
It is easy to see that the transpose of a diagonal matrix is itself.
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In economic theory, triangular matrices have a special meaning. 
Consider an n*n real square matrix A, and assume that element a,y represents 
the effect of unit i towards unit j ,  where the rows and columns of the matrix 
correspond to some economic units (for example, sectors in input-output 
models). In the case of an upper triangular matrix, я,у=0 for i>j; and for 
lower triangular matrices afy=0 for i<j. That is, the zero matrix elements 
indicate that there is no effect from higher (or lower) indexed units to lower 
(or higher) indexed units showing a very strict hierarchy between the 
economic units.

Definition 1.3. An nxn  matrix A is called decomposable if there is 
a nonempty proper subset J  of {1,2,...,л} such that

а0= 0 for i g  J  and j  e J.

An nxn  real matrix is called indecomposable, if it is not decomposable 
and is not the 1 * 1 zero matrix.

It is easy to see that a matrix is decomposable if and only if its transpose 
is decomposable. Any decomposable matrix can be transformed into the 
special form

A\\ An
v. O —22,

by interchanging its rows and columns, where Au is к х к ,А п  is 
k x ( n - k ) ,  A22 is an (и -£ ) х (л -£ )  matrix, О is the ( n - k ) x k  zero 
matrix, and set J  becomes {1,2,...,k}. In terms of the above economic 
interpretation the zero block indicates that there is no effect from the units 
not belonging to /  towards the units of J.

TDefinition 1.4. A square matrix A is called symmetric if A = A ,
Tand it is called skew-symmetric if A = - A .
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Notice that a n«X«  matrix is symmetric if and only if for к = 1,2,..., n, 
its k — columns have the same elements in the same order. As a special 
case, all diagonal matrices are symmetric. The diagonal of a skew 
symmetric matrix consists of zeros.

Example 1.5. Matrix

f l 2 3"
2 4 5 

,3 5 6,

is a symmetric 3 x 3  matrix.
♦

1.2 Comparison of Matrices

Matrices A and В are equal if they have the same type and the 
corresponding elements in the two matrices are equal. If A =  (ay)  and 
В = ( b y ) , then A = В if and only if ay  = by for all i and j .

Similarly we say that for real matrices A and В , A < В , if they have 
the same type and for all i and j , ay < by. Analogously, A < В if they 
have the same type and for all i and j , ay < by.

Notice that matrices can be compared in the above sense only if they 
have the same type.

Example 1.6. Let

<1 2n ( I  2" r\ 3" л  (2  S']
d  = , B  = . £  = >D = \ . .

,3 4; ,3 4 , ,3 5, И  5)

then for example, A = B,A < C,A < D .\ i  one defines
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then it cannot be compared to any of matrices A ,B ,C , or D.
♦

In comparing matrices an important comment has to be made. If a and b 
are two real numbers, then exactly one of the relations a = b ,a < b , and
a > b holds. That is, any two real numbers can be compared in this way. 
However real matrices may not be compared even if they have the same 
type. For example, row vectors ar= (1,2) and br= (2,1) cannot be compared, 
since they are different, in the first element aT is smaller but in the second 
element bT is smaller. This phenomenon plays an important role in many 
fields of applied sciences. For example, in single objective optimization we 
are looking for a best solution, since any two values of the objective 
functions can be compared; however in the case of optimizing for multiple 
objectives we are looking for so-called efficient solutions, when none of the 
target function values can be improved without worsening another.

1.3 Elementary Matrix Algebra

In this section matrix operations will be introduced, and their main 
properties will be discussed.

Definition 1.5. Let A be an m x n  real (or complex) matrix and let 
a be a real (or complex) number. The product a A is defined as the m x n  
matrix with (/, j)  element ax ay. That is, each element of the matrix is 
multiplied by a.

This definition can be briefly written as aA= (axa,j)mxn.
As a simple example assume that the elements of a matrix represent cost 

data, and each element is given in dollars. If someone wants to change the



Chapter 1 Vectors and Matrices 9

dimension of the data to $1000, then each matrix element has to be 
multiplied by the same constant 0.001.

Example 1.7. For a numerical example assume that a = 3 and

Notice, if a -  0, then a A is the zero matrix for all A , since each matrix 
element is multiplied by zero. The real (or complex) number a is sometimes 
called a scalar, and this matrix operation is called the multiplication by 
scalars.

Definition 1.6. The sum of matrices A and В is defined whenever 
A and В have the same type. Each element of A + B equals the sum of the 
two corresponding elements of A and B. In other words, A + B_ is the 
matrix the (i, j )  element of which is ау + by for all /, j , where ay  and by 

are the (i,j)  elements of A and B, respectively. The difference matrix 
A -  В is analogously defined to be the matrix with (/, j )  elements ay -  b y .

We can summarize this definition as

Example 1.8. Matrices

r\ 2' "1 2 3"
and

,3 4, ,4 5 6,

cannot be added or subtracted, since they have different types. However

♦

А + В = (а0 + Ь ^тхп and А - В  = (a,у -  by )mxa.
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r\ 2 3̂ (1 3 41 (0 -1
,4 5 6; 5 5;

1

О

The above matrix operations satisfy the following properties:
(a) If A and В  have the same type, then

A + В = B + A (1.2)

That is, matrix addition is commutative, which is a simple consequence 
of the fact that in adding matrices we add the corresponding matrix 
elements, and the addition of real (or complex) numbers is commutative.

(b) If A , B , and С have the same type, then

(A  + B) + C = A  + (B  + C). (1.3)

That is, matrix addition is associative. This property is also the simple 
consequence of the associativity of the addition of real (or complex) 
numbers. If Аи А2,...,Ак are real (or complex) matrices of the same type, 
then their sum is defined by the recursion S { = Ax and S { = + А,- for 
i = 2,3,...,k . Then Ax + A2 + ... + 4* =£*•

(c) Let A be any matrix, and О be the zero matrix of the same 
order. Then

A + 0  = A . (1.4)

(d) If A and В have the same type, then with any scalar a ,

a(A + B) = aA + a B ; (1.5)

and if a and Ъ are two scalars, and A is any matrix, then

0a + b)A = aA + bA. (1.6)



Chapter 1 Vectors and Matrices 11

These two equations are called the distributivity properties. Equation 
(1.5) shows distributivity with respect to the addition of matrices, and (1.6) 
is the distributive property with respect to the addition of scalars.

(e) If A and В  have the same type, then

(A + B)T = AT + BT. (1.7)

Assume that both A and В are m x n , then both sides of this equation 
are n x m matrices, and the (/, j)  elements are the same: ap + bjj for all i 
and j.

(f) For positive integers к ,

A + A + ... + A = kA, (1.8)

where on the left-hand side we have к terms, each of them equals the same 
matrix A.

(g) For all matrices A and В  of the same type,

A - B  = A + ( -  1 )B , (1.9)

since for all i and j , ay -  by = ay + ( - 1) • by .
Multiplication of matrices will be defined next. For simplifying the 

discussion, particular cases will be introduced before presenting the general 
definition.

As the first special case we define the product of row vectors by column 
vectors. Let aT = (ai) and b = (Jbj) be a row and a column vector, respectively. 
The product aTb is defined only when the two vectors have the same 
number of elements, and in this case

n
a Tb =  a lb] + o 2*2 +. . .  +  a„b„ = £ а Д - ,

i=l

where n is the common “length” of the vectors.

Example 1.9. The product
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(1,2,3)

cannot be defined, but

(1,2,3)

r2\

3

v4,

= 1x2 + 2 x 3  + 3x4  = 20.

Notice that c?b is always a scalar, which can also be considered as a 
1*1 matrix. This multiplication can be illustrated and explained by the 
simple economic example, when a firm produces 3 items, the sale prices of 
which form the row vector p  = (р \,р 2 ,ръ) , and the produced quantities 
are given in a column vector

x  =
V

Then the revenue (or total sale value) by selling the products is given by 
the product

PT x = p\x\ + p 2x2 + /73X3.

Assume next that A is an m x n matrix, and x is a column vector. The 
product Ax is defined only if the length of x equals the length of the rows 
of A (that is, when x has n elements), the product is an m-element column 
vector the / -  entry of which is obtained as the product of the / -  row of A

n
by the column vector x . That is, the i— element of Ax equals ^QijXj .

j=1

Example 1.10. The product
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' Г
(1  2"|

2
3 4 l4 /

, 3,
cannot be defined, but

r \  2 ' ' Г "1x14-2x2^
f 5 )

, 3  4 j A ^3xl + 4 x 2 ,

*r
Assume next that x is a row vector and A is an m xn  matrix. The

T • Tproduct x A is defined only if the length of x equals the length of the 
columns of A (that is, when x has m-elements), the product is an w-element

row vector, the /— entry of which is obtained as the product of xT by the

/— column of A . That is, the /— element of x T A equals
m

j =1

Example 1.11. The product

(1 .2 ,3 ^

cannot be defined, but

1 2]
(1,2;

3 4
= ( l x l  + 2x3,  I x 2  + 2x4)=(7,10)

We are ready now to consider the general case of matrix multiplication.
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Definition 1.7. Let A and В be two matrices. The product A B  can 
be defined only if the rows of A have the same length as the columns of В , 
and then the (/, j )  element of AB  ̂ equals the product of the /— row of A 
by the j -  column of B. If A is m x n  and В  is p x q , then AB is defined 
only if n = p  , its type is m x q  , and its (/, j )  element is obtained as

n

Example 1.12. The product

is not defined, but

since

(1,2) o = lx l  + 2x2  = 5,

(1,2) = 1 x (-1) + 2 x (-2) = -5 ,
k. ^ j\  J

and
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(з>4)^_ 2) = 3 x (-1 )+ 4 x (-2) = - 1 1 •

♦

As we have seen before, a row vector can be multiplied by a column 
vector only if they have the same length, and the product is always a scalar. 
However a column vector can always be multiplied by a row vector even if 
they have different lengths, and the product is always a matrix, which is
called a dyad. If x  is an /w-element column vector and y T is an л-element 
row vector, then

V ' Х\У\ Х1 Уг -  ХуУпл
T

x y  =
x2

{у1,Уг>->У») =
Х2У\ Х2.У 2 ••• х гУп

KXmJ ^ тУх ХтУ 2 •” V . ;

since the /— row of x is the scalar x/ and the j — column of у,T is the
number у  j , and their product is x iy j .

If one selects two arbitrary matrices A and В , then in their
multiplication he/she should face one of the following possibilities:

(i) Neither AB nor BA exists. Such an example is provided by
matrices

г\ 2 Зу
'\  2'

d  = and В = 1 1 1
3 4\ / ,2 1 oJ

(ii) Exactly one of the products AB  and B A  exists. For example,
select
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then

but

f l  2 s ' 1 о Г
A = and В  =

J  К ,1 i h

AB = 'i 0 'ъ
l 1h ,2

(\ 0 l 2̂
1 ijli b

1 2 
1 1

BA =

cannot be defined, since the rows of В  have 3 elements and the columns of 
A have only 2.

(iii) Both AB  and B A  exist, but they have different types. As an 
example, select

A = (1,1) and В =

then

is a scalar and

AB = (1,1)
' 2 s

A
= l x 2 + l x 2 = 4

'2) '2 2̂
BA =

3-j
(1.1) = 2 2\L )

is a dyad.
(iv) Both A B  and BA  exist, they have the same type but the 

products are not equal. Select
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then

and

AB =

BA =

f 1 n fl V ' 2 2'7
« ,1 b -2 -2,

1 1 
-1 -1 v

This example also shows a different problem in matrix multiplication. In 
the second case BA  is the zero matrix, however neither A nor В is zero, 
and furthermore there is no zero element in A or B. This shows a different 
phenomenon from the one we used to have and apply in the case of real 
numbers. The product of real (or complex) numbers is zero only if at least 
one of the factors equals zero. This idea is used when one solves real 
equations by factorization. Unfortunately this method cannot be used in 
solving matrix equations.

(v) Both A В and BA  exist, they have the same type and are equal. 
Such a special case can be illustrated by matrices

f l  Г <2 2>
A = and В =

Ь  b 2 2
when

and

AB
J l  1V  2 2 ^ ( 4  4>
~ { l  lJU  2J ~  1̂ 4 4]

rl 2' f i г 4 41
,2 2JI b ,4 4,

BA =

Hence, the multiplication of matrices is not a commutative operation in 
general. However it satisfies the following properties:

(a) If the product (AB) • С exists, then A ■ (BC) also exists and

( A B ) C  = A (BC). (1.10)
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That is, matrix multiplication is an associative operation. This property 
can be proved as follows. Introduce the notation D = AB and E = B C , then 
the (i,j)  element of D is given as

d\j = T aitbiJ, 
i

and therefore the (i,j)  element of the left-hand side of (1.10) is as follows:
/  \

Clg.
к к К l

On the other hand, the (z, j )  element of E  is

&ij = 'y'.bjkCki > 
к

and therefore the (i,j)  element of the right-hand side of (1.10) equals

Since an does not depend on the summation variable к , this expression 
gives the same value as the ( i j )  element of the left-hand side of (1.10).

(b) If one of the matrices (A + B) • С  and AC +  BC exists, then the 
other matrix is also defined and they are equal:

(A + B )'C  = AC + BC. (1.11)

Similarly, if one of the matrices A • ( В  + С) and A В  + AC  exists, then 
the other matrix is also defined and they are equal:

A ( B  + C) = AB + AC. (1.12)

These properties show that matrix multiplication is distributive, and 
their proof is similar to the one presented above for associativity.

(c) If A is wxw,  and l_m and /„ denote the m xm  and n x n
identity matrices, respectively, then
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Lm' A —A and A 'In  =A- (1.13)

These properties can also be proved in an easy way, the proofs are left 
as an exercise. Relations (1.13) show that multiplying by identity matrices 
leaves matrices unchanged. The same holds for real (or complex) numbers, 
when we multiply them by 1. Therefore identity matrices can be considered 
as the matrix-versions of the real number 1.

(d) If AB exists, then BT AT also exists, furthermore

(AB)T = BTAT. (1.14)

A simple proof of this equation can be given by comparing the ( i j )
elements of the two sides of the equality. The ( i , j ) element of AB  equals
^ j aikbkj, therefore the (/, j )  element of (AB)r is obtained by 
к

interchanging i and j ' £ a jkbki = Y ,bkiajk • 
к к

This is the (i9j )  element of the right-hand side, since bki is the (i,k)
T Telement of В , and ад  is the (k , j ) element of A .

(e) For any matrix A and zero matrix О ,

AQ = 0  and 0 4  = 0  (1.15)

assuming that the left-hand sides are defined. Notice that if A is m x  n and
О is n x p , then A О is the m x p  zero matrix, and if A is m xn  and О 
is p x m , then О A is the p x n  zero matrix.

Let AxiAz'—'Ak be real (or complex) matrices of the types 
т \Хщ ,т 2 Хп2 ,...уткХПк, respectively, and assume that n \= m iy 
пг = тз,...,и*_1 =m*. The product of these matrices is defined by the 
recursion P , = A l and P, = P_i-\Ai for / = 2,3,..., к and letting 
A \ 'A i * —'Ак =£к- b1 sPecial case, when A is an n x n  square matrix 
we may select Ax = A2 —... = Ак ~ A » ан^ the product A 'A  — 'A  can be
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simply denoted by Ak . For convenience, we define A0 = /„  for all n x n  
square matrices A.

Example 1.13. Select

A =
1 2  

1 2

then

A = A A  =

A 3 = A 2A =

fl 2̂ fl 2̂1 '3 61
ll 2/I 2; ,3
'ъ 6̂1fl r9 QO

,3 6y,1 2, ,9 18/

and so on.

Assume next that

p(x) = a о + a\x + a2x 2 +... + amx m

is a single-variable polynomial with real (or complex) coefficients, and A is 
an n x n  square matrix. The matrix-polynomial p(A) is defined as

p(A) = a0Ln +a\A + a2A2 + ... + amAm, 

where I n is the n x n  identity matrix.

(1-16)

Example 1.14. Let p(x) = 2 + 2x + x2 and A as in the previous 
example, then



Chapter 1 Vectors and Matrices 21

'1 0" f l  2] '3 6'
+ 2 +

to  1, 2j ,3 6,

to о r2 4" "3 С '1  10N— + + —1° 2J ,2 4j 1з 6, ,5 12,

♦

1.4 Inverse of a Matrix

We start this section with the definition of the inverse of a square matrix.

Definition 1.8. Let A be an n x n  square matrix. The inverse of A 
is the n x n matrix X_ which satisfies the relation

AX_ = XA. = I_n, (1.17)

where / я is the n x n  identity matrix. If such an X_ exists, then A is called

an invertible matrix, and the inverse of A is denoted by A~l .
These relations show that inverse matrices generalize the concept of the 

reciprocal of a real (or complex) number, since for all real (or complex) 
а Ф 0 ,

aa~x- a — = 1 and a~xa - —a - 1. 
a a

If а Ф 0, then a~l exists. Unfortunately, in the case of matrices the 
situation is more complicated, as it is illustrated in the following example.

Example 1.15. Consider matrix
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We will now prove that this matrix has no inverse. Assume that it has, 
and let

Then relation

AA~l =

A~l = <*\\ <*\2 
a2\ 022)

1 lY  <2ц a\2
1 l j l a 2l 022

! '  ° U
1 0  U  ■ '

implies that

a u + a 2 l = \

а12 +  a22 ~  0 
*11 +*21 = 0  
a i2 a22 = ^

where we equated the (1,1), (1,2), (2,1), and (2,2) elements of the left-hand 
and right-hand sides, respectively. Notice that the first and third equations 
contradict each other, since a\ i 4- a2\ must not have two different values at 
the same time. (Similar contradiction is obtained from the second and fourth 
equations.) In this case АФ О , and the matrix even has no zero element. If 
we change the sign of only one element of A to get matrix
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which can be verified by simple calculation:

1 Г
-1 _ r 1 г 2 2 fl

°)
-1  к 1

,2
1
2 ,

J

and
' l Г
2 2 '  1 1> "1 0"
1 1 -1  Ij ,0 К

,2 2 >
♦

If A is the n x n  zero matrix, then AX = О for all n x n  matrices X_, 

therefore A has no inverse. If A = / „ , then A~l = I n , since / и/ и -  l n •
At this moment we do not see an easy way to check if a given matrix 

has an inverse or not. In later chapters of this book we will introduce simple, 
practical conditions to check the existence of the inverse of a matrix. 
However we can easily show that in the case of the existence of an inverse 
of a given square matrix the inverse must be unique. Assume in contrary to 
the assertion that both X_ and Y_ are inverses of a matrix A . Then

X  = X I ,  = X(AY) = (XA)Y = I nY = Y ;

hence X  and Y are necessarily equal to each other. It is also easy to see 
that if both matrices A and В are invertible n x n  matrices, then the inverse 
of their product also exists and

(AB)-' . (1.18)

This relation can be verified by simple calculation:
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(AB)(B~' A~]) = A(BB~X )A~l = (dl)A~' = M ~ '  = L

and

(JT 'a ~1 )(a b ) =в ~](А~'АЖ =[в ~11_)в  = в - ' в =1.

1.5 Further Examples and Applications

In this section some additional examples and applications of matrix algebra 
will be outlined.

1. Our first example is the algebra o f block matrices. Assume that 
the m x n real (or complex) matrix A is divided into blocks as

( A n A n A \
—  Is

A = — 21 —22 Als

^Ar\ A n Ars J

ij matrix. It is assumed that

m =
1=1

and sT
"W

a.
IIС

Suppose that matrix В has the same size as A , and it is also divided 
into blocks as

Bn
—22 * * * —2j

—r2 • • • !Lrs >

where for all / and j , blocks AtJ and £,y have the
В are added and subtracted element-wise,
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A + B =

A n  + Вц  A n  + ^I2 ••• Als+^lls  

All + £.11 A ll + В 22 

Д - 1 + ^ r l  —r2 + —rl ••• ^ r j + ^ r ,  J

and

A - B  =

A  и - M n  A n  —i2

A n  ~  —i\ A n  ~ fill
—Ij

А ъ  ~His

\ A r l  B rX A r l  Brl . . .  A n  B - r s y

(1.19)

(1.20)

If the sizes of the corresponding blocks of A and В are different, we 
cannot add or subtract the corresponding blocks, since their sum and 
difference are defined only if they have the same size.

Example 1.16. Let

A =

1 1 2 24 
1 2  3 1
0 1 1 1  
1 - 1 1 2

be divided into four 2 x 2 blocks, and assume that
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is divided also into four blocks, but their sizes are 1 x 2, 1 x 2, 3 x 2, 3 x 2, 
respectively. Notice that both A + В and A -  В exist, however neither of 
them can be obtained by adding or subtracting the corresponding blocks.

♦
Matrices can also be multiplied block-wise if the division of both 

matrices into blocks satisfy certain compatibility conditions. Assume that A 
is m X n and it is divided into blocks as before. Assume that В is an n x  p  
matrix with block-form

—12 ...

B = Bn —22 •• —2/
... ... ...........

u * . Bs 2 ...

where the size of block By is я,- x p j  with p  = ^ p j  ■ For i = 1,2,..., r and
y=i

7 = 1,2,...,/ define

Q ^ t d u B y ,  (1.21)
/=1

which is the “formal product” of the /- block-row

(Ai\»Ai29*"*Ais) 

of matrix A  by the j -  block-column
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of matrix В . Then it is easy to see that the product C = A B  can be divided 
into blocks as follows:

cn с ^kir
cn — 22 •• c2l
... ... .......

Cr2 -  e j
Example 1.17. Select

r i l 1 Г r i 0 1 n
1 2 0 0 0 1 1 l

A = and В =
1 1 1 l l 1 1 0

lo 0 1 1 0

If both matrices are divided into 2 * 2  blocks as shown above, we have 
the blocks

fi Г ' l Г f l г IГ1
An =

J 2,
> —12 —

lo 0,

II^1

,0 о, > л Н [l 2]

and

'l 0" 1 f| '1I) '1 0"
&l = ,0 1J> Hn J I > —21 ,1К j J?22 ~ lo oJ

Then the 2 x 2 blocks of the product С = A- В can be obtained as follows:
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=р ч
О''+'1 п

п[ \  2)1° Ъ ,0 0; V
г

♦(*
2^ II 'ъI1 2; 1» ь 2J

Q.n — 11 —12 —12 —22 ““
'1 1Л

ч1 b

1 1 
о 0

\ /

/V

1 О 
О О

'2  2 ) '1 0" "3 2^= + =
3 31V / 0; ,3

and

— 21 — И — 2 2 — 2У ~

1 1 
О о

( \ o'
О 1 1 2

1 1 I

=р п +"2
2V

'з п
10 0; 3J Ь V

С в  = —21 —12 —22 —22 —
1 1 
О о

\ /

Л  b

1 1
1 2

\ /

у v

1 О 
О О

2 |̂ А  0 ^ _ (Ъ 2' 
О Г  1 O i l  О

Therefore,

А В  = С =

3 3 3 2Л
1 2  3 3
3 3 3 2
3 3 1 0
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The direct multiplication of matrices A and В has to give the same 
answer, that can be easily checked.

If the division of A and В into blocks does not satisfy the above 
conditions then A and В cannot be multiplied by using blocks even in cases 
when A В exists. In such cases the original definition of matrix 
multiplication by using the matrix elements can be used.

As the conclusion of this example we will examine inverses of block 
matrices. Assume that the n X n matrix A is divided into blocks as

Comparing the corresponding blocks of both sides of this equation gives 
the relations

♦

where P is m x m ,  Q is m x ( n -  m),R  is (n -  m ) x m , and S  is an 
(n -  m)x (n  -  m) matrix. We will determine the inverse of A in a similar 
block-form
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P X  + QU = Lm 

PY + QV = 0
(1.22)

R X  + SU = О 

R Y + sv= L „ .„ .

Assuming that P is  invertible, the second equation implies that

Y = -P~'QV, (1.23)

and substituting this relation into the fourth equation gives an equation for 
block V\

( -  R £ S ' Q _  +  5 l K =  L . - . .

that is, S -  RP~] Q must be invertible, and

К = ^ - Л Р _1е ) ‘ ‘ . (1.24)

From the third equation of (1.22) we have

U = - S ~] R X  (1.25)

assuming that S is invertible. Substitute this equation into the first equation 
of (1.22) to see that P -Q S ~ l R must be invertible, and

2С = ( р - е £ - , л ) '1. (1.26)

Notice that equations (1.26), (1.25), (1.24), (1.23) can be used to recover 
the unknown blocks X , U, V, and Y of the inverse matrix A~l .

Example 1.18. We will now invert matrix
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A =

1 1 1

In this case we may select

P =
f \  0" T
1° b

,Q =
X

, R = (l,l), and 5 = (l).

Equation (1.26) implies that

X  =
rl O'

0  1 кЬ - 1  0

'  0  - l \  

-1 oj
since S_~] = (l). From equation (1.25) we have

Equation (1.24) is then applied to find V:

v = \  i - ( u :
1 0  

0  1
=(1-2)-’ = -U -l,

where we used the fact that the inverse of the identity matrix is itself. And 
finally, from equation (1.23) we get

r l 0" T | / \ T
Y = -

,0 b bJ ( - 1)=
<b
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Hence,

A~' =
0

- 1
1

- 1
0
1

1
- 1

In many applications a certain part o f a matrix (a row, column, element, 
or even a block of the matrix) is needed for further computation. In this 
example of matrix algebra we will show how to obtain such matrix parts by 
using only matrix operations. Let A be a given m x n  real (or complex) 
matrix with (/, j )  element ay.

Let еИ  denote the л-element column vector the j~  element of which 
is one, and all other elements are equal to zero. Then

A - e f  =

a t 12
a 21 a 22

a ml a m l

0

a u a 2n J

... . . . . . . . . . . . . . . . . . . . . 1

a * *  *  *  ^ m n  j

, 0 .

<— j  Ш element

t
column

th element of the product is obtained byFor z = l,2 ,...,m , the i 
multiplying the i * row of A by the column vector e ^  :
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[ai\ > ai2 >*••» aij J’“> ajn ;

0

4 ° ,

<— ylh element =

element

since all other terms equal zero. Hence

У

which is the у ^  column of A .
Let now e|ŵr denote the w-element row vector the / & element of 

which is equal to one and all other elements are zeros. Then

e (”)T A = {0,0,...,1, - 0) •

/
a\\
a2\ a22 • °2n
... ... .
an o/2 . * «/„
... ... .

am2 * ^  Г71П >

<—i $1 row.

i ^  element
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For j  = 1 ,2 ,...,/2, the 7 ^  element of the product is obtained by 

multiplying е И г by the j  Й! column of A :

( 0 ,0 , . . . , ! , . . . , 0 )

a n

\ a in /

T
i ^  element 

since all other terms are equal to zero. Therefore

§.i A = (Pn9ai2y">aij>'”9ain\

which is the i ^  row of A.
It is also easy to see that for all i and j ,

а ,= е (Г )ТА еУ ,

smce

e|m)r {ле^)=  (0,0,...,1,...,0)

/  \  ay j 
°2j

i & element

since all other terms equal zero.
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The above relations can be presented in a much more general 
framework. Let 1 < /, < i2 < ... <ir <m  and 1 < j\ < j 2 <... < j s <n  be 
arbitrary integers. Consider matrix

Ч л a‘\h -  < \

4 , = aHh "• ahi,

a Kh ' ' '  a<ri, j

which can be obtained from A by deleting all rows except rows
and all columns except columns j \ , j 2>—>js ■ Define the r x m  matrix U
and the n x  s matrix V such that

Mi /, =  u 2 i2 = • • •=  u nr =  a11 o th e r  u ij =

and

Vy,l =  Vh 2 = •••=  V  =  !> a11 other Vij =

Then

=UAV (1.27)

In the particular case, when A is a square matrix, r — s, and 
h = J\>h = = Jr > ^ en ili called a principal submatrix of
A  Notice that all principal submatrices are square matrices, and if A is

nXn ,  then there are
\ r /

r x r  principal submatrices of A.

Using a similar idea as before, some further vector characteristics can be 
derived, that have significant applications in statistics.

Let x \y...,x„ be sample elements. They can be summarized as a column 
vector
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X =

By introducing the «-element row vector

l T =  (1 ,1 ,- Д )

it is easy to see that
T

1 X =  Xy + x 2 +  . . .+  x n ,

therefore the sample mean can be obtained as

-  1 at  
x  =  —  1 X. 

n

If we notice that 1 1 = n , then we also have

_ 1 x  x -
l r l

The sample variance can be expressed as

s '
n-iT T yk=\

Notice now that

x - x  -1 =

f  x, - X s 
x 2 - x

КХ п ~ Х У
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therefore

si = -Ц (г^-1)г(г-Зс-1 )= kzZ il!k^ i)
/ 1 - 1  -  "  n - \

'  f x  \ T ,

x - ^ r \  
l r l

l r l - l

Consider next two л-element samples, x, ,x2 and y l9y 29...9y a. 
The со variance between these samples can be written as follows:

Covfey)= - £ ( * * - x \ y k -J?) = -(£ -x-l)r(y-j'-l) 
n *=1 n

x — lr* l
f l ) \  -  -  J

r i
The correlation between the two samples has the general form

Cov(x,y)

r ~~s~s ’x  у

it can also be expressed by using vector operations if we substitute the above 
expressions for the covariance and the two variances.

Time invariant linear dynamic economic systems with discrete time 
scale can be generally formulated as the difference equation

x(t + l)=  Ax(t)+ b, (1.28)

where the л-element vector x  is the state variable, A is a given л x n real 
matrix, and b is a given л-element real vector. The initial state x 0 = *(o) is
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also assumed to be known. An elementary problem of systems theory is to 
find *(/) for all future times as easily as possible. In this application we will 
suggest a solution for this problem. Substitute /=0,1 and 2 into equation 
(1.28) to see that

jc(l) =  ^4jc(q) H- Z? =  Ax0 + b ,

*(2) = Ax[ l) + b — a (j4x q + b) + b = Xq + (a.+l)b ,

г(3) = Ax(2)+b = a [a 2 x0 +(A+!)b)+b = £ x 0 + { ^  +A + l)b.

These initial solution vectors suggest that in general,

/ \ (*-' Л
x(/) — А х 0 + \ A + A + ...+ A + I_Jb = A x 0 + A

\i-0 J
(1.29)

where we use the fact that /  = A ° . This solution formula can be proved by 
finite induction. For t = 1,2, and 3 the formula is valid as it is shown from 
the above initial values of the state variable. Assume that the formula is 
valid for an integer t > 0. Then from equation (1.28) we conclude that

b ,

/
A ' * 0 +

f t - 1 > 
l i ' b + b = A t+l x 0 +

f  t \  
z /

\ \ l =0 J ) \ i= 0 J
x(t + 1) = A x(t)+ b  = A 

that is, the formula remains valid for t +1. Hence it holds for all t > 1.

In applying the solution formula (1.29), we need a fast method to find 
powers of A. Later, in Chapter 6 we will show a general method for the 
efficient computation of A ' for all / > 1. In many special cases the power 
matrix A  can be determined by calculating some initial powers 4 2> 4 4» 
and observing the general formula, which has to be then proved by finite 
induction.
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Example 1.19. Consider matrix

f \  1 л
A =

2 2

Then

a 2 =
r\ г r l 1] '3 3"

,2 2, ,2 2, 6,
= 3 -A,

£  = a 2 а  = {з а )а  = з а 2 = з{з -а ) = з 2 -a , 

а 4 = а 3 а =(з 2 а )а = з 2 а 2 = з 2(з а ) = з 3 а .

By using finite induction it is easy to show that in general,

A '  = 3  ' - ' A .

We will next solve the difference equation

From equation (1.29) we have

x(t) = 3'~'Axg + /  +  [ £ з м b = 3‘~lA x 0 + b.

Notice that for A° we must not use the general formula of A* since it

holds usually only for / > 1 .  We have to use the fact that A° =I_. 
Substituting the actual form of A, x 0, and b into the above equation gives 
the solution:



Time invariant linear dynamic economic systems with continuous time 
scale can be generally formulated as the differential equation

x{ t)= A -x{ t)+ b  (1.30)

where x  is the state variable, matrix A is лХл,  and vector b has n
elements. It is well known from linear systems theory (see, for example, 
Szidarovszky and Bahill, 1992) that the solution is given as

x { t ) = e ~ x  о + p ('-r)W r. (1.31)
0

In Chapter 6 we will show a general method to compute matrix 
exponentials, which are defined as the sum of the infinite series

* r A t A 2t2 A 3t3 „  e~ = /  + = — h——  + ——  + .........  (1.32)
“  1! 2! 3!

It is also well known that this series is convergent for all real / and 
arbitrary n x n  real matrices. In special cases, a general formula may be 
derived for Ak, and this general formula can be substituted into equality 
(1.32) to get a closed form for e -  .
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Example 1.20. Consider again the 2 * 2 matrix

A =
i i

In Example 1.19 we have seen that for all к > 1,

/ l  Г
A ‘ = 3 k- ' - A  = 3к- 1

2 2

Therefore

З к~'А1к

*=l A:! 1 k\

= I  + A ± Y —  = I  + A ± { e * - t )  
~ ~  3 k\ ~ ~  3 V '

1 (Л e3' — 1
0  1

'1  1"

2 2

i(e3'+2) |(e3' - l f

|(e 3'- l)  I(2e3' +l)
\  J  J

We will next solve the initial value-problem

' i  n
2 2 i W + f ' l ,  *«>)=

that is, we will derive a formula for x[t) at all future times t > 0 by 
assuming that the initial state at / = 0 is given. From equation (1.31) we 
have
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*(') =

<\
l ( e 3' + 2) i ( e 3' - l )  

| ( e 3' - l )  | ( 2e 3' + l )

J
l(<

3(r-r)

2 ) T

l)/ 3 V

d r

| ( 2 « 3' + l )

i ( 4 e 3' - l )

i ( e 3(M) + 2)

V j

J r .

Notice that

j l(e3M) + 2)c/r = j

В
;3(/-r)

^ T + 2r
r=0

+  2 / 1 - 1  e 3^ =  — f e 3'  + 6 f - l )  
9 '

and

f | ( e 3( - ) - l V r  =  |  

1

- 3
- T

t=0

therefore
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^ ( 7 e 3' + 6 /  + 2) 

I ( l 4 e3' - 6 / - 5 )

A special linear dynamic system will be introduced next, which is called the 
dynamic Cournot oligopoly model. Assume that n firms produce a 
homogeneous good and sell it on the same market. Assume that the market 
demand function d{p) is decreasing and linear, where p  is the selling price. 
Then its inverse is also decreasing and linear:

p(d)  = a d  + b (a<0 , b>0) .

The constant b shows the high price that the consumers would be 
willing to pay if the product is not available on the market directly. The 
coefficient a shows the decrease in the price if the quantity of available 
products increases by a unit. Assume that the production cost of firm 
k { \ < k < n )  is also linear:

С к (xk) = bkxk + ck (bk > 0 ,c k > O),

where x k denotes the production level of firm к . Here ck shows the fixed 
cost, and bk is the marginal cost (that is, the additional cost arising by the 
increase of the production level by a unit). The profit of firm к is therefore 
given as

(  (  n \  Л

(pk{xx,...,x„) = xk\ a + b ~{bkxk +ck ).
\  Vw J J

Consider next the following discrete dynamic extension of this model. 
Let denote the production levels of the firms at the initial
time period / = 0. Assume that at each further time period t + 1(/ > 0), each 
firm maximizes its profit under the assumption that the competitors do not
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change their production levels from the previous time period. That is, firm 
к (£ = 1,2,..., w) maximizes its profit

*k\ a
l*k у

~ (bkx k + c j .

Assuming interior optimum, simple differentiation shows that the 
optimal solution for x k is given as

bk - b (1.33)

This equation is the special case of the difference equation (1.28) with

A =

/ Л 1 1 1 r ь, - M0
1
2

2

0
2
1
2

2
1
2

- -2
1
2 and b =

2a
b2 - b

2a
. . . • • • • • •

1 1 1 1 0 b „ - b
.  2 2 2 2 j к 2a j

The continuous dynamic extension of the model can be formulated in 
the following way. Assume again that х Д о ) ,* ^ ) , . . . ,* , ,^ )  are the initial
production levels. At each time period / > 0, each firm adjusts its 
production level proportionally to its marginal profit, that is, for all к ,
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where m* > 0 is a given constant. Notice that the marginal profit of firm к 
is the derivative of his profit with respect to x*, and equation (1.34) 
requires that ** increases if the profit increases in jc* , and ** decreases if 
the profit decreases in x*. These equations can be summarized as the 
differential equation (1.30) with

A =

4
m2

r2 a 
a

a 
2 a

... a 
a

a > 
a

К m n j к а a a 4

b =
m.

i ( b - b j
Ль-ь2)

m l b -Ь Л

and

Our next application deals with dynamic producer-consumer models. 
Consider a market where a commodity or a service is supplied by n 
competing firms. Let x k denote the output of firm к (к = 1,2,...,л), and
assume that С* (x*) = В к + Ьк Xk + с к is its cost function (Bk ,bk,Ck > 0). 

At each time period, firm к  maximizes its expected profit given its price 
prediction p£(t + \). The expected profit of this firm is the following

xkP t + 1 ) - { Bkxl  + h xk + °k \

and assuming interior optimum, simple differentiation shows that the profit 
maximizing output is given as

xk (* + !) = Т7Г" ibk ~ Pk (' + 1))- 2Bk



If firm к believes that the price does not change from time period t to 
/ + 1, then this firm selects (f + l)=  p(t)  and the profit maximizing 
output is given as

+ = -p{t)\ (1.35)
l b k

Let d(t) = Dp(t) + d  denote the market demand function, from which 
the price /?(/) can be obtained as

d \  (1.36)

If we assume that at each time period, the supply equals the demand,
n

then </(/) = aad substituting this equation and (1.36) into (1.35) the
/=i

following difference equation is obtained:
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(1.37)

=  £ — — x , ( t ) + — [ b k +  —  
t i  2B kD 2 B k {  * D ,

which is the special case of the difference equations (1.28) with
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A =

f  1 1 1 > f_ L |f, d~] \

2 BXD 
1

2 BXD 
1

2 B{D 
1

2 s , ' 
1 L  d "

2 B2D 2 B2D 2 B2D , and b = 2B2
b2-\—

I Dj

T
...

T 1 Г  d '
{ 2  BnD 2 BnD 2 BeD j № n D )

The continuous counterpart of this model can be introduced as follows. 
Assume that at each time period t > 0, each firm adjusts its production 
output proportionally to its expected marginal profit:

**(') = mk [pEk ( ' ) -  2Bkxk i‘) - b k),

where p k (/) is its price prediction for time period t. Assuming again that
n

p l ( t ) = p { t ) ,  equation (1.36) holds, d(t) = ^  anĉ a*1 ordinary

differential equation is obtained for x k:
/=i

*к(*) = тк 77 Z - 2Bkx k ( t ) - bk

= (3 - 2  Bkmk
dm.

which is a special case of the differential equation (1.30) with
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Matrix multiplications can be illustrated by the simple example of a 
bakery. Assume that it makes three kinds of biscuits. The recipes are 
summarized in the following table:

Flour Sugar Margarine

Type 1 0.5 (kg) 0.2 (kg) 0.3 (kg)

Type 2 0.55 (kg) 0.25 (kg) 0.2 (kg)

ТуреЗ 0.6 (kg) 0.15 (kg) 0.25 (kg)

The quantities of the ingredients are given for one kilogram of each 
type. Let р\,рг,ръ denote the prices per kg of the raw materials, then the 
material cost per kg of each biscuit type can be calculated as
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C, =0.5/?, + 0.2p 2 + 0.3/?3 

c2 = 0 .55/7, + 0.25/?2 + 0 .2/?3 

c3 =0.6/?, +0.15/?2 + 0.25/?3.

By introducing the notation

"0.5 0.2 0.3 > V ГсЛ
d = 0.55 0.25 0.2 » R = P 2 ,£  =

О b\ 0.15 0.25 , ч Л J

these relations can be rewritten as

с = A p.

Assume next that the company sells three kinds of tins of assorted 
biscuits as given below:

Type 1 Type 2 ТуреЗ

Assortment 1 0.5 (kg) 0.7 (kg) 0.8 (kg)

Assortment 2 1-2 (kg) 0.3 (kg) 0.5 (kg)

Assortment 3 1 (kg) 0.5 (kg) 0.5 (kg)

The numbers show the amount of each type of biscuits in each type of 
assortment. Notice that each assortment contains 2 kg, and the costs of the 
tins are

kx = 0.5c, + 0.7c2 + 0.8c3 

k2 =1.2 c, + 0.3 c2 + 0.5c3 

къ =c, + 0.5c2 + 0.5c3.
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Let

r0.5 0.7 0 .8^ ( * Л
B = 1.2 0.3 0.5 , and к = k7

h 0.5 0-5,

then we have
к = Be.

Since с = A p , this relation can be rewritten as

k = BAp = {BA)p

giving a direct relation between the prices of the ingredients and the costs o f  
the assortments.

Matrices are used in describing directed graphs, which model, for 
example, material flows or many network problems. A directed graph is 
defined by a finite set of elements, Pi,/>2 ,...,P„, together with a finite 
collection of ordered pairs, (P;, P j) ,  of distinct elements where no ordered 
pair is repeated. The elements P\,Pi,...,Pn are called the vertices, and the 
ordered pairs are called the directed edges.

Figure 1.1 A directed graph with vertices
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Figure 1.1 shows a directed graph with vertices P\,...JPs, and edges (Pi, 
Pi\ (Pi, Л ), (Pi, Ps), (P2, P i), (P2, Рз), (Ръ Pa\ (Рз, P4), (Рз, Ps), 
(P4, P3), (P4, Pi), (P5, P2), and (P5, P4). With a directed graph with n 
vertices, we may associate an n*n real matrix A with elements а0= 1 if (Р/, 
PJ) is a directed edge, otherwise а0= 0. This matrix is called the vertex 
matrix of the directed graph. For example, in the previous example we select 
/1 = 5, and

0 1 0 1 1
1 0 1 1 0
0 0 0 1 1
1 0 1 0 0
0 1 0 1 0

For any square matrix having 0 and 1 elements with all diagonal 
elements are zero, there exists a directed graph such that the given matrix is 
its vertex matrix. The elements of the vertex matrix show the direct 
connections from each vertex to the other vertices.

Let now r> 1 be a positive integer, and let a\̂  denote the (i,j)-
element of the matrix Ar . Then it is easy to show that a\̂  equals the 
number of r-step connections from Pi to Py . In the case of the above 

matrix,

"0 1 0 1 n "0 1 0 1 г "2 1 2 2 0"
1 0 1 1 0 1 0 1 1 0 1 1 1 2 2
0 0 0 1 1 0 0 0 1 1 = 1 1 1 1 2
1 0 1 0 0 1 0 1 0 0 0 1 0 2 2

,0 1 0 1 0, ,0 1 0 1 0> ,2 0 2 1
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The (1,1)-element with value 2 shows that there are two 2-step 
connections from vertex 1 to itself. From the graph we see that 
Px —» P2 —» Px and Px —» P4 —» Px are the two such connections.

The number of at most r-step connections from P{ to P} is given as

аУ +a\p +...+a\j\ For example, the number of at most two-step 

connections are summarized in matrix

"2 2 2 3 n

2 1 2 3 2

1 1 1 2 3

1 1 1 2 2

u 1 2 2 0 ;

Consider as an example, the (1,4) element of this matrix. The direct 
connection from Px to P4 gives the only 1-step connection, and the two 2- 
step connections are Px P2 —> P4 and Px —> P5 —> PA.

1.6. Exercises

1. Specify a 3 * 4 matrix which has only positive entries.

2. Specify 5 different matrices which have entries equal to 1.

3. Compute

r 1 2 3" f \ 2 2 >
2 - 1 1 1 - 3 1 - 1  - 1

“ 1 - 1 1 ° 0  К
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Prove that, if  А, В, С are matrices of the same size, then

U + b ) - ( A + c )= b - c .

Solve equation

( 1 1 r3 3 3"

u 2 2 ; ,4 4 4 ,

What is the size of XJl 

Solve equation

' l  1 I)
+ ЛГ = |

r3 3 3s
,2  2 Ь — I.4 4 4 ,

What is the size of Xp. Explain why the results of this and the 
previous problems coincide.

Verify relations (1.11), (1.12), and (1.13).

Find values of a,b and с such that

r\ + a Ib) 1rb \a f\ ол
+ =

< b 1\.c a j J К

f i  о r2 23 '3 3"= . С =
l i  b ,2 2 ; ,3 3,

Determine the results of the following operations:

a) 3A + B - 2 C

b) 4 A - B  + C
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c ) - A - B  + 6C.

10. Solve equation

l(X_ + £) + ̂ (X_ + B - C ) = X

for X_, where A,B ,̂ and С are the same as given in the previous 
problem.

a) AB

b) BA

с ) { a b )A

d) ((AB)a )B

e) {{AB)B)A

f) b (a b )a .

12. Showthat [A + B f  = A 2 +2АВ + В2 if  and only if AB = BA.

13. Showthat (A + В ){А -B) = A2 -  B2 if  and only if AB = BA.

11. Let

Compute the results of the following operations
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14. Verify that matrix A -
0  1 

0 0
satisfies equation A 2 = 0

15. Characterize all 2 * 2 real matrices such that A2 =/ .

16. Show that for all к > 1 and n x  n matrices A ,

(Ln - M i n  + Л + Л 2 + • • • + / ) = / „  - d M .

17. Find a matrix satisfying equations

a) X 2 — 3X_ + 27 = 0

b) X 1 - 1  = 0

c) X 3 - X 2 - X  = 0 .

18. Assume that ad -b e  ^  0 . Prove that
19.

ra Ьл-1
1 ( d  - b '

vC ^ ad -b e ~ c a j

19. Find
1 2 

2 2

\-i
by using the result of the previous problem.

20. Let A =
1 2 

2 2
Find matrices 2?, С such that B_> A and C< A.
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'1 A ' 2  3 N
21. Let A = and В =

,2 2) ~ , 1  К
C > A - B.

. Find a matrix С such that

22. Is U + £ )" ’ = i - ' + B~x ?

23. Let pT ={p\,p2 .....pn) be a price vector, and let 1 be the w-
element vector all elements of which are equal to 1. Show that the average

1 Tprice can be expressed as —p i .
n

24. Find A1 for matrix A = f l  Г 
о 1

25. Find e- for matrix A = \1 1N 
0 1



Vector Spaces and Inner-Product Spaces

Chapter 2

2.1 Introduction

In this chapter some structural properties of the set of real (or complex) 
vectors will be introduced and analysed. Our analysis will be based on a 
new concept known as vector spaces which can be defined as follows:

Definition 2.1. Let F be a set and assume that the operation of 
addition is defined for all pairs x ,y e V ,  and multiplication by real (or
complex) scalars is defined for all scalars a and x 6  V and the following 
properties are satisfied:

(i) x + у  = у + x for all x, у  e V (commutativity);
(ii) (x + y) + z = x + (y + z) for all x, у  ,z e V  (associativity);
(iii) there exists a zero element OeV  such that for all x e V ,

x + 0 = x ;
(iv) for all x e V there is an element denoted by ( - x )  such that

x + ( - x )  = 0 ;
(v) a(x  + y) = ax  + a у  for all scalars a, and x , у  e  V (distributivity);
(vi) (a  + b)x = ax+  bx for all scalars a and b, and x e  V 

(distributivity);
(vii) (ab)x = a(bx) for all scalars a and b, and x e V (associativity);
(viii) Ix = x for all x e V .

Then V is called a vector space, and its elements are usually called vectors. 
If scalars are defined as real numbers, then the vector space is called real, 
and if  scalars are complex numbers then the vector space is called complex.

57
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Notice that in properties (iii) and (iv) we did not assume the uniqueness 
of the zero element 0 and the negative (—x) of any x. Their uniqueness 
follows from the other properties, which can be demonstrated in the 
following way. Assume that 0 and O’ are both zero elements in a vector 
space. Then properties (iii) and (i) imply that

0 +0’=0

(when x is selected as 0  ), and

0 +0 '=0 ’+0 =0 '

(when x is selected as O'). Therefore 0= 0'. Assume next that both (—x) 
and (—x)'are negatives of an x . Consider the element ( -x )  + x + (—x)'. 
Since

( - * )  + *  + ( - * ) ' = ( ( - * )  + x) + ( - * ) ' ={x + ( - * ) )  + ( - * ) '

= 0 + ( - * ) ’= ( - x ) ’+0 = ( - * ) ' ,

and on the other hand

( - * )  + *  + ( - * ) ’= ( - * )  + {x + ( - x ) ’)= ( - x )  + 0 = (-X ),

the negatives are necessarily equal to each other.
We will next show that the zero element of V can be obtained by 

multiplying any x e V  by zero. Introduce the notation 0 x ~ z .  Then 
x = x + z, since

x = l-x = (l+0)*x = l-x+0-x = x+z.
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Add the element ( - x )  to both sides, to see that

0 = x + ( - x )  = x + z + ( - x )  = x + ( - x )  + z 

= 0 + z = z + 0 = z.

This property implies that for any scalar a, a • 0 = 0 , since with an x e V ,

a • 0 = a • (0 • x) = (a • 0 )x = Ox = 0 .

Notice that the selection ( - x )  = (-1 ) • x  satisfies property (iv), since

x + ( - x )  = l x  + ( - l ) x  = (l + ( - l ) ) x  = 0 -x  = 0 .

The uniqueness of ( - x )  implies that necessarily ( - x )  = (-1 )  x-
Before analysing further properties of vector spaces, some important 

examples are presented.

Example 2.1. Let V be the set of all n -element real column 
vectors, and define vector addition and multiplication by real scalars in the 
usual way (as given in Chapter 1). Then properties (i), (ii), (v), (vi), (vii), 
and (viii) are obviously satisfied. If 0 denotes the «-element zero column 
vector, and ( - x )  is defined as ( - l ) * x ,  then (iii) and (iv) are also satisfied. 
Hence, the set of all «-element real vectors is a vector space, which is
usually denoted by Rn. One may show in a similar way that the set of all 
complex /7-element column vectors also forms a vector space with the usual 
addition and multiplication by real or complex scalars. The set of all rt- 
element complex column vectors is usually denoted by C n.

♦
Example 2 .2 . Let now V denote the set of all real (or complex) 

m xn  matrices, where m and n are fixed. Define the addition and
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multiplication by real (or complex) scalars in the way as it was shown in 
Chapter 1. If О is the m X n zero matrix, the element ( -Л )  is defined by 
multiplying A by -1 , then V is a vector space. The set of all real (or 
complex) mXn matrices is usually denoted by Rmxn (or C mxn ), as it was 
introduced in Chapter 1 .

♦

Example 2.3. Defme next V as the set of all single variable real 
polynomials of degree at most w, where n is fixed. Let p  and q be two
polynomials:

p(t) = ab + a xt + ... + a ntn

and

<7(0 =A + V +

then the sum of p  and q is defined in the following way:

p(t) + q(t) = (a0 +b0) + (a{ +b{)t + .,. + (an +bn)tn.

If the degree of either p  or q is less than n, then the ’’missing” 
coefficients up to an or bn are assumed to be zeros. If a is a scalar, then 
multiplication by a is defined as

a ■ p(t) = ( a -a 0) + ( a a l)t + ... + (a ■ a j t" .

The zero polynomial have all zero coefficients, and (—p) is given by 
changing the signs of all the coefficients of p :
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(~PK 0  = ( - « o )  + ( - fli)‘ + -  + 

Then V is a vector space.

Example 2.4. Let К be the set of all real functions defined on a 
closed interval [#,/?]. The sum f  + g  and scalar multiple a f  of real 
functions are defined in the usual way:

(/  + g)(x) = f ( x )  + g(x)

and
(a • / )(* )  = a ■ f ( x )

for all x e [a ,f f] .  It is easy to see that V is a vector space, when 
(—/ )(* )  = —f { x ) , and the zero function has zero values for all x e [ocy/J\. 
This vector space is usually denoted by С [a, J3] .

♦

Example 2.5. Let next V be the set of all real sequences (an). The 
sum of sequences is defined as

( 0  + ( 0  = (а л + o >

that is, all corresponding terms are added. Scalar multiples of sequences are 
defined by multiplying each term by the scalar:

a { a „ )  = { a a n).
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If one defines the sequence - ( a „ )  as (~an) and the zero sequence as 
an = 0 for all n > 0, then V is a vector space. For example,

(1,1,1,...) + (1,2,3,...) = (2,3,4,...),
2  (1,1,1,...) = (2 ,2 ,2 , . .) , and - ( 1,1,1,...) = ( - 1 - 1 - 1, . . ) .

♦

2.2 Subspaces

Before introducing the concept of subspaces in general, a simple example is 
presented. Consider the vector space of all w-dimensional real column 
vectors with the same operations as in Example 2.1. Let z be a nonzero
vector in V — Rn, and define Vx as the set of all real-multiples of z_:

Vx= {cz\ c eR ).

Here R denotes the set of real numbers. We can easily show that Vx 
satisfies all properties of a vector space. Assume that x and у  E Vx, then 

x = a x • z and у  = a 2 • z with some scalars ax and a2. Then 

x + y  = ax 'Z + a2 - z = + a2)-z,

and for all scalars a ,
a -x  = a-(a , ■z) = (a-al) zJ
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that is, both x + у  and a • x are in Vx. Similarly, 0 = O z e  Vx, and for all 
xe Vxt x = a • z with some scalar a, therefore

(-*) = (“ 0  * * = (“ 1) ■(“ ?) = (-a ) -zeVx.

Hence the zero element and (~x) for all x e V x are in Vx. All 
properties (commutativity, associativity, and distributivity) of the operations 
also hold in Vx, since they are true in the larger set V .

♦
Definition 2 .2 . A subset Vx of a vector space V is called a 

subspace, if  Vx itself is a vector space.
Notice that the entire vector space V can also be considered as a 

subspace of itself. Similarly, the set containing only the zero element of V 
also satisfies the defining properties of a vector space, therefore it is also a 
subspace in V . These two special subspaces are called the trivial subspaces 
of F .

In verifying the conditions of vector spaces for any subset Vx we do not 
need to check the operation properties (i), (ii), (v), (vi), (vii), and (viii), since 
they are true for all elements of V , and since Vx с  V , they remain true for 
all elements of Vx as well. Therefore we only have to check that for all x 
and у  G Vx, the sums x + у  are in Vx, and for all scalars a  and x e V x, the

products a * x are in Vx. Notice that for all x , 0 * x = 0 and (-1 )  x  = ( -x ), 
therefore the zero element and the negative of all x e  Vx are necessarily in 
Vx. Since properties (iii) and (iv) hold in the entire V , therefore they are 
valid in the subset Vx. This observation can be summarized as follows.

Theorem 2 .1 . If V is a vector space and F , c F ,  then Vx is a 
subspace of V if  and only if
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(a) x + y e  Vl for all x , ^ ^ ;

(b) a x e  Vx for all scalars a and x e  V{.
The application of the theorem can be illustrated by the following 

important example.

Example 2 .6 . Let V be a vector space, and x {,х 2,...,хк be given 

elements from V . Define

Kj =  * X , +  a 2 ' X.2 * — к 1^1 » ^ 2 »**•’ ^ к  ^

Notice that the introductory example of this section is the special case of this 
example, when one selects к = 1. We will now verify that Vx is a subspace.
If x, y e  Vl , then with some scalars aXi...,ak and bx,...,bk, 

x = d\ -x , + a 2 - x 2 + ... + ak ' x k

and
y = bl xl +b2 x2 +...+bkxk,

and therefore
x + y = (ax +bl)-xx+(a2 + b2) x 2 + ... + (ak + bk) x k.

Hence, x + y e  Vy Similarly, for all scalars a , 

a ' * -  a ' (<V £i + ai • x 2 +... + ak • x * )
= (a -a ,) - jc , + ( a a 2) - x 2 + . . . + ( a a J x *  € Vr

Therefore both conditions of the theorem are satisfied showing that Vj is 
a vector space.

♦
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For any x 1}...,x k E V and scalars a l9...,ak , the element 
Q\ - x x + ... + ak - x k e V is called a linear combination of the given
vectors. Example 2.6 can be reformulated by saying that for any given finite 
set of the elements of a vector space, the set of all linear combinations of the 
given elements always form a subspace.

In verifying that a subset Vx of a given vector space is a subspace, the 
following theorem is applied most frequently.

Theorem 2 .2 . If V is a vector space and Vx cz V , then Vy is a 
subspace if and only if  for all x ,y e  Vx and scalars a  and b ,

a ■ x + b • у  e V{.

Proof. Assume first, that Vx is a subspace. Then for all a  and x , 
a x  e Уj and for all b and y,b - y e  Vr  Since the sum of the elements of 

Vy must be in V{,

ci'X + Ь 'уе  Vx.

Assume next that Fj satisfies the condition of the theorem. Select an 
arbitrary a  and x , and define b = 0. Then

а хл-Ь у - а  х е  Vy.

Choose next a = b = 1, then

a x + b 'y  = x + y e  Vlt
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therefore both conditions of Theorem 2.1 are satisfied, and hence, Fj is a 

subspace.
+

The advantage of this result compared to Theorem 2.1 is the fact that 
only one condition has to be verified to show that a subset of a vector space 
is a subspace.

Some important properties of the subspaces of a given vector space are 
presented next.

Theorem 2.3. Let К be a vector space, and {Fa } ( « e  A with some
index set A) be a finite or infinite set of (not necessarily all) subspaces of 
F . Then the intersection of the given subspaces is also a subspace.

Proof. Let Vl denote the intersection of the subspaces Va . We will 

show that Vx satisfies the condition of Theorem 2 .2 . Let x and y e V x and

let a  and b be two scalars. The definition of F, implies that for all a , x 
and 7  are in Va and since Va is a subspace, a -x  + b -y  e  Va  for all a . 
Therefore a • x + b • у  has to belong to the intersection of sets Va . That is,

a ■ x + b • у  e F ,,

which completes the proof.
*

Definition 2.3. Let S be an arbitrary (finite or infinite) subset of a 
vector space V . The subspace generated by the set S  is the intersection of 
all subspaces of V containing S .

