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To the memory of my parents, 
who understood that 
I  would never make a good farmer



Foreword

Mathematics is a living creation, and linear algebra has undergone a real meta­
morphosis during the twentieth century, partly due to the birth and development 
of computers. It is so active that entire periodical magazines are now devoted 
to it, and one single book can only reflect part of its vitality. Here is an at­
tempt to face this challenge in a concise— although rigorous—manner. Linear 
algebra is a general and powerful language. This book is based on examples and 
applications, justifying the elaboration of such an abstract language.

In the f irs t part, vector spaces are approached through carefully chosen 
linear systems, and linear maps are introduced through matrix multiplication. 
The four initial chapters constitute the skeleton of the linear category. The 
importance and ubiquity of this structure is emphasized by the applications of 
the rank theory (Chapter 5), and in the geometric approach to eigenvectors 
(Chapter 6). Since even and odd functions appear as the eigenspaces of the 
symmetry operator, we do not assume a priori finite dimensionality, and bases 
are discussed and examples are given in the general context.

The second part is devoted to the study of metric relations (angles, orthog­
onality) in real vector spaces. Several geometric properties can easily be derived 
from an inner product. The best approximation theorem, with its application 
to the mean squares method is certainly the most used in practice. Here bi­
linearity appears on the scene, and this fascinating property culminates in the 
abstract form of duality (Chapter 9).

Finally, the third part is rooted in volume computations, revealing the 
phenomenon of multi-linearity. Hence, determinants come last (Chapter 10), 
and constitute the golden adornment of the theory. They play an essential part 
in the algebraic properties of eigenvalues. The main result proved in this book is 
the spectral theorem (for real symmetric matrices in Chapter 8, and for normal 
operators in Chapter 12). Its geometrical meaning is emphasized with the polar 
decomposition for linear maps between finite-dimensional real vector spaces.

A  few appendices contain independent complements. Of special importance 
is the appendix on finite probability spaces, where the notion of independence 
for random variables is compared with that of linear independence.

As is probably apparent, this book is written for curious and motivated stu­
dents in physics, chemistry, computer science, engineering,... and not solely for
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viii FOREWORD

mathematicians. I  believe that our duty is to form scientists capable of under­
standing each other’s problems. Having in the same class students interested 
in various disciplines provides an opportunity to show them the relevance of 
mathematics through linear algebra, by selecting examples that might catch 
their interest. It should not be wasted on teaching them to perform mechanical 
manipulations based on a set of axioms, a task better suited to a computer! This 
is why I have tried to minimize the axiomatic aspect, leaving out the discussion 
of general fields, assuming implicitly that the scalars are real (or complex) num­
bers. But I have chosen general proofs of the main theorems (and in particular 
for the rank theorem), relegating the use of inner products and orthogonality 
(specific to real numbers) to the second part of the book, as already mentioned.

These students are supposed to have a previous acquaintance with basic 
calculus and to be familiar with the language of arrows for maps, their compo­
sition, and inversion. Only a brief summary of set theory is included. Another 
prerequisite concerns vectors in two and three dimensions, Cartesian and polar 
coordinates (elementary trigonometry). Hence this text is directed to students 
who follow (or have previously followed) a first calculus course. This is particu­
larly apparent with the examples concerning polynomials and their derivatives, 
linear fractional transformations, and rational functions.

Needless to say, exercises, tutorials (or individual support in any form) are 
essential to check that the students understand and can apply this theory. Since 
books with many routine exercises are easily available, I have limited the number 
of such exercises. On the other hand, more difficult problems have been included 
(with hints, or even complete solutions).

If I have tried to bring the main facts to the forefront, I have made no effort to 
satisfy all the needs of future research mathematicians, or theoretical physicists. 
They will have to complete this study by examining vector spaces over any field 
(or even modules over principal ideal domains) and tensor products.

I have chosen to avoid the discussion of the normal Jordan form. In my 
opinion, its importance is best revealed with a specific application in mind: 
Markov chain theory, coupled linear differential systems, Riesz theory for com­
pact operators in Banach spaces, linear algebraic groups (where additive and 
multiplicative Jordan decompositions both appear); each provides such an op­
portunity. My purpose was only to convey the basic aspects of this cornerstone 
in mathematical education.

Finally, I have to thank O. Besson, A. Gertsch Hamadene, and A. Junod 
who read parts of preliminary versions of this book, detected several mistakes 
and made useful suggestions.

April 2005 Alain M. Robert
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Chapter 1

Linear Systems: 
Elimination Method

A principal objective of linear algebra is the resolution of systems of linear 
equations (no product of unknown variables occurs: A precise definition will be 
given later). We present this topic by example, starting from the high school 
point of view, assuming that two by two and three by three systems have already 
been considered.

1.1 Examples of Linear Systems

1.1.1 A  Review Example

Suppose that three unknown numbers x , y, and z are linked by the relations

y +  z =  1, 2 +  1 =  2, x +  y =  3.

Are there any (or many) possibilities for these numbers x , y, z? How can we 
find them? The answer to this problem consists in solving the system of three 
equations

[  У +  z =  1
< z 4* x =  2 
[  X +  у =  3,

in three variables. Notice that we also consider that the first equation, in which 
x does not appear explicitly, concerns the three unknown variables ж, у, and 
z: In fact, we can say that the coefficient of x in this equation is 0 (zero). To 
discuss this system, we are going to transform it into simpler ones, having the 
same solutions. First of all, we rewrite it in a more conventional way, letting

1



2 CHAPTER 1. LINEAR SYSTEMS: ELIMINATION METHOD

the variables appear in alphabetical order in each equation

(  у +  z =  1
I  x +  z =  2 
[  x +  у =  3.