Since V itself contains S and it is a trivial subspace in itself, there is at 
least one subspace containing S. From Theorem 2.3 we know that the 
intersection of all such subspaces is also a subspace. We will use the
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notation V(S) for the subspace generated by the set S. From the definition 
we may conclude that if  Vx is any subspace of V containing S , then V(S) 
is also contained in Vx, therefore V(*S) is the smallest subspace containing 
S. The construction of V(S ) is given in the following result.

Theorem 2.4. Let V be a vector space and let S  be an arbitrary 
non-empty subset of V . Then F(.S) is the set of all linear combinations of 
finitely many elements of S :

V(S) = j a.w.| ЛГ e N+, e S,i = 1,2,..., N and at is a scalar for all i j
(2 .1)

/■1

Proof. First we will show that the set of all linear combinations of 
finitely many elements of S  is a subspace in V . For simple reference, let 
L(S ) denote this set. It is easy to verify that L(S) satisfies the condition of 
Theorem 2.2. Let x and у  be two elements of L(S), and let a  and b be 
two scalars. Then we may assume that

x = a }x , + ...+ akxk +bty t + ...+ b ,yi

and
y  = clx i +... + с*х* + rf,2 , +... + dmzm,

where x lt...,xk,у  y f,z,,...,z„ e S  and the common elements in the 

linear combinations are denoted by Xj >—»£&* Simple calculation shows 
that
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a'X + b y = ( a a x) x x +... + (a • ak) x k + ( a b x) y { + -  + 0* Л ) ‘ У , 

+ ( b c l)*x1 + ... + (&c*)x* +(b-6/1) z ,  +... + (£• d m) z m 

= (a a x + b • cx) -x x +... + (a - ak + b ck)x k + (a bx) - у  ̂ + ...

+ (a-fc/) - ^ , + ( * ,rfi ) , & +••• + (*  -dm) ’ Zm,
which is the linear combination of the elements 
£1 > • • • > £ * therefore it is in £ (£ ). Hence //(‘S') is a

vector space. Notice that for all x e S ,  x = \ x e L ( S ) ,  consequently 
S c L ( S ) .

Assume next that Vx is a subspace of V such that S  cz Vx. Let 
*1 >•••>** e S  be arbitrary elements and let а , , . . . ,д л be arbitrary scalars. 
Since Vx is a subspace containing the element
У_х = x i + я  2 x 2 must belong to F ,. Then

У_2 =1Zi + а з*з = a i* i  + a 2^2 + агз*з a Ŝ0 belongs to Vx. Similarly, 

Z3 = Vy2 + = a i * i + ••• + a 4 X4 e V x. Repeating the same reasoning 

£ “  1 times we conclude that

Zjt-l = ̂ Zjt-2 + ** = a \ -1 + — + a k-1 *k-1 + ** e 1̂ • 111 0ther WOrdS’
all linear combinations of finitely many elements of S  necessarily belong to 
Fj. That is, L(S) c : Vx. Hence L(S) is the smallest subspace containing S , 
therefore it is the subspace generated by S .

+
The assertion of the theorem is illustrated by the following examples.

Example 2.7. Consider the set Rz of real 3-element column 
vectors, and let x Ф 0 be an element of R?. Then the subspace generated by 
vector x is the set of all real multiples of x :
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a  is a real scalar}

69

forming a straight line which passes through the origin, since Ox = 0.

♦
Example 2.8. Consider again the vector space R3, and let x and у  

be two nonzero vectors such that у  is not a constant multiple of x. Then the 
set

+ by\a, b are real scalars}

is a plane containing the origin. Figure 2.1 illustrates this subspace, which is 
the plane containing the origin and the endpoints of vectors x and у .

Figure 2.1. Subspace generated by two vectors.

♦

Example 2.9. Let V be the set of all real variable, real valued 
functions defined on the interval (— 00,°°), and let real numbers be 
considered as scalars. For a given integer n > 1, select the functions
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Po (*) = 1» Pi 00  = x> p2 00  = X2.....p„ (x) = Xя.

Then the subspace generated by these functions is the set of all linear 
combinations of these functions, which is the set of all real polynomials of 
degree of most n\

v({po . P\ >•••> Pn}) = {fl0 + a\x + -  ■+ о„Xя |a0, a , an are real scalars}
♦

2.3 Linear Independence, Basis

In the previous section we have seen that any element of a subspace 
generated by a subset of a vector space can be obtained as a linear 
combination of finitely many elements from that subset. The description of 
the generated subspace becomes more simple if  the necessary number of the 
elements in the linear combinations is smaller. In this section we will find 
the minimum number of such elements and the corresponding minimal 
realization of subspaces. Our analysis will be based on the concept of linear 
independence, which will be defined next.

Definition 2.4. Let К be a vector space. The elements 
x_\ , . . . ,х л G V are called linearly independent, if

OiXy+a2x2 +... + anxn =0

implies that ax = a2 = ... = an = 0 . If the elements are not linearly 
independent, then we say that they are linearly dependent.

That is, a linear combination of linearly independent vectors is zero only 
if all coefficients are equal to zero.
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Example 2.10. Consider the vector space Rnf and select the
vectors:

T "0 " "0 "

0 1 0

0 0 0
: > —2 = :

IIс
*>l•4•

*

0 0 0

, 0 ; A

Notice that for к = 1 ,2 ,...,л , the к -  entry of ek equals 1, and all other 
elements are equal to zero. We will next prove that these vectors are linearly 
independent. A linear combination of these vectors is zero, when with some 
constants a X9.,.9an,

' Г "0" ' 0 y "0"

0 1 0 0

0 0 0 0

I +  a 2 :
+  . . .  +  a „ : —

0 0 0 0

. 0 , A A

The first element of the left-hand side vector is 

a x *1 + я 2 *0 + ...+<?„ 0 ,

which is zero only if  a y = 0 . The second element of the left-hand side 
vector equals



72 Introduction to Matrix Theory

a, 0 + a2 -l + ... + an 0,

which is zero only if  a 2 = 0 . In general, the £ -  (к = 1 ,2 ,..., л) element of 
the left-hand side vector is

<2, • 0 +... + • 0 + ak • 1 + cik+l • 0 +... + an • 0, 

which is zero only if a k = 0 . Thus all coefficients are necessarily zero.

♦

Example 2.11. Next let V be the set of all real functions defined for 
all x G ( - ° o , o o ) . Select the functions

Po (* ) = hp y (x) = х,р2 (х) = х 2,...,р п(х) = х п

from V . We will now prove that these functions are linearly independent. If 
their linear combination is the zero element in V , then for all real X,

a 0 + axx + a2x2 + ... + anx n = 0 ,

which is possible only if o0 = a { =... = an = 0

Contrary to this, assume that at least one coefficient is nonzero. Assume 
that ак Ф 0 and ak+y = ... = a n = 0 . If k = 0, then the polynomial is a 
nonzero constant. Otherwise, for all real x *  0,



Chapter 2 Vector Spaces and Inner-Product Spaces 73

If x —> oof then x k —» , and all terms —
x

a,- f  converge to

zero. Therefore this polynomial converges to «> if ak > 0 and it converges 

to — if ak < 0 . Hence the polynomial cannot have zero value for all real 
x .

Some elementary properties of linearly independent elements are listed 
below:

1. If Ois among the selected elements, then they are linearly dependent. 
Assume that 0 ,x 29...,xk are selected. Then

showing that a linear combination equals zero with a nonzero coefficient. 
Hence these elements are linearly dependent.

2. If among x l ,x 2,...,xk, at least one element is repeated, then they are

linearly dependent.
Assume now that x 2 = x p otherwise we have to renumber the

elements. Then

1-0 + 0 -х 2 +... + 0-.X* = 0

1 X, + ( - 1) • x 2 + 0 • x 3 + ... + 0 • x k = 0 ,

and there are two nonzero coefficients.

3. Any subset of the set of linearly independent elements contains only 
linearly independent vectors.
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Assume that x x,x 2,...,xk> are linearly independent, and let 

X\,x2 (/ < k)  be a subset of the original set of elements. In contrary 
to the assertion assume that the subset has linearly dependent vectors. Then 
with some scalars a , я , ,

a \ +...+Л/ 'Xj = 0

and there is at least one nonzero coefficient ai (1 < i < /). Consider now 
the linear combination

a \ '*i + —+ a t **/ +0*/+i + ... + 0-X*

of the original elements, which is the zero vector, but the coefficient ai is
nonzero. Therefore the original elements are also linearly dependent, which 
contradicts the assumption. Hence, the subset contains only linearly 
independent elements.

4. Let x  ^  0 be an element of a vector space. Then it forms a linearly 
independent (one element) set.

In contrary to the assertion assume that a • x = 0 with some а Ф 0. Then

— exists and 
a

( 1  Л i  i
x  = 1 • x = — • a  ■ x = — • (a • x ) = — ■ 0 = 0 ,

\a )  a a

which is an obvious contradiction to the assumption that x is nonzero.



Chapter 2 Vector Spaces and Inner-Product Spaces 75

Theorem 2 .5 . The elements x{,x2,...,xn of a vector space V are
linearly dependent if and only if  at least one of them can be expressed as the 
linear combination of the others.

Proof. Assume first that xlfx2,...,xn are linearly dependent. Then

with some scalars ax, a2 an,

« i 2£i + a 2x 2 +... + a„x„ = 0 , 

where at least one coefficient is nonzero, say 0. Then

=-^1*1 - - - Я м £ м  ' - ' '~ anXn>

therefore

/ % f / N /  \

X ,  + . . .  + + r  +  +
—  i - l ±i+1 ^  ” ■ ^

V V ) I * f J ^ л / >

where the right-hand side is a linear combination of the elements 

>*,+i •
Assume next that at least one element, say x r-, equals the linear 

combination of the others. Then

*/ = < V *i + -  + « h  - 'Ь +i + -  + £,и

which can be rewritten as

+ + ( - 1)• *,• + -x /+1 +... + an -x n - 0 .
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The left-hand side is a linear combination of all the elements, and the 
coefficient of X/ is nonzero, therefore the elements are linearly dependent.

*

In the case when all selected elements are nonzero, this theorem can be 
reformulated as follows.

Theorem 2.6. Assume that x , , x 2, . . . ,x n are nonzero elements of a 
vector space V . Then they are linearly dependent if  and only if there exists 
an / (z = 2 ,3 ,.. . ,  л) such that x z- is the linear combination of x , ,.»>*/-, •

Proof. Assume first that the vectors are linearly dependent. This 
assumption implies that

where at least one of the coefficients is nonzero. Let i be the largest integer 
(1 < i < n) such that 0. Then

+ a 2 ' I !  + - + « „  '£ „ = 0

a , • x , + ... + e w x M + a , • x,. = 0 ,

smce a i+l a„ = 0 . This equation implies that

that is.
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Assume next that can be obtained as a linear combination of 
* 1 Then it is the linear combination of x l9...9х._1}х м ,...,хп, 
where x i+l,...tx n are multiplied by zero. Therefore Theorem 2.5 implies 

that x X)...,xn are linearly dependent.

Example 2.12. The vectors

T "2" f 4l
*1 = 1 > X.2 = 1 , and x 3 = 3

<lJ ,3 ,

are linearly dependent, since x 3 = 2 x, + 1 * 2’ w^ich can be shown by 
simple calculation:

f i ) "2 " "2"
( 4)

l + i- 1 = 2 + 1 = 3

A ,3 ,

♦

Theorem 2.7. The elements x lf...,xn of a vector space V are
linearly independent if  and only if  every element of the subspace generated 
by these vectors can be uniquely expressed as the linear combination of 
these vectors.

Proof. Assume first that an element of the generated subspace can 
be expressed as two different linear combinations:

x = a lx l +... + a„x„ =bxx , + -  + bnxn.
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(a , -b , )x ,  + ••• + («„ ~bn)-xn =0,

where for at least one i , d j- b ^ O .  This implies that x^,...,xn are 
linearly dependent.

Assume next that each element of V({xl9...,xn}) can be uniquely 

expressed as the linear combination of x { ,...,xn. Since

0-Xj + 0 -x 2 + .. .+ 0 -x n = 0 ,

there is no other linear combination of these elements that equals 0 . 
Therefore x^,...9xn are linearly independent.

+
Before defining the basis and dimension of vector spaces and subspaces, 

one more concept should be introduced.

Definition 2.5. Let К be a vector space and let S  be a subset of V . 
We say that S is a generating system of V , if  L (s)= V , that is, if  V
coincides with the set of all linear combinations of finitely many elements of 
5 .

Every vector space V has generating systems, since V itself is a 
generating system. (Notice that each element x e V  is a linear combination 
of itself: 1-x.) Vector spaces (or subspaces) with finite generating systems 
are called finitely generated

This equation implies that
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Definition 2.6. A vector space V {o} is said to be n-dimensional, 
if  it has at least one я -element generating system and any set with less than n 
elements is not a generating system of V . The dimension of V is denoted by 
dim(K). If a vector space does not have finite generating system, then it is 
said to be infinite dimensional 

This concept is illustrated next.

Example 2.13. Vector space V = Rn is finite dimensional, since 
the vectors

т r0>
'°1

0 1 0
0 0 0
: > —2 = : > fLn 1

0 0 0

A ,0 ; л

form a generating system. Let

a

be an arbitrary vector, then it is easy to see by comparing the entries of the 
vectors on both sides of the equality, that

a,
a.
a,

e V

a = a { ex + a 2 e2 + ... + дя -ея.
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Hence, arbitrary a e V  can be expressed as the linear combination of the 
vectors

♦

Example 2.14. Let V be the set of all single-variable real 
polynomials. Then V is infinite-dimensional, since there is no finite 
generating system. Assume to the contrary that a finite set of polynomials 
px,p 2,..., pN is a generating system. Let n{,n29...,nN denote the degrees

of these polynomials, respectively, and define n = m ax{w ,,«2,.
which is the largest among the degrees. Since every linear combination of 
these polynomials is a polynomial of degree at most n, no polynomial of 
higher degree can be obtained as a linear combination. Therefore 
polynomials px, p2 pN do not form a generating system.

♦
Definition 2.7. Let К be a finite dimensional vector space. A finite 

set of elements x x is called a basis of V , if
(i) they are linearly independent;
(ii) they form a generating system of V .

Example 2.15. Combining the results of Examples 2.10 and 2.13 

we conclude that vectors ey , e 2 >•••>£„ form a basis in Rn.

♦
Example 2.16. Let V be the set of single variable, real polynomials 

of degree at most n. Then

Po ( 0 = i.P i (0  = ( 0 = t2, - ,p M )  = t"

is a basis of V .
♦
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Example 2.17. Let V be an arbitrary vector space, and let 0 denote 
the zero element of V . Assume that S  consists of only the zero element: 
S  = {0}. As we have seen earlier, this is a trivial subspace of V . Notice that 
S  has no basis, since equality 1 0  = 0 shows that the zero vector itself 
forms a linearly dependent (one-element) set. That is, no independent 
generating system exists. We will say that d im (S) = 0. The dimension of 
any other subspace of V is given in Definition 2.6.

♦
Some important properties of generating system are given in the 

following theorems.

Theorem 2.8. Assume that {* ,, * 2>•••>*#} is a generating system 
of a vector space V 9 and for some i , Xj can be expressed as the linear 
combination of elements x ]9...9x i_l ,x i+l9...,xN. Then 

{*i >•••>*,—! ,*,+1 9—>xn } is also a generating system of V .

Proof. We will show that any arbitrary element x e V  can be 
expressed as a linear combination of x l ,...,x!_l ,x M,...,xN, that is, can 
be deleted from the generating system. For any x ,

x = ci\Xl + a 2x 2 +... + a i_lx i_l + e ,x , + a Mx M + ~  + aNx N.

(2.2)

Since Xj is a linear combination of the other elements, with some 

scalars cl9...,Ct_l9cM9...,cN9



Substituting this equality into (2.2) gives the relation 

— ~~ a \ —i ••• + a i- \ »-1 a i (c i + ••• + c w  x._x + cM x M + ... + cNx N )

—i+\ X/+1 + ••• Хдг
= (a, + a ,c , )x , + ... + (a M + a,cw  ) x M + (aM + a,cM ) x i+1 + ... 

+ ( a w + a ,c w) x w>

which is a linear combination of only . Hence, the
proof is completed.

+
Corollary. Let S  be a finite generating system of a vector space 

У ^  {2} • Then it contains a basis of V .

Proof. If the elements of S  are linearly independent, then they form 
a basis. Otherwise, at least one element of S  can be deleted such that the 
remaining set is still a generating system. If it has only linearly independent 
vectors, then a basis is obtained. Otherwise another element can be deleted, 
and so on. The process has to continue until only linearly independent 
vectors are obtained.

+

Theorem 2.9. Let V be a finite dimensional vector space, and 
assume that {xlv . . ,x n} is a generating system of V , and let {у^ ...,ут ) be

a linearly independent set in V . Then m < n .

Proof. Assumption that {*i is a basis implies that у  is a

linear combination of these elements. Therefore {y j ,x , } is a linearly

82 Introduction to Matrix Theory



Chapter 2 Vector Spaces and Inner-Product Spaces 83

dependent set. From Theorem 2.6 we know that there exists an 
xf ( l < i < w )  which is a linear combination of у  9x l9...9x l_l9 and so

{ y ^ x i . - »  х,_г,х 1 + 1 х и} is also a generating system of V , and у_г is a

linear combination of these elements. Therefore set
’ - i , } consists ° f  linearly dependent elements,

therefore there is a y ( y  = 1,...,i‘ - 1,i' + 1,...,/i) such that Xj is a linear

combination of the preceding elements. Notice that the linear independence 
of {y t9...9y  } implies that this element cannot be у  . Therefore x , can— I —/71 —2 J
be deleted from the generating system. Continue this process until all 
elements у  ,...,y  are entered into the generating system by deleting one

— 1 — m

Xfc at each step. Hence the resulting generating system will consists of n 
elements and will contain all of у  ,...,y  implying that m <n.— 1 —m

+
Corollary 1. In a finite dimensional vector space any two bases 

consist of the same number of elements, which is the dimension of the 
vector space. This coincides with our earlier discussion when we defined the 
dimension of the subspace {0} as zero, since this subspace has no basis.

Corollary 2. Let x X9...9x k be linearly independent elements in an 
n -dimensional vector space V, where к <n. Then there are certain 
elements Уш ,—>Уп e  V such that {x x 9...9x k9y  k̂ 9... 9y_n } isab as iso f V .

That is, in finite dimensional vector spaces each set of linearly independent 
elements can be completed to form a basis.

Proof. If {*,,.••>**} is a generating system, then it is a basis. 
Otherwise there is an element Уk which cannot be expressed as the linear 

combination of X j , T h e r e f o r e  x t >-‘>Хк>Ук+1 ^  Nearly 

independent. If these vectors generate the entire vector space, then they form
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a basis. Otherwise, there is а У ̂ ^  which cannot be expressed as a linear 

combination of these vectors, so , v are linearly
’ —1 ’ ’ —k 9 ±.k+l’ Z-k+2

independent. Since the vector space is n -dimensional, after n -  к steps we 
obtain a set {x x,...,xk9y  } of linearly independent vectors that

— Л+1 — П

generates V , which is therefore a basis.

Corollary 3. Let V be an n -dimensional vector space and assume 
that (x, is a linearly independent set. Then it is a basis of V .

Example 2.18. The vector space Rn is «-dimensional, since from 
Examples 2.10 and 2.13 we know that vectors e^,...9en form a basis. This
basis is usually called the natural basis of R ” .

♦

Example 2.19. For given positive integers m and и, let V be the 
set of all real or complex m xn  matrices. For i = 1 and j  = 1
introduce matrices E_̂ 9 the (J ,j)  -entry of which equals 1 and all other

elements equal 0. Similar to the case of Rn one may easily show that these 
matrices form a basis of V 9 therefore this vector space is (m n)- 
dimensional.

♦
Example 2.20. Assume next that V is the set of all real polynomials 

of degree at most n . Then this vector space is (n +1) -dimensional, since 
from Examples 2.9 and 2.11 we conclude that 
Po(* ) = \P\ (* ) = x,..., p n (x) = xn form a basis in V .

♦



Let V be a real vector space.

Definition 2.8. An inner product on V is a bivariable function, 
which assigns to each ordered pair x ,y  of elements of V a real number,
denoted by (x ,y ), such that the following conditions are satisfied:

(0  (*>*) -  0  for all x e  F , and (x ,x )  = 0 if  and only if x = 0 ;
(ii) (х,У) = (У,*) for all x ,y e V ;
(iii) (x , + x 29y) = (£l,y) + (x2,y)  for all x l9x 2,y e  V ;
(iv) (c x ,y ) = c(x ,y ) for all x ,y e V  and с e  R.

Example 2 .2 1 . Let V = Rn and for all x ,y e V ,  define 

(x,y) = x r у

(which is the product of x as a row vector by the column vector y). If xi 
and y i denote the elements of x and y , respectively, then

(x,y) = xly l + ... + Д:ny n.

We will now show that this inner product satisfies all the above 
properties:

(i) (x,x) = x f +x\ + is always nonnegative, and since all
terms are nonnegative, it equals zero if and only if all terms equal zero, 
which occurs if  and only if  xi = 0 for all i .
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2.4 Inner-Product Spaces
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(ii) (x,y) = xxy , +... + xny n = y {x, +... + у лхп =(.y,x);
(iii) (x( + x2,y) = (x,i +^2i)3,i + *•■ + (*|„ ~̂x2n)yn

= (x„y, + ... + x,„y„) + (х21у, + ... + x2ny n) = (x , ,y) + (x2,y),

where xw and x2j denote the entries of Xj and x 2 , respectively;

(iv) (cx,_y) = (cx,)_y, + ... + (cxn)j>n
= ф с .у ,)  + ... + c(x„yn) = c(x,j>, + ... + x„ y„) = c(x,y).

♦

The inner product of two vectors introduced in this example plays an 
important role in economics. One important application is the following.

Let x  and _y be two vectors with nonnegative entries. Then obviously

+•••+*„:>'„ s o ,

and

(*>>:)=о

if and only if for all k = 1 , 2 either хк = 0 or y k = 0 . This property 
is known as the complementarity condition.

Example 2.22. Let now V be the set of all continuous real functions 
on an interval As in Example 2.4 this vector space is usually denoted 
by C [a ,6 ]. Let f  and g be two functions from this set. Define the inner 
product as
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(f,g) = jf(x)g(x)cbc.
a

Notice that the integral exists, since both functions are continuous. We 
will now prove that this inner product satisfies the conditions of Definition 
2 .8.

ь
(i) ( / ,/ ) =  J/:2 (x)dx>Q , since f 2(x)>  0 for all x e [ a 9b].

a

Assume next that ( / ,/ )  = 0, that is,

) f\ x ) d x  = 0 .
a

Assume that for some x0 e [a ,b ],f (x0) * 0 .  Then f 2(x0) > 0 , and

the continuity of function /  implies that / 2 is also continuous, and

therefore there is a neighborhood of xQ such that f 2(x)>  0 for every x in

this neighborhood. Since for all x e  [a,b], f 2(x) > 0 , the integral of f 2 
must be positive contradicting the assumption. Therefore / (x ) = 0 for all 
x e [a ,b ] .

(ii) ( / ,g) = j f ( x)g(x)dx= jg (x)f(x )d x  = (g ,f ) ;
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b

(i'i) (/1 + f l , g) = JC/l (x) + /2 (x)]g(x)dx 
b a 

= JC/i (x)g(x) + fi{x)g{x))dx
a
b b 

= J/i (x)g{x)dx + J /2 (x)g(x)<& = (/ !, g ) + (/2 , g ) ;
a a

b b 
(iv) (c / ,g )=  |c/(x)g(x)£& = c j/ (jr)gW < *c  = c ( / ,g ) .

a  a

Definition 2.8 implies the additional properties of the inner product:

(v) (x>yi + y 2) = & y {) + (x ,y 2)>

since

( b y 1+ y 2) = ( y , + z 2’ ^ = Q v ^ + Qi2’ ^  = (£’ ^ + ^ ’ ^ - );

(vi) (x,cy ) = c(x,y) for all с e  R , 
which can be proven as follows:

(*,e>0 = (cy ,x ) = cQ>,x) = c(x ,y)-

(vii) (c, x, c2 y) = c, c2 (x , y ) for all c , , c2 £ R , 
which is the consequence of the previous property:
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(viii) (x ,0 ) = 0 for all x ,
since

( x ,0 ) = (x ,0  + 0 ) = ( x ,0 ) + (x 70 ) = 2 ( x ,0 ),

from which the assertion follows immediately.

Definition 2.9. A vector space V is called an inner-product space, 
if  an inner-product is defined on V .

The previous examples show that both Rn and C[a,b] are inner- 
product spaces.

Definition 2.10. Let x ,y  be two elements of an inner-product space 
V . We say that x  and у  are orthogonal, if  (x,>0 = 0.

Example 2.23. In Rn, the natural basis vectors ex,e 2,...,en are 
pair-wise orthogonal, since for all к and / ,

Example 2.24. In the interval [0 ,2  я] the functions /0 (x ) = l, 

f k(x) = sin(£x) (£ > l) ,g * (x ) = cos(fat) (£ > 1) are pair-wise orthogonal. 
This property has an important role in the theory of Fourier-series, and can 
be proved by simple integration:

0 i f  k * l  

1 i f  k = l.

♦
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2x 2 я

I  /о М Л  (x)dx=  J  sm(kx)dx =
-  cos(foc)

2 к

sin(fcc)
= 0 (k > l) ,

2jt IkJ /о (x)Sk (x)dx = J cos(kx)dx =
О 0

2f 2 r 1 2;r
|Л  (x) fi  (*)dx = ]s'm(kx)sm(lx)cbc=— J [co s((£ -/ )x )-co s((/ : + /)*)]^

1 1 2k 
jcos((£  -  l)x)dx  jcos((A; + l)x)dx  = 0 for k * l ,

since both terms equal zero;

(*)<&= \cos(b)cos(lx)dx=- f[cos((* -/ )* )+  cos{(k + l ) x ) ] d x  
« о 2  0J

1 2r 1 2*
-  2  \cos{(k-l)x)dx + -  jcos((& + l)x)dx = 0  for k * l ,

since both terms equal zero again, and finally, for all к and / ,

2k 2k 2k

J /*(*)&/(*)<& = fsin(fa)cos(/x)<3!x =— f[sin((A: + / )x )+ s in ( (^ -/ )^ ) ]^
A A / *
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j 2?r  ̂ 2к
= — Jsin((£ + l)x)dx + — Jsin((A: -  l)x)dx = 0,

2 о 2 0

since both terms are equal to zero even if k - l . This set of orthogonal 
functions is usually called the trigonometric system.

♦
Definition 2.11. A set of elements in an inner-product space is 

called an orthogonal system, if  it consists of pair-wise orthogonal elements.
For example, the natural basis in Rn, and system 

{l; sin kx, cos kx, k > l} in C[0,2;r] are orthogonal systems.

Definition 2.12. Let x be an element of an inner-product space. 
Then the length of x is defined as yj(x,x) and is denoted by \x\.

For example, if  x € Rn, then

|x| = д/х,2 +... + X2",

assuming that the inner product is defined the same way as in Example 2.21; 
and if  f  e C [a,b ] and the inner product is defined as in Example 2.22, 
then

Definition 2.13. A set of elements in an inner-product space is 
called an orthonormal system, of it consists of pair-wise orthogonal 
elements and each element from the set has unit length.
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For example, the natural basis in Rn with the inner product given above 
is an orthonormal system, since it is an orthogonal system and for all k,

The next theorem is known as the Cauchy-Schwarz inequality, and it is 
considered as one of the most fundamental properties of inner-product 
spaces.

Theorem 2.10. Let x ,y  be arbitrary elements of an inner-product 
space V . Then

Proof. Notice first that if  x = 0 or/and у  = 0, then both sides of the
inequality are equal to zero, consequently the assertion holds. Assume next 
that x Ф 0 and у  Ф 0. Let X be a real number, and consider the square of the
length of the element x + A y:

= (x, X) + (x, Ay) + (Лу, x) + (Лу, Лу)

= (*>*) + M b  У) + Ч у , х)  + Л2 (у, у) = Л2 (у, у) + 2Л(х, у) + (х,х)-

Observe that this is a quadratic function of X, the graph of which is a 
parabola that opens up and its value is always nonnegative (being the square 
of the length of an element). Therefore this quadratic function has at most 
one real root, otherwise between the roots it would have negative values. 
Therefore the discriminant is zero or negative:

(2.3)

4{x>y)2 ~4• (x,x) • (_y,y)<0,



that is
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Recall that (x ,x )  = Ы and (y ,y ) = to have the assertion.

Corollary. For all x, у  from an inner-product space,

x + y\ < \x + у ,

which relation is called the triangle inequality. This name originates from 
the geometric representation of the sum of two-dimensional real vectors as 
shown in Figure 2.2, and this inequality can be interpreted as the length of a 
side of a triangle is never longer than the sum of the lengths of the two other 
sides.

Figure 2.2. Illustration o f the triangle inequality.
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that
Proof. Simple calculation and the Cauchy-Schwarz inequality imply

|i + z f  = (*  + ^ £  + >0 = ( ь *  + ;0  + (У ,*  + У)

= (x,x) + (x ,y )  + ( y ,x )  + ( y ,y )  = (x ,x )  + 2(x ,y)  + (y ,y )

= |*f + 2(x,у) + У 2 <|x|2 + 2|(x, y)\ + 1у |2

2| x ) - y + y 2 = y + y ) 2.< u l2 +

+

Definition 2.14. Let x and у  be two nonzero elements of an inner- 
product space. The angle (p between these elements is defined as the unique 
#>e[0 ,;r] such that

(х>У) 
C0S^  = 7 T fT - (2 '4)

т - щ
The right hand side of this equation is always between -1 and +1, 

therefore (p exists and is unique. Notice that this definition is equivalent to 
the definition of inner-products

(£,>') = y -m -co s^

of two or three dimensional vectors, which is known from analytic 
geometry.

Example 2.25. Let



(*,>0 = l ( - 4 )  + 2 1  + 1-2 = 0,

|x| = Vl2 + 2 2 + l2 = V6 and \ y \  = V(-4)2 + l 2 + 2 2 = лЯТ,

therefore cos ^7= 0, consequently #>= 90°. The two vectors are orthogonal.

♦
We will next show that an orthogonal system is necessarily linearly 

independent.

Theorem 2.11. Let { * , ,* 2 >—>**} be an orthogonal system of
nonzero elements in an inner product space. Then vectors x l9x 2,...,xk are
linearly independent.

Proof. Assume that x ],x 2,...,xk are linearly dependent. Then with
some scalars,

a lx l +... + a ,x l +... + akx k = 0 ,

where at least one coefficient is nonzero. Say, ai Ф0. Multiply both sides 
by x 7- to see that

a\ ) + •••+ a , (xi,X i)+ ...+ ak (xk,x i) = (0,x i).

(2.5)

The right hand side is zero, and the orthogonality of the vectors x l9...,xk 
implies that

(xt,xi) = ... = (xl_i,xl) = (xM,xl) = ... = (xi ,xl) = 0,
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Then
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therefore equation (2.5) can be rewritten as

ai (xi ,x i) = 0.

This is a contradiction, since ai *  0 and (x f- > 0.

We have seen earlier that vector space Rn has an orthonormal basis 
consisting of the vectors ex , e 2 >•••>£„. In the next theorem we will show that
any finite dimensional inner-product space has an orthonormal basis.

Theorem 2.12. Any finite dimensional inner-product space V has 
an orthonormal basis.

Proof. Assume that d im (F ) = A:, and let {xx,x 2,...,xk} denote a
basis of V . Based on these elements we introduce an inductive procedure 
for constructing an orthonormal basis. The method is the following. Select

(2.6)

where у y = x x, and for i = 1 ,2 , 3 , . . . , * : - 1 , let

(2-7)

%
with

(2.8)
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In order to prove that is an orthonormal basis we have to
verify that

(a) \—i \= 1 for 1 = 1, 2 , . . . , * ;
(b) (z /,z y )  = 0 for all i ± j ;
(c) set { z , zk} is a generating system of V .

Property (a) follows from (2.7), since

f

h\ = (*/>*/)
z, 1> 2
z, У Z,

2 (Л »Х ) = =  1.

The orthogonality of the elements z j , . . . ,z ^  is proved by finite induction. 
Notice first that

f e 2 , 2 i )  =

/ N
Z2 z , 1

\ Z2
>

z, у z, • z 2

where



98 Introduction to Matrix Theory

Assume next that for some z, zz- is orthogonal to Z j, . . . ,z t_|. Then we will 
prove that z I+1 is orthogonal to all elements Z j,z2 , . . . , 1 /. Let / (1 < / < /) 
be arbitrary. Then

Nz i+, z , i

J z J > 1 1 W J k w  I- z ,
where

(zi+1, z/) =

Q W Z / H  i w
'v /=1

i
2 /) •(£ ;•£ ,)

y=l

(zi+1>z,)’

=fe+i.z,)-Sfe+i>̂ )-(2̂ k|'̂ )=t/+i>Z/)
7=1

>=1

Notice that (z j  , z j )  = 0 if j  *  I and (z j,Z j)  = 1, therefore

Q̂i+i’Z/)= ŵ>Z/)“^w’2/)-|z,|-fe/>2/)=(ii+i»Z/)-̂ w’|z/i'2')
= o,

since jy^ J ■ zj = у .̂ Hence, property (b) is verified.

In order to prove that is a basis in V it is sufficient to
mention that d im (F ) = к and system {z l9...9z k} consists of к linearly 
independent elements.
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Remark. Procedure (2.6), (2.7), (2.8) is known as the Gram- 
Schmidt orthogonalization process.

Assume now that {zXiz 2y...,zk} is an orthonormal basis in V. The 
arbitrary vectors x ,y e V  can be uniquely expressed as the linear 
combinations of the basis elements:

and
X = Xl Zl + X 2 Z2 +  .. .  +  JC kz k

y  = y i£i У2 —2 + -  + Ук£к>

where Xj and are real scalars for i = 1 ,2 ,...,/ :. Then the inner product of 
x  and у  has the simple form:

(x,y)= y jZ j
1=1 ;=i i=l /=l 1=1

* A:

C l
,=1  7=1

since for 1Ф y , (z , . ,z y )= 0 , and for all i, (zj,Z j) = 1. Notice that this 

simple derivation shows that the inner product can be easily obtained as the 
product of the row vector x  = (x, yx 2 , . .. ,x k) by the column vector

У =

r \
Ух 
У 2

кУку

The Gram-Schmidt orthogonalization procedure is illustrated by the 
following examples.
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Example 2.26. Let V = R 3 and consider the vectors

' 11 T \

*1 = 0 > —2 l , a n d x j  = 1

1°; к

It is easy to show that they are linearly independent, therefore they form 
a basis in V . The application of the Gram-Schmidt process consists of the 
following elementary steps.

For / = 1,
'Г|

IIH\II 0 , |y | = Vl2 +02 +02 =1, z ,= ^ -  =
z.

0

1°; w

For / = 2,

ri\ "(f
Z 2 = ^ 2 - fe .Z ,)z , = 1 -1- 0 = 1 >|z2

I» ; к 1°;

= л/0 2 + 12 + 0 Г = 1 ,

and so,

—2 =

'(Г
Z2 _
I I 1
Ы к

For i = 3,
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T '0^ 'o'
y} = * 1  - (x 3,z,)z, ~(x3,z2)z2 = 1 - 1 0 - i - 1 = 0

Л л Л

and since л/O2 + 0 2 +12 =1,

— 3

'0^
у , 0— - —

У3 Л

Example 2.27. Consider next the set of all real polynomials of 
degree at most 2 on the interval [-1,1]. We know that

Po (* ) = !, Pi (* ) = x, p 2 (x) = x 2

is a basis. In this case the Gram-Schmidt orthogonalization process has the 
following steps, where for the sake of using usual notation, q and r  will be 
used instead of у  and z .

For / = 0,

?o W  = Po(x) = к о | = J \ xdx =

r W = i o W = _ L  
o ( )  ко I S '

? i W  = A W - ( A . ' i о ) ro W  = *
since

For i = 1,
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1 j
O>i>r0) = \ x--j= d x  =

_2л/2 J 4
= 0.

Notice that

therefore

kl=Jl*2*=
-l

Г з 11
XL 3 J-1

r ,(x ) = _ л
k . l I

>#

For z = 2.

4 2 (* ) = P 2 (* )  -  (/>2 . ''o ) r0 (* ) -  (P2 . ri ) ri (*)• 

Simple calculation shows that

V l 1 = ^ _ = V |

Зл/2 J_, Зл/2 3 ’

1 |
(Р 2 .Го)=  [х 2 - р Л  = 

-i V2

{Pi

which imply that

•ri)=  Sx2^ xdx= S '
4л/2

=  0 ,

-1

л/2 1
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Since

is an orthonormal basis. ♦

In this section inner products were defined only in real vector spaces, 
and the properties of only real inner product spaces have been examined. 
Similar to the real case, inner products in complex vector spaces as well as 
complex inner product spaces can be introduced. If V is a complex vector 
space, then it is assumed that the inner product is a bivariable function that 
assigns to each pair x 9y  of elements of V a complex number denoted by

(x ,y ), such that

(i) (x, x) > 0 for all x e V, and (x ,x ) = 0 if and only if  x = 0;

(ii) (x ,y )= (v ,x )  x ,y e V , where overbar denotes complex

conjugate;
(iii) Ui +Х2’ У)= ^ 1 ’ У)+ ^ 2 ’ У) fora11 *\’Хг’ У е V <
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(iv) (ex, j>)= c(x, y) for all x ,y  G V and complex number с .

Notice that properties (ii) and (iv) imply that for all x ,y e V  and 
complex number c,

(x ,c j)=  (cy ,x )=  c-{y,x)=c-(x,y\

Orthogonality in complex inner product spaces can be defined in the 
same way as it has been done for the real case. With obvious modifications 
all previous results and the results of the next section can be extended to the 
complex case. For example, assume that (zl9z 2,...,zk) is an orthonormal 
basis in a complex inner product space V , then any arbitrary elements 
x ,y e V  can be uniquely represented as

x = x ,z , + x2z2 +... + xkzk

and

y  = y iZ i+ y 2Z2+~ + y kZk,

where xiy y i are complex scalars for i = 1 ,2 , .. . ,A:. Then the inner product 
of x and у  can be given as

since for /' *  j ,  (z ,.,z ; )= 0, and for all i,(zi,zi) = l.  Notice that in the 

above equation у . denotes the complex conjugate of y i . Hence the inner
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product of x and у  can be easily obtained as the product of the row vector 

xT = (x, ,x29...,xk) by the column vector

У =

Finally we note that in the linear algebra literature real and complex 
inner-product spaces are called Euclidean and Unitary spaces, respectively.

2.5 Direct Sums and Orthogonal Complementary Subspaces

Let V be a vector-space, and let Vx and V2 be two subspaces of V. We do 
not assume first that there is an inner product in V . From Theorem 2.3 we 
know that the intersection Vx n  V2 is also a subspace of V . However the 
union Vx U V2 is not necessarily a subspace as the following example 
illustrates.

K=\

Exam 
i '

a

0

x  =

and

vA/

э!е 2.28. Assume that V = R , and let

a is real a is real >. The vectors, and V2 ~\ci' 

are in Fj and respectively. However their sum, the vector 

does not belong to Vx u V 2, since x £ Fj and x&V^
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The subspace generated by the union Vx U  V2 is the smallest subspace 
containing both Vx and V2. By using the notation introduced in Section 2.2, 
we might use the symbols V(Vxk jV2) or V(V[9V2)to  denote this 
subspace. The construction of F (F jU F 2) is given in the following 
theorem.

Theorem 2.13. Let Vx and V2 be subspaces of a vector space V .
Then

V(VxKjV2) = {x+ y\ xeV x and y e  V2} . (2.9)

Proof. Let U denote the right hand side of (2.9). First we show that 
any element of V(Vx U  V2 ) can be written as the sum of an element of Vx 
and an element of V2. Theorem 2.4 implies that any arbitrary element 
zeV(Vx u K 2) can be written as a linear combination of finitely many 
elements of Vx u F 2, that is,

z = a ,x ,  + ... + a kx k +bl y i + ... + 6, ^ ,

where x l9...9x k e Vx and y^,...9y f e V2. Here we used the fact that each

element of the union Vx u  V2 belongs either to V\ or to V2. Since V\ and V2 
are subspaces,

x = axx x +...+akxk e F ,andy = bxŷ  +...+b,yi e V2> 

and therefore, z = x + у . Hence V(VX u K 2) c [ / .
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In order to complete the proof of the theorem we have to show that 
U с  V(VX kj V2) by verifying that if  x e V x and y e  V2 are arbitrary

elements, then x + y e  V(V, u F 2) .  Since Vx and V2 are subsets of

V(VX u K 2) ,  both x and у  belong to V(VX u F 2) ,  and the fact that

V(VX u V2) is a subspace implies that x + y e  V(Vx u K 2) .  Therefore

U <zV(yx u F 2) ,  which completes the proof

4*
Remark. The above theorem guarantees that every element of the 

generated subspace V(VX u V 2) can be written as the sum of an element of 
Vx and an element of V2. In most cases this decomposition is not unique, 
as is shown in the following example.

Example 2.29. Select the vector space V = R3, and the vectors

r n ^0" "0"

II 0 > —2 = 1 , and e3 = 0

к

Let Vi be the subspace generated by e j and e2 and let V2 be generated 

by e2 and еъ. Then

ГО "0^ r v

a\ 0 + a2 1 = ^2 | ax and a2 are real ►

к A ) 1 ° ) j

and
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r
'O'

r ° l
'O '

•ь , 1 + b2 0 = bx | bx and b2 are real •

1 ° , 4^2 у

In Example 2.13 we have seen that e^9 e 2 and e3 generate the entire 

vector space R3, therefore V(VX u V 2) = R3, since all of the vectors , e2 
and £3 belong to Vx u K 2. Consider next a three-element vector with 
entries x, ,x 2,andx3. Therefore it can be rewritten as the sum of a vector of 
Vx and a vector of V2. That is,

4 ] r (Г
*2 = +

lo j 1*2 J

Comparing the corresponding elements of the left-hand side and right- 
hand side vectors we see that this equation is equivalent to the following 
system of equations:

*i = ax 

* 2 = ^ + 6 , 
x3 =Z>2.

If vector x is given, then the values of x, ,x 2 ,andx3 are also given. The 

values of ax and b2 are unique, however x 2 can be rewritten as the sum of
two real numbers in infinitely many different ways, therefore infinitely 
many decompositions (2 .10) exist.
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The following result gives a sufficient and necessary condition for the 
uniqueness of the decomposition of the elements of F (F j u  V2) as the sum
of an element of Vx and an element of V2.

Theorem 2.14. Let Vx and V2 be two subspaces of a vector space 
V . Each element of V(Vx u F 2) can be uniquely written as x + у  with 

x G Fj and y e V 2 if  and only if the intersection Vx П V2 consists of only 

the zero vector.

Proof. Assume first, that Vx П V2 = {0}, and assume in addition, 
that for a z , two such decompositions hold:

z = x x + y { = x2 + y 2, 

where xx ,x 2 e Vx and у  , у  ̂  e  V2. We can rewrite this equality as

“ 2E2 = У2 “ Z r

The left-hand side is in Vx and the right-hand side is in V2, therefore both 
sides are in Vx n  V2, which consists of only the zero element. So,

* i - x 2 = y 2 - y ,  =Q>

that is, x x = x2 and у  —У2 proving the uniqueness of the decomposition.

Assume next, that Fj n  F2 contains at least one nonzero element which 

can be denoted by vv. If z = x + y  with some x g Vx and y e V 2> then
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z = (x  + w) + (jy -  w ) , where хФ x + w e  Vx and у  Ф у - w e  V2 
showing that the decomposition is not unique.

*
Definition 2.15. Let Vx and V2 be subspaces of a vector space V 

such that Vx n V 2 ={0}. Then the subspace V(VX u K 2) is called the 
direct sum of and F2, and is denoted by Vx ®V2.

From Theorem 2.14 we know that any element of Vx 0  V2 can be 
uniquely represented as x + у  with some x e V x and y e V 2. This fact has 

the following consequence. Assume that Vx and V2 are finitely generated, 
and let {xx,...,xk) and (y be a basis of Vx and V2, respectively.

Then {xi9—,x k>y  ,...yy  } is a basis of Vx 0  V2. In order to prove this 

assertion we have to show that

(a) these elements are linearly independent;
(b) they generate the entire subspace Vx © V2 .
In order to verify (a), assume that a linear combination of the elements 

*i >— *s zero- Then with some scalars ai and

bj{\<i<k,\<j< l\

axx x+...+akxk +b[y l +...+bl y l = 0 ,

which implies that

ахх\+..лакхк =(-b l )y l+...+(-bl y l ).

The left-hand side is in Vj, the right-hand side is in V2, therefore both are in 
Vx ГЛ V2 , which contains only the zero element. Therefore,
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a lx l +... + akxk = 0 and +... + (-b ,)y/ =0.

Since X} ,...,Xk as well as y i>...,y/ are linearly independent, 

al = ... = ak — 0 and = . . . -b { showing that the set 

>У,} consists of only linearly independent elements. In

order to prove statement (b), consider an arbitrary element z of Vx 0  V2. 
Then with some x e V x and y e V 2, z = x +у . Since is a basis

of Vj , x = axx x + ... + akxk with some scalars ax,...,ak, and since 

{У\9‘~,У is ab a s is in  V2,y = bx у  j +... + b{y  /. Therefore

z = x + y  = a ,x t +... + akx k +b,y^ +... + bl y /,

that is, z is a linear combination of vectors x x 9-^,xk, y ] 9—,У{ • Hence, they

generate the entire direct sum Vx 0  V2 . This statement has the following 
important consequence:

d im ^  0  F2) = dim (F,) + dim(F2), (2.11)

since the dimension of finitely generated subspaces equals the number of 
basis elements.

Let's drop next the assumption that Vx П V2 = {0} . Then Vx © V2 is not 
defined, but the subspace V(VX u l^ 2) generated by the union of Vx and 
V2 is defined. We will next show that a straightforward generalization of 
relation (2.11) holds in this more general case.
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Then

dim(F(K, u F 2)) + dim(F1 r\V2) = dimfV,) + dim(F2).

Proof. If Vx n V 2 = {0}, then relation (2.11) is equivalent to the 
assertion, since dim({0}) = 0 . Assume next that VXC\V2 ^ {0}. Let 
{*i >•*•>**} be a basis of Vx n K 2 . Corollary 2 of Theorem 2.9 implies the 
existence of elements у  ,...,y and zk+X9...,zn such that {xx,...9xk} is a

-----л + 1  — /П

basis of Vi and { i, , z t+l, . . . ,z n} is a basis of V2. By using the 
method which was applied in proving relation (2.11) one may easily verify 
that {x,,...,хк,у м У",z t + 1 z„} is a basis of V(V{ u V 2) . That is,

dim(K(K1 u  K2)) = m + n -  к . The assertion then becomes clear, since 
dim(F1 n V 2) = k, d im (Fj) = m, and dim(F2) = n.

*

Direct sums of more than two subspaces can be defined in the following 
way.

Definition 2.16. Let Vx,V2,...,Vk be subspaces of V . Then 

Vfri/ 2» - / * )  is said to be the direct sum of Vx,...,Vk, if  each element 
v€  r(r„rt,...,Vk) can be uniquely expressed as a sum

v = vj + ... + vA, (2.12)

where for i = 1 ,2 ,.. . ,* , Vj G V-. In this case we use the notation

Theorem 2.15. Let Vx and V2 be finitely generated subspaces.
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v(F„v2>...,vt)=vl ®v2®...evi .

Notice first that for к = 2 , this definition is equivalent to Definition 
2.15. To show that a vector space (or a subspace) V is the direct sum of 
given subspaces Vl,V2,...,Vk , we have to verify two things. First, we have
to prove that each element can be written as the sum (2.12), and second, that 
this decomposition is unique for all v e F .  In practical cases, however we 
do not need to check uniqueness for all elements of v as it is given in the 
following result.

Theorem 2.16. Let V be a vector space (or a subspace) and 
Vx,V2i...,Vk be subspaces of V . Then V = Vl 0  V2 0 . . .0 F *  if and only 
if

a) for all v e  V , v can be expressed as

v = v, + v2 + ... + v* ,

where V,- e  Vi (/ = 1 ,2 ,...,* );

b) if  v, e  Vj (/ = 1 ,2 ,...,*) are elements such that

Vj +...+V* = 0, (2.13)

then Vj = v2 = ... = vk = 0 .

Proof. If V = Vi e V 2 0 . . . 0 F * ,  then (a) is obviously satisfied. 

Since the selection v1 = v2 = ... = vk = 0 satisfies equation (2.13), the 
uniqueness of such decomposition implies that necessarily Vj = 0 for all / .
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Assume next that conditions (a) and (b) are satisfied. From (a) we know 
that all elements v of V can be written as the sum (2.12). In order to show 
that V = Vx 0  V2 0  ...@ Vk it is sufficient to prove that decomposition 
(2.12) is unique. Assume that for some v e V ,  we have two such 
decompositions:

Y = +У2 + — + ¥k = y ' i+^2 +— + Z'* » 

where vf., v'f. e  Vj for all i . Then

(v, - v , ’)+ (v 2 - v ' 2) + -  + (v* - v '* )  = 0,

and since Vi , condition (b) implies that for all i , -  vf, = 0 , that

is, v. = vV proving the required uniqueness.

4i

We conclude this section with a particular case of direct sums of subspaces 
of inner-product spaces, which will play important roles in later chapters of 
this book.

Definition 2.17. Let Vx and V2 be two subspaces of an inner- 
product space V . We say that V2 is the orthogonal complementary 
subspace of Vx in V , if

(i) V\ n V 2 ={0};
m v x® v 2 =v\
(iii) for all x G and x G V2,(x,y)= 0 . That is, all elements of V{ are 

orthogonal to all elements of V2.
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If V2 is the orthogonal complementary subspace of Vx then Vx is also 
the orthogonal complementary subspace of V2 in the same inner-product 
space.

Example 2.30. Select V = R2 , and let Vx=V(ex) and 

V2 = F (e2). That is, Vx and V2 are the subspaces generated by vectors e j 

and e2, respectively. We will show that Vx and V2 are orthogonal 
complementary subspaces in V . Notice first, that

and

Vt = l a

V2 =\b

II

i0 0 j

'O'
1=1и1 1w

a is real

b is real

Property (i) is obvious, since for any vector x = (xi ) such that 

x e  Vx n V 29x2 = 0 (since x e V x) and xl =0  (since x e V 2), that is 

x  = 0. In order to prove condition (ii) assume that x = (* ,)  is an arbitrary 

vector in R2 . Then x = xy ex +x2e2, where the first term is in Vx and the 

second term is in V2, and this is the unique such decomposition. Property 
(iii) is obvious, since with arbitrary real numbers a  and b , the inner product

f a )  ( 0 \
of vectors [o J and \b ) is zero, since

'0Y\ , J o '
= (a,0)

\ b J
= a-O + Ob = 0.
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Consider next a subspace Vx Ф {0} in a finitely generated inner-product 
space F , and let V2 be the orthogonal complementary subspace of Vl in V. 
The following characterization results are useful in constructing V2.

Theorem 2.17. The orthogonal complementary subspace consists of 
all elements of F which are orthogonal to all elements of F ,, that is,

V2 = {y |j> e  F , such that (y,*) = 0 for a ll x e  V}.

Proof. We have to verify that all conditions of Definition 2.17 are 
satisfied.

(i) If x e  V{ n V 2> then x e  Vx and x e  V2 , therefore x is orthogonal 
to itself That is, (x, x) = 0 ,  which implies that x = 0 ;

(ii) Let {x,,...,x^} be a basis in F ,. Corollary 2 of Theorem 2.9 implies 

that there are elements e  F such that {xy>-9хк, у ы ,~,Уя}
is a basis of F . Apply the Gram-Schmidt orthogonalization process for 
these vectors, then an orthonormal basis {zl9...,zk,zk+l,...,zn} of F is 
obtained. From the inductive nature of the procedure it follows that 
f e i>•••>£*} is a basis of Vy Denote the subspace generated by the other 

basis elements by W . We will verify that W = V2. First we
show that W с  V2. Let z e W be arbitrary, then

— ~ ak+l Z.k+1 + + &n—n>

and if x g Fj , then

x = b{zx +.~ + bkzk.
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Obviously, z is orthogonal to x , since

f  - * '\
(z>*)= 'Z,a,zi,YJbJzj = Y J Y j a,bj {zl ,z })=Q.

n к

i=k+1 y=i

That is, all elements of ^  are orthogonal to all elements of V] implying 
that W e  V2 . Next we show that V2 c= W . Let у  e V2 be an arbitrary 

element. Since V2 с  V , necessarily у e V , therefore

£  = <1,2, + ... + Я* z* + a*+,z A+1 +... + anzn

with some scalars a , an . In order to verify that y e W  we have to prove 

that a , = ... = ak = 0 . For i = 1 ,2 ,.. . ,A:, multiply both sides of the above 
equation by zz- to see that

k i > y ) = a\ i ll > 2i) ■+ -  + a; (z,,z,)+... + a„ (z; , z„ ).

Notice that z . e  F, and у G V2, therefore the left-hand side is zero. If i Ф j , 

(zf. , z y. ) = 0 , which implies that the right-hand side equals a,- (zy, z,.). Since 

zz- 0 (otherwise vectors z, would be linearly dependent),
(z ,.,z j. ) > 0 ,  therefore <3Z= 0 for / = 1 ,2 ,...Д  implying that y e W .  
Condition (iii) follows from the definition of V2, which completes the 
proof

♦

Example 2.31. Consider the inner-product space R2, and let



118 Introduction to Matrix Theory

V\ - 1 [ X I I x is геа̂ f •
X

We first show that Vx is a subspace by applying Theorem 2.2. Let a and b 
be two scalars, and x  and у  two elements from Vx. Then with some real 
values x and у ,

furthermore
ax + by
ax + by

eV r

The orthogonal complementary subspace of F, in R 2 consists of all vectors 
which are orthogonal to all elements of Vx. Now let z = (z f) denote such a 

vector. Then for all x e  V{,

(z,i)=(z,,z2f ^  = z,x + z2JC = x(z1 +z2) = 0,

which holds for all real x  if  and only if  z2 = —zx. 
Hence

z

- z
V2 =i\ II z is real к

♦
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2.6 Applications

In this final section two applications will be briefly outlined, and then 
simple examples will be presented.

1. First a simple algorithm is presented to select a maximum number of 
linearly independent vectors from a set of finitely many vectors. Consider 
vectors xJ,x 2,...,xm E Rn. By using Theorem 2.6, the following algorithm 
can be suggested:

Step 1. Select S = \xx,x 2,...ix m}, and к = 2.
Step 2. Check if  xk is the linear combination of vectors 

If not> then let k:=k + 1 and go to Step 3. Otherwise let 
m:~ m- 1 ,  for / = k,k +1,...,m - 1 ,  set x. := xi+l, and go to Step 3.

Step 3. If к < m , then go to Step 2, otherwise stop. The remaining 
vectors in S  form the requested maximum number of linearly independent 
vectors.

Example 2.32. Select m = 4 and

T T
< 1 > 1 D 2 > 3 >

,0 , l 2J

We first select к = 2. Since x2 is not a constant multiple of x , , it is not a 

linear combination of x , . Therefore we let к = 3, and go to Step 3. Since 
к <m, we have to go back to Step 2, where we have to check if  x3 is a 

linear combination of x , and x 2 . It is easy to see that x 3 = x{ + x 2,
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therefore we let от = 3 , and x 3 =

A ,

. Therefore system S  is modified as

J ,

1 

1

J, ч-v
►. In Step 3 we see that к = m, so we have to go back to

Step 2, where we see that x 3 = x , + 2 x 2. Therefore we let от = 2 , and the 
final set becomes

rn HI
• 1 > 1

к A
♦

2. Assume next that system S = {xX9x 29...,x*} is orthonormal, and a 
vector x  does not belong to the subspace generated by the elements of S . 
That is, x cannot be expressed as the linear combination of vectors 
X\9x2,...9x k . We will now find the linear combination of these vectors that 
has the minimal distance from x. This is a particular case of the least 
squares problem known from statistics. Mathematically this problem can be 
formulated as an unconstrained optimization problem:

Mimmize |с,дс1 +c2x 2 +... + ckx k -x|  !

In order to find the optimal values of cl9c29...9ck, consider the square 
of the objective function:
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к 2 ( к к \
Z c,* ; — X = ± с , х , - b Z  CiZt~Xi=l \ »=1 1=1 J

кz
1=1

кz
1=1

where we used the fact that the elements of S  form an orthonormal system. 
It is easy to see that this objective function can be rewritten as

Z  (c/ -(£/> £ ))2 + s) ■- Z  -■ > £ ¥■i=i

It is clear that this function is minimal if  we select

с ,=(х„х) (2.14)

for all i = l ,2 ,. . . ,k . If the elements of S  are not orthonormal, then 
Theorem 2.12 implies that the subspace generated by the elements of S  has 
an orthonormal basis Then we have to use the above
procedure with the new system S' = \zy,z2,...,zi}.

Example 2.33. Assume that

5  =
T r n

2)
< 0 j 2 and x = 2

3-j

First we show that x cannot be expressed as the linear combination of the 
two vectors of S . The equation
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A

0 + b 2 = 2

A A A

can be rewritten as the system

a + b = 2 
2b = 2  

a + 2b = 2.

From the second equation we see that b = 1, and from the first equation we 
obtain that a = 1. However with these values the third equation is not 
satisfied. Notice that the inner product of the two given vectors of S equals

= l  + 0 + 2 = 3 * 0 ,

therefore they are not orthonormal. In order to use the above algorithm, an 
orthonormal basis of the subspace generated by these two vectors has to be 
first constructed. The Gram-Schmidt orthogonalization process will be used. 
In our case, к = 2,

'Г\

IIH\ 0 and x2 = 2

I h Ia

We will follow the method introduced in the proof of Theorem 2.12. From 
equation (2.6) we have
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Z ,= * . =Vi2+o2+i2 = 4 i ,

L

Equation (2.8) implies that

= x 2 - { x 2 ,z,)z, =

' _ L '
л/2
0

J _

f 1 1 Г 1
T

3 л/2 2
2

%/
0 = 2

9 ” V 2 1 1

, 2 ,

18 __3_  

4 4 2 '
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And finally, from equation (2.14) we conclude that

^ , 0  Д2 2
V2/

= 2 ^ 2 ,

, ч f л/2 2V2 V2
= U2>*H —7-.—г“»т-

v2 ,
= 3 ’

and so, vector

c ,z ,+ c 2z 2 = 2л/2

'  £ \  
6

'1 1 1
92

0 + lV2 2V2 _ 16

й .
3 3

Vi
9
22

 ̂ 2  J
6 ,

1 9 J

belonging to 5  has the smallest distance from x .
♦

The least squares method will be discussed later in Section 3.8, where a 
different solution method will be introduced.

3. Assume now that x l9...,xn form an orthonormal basis in Rn, and 
construct the matrix

Л = (х1Ух2,...,хп)

with columns xx yx2,...,xn. The transpose of this matrix can be written as
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AT =

T\
* i

T
— 2

T
X V—Я J

and since x j x s = 1 and xjX j  = 0 (i Ф j ) ,  A7 A = / showing that in this 
special case,

A- ' =A T.

In Chapter 7 we will examine special matrices including the ones 
satisfying this relation.

T4. If x, form an orthogonal basis, then x, Xj = 0 for all / Ф j .

Denote the products x". x ; by dj. Then similar to the previous application 
we have

ATA =

n /

5. Many problems of operational research can be formulated by using 
inner-products of finite dimensional vectors.

The most simple example is the objective function of linear 
programming problem, which are usually written as 
c\x\ + c 2JC2 + ... + C,xn, where cu c2,...,cn are given coefficients. Notice

that this objective function can be rewritten in the form of с x = (c,x),
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where the inner-product introduced earlier in Example 2.21 is used. Here Cj 
is the /- entry of the column vector с , and x, is the i -  entry of x .

Nonlinear complementarity problems can be formulated in the following 
way. Let function / : Rn h-> Rn be defined for all nonnegative vectors x. 
Then the corresponding nonlinear complementarity problem has the form:

xTf{x )  = 0 

x > 0  
/ (* )>  0.

Using again the inner-product of Example 2.21, this problem can be 
reformulated as

U ,/ (* ) )= °
x> 0 
fk)>0.

Notice that for all i, either xt or f i (x) has to be zero, where f  x (x) denote

the /- entry of vector f{x).  In the special case, when f(x\~ Mx  + b

with some nxn  matrix M_ and b e R ny the problem simplifies to the 
following:

xT(Mx + b) 
x>0  
Mx_ + b> 0,

which is known as a linear complementarity problem.
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Variational inequalities have the usual form

(a l lx e  R ”)

where / : R ” h->R” is a  given function, and x *  e R ” is a given vector 

from the domain of / . Notice again that the left hand side can be expressed 
is the inner-product of Example 2.21, the problem can be rewritten as

(x -x * ,/ (x * ) )<  0 (a llx e  R " )

2.7 Exercises

1. Show that the real numbers form a real vector space with the usual 
addition and multiplication. Is the set of rational numbers a subspace of this 
vector space?

2. Let V and W be two real vector spaces. Define V X W as the set of 
all ordered pairs (v, w) such that v e V  and w e  W. Define addition and 
multiplication by scalars element-wise, that is, 
(v,, w ,)+ (v2, w2) = (v, + v2, Wj + w2) and д(у, w) = (av,aw) . Is V x W a 
real vector space?

3. Determine which of the following subsets of Rn are subspaces. The 
set of

a) all vectors (xy) such that xx = 0 ;

b) all vectors (x,.) such that jCj Ф 0 ;

c) all vectors (x .) such that x, = 1;
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d) all vectors (x f. ) such that x, + x 2 + ... + xn = 0 ;

e) all vectors (x#) such that x, + x2 + ... + xn Ф 0 ;

f) all vectors (x,.) such that x, + x 2 + ... + xn = 1;

g) all vectors (x, ) such that a xxY + a 2x2 + ...+  anxn = 0

with fixed real numbers ax ;

h) all vectors (xf) such that a ,x , + a2x2 + ... + anxn Ф0
with fixed real numbers a{ an ;

i) all vectors (xf) such that axxx + a 2x 2 + ... + a nxn = 1

with fixed real numbers ax an .

4. Let V be the set of all continuous functions on [0 , l] .  Determine

which of the following subsets are subspaces. Set of
a) all polynomials;
b) all functions such that / (о ) = 0
c) all functions such that /(О) Ф 0
d) all functions such that / (0 ) = 1

l
e) all functions such that J f(x)dx = 0 ;

0
1

f) all functions such that j f(x)dx Ф 0 ;

g) all functions such that J f(x)dx = 1;
о

h) all functions such that /(o) + / ( l)  = 0.

5. Do vectors | \ and | 1 span the vector space R2 ?



Chapter 2 Vector Spaces and Inner-Product Spaces 129

6. Show that vector
/ л

V1/
cannot be expressed as the linear combination

of
T "3"

and
,2 , ,6 ,

7. Verify that vectors
T T

and
,2 ,

form a basis in R

8. A vector space is spanned by four vectors. What can be said about 
the dimension of this vector space? How your answer has to be modified if 
the four vectors are linearly independent?

9. Assume that xe  Rn is a linear combination of vectors 
x, , x 29... ,xk , and for all i = 1,2,..., k, x} is the linear combination of vectors 

£ i»0 2 >-''»£/. Prove that x is a linear combination of

10. Assume that V = V{xl9x2,...9x k) t where for i = l,2,...,k,xj is the 

linear combination of the linearly independent vectors What 

can you say about d im (F )?

11. Assume that vectors ox,...fok are linearly independent. Examine 
the linear independence of vectors

a) a x,a { + q2ia i9...,ak;

k) Q.\9 ^ .19G.2>>•••>*?*>
C) ~  Q y ,Q 2 >—3

d) Я.\у2а29ЪаЪ9...,как.

12. Are the following polynomials linearly independent?
a) l ,x ,x2..... xk;
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b) 1,1 + x , l  + x + x 2,1 -+* 2x  + x 2,1 + x  Hh x 2 + x 3;

c) l , l  + x , l  + x  + x 2, l  + x  + x 2 + x 3,. . . , l  + x  + x 2 + ... + X * .

13. Determine whether the row vector (1,2,3,4) belongs to the subspace 
spanned by vectors (1,1,1,1), (0,1,1,1), and (0,0,1,1).

14. Are the following vectors linearly independent?

15. Prove that if  Vx is a subspace of V2, and V2 is a subspace of F3, 
then Vx is a subspace of V3.

16. Let V be a real vector space, and A q B czV. Prove that

T| rn rn
b) 1 , 2 , 3 ;

1 2 ^w  w  wT\ rn rn
с) 1 , 2 , 2

17. Let K = {x| x = (x,.)e R \ X] +x2 + =0}. Find a basis in

V , and determine the dimension of V .

18. Repeat Example 2.25 with vectors
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T 'O'
1 and у  = 1

Ik
19. Prove that if  a vector и has zero length, then и = 0.

20. Prove that for any two vectors of the same size,

|m +  v |2 = 2 ы :1---  —1 v  - 1

21. Prove that if \u + v|=|«| + |v| then и is a scalar multiple of v.

22. Repeat Example 2.26 with vectors

T "0N 'O' "0"

1 1 0 0
*i = 1

9 1 > *3 = 1 > —4 = 0

23. Repeat Example 2.27 with functions

Po (•*) = 1> P\ W  = 1 + x> Pl (x) = \ + X + x1, ръ(х) = \ + x + хг +x3.
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24. Select a maximum number of linearly independent vectors from the 

set below

'П

1 2 3 1 2
1 2 3 1 3

<b A U J , U
25.Repeat Example 2.33 with vectors

Tj "0" rn
1 s *2 “ 1 2

lb lb u



Systems of Linear Equations and Inverses of
Matrices

Chapter 3

3.1 Introduction

Before presenting a general definition for systems of linear equations, 
consider the following problem. Let a l9a 29...,a„ and b be given m-
element real (or complex) vectors. Assume that we wish to check if  b is in 
the subspace generated by the given vectors a {9a 29...9a„. From Theorem 

2.4 we know that be V(a19a 29...9a n) if  and only if  there exist scalars 

xl9x29...9xn such that

X\9.\ + * 2Д2 - b . (3.1)

To obtain an equivalent formulation for this equation, introduce the 
notation

0. i =

4 ] 4 '

f l 2l
5 —2 ~~

a 22 = a 2n
, b  =

b 2

J Ka m 2) \ a mn J

Here ai} denotes the * -  element of vector . That is, the second

subscript refers to the vector, and the first subscript indicates Ле position of 
the element. By using this notation, equation (3.1) can be rewritten as

133
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/ \
M (Ь Л

fl21 + x2 a22 +...+xn

R
...

<3

= b2

\amlJ Kam2J \amn J \Pm j

and by comparing the like elements of the two sides we obtain the following 
set of equations:

1̂1̂ 1 ^12^2 „X„ — Ъ\
a2\X\ ^22*2 + a2nXn = ^2 q  2)
• • • •
• • « •

V i + W 2 + -  + amnxn=bm.

Definition 3.1. If the coefficients aу and right-hand side scalars bi 
are given real (or complex) numbers for all / = 1,2 ,...,m and j  = 1 ,2 , .. . ,я , 
equations (3.2) are called a system of linear equations for the unknowns
X\ 9—9Xn •

Here n is the number of unknowns, m is the number of equations, and 
the system of linear equations is called an mxn  system.

Introduce the mXn matrix A with (i,j) element a-, and let x be the

n -vector with j -  element Xj. Then equations (3.2) can be summarized as

Ax = b. (3.3)

This compact representation can be verified by noticing that for all 
* = 1,2,..., m , the /- element of the left-hand side is the product of the /“ 
row of matrix A by the column vector x :
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V

= ailxl +ai2x2 +... + ainxn,

which is the left-hand side of the z- equation of system (3.2). The /- 
element of the right-hand side of equation (3.3) is bi , which is the right-hand

side of the /- equation of system (3.2). Hence equations (3.1)-(3.3) are 
equivalent to each other. The construction of matrix A implies that its 
columns are the vectors а , ,д 2, . . . ,я я , respectively.

Definition 3.2. If b = 0 , then equation (3.3) is called homogeneous, 
otherwise the equation is called inhomogeneous.
For example,

2jc, + x2 = 0 
x, - x 2 = 0

is a 2x2 homogeneous system of linear equations, and the system

2jCj + x2 =1

x , - x 2 =0

is inhomogeneous, since there is at least one nonzero right-hand side 
number.

3.2 Existence and Uniqueness of a Solution

In this section we will find necessary and sufficient conditions for the 
existence of solutions for systems of linear equations. In the case of the
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existence of a solution we w ill also find conditions for the uniqueness of the 
solution. In the cases of unique and multiple solutions practical algorithms 
will be introduced to find the solution or to characterize all solutions.

Our first example shows that a system of linear equations might not have 
any solution at all.

Example 3.1. Consider the 2x2 system

x ,+ x 2 = 0 

* 1  + * 2  = 1 >

which must not have solution, since xl + x2 must not have two different 
values at the same time.

♦

The following example shows a case, when infinitely many 
solutions exist.

Example 3.2. Consider system

x, + x2 = 0 

xx + x2 = 0,

which has infinitely many solutions: xx is arbitrary, and x 2 = - x x.

♦

In certain cases, a unique solution might exist, as it is illustrated next.

Example 3.3. Consider now the system
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x, + jc 2 =2 
*i -  x2 = 0,

which has a unique solution: xx — x2 = 1, which can be obtained by adding 
and subtracting the two equations.

♦
We will first show that the above examples have covered all 

possibilities concerning the number of solutions of linear equations by 
verifying that in the case of multiple solutions infinitely many solutions 
exist. Consider the linear equations represented in the compact form (3.3), 
and assume that and x 2( ^ x , )  are two solutions. For arbitrary real (or

complex) number t, consider the vector

x = txt + ( l- / )x 2 = x2 + f ( x ,- x 2).

Since x { — x 2 Ф 0 ,  different values of / give different x vectors. 

Substitute x into equation (3.3) to see that

Ax = A(tx, + ( l - t ) x 2) = tAx, + (1 - 4 4 * 2  =tb + {l-t)b  = b.

That is, for all t , x solves the equation. Hence infinitely many solutions 
exist.

From equation (3.1) and Theorem 2.4 we immediately obtain the 
following important result.

Theorem 3.1. A system of linear equations has at least one solution 
if  and only if  the right-hand side vector belongs to the subspace generated
by the columns of the coefficient matrix.

The assertion of the theorem is illustrated in the following example. 
Example 3.4. Consider the system of linear equations
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X y +  2 x 2 + X 3 = 2  

2xx + 4 x 2 + 2x3 = 5.

The columns of the coefficient matrix are

Notice that a 3 — a j and a 2 — 2a x, therefore {я^} is a basis of the
subspace generated by the columns. Since it is generated by only one vector, 
it consists of all scalar multiples of . For any scalar с ,

where the second element is twice the first element. Since the right-hand 

side vector does not have this property, it does not belong to the

subspace generated by a j. Therefore the above system of linear equations 
has no solution.

♦
Using the notation for the subspace generated by the

columns of matrix A, the condition of Theorem 3.1 can be formulated as
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For easier reference F(tflv . . , a n) is often called the column space of 
matrix A. (Similarly, the subspace generated by the rows of a matrix A is 
called the row space of A.) Combining Theorems 3.1 and 2.7 leads to the 
following condition for the uniqueness of a solution.

Theorem 3.2. A system of linear equations has a unique solution if  
and only if  the right-hand side vector belongs to the subspace generated by 
the columns of the coefficient matrix, and the columns are linearly 
independent.

The statements of the above two theorems will be restated in a more 
convenient way by using the following concepts:

Definition 3.3. Let A be an mXn matrix with column vectors 
Q.\ The rank of matrix A is defined as the dimension of the column
space K(a,

Definition 3.4. The augmented matrix of the system of linear 
equations (3.3) is the mX(n + \) matrix with columns a l9...ya n)b.

The next result follows immediately from these definitions and 
Theorems 3.1 and 3.2.

Theorem 3.3. A system of linear equations has a solution if  and 
only if the rank of its coefficient matrix equals the rank of the augmented 
matrix. The solution is unique if and only if  in addition, the common rank is 
n , where n is the number of unknowns.

The statement of the theorem is illustrated next.

Example 3.5. Consider again the system of linear equations
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Xy + 2x2 + JC3 = 2 

2*j + Лх2 + 2x3 = 5,

which was the subject of our previous example, where we have seen that the 
column space of the coefficient matrix is generated by only one vector, that 
is, the rank of the coefficient matrix equals 1. The columns of the 
augmented matrix are the vectors

We will next prove that the rank of the augmented matrix is 2, which 
differs from the rank of the coefficient matrix implying that no solution 
exists. Let

be an arbitrary vector in R2 . We will verify that z can be expressed as a 
linear combination of the columns of the augmented matrix showing that its 
rank equals 2. We will prove that z is a linear combination of and b_ 
which means that with some scalars

Comparing the corresponding elements of the left-, and right-hand sides we 
get the equations
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Z, =  С, +  2 c2 
Z2 = 2  Cj + 5 c 2 .

From the first equation we have

c, — z, — 2 c2,

and substitution of this relation into the second equation gives equation

z 2 = 2zj - 4 c 2 + 5 c2,

which implies that

c2 = z2 - 2 z , ,

and hence

c, = z, - 2 c2 =5zj - 2 z 2.

Hence, for arbitrary vector z , there is a unique pair of scalars Cj and .

♦

In the case of multiple solutions it is very important to characterize all 
solutions. The following theorem provides such a characterization.

Theorem 3.4. Assume that the inhomogeneous system of linear 
equations A x = b has a solution x0. Then for all solutions x * of the

corresponding homogeneous system A • x = 0, x0 + x * is a solution of the
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inhomogeneous system, and all solutions of the inhomogeneous system can 
be represented in this form.

Proof. Assume first that x 0 solves the inhomogeneous system and 
x *  is a solution of the corresponding homogeneous system. Then 
2 = x 0 + x  * solves the inhomogeneous system, since

Az = A(xq + x  *) = Ax0 + Ax* = b + 0 = b.

Assume next that z and x 0 are solutions of the inhomogeneous system. 

Then x* = z — x 0 is a solution of the homogeneous system, since

Ax* = A(z - x 0) = A z -  Ax0 = b - b  = 0.

+
Corollary. An inhomogeneous system of linear equations has a 

unique solution if  and only if  x  = 0 is the only solution of the 
corresponding homogeneous system.

The assertion of Theorem 3.3 can be reformulated by saying that the 
general solution of an inhomogeneous system can be obtained as the sum of 
a particular solution of the inhomogeneous system and the general solution 
of the corresponding homogeneous system. Therefore the complete 
characterization of all solutions of homogeneous systems is the first step 
before the same for inhomogeneous systems can be examined.

3.3 Systems of Homogeneous Linear Equations

In this section the set of all solutions of systems of homogeneous equations 
will be characterized. Our first result gives a characterization based on the 
concept of orthogonal complementary subspaces (which was introduced 
earlier in Definition 2.17).



Chapter 3 Systems of Linear Equations and Inverses of Matrices 143

Theorem 3.5. The set of all solutions of an mXn homogeneous 
system Ax = 0 is a subspace of Rn, which coincides with the orthogonal 
complementary subspace of the row-space of matrix A.

T T TProof. Let г , , r 2 >•••>£*, denote the rows of A , then the 
homogeneous system Ax = 0 is equivalent to the set of equations:

r f x  = 0

L i  *  =  0

(3.4)

d,x = o.

Assume first that a vector z e R n is orthogonal to all vectors of the 
subspace generated by the rows of matrix A. Then it is orthogonal to all 
rows of A, since these rows belong to the row-space of the matrix. 
Therefore, vector z satisfies equations (3.4), and so, it is a solution of the 
homogeneous equation Ax = 0.

Assume next that z solves the homogeneous equation, then it satisfies 
equations (3.4). We will next prove that z is orthogonal to all elements of 
the row-space of matrix A.. Let r T be an arbitrary element of the row- 
space, then with some scalars c, ( 1 < i < m),

L =C\L\ + c2L2 +

and therefore,
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L  z = c tr j z  + c 2r T2z + ... + c mr Tmz = 0,

since each term is zero. Hence, z is orthogonal to r_, which completes the 
proof.

+
Our second result on characterizing the solutions of homogeneous 

systems of linear equations provides a basis for the subspace of all solutions. 
Before formulating the theorem, some notations are introduced. Let 
£1 >•••>£„ denote the columns of the coefficient matrix of the mXn 
homogeneous system of linear equations Ax = 0. Assume that the columns 
(as well as the unknowns) are ordered so that \ax is a basis of the 
column space. Then vectors a r+x are linear combinations of the basis
elements. That is, for к = г + 1 ,...,л ,

9-к = c * i2 i  + -  + ckra ri  (3.5)

with some scalars . For each к = r  + 1 w , introduce the vectors



Chapter 3 Systems of Linear Equations and Inverses of Matrices 145

0

= :
0 ’ 

k - 1  
0

,  0 ,

where the first r elements are the coefficients of the linear combination
(3.5), the k -  element is -1 , and all other elements are equal to zero.

Theorem 3.6. Set {zr+I,...,z„} is a basis of the subspace of all 
solutions of the homogeneous system of linear equations Ax = 0.

Proof. First we prove that for all к = r  + l , . . . ,w , zk is a solution of 
the homogeneous system. Simple substitution and equation (3.5) imply that

Mk  = c* i« i + -  + ckra r +{-\)ak =0.

Next we prove that vectors z r+1,...,z„ are linearly independent. 
Consider a zero valued linear combination of these vectors:
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(c  \c r+1,1 fc ^r+2,I
f \ 
4 l

( \ 
0

Cr+\,r r̂+z,r Слг 0
- 1 0 0 0
0 - 1 0 0
0 +  b r*2 0 0

—
0

• . . .
• : :
0 0 0 0
0 0 0 0
0 , 0 , - b ,0 ,

Comparing the (r + l ) -  ,(r + 2 ) - n-  elements we see that 

~ br+1 = ~br+2 ~ •••= ~bn ~

that is, all coefficients are necessarily equal to zero, proving the linear 
independence of these vectors.

We will finally prove that vectors zr+l,...,zn generate the entire
solution set. Let x = (xf. ) be a solution. The definition of vectors zr+l ,—,zn
implies that vector

** = £ + * „ , z r+1+ ... + x„z„ (3.6)

satisfies the following properties:
(a) x * solves the homogeneous system, since it is a linear 

combination of solutions;

(b) for к = г + the k~ element of x*  equals
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xk + xr*i • 0 + ... + (— l)  + ... + xn 0 = 0.

Therefore

_

with some elements x * ,... ,x * . Property (a) implies that

xi £i + ••■• + x *r a r = 2>

and since vectors are linearly independent, necessarily,

** = ... = x* = 0 . That is, x* = 0, and from equation (3.6) we conclude that

Hence x can be expressed as a linear combination of vectors 
Thus the proof is complete.

Example 3.6. Consider the homogeneous system

x, + 2x2 + 4x3 = 0 

x, - x 2 + x 3 = 0.
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The columns o f the coefficient matrix are

£1 = 1 =
А , and a . =

- 1  1 ,. v  V v

Vectors ax and a 2 are linearly independent and ch = 2ax+ a 2, 
therefore is a basis for the column space of the coefficient matrix.
In our case, n = 3 and r — 2. Since а ъ = 2a x + a 2, from equation (3.5) we 
have

c3, = 2 and c32 = 1, 

and therefore the basis of the solution space consists of only one element:

4 -1/

Hence the general solution has the form:

x -
2c

with arbitrary scalar с .
♦



Chapter 3 Systems of Linear Equations and Inverses of Matrices 149

3.4 Systems of Inhomogeneous Linear Equations

In this sector the solutions of systems of inhomogeneous linear equations of 
the form

A x -  b

will be discussed, where A is an m X n real (or complex) matrix, and b_ is a 
real (or complex) л-vector such that Ьф 0. In Theorem 3.4 we have proved 
that the solution set of the inhomogeneous system is given as

S  = \x0 + x  *| x 0 is a particular solution and x* G Vx}

where Vx is the set of all solutions of the corresponding homogeneous 
system. We have also shown in Theorem 3.5 that Vx is a subspace. That is, 
the solutions can be obtained as the sum of a fixed vector and all elements of 
a subspace. This structure can be generally defined as follows.

Definition 3.5. Let К be a vector space, let Fj be a subspace of V, 
and assume that a given element Xq e V is not in F j. The set

К)

is called a linear manifold. Subspace Vx is called the directing space of S . 
The dimension of S is defined as the dimension of Vx, and is denoted by 
dim (S).

We know from Theorem 3.5 that the set of all solutions of an 
inhomogeneous system of linear equation forms a linear manifold. We can
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also prove that for any linear manifold S c : R n, there exists a certain 
system of linear equations such that its solution set coincides with S .

Theorem 3.7. Let S  be an r-dimensional linear manifold in Rn. 
Then there exists an (n — г ) X n system of linear equations such that the 
rank of the coefficient matrix is Y , and its solution set coincides with S .

Proof. Assume that

5  = {*o + z | z e  F,},

where dim(f/1 ) = r . Let a , ,...,an_r be a basis of the orthogonal 
complementary subspace of Vr  (From Theorem 2.15 we know that the 
dimension of the orthogonal complementary subspace is n — r.)  Define 
matrix A as the matrix with rows a]  . Let b = Axn . We w ill next

—  1 7 ' — Д - Г  _  ---------- и

prove that the system Ax = b satisfies the assertion, that is, its solution set 
coincides with S .

Assume first that x e S.  Then x = x 0 + z with some z e Vt. Then

Ax = Ax о + Az = b,

since each row of A is orthogonal to z , that is, Az = 0. Therefore, x is a 
solution of system Ax = b.

Assume next that x is a solution of the system Ax = b . We will 
prove that x — x Q+z  with some z e  Vr  Consider the vector z = x - x 0. 
Then
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Consequently, for all к = aTkz = 0. Hence z is orthogonal to

all basis vectors of , consequently it is orthogonal to all elements of Vx.

+

Theorem 3.8. Let a linear manifold be defined as given in (3.7).

Proof. Let W denote the right-hand side of relation (3.8). We will 
prove that W с  F, and Vt c W .

Assume first that uc:W  is an arbitrary element. Then u = y - z  
with some у  and z e S .  Therefore у  = x0 + x and z = xQ+x*, where x 
and x * are from VY. Then

Assume next that x e  V{ is an arbitrary element. Then both y  = xQ +2x 

and z = x0 + x belong to S  (since x e V l implies that 2xe Vx), therefore

Then

(3.8)

w = >^-z = (x 0 + x ) - ( x 0 + x * )  = x - x * e  Vr

X = (x0 + 2 x ) - (x 0 + x ) = y - z e W .

In summary, Vl = W , which completes the proof.

Notice that the assertion of the theorem implies that the directing 
subspace Vj does not depend on the selection of vector x0.
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Example 3.7. Assume that the vector space is R2 , and Vx is 
generated by a nonzero 2-element vector a . Then all elements of Vx can be 
expressed as с a with some scalar с . As it is illustrated in Figure 3.1, the 
vectors of Vx form a straight line passing through the origin, and the 
direction of the line is the same as the direction of vector a_. Adding *0 t0 
all vectors of this line geometrically means that the line is shifted by the 
vector xQ. Hence, the linear manifold is parallel to the one-dimensional

subspace Vx.

In analyzing particular linear structures a new concept is often applied, 
which is a common generalization of straight lines of two-dimensional 
spaces and planes of three-dimensional spaces.

Definition 3.6. Let V be a finite dimensional inner-product space 
and let a s V  be a given nonzero element. Assume that b is a given scalar. 
The set
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is called a hyperplane in V.

In order to show that every hyperplane is a linear manifold, let F, 
denote the orthogonal complementary subspace of the subspace generated 
by vector a. That is,

Theorem 3.9. The hyperplane H coincides with the linear 
manifold S .

Proof. We will prove that H q S  and S c # .  Assume first that 
z g H. We will show that necessarily z e S  by verifying that 
x = z — x0 e  F j. Simple calculation shows that

and dim (F,) = n — 1, where n is the dimension of V . Select the vector

b

and consider the linear manifold
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which implies that x e  Vx, and therefore z e S.
Assume next that z e S .  Then z - x 0 e V n  which means that 

(tf> z-*o ) = 0 . Since

(e.’Z-'X.o) = (д>*)“ 7 ^Ц (д> д) = (я[,z)-b,
V ( £>£) )  (£,£)

necessarily (a, z) = b which implies that z e H .
Thus, the proof is complete.

*
In the special case when V = Rn, the assertion of the theorem is obvious, 
since H is the solution set of the single linear equation

b

т , a x = b,

and hence, from Theorem 3.4 we know that the solution set is a linear 
manifold. Its dimension is the dimension of the solution set of the 
homogeneous equation

a T x = 0,

which is n 1, since vector a  generates a one-dimensional subspace, the 
solution set is its orthogonal complementary subspace with dimension n — 1.
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3.5 Rank of Matrices

In Section 3.2 we have already introduced the concept of the rank of an 
mxn  matrix as the dimension of the subspace generated by its columns. 
We have also seen that conditions for the existence of solutions of systems 
of linear equations could be conveniently formulated by using this concept. 
In this brief section the fundamental properties of matrix ranks will be 
introduced. These results can be summarized as follows.

Theorem 3.10. The following relations are true:
(i) rank (A) = гапк(д r )
(ii) rankQ4 + B) < rankQ^) + rank(^);
(iii) rank (AB) < тт { гап к (Л ); rank(#)}

where we assume that A and В are arbitrary matrices such that the 
indicated operations are defined.

Proof, (i) Assume that matrix A is mxn. Consider the 
homogeneous equation Ax = 0. From Theorem 3.5 we know that the set of 
all solutions of this equation is the orthogonal complementary subspace of 
the subspace generated by the rows of A. The rows of A are the columns

of AT, the dimension of the solution set is therefore n -  rank(^r ). 
Theorem 3.6 implies that the dimension of the solution set is /7-rank(z4). 
Hence,

n -  гап кЦ г )= n -  rank (л),

from which the assertion follows.
(ii) Let Wj ,...yur and v ,,..., vs be bases of the column spaces of A and

В , respectively. It means that all columns of A can be expressed as a linear
combination of vectors w , ur :
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~ c k\4.\ +  - + c t r u r .

Similarly, all columns of В can also be expressed as

= d kl b + - + d h vs.

Since

°k +bk = cklu{ +... + ckrur + d kxvy + ... + </* v „

columns of A + Q are in the subspace generated by the set 
} Therefore the dimension of the column-space of 

matrix _Л + £ is not greater than the number r  + s of vectors in the 
generating system. Notice that r  = гапк(л), s = ran k (i? ), from which the 
assertion follows.

(iii) We will first prove that rankQ^Z?) < rank(./4) by verifying that 

each column of A В belongs to the column-space of A. The k~ column of 
AB  equals the product of matrix A and the k -  column bk of B. Let 
Ь\куЬ2к9—>Ьпк denote the elements of this column, then

к -  \ ka x + blka 2 + ... + bnka nt

here a , a r e  the columns of A . This equation shows that Abk is a
combination of the columns of A , consequently it belongs to the 

column-space of A.

л r*\ ^  WC Ver^^ ^ at rank (4# ) ̂  rank (i?). By using properties (i) and (n) we have
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гапкЫ #) = гапк(Ы #)г )= гапк(#г Лг )< rank(#r ) = rank(#).

Thus the proof is complete.

3.6 M atrix Equations and Inverses of Matrices

In many applications, matrix equations of the form

A X  = B (3-10)

have to be solved, where A is a given mxn  matrix, and B_ is an m xp  
given matrix. The solution of equation (3.10) has to be n X p , otherwise 
either the product A X  is not defined, or the product does not have the type 
m xp.  Let xl9x 2,...,xp denote the unknown columns of X_, and assume

>ki9—>kp аге Ле columns of B. We may therefore use the symbol

where we wish to show the columns of these matrices. Equation (3.10) can 
be rewritten as

and comparing the corresponding columns of the left-hand and right-hand 
side matrices we obtain the following set of equations:
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AX\ = bx

Hence the matrix equation (3.10) is equivalent to p  systems of linear 
equations. Equation (3.10) has at least one solution if  and only if  all systems 
(3.11) of linear equations have solutions. The solution of equation (3.10) is 
unique if and only if  all systems (3.11) have unique solutions. Based on 
Theorems 3.1, 3.2 and 3.3 we immediately obtain the following results.

Theorem 3.11. The following conditions are equivalent to each
other:

(a) Matrix equation (3.10) has at least one solution;
(b) All vectors b{,b2,...,bp belong to the subspace generated by the 

columns of matrix A;
(c) гапк(^4) = гапк((Л, В)), where the first n columns of matrix 

(Л, В') are those of A and the next p columns of (j4, B) are the columns of 
B.

Theorem 3.12. Equation (3.10) has a unique solution if  and only if 
condition (b) or (c) of Theorem 3.11 holds and the columns of matrix A are 
linearly independent.

Example 3.8. Consider the matrix equation
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"1 1 Г
/

* п *12 ^ г ъ
4 1

1 2 1 *21 *22 — 4 5

, 1 1 2 , ,* 3 1 *32 j , 4 6 )

Here A is 3 x 3, X_ and 2? are 3 x 2. Equations (3.11) have now the forms:

f l 1 P "3"

1 2 1 * 2 . = 4

l l 1 2 , < *31, , 4 ,

and
f l 1 n ( x  Л 12 ( 4 \

1 2 1 *22 = 5

J 1 V , * 3 2 , A

Simple calculation shows that the solutions are:

*11 *21 =  *31 =  I *12 =  *22 — 1»*32 — 2*

Hence the solution of the matrix equation is as follows:

X  =

In Section 1A we have already introduced the concept of the inverse of 
a matrix. If A is an n X n square matrix, then the inverse A 1 of A is an 
n X n matrix which satisfies equations
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A-A~' =A~' A - l n,

where I_n is the и X и identity matrix. If A 1 exists, then matrix A is called 
invertible or nonsingular, otherwise it is called singular. We may speak 
about the inverse of a matrix A, since, as we have verified in Section 1.4, 
the inverse of any matrix, if  exists, is necessarily unique.

Our first result gives a sufficient and necessary condition for the 
existence of the inverse of an n x  n matrix.

Theorem 3.13. Let A be a given nXn matrix. The following 
conditions are equivalent to each other:

(a) A~l exists;
(b) The columns of A are linearly independent;
(c) гапк(л) = n .

Proof. Using Theorem 3.11 we will prove that condition (b) is 
equivalent to the existence of at least one solution of matrix equation

A Z  = L -

Notice first that the columns of I_n are the natural basis vectors 
£ i>̂ 2 >*••>£„» and therefore these vectors are in the column-space of A if

and only if  the columns of A generate the entire space Rn (or C "). Since 
A_ has n columns, this is the case if and only if  condition (b) holds. The 
definition of matrix ranks implies that conditions (b) and (c) are equivalent. 
Notice in addition that condition (c) implies that the solution of the matrix 
equation AX_ = I_n is unique. In order to complete the proof we have to 
show that this unique solution also satisfies equation X_ • A = / „ . Observe 
first that this equation also has a unique solution, since it can be rewritten as
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a txJ = L

with rank(£47 )= гапк(л) = n , therefore condition (c) holds. Let Y be the 
unique matrix such that YA = /„ . Then

X  = l nX  = (YA)X = Y(AX)=Y/„ =Y, 

that is, X_ — Y , which complete the proof.

Corollary. Let A be an n x  n matrix. Then X  = A 1 if  and only if 
AX  = /n. Since the columns of /„ are the natural basis vectors ex,...,en, 
the columns of X. are the solutions of the following systems of linear 
equations:

AX\ = e,

— ■г = ~г (3.12)

d l„ = e „

Example 3.9. Let

A =
'2  1 3' 

4 4 7

2 5 97
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^  *3 denote the columns of A 1, then they are the solutions of
equations

and

2
4

Ч2
r2
4
2

'2
4
2

'21

A x3.y

'12

22

/4*32/

\r
43

'23

/ 4 * 3 3 /

ч®/

0

where xjk denotes the element of xk . By substitution one may easily 
check that the solutions are:

*i =

( Г
16

_11
*21

8
V *3U 3

4 .

>*2 =
'12

4 * 3 2 /

8
3
4
I

\  2.

>*з = 23

4*зз/

16
_1

" 8
I
4 у

therefore
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3 __5_y 
8 16 
3 _ J_
4 8

2 4 J

♦
Equations (3.12) show a strong relation between matrix inversion and 

the solution of systems of linear equations. If one has a solver for systems of 
linear equations, then the repeated application of the solver provides matrix 
inverses. We will next show that the reverse is also true: if one has an 
algorithm for inverting matrices, then the matrix inverses can be used to get 
the solutions of systems of linear equations with nonsingular coefficient 
matrices. Consider the system of linear equations

Ax = b

where A is an n X n nonsingular matrix. Multiply both sides from the left by 
A 1 to see that

A~l (Ax)= A 1 b .
Notice that

А~'(Ах) = (л~' a]x = I „ x  = x ,

that is, the unique solution is obtained as x — A 1 b .

16
И

’ 8 
3̂
4
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2x, + x2 + 3jc3 = 3 
Axy + 4 x 2 + 7x3 = 8 
2x{ + 5 x 2 + 9x3 = 7,

where the coefficient matrix and right-hand side vector are as follows:

Example 3.10. Consider the system of linear equations

r2 1 3" '3 '

4  = 4 4 7 and b = 8

I 2 5 l b

In the previous example we have seen that

1 3 5
16 8 16
11 3 1
8 4 8

3 1 1
. 4 2 4

therefore the solution can be obtained as
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That is, * , = * 2 =1 and x3 = 0.

♦

3.7 The Elimination Method

In this section the most frequently used method for solving systems of linear 
equations, matrix equations, and for finding matrix inverses will be 
introduced. By "elimination" we refer to the important property of the 
method that by adding constant multiples of an equation to other equations 
we can make the coefficients of a given variable in other equations equal to 
zero. This procedure is repeated until the resulting system of equations has a 
diagonal coefficient matrix. Before giving the mathematical formulation of 
the method a simple example is presented.

Example 3.11. Consider the system of three linear equations

x, + x2 + x3 =3 
2x, + 3x2 -  x3 = 4 
3x, + 5 x 2 + x3 = 9.

The term of the first equation is used to eliminate x, from the other 
two equations. Multiply the first equation by 2, and subtract the resulting 
equation from the original second equation:

(2x, + 3x2 — x3) — (2xj + 2x2 + 2x3) = 4 -  6,

that is,

x2 -  3x3 = -2.
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Notice that this new equation does not contain the unknown x{. Multiply 
next the first equation by 3 and subtract the resulting equation from the 
original third equation:

(3x, + 5 x 2 + x3) — ( З -Xj + 3 x 2 + 3x3) = 9 - 9 ,  

which can be simplified as

2 x 2 -  2x3 = 0.

Notice that xx is not contained in this new equation. By replacing the 
original second and third equations by these "new" equations we get the so- 
called first derived system:

х , + х 2+ х 3 =3 
x2 -  3x3 = -2  (3.13)
2 x 2 -  2 x 3 =  0 .

Select next the first term x2 of the new second equation to eliminate x2 
from the first and third equations. Subtract the second equation from the first 
one to have

(x, + x 2 + x 3) - ( x 2 - 3 x 3) = 3 - ( - 2 ) ,

that is,

x i +  =  5.
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To eliminate x2 from the third equation, subtract the 2-multiple of the 
second equation from the third equation:

( 2 x 2 - 2 x 3 ) ~ ( 2 x 2 - 6 x 3 ) = 0 - ( ~ 4), 

which simplifies as

4*3=4.

By replacing the first and third equations of the first derived system by these 
new versions, we have

x{ + 4*3 = 5 
x2 -3 * 3= -2  (3-14)

4x3 = 4,

which is called the second derived system. As the last stage of the method, 
we eliminate x3 from the first and second equations. Divide the last
equation by 4 then the coefficient of x3 becomes 1. This small step makes
the elimination of x3 from the other two equations easy, since we have to
multiply this new third equation

by the coefficients of x} of the other equations. Subtract the 4-multiple of 
equation (3.15) from the first equation of (3.14) to have

x1+ 4 jc3 - ( 4 jc3) = 5 - 4 >
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X , = 1 .

Multiply equation (3.15) by -3 and subtract the resulting equation from the 
second equation of (3.14):

x2 — 3x3 — (— 3x3) = —2 — (— З),

which can be simplified as

that is,

The resulted third derived system becomes:

x2 = l  
x3 =1,

which provides the solution of the original system.
♦

Following the procedure of the above example some general 
observations can be made:

1. If we wish to eliminate a variable from all but one equation, then 
a nonzero coefficient of that variable is first selected. This coefficient is 
called the pivot, and it must be nonzero. If we divide the equation of the 
pivot coefficient by the pivot, then this coefficient becomes 1. (This was 
done by dividing the third equation of (3.14) by 4.)
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2. Pivot element can be selected only once from an equation, 
otherwise we bring back already eliminated variables into the equations. To 
illustrate this point assume that in system (3.13) the term x2 of the first 
equation is selected as the pivot. That is, pivot is selected from the first 
equation for the second time. Subtract the first equation from the second 
one, and subtract the 2-multiple of the first equation from the third equation 
to have

(x2 - 3 x 3)-(x ! + x 2 + x3) = - 2 - 3
and

( 2 x 2 -  2x3) - ( 2 x 1 +  2 x 2 +  2 x 3 )  =  0  -  6 ,

that is,

-jc, -  4x3 = -5
-  2x{ -  4x3 = -6.

As we see, variable x1 has "come back" into the second and third 
equations.

3. In the above example always diagonal elements were selected as 
pivots. It does not need to be in this way all the times. In case of the 
selection of a non-diagonal pivot element, the pivot can be placed into the 
diagonal by interchanging equations and variables, if necessary. To illustrate 
this point, assume that in the original system of the previous example the 
second term 5x2 of the last equation is selected as the first pivot. We can 
bring this element to the first diagonal position by interchanging the first 
and third equations, and then by interchanging variables x, and x2:
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5 x 2 +  3jc, +  x3 =  9  

3x2 + 2jtj -  x3 = 4 
x2 + x x + x 3 = 3 .

4. Notice that at each step of the elimination process we subtract a 
constant multiple of an equation from another equation. It is done by 
subtracting the constant multiples of each coefficients of an equation from 
the corresponding coefficients of another equation. This is the same as 
subtracting a constant multiple of a row from another row. This observation 
makes the calculation faster, since there is no need to copy entire equations 
with all the variables. It is sufficient to copy only the coefficients and the 
right-hand side numbers into the elimination table and manipulate with the 
entire rows of the table. It is very important to indicate the variables at the 
top of the table, since in cases when variables are interchanged, we have to 
indicate these changes there.

In Table 3.1 we show the entire calculation of solving the system of 
the previous example. In each derived system the new pivot row is first 
constructed by dividing the row containing the pivot element by the pivot 
coefficient. The new pivot element (which is circled in the table) is therefore 
always equal to one. Elimination of the pivot variable from the other 
equations is the next step by subtracting constant multiples of the pivot row 
from the other rows.
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pivot row
(row 2) -2x(pivot row) 
(row 3) -3x(pivot row) 
(row 1) -lx(pivot row) 
pivot row
(row 3) -2x(pivot row) 
(row 1) -4x(pivot row) 
(row 2) -  (-3)x(pivot row) 
pivot row

X, X2 X3
1 1 1 3
2  3 - 1 4
3 5 1 9
1 1 1 3

1 -3 - 2

2  - 2 0
1 4

1 -3 2

4
1

1
1

Original system 

First derived system

Second derived system 

Third derived system

5. Each derived system is equivalent to the original system of Unear 
equations, which can be proved as follows. Notice first that by adding back 
the constant multiples of the pivot row to the other rows in any derived 
system, the corresponding equations of the previous derived system are 
obtained, and by multiplying back the new pivot row by the pivot 
coefficient, the original pivot row of the previous derived system is 
obtained. Therefore the solutions of any derived system necessarily satisfy 
all previous derived systems, hence they satisfy the original system. The 
solutions of the original system also satisfy all derived systems since all 
derived systems are the consequences of the original system of equations. In 
the above example the last derived system had the identify matrix as 
coefficient matrix, and therefore the unique solution is given by the 
corresponding right hand side vector. This is not always the case, since 
solution might not exist and in many cases, there are infinitely many 
solutions. We will discuss these cases later in this section.
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The elimination process illustrated in the above example can be 
generally formulated in the following way. Assume that the coefficient 
matrix A = (а~) is m x n ,  that is, there are m equations for n unknowns.
For the sake of simplicity the right-hand side numbers are denoted by 
a i,n+Pa 2,n+i>--->tfm,n+1 (that is, they form the (w + 1)- column of A).

Step 1. Set к = 1.

Step 2. Consider all elements ai} for i = k ,k  + and
j  = k yk +  If they are all zeros, then elimination terminates.
Otherwise, select an atj Ф0 as the pivot coefficient. If i Ф k, then
interchange rows к and i .If  j  Ф k,  then interchange variables j  and к by 
interchanging columns j  and к in the elimination table as well as
interchanging the symbols of the j  ~ and к ^ variables on the top of the
table. The pivot element is now located in the k~ diagonal position.

Step 3. Divide all coefficients of the k^ row by a^ :

O' = к + 1,..., n + 1)
au

akk

and then eliminate the к Jl variable from all other equations: 
aik<r- 0 ( i*  k, i =

av a ij ~ ал ’ akj O' * k , i  =  1,..., m \ j  = k + 1,..., n +1).

After this elimination step, set к <— к +1 and go back to Step 2.
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After the process terminates, the resulted final derived system has one of the 
following structures:

Case 1. The coefficient matrix is the identity matrix. It occurs only 
if m = n, and the final table is as follows:

xi
1 • 1 xin

1 a i,n+l

1 a 2,n+l

*
1 a n,n+l

In this case a unique solution exists:

X ix ~  a \tn+\ > X i2 =  a \,n+2 r " 9 X i„ ~  a n,n+ 1 *

By using matrix notation the table and solution can be given as

T
X

L ^л+1

and
(3-16)

We have to mention here, that the order of the elements of the solution 
vector x might differ from the original order, if we had to interchange 
columns during the elimination process.
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Case 2. All variables have been eliminated, but there are some 
additional equations. This case may occur only if m > n . The final table has 
the form:

xi xi .  ,  xi
J 2 n

1
1

1

Q \ , n + \

a 2 , n + \

n̂ , r t + l  

« r t + l , n + l

« m . n + l

Since all variables are eliminated, all other elements except the right hand 
side numbers and the indicated l ’s are equal to zero. Therefore no more 
nonzero elements are in the table. If all of the "extra" right-hand side 
numbers яя+1>я+1,..., am n+1 are equal to zero, then a unique solution exists:

“  a i,n+\’ X i2 =  f l2 , n + | V ) \  =  a „tn+l ’

Otherwise, there is at least one nonzero value akn+l among the numbers 

an+i,n+\>'”>am,n+i• ^ e n  the corresponding equation

Ooc. + 0 x , 2 +... + 0 x /> = a knH
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is a contradiction, since the right-hand side is nonzero, and the left-hand side 
is zero. Hence, no solution exists. Using matrix notation the final table can 
be written as

TX

ai?,
L

where a and denote the vectors containing the first n and last
( m -n )  elements of а я+1. If * 0 ,  then no solution exists, and if 

(2)
Я/.+1 = 2 > then the unique solution is

(317)

Case 3. We could not eliminate all variables, because there are no 
more equations to select a new pivot element from. This case may occur 
only if m < n . In this case the final table is the following:

In this case infinitely many solutions exist. Variables X can have 
arbitrary values, therefore they are called the free variables. The values of



x ĵXj > . . . depend on the particular selection of the values of the free 

variables. Solve the first equation for , the second equation for x^ , and 
so on, to get the general solution:

n
= a i,n+i~  i xh 

j=m+1
n

= a2,n+, “
y= m + l

n

V = a " .« '_  2 X ; Vy=m+l

Using matrix notation, the final table can be given as
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X(1 )T X(2)T

I A&>-  m — &n+1

and the general solution has the form:

xW = q n+l- A m x m , (3-18)

where vector x is arbitrary.

Case 4. We could not eliminate all variables, because all 
coefficients equal zero in the additional equations. The final table is now the 
following:
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•  < ** Xf 
»*+1 •  •

1 a \,k+\ •  ■ a \,n+\

1 a 2,k+l •  • a 2,n °2 ,n + \

1 a k,k+l •  « ^k,n ° k ,n +l

a k+l,n+l

^m,n+l

Notice that this table is a combination of Cases 2 and 3. If at last one of the 
"extra" right-hand side numbers ak+l n + l am n+l has nonzero value, then
no solution exists, since the corresponding equation is a contradiction. If all 
of these numbers equal zero, then simply ignore the additional equations and 
the resulting table coincides with the final table of Case 3 with m — k. 
Therefore infinitely many solutions exist, and the general solution is 
obtained as it was shown in Case 3. In matrix notation this case results in a 
table of the form:

X(1 )T x{2 )T

L k  л(2)

9-n+y

Q-n+\

If j Ф 0 , then no solution exists. Otherwise, there are infinitely many 
solutions, and the general solution has the form:

x m = a Z ~ A i2>xm . (3.19)
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where vector x ^  is arbitrary.
The following examples illustrate the above four cases and the ways 

how the solutions are obtained.

Example 3.12. We will first solve the system

х, — x2 + x3 = 1 
2xj + x2 — x3 = — 1 
xt + 2 x2 + x3 = 4.

The elimination procedure is given in Table 3.2.

Table 3.2. Elimination o f Example 3.12.

Pivot row 
(row 2) -2x(pivot row) 
(row 3) -lx(pivot row) 
(row 1) -  (-l)x(pivot row) 

Pivot row 
(row 3) -3x(pivot row) 

row 1
(row 2)+lx(pivot row) 

Pivot row

X1 X2 хз
1 -1 1 1
2 1 -1 -1
1 2 1 4
1 -1 1 1

3 -3 -3
3 0 3

1 0 0
1 -1 -1

3 6
1 0

1 1
1 2

original system

first derived system

second derived system

third derived system
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Notice that in the first equation of the second derived system the 
coefficient of jc3 is zero. We simply copied this equation into the third
derived system, since zero coefficient does not need to be eliminated. The 
pivot elements (after dividing the pivot terms by the pivot coefficients) are 
circled in all derived systems. The last system gives the unique solution:

jc, =  0 ,  jc2 =  1, jc3 =  2 .

♦
Example 3.13. Consider next the system

x\ ~~ X2 + хз 
2x, + x 2 - x } = -1  
jc, + 2 x 2 +  x 3 =  4 

Ъхх + 2 x 2 — jc3 = 0 

jc, + x 2 - 2 x 2 = —5 .

The elimination process is shown in Table 3.3. The last two equations 
have all zero coefficients, and in the case of the last equation the right-hand 
side is nonzero. Therefore no solution exists. Modify the original last 
equation as

jc, +  x 2 — 2 x 2 — -3,

and repeat the elimination process. The calculations are also shown in Table
3.3, where the new right-hand side numbers of the last equations are given 
next to their original values.
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Table 3.3. Elimination of Example 3.13.

Xl x2 x3

original system

1 -1 1 
2 1 -1 
1 2 1 
3 2 —1 
1 1 -2

1
-1
4
0

-5 -3
pivot row 1 -1 1 1
(row 2)-2x(pivot row) 3 -3 -3
(row 3)-lx(pivot row) 3 0 3 first derived syste
(row 4)-3x(pivot row) 5 -4 -3
(row 5)-lx(pivot row) 2 -3 -6 -4 1
(row l)+lx(pivot row) 1 0 0
pivot row 1 -1 -1
(row 3)-3x(pivot row) 3 6
(row 4)-5x(pivot row) 1 2
(row 5)-2x(pivot row) -1 -4 -2
row 1 1 0
(row 2)+lx(pivot row) 1 1
pivot row 1 2
(row 4)-lx(pivot row) 0
(row 5)-(-l)x(pivot row) -2 0

Notice that only the last right-hand side numbers become different, since we 
did not select pivot from the last equation. The right-hand side numbers of 
the last two equations become zero showing that a unique solution exists:

x[ = 0, *2 = 1, *з=2.



Example 3.14. We solve now the system

*i + x 2  + xi + x4 = 2  

x \ + x 2 +  2*з + 2x 4 =  2 

+ x2 + 2*з + 4x4 = 2,
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which has only three equations for four unknowns. The elimination process 
is shown in Table 3.4.

Table 3.4. Elimination of Example 3.14.

xi *3 x 4 X2

X2 X2 X4

X3
1 1 1 1 2
1 1 2 2 2 original system
1 1 2 4 2

pivot row 1 1 1 1 2
(row 2)-lx(pivot row) 0 1 1 0 first derived system
(row 3)-lx(pivot row) 0 1 3 0

1 1 1 1 2 columns 2 and 3 are
1 0 1 0 interchanged in the
1 0 3 0 first derived system

(row l)-lx(pivot row) 1 1 0 2
pivot row 1 0 1 0 second derived system
(row 3)-lx(pivot row) 0 2 0

1 0 1 2 columns 3 and 4 are
1 1 0 0 interchanged in the

2 0 0 second derived system
row 1 1 1 2
(row 2)-lx(pivot row) 1 0 0 third derived system
pivot row 1 0 0
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Since in the first derived system, the coefficient of x2 is zero in the 
second and third equations, no pivot element could be selected from the 
second column. We had therefore selected the jc3 term from the second
equation as the pivot term. We had to interchange the second and third 
columns in order to bring the pivot element into the diagonal position. In the 
same time we had to interchange x2 and x3 on the top of the table. Since
the third coefficient in the third equation of the second derived system is 
also zero, the last pivot element had to be selected as the fourth coefficient 
of this equation. We had to interchange the third and fourth columns in 
order to bring the pivot element into the diagonal position again. In addition, 
we had to interchange x2 and x4 on the top of the table. From the third 
derived system we see that x2 is the only free variable, and

x, = 2 - x 2, x3 = 0, x4 = 0

is the general solution.

Example 3.15. Consider next the system

*! + *2 + *3 + * 4 = 2
2xj + *2 + 2xj + 2 x4 =  3 

3 x l + 2 x2 + 3 x 3 + 3x4 = 5 
x l + Xj +  x4 = 1.

Table 3.5 shows the elimination process. From the last table we see that 
infinitely many solutions exist.



Table 3.5. Elimination of Example 3.15.
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pivot row
(row 2) -2x(pivot row) 
(row 3)-3x(pivot row) 
(row 4)-lx(pivot row) 
(row l)-lx(pivot row) 
pivot row
(row3)-(-l)x(pivot row) 
(row4)-(-l)x(pivot row)

x. x 2 хз x 4
1 1 1 1 2
2 1 2 2 3
3 2 3 3 5
1 0 1 1 1
1 1 1 1 2

-1 0 0 -1
-1 0 0 -1
-1 0 0 -1

1 1 1 1
1 0 0 1

original system

first derived system

should be deleted 
as meaningless 
equations

The free variables are x3 and x4, and the general solution is:

xx = l - x 3 - x A, x 2 =1.

The solution of matrix equations and inverting matrices are based on the 
repeated application of the elimination method. Since the coefficient matrix 
is common in the systems to be solved, the elimination process has to be 
performed only once, but several right-hand side vectors should be 
considered simultaneously. This idea is illustrated in the next two examples.

Example 3.16. We will first solve the matrix equation
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'1 i n '3 4^
1 2 1 •2C = 4 5

1 2J

which was the subject earlier in Example 3.8. In the elimination table the 
entire right hand side matrix has to replace the right hand side vector. The 
process is shown in Table 3.6.

Table 3.6. Elimination o f  Example 3.16.

pivot row
(row 2)-lx(pivot row) 
(row 3)-lx(pivot row) 
(row l)-lx(pivot row) 
pivot row 
row 3
(row l)-lx(pivot row) 
row 2 
pivot row

X, X2 X,
1 1 1 
1 2 1 
1 1 2

3 4
4 5 
4 6

1 1 1 
1 0 
0 1

3 4 
1 1 
1 2

1 1 
1 0 

1

2 3 
1 1 
1 2

1
1

1

1 1 
1 1 
1 2

original system

first derived system

second derived system

third derived system

The "right-hand side matrix" gives the solution:



Example 3.17. We will next find the inverse of matrix
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A =
r2 1 3' 
4 4 7
2 5 9

The elimination procedure is given in Table 3.7. The identity matrix is 
placed as the right-hand matrix. From the last derived system we see that

A-' =

1 3 _ 5
16 8 16
11 3 1
8 4 8

3 1 1
4 2 4

Table 3.7. Elimination of Example 3.17.

pivot row
(row 2)-4x(pivot row) 
(row 3)-2x(pivot row) 
(row 1 )-l /2x(pivotrow) 
pivot row
(row 3)-4x(pivot row) 
(row 1 )-5/4x(pi votrow) 
(row2)-l/2x(pivot row) 
pivot row

x. X2 X3
2 1 3 1 0 0
4 4 7 0 1 0
2 5 9 0 0 1
1 1/2 3/2 1/2 0 0

2 1 -2 1 0
4 6 -1 0 1

1 5/4 1 -1/4 0
1/2 -1 1/2 0
4 3 -2 1

1 1/16 3/8 -5/16
1 -11/8 3/4 -1/8

1 3/4 -1/2 1/4

original
system

First
Derived
System
Second
derived
system
Third
derived
system
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We conclude this section with the example of a matrix which has no
inverse.

Example 3.18. Consider matrix
' I  1 l 4

A = 2 3 3
3 4 4

The elimination process is shown in Table 3.8. The process terminates 
at the second derived system, since the last coefficient of the third equation 
is zero, so no more pivot element can be selected. The right hand side 
numbers have nonzero values in the last equation, which implies that no 
solution exists. We have seen earlier that a matrix inverse is unique if it 
exists. Therefore no such case may occur during matrix inversion that would 
indicate the existence of multiple solutions.

Table 3.8. Elimination of Example 3.18.

pivot row
(row 2)-2x(pivot row) 
(row 3)-3x(pivot row) 
(row l)-lx(pivot row) 
pivot row
(row 3)-lx(pivot row)

X1 X2 X3
1 1 1 1 0 0
2 3 3 0 1 0
3 4 4 0 0 1
1 1 1 1 0 0

1 1 -2 1 0
1 1 -3 0 1

1 0 3 - 1 0
1 1 -2 1 0

0 - 1 - 1 1

original
system

first derived 
system

second
derived
system

♦



Chapter 3 Systems of Linear Equations and Inverses of Matrices 187

In the discussions on elimination as well as in the above examples we 
always assumed that the pivot element was selected from the diagonal of the 
coefficient matrix, otherwise by interchanging rows and columns (which is 
equivalent to interchanging equations and unknowns) the pivot element was 
"moved" into a diagonal position. This interchange has certain advantages in 
simplifying the matrix notation of the solution, however in practical cases it 
is not necessary. If a non-diagonal pivot element is selected, then the 
coefficients of the same variable have to be eliminated from all other 
equations. When the elimination process terminates, the final coefficient 
matrix will not necessarily contain the identity matrix, but it will always 
contain a matrix that can be obtained from the identity matrix by column 
interchanges. The solution of the system can then be obtained in the same 
way as shown before with the minor difference that the order in which the 
unknowns are determined might differ from the natural order. This modified 
procedure is illustrated in the following example.

Example 3.19. We will now solve equations

2xy + x2 -  x3 =3 
jc, + x2 + x ,  =2 

jc, -  x2 + 2л:3 = 0.

The elimination process is shown in Table 3.9.
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Table 3.9. Elimination of Example 3.19.

xi x2 хз
2 1 -1 3
1 1 1 2 1
1 -1 2 0

(row l)-2x(pivot row) 0 -1 -3 -1
pivot row 1 1 1 2
(row 3)-(pivot row) 0 -2 1 -2
pivot row 0 1 3 1
(row 2)-(pivot row) 1 0 -2 1
(row3)-(-2)x(pivot row) 0 0 7 0
(row l)-3x(pivot row) 0 1 0 1
(row2)-(-2)x(pivot row) 1 0 0 1
pivot row 0 0 1 0

Original system

First derived system 

Second
derived system

Third derived system

The first equation shows that x2 = 1, the second equation implies that 
Xj = 1, and from the third equation we obtain x3 = 0.