It is better to start with an equation containing the first variable x , so let us 
exchange the first two equations (the well chosen right-hand sides emphasize 
this operation) :

x +  z =  2 
у +  z =  1 

x +  у = 3 .

Now, we eliminate the variable x  in the last two equations: For this purpose, 
we subtract the first one from the last one

x +  z =  2 
у +  z =  1 
у -  z =  1.

In this way, the last two equations concern the variables у , z only. Let us 
subtract the second equation from the third one

(  x +  z =  2 
{ у +  z =  1 
{ -  2z =  0.

The last equation does not contain the variable у any more: It requires 2z =  0, 
hence 2 =  0. The second equation informs us now that у =  1. Finally, the first 
equation leads to x =  2. The solution set is the list

x =  2 
У =  1
2 =  0 .

1.1.2 Covering a Sphere with Hexagons and Pentagons 

Question to a bee:

Is it possible to cover the surface of a sphere with hexagons only?

Answer by a mathematician:

No, it is impossible!

How can one show that nobody will be able to do it, if each of our attempts 
fails? One method consists in replacing the question by a more general one, 
where there are some possibilities, and in fact where all possibilities have a 
common feature not realized by hexagons only.
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Let us try to cover the surface of a sphere with (curved) hexagons and 
pentagons. By convention, we juxtapose two polygons along a common edge, 
three polygons having a common vertex. Such configurations occur in biology, 
chemistry, architecture, sport,... It is easy to find a few equations (or relations) 
linking the unknown numbers of such polygons. Let us introduce

x : number of pentagons, у : number of hexagons, 

e : number of edges, f  : number of faces, v : number of vertices.

The number of faces is equal to the sum of the number of pentagons and the 
number of hexagons, hence a first obvious relation: / =  x  4- у (hence the 
introduction of the variable f  could be avoided, replacing it systematically by 
x +  y; but since we are aiming at a general method, valid for large systems, this 
extra variable adds interest to the example). Since each pentagon has five edges, 
and each hexagon has six, the expression 5ж 4- б у counts twice the number of 
edges (each edge belongs to exactly two polygons). Hence a second relation

5 x +  6y =  2e.

Similarly, since each vertex belongs to three polygons, the sum 5x 4- б у also 
counts vertices three times (by convention, we are assuming that three polygons 
only meet at each vertex), and we get

5ж 4- 6y =  3v.

FYom this follows 2e =  3v, but this relation tells us nothing new since it is 
a consequence of the previous ones. Another, more subtle relation has been 
discovered by Euler

f  +  v =  e +  2

(we indicate a proof in the Appendix to this section). We have obtained a 
system consisting of four equations linking the five variables x, у, e, /, and v:

x +  y =  f  
5x +  6y =  2e 
5rr 4- 6y =  3u 
/4- v =  e 4- 2.

Let us rewrite these equations, grouping the variables in the left-hand side

f - x - y  =  0
2e — 5x — 6y =  0
3v — Ьх — 6y =  0
e -  f  - v  =  - 2.

As with the previous worked-out example, we are going to transform this sys­
tem into simpler, equivalent ones (having the same solutions). This tedious 
procedure will be simplified if we only write the coefficients of the equations,
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adopting the order e, /, v, x , t/ for the unknown variables. Hence instead of the 
first equation

/ -  x -  у =  0,

which represents the relation

Oe +  1/  +  0u  —  l x  —  ly  =  0

in these five variables, we simply write the row of its coefficients

0 1 0 - 1  - 1  | 0.

The separator “ | ” distinguishes the left-hand from the right-hand sides. Such 
an abbreviation is only meaningful if we write a 0 (zero coefficient) for variables 
not explicitly present in the equation, and keep in mind the chosen order of the 
variables, namely here

1st =  e, 2nd =  /, 3rd =  v, 4th =  x, 5th =  y.

This row notation keeps track of the correct position of the variables. With a 
similar row notation for the other three equations, the system is now abbreviated 
by a rectangular array containing four rows

' 0 1  0 - 1  -1  | 0 
2 0 0 —5 —6 j 0 
0 0 3 - 5 - 6 |  0
1 - 1 - 1 0  0 j —2.

We can now start transforming this system into simpler, equivalent ones. It is 
advisable to start the system by an equation containing the first variable. So 
we exchange the first and last equations and obtain an equivalent system

( 1 - 1 - 1 0  0 | —2\
2 0 0 —5 —6 j 0

0 1 0 —1 —1 j 0
0 0 3 - 5  - 6  I 0 /

The big parentheses are only used to isolate the system from the context. As 
with the first worked-out example, we try to get rid of the first variable in the 
second, third, and fourth equations, so that they only concern the four remaining 
variables /, г», x, and y. For this purpose, let us subtract twice the first equation 
from the second one - 1 - 1 0 o 1 “ 2\2 2 - 5 - 6  | 4

1 0 - 1 - 1  1 0
0 3 - 5 - 6 0 /
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It is essential to observe that this new system has the same solutions as the 
previous one, simply since we may add twice the first equation to the new second 
one, and recover the previous one. If we permute the two central equations