3.8 Applications

In this section some particular problems will be introduced and 
solved by using the methodology of this chapter.

1. The first model is known as Leontiefs input-output system. 
Consider an economy where n kinds of goods are produced, traded, and 
consumed. The goods are labeled by i = 1,2,...,л. It is assumed that each 
sector produces a single kind of good, so no joint production prevails. 
Distinct sectors produce distinct kinds of goods, therefore there is a one-to-
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one correspondence between goods and the sectors. The sector producing 
.ih

the i good is also denoted by i . In each sector, production transforms
several (possible all) kinds of goods in some quantities into a single kind of

. ihgood in some amount. It is also assumed that to produce one unit of the j
good, Oj. units of the i 4 good (/ = 1,2,...,л) are needed as inputs for
sector j . The ay quantities are called the input coefficients. Let Xj denote

the output of the i ^ good per unit of time, say, per annum. This xj is the
gross output, and part of it is consumed as input needed for production 
activities. The net output of good i can be obtained as the difference of
the gross output and the total amount of the good consumed as input:

y i = x i - Y j aiJxj (/ = 1,2.... и). (3.20)
jM

Introduce the following notation:
IF— 

<N
V /  \  *1

*2 J

4 .
*21

*12
*22

•" *1» 
• • • a 2n

y  =

\У n ;

9 x  =

<X*J

, A  =

*„2 ann >

Vectors x and у  are called the gross and net output vectors, 
respectively, and matrix A is called the input coefficient matrix. Equations
(3.20) can be written in an equivalent form:

x - A x -  y,

that is,
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If the gross production vector is known, then the corresponding net 
production vector is obtained by multiplying matrix /„  -  A by vector x.  It 
is an important question in economic planning to determine the gross 
production vector for given net productions. That is, vector x has to be 
determined for a given matrix A and a net production vector у . Notice that
(3.21) is a system of linear equations with coefficient matrix /„  -  A , right- 
hand side vector у , and unknown vector x . Hence, the elimination method 
introduced in the previous section can be directly used to find vector x .

{ L n - A ) x  =  y .  (3.21)

Example 3.20. As an illustration, consider a three-sector economy 
with input coefficient matrix

A =

1 2 2
10 10 10
2 1 2
10 10 10
2 2 1

Д0 10 10

Assume that an economic plan specifies the net output vector

(3 \0 Л 
200 

v 90 у

Then the gross output vector is the solution of equation (3.21), which now 
has the form
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9  2  2— x . ----- х0 ------xx =310
10 1 10 2 10 3 
2 9 2

-------- x . + — jc2 --------- x ,  = 2 0 0
10 1 10 2 10 3 
2 2 9----- X, ------x2 + — JC, =90.10 1 10 2 10 3

The elimination process can be applied, and the solution

xy =500, jc2 =400, and jc3 =300 

can be found. The details of elimination are left as an exercise.
♦

We mention here that a comprehensive analysis of linear input-output 
models is given in Nikaido (1968).

2. The second model to be discussed here is known as polynomial 
interpolation. Assume that jc1,jc2,...,jcn are given different real numbers,
anc* ) f n are arbitrary real values. The f  values are not necessarily
different. The xf values can be interpreted as the values of the independent 
variable where a certain unknown real function is measured, and for 
* = 1,2,...,л, f .  is the measured function value at jc,.. The unknown
function is approximated by a polynomial of least degree that is consistent 
with the measurements. That is, a polynomial p  of degree as small as
possible is determined such that for / = 1,2,...,л, /?(*,) = f r  We have
therefore n equations. In order to have the same number of unknowns as 
equations, a polynomial of degree n -1  is selected:

P(x) = a0 + a lx + a2x 2 +... + an_lx"~l.
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The unknown coefficients must satisfy the equations:

which is a system of л linear equations for n unknowns. Using matrix and 
vector notation, these equations can be summarized as follows:

It can be proved that this system has a unique solution, if the xi values
are different (that is, when no repeated measurement is used). For details, 
see for example, Szidarovszky and Yakowitz (1978). The resulting 
polynomial is known as the interpolation polynomial.

Example 3.21. Consider four measurements:

1 *2 X2 (3.22)

Xj = 0, x2 = 1, x3 = 2, x4 = 3

and

fi = 0, / 2 = 2, / 3 = 10, / 4 = 30.

The unique cubic interpolation polynomial can be determined by solving 
system (3.22), which now has the form:
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(\ 0 0 (Г /  \  
*0 1 "0 "

1 1 1 1 2
1 2 4 8 *2 10

J 3 9 27, ,30,

Easy calculation (which is left as an exercise) shows that the solution is the 
following:

a0 =0, al = 1, a2 = 0, and аъ = 1.

Thus, the interpolation polynomial is the following:

p(x) = x + x 3.

♦
We mention here that alternative methods to find interpolation polynomials 
can be found in the numerical analysis literature. See, for example, 
Szidarovszky and Yakowitz (1978).

3. From the previous case study we know that by increasing the number 
of measurement points the degree of the interpolation polynomial also 
increases. In many applications, instead of finding the high degree 
interpolation polynomial with exact fit, a polynomial of lower degree is 
determined which is not required to fit the data points exactly, but which fits 
the data as well as possible. Depending on the selection of the measure of 
the goodness of fit, several concepts have been developed. The most popular 
approach is the least squares method\ which can be described as follows. 
Assume again that xx,x2 xn are different real numbers, and f x, f 2 f n 
are arbitrary real values. A polynomial
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p(x) = a0 + a yx + ... + amx' (3.23)

of fixed degree m < n -1  has to be determined which minimizes the sum of 
the squared residuals:

Q =Z (Л - p ( x i ) Y =Z /i - Z a Jx i/=l i=i

\2

y=o у

Since for all / , xf. and are known, this quantity depends only on the
tw + 1 unknown coefficients a0iay,...,am. It can be proved (see, for
example, Ross, 1987) that this function has a unique minimizer, and it can 
be obtained by solving the system

{ x r x ) a  = X T f (3.24)

where

x  = 1

*1

X2
J
x\ xm ... x2

>a =

/  \  
« 0

«1 , f  =

(A)
A

,1 X n Xl m... лп j <am)

The solution of this system provides the values of the unknown coefficients 
ao > of the least squares polynomial (3.23).

Example 3.22. As the illustration of the application of system 
(3.24), we will consider again the data of the previous example, and we will
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find the quadratic least squares polynomial based on the given data set. 
Since m = 2, in this case,

ЛГ =

f l 0 O'
(

' 0 Л
1 1 1 и

, /  =
2

, a = a\1 2 4 i 10

,1 3 9; ,30,

Simple calculation shows that

X TX  =

X Tf  =

f i 0 0^
' l 1 1 Г

i 1 1
0 1 2 3 —

i 2 4
,0 1 4 9,\ У 3 9j
'1 1 1 n

'o'*
" 4 2 '

0 1 2 3
L _ 112
10

0 1 4 9 312\ / ,30,

'  4 6 14 
6 14 36 
14 36 98

therefore equation (3.24) can be written as

r 4 6
14> 4 ' " 4 2 '

6 14 36 a\ - 112
36 98y .312J

The application of the elimination process (the details are left as an exercise) 
shows that
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45 
10

Hence, the least squares polynomial is given as

♦
Finally we mention that further details on the least squares method 

(including alternative procedures) can be found in the numerical analysis as 
well as in the statistical literature. See for example, Szidarovszky and 
Yakowitz (1978) or Ross (1987).

4. In application 7 of Section 1.5 we have seen that the material cost of 
the three kinds of biscuits can be obtained from the ingredient prices as

If the material costs are given, then the prices P\,P2>Ръ can be 
determined by solving the above system of linear equations. As an example 
assume that

c, = 0.5/7, + 02  p 2 + 0.3рз 
c2 = 0.55/?, + 0 2 5 p 2 +0.2/?3 
c3 =0.6/?, + 0.15/?2 + 025p3.

c, = 2.3, c2 = 2.2, and c3 = 2.25,

then the application of the elimination method shows that

P\ = 2, p 2 = 2, and p 3 = 3.
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5. Assume now that at any time / = 0,1,2,..., a system is in one of the 
states Sl9S2,...,Sn. For example, the weather in a city could be in one of
the following possible states: sunny and cold, sunny and warm, cloudy and 
cold, cloudy and warm, raining and cold, raining and warm. It is also 
assumed that the transition from one state to another is not deterministic, it 
can be specified in terms of probabilities that depend on the previous history 
of the system. In the special case, when the probability of each state depends 
only on the immediate history of the system, then the process is called a 
Markov chain. The mathematical model is based on the transition matrix P 
which is defined in the following way. The matrix is nXn,  and its (ij)- 
element Ptj gives the probability that if the system is in state j  at any time
period t , then it will be in state i at the next time period /+1. Clearly,

P \J + P 2 j  + - + P *j =  1>

that is, the sum of the elements of each column is one, and all matrix 
elements are nonnegative. At each time period t, let x x( t \ x 2{t\... ,xn{t) 
denote the probability of each state. That is

P(state at time period t = Sk) = xk (/) (l < к < n) .

Clearly,

X|(0 + X2(/) + ... + X,(/) = l 

and each number xk (/) is nonnegative. It is easy to see that for all / SO,

(3.25)
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that is, the probabilities of different states can be recursirely computed. 

Example 3.23. Assume that

0.1 0.5 0.9"
0.4 0.2 0 ,

0.5 0.3 0.1

and at a certain time period x(t) = (O. l,0.5,0.4)r . 
Then

'0.1 0.5 0.9^ "0.Г ^0.62"
*(' + !) = 0.4 0.2 0 0.5 — 0.14

lo-5 0.3 0.1, [o A j ,0.24,

that is, at time period t+1, the system will be in Sx with probability 0.62, in 
S2 with probability 0.14, and in state S3 with probability 0.24. Predicting
the probabilities of different state for the next time period is a simple task: a 
matrix-vector multiplication has to be performed. We can also raise the 
question of determining the probabilities of the different state for previous 
time periods. For example, we may compute *(/) from x(t + 1) by solving 
a system of linear equations with coefficient matrix P_ and right hand side
vector x{t + 1). Assume now that x(4)=(0.62,0.14,0.24)r , then х(3) is 
the solution of linear equations

"0.1 0.5 0.9Ух,(зЛ "0.62"
0.4 0.2 0 x2(3) = 0.14

,0.5 0.3 0.1, [0.24,
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which has the usual form:

0.1 • X, (3)+ 0.5 ■ x2 (3)+ 0.9 • x3 (3) = 0.62 
0 .4x ,(3)+0.2-x2(3) =0.14 
0.5 • x, (3) + 0.3 • x2 (3)+ 0.1 • x, (3) = 0.24.

Simple calculation shows that the solution is

.Xj (з) = 0.1, x2 (з) = 0.5, and х3(3) = 0.4.

♦
The repeated application of equation (3.25) shows that for all / > 0 and 

/1> 1,

x{t + n ) = P nx(t) (3.26)

giving a simple way to predict future state probabilities. In addition, by 
solving equation (3.26) for x(t), earlier state probabilities can be obtained.
Notice also, that an efficient method to compute matrix powers P  for large 
values of n is therefore very useful in examining Markov chains.

The steady state probability vector of a Markov chain is a nonnegative
vector x  such that the sum of its elements is one, furthermore

Hence x can be obtained by solving the linear equations
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( l - P ) x  = 0  

*1 *2 +  •••+ X„ = 0 .
(3.27)

It can be proved that the rows of /  — P  are linearly dependent, so we 
have at most n linearly independent equations for the n unknowns. Since 
the linear equations are homogeneous, there is at least one nonzero solution.

j|e
In section 7.7 we will also see that all components of x can be selected 
nonnegative.

3.9 Exercises

1. Check if vector x can be expressed as a linear combination of 
x},x2, and x3 if

IIHI
'Я' l > *2 =

' i \
2 > *3 =

f2>
3 IIXIл 4

u ,3, w

'2 n

b) x, = 1 > *2 2 * —3 = 3 , x  = 4

Ь ; A A A
2. Find the solutions, if they exist, of the following systems of 

equations:



a) 2x, - x2 + x3 =3

X \ +  JC2 + x 3 = 2

3jCj + x2 -  x3 = 2

b) x, + x 2 + x3 + x4 = 2

x i “  x i  +  х з +  2 х л =  0  

2x, + x2+ x 3 — x4 =3

c) x, + x2 = 2  
2x, —x2 =1 
2x, + x2 =3

d) Xj + x2 + x3 + x4 = 2  
x, -  x2 + x3 + 2 x 4 = 0.

3. Rewrite the systems of the previous problem in matrix form 
Ax = b.

4. Determine which of the following systems of linear equations are 
solvable:

a) Xj + 2x2 + x3 + x4 =3
-  Xj + x2 - x 3 - x 4 = 0

b) x, + x 2 + x4 = 2  
x, + x3 + x4 = 2  
x2 + x3 + x4 =1 

xl + x 2 + x 3+ x 4 = 2
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c) X, +  2x2 +  X 3 = 4 
x, + x2 + 2x3 = 4 
2xj + x2 + x3 = 4

x ,+ x 2+ x 3 = 2

d) Xj + x2 + x3 + x4 =1 
x, — x2 + x3 — x4 = 1

x, +  2 x 2 +  x3 +  2 x 4 =  2 .

5. Check the solvability of the equations of Problem 2 by using 
Theorem 3.3.

6. Check the solvability of the equations of Problem 4 by using 
Theorem 3.3.

7. Find a basis of the solution space of the following homogeneous 
systems:

a) x, + x2 + x3 =0  
2xt + x2 + 2x3 = 0

b) x!+x2- x 3- x 4 =0 
2xx + x 2 + x 3 - 2 x 4 = 0 
3x1 + x 2 - x 3 —3x4 = 0

c) x, + 2 x 2 + x 3 + x 4 = 0
— Xj + x2 -  x3 -  x4 =0.
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8. What is the dimension of the solution space of the homogeneous 
system Ax = 0, where A is a 2 x n matrix?

9. Find the ranks of the coefficient matrices of the systems of Problems 
2 and 4.

10. Let A be an m X n real matrix, and assume the U_ has m columns 
and V has n rows. Are the following statements true?

a) If the rows of U  are linearly independent, then
гапк(л) = rank(t/ A\

b) If the columns of V are linearly independent, then
rank(^) = rank (Ay).

11. Find the ranks of the coefficient matrices of the systems of Problem
7.

12. Solve the following systems of equations by using the elimination 
method

a) Xj + x2 + =3

2xx + x 2 +7*3 = 6

b) x, + 2 x 2 + 3 x3 = 4  
2*j + 6 x 2 +10*3 =14 
— x{ -  3x2 -  6x3 = 9

c) xx + 2 x 2 + 3x3 = 4 
2jCj + 4 x 2 + 9x3 = 4 
4xx + 3x2 + 2jc3 = 1.
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13. Solve the systems of the previous problem by the formula 
x = A~] b , where A is the coefficient matrix and b is the right- 
hand side vector.

14. Illustrate Theorem 3.2 with the systems of Problem 12.

15. Illustrate Theorem 3.13 with the coefficient matrices of Problem 12.

16. Solve the following matrix equations:

'I 1 P ' 3 0̂
a) 1 - 1 -1 X = 3 0

,2 1 7 , 0,

' 1 2 3^ ( 4 8>l
b) 2 6 10 x = 14 28

-1  - 3 -6 ; I  51 18j

<\ 2 3 s { 4 12'
C) 2 4 9 K  = 4 12 .

I 4 3 2,

17. Solve the previous problems by using the solution formula
X_ = A  ̂В , where A is the coefficient matrix and В is the right- 
hand side matrix.

18. Invert the coefficient matrices of Problem 12.

19. Illustrate Theorem 3.11 with the matrix equations of Problem 16.



20. Repeat Example 3.20 with input coefficient matrix
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A =
r0.05 0.10 0.05n 
0.10 0.20 0.10 
0.05 0.05 0.20

and output vector

У = 200 
300J

21. Find the interpolation polynomial based on data values 

x, = -2 , x2 = -1, x3 = 0, x4 = 1

/ i = 5 , / 2 = 2 , / 3 = 1 , / 4 =2.
and

205

22. It is known from numerical analysis that the unique interpolation 
polynomial based on data set (x,.,/),/' = 1,2,...,n, can be obtained
as

p{x) = f j x(x)+ f 2l2{x) + ... + f„l„ ( 4

where

, / л (* -  )•■(* -  X* -  H f ~ L
(x, - X , j . . ( x < ~ x i - lX x l - X i +l ) - ( X ~ X” )
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(see, for example, Szidarovszky and Yakowitz, 1978). Solve Problem 
3.21 by using this formula.

23. (Continuation of Problem 21). Explain why the existence of a 
unique interpolation polynomial implies that the coefficient matrix 
of system (3.22) is nonsingular if the values xl,x2,...,xfJ are 
distinct.

24. Repeat Example 3.22 with data values of Problem 21. Explain why 
the same result is obtained as in Problem 21.

25. The least squares problem discussed in Section 3.8 can be 
generalized as follows. Let x lfx 2,...,xk be given «-element real
vectors, and let x e  R n be given. Find the linear combination 
c1;Xj + c 2x 2 + ... + ckx k that has minimal distance from x.  This 
problem is usually solved as follows. Define matrix 
2L — >**)> then the vector of coefficients

с = (с, 9c2i..,,ck )T is obtain as the solution of equation 

Repeat Example 2.33 and Problem 2/25 by using this method.



Chapter 4 

Determinants

4.1 Introduction

The most simple "system" of linear equations has only one equation and one 
unknown:

aux = bl9

where a{ j and b{ are real or complex scalars. If ax j Ф 0 , then a unique 
solution exists:

bx — — 
a

(4.1)

If an = 0 and Ь{ Ф 0 , then there is no solution; and if an -  b{ — 0, 
then x can take any arbitrary real or complex value.

Consider next the case of two equations with two unknowns:

a\\x\ ■*" a\ix2 ~~ 1̂»
2̂1*1 "̂” 2̂2*2 2̂ >

which can be summarized as

Ax = b

207
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with the 2x2 matrix A = (a ~) and the 2-element vector b = (fef.). 
The application of the elimination method gives the solution:

(4.2)
a \ \ a 22 a \ 2 Q 2\ a \ \ a 22 a \2 a 2\

if the denominator aua22 - c tna2X is nonzero. Otherwise, there is no 
solution if at least one of the numerators is nonzero, and there are infinitely 
many solutions if both numerators are equal to zero. Notice that the 
denominator depends on only the coefficient matrix. The numerator of xx

matrix is replaced by the right-hand side vector. Similarly, the numerator of 
x2 can be obtained from the denominator by replacing the second column 
of the coefficient matrix by the right-hand side vector. Since the numerator 
and denominator have the same structure, it will be useful in analyzing 
systems of linear equations to examine these quantities and their main 
properties in detail. Notice first that the denominators are scalars, and are 
defined for square ( lxl, 2x2) matrices. If A denotes a square matrix, then 
we will denote this quantity by det(^) and call it the determinant of matrix 
A. From equations (4.1) and (4.2) we see that for lx l and 2x2 matrices

can be obtained from the denominator if the first column of the coefficient

det(a,,) =

and

~~a\\a22 a \2a2\'

Consider next the case of three linear equations with three unknowns. 
Similar expressions are obtained for the solutions with a common
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denominator, which has to be therefore the definition of the determinant of 
3x3 matrices:

d e t

rd\\ al2 al3
a 2 \ a 22 a 23

fh\ Ch>2 Ь̂з.

“ ^11^22  ^33 + а 1 3^21а 32 +  a i 2 a 23<%l

“ ^13  ̂ 22 C*31 a \ \ а 2Ъ &32 a \ 2 a 2\ ̂ 33*

In this chapter the concept of determinants of square matrices will be 
first introduced for the general nXn  case, and the main properties of 
determinants will be examined including their applications in solving 
systems of linear equations.

The general definition of the determinants of n x n  matrices will be 
based on the common properties and characteristics of the above special 
cases.

Notice first that each term has n factors. In the lxl case only one 
element, au , gives the determinant; in the 2 x 2 case there are two terms, 
each term is a product of two matrix elements; and in the 3 x 3 case, there 
are six terms and each of them is the product of 3 matrix elements. Two 
questions have to be answered here: what rule decides which matrix 
elements are multiplied in each term, and how to determine the sign of each 
term. Consider first an arbitrary term of the above special determinant 
expressions. In the 1 x 1 case, the first index of the only term is 1, the 
second index is also 1. In the 2 x 2 case two matrix elements are multiplied 
in each term. The first indices of the two elements are in order 1 and 2 in 
both terms. The second indices in the first (positive) term are 1 and 2, and 
those is the second (negative) term are 2 and 1 as shown in the following 
diagram:
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second indices

first indices

A similar structure is observed in the 3-3 case. In each term, the first 
indices are always 1, 2, and 3 in this natural order. In the positive terms, the 
second indices are

1,2,3; 3,1,2; and 2,3,1, 

and in the negative terms they are

3,2,1; 1,3,2; and 2,1,3.

From the above description we realize that in each term, the first indices are 
the integers 1, or 1,2 or 1,2,3 always in increasing order, however the 
second indices form all permutations of these integers. In the 2-2 case, the 
two possible permutations <1,2> and <2,1> form the sequences of the 
second indices. In the 3 ■ 3 case there are 3!=6 possible permutations of the 
numbers 1,2,3, and the above six sequences of the second indices coincide 
with these permutations. We can summarize the above discussion by 
noticing that in the determinants of 2 • 2 and 3 • 3 matrices there are 2! and 
3! terms, respectively, and each term has the form
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where < j,, i2 > or < ix, i2, i3 > is a permutation of the integers 1,2 or
1,2,3, respectively. In addition, each permutation of the integers 1,2 or 1,2,3 
can be found exactly ones as a sequence of the second indices. In order to 
see how the sign of each term is selected, we have to examine the set of 
permutations associated to positive terms as well as that associated to the 
negative terms. In the 2 ■ 2 case, the permutation <1,2> gives the positive 
term and <2,1> corresponds to the negative term. Notice that the first 
permutation is the natural (increasing) order of the integers 1,2. In the 
second permutation we have to interchange the elements 2 and 1 in order to 
obtain the natural order. In any permutation, the interchange of any two 
elements is called inversion. So, in the positive term no inversion is needed 
to obtain the natural order, and in the negative term one inversion is 
required. Consider next the positive terms in the 3 • 3 case. The first such 
permutation is <1,2,3> with no inversion required, since the elements are 
already in the natural order. The second such permutation is <3,1,2>. We 
need one inversion to move 1 to the first position. After interchanging 1 and
3, the resulting permutation is <1,3,2>, and an additional inversion 
(interchanging 3 and 2) is needed to obtain the natural order. In the case of 
the third such permutation two inversions are needed again:

<2,3,1> (interchange 2 and 1) —> <1,3,2> (interchange 3 and 2) —> <1,2,3>.

Consider next the negative terms. Permutation <3,2,1> needs only one 
inversion (interchanging 3 and 1) to obtain the natural order. The same 
number of inversions are needed in the case of the other two such 
permutations:

<1,3,2> (interchange 3 and 2) —» <1,2,3>

and
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<2,1,3> (interchange 2 and 1) —» <1,2,3>.

Notice that in the case of positive terms 0 or 2 inversions are needed, and for 
negative terms only one is required. This notion can be generally formulated 
as follows.

Definition 4.1. Let ix,i2,...,in be a permutation of the integers
1,2,..., n . Let 7i denote this permutation and let /(/r) be the minimum 
number of inversions needed to obtain the natural order from the given 
permutation. The sign of permutation к  is denoted by sign (Ж) and is 
defined as

i  1 / 0 0  is even 
1-1 if / V )  is Odd.

We mention that if /(;r) is even, then any (not necessarily minimal) 
rearrangement of permutation к  into the increasing order always requires 
even number of inversions, and if 1{k ) is odd, then all rearrangements 
require an odd number of inversions. Therefore in determining the sign of a 
permutation we do not need to find the minimum number of inversions 
required to rearrange the numbers into natural order. It is sufficient to find 
one of such rearrangements and check if the number of inversions is even or 
odd.

Definition 4.2. The determinant of an n X n real or complex matrix 
A = (a~) is defined as

detU )=  Y j s ig n a l , ,  (4-3)

where Pn is the set all n\ permutations of the integers 1,2,..., ft.



Example 4.1. Assume that A. is a lower triangular matrix:
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This definition is illustrated by three examples.

A =

We will show that det (A) is the product of the diagonal elements. 
Consider an arbitrary term of the sum (4.3):

Notice first that al2 = al3 = ... = aln = 0, therefore ац is zero for /, Ф\.
Therefore all such terms can be omitted. We may therefore assume that 

= 1. Consider next the factor a2î . Since i2 ^ i | =1 and with
i2 — 3,4, . . . , /7 this matrix element is zero, all terms for i2 Ф 2 are equal to 
zero. We may therefore assume that i2 = 2. Continue this argument for the 
third factor, then for the fourth factor, and so on, until the last factor to see 
that the only nonzero term is

since sign (7Г)= 1 for the natural order < 1,2,.
One may similarly prove that the determinant of an upper triangular 

matrix is also the product of the diagonal elements. In this case we have to

sign

a\ia22"‘ann >
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consider the factors in the reverse order ап̂  ,Дп_1>/я J . (This case will
also be a simple consequence of Theorem 4.1 to be given in the next section, 
since the transpose of an upper triangular matrix is lower triangular.)

♦

Example 4.2. Assume that A is a diagonal matrix. Then

d etU ) = an a 22...am,

since A is a special lower triangular matrix with zero elements under the 
diagonal. For example, det(/ n ) = 1, where /  „ denotes the n x n identity 
matrix.

♦

Example 4.3. Assume that the /r~ row of matrix A contains only 
zero elements. Then in each term of (4.3) the factor a hk is zero, therefore
the entire sum is zero. Hence, det(y4) = 0. One may similarly prove that 
det(^4) = 0, if the к ̂  column of A consists of only zero elements. Then the 
factor alit (with it = к ) is zero in each term. (We may also apply Theorem 
4.1 of the next section.)

♦
The main properties of determinants will be discussed next and their 

main applications will be outlined.
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4.2 Properties of Determinants

The first result to be discussed in this section can be stated as follows. If we 
interchange the columns of a matrix by its rows then the value of the 
determinant remains the same.

Theorem 4.1. det(v4) = det(v4r ).
Proof. Let K = < i ])i2,...,i„ > be a permutation of the integers

1,2,...,/?. The inverse of permutation 7t is defined as the reordering of the 
numbers il9i2,...,in into the natural order 1 , 2 , and it is denoted by
7V~l . For example the inverse of Я"=< 3,2,1 > is itself. The inverse of 
#=<2,3,1 > is <3,1,2>, since in К , 1 is at the 3 -  place, 2 is at the 1~ 
place, and 3 is at the 2— place. In general, the inverse of permutation 
<i „ i 2 > is >,  where iJt = \ , i h = 2 =«•  It is
easy to see that if К runs through all permutations Pn, then the same is true 
for 7C~X, furthermore sign(#) = s ig n ^ -1). The first statement follows from 
the facts that the inverses of different permutations are different, and there 
are exactly n\ different permutations of the integers 1 , 2 The second 
statement is the consequence of the following simple observation. Consider 
a sequence of pair-wise inversions that transforms permutation К into 
natural order. If we apply the same sequence in the opposite order to the 
inverse permutation 7t~x, then the resulting order of the integers becomes 
increasing again. Therefore

detU T) = Y j ’
К—Oj J2 >•••»*» ̂
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since the (&,/*) element of AT is Qj £ . Let < j l9...9j n > denote the

inverse of 7Г, then by rearranging the summation with respect to К we 
have

detU r )= Z  sign(*r~' )a 4 a 2h ...a nh = detU).
.. jn>*pn

*
In many cases, as it will be illustrated in the next theorem, it is 

convenient to manipulate with the rows or the columns of the matrix the 
determinant of which is under consideration. Let A be an n x n  real or
complex matrix. Let r* ,...,rTn be the rows of A, and let a x, a 2,...,a„ 

denote the columns of A. Then instead of det(y4) we may write det

(  t \  
L\

т

or det(a,,...,an).

Theorem 4.2. The following properties of det(/() are valid:
(a) If two rows (or columns) of matrix A are interchanged, then the 

determinant of the new matrix is -det(y4);
(b) If two rows (or columns) of matrix A are identical, then det(^4)=0;
(c) The value of d e t^ )  is multiplied by с if a row (or column) of A is 

multiplied by с ;
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(d)

d e t

'  r l  '
f  т \  

Lx
(  T \  

Lx

. . .

L k-x
T

r  k-\ Lk-x
T , ,T

Lk + L k =  d e t T
L k + d

T
L k+,

T
L k+x

T
L k+x

T
\  L  n )

T
\  - n  J

T
{  L n )

and

det(g, , a k + a \  , a k+l ) 

det ( a , a k_i >Qk r - d c t ( f l j  * > ̂ *+i >-">̂ Ln)»

(e)The value of det(A) does not change, if a constant multiple of a row
(or column) is added to another row (or column);

(f) det(^) Ф 0 if and only if the rows (or columns) of A are linearly
independent.

Proof. From Theorem 4.1 we know that interchanging the rows of a 
matrix by its columns the value of the determinant does not change. 
Therefore it is sufficient to prove the assertions for rows or for columns 
only. We will next present the proofs for rows.

(a) If two rows in A are interchanged, then each term of sum (4.3)
becomes
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where I > k 97C = < i l9i29„.9in > , and permutation <1 , . . . ,k9...9l , . . . ,n>  is 
obtained from the increasing order < 1 , 2 by interchanging к and / . 
Since one pair-wise inversion changes the sign of the permutation, this term 
can be rewritten as

- s ig n f c ’K ....akIi...aUt...ani' ,

where #*'=< ix ..9in > (that is, n'  is obtained by interchanging 
i, and ik in л).  Adding up all such terms the value o f -d e t^ )  is obtained.

(b) By interchanging the identical rows, the matrix, as well as the 
value of its determinant remains the same. However, from property (a) we 
know that the value of the determinant changes sign. Therefore

detQ4)=-det(/4),

that is, detQ4)=0.
(c) If row к of matrix A is multiplied by С , then each term of the 

sum (4.3) is multiplied by с , since the factor akik is replaced by с ■ akik.
Therefore the entire sum is multiplied by с .

(d) Consider an arbitrary term of the sum (4.3):
s i g n ^ a , . . . . ^  + a kii) . a <

= sign(^)a,. ...aUi + sign(^)a„. ...aUi . . .a^.

Adding up the first terms for all К e Pn gives
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det

f  t \  r,

Lk

\.L„y

and the sum of the second terms for all л  e P„ equals

det Lk

(e) Using properties (d) and (b) we see that

/ J \ ( ТЛ ( ТЛ
Li Li Li

... ...
T , T

—k + C?L 1 = det T
Lk + с ■ det T

Li
• 9 • ...

T
V Ln J

T
U J

T
\L„)

The first term is the determinant of the original matrix. In the second ternJ> 
lit is in the к^ row however the same vector r , is also present in the / 
row, therefore two rows are identical. Then property (b) implies that the 
second term is zero.
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(f) Assume first that the rows of A are linearly dependent. Then 
with suitable coefficients

т . т , T r\TciLi + c2L2 + -  + cnr n = 0 , 

where at least one coefficient, say c , , is nonzero. Then

T  . i T  . i  T  r \Tr, + d2r 2 +... + d„r„ =0 ,

where dk = ck / c ,, (k = 2 Then repeated application of property (e) 
implies that

^ T i t \  {  T i T iL i+ d 2r 2 \ r , +d2r 2 + dJr i
T

detQ4) = det = det

\ -n у

—  2

T
Ln

r J  у
Lx + d 2r 2 +... + d„r„ foT)

T T

= det —2 = det — 2

T T
I  Ln J U J

= 0,

since in each term of the sum (4.3) applied to the last determinant, the factor 
Дц is always zero.

Assume next that the rows of matrix A are linearly independent. Then 
rank(y4) = n , and the system of homogeneous linear equations Ax_ = 0 has 
the unique solution x = 0. Apply the elimination procedure of Section 3.7 to
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solve this system. At each elimination step one of the following operations 
is performed:

(i) Interchanging two rows and/or columns may only change the sign of 
the determinant.

(ii) Dividing any row by the pivot coefficient results in dividing the 
value of the determinant by the nonzero pivot coefficient.

(iii) Adding a constant-multiple of a row to another row does not change 
the value of the determinant.

Therefore det(^) is the nonzero-multiple of the determinant of the last 
coefficient matrix, which is upper triangular with nonzero diagonal 
elements. Then Example 4.1 implies that the determinant is nonzero.

Consider next a scalar-valued function f  which assigns to each n -tuple 
(fl„ ...,£n) of л -element vectors a scalar, and the following conditions are 
satisfied:

(A) / (£ i>•■*,£„) = 1 where are the natural basis vectors;

(B) /{ах,...,ап) changes sign if two of the vectors a. and a_j are 

interchanged;

= /{a,,...,ak_l,qk ,ak + l )+ /(a, ,...,ak_{,a'k ,aM,...,an);

(° )  f ig .ij— *»—*+i>->£») = .a * >£k+1>•••>£„)•

Theorem 4.3. If conditions (А), (В), (C) and (D) are satisfied, then 
for all л-element vectors a x >

/ (a , , . . . ,a j= d e t( f l l
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Afei >->9.n ) = /fe. >■■■>£.„)-detfe .-.2 , )•

Then А (е ,,...,ел ) = 0 and function A satisfies properties (В), (C) and 
(D). The proof of part (b) of Theorem 4.2 implies that A(tf j ) = 0 if 
a. =a_j for some i Ф j .  Let denote the /th element of vector

a} (y = 1 , 2 =  1,2,...,n) , then

a_i = axjex +... + а^еп9

therefore

Proof. Consider the function

f

= .^2»-»£ я)=  Z a /,1A
A A \ I*

= >£/2 >*b,...,an)= ...
/. /2

=E X  - ).
A /2

(4.4)

We will next prove that each term is zero. Notice first that д (е7 e in) — 0 

if two numbers /. and Ij are equal. If the numbers are different,
then they form a permutation of the integers 1,2,..., n , therefore
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Д(?4 » - ,£ ,)=

)if even number of inversions is 
needed to bring permutation< l>  to natural 

order 

-  A(elv ..,en) if  an odd number of inversions is needed 
to bring permutation to natural order

Since A(el9...,en) = 0 , all terms in (4.4) are equal to zero. Therefore 
Д (я ,,... ,ял) = 0 , that is

Thus the proof is completed.
*

Corollary. Assume that function /  satisfies only conditions (B),
(C), and (D). Then for all n -vectors а 19...,ап,

f(a.\>■■■>£„) = det(a, „ )• f ( e x (4.5)

Proof. If = 1, then the assertion follows from the
theorem. Otherwise, consider the function

which satisfies all conditions (А), (В), (C), and (D). Therefore



g (£ i . - ,a „ )  = det(a,

and from the last equation we see that

, /  \  / ( g „ - , e . ) - d e t ( a „ - , g j
f i e  1

which is equivalent to the assertion.

One of the most frequently used properties of determinants is known as 
the multiplication theorem, which is formulated next.

Theorem 4.4. Let В and A be nxn  real or complex matrices.
Then

det (Б = det(i?) • det(v4).

Proof. Define the function

Ж ... a n)=det{Ba Ba„)

which obviously satisfies properties (В), (C), and (D). Therefore the 
Corollary of Theorem 4.3 implies that

det(£a, ) = d e t ( a , q„) ■ det ( B e , Be„ ).

Let now a x,...,an be the columns of A. Then
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(a.i,...,qn) =A,

(Ba i ) = В ■ >•••><?„) = M  
(Bei,- ,B e n) = B ie „ ...,e n) = B L  = B
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and hence, the proof is complete.

Corollary. If A~l exists, then

det (a  ' ) = — i —r, 
U  ' d et(4 )’

since

1 = det (j_n) = det (a 1 • a ) = det (л~1 )dct(/l).

Remark. Recall that A В and BA arc usually different miUricee. The 
assertion of the theorem implies that their determinants arc (ho каше evou il 
they are different.

4.3 Cofactors and Expansion by Cofactor»

The value of det (A) for 2 ' 2 or 3 ' 3 matrices can Ьс оЫ«1тч1 ettsllv 1НМИ 
the definition. In the 2 ' 2 case,



where the two terms can be obtained by the method illustrated in Figure 4.1. 
+

д.. 

a

Figure 4.1. Diagram for evaluating 2 • 2 determinants.

The six terms of the determinants of a 3 • 3 matrix can be obtained by a 
similar, but more complicated diagram, which is shown in Figure 4.2. The 
reader should be cautioned, since there is no similar way to find the values 
of determinants of higher order. In this section a general method will be 
introduced to find the values of n X n determinants in general. Our method 
will be based on the following concept.

+  +  +  - - -
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Figure 4.2. Diagram for evaluating 3 • 3 determinants.
Definition 4.3. Let A = ) be an nxn  matrix. The (/, j )

cofactor Ay of A is defined as

A,  =(-1 f JD9,
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where D}j is the determinant of the ( « - l ) x ( w - l )  matrix that is obtained

by deleting the i Л row and column of matrix A.
The main result of this section can be formulated as follows.

Theorem 4.5. Let A = (a ) be an n x  n matrix. Then for
i 1>2,

det ( i ) = Z V ? >  (4-6)
j=1

where AfJ is the (i, j )  cofactor of A.

Proof. Fix the value of i and define function
n

/ (a  »•••»&, ) = 2 Х л
j=i

where is the i~ element of vector ау and A{j is the (z, j )  cofactor of 

matrix ( a x,...,an). It is easy to prove that f  satisfies all conditions of 
Theorem 4.3:

(A) If A — /и, then from (4.6) we see that

det (Л) = а/Л =1>

because all other terms are equal to zero (since а у = 0 for i Ф j ) and 

an =1 and A, =det(/„_,) = l .
(B) Assume that columns к and l(k < /) are interchanged. Let a  ̂ and 

A\y denote the elements and cofactors of the new matrix. Then it is easy to 

see that
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av =<
a„ i f  j  = k 
a ik if  j  = l 

ai} otherwise,

and

A' =
-A „  i f  j  = k 
- A ik if  j  = l 

-A y  otherwise.

Therefore each term changes sign.
(C) Assume that column a k is replaced by a k + a\ .I f  j  = к , then for

all i , the cofactor remains the same but the element a- has to be 

replaced by the sum a.. + a' fJ .I f  j  & к , then the element afJ remains the 

same and the cofactor is replaced by Atj + A\y , where A'iy is obtained from 

Ay by changing the elements alk to alk for / Ф i . In both cases each term

breaks up as the sum of the corresponding terms with к “ column a k and 
a\ , respectively.

(D) Assume next that column a k is multiplied by a scalar С. Then each
term in the definition of f  is multiplied by с : for j  = k, aik is multiplied
by с ; and for j  Фк , the cofactor A~ is multiplied by С, since one of its
columns is multiplied by this scalar.

These properties and Theorem 4.3 implies that f  coincides with the 
determinant function.



Chapter 4 Determinants 229

Corollary 1. Combining Theorems 4.1 and 4.5 we conclude that 
for all j ,

det(A)=Yj aljA,j . (4.7)
1=1

Formulas (4.6) and (4.7) are called the row and column expansions 
of the determinant, respectively.

Corollary 2. For i^ k

< 4'8 )
j=I

and for j  Ф /,

ы = »  ( t 9 )
1=1

The left-hand side of equation (4.8) is the determinant^of the matrix 
which is obtained from A by replacing its k~ row by its i row. The / 

and k~ rows of the resulting matrix therefore become identical, and the 
determinant of this matrix is necessarily zero. The left-hand side of equation 
(4.9) is the determinant of the matrix which is obtained from A by replacing 
its / ~ column by its j~  column , and since this matrix has two identical
columns, its determinant is zero.

The expansion formulas are illustrated next.

Example 4.4. We will expand the determinant of the 4 x 4 matrix
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A =

^2 1 1 1 4 
1 2  1 1  
1 1 2  1 
1 1 1 2

by repeated application of the row expansion formula. Selecting always the 
first row,

'2 1 f ''1 1 Г

d e t U ) = 2 ( - l ) ,+,det 1 2 1 +1 • ( - l )1+2 det 1 2 1

l l  1 2; l l 1 2>
'\ 2 Г f l 2 Г

+1 • ( -  l) l+3 det 1 1 1 +1 • (— l) l+4 det 1 1 2

l l  1 2, ,1 1 b

The 3 x 3  determinants are obtained in the same way:

r2 1 n
ri Г  

Д 2 ,
det 1 2 i = 2 • (—1)1+1 det

'2 Г  
l 1 2

+1 • ( -  l ) l+2 det

l i  i 2;
V J \ /

1 2

det

1 1

1 1 1

+1 • (—1)1+3 det = 2 ( 4 - l ) - l ( 2 - l ) + l ( l - 2 )  = 6 - l - l  = 4,

1 2 1 

1 1 2 
1 2

= 1 • ( -  l) l+1 detf2 1l  + l - ( - l ) M det 
1̂ 2;

1 1

v.1 2,

+ l ( - l ) 1+3detl 1 = l-(4—1)—1-(2—l)+l-(l—2) = 3 —I —1 = 1,
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det
Г1 2 Г 
1 1 1 
1 1 2

= 1 ■ ( -  l ) l+l det 1 1 + 2 • ( - 1)'+2 det
41 2 j 41 2y

+1 • ( - l)l+3detf| j] = l-(2 - l ) - 2  (2 - l ) + l  ( l - l )  = l - 2  + 0 = - l

(which result can be immediately obtained from the previous determinant, 
since the first two rows are interchanged),

det
f l  2 1Л
1 1 2
1 1 1

1 1'

= 1 • (- l)l+l det
1 2 
1 1

+ 2 • (— l)l+2 det

+ l ( - l ) ,+3 det ‘ = l ( l - 2 ) - 2 ( l - 2 ) + l ( l - l )  = - l  + 2 + 0 = l
1 1

(which result is obvious from the value o f the previous determinant, since 

the last two rows are interchanged). Therefore

♦
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4.4 Determinants and Systems of Linear Equations

We start this section with a theorem, which is the restatement and 
combination of Theorems 3.3 and 3.13.

Theorem 4.6. Let A be an n X n matrix. The following conditions
are equivalent to each other:

(a) The system Ax = b has a unique solution for all n -element vectors
b;

(b) A~l exists;
(c) The columns of A are linearly independent;
(d) The rows of A are linearly independent;
(e) гапк(л) = n ;
(f) det(i4)^0.

Notice that condition (f) gives a sufficient and necessary condition for the 
existence of a unique solution of system Ax = b. By using the concept of 
determinants, we can even solve this system. Assume that det(yl) Ф 0 . For 
k = 1,2,..., л, introduce the notation

Dk =det(ax,...,ak_l,b,qM,...,a„).

Here Dk is the determinant of the matrix which is obtained from A by 

replacing its /с-  column by the right-hand side vector. The columns of A 
are denoted again by a

Theorem 4.7. If d e t(^ )* 0 , then for fc = l ,2 ,...,w , the k~ 
element of the solution of system Ax = b is obtained as
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Dk (4.10)
* det(^)

Proof. If det(^):£0 then there is a unique solution, x = (xf). 
Using the properties of determinant, for к = 1 ,2 ,...,n, we have

Dk — detf # | 0 ) с - \ —/ >—k+i 
v /=1

n \ = det(a,,...,at_,,a,,aM a„).
1=1

If i * k ,  then the i Ш and k' columns of matrix 
G ? i > £ , - > 5 * + i >•••>£») are identical, so its determinant is zero.
Therefore

D* = x* d e t ( a , a * , a * + i > —>£„) = ** -detU)> 

which implies the assertion.
♦

Remark. Relations (4.10) are called the Cramer's rule.

Example 4.5. We will apply Cramer's rule to solve the system

x, + x2 + x , =3 
2x, +3x2 — x3 =4 
3x, + 5x2 + x3 =9,
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which was the subject of our earlier Example 3.11. Expanding the 3 * 3 
determinants with respect to their first rows we have

detQ4) = det

Dx = det

1 1 1 
2 3 - 1  

43 5 1 ,  

'3  1 1л 
4 3 - 1  
9 5 1

D2 = det

= l-(3 + 5 ) - l ( 2 + 3 ) + l ( l 0 - 9 )  = 4,

= 3-(3 + 5 ) - l ( 4 + 9 ) + l ( 2 0 - 2 7 )  = 4,

1 3 1 N
2 4 - 1
3 9 1

= l ( 4 + 9 ) - 3 ( 2  + 3 )+ l ( l8 - 12 )  = 4,

and

D3 = det
r l 1 3^
2 3 4
3 5 9

= l ( 2 7 - 2 0 ) - l ( l 8 - 1 2 ) + 3 - ( l 0 - 9 )  = 4.

Therefore

A  Di Dj
detU) ’ X2" d e t U ) ~ ’ ^ " d e t U )

♦

In Theorem 4.6 we observed a strong relation between the ranks and 
determinants of n X n matrices by noticing that rank(^4) = n if  and only if
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detQ4) Ф 0 . We can largely extend this result for general m xn  matrices by 
using a new concept known as minor.

Definition 4.4. Let A be an m X n real or complex matrix. An r -  
rowed minor (determinant) of A is the determinant of an rX r  matrix 
obtained from A by deleting m — r  rows and n — r  columns.

As mxn matrix therefore has • v -rowed minors, since the 

remaining rows can be selected in

/ \ / \m n

'm' different ways, and the remaining

columns can be selected in different ways. The construction of minors

is illustrated first, then we will prove an important theorem relating matrix 
ranks to basic properties of minors.

Example 4.6. Matrix

f \ 2 3 
2 1 2

has three 2-rowed minors

det
1 2
2 1

det
f l Ъ 
2 2

and det
2̂ 3' 
1 2

Similarly, matrix
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f \ 2 Зл 
2 1 2 
1 2 2

has nine 2-rowed minors:

4 i *и: и : i
det

det

(2  Ъ\
2 2)
2 Зл
1 2

, det 

, det

r i  3\

ч1 2/
f l  3'
2 2

, det

, det

f l 2>
1

f l  24 
2 1

Notice that the numbers of the 2 x 2  minors are given as

24 '3 X

ч2у
= 1 3  = 3

and

= 3-3 = 9.

Theorem 4.8. Let A be an m x  n nonzero matrix. The rank of A 
is r  if and only if there is at least one nonzero r-rowed minor, and all 
higher-rowed minors are zero.
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Proof. Assume that rank(^) = r ,  and the size of the largest 
nonzero minor is s Xs. We will prove that r  = s . Since rank(^) = r , there 
are r  linearly independent rows of A . Let A' denote the submatrix of A 
after deleting all other rows. The fact that гапк(Л!) = r  implies that there 
are r  linearly independent columns of A'. Let A " denote the submatrix of 
A' after deleting all other columns. Then A" is г Xr  and its columns are 
linearly independent implying that det(y4") Ф 0 . Since S denotes the size of 
the largest nonzero minor, s > r . Consider next the nonzero s x s  minor. Its 
rows are linearly independent which implies that the corresponding entire 
rows of A are also linearly independent. Hence r > s , which completes the 
proof.

Example 4.7. We will now determine the rank of matrix

A =
"1 1 Г  
2 2 2
1 2 3

by applying the above theorem. The only 3-rowed minor is the determinant 
of A:

detU ) = l ( 6 —4)—1 ( 6  —2 ) + l ( 4 - 2 )  = 2 —4+2 = 0,

where we used expansion with respect to the first row. Therefore 
rank(Л) < 3 . However there is at least one 2-rowed nonzero minor

f l  П 
det = 2 - l  = l * 0 ,

U V



which is obtained by deleting the last column and the second row of A. 
Hence, гапк(^) = 2 .

♦
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4.5 Further Examples and Applications

The most important application of determinants in solving systems of linear 
equations and in finding matrix ranks was already discussed in this chapter. 
Another application will be introduced later in Section 6.2, where a 
parametric determinant will be expanded in order to find the characteristics 
equation of a square matrix. In Section 7.4, several special matrix classes 
will be introduced based on the signs of the principal minors (which are the 
determinants of certain parts of the matrices in question). In this section 
some additional applications will be introduced.

1. We give first a closed form representation to find the inverse of a 
nonsingular n X n matrix A :

4 A2l А Л .. . /inX

A-l = 1
A |2 A-22 . . . An 2 (4.11)

det(A) ... ... ..........
^ ln A-ln Ann ,nn у

Notice that the matrix of the right-hand side can be obtained from A by 
replacing each element by its cofactor and transposing the resulting matrix.

This formula can be proved in the following way. Consider the 
following matrix product:
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* 1 1  * 1 2  

a 2\ a 22

a v
1л

a2n

A\\ A2l 
A\2 A-22

n\
An2

\ a n\ a n2  * л л  У Ч ^ 1 л  ^ 2 n ' • *  A nn у

The (/, j )  element of the product can be obtained as

v  J  0 i f  1 * J
1 ; ° *  * -\ d e t(A )  if  i - J .

which follows from relations (4.6) and (4.8). Therefore the above matrix 
product is det(^) ■ I_n, which implies equality (4.11).

Example 4.8. Consider first a 2 • 2 nonsingular matrix

A = *11 a \2

\ a 2\ a 2 2 j

Then Definition 4.3 implies that

A \\ = ( - 1) l+ ‘ a 22 =  <*n , A a  = ( - 1) '+ 2 a 21 = - ° 21>

A2l = ( - 1)2+1 a ,2 = - a n , and An = ( - 1)2+2 au =au 

Therefore equation (4.11) shows that

A-' =
1

«11*22 *12*21

-  a12

“ «21 *11
♦
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Example 4.9. We will next find the inverse of the 3 • 3 matrix

A =
2 1 3^ 

4 4 7
2 5 9

which was the subject of our earlier Example 3.9. Simple calculation shows 
that

and

Au =det 

At з =det 

A2 2  — det 

A3l = det

f 4 7̂
,5
(4
,2
r2 3̂
,2 9,
fl 3̂

И

= 3 6 - 3 5  = 1, Al2 = -d e t

-1 2 , A2 l= -  det 

= 12, ^ 23= -d e t 

5, A32 = det

A33 = det
2 Г 
4 4

= 4.

Expanding det(^) with respect to the first

4 7 
2 9

= - 22 ,

1 3

5 9 
2 1

2 5 

2 3
4 7

= 6,

= - 8, 

= -2 ,

row we have

det(4) -  a,, Л, 1 + al2 An + an A,3 = 2(l) + 1(- 22)+ 3(l 2) = 16, 

and therefore,
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3 5
' 1 I40 16 8 16

_ 1 11 3 1- 2 2 12 - 2 =
" 16 ~ Y 4 8

, 12

001 3 1 1
, 4 2 4 .

This result coincides with that obtained in Example 3.9 as it should.
♦

2. Consider a single-input discrete dynamic system with state transition 
equation

x(t + 1) = Ax(t)+ bu(t\ x(0) = x0 (4.12)

where t denotes the time periods 0,1,2,...yx(t) and u(t) are the n -element 
real state vector and single-dimensional real input at time period t y A is a 
given n xn  constant real matrix and b is a given real «-vector. An 
important problem of systems theory is the controllability of this system. 
We say that system (4.12) is completely controllable if for arbitrary time 
period T>n and vector xT e Rn there exists an input sequence 
w(0),w(l),...,w(r — l) such that at time period Г, the state of the system 
coincides with the given vector xT. It is known from the theory of linear 
systems (see, for example, Szidarovszky and Bahill, 1992) that the above 
system is completely controllable if and only if the Kalman matrix

K = {b,Ab,A2b..... А"~'ь)
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is nonsingular. We know from Theorem 4.6 that К  is nonsingular if and 
only if det(A~) Ф 0 . This observation gives a simple controllability check, 
which is illustrated in the following example.

Example 4.10. We will now show that system

u(t)
r l 2 f|

*(< + !)  = 1 1 1 afr)+ 0

I a

is completely controllable.
Simple calculation shows that

Ab =
2 lY O

V

1 1 1 
0 1 1

А2Ь = А(АЬ) =

Therefore

K =

A A
2 i\T

i 1 1 1 = 2

1° 1 I u к

r\ 1 3̂
0 1 2 >

0 1,

which is an upper triangular matrix. From Example 4.1 we know that 
det(/f) equals the product of the diagonal elements of K, that is, 
det(/C) = 1Ф 0 . Consequently, the system is completely controllable.

♦



Chapter 4 Determinants

3. The controllability of continuous single-input linear systems

x(/) = i4x(/)+fe/(/),x(0) = x 0 (4.13)

also depends on the Kalman matrix

к  = {ь, аь ,а 2ь,...;а "-'ь}

It is also known from systems theory that the system is completely 
controllable if and only if К is nonsingular. Hence d e t(x j Ф 0 is a 
sufficient and necessary condition for complete controllability.

4. In Chapter 6 we will see that the eigenvalues X of an n X n matrix 
are defined by the equation

Ах = Лх (4.14)

where x Ф 0. Since this equation can be rewritten as

(А -Л 1)х  = 0

and this homogeneous equation has nonzero if and only if the determinant of 
the coefficient matrix is zero, we conclude that all eigenvalues must satisfy 
the determinant equation

d e t(4 -A / ) = 0. (415>

Expanding this determinant, an л-degree polynomial is obtained, which can 
be solved by computer methods. This idea is illustrated next.
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Example 4.11. Consider matrix

/1 2 l 4 
2 2 3A =
3 4 4

Since I is the identity matrix with unit diagonal elements, equation (4.15) 
can be written now as

det
' l -Л  2 

2 2 - Я
1 '
3

4 4 - Я
=  0.

By expanding the determinant by the cofactors of the first column we have

= (l-A )d e tdet
fl -Л  2 1 N

2 2 - Л  3
3 4 4 - Л

' 2 - Л  3 K ,  (2  
- 2  det

4 4 - Л 3 4 - Л

+1 • det
2 2-X

= (1 -  Я)[( 2 -  ДХ4 -  Я ) - 12]- 2[2(4 -  Л ) - 9]

+ [8 -  3(2 -  Л)] = -Л 3 + 7Л2 + 5Я = 0.

The roots of this cubic polynomial are
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4.6 Exercises

1. Evaluate the following determinants:
. , ( a+ b a -b ^  

a) det
[ a — b a + b

b) det

1 5 2
4 7 1
1 1 1

c) det

1 1 1 0Л 
1 1 0  1
1 0  1 1
0 1 1 1

d) det
jc  1  1  

1 jc  1

1 1 JC

by using the definition of determinants.

2. Solve the previous problem by using cofactor expansions.

3. Show that with distinct real numbers ,, a2 an,
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det

a , a , 

a 2

1 a a 2n n

a,n-l\

a*Л - 1

a,n-1 n у

4. Solve equation

det
'x  2 l 4 
x  1 2 
x  1 3

=  1.

5. Evaluate

det

det

X 1 2>
0 У 3 .

0 Z j>

ind

f a b 0
0>1

b a b 0
0 b a b

1° 0 b

7. Is detU  + B)=det (a ) + det (5 )?

8. Is det(azl) = odet(/l)?



9. Prove that if two columns of a square matrix A are proportional, 
then det(^) = 0 .

10. Prove that the converse of the statement of the previous problem is 
false.

11. Use determinants to solve the following systems of linear equations:

a) x + y = 2 
x - y - 3

b) 2 x - y  = 2 
x + y  = 1

c) x + y  + z = 2 
—y  + 2z = -1  
2x + 2y  = 2

d) x + 2y  + z = 1 
x -  2y  + z = 1 

x + y - z  = - 1 .

12. Find the inverses of the coefficient matrices of the previous problem 
by solving the matrix equation AX = / column-wise, and solving each 
system by the Cramer's rule.
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13. Let A be a block-diagonal matrix:



o "

>

A k ;

where all blocks Ai  (* =  1,2,..., it) are square matrices. Prove that 
detU ) = d e t ^ ! ) • det (Л 2)-...- det(^ k).

14. Assume that for an n xn  real matrix, A' Ai ~ Ln (su°h niatrices 
are called orthogonal). Prove that detQ4) = ±1.

15. Assume that for an nXn real matrix, Ak =0 (such matrices are 
called nilpotent). Prove that det(v4) = 0 .

16. Check the determinant multiplication theorem for 2 x 2 real 
matrices.

17. Apply the determinant multiplication theorem to prove that 
det(aA) = a n det(>4), if  A is an nxn  real matrix and (X is a real 
scalar.

18. Illustrate Theorem 4.1 and parts (a), (c), (e), and (f) of Theorem 4.2 
with matrices

Introduction to Matrix Theory

'\ 2 Г f \ -1  - f |
A = 0 1 1 , в  = 2 1 2

,3 1 2, 1° 1 3 ,
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19. Illustrate relations (4.8) and (4.9) for matrix A of the previous 
problem.

20. Check the conditions of Theorem 4.6 for the linear systems of 
Problem 11.

21. Find the rank of the following matrices by using the definition of 
ranks and also by using Theorem 4.8:

a)
(\ 2 2 3N

1 1 o>

"1 2 Г

b) 1 3 2

1 4 J

c)

1 2 3 4X 
0 1 2  3
4 3 2 1

22. Repeat Example 4.9 with matrices

a)

1 1  1 N 
1 - 1  - 1
2 1 7

'  1 2 3" 
b) 2 6 10 

- 1  - 3  - 6 ,
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c)

r l 2 Зл 
2 4 9
4 3 2

Compare your result with those of Problem 3/18.

23. If A is an nxn  matrix, and A-tj denotes its (i,j)  cofactor, then 

show that relation (4.11) implies that

4 A 2l А Л. .  s tny

det Ay 2 A22 . .  A n2 = [det(i)]”“‘.

л2п • A
л  nn )

24. Illustrate the relation of the previous problem for matrices of 
Problem 22.

25. Examine the complete controllability of system

u(t\

<1 - 1 l\
' 1)II+v'St>

^H\ 1 0 1 d f f r l

t o  1 h



Chapter 5 

Linear Mappings and Matrices

5.1 Introduction

The interrelation of different mathematical systems of similar types is 
usually studied by examining some mappings from one system to another. 
Such mappings are especially important to be examined that preserves some 
important characteristics of the systems. In earlier chapters the linear 
structure of vector spaces played the most significant role, therefore 
mappings preserving the linear structure will be the most important for 
future studies. This chapter is devoted to the examination of such mappings.