/1 - 1 - 1 0  0 | - 2\
0 1 0 - 1 - 1  I 0
0 2 2 —5 —6 j 4  *

\ 0  0 3 - 5  - 6 | 0 /

the coefficient of the variable / in the second equation is 1, and can be used to 
get rid of the second variable from the third equation on. Hence, from the third 
equation, we subtract twice the second, obtaining

/1 - 1 - 1 0  0 I — 2\
0 1 0 —1 —1 j 0
0 0 2 -3  -4  | 4

\0 0 3 -5  - 6 | 0 /

Here, the last two equations concern only г», я, and у. If we multiply the third 
equation by |, its leading coefficient is transformed into a 1:

/1 - 1 - 1 0  0 | - 2\
0 1 0 - 1 - 1 I 0
0 0 1 - 3 / 2  - 2  j 2

\ 0  0 3 - 5  - 6  j 0 /

To eliminate v from the last equation, we may subtract from it the triple of the 
preceding one:

Л - 1 - 1 0 o - 2 \
0 1 0 - 1 - 1 0

0 0 1 - 3 / 2 - 2 2

\ 0 0 0 - 5  4- 9 /2 - 6  4 -6 - 6

We have now reached the system

/ 1 - 1 - 1 0  0 - 2 \
0 1 0 - 1  - 1 0

0 0 1 1 со to 1 to 2

Vo 0 0 - 1 / 2  0 - 6 /

having a last row corresponding to the equation —x/2 =  —6, namely

x =  12.

Here comes a surprise: Although the system has fewer equations than variables, 
the value of x  is uniquely determined

In any subdivision of the sphere consisting in hexagons and pen­
tagons only, the number of pentagons is fixed and equal to 12.
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Isn’t this remarkable! On the other hand, several examples will now show that 
the number of hexagons is not fixed.

(a) A  partition of the sphere is easily obtained with twelve pentagons and no 
hexagon:

(  x  =  12 
\ У =  0.

Simply consider a regular dodecahedron inscribed in the sphere

and project its twelve pentagonal faces on the surface of the sphere.

(b) Another solution
x =  12 
У =  20.

is also obtained as follows. Start with a regular icosahedron (12 vertices and 
20 faces formed by equilateral triangles). Cut the vertices, replacing them by 
pentagonal faces, as in the following picture.



When this is repeated at each vertex, the triangular faces are replaced by 
hexagons.
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Eventually, one obtains a polyhedron having 12 x 5 =  60 vertices. These vertices 
give the positions of the carbon atoms in the buckminsterfullerene Ceo-

(c) One can construct a geometrical solution with у =  2 as follows. Start with 
six pentagons attached to one hexagon. This roughly covers a hemisphere. Two 
such hemispheres—placed symmetrically—will cover the sphere.

Comment. Notice that many purely algebraic solutions of the system have 
no geometrical realization. For example, one may take у =  \ and adapt corre­
spondingly

e =  31.5, /=12.5, v =  21 (and x  =  12).

Similarly, one can take у =  — 1 together with

e =  27, / =  11, v =  18 (and x =  12).

More generally, one can take у arbitrarily, say у =  £, together with

e =  3£ +  30, / =  £ +  12, v =  2t +  20 (and x =  12).

This is the general solution of the system. It depends on the choice of a param­
eter t. Also notice that one could decide to choose e arbitrarily, and deduce 
expressions for the other variables y, /, and v (but still x =  12). The problem 
of determining which solutions of the linear system in five variables do have 
a geometric realization is a difficult one (not tackled by linear algebra). An 
obvious necessary condition is that у should be a nonnegative integer. But this 
condition is not sufficient.

1.1.3 A  Literal Example

From my own experience, the elimination method looks deceptively simple and 
it is necessary to practice it on several examples.
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Somebody might be looking for a solution of the following linear system in 
the variables x } у, z, and и:

x -\-y +  z +  8u =  6
x +  у +  8z +  и =  1
x +  8y +  z +  u =  2
8 z  4- у  +  2 4- u  =  0.

Having afterthoughts, he might prefer solutions of

x +  у +  z +  7u 
x 4- у 4- 7z 4- и 
x +  7y +  z +  и 
7x 4- у 4- z 4- и

6.5
1.1
2
0.

And so on... This is a good reason for considering a more general system from 
the outset, having literal coefficients

(S)

x +  у +  z +  au 
x +  у 4* az -\-u 
x +  ay +  z +  u 
ax +  y +  z +  u

A
В
С
D.

Here the letters а, А, В, C, and D  represent known values, or parameters, on 
which the solution(s) will depend.

As before, we write the rows of coefficients instead of the equations, and 
represent the whole system by a rectangular array:

( l  1 1 a
1 1 a 1
1 a 1 1

\a 1 1 1

В
С
D J

Keeping the first row fixed, we subtract multiples of it from the other ones, in 
order to eliminate the first variable in the next rows. Here is what we obtain

/ 1 1  1 a | A  \ 
0 0 a — 1 1 — a j В  -  A  
0 a — 1 0 I  — a I С -  A 

\0 1 — a 1 — a 1 — a2 j D  — a A J

(a) When a =  1, we have

/ 1 1 1 1  
0 0 0 0 
0 0 0 0 

V0 0 0 0

A \
B - A
C - A
D - A J
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and there is only one nontrivial equation: The first one. The last three equations 
(having only 0’s in front of the separator) lead to compatibility conditions

(  0 =  В  -  A 
\ 0 =  C - A  
{ 0 =  D - A .

Hence the system is consistent only when

A =  B =  C =  D.

(b) When а ф 1, we permute the second and third rows, in order to bring a 
nonzero coefficient (of y) in the second place (of the the second row)

/ 1 1  1 a \ A \
0 a - 1 0 1 - a  j C - A
0 0 a — 1 1 — a j В — A '

yO 1 — a 1 -  a 1 — a2 j D  — aAj

If we add the second row to the last one, we eliminate the second variable 
from the third row on. Hence we achieve a column of zeros under this crucial 
coefficient, called second pivot (a precise definition follows)

/ 1 1 1  a | A \
0 a - I  0 I - a  I C - A
0 0 a — 1 1 - a  j В — A
0̂ 0 1 — a 2 — a — a2 | D — aA + С  — A j

Notice that the last column keeps track of the operations made, and in particular 
shows how to reverse them to come back to the initial system. To place a zero 
under the third pivot, we still add the third row to the last one

/ 1 1 1  a I A \
0 a — 1 0 1 — a j C - A
0 0 a — 1 1 — a I В -  A

\0 0 0 3 — 2a — a2 j D  -  aA + С -  A + В -  А/

I f  a2 +  2a — 3 =  0, the last row leads to a compatibility condition. The roots 
of this quadratic equation are a =  — 3 and a =  1. One case has already been 
discussed.
(61) If a =  —3, the system reduces to

/ 1 1 1  —3 | A \
0 - 4  0 4  j C - A
0 0 —4 4  j В -  A

\o 0 0 0 I D  +  C  +  A +  BJ

In this case, a single compatibility condition is given by the last row

0 =  A + B  +  C  +  D.
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If this condition is not satisfied, the system is inconsistent (has no solution). I f  
A + B + C + D = Q , the system is

/ 1 1  1 -3  | A \
0 - 4  0 4  j С  -  A
0 0 - 4  4 j В  -  A

\0 0 0 0 | 0 /

We may choose any value for u, say и =  с, and infer from the third row that 
—4z — —4c 4- В  — A. The second row now gives —4у =  —4c 4- С  — A. Finally 
the first row shows that

x =  —y — z +  3u +  A

=  i ( - 4 c  +  С  -  A ) +  \ ( -4 c +  В -  A ) 4- 3c+  A 

=  c4-\ A  4- \B +  \C.

This is an example of the back-substitution procedure. Since the value of the 
variable и can be chosen arbitrarily, we say that it is a free variable, and the 
solution list is

! x =  с *f- h A  4- j B  -f \C 

У =  c + \ A  — \C  
z =  C+ \ A - \ B  

u =  c.

(62) Finally, if a —3 (and still а ф 1), the system has a unique solution for 
each data А, В, С , and D. It is regular.

Let us observe a posteriori that the conditions found are quite natural. I f 
a =  1, the system is

( x +  у +  z -\- и =  A  
x +  y +  z +  u =  В  
x +  y +  z +  u =  С 
x +  у +  z +  и =  D ,

whence the condition A  =  В =  С  =  D. When a =  — 3 the system is

! x +  y +  z — 3u =  A 
x  +  у — 3z 4- и — В 
x — Sy 4- z +  u =  С  

-3 x  +  y +  z +  u =  Д

and the sum of these equations is 0 =  A + B + C + D . However, one cannot expect 
to guess the compatibility conditions for systems containing a large number of 
variables, hence the usefulness of the systematic elimination method.



1.2. HOMOGENEOUS SYSTEMS 11

1.2 Homogeneous Systems

1.2.1 A  Chemical Reaction

Lord Rayleigh started his investigations on the composition of the atmosphere 
around 1894. He blew ammoniac (N H 3) and air on a red-hot copper wire and 
analyzed the result. Let us imitate him, and consider a typical reaction of the 
form

x N H 3 4- у O2 4- zH 2 —> и H20  -{- v N 2,

where the proportions x , . . . ,  v have to be found. (We have added hydrogen for 
mathematical interest, but we bet the reader to refrain from experimenting since 
such a mixture has an explosive character!) Equilibrium of iV-atoms requires 
x =  2v. Similarly, equilibrium of hydrogen atoms requires 3x 4- 2z =  2и and 
finally, for oxygen, we get 2у =  и. As is required by the general method, we 
have first to adopt an order for the variables: Choose the order of occurrence 
in the chemical reaction, namely x, у, z , u, and v. Hence we write the system 
obtained in the form

Now, observing that the right-hand sides are all zero, it is superfluous to include 
separators and the zeros that follow them, common to all equations: The first 
equation is abbreviated by the row (1 0 0 0 —2). The system of three equations 
is thus simply represented by the array

/1  0 0 0 - 2\

3 0 2 - 2  0 .

\0 2 0 - 1  0 /

To eliminate x from the second equation on, subtract three times the first row 
from the second one. We obtain the equivalent system

/1  0 0 0 - 2\
0 0 2 - 2  6 .

\0 2 0 - 1  0 /

Now exchange the second and third equations

/1  0 0 0 - 2 \

0 2 0 - 1  0 .

\0 0 2 - 2  6 /
This system is easily discussed since its second equation does not contain the 
first variable, while the third one does not contain the first two variables. The 
last equation is simply

2z — 2u 4- 6v =  0 or z — u. +  3v =  0.
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I f we choose arbitrary values for и and v, say и =  a and v =  b, we have to take

z =  a — 3b.