5.2 Vector Coordinates

Assume that К is a finitely generated vector space and let 
В = be a basis in V. From Theorem 2.7 we know that an
arbitrary vector x e V  can be uniquely represented as the linear combination 
of the basis vectors. That is, there are unique scalars x, such that

x = xlul + x2 w2 wn.

The coefficients are called the coordinates of £ m basis B.
We can therefore identify vector x with the w-element column vector

251
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X D =

which is called the coordinate-vector of x in basis В . Notice that in the 
case when a different basis is selected, the coefficients xi as well as the 
coordinate-vector x B may become different. This observation is illustrated 
in the following example.

Example 5.1. Select first the natural basis В = {elye2,e 3} in R3, and
let

x =

ч1/

Then obviously,

therefore,

x B =

Assume next that the basis В' = {и x, и 2, и 3} is selected, with

«2 + 1-1

'I)
1 .

lb

1 > —2 > —3
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T | r n r n

1 » У.2 = i » « 3  = 0

к к

Then x = Wj, that is, x = 1 • wl + 0 ■ w2 + 0 • w3, consequently,

0

V°y

The uniqueness of the scalars xx,...,xn in representation (5.1) implies 
that mapping x i-> x B is one-to-one and it maps V into the space of n - 
element real (or complex) vectors. We will next show that the mapping 
preserves the linear structures of these vector spaces by showing that for 
arbitrary x ,y  eV ,

(x+y) „ = * в + Ув’ (5.2)

and for arbitrary x e V  and scalar a ,

[a-x)B = a x B.

The first relation can be proven as follows. Assume that Xt 

Ув =(>',). *en

(5.3) 

= (*,.) and

x = xlui+...+xnu„ and y-y,M,+...+y„Mn.
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and SO,

x + y  = {xx + y x)ux + ... + (*„ + y n)u„.

Hence, the coordinates of x +у  in basis В are x, + y X9...9xn +yn. The 
second relation can be proved in similar way. If x = (jc,. ) , then

ax = a{xxux + ... + xnun)={axx)ux + ... + (ax„)un.

That is, the coordinates of x in basis В are a x X9...9a x n, which proves 
the assertion. Equations (5.2) and (5.3) show that there is a special relation 
between V and the vector space of w-dimensional real (or complex) vectors. 
In the next section this concept will be introduced in general and examined 
in detail.

5.3 Linear Mappings

Let V and V х be two (not necessarily different) vector spaces, and assume 
that either both are real or both are complex, furthermore mapping A maps
V into V\ That is, A(x) is defined for all x e V ,  and the images A(x) are 
in V1 for all x e  V. This fact is denoted as A:V l-» V\ It is not required that 
each element of V' can be obtained as an image A(x) with some x e V .
The set of all images is denoted by and called the range of mapping 
A:

-  {x'e V  | there exists an x e V such that x' = A(x)}.
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In this section a special class of mappings between vector spaces will be 
discussed.

Definition 5.1. Mapping A:V \->V' is called a linear mapping, if  
for all x ,y e V  and scalars a,

(i) a(x + y)= A(x) + A(y);

(ii) A(ax) = a • A(x).

Notice that in property (ii), elements of V as well as elements of V ' are 
multiplied by scalar a . This is the reason why we assumed that either both 
vector spaces are real (that is, only real numbers are considered as scalars), 
or both are complex (when complex numbers are considered to be scalars).

Notice that the mapping x h-> x B satisfies conditions (i) and (ii) 
which are equivalent to requirements (5.2) and (5.3). Thus, it is a linear 
mapping. As it was mentioned earlier, the range of a linear mapping does 
not need to be the entire space V\ For example, if one defines A(x) = O' 
for all x G V , where O' is the zero element of V', then this is a special linear 
mapping, the range of which consists of only one element. In all cases, the 
range of a linear mapping has to be a subspace of V', as it is stated in the 
following theorem.

Theorem 5.1. Let A:V V' be a linear mapping. Then R{A) is a 
subspace of V \

Proof. By applying Theorem 2.2 we have to show that if x and у  
are in then with arbitrary scalars a and b , atf+bye. R{A). Since x
and У  are in there exist elements x and у in V such that x = A(x)
and y =  A(y). Since V is a vector space, a x + b yeV , and the linearity of 

mapping A implies that
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A[ax + b y )-  A{ax) + A(py)= aA(x) + ЬА[у) = ax^+b/e R(a ).

+
In verifying that a mapping is linear we have to check if conditions (i) 

and (ii) are satisfied. The following result gives only one condition as the 
sufficient and necessary condition for a mapping to be linear. So, in 
practical cases only one condition has to be checked.

Theorem 5.2. A mapping A'.V b-> V1 is linear if and only if for all 
x,y g V and scalars a and b ,

A(ax + by)= a • A{x) + b • A(y). (5.4)

Proof. Assume first that conditions (i) and (ii) hold. Then 

A[ax + by)= A(ax ) + A[py) = a • A(x) + b • A[y\

so (5.4) is satisfied. Suppose next that equation (5.4) holds for all x ,y_ ,a  
and b . First we show that i4(0) = O', where 0 and O’ are the zero elements 
in V and V \ respectively.

Select x = у  = 0 and a = b = 1. Then

л (о )= л (о + о )= л (о )+ л((о)

and adding — Л(0) to both sides we have

0'=Л(0).

Select next a = b = 1. Then
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a {x  +  j>)= 4 l  • X + 1 • y )=  1 • A (x) + 1 • A [y)=  A (x) + 4 y )

that is, condition (i) is satisfied. Select next у  = 0, then 

A(ax) = A(ax + bO) = aA(x) + M (o) = aA(x) + Ь<У=aA(x) + O' = aA(x).

Hence condition (ii) also holds showing that A is a linear mapping.
*

In the special case when = V', we say that A is a mapping of V 
onto V\ A special but important class of such linear mappings is defined 
next.

Definition 5.2. Let A be a one-to-one linear mapping of V onto V\ 
Then A is called an isomorphism, and vector spaces V and V1 are called 
isomorphic.

We will first show that finitely generated vector spaces are isomorphic 
if and only if they have the same dimension.

Theorem 5.3. Let V and V  be vector spaces, and assume that V 
is finitely generated. Then they are isomorphic if and only if У is also 
finitely generated and dim(F) = dim(K/) .

Proof. We first show that an isomorphism preserves linear 
independence and linear dependence by proving that the images of linearly 
independent elements are also linearly independent, and the images о 
linearly dependent elements is also linearly dependent. It is sufficient to 
show that elements x x,...,xk e V  are linearly dependent if and only it
A{xt),.-,A(xk) are linearly dependent in V. Assume first that x ,,.. .,x *  

are linearly dependent, then with some scalars,
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axx x+...+akxk — 0, 

where at least one coefficient is nonzero. Then

) + «. + ** A(xk) = A(ax * ,)  + ...+ A(ak x k) = A(axx y +... + akxk) 

= A( 0) = 0’ ,

therefore A(xx A(xk) are also linearly dependent. Assume next that 
vectors A(xx A(xk ) are linearly dependent, then with some scalars

cyA(x j ) + ... + ckA(xk ) = 0 

and at least one coefficient is nonzero. This equation implies that 

A{cxxx + - + c kxk)=A{clx l)+...+ A(ckxk) = clA(xl)+... + ckA(xk)

=  0'.

Since A is one-to-one and ^l(0) = O', necessarily

C\XX +...+ckxk =0

showing that elements x Xi...,xk are linearly dependent.
The above observation immediately implies that if V and V 1 are 

isomorphic and V is finitely generated, then the same is true for V\ and 
dim(F') = dim(K). We will next prove that if V and V' are finitely 
generated vector spaces and dim(F') = dim(K), then they are isomorphic.
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Let be a basis of V and let {z l9...9zn} be a basis in V\ If x is
an arbitrary element of V , then x can be written as

x = a lx l+...+anxn

with some scalars ai (i = 1,2,...,и ) . Define a mapping A:V н» V' as

A(x) = a lz 1 +... + anz„.

In order to show that mapping^ is an isomorphism between V and V 
we have to show that A is a one-to-one linear mapping from V onto V . It 
is clear that mapping A is defined for all x £ V9 since arbitrary element of
V can be expressed as a linear combination of the basis elements. To show 
that A is one-to-one assume that for some x and у  , d(x)= A[y). With

some scalars a[9...9an and b{9...9bn9

x = +... + йлх и and y  = blxl +...+bnx

Then

A(x) = axzx+ ... + anzn and A[y)=bxzx +... + b„zn9 

and since A(x)=  A(y),

ayz[+...+anzn=blzl+..'+b„zn.

That is,
(a, -  by )z, +... + [an -  b„ )z„ = 0 .
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The linear independence of the basis elements implies that 
ax =bx,...,an =bn, consequently x — y , and therefore A is one-to-one.
The linearity of mapping A can be proved by using Theorem 5.2. Let a and 
b be two scalars. Then

ax+by = a{alxi +...+ anxn)+b{blxl +... + bnxn) = (ал, +bbl)xl +
...+ {aan+bb„)x„,

therefore the definition of mapping A implies that

A{ax + by) = (aa, + )z, +... + (aan + bbn )z„

= a (a ,z , + -  + a„z„) + b{blz l +... + bnzll)=aA(x)+bA(y\

We will finally show that R(A) = V', that is A is a mapping from V 
onto V\ Let z e  V' be arbitrary, then with some scalars ci (i = 1,2,..., ri) ,

z  =  c1z 1+ ...+ c „ z ll.

Consider the element x  = c1x 1+...+c„x/J. Then the definition of A 
implies that A(x)=clz l + ... + cnz„ = z, therefore z e  R(a ), which 
completes the proof. *

Some special linear mappings are examined in the next few examples.

Example 5.2. Select V = Rn and F ’= Rm, and let A be an m xn  
real matrix. For all x e V, define mapping A as A(x) = A'X  . It is clear 
that A(x) is defined for all x e V, since the product A-x exists for all 
x e R". Notice that R(A) is not necessarily the entire space Rm. For 
example, if A is the zero matrix, then A x = 0 for all x e V, therefore in



Chapter 5 Linear Mappings and Matrices 261

this case, Л(Л) = {0}. Mapping A is linear, since for all x9y e V  and 
scalars a  and b ,

A[ax + by) = A • [ax + by)
-  A • (ax)+  A ■ (by) = a Ax + bAy = aA(x)+bA(y).

Next we show that /?(у4)= V' if and only if rank(A) = m . This is the 
consequence of the simple fact that if x = ( jc ,  ) , then

A(x) = A-x = xlql

where a l9a 29...,an are the columns of A . Therefore R{a ) coincides with 
the set of all linear combinations of the columns of A , which is the subspace 
generated by the columns of A. Since the dimension of this subspace 
equals rank( Л),

dim(/?(^[)) = rank(A).

Hence, R(A)=V' if and only if dim(lt(A)) = m, which is equivalent

to the condition that rank(y4) = m .
Assume next that A is nXn and nonsingular. Then г а п к у )  =  л , 

therefore Д(Л)= Rn = V . That is, A is a mapping of Rn onto itself. It can 
also be shown that the mapping is one-to-one. In contrary to this assertion 
assume that with some x , y e R n, А(х)=л(у). Then A x -  A y , which

is equivalent to equality

A - ( x - y ) = 0 .
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Multiply both sides from the left by A~l to have

x - y  = 0,

since A l A = I_ and A 10 = 0 . Thus, x = у .
Let а Ф 0 be a scalar, and select the special nXn nonsingular matrix 

A = a • I , where / is the n X n identity matrix. In this special case,

A(x) = A -x  = a I x  = a x , 

that is, the mapping multiplies each vector by scalar a .
♦

Example 5.3. Select again V = Rn and let V1 be the set of real 
numbers. Let the real numbers al9...,an be given. If x e V  is an arbitrary 
vector, then define

A(x) = a tx, +... + a„xn

where xl3...,xn are the elements of x . This mapping is a special case of the
one examined in the previous example with m — \. Notice that A(x) is a
real number. In the literature such linear mappings are called linear 
functionals.

♦
Example 5.4. Let V be the set of all single variable real 

polynomials of degree not exceeding n . In Example 2.3 we verified that V 
is a vector space. If p e  V , then define mapping A as taking the derivative 
of p:
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Notice first that A(p) is a polynomial of degree not exceeding n - l .  
Therefore define V' as the set of all real polynomials of degree at most 
n — 1. Then A is & linear mapping of V onto V '. The linearity of the 
mapping follows from the elementary properties of differentiation:

A(ap + bq) = — (ap + bq) = a — p + b — q 
^; dt dt dt

for all p,q e V  and scalars a and b . Let

r{t) = C0 +  cyt+...+c„_xt"~' e  V

be arbitrary. Define

И , ) = с +Со, +| , 2+ | , з + ...+£ ^ , ”

with arbitrary constant term C. Simple differentiation shows that

М А - ± , . г .

Since С is not unique, the mapping is not one-to-one.
♦
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Example 5.5. Let V be the set C\a,b] of all continuous real 
functions defined on a finite, closed interval [a,b]. Define now mapping A 
as integrating the functions on interval [a,b\. That is, for all f  e  C[a,b\,

a

Since A (f)  is a real number, select F'= R. Mapping A is a linear mapping 
of C[a,b] onto R . The linearity follows immediately from the linearity of 
the integral, since for all f , g e  C[a,b] and real constants с and d ,

A(cf + dg) = J  [cf{t) + dg(t))dt = c j  f{t)dt + d \g{t)dt = cA{f) + dA(g).

The fact that the range of this mapping is the entire real line follows 
from the observation, that if for any arbitrary real number С we select

MO = ------ f°r t G \a,b\ thenb — a J

A(j>)= Jt~—dt = c.
z b - aa

♦
We will next give a simple sufficient and necessary condition that a 

linear mapping is one-to-one. The condition will be based on the following 
concept.



Definition 53.  Let A.V V  be a linear mapping. The nullspace 
of A is defined as

М л )= { х е  ^И(д;) = ()'}•

First we show that A'(zl) is always a subspace in V .

Theorem 5.4. Let A:V I-» V  be a linear mapping. Then N(A) is a 
subspace of V .

Proof. We will show that n (a ) satisfies the condition of Theorem 
2.2. Let x ,y s  N(a ) and a ,b  be scalars. Then

A[ax + by)=  aA{x) + ЬЛ[у)- a  • 04-6 * 0 '= 0 ',

therefore ax + bye  A^(^). Hence N(a ) is a subspace.
*

We are now ready to present the simple condition that guarantees that a 
linear mapping is one-to-one.

Theorem 5.5. A linear mapping A is one-to-one if and only if

М л)= {о}-
Proof. Assume first that ЩА) consists of only the zero e emen . 

Assume furthermore that with some x and y e  V,A{x) — Then

0'=  A(x) - A [ y)= \  • A(x) + {-\)- л(у)=  a {\.’ x + { - l )  ‘ у ) - a (x y\
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therefore x y e  N(a ). Consequently x - y  = 0, that is, x = у  showing

to-one, z = 0. Hence N(a ) = {o}.

Assume next that К is a finitely generated vector space. If a linear 
mapping A:Vh->V is one-to-one, then V and R(A) are isomorphic. If
dim(F) -  n , then dim(j?(y4)) = л. Since N(A) consists of only the zero 

element, dim(N(^)) = 0 . We may therefore notice that in this case, 
dim(F) —dim(i?(^))-f-dim(A^(y4)). As we will next show, this relation 
always holds regardless of the fact that the mapping is one-to-one or not.

rr . Theorem 5.6. Let A:V l-> V' be a linear mapping, and assume that
V is finitely generated. Then

bis ui nneariy independent elements, and second, we have to show that 
the system generates V .

To prove linear independence assume that

that mapping A is one-to-one.

dim(K) = dim(/?(/4)) + dim(7V(^)).

Proof. Let {x, } be a basis in N(A) and assume that

a,ix l+...+akxl[ +bly+...+bly i =0 (5.5)
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with some scalars ai and (i = 1,2,..., fc; у = 1,2,...,/). Apply mapping A 

to both sides of the equality. The linearity of A implies that

«|Л(* i ) + -  + ak A(lk )+ М ( у , )+ •••+ М ( у ,  )= ■

where O' is the zero element of V\ Since x, (/ = 1,2,..., Jc) is in the null- 

space of A , А{х}) = O' for all i . Therefore

blA\}Ll)+... + blA ^ l )= O'.

Notice that { A(£,),...A(Xi) } is a basis of R{A), and the linear 
combination of the basis elements is zero only if all coefficients are equal to 
zero: bx =...= b{ = 0 . Then from (5.5) we have

axx x+...+cikxk = 0 ,

and by using the fact that I* !,—,**} *s a ^as ŝ *n we concluc*e ^ at
a у =...= ak = 0 . (Since a linear combination of basis elements is zero only
if all coefficients equal zero.) Hence, all coefficients in (5.5) are equal to 
zero implying that vectors х {,...,хк ^  line^ly independent.

We have to show next that this system generates V. Let v e V be an
arbitrary element. Since A(v)e R(A) and >А(у{) } *s a bas*s

R(A),
a (v)= c,a Iz J+ ...+ cia (z /) 

with some scalars cl ,...,c/. The linearity of A implies that



Introduction to Matrix Theory

4 v - ( c , j ; i+ ... + C/ZJ ) = O',

from which we see that

^ - ( c .Z, + -  + ct У , ) e  N{a ).

Since is a basis of N(A^, this vector can be expressed as a
linear combination of the basis elements:

+ -  + c ,y l )= dlx l +... + dkxk 

With some scalars dl9...dk. That is,

shows that v is a linear combination of elements 
>*••>**,Z1,e**>Z/’ Therefore system {x l9...9xk9y^9...9y /} generates V .
is fact and the linear independence of these vectors imply that the system 

is a basis in V .

A• I/ С; , Г0,,аГУ- ^ ssume ^ at ^  is finitely generated. Л linear mapping 
is one-to-one if and only if V and R(A) are isomorphic, which

holds if and only if dim(F) = dim R(a ) . From the assertion of the theorem 
we know that this relation holds if and only if d i m ( ^ ) )  = 0 which is 
Я ent to the condition that N(a ) consists of only the zero vector. This 

observation shows that Theorem 5.5 is implied by Theorem 5.6.
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Let A:V Н» V' be a linear mapping. If A is one-to-one, then for all 
ze R(A), there is a unique x e V  such that A(x) = z. If A is not one-to- 
one, then such an element x is not necessarily unique. For all ze  R(A) 
denote

C{z) = {xe V\ A{x) = z\.

Set C(z) containts all elements x e V  which have the same image z_ in V 
with respect to mapping A . Notice first that if x0 is an arbitrary element of 

C(z), then
C{z)={x0 +)^ye N(A)}, (5*6)

that is, C(z) is a linear manifold with directing space N(A) (which follows 
from Definition 3.5). To show that relation (5.6) holds assume first that x 
and Xq are in C (z). Then A(x) = A{x0) = z , which implies that

0  ' = A { x ) - A { x 0 ) =  A( x - x 0 ),

and so, x - x 0 e N(a ). Assume next that y e  N{a ) is arbitrary, then 

a (x0 + ^ ) = ^ ( x 0)+ A{y)=z + 0'=z, that is, x0 + y e  C(z).
From the definition of set C{z) it is also obvious that for z * z' ,

C(z)nC(z*) = {0},

where {0} denotes the empty set, since for any common element x 
C(z) and C(z'), the image A(x) cannot be z and t  *  the same time.

Furthermore,
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Л , с & ‘ г -

since mapping A is defined for all elements of V . The last two observations 
can be summarized by saying that V is the union of the disjoint sets C(z)
for all z e  R(a ). For simple reference, C(z) will be called the equivalence 
class associated to z .

A linear structure will be next defined on the set of the equivalence 
classes generated by a linear mapping A. The sum of classes C(z) and
C (z ) is defined as the class C(z + z') associated to z + z\ and for any 
scalar a, the a -multiple of C(z) is defined as the class C(az) associated 
to az. We will prove that these two operations satisfy all conditions of 
Definition 2.1 implying that the equivalence classes form a vector space, 

on itions (i) and (ii) follow from the commutativity and associativity of 
e addition defined in V . If the null element among the equivalence classes 

efined as C (0 ), and -C (z ) is defined as C(— z ), then properties (iii) 
and (iv) are obviously satisfied. Relations (v), (vi), and (vii) follow from the 
act t at vector space V ' satisfies the same conditions, and (viii) is implied 

by the simple fact that for all z e R(a ),

l-C(z) = C(l.z)=C(z).

A Vector sPace of the equivalence classes is called the factor space of 
an enoted by V / A . Notice that С can also be considered as a mapping 
с maps onto V IA . From the above observations it follows that

0ne"t0"0ne, therefore is an isomophism, and vector spaces 
fi(A) and VIA are isomorphic.
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5.4 The Vector Space of Linear Mappings

Let V and Vf be (not necessarily different) vector spaces. Assume that 
either both are real or both are complex. Let b(V, V') denote the set of all 
linear mappings from V into V\ If A,Be b(V, V'), then we can define the 
sum of mappings A and В as the mapping assigning the sum A(x) + B(x) 
to all x e V .  That is, A + В is defined as

(A + £)(*) = A(x) + £(*) (5-7)

for all x e V .  We can similarly define the scalar-multiple of a linear 
mapping. The с-multiple of A is the mapping that assigns cA(x) to eveiy 
x e V ,  that is,

(cA)(x)  = cA[x).

Theorem 5.7. Mappings A + В and aA are linear.
Proof. We will apply Theorem 5.2. Let a and 6 be scalars and 

assume that x and у  are arbitrary elements of V . Then the linearity of A
and В implies that

[A + в\ах + by)= A{ax + by)+ в[ах + by)

= aA{x) + ЬА(у) + ав{х) + Ьв[у)

= a{A(x)+ B(x))+ ф й +  В{у))= «(А + Ь(А + ВЫ

(сА)[ах + Ъу)= с • А[ах + Ьу)-с[аА(х) + ЬА[у))

-  а(сА(х)) + b(fA{yJ\= a{cA^x)+ b{cA)[y)



272 Introduction to Matrix Theory

showing that both A + В and cA are linear mappings.
+

Next we will show that b(V, F ’) is a vector space if addition and 
multiplication by scalars are defined as above. We will verify that all 
conditions of Definition 2.1 are satisfied:

(i) Since V' is a vector space, for all x e V ,

[A + B jx ) = A(x) + B(x) = B(x)+ A(x) = [В + Л X* >,

(ii) Similarly, for all x e V,

((Л + B) + C jx ) = {A + B)(x) + C(x) = (A(x) + B(x)) + C(x)
= A(x) + (B(x) + C(x)) = A (x)+ (B  + C)x = (A + (B + C)Xx},

(iii) The null element О in L{V,V') is defined as 0 (x ) = Q’ for all 
x E V . Then

{A + 0)(x ) = A{x) + 0(x) = A(x) + O' = A(x}>

(iv) Define -A as (-l)*  A , then
(A + ( -  Л)Х*) = Л(х) + ( -  Л)(х) = A(x) + ( -  1)Л(х)
= 1 • A(x) + ( - 1) • A(x) = (1 + ( -  1))л(х) = 0 • A(x) = O’ = 0 (* )

for all x e  V ;

Conditions (v) - (vii) follow from the observations that for all x e  V,



(a(A + £))(*) = а(л  + В ){x) = a(A(x) + В(х))
= аЛ{х) + аВ(х) = {оА){х) + (аВ ){х) = (аА + аВ^х),

((а + Ь)А\х) = (а + Ь)а (х) = аА(х) + ЬА(х)
= {аА)(х) + (<ЬА)(х) = (аА + bAfx),

and

{{ab)Ajx) = = а(ЬА)(х) = (а(М )Ы

And finally, notice that property (viii) is obvious, since for all x e  V,

{ \ - АУ х ) = \ - А{ х ) = А { х ).

Consider next the special case when V1 is the set of real numbers if V is a 
real vector space, or V' is the set of complex numbers if  К is a complex 
vector space. Then the vector space b(V, V') is called the dual space of V ,
and is denoted by V *.
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5.5 Multiplication of Linear Mappings, and Inverses

Let V, V\ and V” be vector spaces. It is assumed that either all are real or 
all are complex. Let BsL{V,V') and Ae L(V\V") be two linear 
mappings. The product of A and В is denoted by A ■ В and is defined

{A-Btx)=A{B(xj)
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for all x e V. That is, mapping В maps x into B(x), and then this image is 
mapped by A into A(b (x)). This definition is the same as the composition 
of functions A and В known from calculus, where the composition was 

enoted by A°B.  In this book we will use the notation A - В to 
emphasize the algebraic structure of the set of linear mappings. Mapping 

is defined on the entire space V and its range is a subset of V". 
Furthermore it is a linear mapping, since for all elements x , y e V  and 
scalars a ,b, ~

(A ■ B\ax + by)= A{B[ax + by))= A[a ■В(х) + Ъ ■ в[у)) 

= a • Л(Я(х)) + b • л (в(у))=  a {A- £ )(x) + b ■ (A ■ B^y\

Then Theorem 5.2 implies that A B e L(F, V").
The multiplication of linear mappings is not commutative in general, 

since l spaces V and V " are different, then product B A cannot be 
ined. Notice that A maps V ' into V ", and В maps V into V ', therefore 

mapping B, in general, cannot be applied to the element A(z)e Vй. If
У , then both A ■ В and B A are defined, but they are not 

necessarily equal. Such an example is given next.

^  xample 5.6. Let V = F ’= Vй = R2 9 and defined mappings A and В

A(x) = Г 1 Г  
-1  -1 x and B(x) = 1 1 

1 1
• x .

manning  ̂j WC ^aVC Seen ^ at multiplication by a matrix is a linear mapping. If x, and ^  denote Ше ^
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and

( A B ) x = A(b (x))=A
KX 2 J J

= a \x' +x' 
Ц  + x2;

1 П / л . ц '

I-1 - l j  U  +X2,

2x, + 2 x 7 

-  2xx -  2x2 у

( B A ) x  = B(a(x))=B
f/

\S

1 1
- 1  - 1 '2 J)

= B
f xx + x2 > Cl f| (  * l +*2  > II 3

fSк1H1

,1 b [~ Xl X2) W

Notice that (A • B)(x) = (B • A)(x) if and only if xx + x2 = 0.
♦

We will next show that the multiplication of mappings is associative and 
distributive. Let C e l(V ,V'),Be L{V',V"),Ae b(V",V'n), where V'" is 
a vector space of the same type as V, V\ and Vn. Then for all x e V ,

{{A ■ В) • c jx )  = (A ■ B)(C(x))= A(B(C(x)))
= A((B-C)(x))=(A(B-C)Xxl

and so,
(a b ) c = a (b c ).

Assume next that A, Be L(V, V") and С e L(V, V')■ Then

that is,

((A + B)C)(x)=(A + BXc(x))=A(c(x))+ B(C(x)) 

= (АС)(х)+(ВС)х = (AC + BCXx),
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[a  + b )c = a c + b c .

If A e  L(V',V") and B ,C e  L{V,V'), then similarly,

(A(B + C))(x) =A{(B + C)(x )) = A(B(x) + C(x))

= 4 в (х)) + а (с (х)) = (ABXx)+(ACXx)=(AB + А С Ы

which shows that

a (b  + c )= a b + a c .

the Special case When V = V'= V"-1118163(1 of the 8eneral 
C Ша̂  n°W USC s*mP ^ ed notation L[y) for the set 

inear mappings from V into itself. Such mappings are called linear 
^ mations on V . If both A and В are linear transformations in b{y), 

is also in Z,(F). This simple observation gives the possibility to 
efrne polynomials of linear transformations. If A e L(v), then the square

 ̂^  *S, defined A = A - A, and in general, An is defined by the
Z Z l  T n A" = A A"" We also define A 0 = I where I  is the 
identity transformation for which l(x )=  x  for all x s V .  Let

P(t) = a,о +a{t + a it l +... + ant" (5.9)

assume thJ'fh ° Vâ a,5le P°'ynomial. If V is a real vector space, then we
7 2 1  „ P “  СОе№™  «  а11 and if  V is complex, 

coefficients are assumed to be complex. Then p(A) is defined as

P(4)=a0Z + alA + a2A2 +... + anA".
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Powers and polynomials of linear transformations are illustrated in the 
following two examples.

Example 5.7. Assume that V = R" and A is an «X  n real matrix. 
Define mapping A as A(x) = A ■ x for all n-element real vectors x. Then

A2(x)=A{a {x) )= A (A x)= A -(A  x)= A 2 x,

where A2 is the square of matrix A . By using finite induction we can prove 
that in general,

A "(x)= A "x. (51°)

For /1 = 1 this relation is true. Assume that it holds for a positive integer n. 
Then it is true for n +1, since

A"+'(x)= a [a '(x))= a {a " ■x)= a  {a "-x)=A"+' x.

Assume that a real polynomial is given by equation (5.9). Then

p{A)(x) = (a0I + alA + a2A2 +...+anA"\x)

= ci0lr{x)+atA(x)+ a2A2(x)+...+anA"(x)

= a0l - x + a l A x + a2A2 х+...+алА x

= (a0l+alA + a2A2 +—+a„A ) i -

Example 5.8. Select К as the set of all continuously differentiable 
real functions on an interval [a,b]. For all f  e V , define A (f)  as the 
derivative of / :



The square of mapping A cannot be defined on the entire V , since the 

selection of V implies that although ~ ^ f* s continuous, not necessarily

differentiable. That is, mapping A cannot be necessarily applied again to the
derivative function — 

dt
Selert V next as the set of all single variable real polynomials, then

f  *s a ŝo a real polynomial for all f  e  V . Therefore 

transformation A can be applied again, and
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and in general

A2{ f)  = ̂ L f  
dtl J ’

■, inverses of linear transformations we recall that the
ans ormation / on an arbitrary vector space V was defined as 

/(*) = *

. ^  is any linear transformation, then from this
definition it is clear that

A I —A and I A = A.
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Let A G b{V) be a linear transformation on a vector space V . The inverse 
of A is defined as follows.

Definition 5.4. Linear transformation A e  L(V) is called invertible 
if /£(л) = V and the transformation is one-to-one. The inverse A of A is 
defined as for all x e V,

A 'l{x )= {yeV  |x = A(y)}. (5.11)

Notice first that A~l (x) has exactly one element, since A is one-to-one. 
Therefore A~l is a mapping of V into itself Using Theorem 5.2 we can 
easily prove that A~l is also a linear transformation. Let a,b be two scalars 
and x,y  G V . Then

A~'(ax + by)=aA~'(x)+bA~' (y),

since

A[aA-' (x ) +  bA-' (y)) =  a  • a(a-‘ (*))+*• a{a~1 (y)) =ox+by.

Here we used the fact that for all x e V ,

a [a ~'(x))=x (5-12)
which follows from relation (5.11) by selecting y  = A (x) •

Inverse transformations have the following properties.

Theorem 5.8.
a) Let A e  b{V) be invertible. Then
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(0 (Л-1)- ' =A;
(ii) A • A '1 = A~l • A = /;

b) If A ,B ,C e L(V) ,  then
(iii) A B  = C A  = I  implies that A is invertible and
B = C = A- 1;

c) If A ,B e L(V) are invertible, then

(iv) A • В is invertible and (A • B)~1 = B~l - A~l.

Proof, (i) Transformation A~l is invertible, since it satisfies the 
conditions of Definition 5.4. First, V , since A is defined on the
entire space V . Next we show that A~l is one-to-one. Assume that 

. Let z denote this common element, then from (5.11) we
conclude that

x = A(z) and у — A(z) , 

that is, x = у . Therefore (A 1) exists. Let и E  V be arbitrary, and denote

v = (^4 )’ '(w)-

Denote A~l by 5 ,  then
v = B~̂  (w).

Applying В on both sides of this equality and using relation (5.12) we have

£(v) = b (5 -1(m))= u ,

that is



A~x(v) = u .
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Apply next A on both sides and use relation (5.11) again to see that

v = A(A-'(v))=A(u),

that is,

{A~')~'(u)=A(u),

which is equivalent to the assertion.
(ii) The first part, A ■ A '1 = I , is equivalent to equality (5.12), and the 

second part is a consequence of the first part by replacing A by A and 
using property (i).

(iii) First we prove that A is invertible by showing that A is one-to-one 
and J?(a ) = V . Assume first that A(x) = A[y). Then

x = l(x)={C- A)x = Ф Й ) = С ( 4 ) ] =  (С • Л)(у)= l ( y b  У •

that is, A is one-to-one. Assume now that x e  V is an arbitrary element. 
Then 2?(x)e V , and

A(B(x))=(A-B)(x)=/(x)=x,

therefore x e R(A) , and so Л(Л) = V .

We prove next that В — С. For all x €  V,



C(x) = C{l(x)) = С ((A ■ B)(x)) =(C-(A-B))(x) = ((C • A) ■ Bjx)
= { l B j x )  = l{B{x))=B{x).

And finally, we verify that В = С = A~l . For all x e V ,  similarly 
to the previous calculation we have

cix) = С Ш )  = Ф ■ A-' №  = { C -{ A A - 'lx )  = {(C-A)-A-' h )

= {i ■ A~' h .) = i {a ~' (*))= a ~' (x).

(iv) Simple calculation shows that

( я -1 • A-' )• [A ■ B) = B~' {a ~1 ■ (A ■ B))
= B-'((a ~' ■ a )-b )=  B~l -{I ■ B)= B~l ■ В = I,

similarly,

{A ■ B) • (д-‘ • A-') = A ■ (в ■ (b~1 ■ A-')) 
= a \ b  b - '\ a -x) = a \ i  a - ')= a  A~' =/.

And finally, property (iii) implies the assertion.
*

In the case of finitely generated subspaces property (iii) can be 
significantly simplified.

Theorem 5.9. Let F be a finitely generated vector space and 
A e L(V) . Then the following are equivalent to each other:

(a) Transformation A is invertible;
(b) There is a Be L(v) such that A-B = I ;
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(c) There is a С e b(V) such that С- A = I .
Proof. Notice first that (a) implies (b) and (c), since in the case of 

invertible A , the selections В = A~l and С — A 1 are suitable. Next we 
show that (b) implies (a) by verifying that condition (b) implies that 
R.(A)=V and A is one-to-one. Let v e V  be arbitrary. Then B(v)e V , 
and

A(b (v))= (A B )(v)=/(v)= v

which shows that v e  . That is, R(A) = V . To prove that A is one-to- 
one assume that A(x) = A(y) with some x , y e V ,x * y .  Then 

— j^)=0, therefore N{A) has at least one nonzero element, and so 

dim(w(y4))> 1. Then Theorem 5.6 implies that dim(/?(^))<w, where n 
is the dimension of V. Since (A -B^x) = A(B(xfje R(Al), 
and dim(R(A • B)) < dim(R(A)) therefore dim(i?(Л • В)) < n . Since 
X(l) = V and dim(tf(/)) = H, A -B * L  and contradiction implies 
that A~l exists, and relations x = A(b (x)) (for all x e V )  and (5.11) imply

that B(x) = A~l (x) for all x e V ,  that is, В = A
The fact that condition (c) implies (a) can be proved in a similar way, 

the details are left as an exercise.
+

Remark. The assertion of the theorem does not hold if V is infinite 
dimensional, as it is illustrated in the following exam ple.

Example 5.9. Let V be the set of all single variable real 
polynomials. Let p{t)= a 0 + axt + a2t2 + — + aJ  e  ^ • ^>ê ,nc

A(p)(t)=a, +2a2t + ...+ na„t"-' (=p'(/))
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and

B m  = a „ t  + ^  + ̂  + . . . + a J
n+l

n + 1

It is easy to see that

и - в Ы ' ) = т р ) Х ‘)
d (  a .t2 a J 1

= — a0t + —---- h —---- h
dt{ 0 2 3

a t n+l

n + l = p (‘\

that is, А -В - I ,  however A~l does not exist, since A is not one-to-one. 
This fact follows from the observation that for an arbitrary real number a,

5.6 Matrix Representations of Linear Mappings

In this section we assume that V and V' are finitely generated vector 
spaces, and either both are real or both are complex. Suppose that 
В = ,Mn} and vw} are bases in V and V\ respectively.
Let A E b(V, K') be a linear mapping of V into V '.lf x e V  is an arbitrary 
element, then
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where the scalars xl ,...,xn are the coordinates of x in basis В . Then the 
linearity of mapping A implies that

(5.13)

Notice that for all i = 1,2,..., n, A(ut. )e  V', therefore this vector can be 
expressed as the linear combination of the basis elements of V

(5.14)

with some scalars . Substituting this equation into (5.13) we have

/l(x) = Xi(a,iVi +... + amlvm) + ... + xn{alnv , + -  + amnvm)
= {aux j + ... + a,„x„)vl +... + {am̂  +... + am„x„)vm.

This equation shows that the coordinates of the image element A(x) in 
basis B' are

аих1+...+а]пхп,...,ат]х1+...+атлхп9

that is, its coordinate vector is the following:

A(x)B, =

а11х1+...+Д1пхя

Introduce the m x  n matrix



286 Introduction to Matrix Theory

B,B'

a il" 'a in

. . .am i m n '

and coordinate vector

* b  =

Л у

to see that
(5.15)

This equality and constant matrix A BB. are called the matrix- 
representation o f mapping A. In Example 5.2 we have seen that multiplying 
by an m xn  real matrix is a Unear mapping o f R” into Rm. This matrix 
representation shows that all linear mappings between finitely generated 
vector spaces can be represented as multiplication by constant matrices. 
Since the columns o f A BB. are the coordinate vectors o f the images

A(y_n) o f the basis elements o f В , it is easy to see that 

dim(i?(,4)) = rank(^5 B,)- Equalities (5.13) and (5.14) show that matrix 
А в в• can be constructed in the following way:

Step 1. Find the images A{ux A{un) o f the basis elements;

Step 2. Compute the coordinate vectors o f these images in basis В ';

Step 3. Construct the mx n  matrix the columns o f which are the 
coordinate vectors o f A(ut A(un), respectively.
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This procedure is illustrated in the following examples.

Example 5.10. Let V and V х be two finitely generated vector 
spaces and assume that A(x) = O' for all x e V 9 where O' denotes the zero 
element of V\ Then for all basis elements и., A(ui) = 0'. Notice that all 
coordinates of the zero vector O' are equal to zero, since

0 ' =  0 - v ,  +  0 - v 2 + . . . + 0 v m .

Therefore all columns of matrix AB B, is the zero vector, consequently 
ABB, is the mxn  zero matrix.

Example 5.11. Let V be a finitely generated vector space with 
basis В = {wlv ..,wn} and select V -V  and В,=B. Define A as the identity
mapping I , then for all basis elements

with coordinate vector ei , since

и . =  0 - m 1+ . . . + 0 - m w  + 1  Ui + 0 w /+1+ . . . + 0 * w rt.

Therefore the columns of ABB. are е19е19...9ел9 respectively. That is, 

A B B. is the n X n identity matrix.
♦

Example 5.12. Let V be the set of single variable real polynomials 
of degree at most n 9 and select V'=V. Assume that mapping A is defined



288 Introduction to Matrix Theory

space V is n +1 dimensional with a basis В = {l, t,t2 since each 
polynomial of degree at most n can be uniquely represented as a linear 
combination of these elements. Select B'=B, which means that 
uY = v { = 1, u2 = v2 w„+, = v n+I = t" . The images of the basis
elements are as follows:

A(u, ) = 0, A(u2 ) = 1, Л(и 3) = A(u„+l) = n t .

Using the same basis elements we see that

as A{p) = —  p for all p e V . From Theorem 2.7 we conclude that vector

= + 0 m2 + ... + 0 w„ + 0 -m 

2 ) = 1 + 0 -w2 + ... + 0 - un + 0 w 
^ (^ з )= О* Ч.\ + 2  и 2 + ...+ 0 - un + 0 - и

п+1
/1+1

rt+1

^ » | ) = 0 -И| + 0 и2 + .. .+ и и „  + 0 и„+1. 

That is, the coordinate vectors of these images are obtained as

А( я Х  =

f ti\ r0'
0 0 2
I . А(и.г )g. = I . A(n.) )«• =

I

0 0 0

lo, ,0,

A(un+l)B.
n

j ,

And finally, matrix ABBi is constructed as the matrix the columns of 
which are these coordinate vectors in the same order as above:
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Ab,b' -

x0 1 0
0 0 2

0 0 0
v0 0 0

• 0̂
• 0

• n
• 0J

The elements of this matrix are characterized as

a.. -
i if  1 < i < n and j  = / +1
0 otherwise

In the previous two sections we have introduced and examined the 
sums, scalar multiples, products, and inverses of linear mappings. We will 
now see how their matrix representations are effected by these operations.

Let V and V' be finitely generated vector spaces. As always, it is 
assumed that either both are real or both are complex. Let В = 
and i?! = { у , vm} be bases in V and V\ respectively. Assume that A 
and С are two linear mappings of V into V. Use equations (5.13) and
(5.14) for both mappings to see that for all x e V ,
A(x)=x]A(ul)+ ... + x„A(u„), 
and
C(x) = x lC(ul)+ ... + x„C(un).

Therefore

(A + cXx) =A(x)+C(x)=x, (a (ui)+C{u1)) + ... + xn{A(u„)+ C(u„ ))
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From equation (5.2) we know that for all / , the coordinate vector of 
A\J£i)+ C(u. ) is the sum of the coordinate vectors of А(и{) and C(u.). 
Therefore the columns in the matrix representation of mapping A + С are 
the sums of the corresponding columns of the matrix representations of 
mappings A and С . That is, the matrix representation of A + С can be 
obtained as the sum of the matrix representations of A and C:

(А + С)вв.= А В'В.+ С В'В.. (5.16)

If A is a linear mapping of V into V 1 and a  is a scalar, then

(aA\x) = a • A(x) = a(xx A(ut )) + ... + a(xn A(u„))
= xy (a • A(ux)) +... + хя [a • A(un)).

From equation (5.3) we know that the coordinate vector of a scalar 
multiple of an element equals the same scalar multiple of the coordinate 
vector of that element. Therefore each column of the matrix representation 
of aA can be obtained by multiplying each column of the matrix 
representation of A by a . That is,

{aA)BB. = a-A BB.. (5.17)

In Section 5.4 we have seen that the set L(V,V') of linear mappings of 
V into V is a vector space. Notice that the correspondence А ь-> Ав в. is 
one to one, and relations (5.16) and (5.17) imply that it can be considered as 
a one-to-one linear mapping of L(V, V') onto the set of all mXn real (or 
complex) matrices. Hence these vector spaces are isomorphic, and

dim {L{V,V')) = m n ,
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since in Example 2.19 we have shown that the space of all m xn  real or 
complex matrices is m • n dimensional.

Assume next that V , V\ and V " are finitely generated vector spaces, 
either all are real or all are complex. Let В, B' and В11 be a basis of V , V\ 
and V", respectively. If CeL(V,V') and AeL{V',V"), then for all 
x e V y

(a c U = 4 c (x)).

Let xB be the coordinate vector of x in basis В , and let AB> B- and 
CB B, be the matrix representations of mappings A and C, respectively. 
The repeated application of equality (5.15) implies that

{AC)(x)B. = A{C(x))B. = A B.B. ■ C(x)s.

=  —В',ВЯ ’ Q-B,B' В î B'e" B,B‘) — B"

Hence we have shown that

(A -C )BB. = A B,Bn ‘ C_b,b'> (518)

that is the matrix representation of a product of two mappings equals the 
product of their matrix representations.

Consider finally the special case when V'=V. Let AeL(V) be an
invertible linear transformation, and let С denote the inverse of A. Then 
A -C  = I , and combining relation (5.18) with the matrix representation о 
the identity transformation derived in Example 5.11 we immediately see t

L =  W b,b ={AC )b,b ~ А в,в ' —В,в •



hat is, CBB is the inverse of A BB. This observation can be 
summarized as

introduction to Matrix Theory

(A~')b,b = £ b,b, (5.19)

in ^ Cap 'n*erPreted by saying that the matrix representation of the 
verse о a mear transformation is the inverse of the matrix representation 

of the original transformation.

pi» Cr r g reSU^S ^ is  and the previous sections with the 
анн>П ° m*tr*x algebra outlined in Chapter 1, an analogy becomes clear, 

on, mu tiplication by scalars, products, and inverses of linear 
PP ngs ave the same properties as the corresponding operations defined

on real or complex matrices.
from S c°nc ûs*on *bis section, the special class of linear mappings 
real ?  imte ^enerate(* rea* (or complex) vector space V into the set of 
earlier^ СрШ̂  CX̂ num^ers be briefly examined. As we mentioned 
The xamP̂ e 5.3, such linear mappings are called linear functionals. 
гя1ьн /ГСа̂  °̂Г comP̂ ex) valued linear functionals defined on V is
end f  q UQ Ŝ ace ° f  ^ ' Tbis notion has already been introduced at the 
dirnp0 * еС!Ю̂  ^et n ^note the dimension of V . Since V' is one 
mat™ u •C matr*x rePresentation of any linear functional is a 1X n 
g  __ r* 1C асШа11У a row vector. If A denotes a linear functional, and 

i ’ is a given basis of V , then the matrix representation of
mapping A in basis В is given as

A B,в -  Й(«1),..., A(un)).

th e  r°W Ve°t0r Can be viewed as 311 element of R" (or C" ), therefore 
Cn Space °f an ” "dimensional vector space V is isomorphic to R" (or
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5.7 Coordinates and Matrix Representation in a New Basis

Let V denote a finitely generated vector space and let В = {w1,...,w/J} be a
basis of V. In Section 5.1 we have seen that there is a unique 
correspondence between an arbitrary element x e V  and its coordinate 
vector xB. In Example 5.1 we have seen that the coordinate vector usually 
changes if a new basis is selected in V . We will first examine how to obtain 
the new coordinate vector efficiently.

Assume that B'={vx,...,vn} is a new basis in V . From Corollary 1 of
Theorem 2.9 we know that В and B' must have the same number of 
elements. For / = 1 ,2 ,...,л, let vjB denote the coordinate vector of vy- in
basis В , and define matrix T as the nXn matrix with columns 

If ty denotes the (/,/) element of matrix Г, then for all

j ,

VjB =
2/

and therefore
Vj = txjux+...+tnJu„. (5-20)

Assume that x e F  is an arbitrary element. Let xB =[xj) and 

XB, = (x'j ) denote its coordinate vector in basis В and B\ respectively. 

The definition of the coordinates imply that
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and by combining this equation with (5.20) we have

(  n Л n f  n \
Z * / » / = = Е * ; [ Х д  w , J tijx] к
1-1 J=l M  v i=i s /=i Vy=i У

Since 5  is a basis in В and each element of V can be
uniquely represented as the linear combination of the basis elements, we 
conclude that for i = 1 ,2 ,...,n,

xi
7=1

Notice that Xy is the /- element of the coordinate vector xB, and
n

j is the /- element of the product T'XB,. Therefore we can 

summarize the above derivation as

* b = T xb,. (5.21)

Here T is called the transformation matrix. We will next prove that T is 
nonsingular matrix. The columns of T are the coordinate vectors of the 

new basis elements v1,...,v n in basis B. The mapping x\->xB is linear 
one to one, so it is an isomorphism. From the proof of Theorem 5.3 we 

an conclude that the linear independence of the basis elements vp ...,v„ 
implies the same for the coordinate vectors. Therefore the columns of T are 
linearly independent, which implies that T~l exists. Multiply both sides of 
equation (5.21) by T to obtain an equivalent form:
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х в- = Г ' х в. (5.22)

295

Relations (5.21) and (5.22) are usually called the basis transformation 
equations, and their use is illustrated in the next example.

Example 5.13. Let V = R3 and В = \e{,e2,e3}, furthermore

x =

as in Example 5.1. Since

x = l - e t + l -e2 + l - e3, 

the coordinate vector of x in basis В is the following:

Select the new basis
T r r r r

Vl = 1 . Ъ = 1 . ъ = 0

oJ ,oJ

Then
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v, = 1 • ex + 1 • e 2 + 1 • , 
v2 = 1 -e, + 1  -e2 + 0 e 3, 
v 3 = l e ,  + 0 e 2 + 0 e 3,

and so

Y xb =

T|
1 9 —IB - 1 > - Ъ В  ~

rn
0

l b к w

Therefore

Г =
1 1 Г  
1 1 0 
1 о 0

where we have copied coordinate vectors v1B,v 2B>¥.3B into the columns of
T. The simple application of the elimination method shows that

T~l =
'0 0 Г
0 1 - 1
1 -1  0

Then equality (5.22) implies that
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which coincides with the result obtained in Example 5.1.
♦

Consider next a linear transformation A e  b(V) on V . If В is a basis of 
V , then ABB denotes the matrix representation of A. Assume now that a
new basis B' is selected. Using equations (5.21) and (5.22) we can easily 
find the matrix representation of A in the new basis. Let x e  Kbe an 
arbitrary element. Then

{A{x))b — ABB -xB, 

and by using relation (5.21) we have

T_ • (л(^))я* = ABB ' T • x B, .

Multiply both sides by T~l to get

(A[xj)B'~T. Ав,вТЛв>

which implies that the matrix representation of A in basis В is the 
following:

A — T~x A T (5*23)A B\B' ~ L Лв,в±

Definition 5.5. The nxn  matrices A and С are called similar if 
there exists an invertible matrix X_ such that

C = X -'A X .
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Relation (5.23) shows that the matrix representations of a linear 
transformation A e  L(V) are similar matrices. It can also be proved that if 
matrix A is the matrix representation of a mapping A e  L(V) in a given 
basis В and matrix С is similar to A, then there is another basis B' of V 
such that С is the matrix representation of A in B\ That is, similar matrices 
can be viewed as the matrix representations of the same linear 
transformations in different bases. Therefore the ranks of similar matrices 
are equal.

The use of equation (5.23) is illustrated in the following example.

Example 5.14. Let V = R3 with the natural basis В = \е[уе29е3}.
Assume that the matrix representation of a transformation A is given by the 
3 x 3  matrix

A b,b -

0
1 
2

Select the new basis В1 with elements

T T T
*1 = 1 > —2 = 1 , and 0

v l loj a I

The transformation matrix and its inverse have been determined in the 
previous example:
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<1 1 Is] "0 0 Г

z > 1 1 0 and Г"' = 0 1 - 1

l l 0 0 ; J - 1  0 ,

Then the matrix representation of A in the new basis В1 is the following:

' 0 0 n f l 1 Г f l 1 1^
4

2 Г

0 1 - 1 1 2 l 1 1 0 = 0 1 0

, 1 - 1 0 , l l 1 2 , J 0 - 1 - 1 oJ
♦

5.8 Applications

In this section some linear transformations defined on the two-dimensional 
plane will be first examined, and then special integral-transformations will 
be introduced.

1. Vectors are identified with directed line segments in the plane. Each 
vector therefore corresponds to a point in the plane given its position vector

from the origin 0 = ^  as shown in Figure 5.1. If т is the length of the

vector and a is the angle between the vector and the positive half of the 
horizontal axis then

Xj = r cosor and x2 —r-sinflf.
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Figure 5.1. Vectors in the plane.

Consider first the transformation A which multiplies a vector by a

scalar <x Consider the basis В = {e ,,e2}, where e, = 

Since

'i\  (o

4°/
and e2 =

a

the matrix representation of this transformation is

' a  0N
Aa =

v° <*,
= a l .

Consider next the transformation Ba which rotates each vector with a 
given angle a around the origin. As Figure 5.2 shows,
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cosaA 
sin or J a n d  B a ( e 2 )  =

(  л '\ cosl a  + — I

sin a  +71

-s in  a  
cos a

Therefore the matrix representation of this transformation is

(cos a  -sin  a'
Ba = .l̂ sm a  cos a

Consider now the transformation С that gives the mirror image of each 
vector with respect to the vertical axis. Figure 5.3 shows that
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с<ьН 'о 1)

f
and C (e2) =

\

*2 =Ct a ) " ( l )

C W - ( 1 ) « - Ш

Figure 5.3. Illustration of transformation that gives mirror image with respect to
vertical axis.

Therefore the matrix representation is as follows:

- 1  0Л
C =

0 1

Assume that transformation D gives the mirror image of each vector 
with respect to the horizontal axis. From Figure 5.4 we see that

£>(е,) = ГМ and Z)(e2) =
0

therefore the matrix representation is given as
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D =
' l  0 4 
0 -1

£2=1

Figure 5.4. Illustration of transformation that gives mirror image with respect
to horizontal axis.

The transformation E which gives the mirror image of each vector with 
respect to the origin is equivalent to a rotation by л. Therefore the matrix 
representation of E is the following:

E =
-1  0
0 -1

It is easy to see that these transformations satisfy the following 
relations:

Л о= Л 1 ~ Li 
B0 = l B J' = - l  = Ey

and

Hall/} ~ ё-cc+fl >
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since repeated rotations by angles a and P are equivalent to a single rotation 
by angle a+ Д Notice that this relation can be rewritten as

D = -C  and D2 = C 2 = I.

This last identity can be interpreted as

D '1 = D and С '1 = C.

2. Consider next the vector space V = С [д,б] of continuous real
functions, and assume that к is a continuous function (к e  Cl\a,b]x 
of two variables. Consider the transformation A'.V l—» V defined as

Compare the corresponding elements on the left and right hand sides to see 
that

cos a cos p -  sin a sin /5 = cos(a + P) 
sin a  cos p  + cos or sin p  = sin (a  + p).

This simple derivation provides an elegant new proof of these well-known 
trigonometric identities.

Notice furthermore that

b

a



for all x e C[a,Z?]. Here A(x) denotes the image function, the value of
which at point t is defined by equation (5.24). Many problems of applied 
mathematics can be reduced to the solution of the Fredholm integral 
equation:

* (0 = { * (m M 4 * + / ( 0  M e , ьD, (5-25)
a

where /  e С[д,б] is a given function. This equation can be rewritten as

x = A(x) + f ,

(I-A ){x) = f .

If transformation / — A is invertible, then the solution can be obtained in the 
following form:

x = { l -A T { f\  (5'26)

A modified version of equation (5.25) can be written as

*(/)= J&(/,s)x(s)ds + f(t)  (5.27)
a

which is called the Volterra integral equation. Introduce the modified 
transformation

Chapter 5 Linear Mappings and Matrices 305



306 Introduction to Matrix Theory

I

2?(*Х/)= J& (x,s)x(sy.s,
a

then equation (5.27) can be rewritten as

x = B(x) + f ,
or

cr - B \ x ) = f .

It can be proved that mapping В is invertible, therefore equation (5.27) 
always has a unique solution in C[a, b]. For more detail see, for example 
Szidarovszky and Yakowitz (1978, Chapter 4).

5.9 Exercises

1. Show that the following transformations are not linear:
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c)

<0 ;)
i->

x+ l

У+У

( sin Xs

2. Show that the following transformations are linear:

a) I
'  -3x4

b)

c)

d)

н»

| * + ;^

[ x - y j

(2 x + 3 у

l  х -У  .

1_^ ' -x + 2  y y
1 /

,  x - 2 У ,

3. Find the matrix representation of the transformations of the previous 
problem.

4. Denote the transformations

l->
- 3 jc

2У.
and h->

x+ y

x -У ,
by A and В , respectively.

Find A + B,A -B,2A,3B,2A + З Д AB,A2,A2B, and BA
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5. Check which of the mappings of Problem 2 are one-to-one.

6. Let V be the set of all single variable real polynomials of degree at 
most n . If p(x) = aQ + axx + ... + anx n , then define A{p) as

4 / > X * )= °o  +  —  +  —  - к . .  + ^ - . I s  A a lin ea r  
A ' 0 1! 2! и!

transformation?

7. Find the ranks of the resulting transformations of Problem 4.

8. Prove that if A eL (V ,V ), then A2 = О if and only if 
R{A)cN{A).

9. Let Ae L{V,V). Is it possible that ф ) п ф ) / { 0 } ?

10. Is there any linear mapping A e L(R3,R2) such that

T|
fT) ' i )

1 = ,A 2 — , and A 1 =

u \ b
a

A
к

a

11. Let V be the set of all continuously differentiable functions on 
[0Д], and let W be the set of all continuous functions on the same interval
[0,1]. Define AeL{V,JV) as for all f e  V ,A (f) = / '•  Is A a linear 
mapping?



12. Let a e R n be a fixed vector. Define mapping A as A(x) = x + a 
for all x e  Rn . Is A a linear mapping?

13. Let Л е Х ^ / Г ^ Ъ е  defined as
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/ \ / \
*1 Xy x2

*2 x2 — *3

* •
X  J Л -1V n J

a) Show that A is a linear mapping;
b) Give a matrix representation of A ;
c) Find N(a ) and R(A)\
d) Find the rank of A.

14. Let A be a mapping of R3 into itself such that A(x) is the mirror 

image of x with respect to the origin. Find a matrix representation of A.

15. Find the coordinates of vector x in basis В = {x, ,x2}, where

fi) "2" rn
X  =

J)
= 1, IX N)
II

<2)\ /

16. Let V = C[a,b\ and let g e C[a, b] be a given function. Define the 

mapping A: V —> R as
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4 f ) = ] f{ t ) g ( t ) d t .
a

Is this mapping linear?

17. Find the mverses of the linear transformation given in Problem 2.

18. Repeat Example 5.13 for vectors

Introduction to Matrix Theory

' i > <2> | Т
X  = 2 .  = 1 . —2 = 1 . b  = 1 .l3J J ) J j < V

19. Repeat Example 5.14 for matrix

— b,s —

and basis elements

f \ 2 2Л 

1 1 I
2 1 3

as given in the previous problem.

basis how how the matrix of the previous problem changes in the new

т "o'
V. = 1 > -2 — 0 .V j = 1

к

21- Assume that k(t,s) = a *  for all ,  and 5 where a  is a
o — a



given constant. Show that equation (5.25) has a unique solution
x{t)= f{t)+ c

with

a\f{s)ds

1 -  a{b -  a)

22. In addition to the assumptions of the previous problem assume that 
f  is continuously differentiable. Show that the solution of the Volterra
equation (5.27) solves the initial-value-problem

x(t) = ax(t)+ f(t), x(a) = /(a)

23. (Continuation of Problem 22). Show that under the conditions of the 
previous problem,

Chapter 5 Linear Mappings and Matrices 311

24. Assume that A:(f,s) = K{s), where К is a continuous function on 
[ a ,6 ], and f  is continuously differentiable. Show that the solution of the 
Volterra equation (5.27) solves the initial-value-problem

*(/) = K{t)x(t) + f{t), x(a) = / ( 4

25. (Continuation of Problem 24). Generalize the result of Problem 23. 
for the more general case of the previous problem.



. t

!*". г;. •.»г. -■ " -v v ?' ■ •

. ~ i: ”*
г? г г: ; 1

’ • Щ\



Eigenvalues, Invariant Subspaces, Canonical
Forms

Chapter 6

6.1 Introduction

In this chapter the general theory of the space £(К) of linear 
transformations on a vector space V will be discussed. It will always be 
assumed that V is finitely generated, and therefore in a given basis, each 
A G L(V) has an wXw matrix representation with some n . The main 
objective of this chapter is to introduce methodology that can be used to 
transform matrices into simple forms. Most of such methods are based on 
the idea of decomposing space V into special low dimensional subspaces 
with the property that a given transformation A maps each subspace into 
itself. Therefore A can also be decomposed into more simple 
transformations of lower ranks, which will result in matrix representations 
having special structures.

6.2 Basic Concepts

Let V be a vector space and assume that A e L ( v )  is a linear
transformation of V into itself. The methodology to be introduced and 
examined in this chapter will be based on the following concept.

Definition 6.1. A subspace Vx of V is called an A-invariant 
su b sp ace  if for all x e  Vl9 A(x)e Vx .

313
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1 1
2 2

• x .

Notice first that V itself is obviously an ^-invariant subspace, and 
the subspace V{ = {o} is also ^-invariant, since Л((о) = 0. These subspaces
are the trivial ,4-invariant subspaces. A nontrivial case is shown in the 
following example.

Example 6.1. Select V = R2, and for all x e V ,  define

A{x) =

Consider the subspace generated by vector v = ^2 }"

Fi={ - l i = M ’ a e R \

We can easily prove that V{ is A -invariant. Simple calculation shows that 
for all vectors of Vx,

A {x) =
'1 г (  Q + 2 (За}
U  2yK2a; \̂ 2a + 4 ,6a )

\eVx.

We start our discussion with the simplest nontrivial ^-invariant 
subspaces. Let V{ be a one-dimensional subspace of V , then it is generated 
by a nonzero vector v :

К = {*|* -  #v,ais a scalar}.
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This subspace is Л(-invariant if and only if for all x e V [y A{x)  is a 
constant multiple of x . This condition can be reformulated by saying that

A(x) = Ax (6.1)

with some scalar A . The selection x = 0 always satisfies this equation with 
arbitrary value of A, therefore this trivial solution has no interest to us.

Definition 6.2. Let A e b(V  ) be a linear transformation. A 
scalar A is called an eigenvalue of A, if there is an x Ф 0 in V such that 
equation (6.1) is satisfied. The solutions x Ф 0 are called the eigenvectors of 
A. Equation (6.1) is usually called the eigenvector equation of mapping A.

Notice that if V is a real vector space, then scalars are also real, 
therefore only real eigenvalues are considered. If V is complex, then 
eigenvalues can be both real and complex numbers.

First we point out an important relation between the eigenvalues of a 
linear transformation and the transformation being one-to-one. From 
Theorem 5.5 we know that a linear transformations A is one-to-one if and 
only if its nullspace consists of only the zero element. The eigenvector 
equation implies that this is the case if and only if A = 0 is not an 
eigenvalue of A. That is, A is one-to-one if and only if all eigenvalues of A 
are nonzero.

First we will prove the linear independence of eigenvectors associated to 
distinct eigenvalues. The theorem will play an important role later in this 
chapter in transforming matrices into diagonal form.

Theorem 6.1. Let Al,...,Ak be distinct eigenvalues of a 

transformation A e V { b ) y and let * i>•••>** be associated eigenvectors.
Then are linearly independent.

Proof. Assume that a linear combination of these elements is zero,
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a\X\+a2*2 + '-+ akXk = Q> (6-2)

where at last one coefficient, say, ak is nonzero. By renumbering the
elements we can always have nonzero coefficient in the last term. Multiply 
this equation by Ях to have

а\ЯхХ\ + а2Яхх2 + ~. + акЯххк =0. (6.3)

Apply mapping A to both sides of equality (6.2),

а,А{хх) + а2А{х2)+... + акА{хк) = 0.

Use the fact that for i = 1 , 2 , A[xk) = Якхк to rewrite this last 
relation as

■+■ &2Я2х2 “Ь...h- ci k Я kx_k — 0 .

Subtract this equality from (6.3) to see that

**2(^1 ~ ̂ 2 )^2 +•••+ ak(^l~ ̂ k)Xk = 0,

that is,

a2)x2 +...+al'k)xk =0, (6.4)

where = а ,(Л -Л !) for i = 2,...,k. Notice that for all i , a?) * 0  if 
and only if ai Ф 0 , since the eigenvalues are distinct and therefore 
Я —Я̂ Ф 0 . The above derivation shows that if a linear combination of 
*1 >*2>•••>** is zero, then xx can be eliminated from the zero linear 
combination, and all nonzero coefficients remain nonzero. Repeat the same
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procedure for equation (6.4) to eliminate x2, and repeat again for the 
resulting equation to eliminate x3, and so on. Finally after eliminating all 
elements x y>,..,xk_x, we have

Since xk Ф  ̂= 0 , which implies that ak =0.  This conclusion 
contradicts the initial assumption that ak is nonzero. Thus the proof is 
complete.

*
In the special case when V is finitely generated, with some n , mapping 

A has an я Х «  matrix representation and each element x e V  has an n- 
element coordinate vector in any given basis В . For the sake of simplicity 
let A and x denote the matrix representation of A and the coordinate vector 
of x. In this notation we do not indicate basis В in the subscripts of these 
symbols as we have done earlier in Chapter 5, since the basis is considered 
now fixed. Then equation (6.1) can be rewritten as

Ax — Ax,

which is equivalent to the homogeneous equation

U - ^ l ) x  = 0 , (6.5)

where / is the n X n identity matrix and 0 is the n -element zero vector. A 
scalar Л is an eigenvalue of A if and only if this equation has a nonzero 
solution x. Since 0 is always a solution of this equation, nonzero solution 
exists if and only if multiple solutions exist. From Theorem 4.6 we know 
that a necessary and sufficient condition for the existence of multiple 
solutions is given by the condition that the determinant of the coefficient 
matrix is zero:
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Equation (6.6) is called the characteristic equation of matrix A . Notice 
that А — Л1_ can be obtained easily from ^4, we have to subtract Л from 
each of its diagonal elements. That is, equation (6.6) has the equivalent 
form:

det(y4 —Л/) = 0. (6.6)

rа „ - Л °  12 a n,n-\ *1 я >

det «2 1 a22- A * 2 ,/i-l a 2n = 0. (6.7)

v a ». am a n,n-\

1

Expanding this determinant with respect to the first row it is easy to 
show by mathematical induction that the left-hand side is always a
polynomial of degree n and the coefficient of Яп is (— l)" - This 
polynomial is called the characteristic polynomial of matrix . It is easy to 
see that the characteristic polynomial does not depend on the basis being 
selected in V . The matrix representation of A in another basis is T_ AT_,
where Г is a nonsingular matrix. The characteristic polynomial of T_ AT_ 
is the following:

detfr-1^ - Я/)= det ( r 1 {А-Я1_)т)

= det(r4 )• detU  -  Д/)- det(r).

From the Corollary of Theorem 4.4 we know that

det(r_I)= — r, 
W ’ d e t ( l ) ’
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therefore the first and last factors cancel showing that the characteristic 
polynomial of T 1 AT_ coincides with that of matrix A.

Based on the above discussion, the eigenvalues and eigenvectors of an 
n x n  real or complex matrix can be obtained by using the following 
procedure:

Step 1. Expand determinant (6.7) to obtain the characteristic 
polynomial of matrix A;

Step 2. Find the (real or complex) roots of the characteristic 
polynomial to get the eigenvalues;

Step 3. For each eigenvalue, solve the homogeneous system (6.5) to 
recover the eigenvectors.

This procedure is illustrated in the following example.

Example 6.2. Consider the 3-3 matrix

f  1 4 1

A = 1 2 3
3 2

Equation (6.7) has now the form

r l - A  4
det

1
1 2 - A 3 
1 3 2 - A

=  0 .

Expanding the determinant with respect to its first row, the left-hand 
side can be written as



320 Introduction to Matrix Theory

/ , 4 J ( 2 - A  3 Л л л (1 3 Л л (\ 2 - X )  
(l -  Я) ■ det - 4 d e t  + l-d e t
V '  ̂ 3 2 - A) [ l  2 - A )  [ l  3 

= (l -  Я) • (4 -  4Я+ Я2 -  9) -  4 • (2 -  Я -  3) +1 • (3 -  2 + Я) 
= (l — Я)(— 5 — 4Я + Я2)+ (4Я + 4) + (Я + 1)= —Я3 + 5Я2+ 6 А

The roots of this polynomial are

Л,= 0 , A 2= -1 , and Л3= 6.

For eigenvalue Ях= 0, equation (6.5) has the form

'1 4 n

1 2 3 * 2 - 0

l l 3 2 , w

that is,

x\ + ^x2 + *3 = 0 
+  2 x 2 +  Ъх3 =  0  

^  +  Ъх2 +  2 x 3 =  0 .

The elimination procedure is shown in Table 6.1, where the right-hand 
side numbers are not presented, since they are always equal to zero.
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Hence, jc3 is the free variable, and back substitution shows that x2 = x3 
and jCj = - 4 x 2 - x 3 = -5jc3. The general solution is therefore the 
following:

x =

f  с \- 5 jc3

ч хз у

Thus, this vector is the eigenvector associated to \  — 0 with arbitrary 

nonzero value of x3.
For Я 2= -1 , equation (6.5) can be written as

'2 4 Г v "0"

1 3 3 *2 = 0

,1 3 3,
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which is equivalent to the system

2xj + 4x2 + x3 = 0 
xy + 3x2 + 3x3 = 0 
x, + 3x2 +3x3 = 0 .

Similarly to the first eigenvalue, one may verify that the general solution is

f 9

x =
2 3
5---- x,

For A3= 6 , equation (6.5) is the following:

( - 5  4 1 
1 - 4  3
1 3 - 4

and the general solution is:

x =
r x  лЛ3

If we wish to determine a particular eigenvector associated to each 
eigenvalue, then we might select a particular value for x3. If хъ = 1 is the 
choice, then the eigenvectors for A = 0, - 1 , and 6 are
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f 9 >

f ~ 5 1 2
5 (A

1 у , and i
2
1 w

respectively.
♦

The procedure discussed above is very useful to find one-dimensional 
invariant subspaces for any given nxn  real or complex matrix. However to 
find higher dimensional invariant subspaces, the straightforward extension 
of this algorithm becomes very complicated, and therefore has no practical 
value. The case of finding two dimensional invariant subspaces of a 3 -3 
matrix is illustrated in the following example.

Example 6.3. Consider again matrix

/1 4 P  
>4= 1 2  3

1 3 2

Any two dimensional subspace is characterized as

V\ ~ №£ + Му \{x>y} ls a basis ^  ыъ scalars}.

This subspace is A -invariant if and only if both Ax and Ay are in Vx, 

since for any vector z e V x,

Az = а (Лх  + //y)=Л Ах + д А у е  VL



This observation can be mathematically formulated as the system:

Ax = a x  + p  у 

Д у = + £ y,

where vectors and scalars а ,Д  у, are the unknowns. These equations 
can be summarized as the homogeneous system

*24 Introduction to Matrix Theory

( A - a l  - p i  Л/  \  
X 1 fo)

I  - Y i  A - S I ) , 1 ) lo j ’

Similarly to the eigenvector equations the unknown scalars can be 
obtained as the solutions of the equation

Notice that this determinant is 6 • 6 with four unknown parameters, 
therefore its expansion becomes complicated. Notice that if a k— 
dimensional invariant subspace of an nXn matrix is to be determined, then 
this equation has к2 unknown scalars, and the size of the determinant is
knxkn.

♦

Due to the difficulty arising from the increasing size and more 
complicated structure of the determinant being expanded, a different 
approach has to be developed to find invariant subspaces. This new 
methodology is based on the following simple result.
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Theorem 6 .2 . Let A g L(v ), and assume that for a linear 
transformation B e b ( v ) ,  AB — BA. Then the nullspace of В is an A- 
invariant subspace.

Proof. Let x g N(b ) be an arbitrary element. Then A(x) g N(B),
since

b [a (x))= (B ■ A)(x)= (A ■ B)(x) = a (b (x)) = 4 0 )  = 0,

which proves the assertion.
*

If we wish to use this theorem in constructing Л-invariant subspaces, 
then we have to fmd a large class of mappings that commute with A. Let p 
be a real or complex polynomial depending on whether V is a real or 
complex vector space. Since A commute with Ak for all к > 0, A and 
p {a ) commute as well. This simple observation shows that 7V(/?(/4)) ls an 
A -invariant subspace for all polynomials p. Our general methodology for 
constructing invariant subspace will be mainly based on this idea. In 
developing further results we will use the fundamental properties of matrix 
polynomials, which are the subject of the next section.

6.3 Matrix Polynomials

We start this section with the summary of the most important properties of 
real and complex polynomials. As in some earlier examples, a single 
variable single valued function of t having the form

p(t) = a0 +alt + a2t2 +...+a„r
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is called a polynomial of degree n if  the coefficients are real or complex 
numbers, and the leading coefficient, an *  0 . If all coefficients are real, 
then the polynomial is called real, otherwise the polynomial is complex. A 
real (or complex) number t * is called a root of p  if  p(t *) = 0. We will use
the following facts (see, for example, Herstein, 1964) regarding the roots of 
an n degree polynomial p :

1. For any complex polynomial of degree n, there are n (not 
necessarily distinct) real or complex roots.

2. If all coefficients are real and complex roots exist, they occur in 
conjugate pairs.

3. If n is odd and all coefficients are real, there is at least one real root.
4. If / * is a root of p y then necessarily

where q is a polynomial of degree n — 1 .
The first fact is known as the fundamental theorem of algebra, the 

proof of which is based on the theory of functions of complex variables, 
t erefore it is not included in this book. The second property can be proved 
у simple substitution. Let t * be a complex root. If complex conjugate is

denoted by overbar, then

P ^ f) = o0 + alt* + a2t* 2 +...+ant*"

= a0 +att* + a2t* 2 +...+ ant* n = p(t *) = 0  = 0 ,

number  ̂ f 'S * Г°°* P' ^act  ̂ *s a consequence of Fact 2, since the 
number of C0Î ex roots a rea  ̂polynomial is always even, but the total 
is odd, hence ^  ComP̂ ex roots is odd. Therefore the number of real roots 
and it pan Г nonzer°- The last property is known as the Factor Theorem, 

Proved by using the well-known algebraic identity
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ak- b k =(a-b)(ak~' + ak~2b+...+ abk~2 +6 *'1)

Simple algebra shows that

р ( ' ) = / > ( ' ) -р ( '* )  = а |( < - / * ) + а 2(г2 - / » 2 )+ ...  + <зя (/"- / * ”)

= a ,(t- l*)+ a2 + /*) + ... + a„ + t"~2t *+... + /• t*"~2

where

q{t) = a ,+ a 2(t+t *)+...+ an +t"~2t*+...+t-t *"'2 +t )

is a polynomial of degree n - 1 .
Some additional properties of polynomials which will be used later in 

this chapter are discussed next.
5. If p and q are polynomials of degree n and m<n , respectively, 

then there are unique polynomials h and r  of degree n —m and at most 
m — 1 such that

p{t) = q{t)h{t) + r{t). (6 .8)

Equation (6 .8) is called the Remainder Theorem, and polynomials h and 
T are called the quotient and the remainder polynomials, respectively. 
Relation (6 .8) can be proved in the following way. Denote

p[t)—Qnt + . . . + +

q{‘)=bmr  +bm_lr~' + . . . + b,t+b0,

and look for polynomials h and r  in the following form:
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h(t) =  c„ -J"~m +  -  +  c,r +  c0
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and
+...+dxt+d0.

Then relation (6 .8) is equivalent to equality

a f  + ... + axt + a0 = ( b jm + ...+  b,t + b0 \сп.тГ т +... + c,t + c0)

+  + -  + dlt + d0).

Comparing the corresponding coefficients of both sides we obtain the 
system of equations

an - b m-cn mn m n—m 
<*n-\ ^m-\ ̂ n-m

an ,= K C0+K-xC\ + -+ V * >
Qm-\ = Ьщ-lC0 2C\ + + ̂ m-\

ci\ = 6 ,Cq + bQcx + dy 

ao = V o  do у

where for к > n -m ,ck = 0 . From the first equation the value of can 
be determined, since bm Ф 0 . From the second equation we have , 
and from the third equation we obtain cn_m_2. Continuing the process the 
unknown coefficients are obtained in the order cn~m-i»
Cn-m-iy'-yCoyd^y,..., d 0.



Example 6.4. Let p(t) = t5 -I- 2/4 +/3 + I t1 +J + 1 and 
q(t) = t2 + t + 1. Then n = 5 and m = 2 , and equation (6 .8) has the form

f5 +2/4 +/3 + 2/2 + / + 1 = (/2 + / + l)(c3/3 + c2/2 + Cj/ + c0)+ (<i,/ + d0),

and the comparison of the corresponding coefficients gives the system of 
equations

1 = c3

2 = c2 + c3
1 = Cj + c2 + c3
2 = c0 + c, + c2

1 = с0 + Cy + dy
1 = c0 + d0.

The solution is obtained as follows:

c3 =1

c2 = 2 - c3 =1 
ct = l - c 2 - c 3 = —1 

c0 — 2 — c, — c2 = 2  

dy = 1 — c0 — Cy = 0 

d0 = 1 — c0 = —1,

therefore

h(t) = t* +t2 - t  + 2 and r(t) = - 1 .
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A real (or complex) polynomial is called prime if  it cannot be 
represented as the product of two real (or complex) polynomials of lower 
degree. From properties 1. and 4. we know that in the set of complex 
polynomials only the linear polynomials are primes. In the set of real 
polynomials all linear polynomials are primes, a quadratic polynomial is 
prime if and only if it has no real root, and no real polynomial of degree 
three or more is prime. This fact follows from the observation that if the 
degree of a real polynomial p is at least three, then it can be factored either
as (t - t* )q ( t ) where t* is a real root of p , or as (/- 1 *)(/- /

where /* and are complex conjugate roots. In the second case, the 
quadratic polynomial

[ t - t* ) lt - t* ) = t2 -t(t*+ t *)+/*<*

is real, since both / * +t * and / * t * are real numbers.
6 . Every polynomial can be decomposed as the product of powers of 

primes. For complex polynomials this decomposition has the form

(6.9)

where tx are the distinct roots of p with multiplicities
In the case of real polynomials this decomposition can be

given as

= <610> 

where tx,...,tl polynomials with unit leading coefficients. For

i = / + 1, . . . , r ,  let Zj and Zj denote the distinct real roots with multiplicities 
т х,...,т1У and <7/+1 ,—><7г are prime quadratic roots of qj9 then mf. is the 
common multiplicity of these complex roots. It can be proved that
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decompositions (6.9) and (6.10) are unique up to the order of the prime 
factors. This property is called the Primary Decomposition Theorem.

The greatest common divisor of polynomials is next introduced. Let 
Pi>—>Pk be real (or complex) polynomials, and assume that for
i = 1,2 ,..., k, Pi factored into powers of distinct primes:

Without losing generality we may assume that the prime factors 
are common in these polynomials, and there is no other 

common prime factor. For all j  = l ,2 , . . . , r ,  define

That is, the greatest common divisor is the product of the powers of the 
distinct common prime factors, and the power of each common prime factor 
is the smallest value among the powers of this factor in the different 
polynomials. This definition implies that any common factor of given 
polynomials is a divisor of their greatest common factor.

We say that polynomials pl9...,pk are relative prime, if  they have no
common divisor of degree at least one. Relative prime polynomials satisfy 
the following condition.

7. Assume that polynomials pl9...,pk are relative prime. Then there

exist polynomials qx,qli...,qk such that

Then the greatest common divisor is defined as the polynomial

P\ (0 ?i (‘ )+Pi W?2 M + - + л  (* k t  M =i

for all t.
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This result can be proved in the following way. Consider the set of 
polynomials

*s a polynomial for a l l / j  .

It is obvious that p\,p2,...,pk e P , all linear combinations of 
ply...,pk belong to P, and if p e  P, then for any polynomial q , pq e P.
Since the degrees of the nonzero elements of P  are nonnegative integers, 
there is a nonzero polynomial r  e  P with smallest degree. Since p e P, the 
degree of r  is not larger than the degree of p. First we prove that r  is a 
divisor of all pf{i = 1,2,...,k). Using the remainder theorem we see that 
there are polynomials qx and r. such that

pi = r -qi +r i ,

where either r. = 0 or the degree of r. is smaller than the degree of r  . In 
the first case r  is a divisor of p . , and in the second case

ri= Pi ~ r q i e P ,

which contradicts the selection of d (since the degree of r{ is smaller than 
the degree of r, r must not be the element of P  with smallest degree). 
Therefore only r{ = 0 is possible. Since polynomials p x,—,pk 310 
relatively prime, r  has to be a nonzero constant. Hence

and by selecting q] (t) -  - q .(/),
r
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i = Pi (<)?’ i‘)+-+Pk [t)q\ ).

which proves the assertion.

The main properties of matrix polynomials are discussed next. Assume 
that V is finitely generated and A e  b(V) is a linear transformation on V . 
Let A be an nXn matrix representation of A. In Example 2.19 we have 
proved that the dimension of the vector space of nxn  matrices is n . 
Consider now matrices

LA, A1,..., A"'.

Since we have n2 +1 matrices in an я 2-dimensional vector space, they are 
linearly dependent. Therefore

a n 2 A" + ...+ a2A2 + axA + a0I_ = О

with some scalars a0,aX9...,an2. That is, there is a polynomial p of degree 

at most n2 such that

p(d)=Q-

Consider now the set of all nonzero polynomials p such that p(A) — O. 
Since their degrees are nonnegative integers, there is a polynomial of least 
degree with this property.

Definition 6.3. A nonzero polynomial r of least degree such that 
r^A) = О is called a minimal polynomial of A.

Minimal polynomials satisfy the following properties.
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Theorem 6.3. Let r  be a minimal polynomial of an n X n matrix 
A. Then

a) It is unique up to a constant multiplier;
b) If for a nonzero polynomial p,p(A.) = O, then r  is a factor of p.

Proof, a) Assume that rx and r2 are both minimal polynomials of 
A and their common degree is m. The remainder theorem implies that there 
is a scalar a and a polynomial r  * of degree at most m - 1  such that

r\ — a ' ri + r  * ’
Then

r*{A)=rl{A)-ar2{A) = 0 - a - 0  = 0 ,

which is impossible for г* Ф 0 because of the minimality of the degree of 
r, and r2. Thus r* = 0, and rx is a constant multiple of r2.

b) The remainder theorem implies that

p = r q + r*

where q is a polynomial and the degree of r  * is at most m - 1 .  Then

r  * (л )  = p (a ) -  r{A)q{A) = 0 - 0  q(A) = O.

Similarly to the previous part of the proof we see that this is possible 
only if r * is the zero polynomial, that is, r is a divisor of p.

*

Example 6.5. We will now find a minimal polynomial of the 2 x 2
matrix

A =
'I  1N

2 2
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l г
Hh <20

f l 0^

, 2  2 ,
u

, 0 b

Constant nonzero polynomials have the general form p0 (/) = a0 with 
some scalar a0 Ф 0 . Then p0 (A) = а01 * О .  Linear polynomials have the 
general form p x (/) = axt + a0 . Then

P\iA) = a xA + a0l  = ax

which is zero if and only if

ax + a0 = ax = 2 ax = 2 ax + aQ = 0.

Since these equations are satisfied only if ax = a0 = 0 , the minimal 
polynomials are at least quadratic. The general form of a quadratic 
polynomial is p2{t) = a2t2 +axt + a0, so p{a) = О if and only if with 
some scalars а2,ах,а0У

(3 3s
+ Д.

f l Г
+ ar0

f i o' _ "0 0"

, 6  6 ; I
, 2 2 ,

U
, 0 b , 0 0>

This matrix equation is equivalent to relations

3 a2 +ax+a0 =0 
3 a2 +ax =0 
6a2 + 2  ax = 0  

6a2 + 2 ax + a0 = 0 .

The general solution of these equations is the following: 
a0 =0yax = —3a2, where a2 is arbitrary. Hence (by the selection of

*2=1)>



p2(t) = t2 -  3t

is a minimal polynomial of A.
♦
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6.4 The Construction of Invariant Subspaces

We start this section with a simple result, which will play an important role 
in the construction of invariant subspaces and special matrix forms. Let V 
be a vector space and assume that for i = 1, 2 , . . . ,A:, transformations 
Bj G L(V) satisfy the following properties:

a) By +... + Bk = I
b) BjBj = О for i Ф j , where 0 is the zero mapping such that 

O(x) = 0 for all x e V .
We will first show that for all /, Bf =B i . Such linear transformations 

are called idempotent. Properties (a) and (b) imply that

Bi =Bi I = Br {Bl +B2 +... + Bk)= Bf + Y .B‘BJ = B- >

since all terms in the summation are zeros. Define Vi as the range of В, :

Vj = r (b )̂ = {x | x = В j (z) with some z e V j.

Theorem 6.4. Subspace V is the direct sum of , V2 Vk :
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Proof. Using Theorem 2.16 we have to prove first that each v G V 
can be written as the sum v, + v2 + ...+ vk , where for i = 1,2,...,ky vk e Vk . 
And second, we have to show that if for some elements 
Yi e  К 0  = 1,2 ,...,A:),0 = Vj + v2 + ...+V*, then necessarily

—! =^2  = -  = V* = 0 .
Let v  g  V be arbitrary. Then

V =  / ( v ) =  (B , +  5 2 + . . .+  Xv) =  5 ,  (v )+ B 2 (v )+ ...+ B k ( v )

Notice that £, (v)g V. for all i , therefore the first statement is verified. 
Assume next that for some vf. G Vi (/ = 1 ,2 ,...,k),

0 = v ,+ v 2 +... + vA.

The definition of subspaces V.t implies that for all / , there is a w ;. G V 
such that v, = Bt (w.). From this equation we see that for all /,

0 = B, (0) = B, (v ,) + B, (v2)+ ... + B, (v*).

If j  Ф i , then
B k j^ B X B j^ jM B f j lW j )=0

as the consequence of assumption (b), therefore Bj (Vy) = 0 , which implies 
that for all / ,

v, = Bf (vv.) = B] (w, ) = Bt (Bf (w.)) = Bt (v.) = 0,

which completes the proof
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Let now A G L(V) be a linear transformation and assume that V is
finitely generated. Assume furthermore that the minimal polynomial r  of A 
is factored into powers of distinct primes:

r(t) = <>P\ Pi (')* ’ -P i (‘ T' > 

where the leading coefficient is a. For / = 1 ,2 ,...,/ , define

r .u)= . (6 .11 )
•u  p & r

These polynomials are relative prime, and therefore Property 7 
discussed in the previous section implies that there are polynomials q, (t) 
such that

1 = ri W<7| (O'+ r2 (‘ h i  [ t)+ - + n (t]q, (/)• (6.12)

Introduce notation

(i = l ,2 ,

and consider transformations i?f = fj{A). We will next show that these 
mappings satisfy all conditions of Theorem 6.4.

Theorem 6.5.
(i) I = B{ +B2 + ... + Bt;
(ii) B}Bj  = О for j  Фу,
(iii) define Vi = Я{В{) for all i , then
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K = F1 @F2 0 . . .0 F/;

(iv) for all i ,Vj = N^p^A)™ j .

Proof. The proof consists of several steps.
(i) From equation (6 .12) and the definition of f t (/) we have

i= / iW +/2  (*)+•••+/Л 4

Substitution of A into this equation shows that

I = / l(A )+ f2(A )+ ...+ fl (A),

and since Bt = /  (>4), the assertion is valid.
(ii) If / Ф j , then

B,Bj = f, {A)fj iA) = rt {A)qi (A)rj (A)q j (a )= 0 ,

since Y'i (/)rj (/) is a multiple of r(t), and г(а ) = О.
(iii) Properties (i), (ii) and Theorem 6.4 imply that V is the direct sum 

ofVx,Vl9...9V,.

(iv) First we show that Vi ci Let v e  ^  be an arbitrary 
element. Then v = Bj (w) with some w g V, and the definition of 
implies that

= Pi (A)"‘ П (Ah, (АУ™) = r (Ahi № )  = 0, 

since г(а)  = О. Therefore ve  7у(/?,(Л)"')



Next we prove that Vi ^ N [pi{A)m‘ \ Assume that v e  N(p/(A)m' ) 
From property (iii) we know that v can be expressed as

v = Vj + v 2 +... + V/ (6.13)

where vf e  Vi for all i . Since Vx = R(Bj ) ) there are elements w;. such that 
v, = Bi (w .) , therefore

о = P,(a)”" (v) = Pi[а )щ (Bt (w ,)+ B2 (w2)+ ...+  B, (w, ))

= (p,(A)"" B,)(w ,)+ (p ,[А)щ B2\w2)+...+ (p ,(A)m‘ B ,\w,)

= {pXA)m‘ / ,( )̂Xvv,)+ (р,(л)”‘ f 2[A%v2)+... + (p, (A)m‘ f,{A%V,)

Notice that for j  — 1,2,...,/, the j л term can be written as

( / , ( ^ к ( ^ Г  ) = (BjPi{AT' ) = BJ{p,[А)щ (w ,))

which is in r [Bj ) = Vj . Hence 0 is decomposed as the sum of / elements, 

where the y th element belongs to Vj for j  = 1,2,...,/. Then property (iii) 
and Theorem 2.16 imply that each term is necessarily zero, that is, for all j ,

о = B J  (ft(A)a‘ iwj))= (b j Pi (A p  ]wj ) (6.14)

For all j  Ф i,Pj{t)mi and Pj(t)mj are relative prime, therefore Property 7 of 

the previous section implies that there exist polynomials s{ (t) and sj (t) 
such that

340 Introduction to Matrix Theory
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Substituting A into this equation and applying both sides to the element 
B M j)  we have

B j (w, )= (s,(a )p ,(A )"' \B j (Wj))+ {s j {a )Pj (A)mj \ b j (w.))

= si{A%BjPi(A)m‘ ](w. ))+sy {a )((b jPj (A)n‘ \ w j ))=  0,

since Bj = fj(A )  commutes with p,{Ai)mi and ру{А)т*, relation (6.14)

holds, and BjPj(A)mj = qj(A)r(A) = 0. And finally, equation (6.13) 
implies that

V =  V, +  V2 +  •••■+ V, =  Bt (vv ,) +  B2 ( w 2 ) + +  B, ( w , )

=  B , (w , ) s  R{B , )=V„

since all other terms are equal to zero. Hence v e f^ , that is, 

с  V., and thus, the proof is complete.

6.5 Diagonal and Triangular Forms

In this section we will always assume that V is finitely generated. The main 
result of the previous section will be first applied to answer the question of 
when a basis of V can be chosen that consists of eigenvectors of A . In such 
cases the matrix representation of A in this basis becomes diagonal. This 
important fact can be proved as follows. Assume that dim(v) = n, and
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В >*„} is a basis of V consisting of eigenvectors of A. For all
i = l , 2 ,...,w , the eigenvector equation

А(х,) = Л,х,

is satisfied, where Я1 is the eigenvalue associated to eigenvector x {. That 
is,

A(xl) = 0 x l + ...+ 0-xi_l + A ix f + 0 x i+, + ...+ 0 *,,,

and equation (5.14) implies that the matrix representation of transformation 
A in basis В is diagonal:

A do —

Л,

Definition 6.4. A linear transformation A e L (v )  is called
diagonable if there is a basis of V consisting of eigenvectors of A .

In the above discussion we have derived that the matrix representation 
of a diagonable transformation A in basis В is diagonal. Assume first that 
A has n distinct eigenvalues, then Theorem 6.1 implies that the associated 
eigenvectors form a basis in V , hence, A is diagonable. This condition is 
only sufficient for a transformation being diagonable. The case of the 
identity transformation shows that transformations may be diagonable even 
if they have multiple eigenvalues. For the nxn  identity transformation, 
Я = 1 is the only eigenvalue with multiplicity n , and any arbitrary vector x 
is an associated eigenvector, since /(x) = x = I • x . Therefore any basis of
V consists of eigenvectors.
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Example 6 .6 . Consider again the 3 x 3 matrix

A =
f l  4 0  
1 2 3 
1 3 2

which was the subject of Example 6.2. We have shown there that the 
eigenvalues of A are Лх= 0 ,Л 2= - 1,Л}= 6 with associated eigenvectors

=

' 9" T
1 , x2 = - 5 , and x3 = 1

, 2 ,

Since the eigenvalues are different, the eigenvectors form a basis in R . 
Introduce matrix

5 9
T = 1 - 5  1 

1 2  1

then in the new basis {xx,x29x3}, matrix A will have the diagonal form

T~l AT =

1 7 7
6 42 21

0
6_ 3

42 21
l 19 8

{ 6 42 21

f l  4 П ( - 5 9 Г fO 0 0 "
1 2 3 1 -5  1 — 0 - 1  0
1 3 2V1 J  /I  1 2 i j 04 0 6У
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A necessary and sufficient condition is next given for a matrix being 
diagonable.

Theorem 6 .6 . A linear transformation A is diagonable if and only if 
the minimal polynomial of A can be factored as

r{t)={t-XxJ t - X 1)...{t-Xk\

where Alf Лк are distinct values.

Proof. Assume first that A is diagonable, and let {x[9x2 be a
basis of К consisting of eigenvectors of A. Let Л{,Л 2,...,Лк be the distinct 
eigenvalues of A , which means that any other eigenvalue of A coincides 
with some Л,. (i = 1,2,...,A:). Define

p{t) = {t-X l\t-A  2)...{t-Xk).

We will show that p is the minimal polynomial of A . Since x} is an 

eigenvector associated to an eigenvalue A. (/ = 1,2 ,...,&), the eigenvector 
equation implies that

0 = a (xj ) -  A,xJ = (A -A iI ){xj)

Multiply both sides by polynomial Y\{A~ Atl)  to see that p(A)xj = 0 .
м

If x e  V is arbitrary, then

х = с ,х 1+.,. + слх л 

with some scalars cf (i = 1,2 ,..., w), and
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Pi.A'ix) = p{A\c^xx +... + c„x „) = c, ■ p(A)(xi )+ ... + c„p(A)(xn) = 0.

Hence p (a ) = 0. Let г(л)  denote the minimal polynomial of A. If 
p & r, then Theorem 6.3 implies that r  is a factor of p , therefore r  is 
obtained from p by deleting at least one prime factor. Assume that factor 
t — Я; is among the deleted prime factors, then

r { t)= (t-A .y .( t-A ii),

where the values Л, - differ from Af.. Let Xj be an eigenvector 

associated to Я,-, then

) = ( л - я , i \..{a  -  A, I  Xrf)

^ (а - а ^ Ц а - л ^ Ф - л ^ , )
=... = ( A - A j . ( A - A tj A - A , ) x , * 0 .

That is, г(а ) is nonzero contradicting the assumption that r is the
minimal polynomial of A .

Assume next that the minimal polynomial of A has the form

г(/)=(/-Л,Х/-Я2)...(/-^)

with distinct values of Л19 Лк. From Theorem 6.5 we know that

V = VX®V2 0 . . . 0 F * ,

where for / = 1,2
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к , = М ( л - А Л

Let хп,х12,...,х!п1 be a basis of Vj. First we show that all basis 
elements are eigenvectors of A . The definition of Vj implies that for all j ,

{ A - X j t x ^ O ,
that is,

A(x у)=Л,Ху,

which shows that is an eigenvector of A associated to . Since V is 

the direct sum of subspaces Vx, V2 Vk , the system

{ * U  9Х 1Х , . . . , X 2„2 y * > X ky v > * j b i 4 }

is a basis of V , which completes the proof.
+

For an n X n matrix A the assertion of the theorem can be restated as 
follows. If A is real, then there exists a nonsingular real matrix T such that
Г "1 AT is diagonal if and only if all roots of the minimal polynomial of A 
are real and distinct. If A is complex, then there is a nonsingular (maybe 
complex) matrix T such that Г "1 AT_ is diagonal if and only if the roots 
(which maybe real or complex) of the minimal polynomial of A are distinct.

The condition of the theorem can fail under two circumstances. One is 
that the minimal polynomial has multiple roots; the other is that the minimal 
polynomial cannot be factored into linear factors. For complex polynomials 
the second case never occurs, and for real polynomials it occurs if and only 
if the minimal polynomial has at least one complex root. In such cases we 
may consider the matrix representation as complex and diagonalize the
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matrix with complex arithmetic. The first case however cannot be handled 
so easily. The best way is to find a class of matrices of a special structure 
that is as close to the set of diagonal matrices as possible and for all 
A e L(v ), there is a basis such that the matrix representation of A has that 
special structure.

We start our analysis with examining a special group of linear 
transformations.

Definition 6.5. Let A e  L(v) be a linear transformation. It is called

nilpotent if Ak = О for some positive integer к . The smallest such integer 
к is called the degree of A .

Example 6.7. Consider the 3 * 3 matrix

A =
0 1 0

0 0 1

0 0 0
Simple calculation shows that

'0 0 г f 0 0 0"

1̂
to II 0 0 0 and A3 = 0 0 0

,0 0 0

Let A be a linear transformation the matrix representation of which is 
A in a given basis. Then A is nilpotent, and its degree is 3.

We will first show that nilpotent matrices are singular. Let A be a 
nonsingular matrix. The repeated application of property (iv) of Theorem
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5.8 implies that Ak is also nonsingular for all к >2  and [лк) = {a ~1J  . 
Therefore nilpotent matrices must be singular, since О is a singular matrix.

The following property of nilpotent transformations will be useful later 
in this section.

Theorem 6.7. Let V be finite dimensional and let A e b(v) be 
nilpotent. Then there is a basis В = {xx,x 2,...,xn} of V such that 

= and for all i = 29...9n9A{xi) belongs to the subspace 
F(x, ) generated by the previous basis elements xx x /4.

Proof. The theorem is proved by induction. Let n denote the 
dimension if the vector space V . Notice first that A is singular, therefore 
there is an x Y Ф 0 such that A(xx) = 0. As the inductive hypothesis 
assumes that for an i< n , we have found linearly independent elements 
* i ,•••>*,- satisfying the conditions of the theorem. The subspace

generated by these elements is a nontrivial subspace since it is 
generated by less than n elements. If Л (Л )с  then let xM be
any element that does not belong to F (x ,,...,x f ). If R(A)c£ F(x, 

then there exists a positive integer / such that i?(/4; )<Z F(x, but

r (a m )<z V{x since with some к , Ak = O , and
л (л*)= {о}с F ( * j S e l e c t  now xi+l such that xM G but
xM £ Then vectors xl9...,x.9x i+l are linearly independent and

>Xi). Thus the proof is complete.
*

The construction of the basis В = {xl9...,xn} implies that the matrix
representation of a nilpotent transformation A has the special form that all 
diagonal elements as well as all elements under the diagonal are equal to 
zero. This is a special upper triangular matrix. We will next prove that all 
linear transformations of finitely generated vector spaces can be represented 
by an upper triangular matrix in a special basis.
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Theorem 6 .8 . Let AeL(v)  be a linear transformation. Assume 
that V is finitely generated and the minimal polynomial of A is given as

Then there is a basis В of V such that the matrix representation of A 
in this basis has the special form

Лв,в —

A,

О

—  2

(Л

(6.15)

where for / = 1 , 2 is an upper triangular nt Xn{ matrix with some 
n. > trij, and all diagonal elements of A , are equal to Af .

Proof. As in the earlier theorems, define V{ =
let я. = dim(^.) . In Theorem 6.5 we have proved that
V = Vx 0  V2 0 . . .  0  V{, and from Theorem 6.2 we know that all subspaces
Vg are Л-invariant. If for / = 1,2,...,/,2?, = {Хц>—9xjrl{} is a basis of Vi%
then /? — (y г у r  x x. 1 is a basis of V and the men d  — ,±2|>—>±гпг >—>±/p—9*in,S 13 a  иаоА‘5
matrix representation of A in this basis has the block-diagonal form (6.15) 
where the size of each diagonal matrix At is Xnr  In order the complete
the proof we have to show that each diagonal block At has a special upper 
triangular form with diagonal elements Ar  Define A, e L{ys) as a linear 
transformation on V. such that for all xe Vi,Ai(x) = (A -slif)(x). The 

definition of subspace V. implies that (a -  Л,/Y' = O, that is, A — Л,1 is
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nilpotent. Then Theorem 6.7 implies that there is a basis 
Bi = f e i . i u  >•••>*»,} of Уi such that

{ A -Z il j x a )= 0, 

(Л -Л ,./ )(х .)е  K(xfl

These relations can be rewritten as 

and for j  = 2,...,niy
a {x,j )= A/X/j + atJx n +... + aJ_iJx iJ_l.

Hence the matrix representation of A in subspace Vi has the special
form

A: =

« 1 2  « 1 3  

« 2 3

In

2n

aя,-I,и,

• /

which completes the proof.

For nxn  matrices this theorem can be restated in the following way. 
For an arbitrary nXn real or complex matrix there is a nonsingular matrix
T such that T_ X AT_ has the special form (6.15). If the minimal polynomial

has only real roots, then Г ,Г  l ,and all diagonal blocks A{ are real. In the
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case of complex roots the corresponding diagonal blocks Af as well as 

matrices T_ 1 and T might have complex elements.

Corollary. Let r(t) and q>(t) be the minimal polynomial and
characteristic polynomial of A , respectively. Then

a) r  is a factor of (p\
b) all roots of (p are roots of r  as well;
c) ф [л) = 0 .
Proof. From the matrix representation (6.15) we see that the 

characteristic polynomial of A (which is independent of the selected basis) 
is the following:

= (t -  Л, (t -Л  J ™ ...(, - я  r{t)=q{t)r{t),

from which assertions (a) and (b) follow immediately, furthermore

<p(A)=(A -  Л 1/)я,_т‘ (A -  Л21)пг~тг...(,A -  Л11)пгщ r(A) = О 
since г(а ) = 0 .

*
Assertion c) is known as the famous Cayley-Hamilton theorem, which 

can be restated by saying that if we substitute any arbitrary nxn  matrix into 
its characteristic polynomial we always obtain the zero matrix as the result.

6.6 The Jordan Canonical Form

In the previous section we have proved that any real or complex square 
matrix can be transformed into a block-diagonal form, where each diagonal 
block is an upper triangular matrix (that might have complex elements). In 
this section we will present a further refinement of this result by showing
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that the upper triangular blocks can be made very specially: the diagonal 
elements equal to an eigenvalue of the matrix, all elements just above the 
diagonal are equal to one, and all other elements equal zero. Our analysis 
will be based on the following concept.

Definition 6 .6 . Let A e b(V), and let x be a nonzero element of 

V. The subspace generated by the system {x, A(x),A2(x\...} is called a 
cyclic subspace, and is denoted by V(x,A).

We show first that subspace V(x,A) is A -invariant for all x e V .  Let 
z E V(x, A) be an arbitrary element. Then Theorem 2.4 implies that

z = tfjA 1' (x ) + а2А'г (x) + ... + a}A'1 (x )

with some integers / > 1,0 < /, < i2 < ...<  /,, and scalars aXia2i...9ar  Then 
the linearity of A implies that

A{z) = axAil+l (x)+ a2Ail+x (x )+ ...+ a/Ai,+I (x)e V(x,A).

Notice next that if A is nilpotent with degree к , then V(x,A) is generated 

by x,A(x),A2(x),...,Ak~1(x). Since Ak~l ^ O , there exists an x e V  such 
that Ak~x(x)^ 0 . We will first prove that in this case the elements 
^A{x),A2{x\...9Ak~l{x) are linearly independent. Assume that a linear 
combination of these elements is zero;

a0x + ax A(x) + a2 A2 (x) ̂+... + ak_x Ak~y (x) = 0 .

Assume that i is the smallest subscript such that at *  0 . Apply Ak 1 1 on 
both sides of this equation to have
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Since Ak~x(x )*0 ,  this is possible only if a = 0, which contradicts the 
assumption that ai Ф 0 . Hence the linear independence of elements 

xf A(x),A2(x),..., Ak~x{x) is verified, and therefore they form a basis of the 
subspace V(x,A).

Assume again that A is nilpotent on V with degree k. Let Vx = R(A), 
and define the linear transformation Ax on Vx such that for all x e Vx, 
A  ( * )= Л(х). This transformation is called the restriction of A to subspace 
V{. We can easily prove that Ax is also nilpotent, and its degree is к - 1. 
First, let x e  Vx be an arbitrary element, then x — A(z) with some z e V .  
Then

А Г  (x) =  А Г  Ш )  =  (A(z)) = A k(z)=G,

that is, the degree of Ax is not greater than к - 1. Notice next that there is an 
x e V such that Ak~] (x) Ф 0 , then by choosing у  = A(x)e Vx,

A r ( l ) = A r ( A ( x ) ) = A * - 2( A ( x ) )= A * - ' (x )* 0

showing that the degree of Ax is not less than к — 1. Hence the degree of 
Ax equals к - 1.

The main result of this section that will be used in obtaining the Jordan 
form can be formulated as follows.

Theorem 6.9. Assume that A e L(V) is nilpotent with degree к . 

Assume that Ак~'(и)ф 0. Then there exists an ^-invariant subspace 

Vx с  V such that
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Proof. Finite induction will be used with respect to the degree of A . 
Assume first that k = 1. Then A(x) = 0 for all x e V. Select an arbitrary
element и Ф 0. If dim(F) = n, then there exist elements w, ,u2 such
that is a basis of V. Consider the subspace
V\ -  ) which is obviously an Л-invariant subspace and the
fact that V(u,A) = V(u) implies that (6.16) holds. Assume next that the 
assertion is true for nilpotent transformations with degrees up to к — 1 , and 
consider an A with degree к. The subspace R(a) clV is Л-invariant, and
the restriction of A to is also nilpotent with degree к - l .  Let

u g R(a ) be an element such that Ак~2(и)ф 0 . Then by the inductive 
hypotheses there is an ^-invariant subspace V0 such that

R(A)=V(A(v),A)®V0,

where v e V is selected as и = A(v) . Notice that the first term is generated

by the elements A(^,A2(v)f...,Ak~l (v), which are linearly independent. 
Consider the set

Vo={veV \A(v)eV0}.

We will next prove that it is an Л-invariant subspace. First we show that 
Vo is a subspace of V . Let ax ,a2 be two scalars and w, ,w2 e  Vo. Then

A(a,u,+a2u2) = alA(u,)+a2A(u2)e V0,

V = V(u,A)®Vl (6 .16)
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that is, a,w, + a 2w2 e  Vo. To prove that Vo is Л-invariant, consider an 

arbitrary element u e Vo. Then A(u)e F0, and since V0 is Л-invariant, 

A(a (u))e V0 showing that A(u)e Vo. Hence, Ко is also ^-invariant. We 

will next show that V(v,A)u Vo generates the entire space V. Let x e V 
be arbitrary. Since A(x) e л (л ) ,  we have

Mx) = Y ,o,A ,(jd+}^
1=1

where we V0 and ax,a2,...,ak_x are scalars. This equation can be rewritten 
as

A {x-f^ a ,A -'{v)
V ы l у

therefore the definition of Vo implies that

x -'£ jaiA'~'(v)e Vo.
1=1

That is, x can be expressed as the sum of an element of V(v,A) and an 

element of Vo.
Unfortunately, in completing the proof, we cannot select и = v and 

Vj = Vo, since V(v, A) and Vо might have nonzero common elements. We 

can show however that F(v, А) П V0 = {o}. If

xe  V(v,A)nV0,

then



A{x)eV{A(v\A)nV0,

therefore Л(х) = 0 . Since x e  F (v ,>4), with some scalars c0,cl9...,ck_{,

x = Co v+C\A(v)+...+Ck-\Ak~\v).

Assume that for an index i(i < & -l),c,. ^ 0. Let i denote the smallest such 

value. Apply Ak~'~y to both sides of this equality to have

A ^ { x )  = CiAk- U

which is an obvious contradiction, since the left hand side is zero, and the 
right-hand side is nonzero. Consequently, x is a scalar-multiple of Ak *(v), 
and since V0 is A -invariant,

x e  V(A{v),A)r,V0 ={0},

hence x = 0 .

Notice finally, that both V (v,A )nV о and V0 are subspaces of Fo,

and their intersection is only the zero element. Therefore a basis of Fo can 
be obtained as

{j?l ,5 2,V,,V2)...,V,},

where Bx is a basis of V(v,A)nV  o, B2 is a basis of F0,and v ,,v 2>—,v, 
are the elements which complete the linearly independent system \Bx , B2} 

into a basis of Fo. Define now
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then obviously

V = V(v,A)®Vr

The definition of Vx implies that V0 с  Vx с  Vo and for all 
x e  Vl9A(x)e V0. We have assumed that V0 is an Л-invariant subspace, 
therefore for all x e  V{,A(x)e Vx proving that V{ is also an ,4 -invariant 
subspace. Thus the proof is complete. +

Corollary 1 . The repeated application of the assertion of the 
theorem implies that if A is a nilpotent linear transformation with degree m 
then there exist elements v0»!!i e V and positive integers
к = k0 >kx >k2 >... > kr such that vectors

form a basis of V , furthermore

V = V(v0,A)® V(vl,A)@...(BV(vr,A).

Corollary 2. Let now A e L ( r )  be an arbitrary linear 
transformation. Assume that the minimal polynomial of A is given as

r { t ) = [ t - ^ Y ( t - x  2) г . . ( / - д гГ .

From Theorem 6.5 we know that

V = n({a -  л )e  n[{a -  л  2/)"г )©... 0  n[(A -  Arl f ' )
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The restriction of mapping [A -  A,/) into the subspace 

Vj = n ((A- Л ,/)”')  is nilpotent with degree mn since on 

Vi9(A -  A jY '  = O, and the exponent cannot be lowered. Otherwise, 
the exponent /w, could also be lowered in the minimal polynomial r . Use 
the previous Corollary to see that for all i = l ,2 , . . . , r ,  there exist integers 
Hi, =/w/0 > w n and elements v/o,v,„...,v if# that

is a basis of Fj. and

v, = v(vi0,(A -  Я,/)) Ф V(vn,(A -  Я,/))®... ® Г (v*, (л -  Я,/))

It is easy to show that all terms of the right-hand side are Л-invariant 
subspaces. Consider next the restriction Aj of mapping A into subspace Vt. 
The matrix representation of Af in basis 2?, has the special block diagonal 
form

4 ,  ^

л  = ^
AisV ui /

where for j  = lJ2,...,sj,Aij is an т.. X m a t r ix :
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1 л ,

л,
1 Лij

All diagonal elements of Aiy are equal to A,, and just under the diagonal,
all elements are equal to one, and all other elements are equal to zero. This 
representation follows from the identities

Ai(A~A,iy(vj) 

(A - Л,./)'+1 (vlp)+ Л,{Л -  X,lY(v„ )if 0 < j  < mip - 1  

Л U - * , l ) J(vip) if j  = mip-\ .

And finally, В = {В19В2,...,ВГ} gives a basis of V , and the matrix 
representation of mapping A in basis В is the following:

(A >bx,i

A2 i2 >B2,B2

Ar ’ B„B,

This representation is called the Jordan canonical-form of 
transformation (or matrix) A. The number of diagonal blocks equals 
s\ + s 2  + — + $r * eac^ block has the same eigenvalue in the diagonal, it has
the form of A~, and each eigenvalue of A can be found in at least one 

diagonal block.
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In examining the structure of linear mappings, in several cases we had to 
distinguish between real and complex vector spaces, since different results 
apply to these different cases. In this section we will introduce a simple 
method which will enable us to apply directly results originally proven for 
the complex case to real vector and inner product spaces, and to real 
mappings. The idea is known as imbedding, and it constructs a complex 
vector space or inner-product space, a certain subset of which is isomorphic 
to the given real vector space and inner-product space. In addition, the 
restriction of the complex extension of a real mapping to this subset is 
equivalent to the original real mapping.

Consider now a real vector space V , and denote V = V X V . Define 
addition and multiplication by complex numbers on V in the following

6.7 Complexification

ways:

and

It is easy to see that with these operations, V is a complex vector space 
with zero element (0 , 0 ) , and if multiplication by only real numbers is 
considered, then V is isomorphic to the set

v , = f e ,0 )|xe v }

Therefore, dim(F) = d im (v ,), and if {x, ,x 2 is a basis of V
then {(ii,0 ),(x2,0),...,(xn,0)} forms a basis in V,. For easy reference we 
may use the notation x+ iy  for(x,_y).



л
If V is a real inner-product space, then a complex inner-product on V 

can be defined as

(x + ̂ ,m +/v) = ((x ,m )- ( j ,v ))+ / ((x ,v )+ (2;,w))-

The reader may easily verify that this inner-product satisfies the
/4

properties of complex inner-products. The length of the elements of V are 
defined as

\x + iy\ = ^ (x  + i y , x  + iy )  = y jx f  + У  ,

where |x| and |jy| are the lengths of x and у  in V .

Consider next a linear transformation A e L(v). The extension A of
. a

A to the complex vector space V is defined by the equation

d{x + iy}= A(x) + i A(y),

and it is easy to see that A e  l (v )9 and the restriction of A into the real

vector space is the original transformation A.
Based on this complexification method, real vector spaces, real inner- 

product spaces and their mappings can be treated as complex spaces and 
mappings, respectively, hence all general results proved for complex vector 
spaces can be directly applied for real cases.

6.8 Applications
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The diagonal and Jordan canonical forms of square matrices are very useful 
in many fields of the application of matrix theory. In this section we will
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first focus on dynamic economic systems described by difference or 
differential equations, and then some simple examples will be presented.

1. Consider first the discrete time-invariant system with state 
transition equation

х(/ + 1)= Л  ♦.*(/) + £,

where t = 0 , 1, 2 , . .., and A is an nXn real matrix, 6 is an «-element real 
vector. Let Г be an л X л nonsingular matrix and introduce the new state 
variable

z = T x 9

then
z(t + 1) = Tx(t + 1) = T(Ax{t]+b)

= t (a  - Г ' 1 z{t)+ь)= (тА Г' W  t ) + T b  (6.17)

showing that the new state-transition equation has the same form as 
originally and the new coefficient matrix becomes T AT 1. If matrix A is

diagonable, then there exists a nonsingular matrix such that TAT 1 is 
diagonal. In this case system (6.17) becomes the set of n independent 
difference equations, and in each of them the unknown function is real 
valued. Assume that

fA| 1 r b'A

Т А Г 1 =
л 2

, and Tb = К

then equations (6.17) reduce to the following system



zl(t + l) = A lzl {t)+b\

Z2(/ + l) = vi2Z2(/) + &2

2„{t + l) = Xnzn{t)+K.
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The state transition matrix of the system can also be determined in a simple 
way if A is diagonable. Since

A = T~'DT
with

for all t > 1 ,

A' = (r~' DT Уг~‘ £>г)..(г~‘ РТ)

= T~l £>(ГГ~‘ Ь-(ГГ~‘ )PT = Г '  D' T (6.18)
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Example 6.8. Consider matrix

4 1

A = 1 2 3

I 1 3 2

In Example 6.6 we have shown that

r—5 9 i\fo л
A = 1 - 5 1 - l

,  1 2 h

6

0

J_
6

therefore equation (6.18) implies that for all ? > 1 ,

7 7 >
’ 42 21

6 3
42 21  ’
19 8
42 2 1 >

A ' =

- 5  9 Г "0

1 - 5  1 (-D '
1 2  1 V 6'

I  
6

0 

J_ 
1 6

42 21
6 3

*42 21
19 8

42 21

If A cannot be diagonalized, then there is a nonsingular matrix such 
that ТА Г 1 has the Jordan canonical form. Then system (6.17) breaks up 
into small dimensional systems of the form
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(A,
1 A, 

Z i j { t  + 1 ) =  1

V

where we use the notation of the previous section. Notice that this system 
can be rewritten as follows:

determined, function zij3(t) is obtained from the third equation, and so on.
Notice, that at each step a real-valued function has to be computed. In 
summary, in both cases, the solution of an n x  n system has been reduced to 
the solution of n single equations, which can be done efficiently.

The state-transition matrix of the system can also be obtained in a 
simple way. Notice first that if

zIJ,{t+i) = AizIJl{t)+b^ 

zij2 (/ + !) = A iZiJ2 (/)+ zin (/)+b'J2
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d ,=

%
1 л ,  

l
Я,
1 я

is a Jordan-block, then Ay ^ Я ^  + Е , where 7 is the miy X m- identity 

matrix, and E is nilpotent with degree mtj. By applying the binomial 
theorem (which can be used here, since / and 2Г commute) we have

4 = U ^ + i ) ' = Z
/=o

vly

л;.
я:

r -2 'Л

Л

я;

я г 1

Ц н  Ц .-2М/

О

я:
/-1
'i Я'

And finally
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rd'„

A1 =T~l
d l,

dl,

A< 
— rsr

T . (6.19)

2. Consider next the continuous time-invariant system with state 
transition equation

x(t)=A x[t) + b,

where / > 0 is the continuous time variable, and A is an n X n real matrix, 
b is an я-element real vector. Let T again be a nonsingular matrix, and by 
introducing the new state variable z — Tx we have

z{t) = Tx{t) = T{Ax{t)+b)

= t{aT~1 z(t)+b)= {г а г ' ]z{t)+Tb. (6 .20)

That is, similarly to the discrete case, the state-transition equation for 
z(t) has the same form as for the original state variable x(t) with the new

coefficient matrix TAT"1. If matrix A is diagonable, then with an
appropriate T, TAT"' is diagonal, and the state-transition equation (6.20)

reduces to the following:
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z, (<) = A, z, (?)+*,'
z2(t) — Z2z2(t)+ b2

z„(0 = A „ z „ ( ')+ C

which can be solved much more efficiently than the original w-dimensional 
problem. This idea is illustrated in the next example.