The second equation then leads to 2у =  a, and the first one furnishes x =  2b. 
Thus, for each choice of a pair of values for и and v , there is one and only one 
solution set, or list of solutions given by

X = 2b f Xs ( 2  b \
У = \a У \a

a — 3b also denoted z = a —3b
ti = a и a

[  V = b W V b /

We consider such lists as mathematical objects, so that when we speak of one 
solution, we really mean a complete list: A  solution set In a similar vein, a 
linear system is a mathematical object, conveniently represented by the array 
of its coefficients. Entities considered by mathematicians are of different types, 
and if possible, a good notation should help to identify them.

Com m ent. The problem considered here is homogeneous, namely concerns 
proportions: If a solution is found, any multiple will also do. We can deal with 
numbers of atoms, or numbers of moles.1 Two basic solutions appear. The first 
one corresponds to the choice и =  2, v =  0, hence x  =  0 (no ammoniac); it 
corresponds to the elementary reaction

2 Я 2 +  0 2 —>2 tf20,

namely the synthesis of water. The other one— in which Lord Rayleigh was 
interested— corresponds to the choice и =  6, v =  2, hence z =  0 (no hydrogen, 
no danger in this case!) which corresponds now to the reaction

4 NHz +  3 O2 -> 6 Я 20  +  2АГ2.

Of course, one may superpose any multiples of these two basic reactions and ob­
tain another possible one. This is reflected by the fact that the general solution 
of the system depends on two arbitrary parameters a and b: There are two free 
variables и and v.

1.2.2 Reduced Forms

In practice, systems containing hundreds or even thousands of equations and 
variables occur frequently: It is impossible to use tricks or guess work to solve

1Each m ole contains approx im ately  0.60221367 X 1024 atoms. A t  least, th is is the cu rren tly  
accepted figure for the Avogad.ro num ber, nam ely the number o f atom s in  12g. o f  the nucleid 
C arbon12, or approx im ately the number o f oxygen molecules О 2 in 32g. o f  this gas.
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them. The alphabet is too small to code so many variables, so that we num­
ber them x i,Z2>&3)< "  and thereby order them. Let us call n the number of 
variables, so that these unknown variables are labeled

2̂1 j > ̂ 3 > • • • > %n •

(Even if n is given explicitly, say n =  1000, there is an obvious advantage in the 
use of dots when we mention them!) The examples have shown the advantage of 
grouping the variables of equations in the left-hand side, the known quantities 
in the right-hand side, so we adopt the following definition.

D efin ition . A linear equation in n variables is by definition a relation

aix\ +  a2X2 +  азхз +  • • • +  anxn =  6,

where the literal coefficients a\, a2, аз,..., an, and b have some values. We 
abbreviate such an equation by the sequence of its coefficients, namely by the 
row

(ai аг аз ... an | 6).

The separator “ | ”, in place of the equality sign, distinguishes the left-hand 
from the right-hand sides of the equation. A linear system is a list consisting of 
a finite number of linear equations, each representing a condition to be satisfied 
by the unknown variables x\,. . . ,  xn.

As we have seen in our second example, systems containing a number of 
equations different from the number of unknowns are important. A system 
containing a lot of equations in only two variables will usually have no solution. 
But a single equation in several variables has many solutions.

The purpose o f  this chapter is to explain the elimination 
procedure, allowing to recognize when a linear system is 
compatible, and i f  so, determine its solution(s).

When a system is compatible, it is also important to be able to detect whether it 
has a unique or many solutions. Let us start by explaining this procedure when 
there are zeros after the separator “ | ” , namely when the right-hand sides of the 
linear equations are zero. Linear equations having a 0 after the separator are 
called homogeneous. One way of recognizing them is to substitute the value 0 for 
all variables and see if the equation is satisfied. Without reference to left-hand 
and right-hand sides, it is better to characterize homogeneity as follows.

D efin ition . A linear system in n variables x i , . . . ,  xn is homogeneous if  it 
admits the trivial solution x\ =  0, x2 =  0, . . . ,  xn =  0.

Since the linear homogeneous systems are compatible by definition, their 
study is simplified, and this is a good reason for discussing them first. The 
example of a chemical reaction treated in the preceding subsection has revealed 
an essential feature shared by all homogeneous systems:
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Any multiple of a solution is again a solution

>* The sum of two solutions is also a solution.

The examples have also convinced us that a homogeneous system can always 
be transformed into an equivalent one (having the same solutions) where the 
nonzero coefficients form a staircase pattern. Ignoring the 0’s in the right- 
hand sides, m  homogeneous equations concerning n variables are described by 
a rectangular array of size m  by n, and the discussion is easily made when the 
system has been brought into the following form

A Pi *  \
P2

Р з ____*

pr *
0

0 /

r : rank

m  — r

where the coefficients pi, P25 • ••» Pr are nonzero: They are the pivot values, 
placed in pivot positions. By definition, the rank r  is the number of nonzero 
lines: They are listed first. I f r  <  m, the next m — r  lines are filled with zeros. 
The increasing integers

l  =  j i  < h  <  • • • <  i r ,

are the indices of the pivot columns: They correspond to the pivot variables 
Xjl , Xj2, . . . ,  Xjr . By definition, the rank r is less than or equal to m  and n

r ^  min(m,n).

I f  r <  n, there are n — r  nonpivot variables, called free variables. Starting 
from the last nonzero row, giving arbitrary values to the free variables, we can 
deduce the value of the last pivot variable xr (thanks to pr ф 0). Working 
upwards, the given values of the free variables together with the previously 
found values for pivot variables, we can determine all pivot variables. This is 
the back-substitution procedure which leads to the general solution of the system. 
In particular, attributing the value 1 to one free variable, 0 to the others, we 
see that the linear homogeneous system has a nontrivial solution. This case 
certainly happens when m < n  (since r ^  m). It proves our first general result 
(it will play an important part in the next chapter).

Theorem. A linear homogeneous system having more variables than equations 
admits a nontrivial solution.2 *

2T h e  character ■  stands for “end/absence o f  proo f*



1.2. HOMOGENEOUS SYSTEMS 15

On the other hand, when r =  n, there is no free variable, and the last row 
shows that xn =  0. By back-substitution, we find successively xn- i  =  0, ... 
and finally x\ =  0, so that the linear homogeneous system has only the trivial 
solution in this case.

A  row-reduced array is a special pattern where

>• The rows having only zeros come last,

>■ the first nonzero coefficients of rows come in increasing positions.

Starting from any rectangular array, suitable transformations lead to such a 
form, where— in general—there might be some extra columns of zeros at the 
left. These first zero columns are absent when we start from a linear system, 
since there is no reason for introducing free variables that do not appear in the 
equations. But for the general discussion, we must also consider their possible 
presence: The first pivot column may not be the first column and we obtain an 
increasing sequence of pivot columns

1 <  j l  <  32 <  *' ’ <  j r  ^  П.

Here is a picture of a row-reduced array (where for simplicity, we only include 
one first column and one last row of zeros)

Ш Ш Ш 1 Ш

rank r

Row-R educed Form

Here, the squares contain the pivot values pi ф 0 (1 <  i  <  r), while the grey 
rectangles may contain any entries. Multiplying the first row by 1/pi, the second 
by l/p2> etc. we obtain an equivalent system where the pivot values are l ’s.

( о m  ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ N

0

V o

rank r

Row-Echelon Form
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This is the row-echelon form  ( echelon refers to unit pivot values, but all reduced 
patterns have steps of unit height!). It is even possible to further simplify the 
system by requiring that all coefficients above a pivot position are 0’s: Subtract 
a suitable multiple of the second row from the first one, suitable multiples 
of the third from the first and second ones, etc. (this does not destroy the 
main property of the reduced form, namely to have 0’s in front of the pivots). 
This particular pattern is a reduced row-echelon form of the array A, that is 
conventionally abbreviated by rref(A).

( о  0 ш о  о 0 i l l  о  ш ш ш я ш т  }
0 Ш  EETj! 0 f C T I  О ЯШШШШШШШШШЯ
о Ш  E r~ Z ! о ШШШШШШМM i

ш шшшшшшшшшя 
v  о  . . .  0  /

R educed R ow-Echelon Form 

This reduced row-echelon form corresponds to a system 

+  xji +

rank r

0

0

0
32

+  x33

S i  =  0  

E2 =  0 
£ з = 0

0 4- Xjr 4- E7 0,

where Xjl =  yi, Xj2 =  2/2»- , and Xjr =  yr are the pivot variables, while 
the sums only involve the free variables г/г+ ь  • • • >2/n* (We use the capital 
Greek sigma E as an abbreviation for “sum” ; since each row contains a possibly 
different one, we distinguish them by an index.) The solution of this system is 
obviously

2/1 =  xh  = -E i
У2 =  X32 = - e 2

Уг x3r —Er

When r <  n, the n — r  free variables can be given arbitrary values, and the 
system has infinitely many solutions. We say that the general solution depends 
on n — r parameters.

Comment. Distinct sequences of operations may lead to row-reduced echelon 
forms. For example, if the first row starts by a 2, a possibility is to start by 
multiplying this row by If another row starts by a 1, another possibility is 
to exchange it with the first one to obtain a first pivot value 1. It is essential
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to realize that all methods end up with the same number of nonzero rows, so 
that the rank r  of a given rectangular array is well defined, independently of 
the method used to reach it: We shall prove this invariance in Chapter 2. One 
can show that the indices of the pivots are well defined. Hence the distinction 
between leading variables and free variables is independent of the sequence of 
operations leading to a reduced form. But notice that this distinction depends 
on their order. For example, consider the homogeneous system in two variables 
x +  £ =  0, x — £ =  0. If we adopt the order x\ =  x, x2 =  £, then x2 =  £ is a 
free variable; but if we reverse the order, £ is the pivot variable.

1.3 Elimination Algorithm

An algorithm3 is a systematic procedure leading to a solution of a certain class 
of problems. It is necessarily based on elementary operations which, taken 
individually may appear trivial but, furnish a nontrivial result when applied 
suitably and repeatedly. For example starting with two integers, the simple 
operation

subtract the small one from the large one

done repeatedly, leads to the greatest common divisor of these integers. More 
precisely, starting with a pair of distinct integers (m,n), proceed as follows:

i f \ и f { m - n , n )  if  m >  n 
replace (m,n) by <

I (m, n — m) if m  <  n.

Continuing this procedure, we obtain a decreasing sequence of pairs of integers. 
After a finite number of steps, we shall reach a first pair (d,d) having two 
equal components: d ^  1 is the greatest common divisor of m  and n. This is 
the famous Euclidean algorithm. If, instead of integers, we start with a pair 
(a, b) of positive (real) numbers, the procedure may lead to a pair (d, d) after 
a finite number of steps: This is the case of commensurable numbers a and 6. 
When the procedure never leads to such a pair (d,d), we say that a and b are 
incommensurable.