Example 6.9. We will now solve the system

f l 4 n 'i\
*(0= 1 2 3 *(/)+ l

,1 3 2>

From equation (6.20) and the results of Example 6.6 we see that by 
introducing the new variable

* (') =

J.
6

0

I
6

7 7
42 21

_ 6 3
42 21

19 8
42 21

a diagonal system is obtained:

f° 1 fo)
i(') = - l «М + 0

I 6; I и

which can be rewritten as
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Z3 = 6z3 + 1.

It is easy to see that the solutions are

z,(/) = c, 
z2{t) = c2e"

Zj(t) = —— + C3e ,

where c ,,c 2,c 3 are arbitrary constants. The solution *(/) can then be 
obtained as

/ \
r—5 9 Г

r ' d t ) = 1 - 5 1 c2e4

,  1  2 i j

\
-  + c3e6'
6 J

The state transition matrix of the system can also be determined 
efficiently if A is diagonable. Using equation (6.18) we have



Introduction to Matrix Theory



Chapter 6 Eigenvalues, Invariant Subspaces, Canonical Forms 371

Example 6.10. Consider again matrix

A =
f l  4 1"
1 2 3
1 3 2

then similarly to Example 6.8 we have

' - 5 9 Г f l
1 - 5 1 e~'

< 1 2 b I  * «)

7 7 >
42 21
6 3

42 21
19 8
42 21)

If A cannot be diagonalized, then there is a nonsingular matrix T such 
that TAT 1 has the Jordan canonical-form. Then system (6.20) is a set of 
small dimensional systems

(Л , / Z/ \ О..,

t>(0 =

1 Л,

1 \
bU

i
1 X,J J

This system can be rewritten as follows:
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z41(0 =<MffI (*)+ *',
z..2 (/) = A,.z..2(/ )+ z .,( r )+ 6 '2

*Цтц ( ')  = Д/2/,Ч, (0 + Z,» , - l  (')+  ̂  •

From the first equation we can determine function zijt (t) , and then,

can be obtained from the second equation. After ziJ2(t) is

determined, function zij3 (/) is obtained from the third equation, and so on.
At each step a single dimensional linear differential equation has to be 
solved. The solution of an n X n system has therefore been reduced to the 
solution of n single dimensional equations, which can be done more 
efficiently.

Example 6.11. We will now solve the system

(2 N r n
z = 1 2 z + 1

1 2) w

where the coefficient matrix has the Jordan block-form. This system can be 
rewritten as

z, = 2zx +1  

z2 = 2 z2 + z, +1  

z3 = 2 z3 + z2 + 1 .

From the first equations we have

z. (*) = " + Cl*2'
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where c, is a constant. Substituting this solution into the second equation 
we obtain a single equation for z2:

2/ 1 z2 = 2z2 +c,e +—.

The solution of this equation is the following:

z 2(f)=(c,/ + c2 У ' —J .
4

Substituting this solution into the third equation we have
3

z3 = 2 z3 +(c,/ + c2)e2' +—, 

the solution of which is the following:

W=
''c ,/2 + c2/ + c3 e 2'+ - .  

4

The state transition matrix of the original system can also be obtained 
efficiently. Assume again that the Jordan canonical form of matrix A has 
the blocks

A„ =

%
1 л,

i
Я,
1 Я,

then similarly to the case of diagonable matrices we can easily show that
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e- = T~'

A,, I >-,Ji

A„ te~"r

For each Jordan block, A{j = Я,/ + E , and therefore

k=0 К- к=0 К- 1=0

k=0 К- /=О

By using the fact that E1 = 0 for / > т~ and j  = 0 as к < I we see that

со Л mtj-\  m0-\ (  «  к . .

*  - t - u l k ) ! » ? - I s '  z y ? )
k = 0  /=0 /=Q i lr= fl Л ».

-1

-5Ж1/=0 £=0

1 rf' V
I'.dA1 * ! л=л,

/=0 / Р  <Й'
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1
t

1
1!

tj_ /
21 1!

m,j-1 { mij~2

- 0  imij - 2 )  1! J

3. Our third application is concerned with the geometric series of square 
real matrices. Let A be an n x  n real matrix. The geometric series of A is 
defined as the infinite series

l+ A  + A1 +Аг + ...+AN +... .

From calculus we know that an infinite series is convergent only if the 
terms converge to zero. We will show that this condition is now sufficient 
and necessary, and in the case of convergence, the sum of the geometric 
series equals (/ — Л)-1. This result generalizes the sum of scalar geometric 
series.

First we notice that equation (6.19) implies that A —> О as t —» 00 if 

and only if for all blocks, A  ̂ -> О . The closed form representation of Ay 

implies that this limit relation holds if and only if for all eigenvalue Л f- of 

A9 |Я-|<1. Assume next that this condition holds. Simple calculation 

shows that for any integer N > l f

(l - a Hi +a +a 2 +...+a n)= L - a n+1.
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It is easy to see that the eigenvalues of / — A are the values 1 - A ., which are 
nonzero, therefore / - A  is nonsingular. Notice that

L+A + A2 +...+ a n = ( / - 4 ) ' | ( / - 4 л'+|) ,

and since AN+l —> О as N —> «>,

A + A 2 +... + A +... = (/ ~~ A)

This identity is often used as an iteration method for inverting matrices. 
Assume that B~l has to be determined. Assume that A = I_-B  satisfies the 
condition that all of its eigenvalues are inside the unit circle (that is, |/t( | < 1 
for all eigenvalues of A ) .  Then

L + a + a 2 + . . . + a n  + . . . = U - ( L - b ) Y '  = я ~1.

The infinite series is the limit of the sequence:

A 0 = L

AM =L+Ak-A (* > 0 ) ,

since
Ax = l + A

Аг =7>(/ + Л)Л = / + Л + Л\

and in general

Am =L+k+A+-+Ak)A=L+A+A2+ - +Ak+'-
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4. In equation (6.19) we have seen a closed-form representation of the 
matrix A* for all t>  1. This formula was developed for solving discrete 
dynamic systems. Matrix powers however should be computed in many 
other cases. One example of such an application is concerned with the 
vertex matrix of directed graphs. In application 8 of section 1.5 we have 
seen that if A is the vertex-matrix of a directed graph, then the elements of
the matrix Ar (r > l) give the r-step connections from each vertex to all 

other vertices and to itself. The fast computation of Ar is therefore essential 
in determining the number of higher-step connections.

5. In section 3.8 we have briefly analysed Markov chains, and have seen 
that future state probabilities can be directly obtained by equation (3.26), 
which has the form

d?+ n)= P"d!\

Here the entries of jc(/) and x(t + w) give the state probabilities at time 
periods t and t + n , respectively, furthermore P_ is the transition matrix. 
For efficient computations we have to determine the matrix powers P for 
large values of n . This task can be performed for example, by using the 
method of the first application of this section (equations (6.18) and (6.19)).
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6.9 Exercises

1. For an n X n square matrix A = [aij), define the trace of A as

tr {A)= a\\ + a 22 + '"*ann ■
Prove that tr(A) = /г(г-1 ̂ 47]) for all nonsingular nXn  matrices.

2. Show that
a) 1г (а т)=1г (а );
b) tr(A +B) = tr(A)+tr(B), if В is also nxn;

c) tr(aA) = atr(A), if a  is a scalar;

d) tr(AB) = tr(BA), if В is also / ix « ;

e) tr(A) = Ai + Л2+... + A„, if Л19...,Лп are the eigenvalues of >4.

3. Prove that fr(/4yjfr )> 0 and tr(AAT )= 0 if and only if A = О .

4. Find the eigenvalues of the complex matrix
(  2 Л

ъ

5. Find the characteristic equations of the following matrices:

a)
1 1 О 
1 2  1

1 3 2
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b)

c)

0 1 Л
1 1 0
1 0 b

1 1 1 1'
1 2 1 1
2 1 1 1
1 1 1 2

6 . Find the eigenvalues and the associated eigenvectors for the 
following matrices

a)
vi i/

b)

c)

d)

0 \w
—  w oJ*

1 2̂
2 4 j

>

1 2
0 2 1

0  0

, where w > 0 is a given number;

7. Repeat Example 6 .1 with matrix
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A =

8 . Illustrate Theorem 6.1 for matrices of Problem 6 .

9. Repeat Example 6.3 with matrix

/1 1 1N 
A=  O i l

J  1 0y

10. Find p ( a ) ,  where 

p{t) — t3 + t2 + 2t +1

and

A =
1 1

1 1

11. Find the minimal polynomial of the matrix of the previous problem. 
(Repeat Example 6.5.)

12. Diagonalize the matrices of Problem 6 .

13. Characterize all 2 • 2 real nilpotent matrices of degree 2 .

14. Assume that the only eigenvalue of an nxn  real matrix is zero. 
Prove that the matrix is nilpotent.
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15. (Continuation of Problem 14). An n xn  real matrix A is called 
unipotenl, if A — / is nilpotent. Prove that A is unipotent if and only if / is 
the only eigenvalue of A .

16. Illustrate the Cayley-Hamilton Theorem with the matrices of 
Problem 5.

17. Illustrate the Cayley-Hamilton Theorem with the matrices of 
Problem 6 .

18. Find At for matrices

At19. Find e— for matrices

20. Find x(t) for the diagonal discrete system



21. Find x(t) for the diagonal continuous system
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1 0

0 2

т

vA/ V®/

22. Find x(t) for the triangular discrete system

'O''\ Г
0 2

23. Find x(t) for the triangular continuous system

S t o -
1 1 0

24. Find the inverse of matrix

A =

r 3 1
4 4
1 3

.  4 4

by using the method given in Application 3 of section 6 .8 . 

r a b4
25. Let A =

- b  a
Show that

' ea cosb ea sin b  ̂
- e ° s in  b ea cos b
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Special Matrices

7.1 Introduction

In this chapter the most important classes of special matrices will be 
examined. In the first section the main properties of diagonal, tridiagonal, 
and triangular matrices will be discussed. In the second section we will 
focus on idempotent and nilpotent matrices, and the third section will be 
devoted to special matrices defined in inner-product spaces.

7.2 Diagonal, Tridiagonal, and Triangular Matrices

From Chapter 1 we know that an n X n square matrix A = (tf/y) is diagonal 
if atj = 0 for all i ^ j . That is, a diagonal matrix has the special form

A =

О

•22

О

where all element under and above the diagonal are equal to zero. The rank 
of A, equals the number of nonzero diagonal elements, since the columns 
with nonzero diagonal elements are the nonzero-multiples of the

383
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corresponding natural basis elements ek. The characteristic polynomial of 
A is the determinant of the diagonal matrix

A - X I  =

a „ - A

О

a 22- X
О

a nnnn

which is the product of the diagonal elements:

<p(A)= (a„ -  A) • (a22 -  A)-... • (a„„ -  A),

therefore the eigenvalues are the diagonal elements of A. Consider now an 
eigenvalue Я, and assume that

II 2 2

and
А Фа,, for j i  {*,,i2

That is, Я can be found as the diagonal element in positions /, ,i2»• •• • 
Let x = (x ,) be an associated eigenvector. Then the eigenvector equation 
Ax = Xx implies that

аих( = Ях:/ (ii =1,2,...,и).
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If / e { * t h e n  this equation is satisfied for all xn since 
X = ain and if zg then * ,.= (). Hence the eigenvectors
associated to Я have the special form:

_  [arbitrary if i e

1 ° if i e f c , i 2 ,...,ir }

Notice that system {e. ,e ,2 e,v } forms a basis of the subspace of the 
eigenvectors associated to Я .

If Л = О , then all diagonal elements are equal to zero, therefore Я = 0 
is the only eigenvalue with multiplicity n , and any arbitrary n -element 
vector is an eigenvector of A. Similarly, if A = 7 , then all diagonal 
elements are equal to one, therefore Я = 1 is the only eigenvalue with 
multiplicity n , and all «-element vectors are eigenvectors of A.

Definition 7.1. A matrix A = (д|у) is called tridiagonal., if a{j = 0 
for |/-y|> 2 .

This definition implies that A is tridiagonal if and only if it has the 
special form
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Two specialties of tridiagonal matrices will be discussed here: the 
solution of linear equations with tridiagonal matrices, and an easy way to 
compute the characteristic polynomials of such matrices.

Table 7.1 Initial elimination table for a tridiagonal system.

* 1 * 2 * 3 . . . * „ - 2 * n - l b

« 1 1 « 1 2 0 . . . 0 0 0 bt
« 2 1 « 2 2 « 2 3  • " 0 0 0 b2
0 « 3 2 « 3 3  • • • 0 0 0 ь3

. . . . . . ............. . . . . . . . . . . . .

0 0 0 . . . a n - 2/1-2 « л - 2 , л - 1 0 ^/1-2

0 0 0 . . . « n - l ^ i - 2 « п - 1 , л - 1 « П - М V ,
0 0 0 . . . 0 a „ ,n ,n — 1 «  nn к

In applying the elimination method for solving linear equations with 
tridiagonal matrices, the procedure can be largely simplified, if at each step, 
the next diagonal element is selected as the pivot. To illustrate this point, 
assume that a system of linear equations has a tridiagonal coefficient matrix. 
The initial elimination table is shown in Table 7.1. Select the pivot element 
au by assuming that it is nonzero. Subtract the a2l / a u multiple of the 
first equation from the second equation, then the second row of the 
elimination table becomes the following:

0«22 «23 ...ООО

with a^  = a22 -  a l2 ■ — , and =b2 - b { ’ —  . Notice that by omitting 
«11 au
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the first row, the remaining system with only n~l  equations for the 
unknowns x2,x3,...,xn remains tridiagonal. Select next the pivot element
a then only the element a 32 has to be eliminated by subtracting the

a 32 / a2l  multiple of the new second equation from the third equation. In the

new table only the third row changes, and by omitting the second equation, 
the remaining n — 2  equations for the л —2  remaining unknowns x3,...,xn

is tridiagonal again. At each elimination step only one diagonal element and
the right hand side number has to be modified, which makes the entire
elimination procedure very inexpensive. After elimination is done, the
resulting table is also special as shown in Table 7.2, where all elements
under the diagonal equal zero. Notice that back substitution also becomes

simple in this case, since

Table 7.2. Final elimination table for tridiagonal system.

ii a
a *23

г(2)
*33

* n - 2 * « - i
Ъ

0 0 0 ь ,

0 0 0 Ь ;»

0 0 0 ь з(2)

n  _ , 0 b t 2 ]*n-2,n-2 м я-2 ,л -1
д (» -2 )
^л-1 ,л -1 ^л -1 ,л

2)

я ' " ; 1’ ь {Г ' ]

I
s

II >
(72)

and for i = n — l,n—2 ,...,2 ,1 ,



388 Introduction to Matrix Theory

b(H>- ai,i+\Xi+\
,0-1) (7.3)

The characteristic polynomial <p of a tridiagonal matrix A can be 
determined by using a special recursion as it is shown next. The definition 
of characteristic polynomials implies that

4 , - A fl12 0 0 0 0
an -X *23 - 0 0 0

0 fl32 a33-A ... 0 0 0
<p„(A) = det ... ... ... ... ... ...

0 0 0 an-2,n-2 an-2/i-\ 0
0 0 0 a n-\,n-\ ~ ̂ ** n- \/l
0\ 0 0 0  ̂n,n-1 -A

Expand this determinant with respect to its last column. The cofactor 
(рп_х of ann -A  has the same structure as the entire determinant but instead 
of f l , its size is n — 1. That is, it is the characteristic polynomial of the 
(n - l ) x ( w  - 1) tridiagonal matrix with elements au (i = 1,2 ,..., л - 1) and 
aiM and a /+I, (i = 1,2,..., я - 2) . The cofactor of the element я я_,„ is the 
following:
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an A, « 1 2 0 0 0 0

« 2 . a22 ~ A « 2 3 0 0 0
0 a32 « 3 3  ~ ^ 0 0 0

det . . . .. . . . .  . . .

0 0 0 — « л - 2 ,л - 3 « л - 2 ,  л - 2 “  ̂ « л - 2 ,л - 1

0 0 0 0 0 « л „ - 1

V /

Expanding this determinant with respect to the last row we get the 
product an nA(pn_2 (Я), where <р„_2 (Я) has the same structure as (pn (Я), its

size is (n — 2 )x  (n — 2) with elements au (z = 1,2,...,л -  2) and aiJ+l and

ai+u 0 = л -  3). Hence we derived a recursion to find (pn :
<р0(А) = 1 

(A) = a n ~ A

and for A: =2,3

<P*(A) = а*.*ч9>*.2(А). (7.4)

Example 7.1. We will first solve the system of linear equations

X \ +  X 2 ~  2  

xy + 2 x 2 + x 3 =4  
x2 +2x3 + x4 = 4 

x3 + 2 x 4=  3,



where the coefficient matrix is tridiagonal. The elimination process is shown 
in Table 7.3.

Table 7.3. Elimination o f  Example 7.1.
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row 2-pivot row

row 3-pivot row

row 4-pivot row

x. x 2 x 3 x 4

1 1 0 0 2
1 2 1 0 4
0 1 2 1 4
0 0 1 2 3

1 1 0 0 2
0 1 1 0 2
0 1 2 1 4
0 0 1 2 3
1 1 0 0 2
0 1 1 0 2
0 0 1 1 2
0 0 1 2 3
1 1 0 0 2
0 1 1 0 2
0 0 1 1 2
0 0 0 1 1

Back substitution shows that the solution is the following:
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x3 = 2 - x4 = 1, 

x2 — 2 x3 1, 

xx =  2 - x2 = 1 .

The characteristic polynomial of the coefficient matrix

A =

r l 1 0 o '  
1 2  1 0  
0 1 2  1
0 0 1 2

will be next determined by using recursion (7.4):

<PoW=i;
<p,(A) = l - A ;  

fl>2(A) =  ( 2 - A V ,( A ) - l - l  ?>0( A ) = ( 2 - A X l- A ) - l= A 2 

<Pj(A) = ( 2 -  A)p2(A ) - l  • 1 -fi  (A)= (2 -  AXA2 - 3 A + 1 ) -  (

= -A3 +5A2 -6 A  + 1; 
and finally,

<p4(A) =  ( 2 - A V 3(A)- l - l
= (2 -  A)(- A3 + 5A2 -  6A + 1 )-  (A2 -  ЗА + 1) 

= Я4 -7 A 3 +15A2 -10A  + 1.

3A + 1; 

-A )
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Consider next an nXn upper triangular matrix

«1 1 « 1 2 « 1 3 «1 ,л -1

0 « 2 2 « 2 3 « 2 , л-1

0 0 o 
•

« л - 1 / j - l

0 0 0 0

where all elements under the diagonal are equal to zero. If a system of linear 
equations has an upper triangular coefficient matrix, then there is no need 
for elimination, the solution can be easily obtained by back substitution. 
This matrix A is nonsingular if and only if all diagonal elements differ from 
zero, since

det (A )= a u -a22-..,-ann,

and this product is nonzero if and only if all factors are nonzero. The 
characteristic polynomial of A equals

< j f > ( A )  =  ( « Ц  ^ X « 2 2  ~  ^ ) — ( « i *i i  “

that is, the eigenvalues of A are the diagonal elements.

Lower triangular matrices have similar properties. A lower triangular 
matrix A has the form
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A =

0
a 21 a 22

« л -1 ,1  « л - 1 ,2  « л - U

О
О

Л -1/Г-1

а. а л 2 а лЗ а л,л-1

where all elements above the diagonal equal zero. If the coefficient matrix 
of a system of equations is lower triangular, then there is no need for 
elimination. The value of x x can be obtained from the first equation, and 
then, x 2 can be determined from the second equation, and so on. Finally, 
xn is obtained from the last equation. This procedure is called the forward 
substitution. This matrix A is nonsingular if and only if all diagonal 
elements differ from zero. The characteristic polynomial of A is the 
following:

<p(A) = (яп — АХягг ~ А)...(дял “  A),

and the eigenvalues are again the diagonal elements of A.

73  Idempotent and Nilpotent Matrices

In section 6.4 we called a square matrix A idempotent, if ^  -  A  • e w  
first prove that the only nonsingular idempotent matrix is the i entity 
matrix. Notice first that the definition implies that

a (l - A ) =  Q- (7.5)
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If A is nonsingular, then A 1 exists. Multiply both sides of this 
equation by A~l from left. Then we have

L - A  =  O,
that is,

A =  L

Consider next the eigenvalue equation of A :

Ax = Ax.

Since A 2 = A , any eigenvalue A and associated eigenvector satisfy relation 

Ax = Ax  = A 2 x = A(Ax) = A(Ax ) = A Ax = A2 x,

and the fact that the eigenvector x  differs from zero implies that A2 = A . 
Therefore the eigenvalues of A are 0 and 1. Equation (7.5) implies that for 
any column и of matrix 1_—A , Au = Ou showing that the columns of 
I_-A  are eigenvectors of A associated to the zero eigenvalue. Equation 
(7.5) can be rewritten as (A — l )A  =  О which shows that any column v of 
A satisfies equation Av =  l v. That is, the columns of A are eigenvectors 
associated to the eigenvalue A —I. Next we show that there are n linearly 
independent eigenvectors which implies that A is diagonable. Notice first 
that A + (/ — A.) = /  , and therefore

n = rank( /) < гапкЦ) + rank(/ -  A}
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^et w,,w2,...,mk be a basis of the column space of A, and let
Vi»v2 be a basis of the column space of /  — A. Theorem 6.1 implies
that system {ul9u2i...,uk , v,,v2,...»Yi} *s linearly independent. Since they
are in an л -dimensional space and k +  l > n ,  k + l must be equal to n.  
Thus, this set of eigenvectors forms a basis of the n -dimensional vector 
space.

A square matrix A is called nilpotent if A k = 0  for some positive 
integer к . The smallest such integer к is called the degree of A. In Section 
6.5 we have seen that nilpotent matrices are always singular. We can easily 
show that the only eigenvector of A is zero. Consider the eigenvector 
equation of A ,

Ax  = Лх.

Let / be the smallest positive integer such that A 1 x = 0. Such an / 
exists, since if / is selected as the degree of A, A* =  О as well as 
A1 x = 0. The choice of / = 0 is not appropriate, since A°x = Ix  = x Ф 0. 
Multiply both sides of the eigenvector equation b y ^  1 from left to see that

A1 x = ЯА1~1 x.

Since А'~'хФ 0 and A 1 x = 0, necessarily Л = 0. This observation 
implies that all diagonal elements of the Jordan form of nilpotent matrices 
equal zero.
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In this section it is assumed that V is a finitely generated real vector space, 
and there is a real inner-product defined on V . Let A e  L{V) be a linear 
transformation on V . From Theorem 2.12 we know that there is an 
orthonormal basis B = {x} yx 2,...,*n} in V , where n is the dimension of V . 
Assume that

«1  1 «1 2  «1л

^ _  «2 1  « 2 2  « 2 л

^«л1  « л 2  •** « лл j

is the matrix-representation of A in basis В . Notice first that equality (5.14) 
implies that for all z = l,2 ,...,w and у = 1, 2 ,...,/*,

Ufo )>Xj) = (cl,xJ.) = {aux l + a v x 2 +... + anix n, xJ)
n . .

= )=«;/>
/=1

th
where denotes the i column of matrix A. Similarly,

k l ,Ak J))=ixl,Cj )={xi>alJx l + a 2Jx 2 +.. .+ anJx n)
n

= ^ a IJ{xl ,xl ) = a IJ.
/= 1

7.4 Matrices in Inner Product Spaces
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Definition 7.2. The adjoint of an A e  L(V) is defined as the linear 
transformation A'e L {y )  such that for all x , y e V ,

(4*)>z)= ( b ^ ’(y)). (7-6)

Our first result guarantees the existence of the unique adjoint for all A , 
and presents the matrix representation of A \

Theorem 7.1. For all A e  L(v) there is a unique adjoint, and its 
matrix representation in basis В is given as the transpose A T of matrix A.

Proof. We have shown above that (а (х ; ) ,ху. ) = aj4 and 
[xn A' [xj ))= a ' , therefore the elements a\} of the matrix representation 
A' of the adjoint must satisfy the equation a'i} -  a for all / and j , hence

A \  if exists, must be the transpose A T of A. Next we show that this 
transformation satisfies relation (7.6) for all x , y e V ,  therefore it is the 
adjoint of A. Assume that

x = a ]x l + a 2x 2 + . . .+ a „ x n

and
y  = P i b  + P 2x 2 + ...+  P„xn,

then
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( л ( * Ы  = Х М ( ь  ) ,£  P jXj
^ i = I 7=1

=  ^ , ^ , a i P  j  (A ( * i )’ * j  )=X P j a ji>
/=1 y=l /=1 ;=1

and similarly,

CM'OO) = ' t cc .xn yZ P jA /(xJ)
Ii=l 7=1

л n
= 'L'L<XiPJ(xl ,A'(xj )) = 'L 'La lP JaiJ

/=1 y=l 1=1 j=  1

= ' L ' L a iP jaj( = ( A ( x ) , y )  .

Remark. If F is a complex vector space and the inner product is
— т

complex, then a similar proof shows that A = A , where overbar denotes 
complex conjugate.

From Definition 7.2 it is easy to see that the adjoint of A ’ is A, 
furthermore

(i) (iaA)' = aA’ for all scalars a  and mappings Л;
(ii) (Л + С)'=ЛЧ-С' for all A , C e  L{v);
(iii) (.A C ) '= C 'A ' for all A , C e  l(v) .

We mention also that adjoint mappings can be defined in the more 
general case when A e  L(V, W ) where V and W are two inner product 
spaces and either both are real or both are complex. For our purposes it is
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sufficient to discuss only the case of V = W .  The general case is examined in 
a similar way as the one presented in this book.

In this section three special classes of mappings (or matrices) will be 
examined. They are first defined.

Definition 7.3. Let A g L(f ) be a linear tranformation on V .
(i) A is called symmetric (or self-adjoint in the complex case) if A = A;
(ii) A is called orthogonal (or unitary in the complex case), if A 

exists and A~l = A ' ;
(iii) A is called normal if AA'= A 1 A.

First we will examine the main properties of symmetric (or self-adjoint) 
matrices. If the matrix is nXn  and is considered as complex, then from 
Chapter 6, we know that it always has n real or complex eigenvalues. 
However, if the matrix is self-adjoint, then the eigenvalue are real.

Theorem 7.2. Let A be a self-adjoint matrix. Then
(a) All eigenvalues of A are real;
(b) Eigenvectors associated to different eigenvalues are orthogonal,
(c) There is an orthonormal basis in V that consists of eigenvectors of

A.
Proof, (a) Let Я be an eigenvalue of A with associated eigenvector 

и . Then the eigenvector equation Au = Xu implies that

X(u, и) = (Ли, и) = (Ли, и) = (и, Аи) = (и, Ян) = Я(ы, и)

since A is self-adjoint. Since и * 0,(м,м)^0 as well and so, Я -Я
showing that Я is real.

(b) Let Я, and Я 2 be distinct eigenvalues of A with associated

eigenvectors u { and u 2. Then
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since A is self-adjoint and A2 is real. Therefore

(Aj— A2) - (wj ,m2) = 0

which implies that

c) We will next show by finite induction that for all к  < dim (F), there 
is as orthonormal system {uX9u 2>...,uk} consisting of eigenvectors of A. 
For к = 1 the assertion is obvious, since A has at least one eigenvalue with

associated eigenvector v . Then u x = 7— rV satisfies the assertion. Assume
(v,v)

next that there is an orthonormal system {u,, w2,...,w*_,} of eigenvectors of 
A. Let Fj denote the subspace generated by this orthonormal system, and 
let W be the orthogonal complementary subspace of Fr  For 
i = 1,2,...,A: -1  and arbitrary x e W ,

Лц/) = ( х Д гц .)= Я ,(х ,ц ,) = 0>

where A, is the real eigenvalue associated to u r  Therefore, Ax is 
orthogonal to the basis of Vx, which implies that A x e W .  That is, W is an 
A -invariant subspace of F . Consider now the restriction of transformation 
A into subspace W. It is also self-adjoint, and has at least one eigenvalue 
with associated eigenvector u k of unit length. Then system
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\H\>w2 ,uk } is on orthonormal systems of eigenvectors. The proof is
now complete. *

Corollary. If matrix A is self-adjoint, then its matrix representation 
in basis {ирИ2,...,г/л} (where n -  dim(F)) is diagonal. The diagonal
elements are the real eigenvalues, and the columns of the transformation 
matrix form an orthonormal system. If matrix A has complex elements, then 
T also has complex elements. However if A is a real symmetric matrix, 
then all eigenvectors can be given as real vectors since the eigenvalues are 
real, and if A is an eigenvalue then the solutions of the homogeneous linear 
system (А — Л/)и = 0 determining the associated eigenvectors have real 
solutions. Hence the transformation matrix can be selected as a real matrix.

Example 7.2. Consider the 2 x 2 symmetric matrix

The characteristic polynomial of A is the following:

(p[X) = detQ4 -  Л/) = det
1 - Л  1 ' 

1 1 - Л
= А2 - 2 Л ,

therefore the eigenvalues are A }= 0 and A 2= 2 , both are real numbers. If 
v, = (vlf) and v2 =(v2/) are eigenvectors associated to and A 2, then 
they satisfy equations
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; i i :

0
and

12 у

-1 1 
1 - 1

21

А У22У

We may therefore select

£i = -1

The orthonormal system of eigenvectors can be obtained by normalizing 
the eigenvectors to unit lengths. Notice that |vj | = |v21 = л/2 , therefore we 
may select

Ли. = \ r- and и у =
I — 1 /  л/2  J

' l / V T
ч1/л/2

The transformation matrix T is given as the matrix with columns w,
and w2:

1 1 ^ f 1 1 ^

л/2 
_  1

л/2
1

with inverse Г 1 = л/2
1

л/2
1

-^2 V 2 , ,л /2 л/2 ,

The matrix representation of A in basis {wt, w2} is diagonal:
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1 1 ^ 1 1 ^

V 2 л/2 r\ г л/2 л/2 J °  ° )
1 1 ,1 b 1 1 {О 2)

V 2  J
4

< л/2 л /2 ,

♦

Consider next a unitary matrix A. Since for all x , y  e  V ,

[Ax,Ay) =  (x, A'Ay)  = (x,/  у) = (x, у  1 (7.7)

unitary transformations preserve the values of the inner products. If we 
select y  =  x,  then this equation shows that |^* | = |-l* that is, unitary
transformations preserve the lengths of the elements of V . These two simple 
observations also imply that the image of an orthonormal system is also an 
orthonormal system in V . Notice also that the columns of the matrix 
representation A of the unitary transformation A form an orthonormal 
system, since equation (7.7) implies that for all i and j ,  
(^(*/)>^ (*,)) = (*/>*;) We may also show that this property holds only
for unitary transformations. Assume that В = {xl9x 2,...,xn} is an 
orthonormal system in V,  and a ŝo 311
orthonormal system. This simple fact follows from the observation that the 
columns of the matrix representation of A in basis В are 
A{xx\ а {х 2\ . . .9А{х п) which form an orthonormal system. Further
properties of unitary matrices are given in the following theorem.

Theorem 7.3. Let A be a unitary matrix. Then
(a) The absolute values of the eigenvalues of A are equal to one;
(b) There is an orthonormal basis in V that consists of eigenvectors of 
A.
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Proof, (a) Let Я and v be a pair of an eigenvalue and associated 
eigenvector of A . Then

(v, v) = (Av,Av)  =  (Яу, Яу) =  Я(у, Я v) = ЯЯ(у, v).

Since (у,у) *  0 ,ЯЯ = |Я|2 = 1.
(b) The same proof can be repeated here as the one used in part (c) of 

Theorem 7.2. We will verify again that for all к < dim (V ) there is an 
orthonormal system {u,,и2,...,и*} consisting of eigenvectors of A. For

к = 1, the assertion is obvious, since Vj у is again an appropriate

selection, where v is an eigenvector of A. Assume next that 
is an orthonormal system consisting of eigenvectors of A. 

Let V{ be the subspace generated by this orthonormal system, and let W be 
the orthogonal complementary subspace of Vl . We can show that W is A- 
invariant, since for all x  e  W,

since if Я, is an eigenvalue of A with associated eigenvector u ( then — is
A,

an eigenvalue of A~l with the same associated eigenvector. Therefore Ax  
is orthogonal to all basis elements of V{9 which implies that Ax e  W. The 
restriction of transformation A into W has at least one eigenvector u k of 
unit length, and system {WpWj,...,!/*} is orthonormal and all u_i 
(f = 1,2,..., A:) are eigenvectors of A. Hence the proof is complete. +
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Remark. If A is a real orthogonal matrix, then it can be 
transformed into diagonal form, however the diagonal matrix as well as the 
transformation matrix might have complex elements.

Example 7.3. Consider now the matrix

A =

1
л/2 л/2 

l  л/2 л/2 .

which is obviously orthogonal. The characteristic polynomial of A is the 
following:

<p(A) = detQ4 -  Л/)  =  det
r- L - A  

Л  Л  
_L
л/2 л/2

= л 2 - - ^ л + 1,
л/2

and therefore the eigenvalues are

It is clear that |Л,| = |^ |  = 1. The associated eigenvectors v, = (v„.) and 

v2 = (v2j.) satisfy the homogeneous equations
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л/2
J _

л/2
'12 У

and л/2
1

1 л/2

J _ 4
'л /2

I
T i .

21

22 :
and therefore we may select

and v2 =

Since |v,| = |v2| = л/2, we may select w, and u 2 *

The complex inner product of these normalized eigenvectors is as follows:

that is {wj, и 2} is an orthonormal basis.

♦
Theorems 7.2 and 7.3 imply that self-adjoint and unitary matrices can be 

transformed into diagonal form by unitary transformation matrices. A 
common generalization of these very important matrix types is obtained by 
assuming that there is an orthonormal basis В in V such that the matrix 
representation A of mapping A in basis В is diagonal. Then A' is also 
diagonal, and its diagonal elements are the complex conjugates of the 
corresponding diagonal elements of A. Since the product of diagonal 
matrices is commutative, we conclude that A'A = A A \  that is, A must be a
normal matrix. The next theorem shows that the converse of this simple 
result also holds.
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Theorem 7.4. Let A be a complex normal matrix. Then there exists 
an orthonormal basis {и],и2,...,мл} of V such that all elements u t are 
common eigenvectors of A and A'.

Proof. Similar to the proofs of Theorems 7.2 and 7.3 we will prove 
that for all к < dim(F), there is an orthonormal system \uXi...,uk} such 
that all elements u t are common eigenvectors of A and A '. We will use 
finite induction. Assume first that к  = 1. Matrix A has an eigenvalue Я 

with associated eigenvector u.  First we show that A'и is also an 
eigenvector associated to Я :

(A -  Я/Х А' и) = AA'“ ~ * А'и =A'Au- ЛА'и
= А,( А и - Л и )  =  0 .

Consider next the subspace generated by the eigenvectors of A 
associated to Я. The restriction of transformation A1 into this subspace is a 
linear transformation, which has at least one eigenvector which is a 
common eigenvector of A and A' (since all vectors of this subspace are 
eigenvectors of A). Let fl be the eigenvalue of A' associated to w,. Then

1 >“ , ) = (Aw, ,“ i ) = A(i£, ,«1 )

and similarly

Since ( и „ и , ) *  0,A = /I- Hence the eigenvalues are complex 
conjugates of each other.
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Assume next that we have an orthonormal system {wj ,w2, . s u c h>tLk-1
that each element м. is a common eigenvector of A and Let V{ denote 
the subspace generated by this system, and let W denote the orthogonal 
complementary subspace of Vx. Let x e W  be an arbitrary element. Then

Therefore subspace W is ^-invariant as well as A '-invariant. Consider 
next the restriction of transformations A and A  into W , which have at least 
one common eigenvector uk . The case of к = 1 discussed above provides

Remark 1. A linear transformation A on a complex vector space V 
is normal if and only if V has an orthonormal basis consisting of common 
eigenvectors of A and A \  If a normal mapping is real, then both the 
transformation matrix and the diagonal form may contain complex elements 
similarly to the case of real orthogonal matrices.

Example 7.4. In this example we will find all 2 * 2 real normal 
matrices. Assume that

(M>Kl )= (x ,A 'Z l )= (x ,A iU i ) = A i (x ,u i ) =  0,

and

(A' x, и ,) = (x, A u ) = (x, X; и ) = X i (x, и ) = 0.
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then

and

A A T =

A T A =

( a ь ) ( °
% с л ' a 2 + b 2 ac л- b d >

[ ' A I* d J ac + b d\
c 2 + d 2 /

ra «'I[ a
ib' ( 2 2 a + c 2 ab + c d 'j

b\ A { '
d / ab + cd4

b 2 + d 2 )

Matrix A is normal if and only if

a 2+ b 2 = a 2 + c 2 

a c + d b  = ab + cd  

c 2+ d 2 = b 2 + d 2.

This equations are equivalent to the following two relations.

b2 = c 2
[ a - d \ b - c )  =  Q.

(7.8)

If b =  c, then A is symmetric, and if b — —C, then a d . In the second 
case A is the sum of a /  and a skew symmetric matrix, and it is a constant 
multiple of an orthogonal matrix.
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In this section special self-adjoint matrices will be introduced and examined. 
Let A be the л X л matrix representation of a self-adjoint mapping in an 
orthonormal basis of a complex vector space.

Definition 7.4. Introduce the following terminology:
(i) A is called positive definite if (Ax, x )  > 0 for all x Ф 0, x e  C n;

(ii) A is called positive semidefinite if (Ax,x) > 0 for all x e  C n ;
(iii) A is called negative definite if (Ax,x) < 0  for all x ^ O ,  x e  C ”;
(iv) A is called negative semidefinite if (Ax, x ) < 0 for all x e  C n.

We can show that in the case of a real symmetric matrix A it is 
sufficient to check if the conditions of the above definition hold for only real 
vectors x.  If x  is complex, then it can be written as x  =  у  +  i z  with real
and z , and

(Ax,x) =  (A(y + i z \ y  + i z ) =  [A y , y ) +  [ iA z ,y )+  [A y , i z )+  (i A z , i z )

= (Л у >у ) + ‘(Az<v) + i{Ay>?)+ i‘(Az ,z )  = ( d y , y ) +  (A z , z ),

since i = —i and (Az, v) = (z. A T v) = (z. A v) = ( a  y, z \  The assertion 
follows from the facts that both vectors у  and z are real, and x Ф 0 if and 
only if at least one of vectors у  and z is nonzero.

From the definition it is clear that A is negative definite if and only if - 
A is positive definite, and A is negative semidefinite if and only if —A is 
positive semidefinite. Therefore we will discuss only the properties of 
positive definite and positive semidefinite matrices.

7.5 Definite Matrices
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Theorem 7.5. a) A self-adjoint matrix A is positive definite if and 
only if all eigenvalues of A are positive;

b) A self-adjoint matrix A is positive semidefinite if and only if all 
eigenvalues of A are nonnegative.

Proof, a) Assume first that A is positive definite. Let Я be an 
eigenvalue of A with associated eigenvector и . Then

0 < (Au,и) = (Ям, и) = Я(и,и),

and since (w, и) > О, Я has to be positive. Assume next that all eigenvalues 
of A are positive. Then

A -  T  DT,

where Г is a unitary matrix, and D  is diagonal with positive diagonal 
elements ,Я2,...,ЯЛ. Let x be an arbitrary vector. Then

(Ax,x) = (T,D T x ,x )=  (DTx , Tx]

Introduce the notation у  — T x , and denote the elements of у by 

У У  „ . T h e n

{ А х у x ) = (D y , у )  =  ̂ Яt y t у / =X̂ Ау *I >
---- ,=i

since у ф  0, all terms are nonnegative and at least one term is positive.
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b) The proof is the same as given for part a) with the slight modification 
that inequalities < and > have to replaced by < and > , respectively.

+

Corollary. A self-adjoint matrix A is negative definite if and only 
if all eigenvalues of A are negative, and is negative semidefinite if and only 
if all eigenvalues of A are nonpositive.

Let now matrix В be an m x n  real matrix. First we show that
A = B_ В is positive semidefinite. Let x be an arbitrary n-element vector. 
Then

(Ax,x)  = [b TB_x , x ) =  (Bx, Bx ) > 0.

Assume in addition that the columns of В are linearly independent, then 
хФО implies that Bx Ф 0 , therefore

(Ax, x) = (B x , Bx) > 0,

which implies that A is positive definite. We will next prove that if A is a 
real n x n  positive semidefinite matrix then there exists an n X n real matrix
В such that A = В 7 В , and if in addition A is positive definite, then В is 
nonsingular. From Theorem 7.2 we know that

A = T t D T

where T is an orthogonal matrix and D  is diagonal with diagonal elements 
, А'!»***» . Select
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7*7
B = # 7 Г,

4 k

then obviously, A = B j  B,  and if A is positive definite, then A(> 0 for all 
i , consequently both factors of j? are nonsingular, hence В is also 
nonsingular. We mention here that in the decomposition A = B TB,  matrix 
В can be selected as an upper triangular matrix. For more details on this 
decomposition see for example, Szidarovszky and Yakowitz (1978).

Definition 7.5. Let A be an n x n  matrix, and let 
1 < i x < i 2 < . . . < i r < n  be arbitrary integers. The determinant of the 
principal submatrix

% ai 1 Y2 *’* / Vr

% ... au2 r

ai,k au

(7.9)

is called the (/j, z2>—> ir )-principal minor of A.
An important property of definite and semidefinite matrices is given 

next.

Theorem 7.6. a) All principal minors of a real positive definite 
matrix are positive;

b) All principal minors of a real positive semidefinite matrix are 
nonnegative.
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Proof, a) First we prove that if A is positive definite, then 
det(/l) > 0 . From Theorem 7.2 we know that there exists a real orthogonal 
matrix T such that

%
A ,

A =  T Г ,

where all eigenvalues Aj, A2,..., A a are positive. Then

det(y4) = det(r)A 1A 2...A„det(r !)=  А 1А 2...Ал> 0 ,

since

d e t(r)d e t^ ‘ ‘ )= det(r7"' )= det(/) = 1.

Next we show that if A is positive definite, then all principal 
submatrices of A are also positive definite, which implies the assertion.
Notice first that for all x, (Ax,x)  = x  A x  . Let A x be the principal
submatrix (7.9) and let z be an r-element vector. Define the я-element 
vector as

[ z, if j  =  i,

1 [ 0 otherwise,

then it is easy to see that
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z T A xz  = x T A x >  0 

since x Ф 0 if and only if z  Ф 0 .

b) The case of positive semidefinite matrices can be proved in the same 
way as shown above with the slight differences that the eigenvalues 
Л1,Л 2,...,Лп are nonnegative, and x Ax > 0 for all x.

♦
Corollary. If A is real negative definite, then the principal minors 

of even order are all positive and the principal minors of odd order are all 
negative. Similarly, if A is real and negative semidefinite, then the even 
principal minors are all nonnegative, and those of odd order are all 
nonpositive.

Some important extensions of definite and semidefinite matrices will be 
discussed next. First special matrices with certain sign pattern on the 
principal minors are introduced.

Definition 7.6. Let A be an n x n real matrix.
(i) A is called a P-matrix if all principal minors of A are positive;
(ii) A is called an N-matrix if all principal minors of A are negative;
(iii) A is called an N-P-matrix if all principal minors of A of odd orders 

are negative and those of even orders are positive;
(iv) A is called a P-N-matrix if all principal minors of A of odd orders 

are positive and those of even orders are negative.

In the economic literature, iV-P-matrices are sometimes called Hicksian.
It is obvious that A is an N-P-matrix if and only i f - A  is a P-matrix, and A 
is a P-7V-matrix if and only if —A is an A^matrix. These facts are the 
consequences of the simple properties of determinants that for any mXm  
real matrix В , det(- B) = ( - 1)" det(i?). In addition, Definition 7.6 implies 
that every principal submatrix of a matrix A is a P-matrix, an Â -matrix, an
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N-P-matrix, or a P-TV-matrix, according to A is a P-matrix, an iV-matrix, an 
N-P-matrix, or a P-N-matrix. Since the principal minors of the principal 
submatrices of A are principal minors of A we conclude that the following 
assertion holds. Let S  cz {l,2,...,/?} be any set of integers, and let £  be the 
matrix obtained by replacing the j — column ey. of the identity matrix by

- e y for all j  e S .  Then E  1 AE  is a P-matrix, an N-matrix, an N-P-matrix,
or a P-N-matrix, respectively, according to A is a P-matrix, an N-matrix, an 
//-P-matrix, or a P-TV-matrix.

In the definition of definite and semidefinite matrices we have always 
assumed that the matrix is symmetric. By dropping this assumption, more 
general matrix classes can be introduced.

Definition 7.7. Let A be an n X n real matrix
(i) A is called positive quasidefinite, if (Ax, jc)> 0 for all x ^ O ;  
x e  R n;
(ii) A is called positive semi-quasidefinite, if (Ax , x )>  0 for all 
x e  R n;
(iii) A is called negative quasidefinite, if (Ax, x ) < 0  for all x ^ O ;  
x e  R n;
(iv) A is called negative semi-quasidefinite, if (Ax , x ) <  0 for all 
x e  R n.

It is clear from the definition that A is negative quasidefinite if and only 
^  positive quasidefinite, and A is negative semi-quasidefinite if and 

only if - A  is positive semi-quasidefinite. If A is an n X n real matrix, then 
define
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and

a v = L ( a - a t ) .2 w  -  /

Obviously, is symmetric and is skew-symmetric. Matrices

and A ^  are therefore called the symmetric and skew-symmetric parts  

of A. Since for all x ,

U (2)*>i)= k , A {2rrx)= l x - d <2)x)= {~di2)x,x)= -(Ai2)x ,x \

we conclude that [a^2 x̂ ,x)  =  0. This relation implies that

{ A x , x ) = [ [ a U) +  A {2))x , x ) =  (a {,)x , x } +  (a {2)x , x )  =  {a {,)x , x ).

From this observation we conclude that an лХл real matrix is positive 
quasidefinite, negative quasidefmite, positive semi-quasidefinite, or negative 
semi-quasidefinite if and only if the symmetric part of A is positive definite, 
negative definite, positive semidefinite, or negative semidefinite, 
respectively.
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In many linear models the nonnegativity of certain matrices has an 
important role. For example, in linear input-output models the input x and 
output у  satisfy equation

x = ( L - d ) ~ ' y ,

where A is the input coefficient matrix. If (j_- A)~] is nonnegative (which 
means that all elements of the matrix are nonnegative), then for arbitrary 
nonnegative output vector у  there exists nonnegative input which produces 
that output. In this section the most important properties of nonnegative 
matrices will be discussed. First, the fundamentals of the Perron-Frobenius 
theory will be outlined, and then, matrices with nonnegative inverses will be 
discussed.

Let A be an n x n matrix such that A > О . This assumption means that 
а~ > 0 for all i and j . Let A,,A2,...,Ar denote the distinct eigenvalues 
of A and assume that they are numbered as

|a , |> |a 2|> „ .> |a 4

Our first theorem below presents the most important properties of the 
dominant eigenvalue A j . In the matrix theory literature this result is known 
as the famous Perron-Frobenius theorem.

7.6 Nonnegative Matrices
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Theorem 7.7. (i) A ,> 0 ;
(ii) Aj has a positive associated eigenvector x x;
(iii) The eigenvector associated to A, is unique up to a scalar 
multiplier;
(iv) For all /> 2 ,  |Az|<  At.

Proof. Consider the set

A = {A g  7?| Ax > Ax  with some nonzero vector x >  0}. (7.10)

Note first that 0 G A , since Ax > 0 with all x > 0. We prove next that 
A is bounded from above. If A G A , then for all i ,

-  Z v o  (7 1 I)
j=i

with some nonzero vector x > 0. Let x L =  max{x,}, then inequality (7.11)
'O j  j

with i = iQ implies that

j =i \  №

Since the defining inequality of A is closed and Ais nonempty and 
bounded, set A has a maximal element A0. We prove that this maximal 
element is the dominant eigenvalue of matrix A, and it satisfies properties
GHiv).

(a) First we show that A0 > 0. Note first that if x > 0 is nonzero, then it 
has at least one positive component, and therefore Ax > 0 = Ox. Therefore
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selecting a sufficiently small positive A, Ax  is still greater than A x . Since 
A0 is the largest of such A values, A0 > 0 .

(b) Next we prove that A0 is an eigenvalue of A. Let x 0 be a 
nonnegative, nonzero vector such that Ax0 > A0x 0. Assume that 
Ax0 Ф A0x 0, then Ax0 - A 0x 0 is nonnegative and nonzero. Therefore

0 < A(Ax0 - Я 0х 0) =  A(Ax0) - Л 0(Лх0).

Denote y  = Ax0, then у > 0 and A y  > A 0y . Therefore with 

sufficiently small £ > 0, A y  > (A 0+ £ ) y ,  which contradicts the selection of 
A0. Therefore Ax0 = A0x0, that is, A0 is an eigenvalue with associated 
eigenvector x 0.

(c) In the above argument we have shown that Ax0 > 0, A0 > 0, and 

Ax о = A0x0, which imply that

*o = 7 “ 4 ^ о >5-
0

(d) Let A! be an eigenvalue of A. Then

A y = A , y

with some y *  0. Define z = Ay,z*  = (jzj), and y* =  ( ^ l) ,  where z { and 

y { are the i -  elements of vectors z and у , respectively. Then
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A- y *  = 1 ч  w ]  = fS k ^ l]
J=l //=I v ^ 1 ) i =1

y=i y/=!
= M „  ‘ V ' l L  = 1Л'1 Л*.

which implies that |Я / | g  A . Since Я0 is the maximal element in 
Л,|А/| < Я0.

(e) We prove next that \ X \ < X 0. l f  8 >  0 is sufficiently small, then 
A s = A —S / > O. The previous part of the proof implies that

|Я , - 5 |< Я 0-<5, (7.12)

since the eigenvalues of A - 8 1  are Я,-<5,...,ЯГ-<5. Contrary to the 
assertion that \X,\ = Я0 . Let a + ib , where a and b are the real and

imaginary parts of Я ,, respectively. Since |Я,| = л/а2 + b 2,a 2 + b 2 = X 20. 

Therefore, if Хф Я0, then a < Я0. This inequality implies that

|Я,-<5|2 = |(<z-<5)+/6|2 = (ia - 8 )2 + b 2 =  a 2 + b2 + 8 2 - 2 a 8  

> a 2 + b 2 + 8 2 - 2 8 X 0= Яо+52 - 2<5Я0= (Я 0- <5)2,

which contradicts relation (7.12).
(f) Assume finally that x 0 and x are linearly independent eigenvectors

associated to Я0. Since x 0 > 0, there exists a scalar a  such that vector
z = a *0 + x is nonnegative, nonzero, and at least one element z,. of z is
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zero. Observe that selection ОС =  maxs-----— \ is satisfactory, where
I xoi\

x = (x,) and x 0 =  (x0j). Then

A0z = a A v x  о + A 0x  = a A x 0 + A x  

= A (ax0 + x ) =  A z >  0,

which implies that z  > 0 , which contradicts the assumption that at least one 
element of z is zero.

*
Hence the proof is complete.

Remark. A , is usually called the Perron eigenvalue of A.

Corollary. Assume that A is an n x n  real matrix such that A 1 
exists and is positive. Since the distinct eigenvalues of A 1 are

and they satisfy conditions (i)-(iv) of the theorem, we
A, A 2 Ar
conclude that

(i‘) Ar> 0 ;
(ii1) Ar has a positive associated eigenvector x r ;
(iii*) The eigenvector associated to Ar is unique up to a scalar 

multiplier;
(iv^Forall l < r - l,|A /|> A r.
Assume now that A >  0. Since the eigenvalues of real matrices 

continuously depend on the matrix elements, Theorem 7.7 implies the 
following result.
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Theorem 7.8. Let ^  be a nonnegative matrix with distinct 
eigenvalues |A,| > |A2| > ... > |Ar| . Then

(i) A,> 0;
(ii) A, has a nonnegative associated eigenvector x , ;

(iii) For all /> 2 , |A ,|< A ,.
An alternative extension of Theorem 7.7 can be formulated as follows.

Theorem 7.9. Assume that A >  О , and Am > О for some positive 
integer m. Then all conditions (i)-(iv) of Theorem 7.7 apply to A.

Proof. Let A, be the dominant eigenvalue of A with associated
eigenvector x_y. Then the assertion follows immediately from the fact that 
AJ" is the dominant eigenvalue of Am with the same associated 
eigenvector.

*
In many applications it is very useful to compute lower and upper 

bounds for the dominant eigenvalues Aj of nonnegative matrices. Such a 
result is presented in the following theorem.

Theorem 7.10. Let A = (a9 ) be an и х  и nonnegative matrix with 

dominant eigenvalue A,. Then

where



Proof. Assume that the nonnegative eigenvector x x (= x Xi) 

associated to A, is normalized so that \ T x x = 1, where lr =(l,l,...,l). 

Multiply the eigenvector equation A x x — X xx x by l r to get

1 TAxx = Ajlr Xj = A,.

Observe that
1 A (cj ,c2 ,...,сл),

and therefore
Aj = c,xn + c2xI2 + ... + cnx ]n- 

Since all components x Xj of x x are nonnegative,

Cj j ( x n + x 12+... + *,„)= mi
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=  ГШ1 Cj

and

Corollary. Let A -  [a^ ) be an nXn  nonnegative matrix with 

dominant eigenvalue A j. Then

min r  < A,< max r ,  . i 1 / (7.14)
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rt

n = X a</> i = 1Д...,л*
j =1

Proof. The eigenvalues of and are the same. Apply relation 
(7.13) to the transpose A T of A to get the desired bounds.

*
Relations (7.13) and (7.14) are illustrated in the following examples.

Example 7.5. In the case of matrix

A =
1 2
4 3

c x = c2 =5, and therefore

min Cj = max Cj = 5.

Hence relation (7.13) implies that This result can also be
verified by solving the characteristic polynomial

<p(A)=det
' l - A  2  ̂

4 3 - A
= (1-А Х З -А ) - 8  = А2- 4 А - 5 .

The roots are A j= 5 and A2= —1.
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Example 7.6. Consider next matrix

'1 0 0
A = 1 1 4

0 1 3
v /

where

c, = 2 ,c2 = 2,c3 = 7  and r, = l ,r2 = 6 ,r3 = 4. 

Therefore relations (7.13) and (7.14) imply that

2 < A,<7 and 1< A,< 6. 

Note that from these inequalities we conclude that

2 < A,<6.

As a comparison we mention that the true value is

A ,= 2 + S  = 4.236.
♦

In many applications the nonnegativity of inverse matrices is assumed. 
In the next part of this section conditions will be introduced which guarantee
that A 1 >0 for a given square matrix A. We begin our analysis with a 
simple result.
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Theorem 7.11. Let Л be an n x n  real matrix. The inverse В 1
exists and is nonnegative if and only if there exists an n X n  real matrix D  
such that 

( } ) D > 0 ;
(ii) l ~ D B > 0 \
(iii) All eigenvalues of I  — D B  are inside the unit circle.

Proof, (a) If B~l exists and is nonnegative, then select D = B  . 
Then I - D B  =  O, and therefore conditions (i), (ii) and (iii) are obviously 
satisfied.

(b) Assume now the existence of matrix D  satisfying conditions (i), (ii) 
and (iii). Note first that condition (iii) and the results of the third application 
of section 6.8 imply that I  — (/ — DB)  = D B  is invertible. Therefore D  
and В are both nonsingular. From the same application we also know that

(D B )~' = /  + ( / -  D B ) + ( / -  D B f  + ...> 0 ,

since each term of the right-hand side is nonnegative as the consequence of 
condition (ii). Hence, from (i) we conclude that

B~' = (d -1 D B ]■' = (d b_Y d > o ,

which completes the proof.

Definition 7.8. An n xn  real matrix В = (b0 ) is called an M- 

matrix, if D = diag{bu ,b22,...,b„„Y' satisfies conditions (i), (ii) and (iii) of 
Theorem 7.11.

Note that in the case of an M  -matrix,
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0

b2i

b n b u

bn 

0 . . .

b n  

. , h j L
bn 2̂2

К К  г 0
ь„ bnn

therefore bu > 0 for all i , and bi} < 0 for all j * i .  

Example 7.7. We will show that matrix

B =

r 5 -1  - l 4 

-1  5 -1  
-1  -1  5

is an M-matrix. In this case,

D = diag(5,5,5)-'= d ia g f i  -  I

and

I  — DB =

0 1  2
5 5

I  0 i
5 5
1 1
5 5

(7.15)
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2relation (7.13) we see that c, - c 2 = c 3 = —, therefore for all eigenvalues

2 1 A, of / - D B , |A,| < —. (The true eigenvalues are A ,= A2= —— and

Conditions (i) and (ii) of Theorem 7.11 are obviously satisfied. By using

♦
In the conclusion of this section a new class of special matrices will be 

introduced, which has a very close relation to nonnegative matrices.

Definition 7.9. An n x n  real matrix A is called a Metzler-matrix, if 
a fj > 0 for all i Ф j .

Notice that Metzler-matrices have nonnegative elements outside the 
diagonal, and there is no constraint on the diagonal elements. A square 
matrix A is a Metzler matrix if and only if there is a real number a  such that 
A + a I >  0. This strong relation between nonnegative and Metzler matrices 
makes us able to extend the Perron-Frobenius theorem to Metzler matrices.

Theorem 7.12. Assume that A is an n x n  real Metzler matrix. 
Then there exists a real eigenvalue A j of A such that

(i) Aj has a nonnegative associated eigenvector;
(ii) For any other eigenvalue A, of A, ReA,< A,.

Proof, (i) Select an a  such that A + a I > 0 ,  and let fi, denote the 
Perron eigenvalue of A +  CX.L with associated eigenvector x t SO. Then 
Я ,= ц х -  a  is an eigenvalue of A with associated eigenvector x ,.

(ii) Let A, denote an eigenvalue of A such that A ,*A,. Note that 
A,+ a  is nonnegative and is the Perron eigenvalue of Л + a l ,  and for any
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other eigenvalue A7 of Л, A7+ a  is also an eigenvalue of A + a l  such 
that A7+ a  *  Xx+ a  .

If A !+CC is real, then from Theorem 7.8 we know that 
|A;+a| < A,+a . I f  A 7+ a  is nonnegative, then A7+ a  < A , + a , which 
implies that A 7< A}. If A7+ (X is negative, then obviously A 7+ a  < A,+ (X , 
that is A7< A, again. Hence, ReA7= A 7<A j.

If A,= a + ib with b Ф 0, then from Theorem 7.8 we conclude that

|А7ч-«|  < A ,+ a ,

that is,

|(л + ос) + z6| < A j+ .

This relation is equivalent to inequality

(a + ос)2 + 6 2 < (A,+ ct)2,

which implies that

( a + a f  < (A,+ a ) 2. (7.16)

This inequality can be rewritten as

(a -  A, Xa + 2a + A,) < 0. (7.17)
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|a + a |<  A,+ a ,

and therefore
а + 2 а  + Л,>  0 .

And hence, (7.17) holds only if а - Л , < 0 ,  that is, when 
a = ReA,< A ,. Thus the proof is complete.

Note first that (7.16) implies that

Assume again that A, is a Metzler matrix. We know that A + a l  is 
nonnegative with some nonnegative a. It is also known, that the eigenva ues 
of A +  a  I  are Л,+ а  and the Perron eigenvalue of A + a l  is A ,+ a ,  
where A, is the eigenvalue of A, which satisfies properties (i) and (ii) of 

the above theorem. If A = (a,у), then

A + a /  =
ay + a  if i - j

aij

Use relations (7.13) and (7.14) to this matrix to get inequalities 

in [cj + a )  < A, + a  < max (cy. + a \mm
j

and

min (r, + a )<  X , + a <  max(r,. + a )



which implies that Theorem 7.10 and its corollary remain true for Metzler 
matrices.

Example 7.8. Consider matrix
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A =
-2 1
2 -1

where c x = c2 = 0, and therefore Я x=  0. Note that the characteristic 
polynomial of A is

<p(A)=detf 2 A 1 1 = ( - 2 - A X - 1 - A ) - 2 = A 2+3A.
1 2 — 1 — A

The eigenvalues are Я ,= 0 and A2= -3 .

Example 7.9. Consider the next matrix

' - I 0 0 "
A = 1 1 4

0 1 3V /

c, = 0 ,c2 = 2 ,c3 =7 and r, = - l , r 2 = 6,r3 =4.
where
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0 < A,< 7 and - 1 <  Aj< 6.

Hence, 0 < A !< 6 . Note that the true value is

А ,= 2 + S  =4.236.
♦

Consider now a Markov chain with n states and the n x n  transition matrix 
P.  In section 3.8 we have seen that P_ is a nonnegative matrix, and the sum 
of the elements in each column is equal to one. Therefore we can use 
Theorems 7.8 and 7.10 to see that the dominant eigenvalue of P  is unity, 
and this eigenvalue has a nonnegative associated eigenvector. The 
eigenvalue equation with \  = 1 and eigenvector x  has the special form

P x =  l x .

Therefore relations (7.13) and (7.14) imply that

Since jc > 0 and x Ф 0, ^ x k > 0 and vector
k=l

k=1

satisfies relations

•  *

Px = x

x\ +x'2 +... + xn = 1,
(7.18)
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which is equivalent to relation (3.27). Hence x is the steady state 
probability vector.

Consider now an economy with n products and a continuum of 
consumers of the same type with utility function

U{s) = s T Qs  + b T s  + c, (7.19)

where Q is a negative definite matrix. The representative consumer 

maximizes (/(5) — p Ts, where p  is the price vector. This objective 
function is strictly concave in s, and it converges to -00 if any one of the 
components of s tends to -«>, therefore there is a unique vector s = A p)

maximizing the objective function. This vector is called the demand 
function and can be obtained by simple differentiation. The gradient of

U ( s ) - p Ts_ is given as 2Qs + b - p ,  so the optimal s can be obtained by
solving equation

2 Q s + b - p  =  0

which implies that

d{p)  =  s  =  ± Q - ' p - ± Q - lb (7.20)

resulting in a linear demand function.

Definite matrices have an important role in determining if a function is 
convex, or concave. Let/ : R” h-> R be a twice continuously differentiable
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real valued function in an open domain D  с  R ”. Construct the Hessian 
matrix H  o f/in  the following way. The (i,j) element of H  is given by the 
second-order partial derivative d 1 f  / d x td x j  . Hence

K ( x )  =

d ' f ( x )  J 2f ( x )  <?»/(*)!
d x , d x n

Эг/ ( х )
d x \ d x xd x 2

d 2f ( x ) d 2f ( x)
d x 2d x x d x \

f ix ] ) d ' f (r)
дх„дх\ дх „ д х г

д х 2д х п

d x l

(7.21)

Let now х *  be an arbitrary point from D.  It is well known from 
convex analysis, that if //(x  *) is positive definite, then f  is strictly convex 
in a neighborhood of x * , and if H{x*)  is negative definite, then /  is 
strictly concave in a neighborhood of x * . In Section 7.5 we have discussed 
the conditions which have to be checked in order to verify the definiteness 
of the Hessian.

Let / : R " h R be a continuously differentiable function on a 
convex, open domain D e i  R". We say that is monotone, if for all 

x 9y e D ,

{ х - у Г Ш - f k h 0- (X22)

In the one-dimensional case this kind of monotonicity coincides with the 
property that /  is nondecreasing. Similarly we say that /  is stnc у

monotone, if for all x , y e D  and x ^ y ,
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( * -  y f  [ f i x ) - / M ) > 0 - (7.23)

In the one4hmensional case this kind of strict monotonicity coincides 
with the assumption that /  is strictly increasing.

The Jacobian of /  is the n X n matrix with (ij) element d  2 /  / d x td x j ,
that is.

l ( x )  =

' d f ( x )  <?/,(x) d f  (x)~
d x x d x 2 d x n

d f 2(x) d f 2(x) J f 2(x)
d x x dx.

<?/„(*) <?/„(*) 
d x x d x 2 ;

where x. and f i denote the i~ entry of x  and / ,  respectively. The 
monotonicity and strict monotonicity of f  can be checked in the following

way. If J(x) + j ( x ) T is nonnegative definite for all x e  D ,  then /  is

monotone, and if in addition, is positive definite for all
x e  £), then /  is strictly monotone.

Monotone and strictly monotone functions have an important role in 
many fields of optimization. As the conclusion of this section we show a 
classical result.

Consider a nonlinear complementarity problem

/  •/(*)=(>  

x Z 0 , f ( x ) >  0
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(for details see the earlier section 2.6), and assume that /  is strictly
monotone. Then the nonlinear complementarity problem must not have a 
multiple solution. In contrary to this assertion assume that x and z are both 
solutions, then

о < (x ■- z f  { f i x )  -  f ( z ) )  = X f i x )  -  z  A x)  - x  f { z ) + z Tf { z )  

= - z T f ( x ) - x T f ( z ) < 0 ,

which is an obvious contradiction.

7.7 Applications

In this section two major applications will be first discussed. The first one 
an important application of real symmetric matrices to define and compu 
singular value decompositions of (not necessarily square) vminc 
Generalized matrix inverses will then be introduced and some о 
applications will be outlined. After the two major applications ar 
chains will be revisited and some simple examples will be ,

1. In this application singular value decomposition ( trix
matrices will be introduced and examined. Let A be а rea m 
The existence of the SVD is guaranteed by the following theorem.

Theorem 7.13. There exist orthogonal matrices U  and V such that
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where D  is a nonsingular diagonal matrix with positive diagonal elements, 
which are arranged in nonincreasing order. The size of D  is the rank of A.

Proof. From section 7.5 we know that A? A is a positive 
semidefinite matrix with nonnegative eigenvalues. Let 
Aj> Л 2> . . . >  Л г> Л г+1=.. .  =  Лп = 0  denote the eigenvalues of A A.  

Denote the corresponding set of orthonormal eigenvectors by 
fei >¥2 which exists, since A T A is symmetric. For / = 1,2,...,n,

A A v ^ a ] ^ ,

where Я, = c f  with a nonnegative <7 ,. This equation implies that for all i 
and j ,

from which we also conclude that for / = r  + 1,...,w,

AVj = 0, (7.25)

since for vector z = Avib/ z  = 0, and therefore = 0 , where z }
j=i

. th
denotes the j  element of z . Introduce matrices

Kl = ( v , V r ), F 2 = (vr + l v„ ),
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u, = — Avi (i = 1,2,..., r).

First we show that these vectors form an orthonormal system. From 
(7.24) we see that

u*uj  = ^ ( 4 н , Г ^ ( ^ у )  = ~ Г ^ ' Г^ Г—

= I l i f  i = J  
|0 if i  *  j .

Define U x = ( u u r ) and select U 2 = ( u r+l,.••,!*»,) suc^ ^ at 
system {wi,...,wr ,wr+1,...,wm} is orthonormal. Vectors wr+1,...,w„ can be 
selected as an orthonormal basis of the orthogonal complementary subspace 
of the subspace generated by the columns of U_\ • Notice that for any
j > r  + 1 and i < r ,

U Tj A V ;  iHi

and for any j  > r  +1 and i > r  + 1,

U j A v ^ O

as a consequence of relation (7.25).
Define matrices

and the AH-element vectors

t / =  (C/,,t/2) and K - ( F , , K 2)-
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Then

f  t \  w,

4.2 4(v „V j,-,V B) =

1

'_1_ T A T
Yy A

1 T AT
Y r A

T
Ur+1

T
\ Um—tn

0

D  0 
0 0

Notice that the rows of U j  as well as the columns of V_ are linearly 
independent. Therefore (see Exercise 3.10)

rank (л) = rank Aj = rank(t/r A v ) = rank(D),

which completes the proof.
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Corollary. Matrix A can be factored as 

' г, Ол

A =  U

О О

V T, (7.26)

which is called the singular value decomposition of A , and the positive 
scalars <T[9...,(Jr are called the singular values of A. Notice that U_ is 
mXm, F is n x n  and the second factor is m x n .

Example 7.10. Consider the 3x2 real matrix

A =

0̂ 0  ̂
0 0 
3 4

Since

оо

3
'̂О 0>

e 9 12^
0 0

16,0 0 V ,12\ У
,3 4>

the characteristic equation of A A has the form



442 Introduction to Matrix Theory

(р{Л) = det
9 - Л  12 

12 1 6 - Л
= Л 2- 2 5 Л ,

so the eigenvalues of A T A are A,= 25 and Л 2= 0. Therefore <7,= 5 and 
<7 2= 0 . Next, the associated eigenvectors will be determined. For 
eigenvalue Л ,, the associated eigenvector v, =(vIf) solves equation

9 12Y v u 
,12 16Av12

= 25
12

that is,
— 16v,, + 12v,2 = 0  

1 2 v „ - 9 v 12 = 0 .

A solution is vector

::HD
which can be normalized as

v, = 5
4

V5)

For eigenvalue Я2, the associated eigenvector satisfies equation
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'9 12" ' V II О | V
,12 16, ,V22, 22 >

that is,
9v21 + 12v22 = 0  

1 2 v 21 + 1 6 v 22 = 0 .

A solution is vector

/ \
f “ 4lV21 1=

, V22,

which can be normalized as

- -

, 5 J

In our case r  = 1 and

'0 0" '3"
_ 1 
~~ 5

'O'

0 0 5
4

0 = 0

,3 4>,5 J A

Since Wj is the third natural basis vector, we may select
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Thus,

T "0"

«2 = 0 and m3 = 1
0 0J V /

'0 1 o' f 2_

и = 0 0 1 and v = 5
— 4

,1 o 0

consequently

U 1 AV =

^0 0 n "0 0" "3
_ 1 0 0 0 0 5 5

4 3
sP 1 0, ,3 4>J 5 >

ГЪ
41

'ъ rb 0"
0 0 5 5 _ 0 04 3
0 0 — — 0 0V J ^5 5 > V /

which is 3x2, and D  = (б) is a 1X1 matrix.

2. The second application will introduce the pseudoinverses of (not 
necessarily square) real matrices. Let A be a real m X n matrix.

Definition 7.10. The pseudoinverse of A is an n X m  matrix X_ 
satisfying the following conditions:

(i) A X  A -  A:
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(ii) X A X  = X ;
(iii) X  A is symmetric;
(iv) A X  is symmetric.

In the special case when A is a nonsingular square matrix, X  = A 1 
satisfies these relations showing that this concept of pseudoinverses of 
general matrices is a generalization of that of inverses of nonsingular square 
matrices.

The following theorem guarantees the existence and the uniqueness of 
the pseudoinverse of any real matrix A.

Theorem 7.14. The pseudoinverse of any m x n  real matrix A 
exists and is unique.

Proof. Consider the singular value decomposition (7.20) of A, and 
define matrix

X  =  V

чО
<7 .

O j

U T, (7-27)

where the second factor is an nXm  matrix. We can easily show that this 
matrix satisfies the conditions of Definition 7.10. By using the notation of 
Theorem 7.13 we have
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T Tsince V_ V_ and U_ U_ are equal to identity matrices of sizes m and n,  
respectively.

(ii)

X A X  = V
D"1 O' _ _T _ ЛD o" T o ] _ _ T o'1

и  Щ к  к u  = v
чО a 0 , I q a

U 1

= x.

(iii) A X  = U
rD  Ол

- о  Q ,
y r J a - '  o' 
" 1 0  o ,

UT =u l  О
vO Q ,

U T,

where 7 is the г Xr identity matrix, and the second factor is mXm .  This 
matrix is obviously symmetric.

(iv) X A  = V\
D~l O )

О о , Ч о  о ,
V T =v I  Q  

чО О /
V T,

where the second factor is now nXn.  This matrix is obviously symmetric.

We will next show that matrix (7.27) is the only pseudoinverse of A. 
Assume in contrary that matrix Y also satisfies the conditions of Definition 
7.10. From conditions (i) and (iv) we see that

A T =  (AYAY  = A T Y T A T = (YA)T A t = Y A A T. (7.28)

Conditions (ii) and (iii) imply that

Y T =  (YAYY = YT A T T T = (AY f  Y T = A Y Y T. (7.29)



Since X  is also a pseudoinverse, it also satisfies the above relation:

AT= X A A T and X T= A X X T> (7-30> 

from which and equation (7.22) we have

0 = AT - A T = YAAT - X A A t = (Y -X )A A T>

that is,
(y - x )a a t( Z - x )t

This equation implies that
(Y - X ) A  = 0. (7-31)

Notice in addition that from equations (7.23) and (7.24) we see that

y - x  = {y y t - x x t)a t ,

and therefore
(y - x )c =o (7'3 )

for any matrix С the columns of which are orthogonal to the^columns. of A-
Finally, observe that equations (7.31) and (7.32) imply that _  _>

is Y = X . Hence, the pseudoinverse is unique.
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Example 7.11. Consider again the matrix

A =
3 4

From the previous example we know that

therefore

A =
r0 1 0 

0 0 1 

1 0 0

\/

y\

5 0Л 
0 0 

0 0

5 5 
4 3

'5  5

'3 4^

5

\ "0 0 n
5
4

5
3

0 0 1 0 0

J 5 j
lo 0 0>lo 1 0,

25
A_
25

0 0 

0 0

v ° 0 n

1 0 0 —

0 1 о JA / \

0 0 

0 0

25
A_
25

As an exercise, we verify the conditions of Definition 4.10:
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AX A =

(i)
0^

/
0 0

3  > " 0 ( Г " 0 0

0
2 5
4

0 0 = 0 0

A 0 0 3 4 ; 3 4
V V 2 5 , J \

2 5  2 5
12_ 16

2 5  2 5 .

9 12 '0  0 

0  0 

3  4

= 4 ;

(ii)

0 0 —  

2 5

0 0 —  

2 5

3  V o  0"

0 0 

3  4

f  3  W  9  1 2

0  °  2 5  _  2 5  2 5
4  _  1 2  1 6

0 0 —

2 5

(iii)

v 2 5  2 5  Л

'  л  3  
0 0 -

4

0  °  2 5 .

- о о Л

° 0 ь>

= X;

AX  =
' 0 0"

/
0 0

3  " ' 0 0 0"

0 0
2 5
4

= 0 0 0

, 3
0

4
0

2 5 > , 0
0 к

(iv) XA =

Notice that both AX_ and XA_ are synunetri

/ j T ^ 0 o ' '  9_ 2 2 '
0  0

2 5
4 0 0 =

2 5
1 2

2 5
16

оо 
^ 2 5 >

3\ 4J , 2 5 2 5  J
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7.8 Exercises

1. Which special matrix classes do the following matrices belong to? -

о о o V i  o V i  1 V 1  i N
o o o 0 2 0 1 41 0 ,

1 0 

0  1

w  0  2 
- 2  0

1 - 0  

vl 1 /

2 . Characterize all real 2x2  symmetric matrices such that A2 = A.

3. Assume that A =0. Show that

(L-А Т ' = l + A  + A2.

4. If A + В is symmetric, simplify the following expression:

(з(л+в)т + а )г - 3 B r .

5. Find all values of a and b such that matrix

r a - b  a + b4 

a + 2b b

is symmetric.

6 . Repeat Example 7.1 for system



JC, +  lx2 =  3 
xx+x2- x 3 =2  

x2 + 2x3 + X 4 = 1 
x3- x 4 =0

7. Find the characteristic polynomial of the coefficient matrix of the 
previous problem. (Use recursion (7.4).)

8. Prove that if A is symmetric, then a A is also symmetric.

9. Prove that if A and В are nxn,  symmetric, and AB=BA, then 
A ll is symmetric.

10. Prove that if A+B and A x В are symmetric, then A and В are 
symmetric.

11. Prove that if A is skew symmetric, that A is symmetric.

12. Is the sum of two triangular matrices also triangular?
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13. Is matrix
i O'4 unitary?
0 1,

14. Prove that the inverse of a symmetric real matrix is symmetric.

15. Repeat Example 7.2 for matrix
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A =
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' l  О

vl 2y

16. Repeat Example 7.3 for matrix

A =

1 2 1
1 5
2 1

.Vs ' V ^ J

17. Check which of the following matrices are positive definite, 
negative definite, positive semidefinite, or negative semidefinite:

n  i 4
a)

b)

A 1/

f l  24

2 4

c)
'8  О 
V1 8,

Ф

-10 0 1

0 -12  0 
1 0 - 1 4

18. Illustrate the Perron-Frobenius Theorem for matrices a), b), and c) 
of the previous problem.
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19. Use Theorem 7.10 and its corollary to bound the Реггоп-егзегг/ашез 
of matrices a), b), and c) of the previous problem.

20. Repeat Example 7.7 for matrix

"10 - 1 - f

A = 0 8 - 1

- 1 0 4

21. Let

A = U
D О

vO О/

be the S VD of an m X n real matrix A . Prove that

V t {a t a ) v  =  d i a g ( c r f , . . . , c r r2 , 0 , . . . , 0 ) ,

which is nXn, and

UT (AAT) U = diag(<T (72r,0,...,0\
which is mxm. ,

22. Assume that A is an »X n real symmetric matrix with eigenvalues
X . J  = 1,2 ,. ..,n . Show that the singular values of A are \Л,\ for all nonzero 

eigenvalues.

23. (Continuation of Problem 22) Prove that an BX« real matrix is 
nonsingular if and only if all its singular values are nonzero.
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24. Find the SVD for matrix

' 1 0"

d = 0 1

1 ° 0 ,

25. Find the pseudoinverse of the matrix given in the previous example.



Chapter 8 

Elements of Matrix Analysis

8.1 Introduction

In Chapter 2 we have already introduced some elements of matrix analysis 
such as lengths of vectors, which give the possibility to introduce, for 
example, convergence and to estimate the speed of convergence. In this 
chapter we will consider these issues in more detail. We will first generalize 
vector lengths by introducing vector and matrix norms, and their 
applications in convergence analysis and perturbation analysis will then be 
outlined.

8.2 Vector Norms

Let V denote the set of all П -element real (or complex) vectors.

Definition 8.1 . A real valued function x I—> ЦхЦ defined on V is 
called a vector norm, if  it satisfies the following conditions:

(i) |л:|| > 0 for all x e  F , and |*| = 0 if and only if £ = 0 ; 
fo ra llx e F  andscalara;

(iii) |x + <||x|+|j>| forall x , y e V .
Notice that these properties imply that

Н=Ы
and

455



N l i l H U d  <»•■>
The first relation is a consequence of property (ii) with the selection of 

a = -1 . The second inequality can be proved as follows. From property (iii) 
we have

И - Ь + ( £ - г ) И Ы Ф - 4

which implies that

Ы - Н Ф -d l-  (8-2)

By interchanging x and у , we see that

Ы - И  ̂  lz -*1=b zll=IN ~ A (83)
If ||x|| > |yj, then from (8.2) we have

М - Ы И - Ы Ф - 4

and if ||x|| < |yj, then from (8.3) we obtain relation

M HzHdHNI-fc-zI-
Hence inequality (8.1) is verified.

Three particular vector norms will be introduced in the next examples.

456 Introduction to Matrix Theory
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ML = mf x{l xi l}>

which is called the "infmite-norm" of x . We can easily verify that 
conditions (i), (ii), and (iii) are satisfied.

(i) fxf^ > 0 obviously, and ЦхЦ̂  = 0 if and only if all хг = 0 which

means that x -  0 ;
(ii) For all i , |ax/| = \a\ • which implies the condition;

(iii) For all i , |х,- + ^, | < |*,|+|л|- 
Select i0 such that

l**> +Уь I = rnax{|jc,+>-, !}. 
i

Then

1 г + £ - К + д | 4 * 1 + М £ш?х« л:'1»+Г ‘ а л 1 )

= И . + Ы .

For example, if n = 4 and x = (—1,2,—4,3) , then ЦхЦ,*, -  4 , since 

4=  max{[— lj; |2j ; |— 4j; |3|}.

Example 8.1. Let xl9...xn denote the elements of vector x. Consider
the vector norm

Example 8.2. Consider next the "one-norm" of vectors defined as
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w , - t w
1=1

This quantity also satisfies the conditions of Definition 8.1, so it can 
also be considered as a vector norm. Conditions (i), (ii) are trivially 
satisfied, and (iii) can be proven as follows. For all i ,

h + ^ l - N + W -

The sum of this inequality for i = 1 ,2 ,...,и yields

i i i

which is equivalent to condition (iii) applied to this norm. For example, if 
л = 4 and x = ( -  l,2 ,-4 ,3 )r , then ^  = 1 + 2 + 4+ 3 = 10.

♦

Example 8.3. In section 2.4 we have introduced the length of n- 
element vectors, which can also be considered as a vector norm

14=Vhf+N2+-+kf •
This norm is known as the "two-norm" or "Euclidean-norm". Properties

(i) and (ii) are obviously satisfied, and condition (iii) has been verified as the
Corollary of Theorem 2.10. For example, if n = 4 and x=  (-1 ,2 ,-4 ,3 ) , 

then 1 4  = V l2 + 22 + 4 2 +32 = л/30.

♦
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Notice that all these norms are special cases of the Holder-norm:

f " 1 Up
a , =  i w ' j  <8-4>

with some p > 1. A relation between the 1,2, and <» -norms can be given as 
follows.

Theorem 8.1. For all x e V ,

Ы . 4 4 * Л Ы .

H_£t t s"WL-
Proof. The left-hand sides of these relations are obvious, smce

and

M i = тах|дг,|}< !> / |  = И , •
1=1

The right-hand sides can be shown as follows:
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(  n \ 2 (  " >
2

(  * \ (  n 'N

IW =  Zi-KI < Z 12 zw 2
4  »=1 ) V 1=1 J \ i=1 V /=1 у

where we used the Cauchy-Schwarz inequality.
Similarly,

mi=£wi - n • maxd x, i2}=n . ИИ,/=i 1

and

И. = (§w) - n • m,ax{i*.• I) =n • INL-
+

Remark. It can be proved that all vector norms are equivalent to 
each other, that is, if Ц...Ц and ||..|* are two vector norms in V , then there
exist constants K x, K 2 such that for all x e V,

^ 1 4

Let A be a nonsingular nXn real or complex matrix, and assume that 
||...|| is a given vector norm. Consider the mapping: л: Ь-> ||Ах| for all П- 
element vectors x. We can easily verify that this mapping also satisfies the 
conditions of Definition 8.1, that is, it can also be considered as a vector 
norm:

(0  |U*|-°> since Ax  is an n -element vector, and ||Лх|| = 0 if and 
only if Ax = 0, which holds if and only if x = 0, since A is nonsingular.

, since Ц...Ц is a vector norm.
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(«О | i(*  + y]\ = J Ax + A jJ  < Щ \ +\\A jj| , 

where we used the triangle inequality for norm ||..
Notice, that in the case of a singular matrix A condition (i) might fail, 

since Ax = 0 does not imply that x = 0, therefore jAxf has zero value for

all nonzero vectors xe N(a).

8.3 Matrix Norms

Consider now the set M of all m x n real (or complex) matrices.

Definition 8.2. A real-valued function A h-> ||л|| defined on M is 
called a matrix norm, if it satisfies the following conditions.

(i) ЦлЦ > 0 for all 4  e  M , and ||̂ ||=0 ifand o n l y  if ̂  = 0 ;

(ii) ||â || = |4 | | 4  for all A e M  and scalar a ;
(iii) For all A,B_e M ,

M + 5| | < M M | s|| .

A special class of matrix norms can be defined in the following way. 

Definition 8.3 . Let Ц...Ц be a given vector norm. For all A e M, define

which is called the matrix norm subordinate to the given vector norm.

<85>
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In order to show that (8.5) defines a matrix norm, we have to verily that 
it satisfies the conditions of Definition 8.2:

, since ||Л.х|| > 0 and for x *  0 , |*|| > 0 , furthermore ||л|| = 0 

if and only if ЦЛхЦ = 0 for all x Ф 0 , which holds if and only if A is the 
zero matrix.

(ii)

М - ™ М = п » Ш ^
X*0 |x| x * 0  ||x||

**9. INI

(iii) For all A and B e M ,

, I 1У  + Ш  M xl + |5 

£ max y y  + max = |4 +
z*0 ||x| **Q Ц  11 " "

Property (ii) implies that the matrix norm subordinate to a given vector 
norm can also be defined as

[Л] = m ax{||Л*|||x e  F ,|*fl = l}.

In the next three examples the subordinate matrix norms to the 1, 2, and
00 vector norms will be determined.

Example 8.4. Consider first the 00 vector norm. Assume that
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k lL  =mpc{*,|}=l.

Then

Ы 4оо= max i
Therefore

' E m
7=1

< шах X K I - Ы  ^ m?x 1 Ы  
' 7=1 ' 7=1

(8.6)

\d\ £ max Х Ы -  
' 7=1

Assume that maximum is obtained for i = i0 on the right-hand side. 
Select vector x such that

' 0 if akJ = 0

where overbar denotes complex conjugate. In the real case we select

0 if a o* II о

1 if & о"’ V о

- 1 if akJ <  ° -

Then
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f l ;  : X  : Cl; • ,»0 J J loJ |

therefore in inequality (8 .6) we have equality. Hence, the subordinate matrix 
norm to the «> vector norm is the following:

ML=maxZh/|-
' 7=1

(8.7)

Example 8.5. Consider next the 1 vector norm. Assume that

H - i b k
j - i

Then

INI,=Ii=i

y=i/=i

n
Z aijxj
j=1 f=i j=[

1- b H
j S N w )

Z K |  • f  m a x Z K l ]  = m a x X K I '  ( 8 8 )j-1 v J /=1 J J i=1

Therefore,



Assume next that maximum occurs for j  = j 0. Select vector £ 
that is,

* A l  j = h[0 otherwise.

Then in inequality (8 .8) we have equality, therefore

m

1 4  = max S K IJ 1=1

Example 8.6 . Consider next the 2 vector norm

Chapter 8 Elements of Matrix Analysis

where overbar denotes complex conjugate. Assume that |лг|2 — 1 - Then

1 Ax\\=xTl T Ax = x T-Hxy

where matrix H is an nXn self-adjoint matrix. Theorem 7.2 implies that all 
eigenvalues of Я  are real. Let A,> Я2> ... > Ял denote the eigenvalues of
H . It is easy to see that // is positive semidefinite, therefore Я 0. From 
section 7.4 we know that there is a unitary matrix U_ such that

H = U T DU,

where D is a diagonal matrix with diagonal elements Я 1,...,Яя . Then

(8.9)

♦
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\Ax\\ = f U T2Ux = i TDz = XA,|z(|2 <Я,ХкГ,
J=1 1=1

where z = Ux. Since U is unitary, ||z||2 = |£/*||2 = ||*||2 = 1 * Therefore

Ый] ̂ Ai>

that is,

IUdl2 ^ -Д7-

Select x as an eigenvector of // associated to At such that ||x||2 = 1. 
Then

= 1 ГЯ х  = 1 г Я,х = А ,У |  = A„

which shows that

I4=Vv (81°)
♦

In the following example we introduce a matrix norm, which differs 
from the ones shown in the previous examples. In many practical 
applications it is used instead of the 2 matrix norm.

Example 8.7. For an m X n real (or complex) matrix introduce the norm
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Г m „ V '2

М,- X lk l .

467

/=I j=\

which is called the Frobenius norm of A. Notice that it is the 2 vector norm 
of the mn element vector

therefore it satisfies the properties of Definition 8.2. We will next show that 
for all Ay

M U  M ir

Assume that |x2| = l ,  then using the Cauchy-Schwaiz inequality 

(Theorem 2.10) we have

\ M l  = £/=i /=1 i=\ I 7=1 /=>

i S K r l ih r
>* k H /

= I 4 >

since the second factor equals one. Therefore

I4 = m a x { | | i4  I I 4 =1> - I I 4 -
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A very useful property of the above introduced matrix norms is given 
next.

Theorem 8 .2 . For any real or complex matrices A, В such that 
A -В is defined,

М « И 1 4 , ' И ,  0 > = i w ) .

Proof. Assume first that p = 1,2, or <». Then for any vector x such 
that B x exists and ||x|| = 1 ,

SI4. И. 14 =М.'1Й.>
which implies the asssertion. If p -  F , then assuming that A is m x  n and 
В is n x r ,

m r n  ̂ m r f  n n . 4

и € - т ° , ь ,  s z i  s h i '  S K i
/=1 j= I /=1 /=1 j= 1 /=1 /=1

/=1 /=i 1 /=i j=]

Remark. The assertion of the theorem holds for any subordinate 
matrix norm.

Corollary. Let A be an nxn  real or complex matrix. Then for 
= l,2 ,°o,F and k = 1, 2 , . . . ,
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Ak

Theorem 8.3. Let A be any real or complex nxn  matrix, and 
assume that Я is an eigenvalue of A. Then

1 *1 *1 4 , ( р = и « , ^

Proof. Let p  = 1,2, or and assume that хФ 0 is an eigenvector 
of A associated to Я . Then the eigenvector equation implies that

WM,=NI»-U4SIW,M,-
Since ^ 0  - Divide this inequality by ||x||̂ to obtain the

assertion. For p = F , the assertion follows from the fact that

W A A A A , -
+

Remark 1. This theorem provides simple bounds for the 
eigenvalues of real or complex matrices:

|А|<гшхХЫ;
У= 1

|A|<max
J  1=1

w 4 i ik
1/2

r=l j=\
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Example 8 .8. Consider the 3 x 3 real matrix

A =
f\ 2 1л
1 1 1

1 1 1

Notice that

and

14 ,  =max{l+l + l;2+ l + l;l + l + l}=4; 
= max{l + 2 +1;1 +1 + 1;1 +1 + 1}= 4;

= {l + 4 + l + l + l + l + l + l + l}1/2 =Vl2.

Therefore for all eigenvalues Я of А, \Я\ < V l2 . The true eigenvalues 

Я,,2= ^ г ^ , А 3= 0 .

Remark 2. For nonnegative matrices, in Theorem 7.10 we 
presented lower and upper bounds for the largest eigenvalue. The upper 
bounds are the ««-norms of the matrices. Therefore the above theorem 
generalizes this upper bound for any nXn real or complex matrices.

A nice and practically important refinement of the previous theorem for 
the 1 and 00 norms is presented in the following result, which is known as 
the Gerschgorin-disk theorem.
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Theorem 8.4. Let A be a real or complex nXn matrix, and

r/ = S I « ,y l 0  = 1, 2 ,.л)
7=1j*i

For all /, define the disk

B,={z  ||2 -а„\<г,}

on the complex plane. Then all eigenvalues of A can be found in the union 
2?i U B2 v ... u  Bn of these disks.

Proof. The eigenvector equation can be written as

A*( = X < vc, (/ = 1,2 ,...,/»} (8.12)
}=I

where Я is an eigenvalue of A and x = (x{) is an associated eigenvector to 
Я. Let /0 be selected so that

hl=mH4

then Xj ^  0 , and from equation (8 .12) we have
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which implies that

|A -  a ;„;01 -  Z K ;| ,
7*1№о

that is, Ae ^  . Hence Д is in the union of all disks Bi .
0

4»

TCorollary. Since the eigenvalues of A and A are the same, we
Tcan apply the theorem to A to obtain new Gerschgorin disks. For 

j  = 1, 2 , let

* , = £ 1 4
1=1

and

Di = { z l|z - a i N s y }

Then all eigenvalues of A can be found in the union 
Dx U D2 U...UZ)„ of these disks.

The application of the theorem and its corollary is illustrated in the next 
example.

Example 8.9. Consider again the 3 x 3 matrix
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which was the subject of the previous example. In this case,
a \l = a 22 =  a 33 =3,7*2 =7*3 = 2,* , = S3 = 2 , S 2 = 3.

Therefore

B\ = A  = {z ||z-i|<3},

Я2 =*,=/>,= A  ={z ||r-l|<2).

The union of these disk is 2?,, which therefore contains all eigenvalues 
of A. This domain and the true eigenvalues are shown in Figure 8.1.

ImA

Figure 8.1. Disk containing all eigenvalues of A.
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In this section some useful applications of the properties of vector and 
matrix norms will be presented.

1. In our first application we derive a bound for the inverses of matrices 
of a special class. Assume that | ..|  is a subordinate matrix norm such that 
|/||= 1, where / is the identity matrix. Let A be a real or complex nxn  
matrix, and assume that |̂ 4| < 1 - We will prove that I - A  is nonsingular, 
and

<8 1 3 >

Notice first that the assumption implies that for all eigenvalues A,. of 

A , |A(.|<1, therefore the eigenvalues 1 — A, of / — A are all nonzero. Thus, 
I - A  is nonsingular. From Application 3 of section 6.8 we know that

[ I - A ) ' 1 = I + A + A 2 + A 3 + ... .

Property (iii) of Definition 8.2 and Theorem 8.2 imply that

2. In this application the relative errors of inverses of approximating 
matrices will be examined. Assume that A is nonsingular, and A — E is a

small perturbation of A such that |л-12[|| < 1. We will now prove that 

A — E. is also nonsingular and

8.4 Applications
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(8.14)

Notice first that

a - e  = a (i - a ~'e ).

The first factor is nonsingular by our assumption, and the second factor 
is nonsingular as the consequence of the previous application. Thus, A — E 
is nonsingular. From the above equation we have

i A - Е У  = i l~  A-' i f '  A '1 = [i_ + (a -' e)+ (a ~' e) 2 +..]a -x ■

That is,

( А - е У - а а = ± [ а - 'е$ а - \

Using property (iii) of Definition 8.2 and Theorem 8.2 we obtain the 
inequality

Aa E

1 -
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which implies the assertion. Notice that inequality (8.14) gives an upper 
bound for the relative error of inverse of an approximating matrix, if we 
consider A as the exact matrix and A - E  as its approximation.

3. Our next application is concerned with the solution of systems of 
linear equations with approximating data. Assume that linear system 
Ax = b is to be solved. Let x denote the solution. We discuss first the 
effect of the perturbation in b_. Assume that Ьф 0 and it is approximated by 
b + e, where e can be considered as the error term. Let x * denote the 
solution of the approximating system, and let £ = x * -x .  Since x solves 
the exact system,

Ax = b,

and since x* is the solution of the approximating system,

A(x + £_) = Ь + е.

Subtract the two equations to see that

Ae = e,

that is,

e = A~le ,

which implies that

М Ф1-И
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It is clear that

H 4 № I4 II4
Combining the last two inequalities, we have

M<H1M
ИГ №14 ' U 'H- 1 M

The quantity |̂ J| ||f4 !J is called the condition number of matrix A.
This inequality shows that the relative change in the solution is bounded by 
the condition number times the relative change on the right-hand side 
vector. Therefore small condition number indicates that small relative 
change on the right-hand side vector implies only a small relative change in 
the solution. On the other hand, if the condition number is large, then even a 
small relative change on the right-hand side vector might imply a drastic 
relative change in the solution. The condition number is denoted by (A)y 
and the above inequality can be restated as

й ‘ 0 - Ы ) | .  ( 8 1 5 )

Assume next that the coefficient matrix A is approximated by A + E_y 
where E_ is a small matrix, but the right hand side remains the same. Let x * 
denote again the solution of the approximating equation and let £= x * —x. 
Subtract equations

(d + E){x + £) = b



and
Ax = b

to get
(A + E)e = - E x ,

which implies that
£ = - A ~ 1E [x  +  e ) .

Therefore

w  s  |4J I - и у + и ®= и У + и )

Solving this inequality for Щ\ we have
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Cond(i)- | -| У

Ы ~ -------------И Ш Г
l-Co„d(d ) B

where we have to assume that

mcond̂ y= lk T i£i<i (8.16)



Chapter 8 Elements of Matrix Analysis 479

From the above inequality we conclude that

(8.17)

This inequality shows that if Cond(^) is small, then small relative 
change in A indicates only small relative change in the solution. If 
Cond(^) is large, then E_ has to be very small in order to guarantee that
condition (8.16) holds. Even in this case, the relative change in x might be 
very large.

Consider next the case, when both A and b_ are approximated. Similarly 
to the previous cases one can easily prove that

This inequality can be interpreted in the same way as it was done in the 
previous cases.

4. In section 3.8 we have discussed the least squares method to find the 
best polynomial fit for a given data set. In this application we will consider 
this problem under more general conditions. We will offer a solution, and 
two alternative formulations based on other than the 2-vector norm will be 
presented.

Assume that the value of a quantity у  depends on variables

и  f a , и
\

(8.18)
J

xl,x2,...,xll. For example, xltx2,...,xn may represent the energy usage,



480 Introduction to Matrix Theory

manpower, technology level, etc. of a firm, with у  being the output value of 
the firm in a certain time period. It is assumed that simultaneous values of 
these variables are measured, for example, at different time periods. Let the
real values of the к -  (к = 1,2,..., N) measurement be denoted as

y(*) y(*) T(k) (*)
1 > a 2 >***> А л > У

The most simple functional relation is linear, so for the sake of 
simplicity assume that we are looking for a function of the form

y = cQ+clxl + c2x2 + ...+ cnxn,

where the coefficients c09cl9...9cn are unknown. We will determine these
values based on the condition that they should provide best overall fit with 
respect to the measurement data. The function values give the vector

Y =

V l> Л 
„(*)

where the k -  element is the k— measurement for у . With fixed values of 
c09cl9...9cn, the linear function gives the vector

c0 +c1x{l)+...+c„4,) N 

c0 +c,^(2)+...+c„42)

vc0+c,x,(w)+...+c„4w)/



Chapter 8 Elements o f Matrix Analysis 481

where the k— element shows what would be the function value at the к fh 
measurement if the relation were linear and c0,clf...,cn were the right 
coefficient values. This vector can be rewritten as X c , where

X  =

' l
1 . ( 2)

(*)

Л0' n 
.(2)

.(AT)

and с =

J

Hence, a logical way to select the values of c0,cJ,...,c/l that minimize
the overall discrepancy between vectors Y and Xc. This concept can be
mathematically formulated as minimizing —i j ,  where |..J| is a given
vector norm. Depending on the norm selection different approximation
methods are obtained.

The selection of the 2-vector norm is known as the least squares
method. The objective function can be rewntten as 

\Xc -Y\2 = f e - Z ) r (X£- l )

This norm is minimal if and only if the expression under the square root 
is minimal. Consider therefore the (и + 1)-variable function

g(c) = c TX TX c - 2cTX TY + Y TY.

The gradient vector of g is the following.
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Vg(c) = 2 X T X c - 2 X TY, 

and the Hessian matrix is

H(c)= 2 X T X.

Since X  X_ is positive semidefinite, function g is convex. Therefore 
the stationary points provide global optimum. Equating the gradient to zero 
leads to the so-called normal equations.

X TXc = X TY. (8.19)

Notice that this is a system of linear equations with coefficient matrix 
X j  X_ and right-hand side vector X j  Y_.

In the special case of n — 1, the above problem reduces to linear 
regression. In this case,

' l X®} V 0>
1 x (2>

and Y =

, 1 я

therefore the normal equations can be written as
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r l x ( )̂^ ГуЮ "

'  1 1 . . .  1 " 1 x(2) V f  1 1 . . .  1 ' ^(2)

*<■> *<2> . . . C\ " l * w * (2) ... x<*> . . .
)

1
\

x w
У

к 1 / V У
<yuoJ

Simple calculation shows that this equation is equivalent to the system

Ncr

k=1

k= 1 ) k=I

. « + (*)„(*)

In order to simplify these equations, introduce the following notation.

I  1 V  _(*?
’ y - * r ^ . y  ’ N ' t !k= 1

and

Notice that these quantities are the averages of the values of 

x{k\y{k),x(t)\  and the products x(k)y {k), respectively. Dividing both 

equations by N we have
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C0 + ^ i  =У 

xc0 +x 2cl = xy.

Subtracting the x -multiple of the first equation from the second 
equation eliminates c0:

:ilp2 - x 2)= x y - x - y ,

which implies that

c i =
x y - x - у

7 - ?
(8.20)

From the first equation we conclude that

c0 = y - x - c r  

The least squares method is illustrated in the next examples.

(8.21)

Example 8 .10 . Consider the following data values: N = 5,

X  =

'1 - 2
4 ) Г° 1

1 - 1 1 1

1 0 0 and Y = 2

1 1 1 1

1 2\ 4 > 0\ /



That is, the measurements are as follows:
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II 1 K> * P = 4 , y ('] = o,

'T3' II 4 2) =i> j » « i ,
-t i<3) —0 , 43>=o, У 3) = 2 ,

*<4) = i, 4 ° - u J « - l .
*P>=2 , 4 ] = 4 ,

ОII
S

Simple calculation shows that

X TX  =
i 1 1 1 1  

- 2 - 1 0 1 2  

4 1 0  1 4

X TY =
f  1 1 
- 2 - 1 0  1 

4 1 0  1

1 1 1
2 
4

f l - 2 A
N 1 - 1 1

1 0 0

1J 1 1
1 2 4

\ J
f 0 ')
1 1
2 = 0

1 2

0

f  5
0
10

Hence the normal equations can be written as

5 0 10
0 10 0

4^
0

2 У10 О 34 J^c2 J  
The application of the elimination method gives the solution
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58 _ , 3 
C° = 3 5 ’C ° 2 = ~ 1 '

Hence, the least squares function is:

58 3
у -----------x2.

35 7
♦

Example 8.11. Consider next a simple regression problem. Assume that 
a function у  = c0 + cxx is to be determined with data: N = 4,

= 0 у » = 0
= 1 y V = 0

* » = 2 yi 3) = 1
x (4) = 3 y W = 1 .

In this case,

~ 3 “  7 “  1 , “  5* = ->* =->У = - ’ 30(1 ХУ = 7 >2 2 2 4

therefore equations (8 .20) and (8 .21) imply that



and
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1 2 3
2 5 2 10 

Hence, the regression line is the following:

1 2у  = ------+—X.
10 5

8.2.
The original data points and the regression line are illustrated in Figure

1 2 
10 + 5

Figure 8.2 Illustration o f  a Regression Line.

An alternative approach to least squares is derived if  we select the 00 
vector norm. In this case the maximal discrepancy between the components 
of vectors Xc and Y is minimized. Mathematically this concept can be 
formulated as the unconstrained optimization problem:
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Minimize max{| cQ + c,jc}^ + ... + cnx ^  — y ^  |}. (8.22)

If E denotes the objective function, then this nonlinear optimization 
problem can be rewritten as a linear programming problem:

where the unknowns are с0,с ,,... ,сл, and E . The solution of this linear 
programming problem provides the best fitting linear function.

Example 8.12. Consider again the problem of Example 8.10. Based 
on the data values, the linear programming formulation has now the form:

minimize E

Minimize E (8.23)

subject to
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с 0 — 2c, +  4 c 2 +  E > 0 
c0 - 2 c ,  + 4 c2 -  E < 0

Cq — c, + c2 + £ > 1

c0 - c ,  + c2 -  E < 1 
c0 + E > 2

c0 -  E <2 

Cq + С, + С 2 + E ̂  1

co + 2 c ,+ 4 c 2 + £ > 0  

c0 + 2c, + 4c2 -  E < 0.

Another alternative approach to least squares is derived if we select the 
1-vector norm. In this case the sum of the absolute discrepancies between 
the components of vectors Xc and Y is minimized. This concept can be 
mathematically formulated as the unconstrained optimization problem

which can be rewritten as the following linear programming problem.

subject to

c0 + c, +c2 - E <  1

♦

minimize (8.24)

N
minimize 2 ^ *

*=i
(8.25)

where Ek denotes the k~ tenn of the objective function (8.24).
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Example 8.13. In the case of the data values of the previous example, 
problem (8.25) has the form:

5
minimize

*=i

c0 -  2q  + 4c2 + Ey > 0 
c0 -  2c, + 4c2 ~Ey< 0 

Cq — Cy + c2 +E2 >1

C0 “ CI +C2 ~ E1 
Cq + Ê  ^ 2

subject to
c0 — Еъ<2
Cq +Cy +C2 +E4 >1 
Cq + Cy +C2 ~Ea <1

Cq + 2Cy + 4<?2 + ^5 — 0
c0 + 2cy + 4c2 - E s < 0.

♦
In many applications in economics, for example, in computing 

production functions, linear relations are usually replaced by function forms 
as

v = a  x a'x ai j  У  U 0A 1 л 2 *в“л л >

where the constants а0,ах ,а 2, . . . ,а я are the unknowns. The most commonly
used technique to find the values of these unknowns is based on the 
following linearization idea. Take the logarithms of both sides to have
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log у  = log a0 + a, log jc, + a2 log jc2 + . . .  + an log jc„ .

That is, log у  is a linear function of log jc, ,...,log jc ,,. In the first step of the
procedure, the logarithms of all data values are taken, and in the second 
step, the best linear fit is determined based on the new data set consisting of 
the logarithm values.

8.5 Exercises

1. Prove that if x , y e  Rn are orthogonal, then

2. Let A = (д,у) be an m X n real matrix. Define

|л| = max{|fl/y| \\<i <m,\< j  <n}.

Is this quantity a matrix norm?

3. Let
(2 1 Г

A — \ 2 1
1 1 2v /

Give the particular form of the induced vector norms x l—> \\Ax̂ p

for p  = l,2,oo.
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4. Give an nxn  real matrix A such that <1 but ||л||2 >1 and

14. >i-
5. Give an nxn  real matrix A such that ||л||2 <1 but >1 and

l i L > 1-

6. Give an nXn real matrix A such that < 1 but > 1 and

14 >L
7. Repeat Example 8.8 for matrix

A =
ГЪ 1 1 л

1 3 1
1 1 3ч у

8. Repeat Example 8.9 for the matrix of the previous problem.

9. Select matrix

A =
^0.01 0.01 0.0O  

0.01 0.01 0.01 

0.01 0.01 0.01

and compare the right and left hand sides of inequality (8.13) with the 
matrix norm.

10. Repeat the previous problem with the 1 matrix norm.
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11. Select A = e- /, where 0< £< 1 is a given constant. Show that 
inequality (8.13) becomes an equality for any subordinate matrix norm.

12. Select
'3  1 г (0.01 0.01 o .o r

A = 1 3 b and E = 0.01 0.01 0.01
1 14 3 у 0.01 0.01 0.01 /

and compare the right and left hand sides of inequality (8.14) with the «> 
matrix norm.

13. Repeat the previous problem with the 1-matrix norm.
14. Select A = I  and E = £-1 with 0 < £ < 1. Show that in this special 

case inequality (8.14) becomes an equation.
15. Show that in the special case of A = /, inequality (8.15) becomes 

an equality.
16. Illustrate inequality (8.17) in the special case of A — / and 

E=£-I  (with 0< £< 1).

17. Prove that for any nxn  real matrix А,^АТ , =1 4 -
18. Let A be an nxn  real matrix with columns Prove

that

U > ± k l/=i

19. Let A be an nxn  real symmetric matrix with eigenvalues 
A ,,...,A n. Assume that the eigenvalues are ordered so that

|A, | > |A 21 >... > | A „ |. Prove that

14 - U
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20. Repeat Example 8.10 with data values
r\ - 1 1 - P
1 0 0 0

, and Y_ =
0

1 1 1 1 1

1\ 2 4 8 J 16\ У

21. Repeat Example 8.11 with data values

x *)s= - 2 y o = 1
XM:= - 1 = 2

X » = 0 У 3) = 4
=1 yM = 5

x w =2 у® = 7.

22. Repeat Example 8.12 with data values of Problem 20.

23. Repeat Example 8.13 with data values of Problem 20.

24. Let В be a given n X n real nonsingular matrix. Consider mapping 
A I—>ll^^ l for nxn  real matrices A with some matrix norm. Is this 
mapping a norm of A1

25. Let В and С be given nxn  real nonsingular matrices. Consider 
mapping A h-> |iL4Cj for n Xn real matrices A with some matrix norm. Is 
this mapping a norm of A1



References

Argyros, I. K. and F. Szidarovszky (1993) The Theory and Applications of 
Iteration Methods. CRC Press, Boca Raton/London/Tokyo.

Baumol, W. J. (1970) Economic Dynamics. (3rd edition) Macmillan, New 
York.

Bellman, R. E. (1970) Introduction to Matrix Analysis. (3rd edition) McGraw- 
Hill Publ. Co., New York.

Friedman, J. W. (1977) The Theory of Games and Oligopoly. North Holland, 
Amsterdam.

Gandolfo, G. (1971) Mathematical Methods and Models in Economic 
Dynamics. North Holland, Amsterdam.

Gantmacher, F. R. (1959) The Theory of Matrices. (Vols. 1 and 2) Chelsea, 
New York.

Goldberg, S. (1958) Introduction to Difference Equations. John Wiley & 
Sons, New York.

Golub, G. and C. Van Loan (1983) Matrix Compulations. The John Hopkins 
Univ. Press, Baltimore, Md.

Halmos, P. R. (1958) Finite Dimensional Vector Spaces. Van Nostrand, 
Princeton, N. J.

Henderson, J. M. and R. E. Quandt (1971) Microeconomic Theory: A 
Mathematical Approach. (2nd edition) McGraw-Hill, New York.

Herstein, I. (1964) Topics in Algebra. Blaisdell Publ. Co., New York.
Kaplan, W. (1952) Advanced Calculus. Addison-Wesley Publ. Co., Reading, 

Mass.
Lancester, P. (1969) Theory of Matrices. Academic Press, New York.
Leontief, W. (1973) Input-Output Economics. Oxford Univ. Press, New York.
Liu, D. and F. Szidarovszky (1990) Block-M-Matrices and Their Properties. 

Pure Math, and Appl.. Ser. B, Vol. 1, No. 2-3, pp. 99-107.
Luenberger, D. G. (1979) Introduction to Dynamic Systems: Theory, Models, 

and Applications. John Wiley & Sons, New York.
Molnar, S. (1990) A Special Decomposition of Linear Systems, Belgian 

Journal of Operations Research, Statistics, and Computer Science,
Vol29, No4, pp. 4-37

Molnar S., Szidarovszky F. (1992) Some notes on discrete Cournot: 
oligopolies with sequential adjustments, Pure Math and Applications, 
Ser. B, Vol.3 ,No 3-4, pp 289-293

Nikaido, H. (1968) Convex Structures and Economic Theory, Academic 
Press, New York/London.

495



496 Introduction to Matrix Theory

Noble, B. (1968) Applied Linear Algebra. Prentice-Hall, Englewood Cliffs, N. 
J.

Rugh, W .J. (1996) Linear System Theory. (2nd edition) Prentice-Hall, Upper 
Saddle River, N.J.

Okuguchi, K. (1976) Expectations and Stability in Oligopoly Models. 
Springer-Verlag, Berlin/Heidelberg/New York.

Okuguchi, K. and F. Szidarovszky (1990) The Theory of Oligopoly with 
Multi-Product Firms. Springer-Verlag, Berlin/Heidelberg/New York.

Ortega, J. M. and W. C. Rheinboldt (1970) Iterative Solutions of Nonlinear 
Eguations in Several Variables. Academic Press, New York.

Ross, Sh. M. (1987) Introduction to Probability and Statistics for Engineers 
and Scientists. J. Wiley & Sons, New York/Toronto.

Stewart, G. (1973) Introduction to Matrix Computations. Academic Press, 
New York.

Strang, G. (1976) Linear Algebra and Its Applications. Academic Press, New 
York.

Szidarovszky, F. and S. Molnar (1995) A Note on Extrapolative Expectations 
in a Dynamic Producer-Consumer Market. Keio Econ. Studies. Vol. 
XXXII, No. 2, pp. 71-73.

Szidarovszky, F. and S. Yakowitz (1978) Principles and Procedures of 
Numerical Analysis. Plenum Press, New York/London.

Szidarovszky, F. and A. T. Bahill (1992) Linear Systems Theory. CRC 
Press, Boca Raton/London/Tokyo.

Szidarovszky, F. and S. Molnar (1986) Game Theory with Engineering 
Applications (in Hungarian) Muszaki Konyvkiado, Budapest.

Szidarovszky, F. and S. Molnar (1994) On Discrete Dynamic Producer- 
Consumer Markets. Keio Econ. Studies. Vol. XXXI, No. 2, pp. 51-63.

Szidarovszky, F. and S. Molnar (1994) Learning in a Dynamic Producer- 
Consumer Market. Appl. Math, and Comp.. Vol. 62, pp. 223-233.

Szidarovszky, F. (1989) On Non-Negative Solvability of Nonlinear Input- 
Output Systems. Econ. Letters. Vol. 30, pp. 319-321.

Szidarovszky, F. and K. Okuguchi (1989) A Non-Differentiable Input-Output 
Model. Math. Social Sci.. Vol. 18, pp. 187-190.



Index

A
Addition

of matrices, 9 
Adjoint

of a matrix, 397 
Augmented matrix, 139

В
Basis, 80 

cyclic, 352 
orthonormal, 96 
standard, 80
transformation equations, 295 

Block matrix, 24

Canonical form 
Jordan-, 359 

Cauchy-Schwarz inequality, 92 
Cayley-Hamilton theorem, 351 
Characteristic 

equation, 318 
polynomial, 318 

Cofactor, 225 
Complex

conjugate, 398

inner product space, 104 
Condition number, 477 
Conjugate

of a matrix, 398

Cramer’s rule, 233

D
Determinant 

cofactors, 225 
multiplication theorem, 224 
of matrix, 208, 212 

Diagonable matrix, 342 
Diagonal

block matrix, 383 
elements, 4 
matrix, 342 

Directed edges, 50 
Direct sum, 110, 112 
Directing space, 149 
Dyads, 15
Dynamic Coumot-oligoply, 43 
Dynamic economic systems, 40 
Dynamic producer-consumer 

models, 45
E
Eigenvalue, 316

497



498 Introduction to Matrix Theory

Perron-, 422 
Eigenvector, 316 
Elimination method, 165 
Equivalence class, 270 
Euclidean space, 105

F
Fredholm integral equation, 305 
Fundamental theorem of algebra, 
326

G
Generating system, 78 
Gerschgorin-disk theorem, 470 
Gram-Schmidt process, 99, 100 
Graphs, 50

H
Hamilton-Cayley Theorem, 617 
Hermitian matrix, 617 
Hicksian matrix, 415 
Homogeneous equation, 143 
Hyperplane, 153

I
Idempotent transformation, 336 
Identity

matrix, 5, 19 
Image, 254 
Index

of a permutation, 212 
Inequality

Cauchy-Schwarz, 92 
variational, 127 

Inhomogenous equation, 134 
Inner product, 85 

space, 89 
standard, 85 

Invariant subspace, 313 
Inverse,

closed form representation, 
238
of linear transformation, 279 
of matrix, 21, 160, 185 

Invertible linear transformation, 
279
Invertible matrix, 21 
Isomorphic vector spaces, 257 
Isomorphism, 257

Jordan
canonical form, 359 
canonical matrix, 359

К
Kalman matrix, 241

L
Least squares method, 193, 479
Leontief input-output system, 188
Linear

combination, 65 
dependence, 70 
system of -equations, 134



Index 499

functional, 263, 292 
mapping, 255 
manifold, 149 
transformation, 276 

Linearly
independent, 70 

Lower triangular matrix, 5

Mapping, 255 
nullspace, 265 

Markov-chain, 197 
Matrix, 2

adjoint, 397 
conjugate, 398 
decomposable, 6 
diagonal, 383 
equation, 157 
Hicksian, 415 
idempotent, 393 
identity, 5, 19 
inverse, 21, 160, 185 
invertible, 22 
Jordan, 359 
lower triangular, 5, 392 
Metzler, 429 
minimal polynomial, 334 
nilpotent, 347, 395 

degree of ~, 395 
nonnegative, 418 
norm, 461 
normal, 399 
of linear mappings, 284 
orthogonal, 399

polynomial, 20, 325 
positive definite, 399 
positive semidefinite, 399 
pseudoinverse, 444 
quasidefinite, 416 
similar matrices, 298 
symmetric, 7, 399 
transformation, 295 
transition, 197 
tridiagonal, 372 
upper triangular, 5, 392 

Minimal polynomial, 334 
Minor, 235 
Multiplication

of a scalar and a matrix, 8 
of a scalar and a vector, 9, 10 
of linear transformations, 276 
of matrices, 14, 17 
of vectors, 15

N
Negative

definite quadratic form, 399 
semidefinite quadratic form, 

399
Nilpotent matrix, 347
Nonsingular

linear transformation, 261,
262, 294

Norm, 455
Euclidean-, 458 
Holder-, 459 
Frobenius~, 466



500 Introduction to Matrix Theory

Nullspace, 265

О
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I n t r o d u c t i o n  to

In economic modeling and planning, as well as in 

business, most problems are linear, or approximated by 

linear models. Such problems are solved by matrix 

methods, so the material presented in this book is 

essential to these fields.