The resolution algorithm for linear systems starts as follows. Having ordered 
the variables, we group the monomials containing them in the left-hand side 
and replace each equation by the row of its coefficients. Thus the system is 
transformed into a rectangular array. When not all zero, the right-hand sides 
are listed after a separator, used as a reminder of the equality sign. Then 
elementary operations are performed in order to simplify the system: The goal 
is to reach a row-reduced form, from which the discussion (existence, uniqueness, 
and values of the variables) is easily carried out. With thousands of unknowns, 
all this would be done by a computer. But educated scientists should understand 
how and why it works. Let us explain it in more detail.

3Prom  al-Khuwarizm i, A ra b  m athem atician o f  the ninth century.



18 CHAPTER 1. LINEAR SYSTEMS: ELIMINATION M ETH O D

1.3.1 Elementary Row  Operations

The elementary row operations used for transforming a linear system are:

1. A d d ition  o f  a m ultiple o f  a row to another row

2. M u ltip lica tion  o f  a row by a nonzero number

3. Exchange— or perm utation— o f  two rows.

Although the third type may be obtained using the first two types only (as we 
shall see), it is convenient to also treat it as an elementary operation.

The elementary row operations are invertible, hence they preserve the set o f 
solutions of the system. Any sequence of row operations transforms the initial 
system into another one having the same solutions, called equivalent system for 
this reason. The goal is to reach a form in which the set of solutions is easily 
obtained. As we have seen with homogeneous systems, this is the case when the 
left part of the array—before the separator— is in row-reduced form:

>- The rows having only zeros before the separator come last

>- The first nonzero coefficients (o f rows) come in increasing order.

The number of rows having a nonzero element before the separator is by defi­
nition the rank r  of the system. The last m — r  rows, having only zeros before 
the separator, give compatibility conditions for the system. Indeed, when a row 
only has 0’s in front of the separator, a nonzero after it leads to a contradiction. 
To solve the system, we proceed upwards, starting from the last nonzero row, 
attributing arbitrary values to the free variables—if any—deducing the corre­
sponding value of the last pivot variable. The second last row now gives the 
value of the second last pivot variable (depending on the choices of values of the 
free variables, if any), and so on.

A general linear system containing m  equations in n variables is said to have 
size m x n (read m by n). We use the following notation: An extra index is 
used to identify the equations It has the following form

(S)

a\\X\ 4- • • • 4" O'inXn — b\

Q’TTll̂ 'l * * ‘ “b Q'mn%n —

We also abbreviate it symbolically by Ax =  b where the boldface font for “s” 
and “b” emphasizes that they represent lists instead of single numbers. A t this 
point, this is only a symbolic representation for the list of equations, but it will 
soon appear to be a special case of matrix multiplication.
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The system (S ) is completely described by the augmented array

(A  | b) =

f  an <*12 
d21 022

\^ml &m2

&1 n  | \

a2n  | b2

Ь т /

Notice how the double indices are used: The first one indicates the row, the 
second one the column:

j = i  
i= 1|—

j=18

t= 1 2 <*12,18

The size of the extended array is m  x (n 4-1) (we always give the number of 
rows first), due to the presence of the list b in its last column. Suitable row 
operations on this array allow us to transform it into one having a first part 
(before the separators) in row-reduced or row-echelon form, say

A ~  U and (A  | b) ~  (U  \ c).

I f U  is in row-echelon form, here is how (U  | c) looks like.

A l  * . . . * 01 ^
0 1 * ... * c2

0 ••• 1 * • 

0 •••

* c3

l l  * •. • * Cr 4

0 ••• 0 Cr+l }
\0 0 ••• 0 Cm ) J

The system has a solution precisely when

Cr+x =  • • • =  Cm =  0 (compatibility conditions),

m — r.
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or equivalently when
rank U =  rank(t/ | c).

When the system is compatible and n > r, it admits infinitely many solutions: 
The general solution depends on the arbitrary values chosen for the n — r  free 
variables. We say that it depends on гг —r parameters. When r =  ra, the system 
has maximal rank and it is always compatible. To summarize, we have

uniqueness when r  =  n: There is no free variable and there is at most 
one solution for each right-hand side b,

existence when r  =  m : There is no compatibility condition and a solution 
can be found fo r each right-hand side b,

existence and uniqueness (regular system ) when r  =  m  =  n: The
system has a unique solution for each right-hand side b.

Comments, Warnings

1. One cannot simplify by 0: from 1 0  =  2-0 (true!), one cannot deduce 1 =  2 
(false!). Division by 0 produces an “ERROR 0” on a pocket calculator

Division by 0 is not a legal operation.

Multiplication by a number is always possible, but

Infinity is not a number.

Since a nonzero number a is invertible, it is legal to multiply by a-1 =  1/a, thus 
producing a division. Multiplication is a safe operation, division is not!

2. Solving an equation is not a matter of guessing. For example, to solve the 
(nonlinear) equation x2 =  x, we observe that it is equivalent to x 2 — x =  0, 
and to x (x  — 1) =  0. Here we see that x =  0 is a possibility. If x Ф 0, we may 
multiply by x _1 and obtain x - 1x(x — 1) =  0, namely x — 1 =  0. Hence

x2 =  x implies x =  0 or x =  1.

The following general Basic P rin c ip le  ought to be remembered

ab =  0 implies a =  0 or b =  0.

3. Several row operations may be performed in one step, and to save some 
writing, one often adds multiples of one row simultaneously to the other ones. 
But one has to keep in mind that row operations have to be invertible. For 
example, adding the second row to the first one, and simultaneously replacing 
the second row by the sum of the first two, is not a sequence of row operations 
(it obviously loses some information): Having added the second row to the first 
one, only this new first row may be used for further row operations (the old first 
row may be recovered by subtraction of the second from this new first row). A 
good practice consists in keeping a fixed underlined row, and add some of its 
multiples to other ones in order to simplify them.
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1.3.2 Comparison of the Systems (5) and (H S )

A general linear system is represented by Ax =  b, or more explicitly 

Gll^l +  • • • 4* flln^n =  bi

^21̂ 1 +••*-+• 0>2n^n =  &2

& m lX i 4* ‘ ' "I" dm n^n =  bm .

Using successive elementary row operations, we can transform it into U x  =  с 
where U is row-reduced. The corresponding homogeneous system Ax =  0

a n x i 4- •• • + ^ln^n — 0
a 21X1 4- •• ■ + &2 n^n =  0

+  • • 4- ^mn^n =  0

is simultaneously equivalent to U x =  0.

Let us examine the difference of two solutions p =  (pi) and s =  (s*) of (S ). 
This difference s — p is defined by s — p =  (si — Pi). It is obviously a solution 
h =  (hi) of {HS). Hence if we know a particular solution p =  (pi) of the linear 
system (S ) (which is thus compatible), any other solution s =  (s*) has the form 
s =  p +  h where h =  (hi) =  s -  p is a solution of (HS) . Hence s =  (s*) has the 
form

S{ =  Pi +  Ы (1 <  i  <  n) where (hi) is a solution of (HS).

We have found the Fundamental P rin c ip le  o f  L inear Algebra:

The general solution o f  a compatible linear system is the 
sum o f  any particu lar solution o f  (S ) and the general solu­
tion  o f  the associated homogeneous system (HS) .

To find a particular solution of (5), one may proceed by elimination, and select 
the solution corresponding to a zero value of all free variables. Let us recall the 
main property of the set of solutions of a homogeneous system:

>  // s =  (si) is a solution, then as =  (as{) is also one for any number a

>  I f  s =  (s^ and t =  (£*) are solutions, then s 4-1 =  («i -f- ii) is also one.

Variant. The theoretical discussion of the resolution of a linear system (5) can 
also be made by introduction of an extra variable z as follows. Let us consider 
the homogeneous system

a n x i +  *• • 4* a inx n — b\z =  0
a2\X\ +  •• • 4- a2nXn — b2Z =  0

4- •• • 4" О’гппЯ'П -  bmz =  0.
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Then the solutions of the original system (S ) correspond to the solutions of t h i s =  
homogeneous system having z =  1 (or z ф 0, since a solution of (H S ) m a y  “  
be multiplied by an arbitrary factor). When all solutions of this homogeneous 
system have z =  0, the original system is incompatible: (S ) has no solution.

1.4 Appendix

1.4.1 Potentials on a Grid

Let us consider the following situation. In the plane R 2, a certain bounded 
regular domain D  is given (e.g. a disc, the interior of an ellipse, or a rectangle). 
We are looking for a potential inside D  taking prescribed values on the boundary.
To approach this physical problem, we introduce a square grid in the plane 
(having mesh of size e >  0) and only keep the vertices of the squares having 
a nonempty intersection with the region D. We are left with a certain set o f  
vertices P*, which constitutes a discretization D e of D. Let us call interior 
vertices those having four neighbors (conveniently called North, East, South, 
and West) in D £) while the boundary vertices are those having less than four 
neighbors in D e. Here is an example of a discretization of a domain.

We are looking for a function / (potential) defined on the finite set D ey taking 
prescribed values on the boundary points and such that

f ( P )  is the average of its four values at neighboring points fo r any 
interior point P .

Let us number the points in an arbitrary way (starting from the interior ones), 
and introduce the variables =  /(P*) (1 <  i  ^  N )  for the unknown values of 
f  at the corresponding interior points P*. I f the four neighbors of an interior 
point Pi are Pp, Pg, Pr , and P5, there is a corresponding equation

Xi =  \{XP +  xq +  Xr +  Xa).

Here, p =  N ( i )  is the index of the northern neighbor of Pj, q =  S ( i )  is the index 
of the southern neighbor of P*,... It may happen that all Xj are unknown, i*1
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which case we get a homogeneous equation

Xp *4" Xq xr -j- Xg 4X{ =  0.

If, on the contrary, certain values are prescribed (because the corresponding 
points lie on the boundary), we get a nonhomogeneous equation. For instance, 
we may encounter an equation of the form

Xp Xq 4* Xf 4X{ ■ bg,

where b3 is the given value for the potential at a boundary point P3 (s >  N). 
(Note that certain boundary values are irrelevant: Such are corner values, having 
no interior point as neighbor.) In any case, we can group the unknown variables 
in the left-hand side, while the known ones are gathered in the right-hand side. 
In this way, we obtain a linear system (5) for the variables Xi (1 ^ i ^  N). 
We are going to show that this linear system is compatible, and has a unique 
solution for each data on the boundary.

If there are N  interior points Pi, the system contains N  variables x* and also 
N  equations: We are going to show that (S ) has maximal rank r  =  N. To prove 
this, we consider the associated homogeneous system (H S ), simply obtained by 
requiring zero values on the boundary: In this case, it is enough to show that 
there is only one solution to the problem, namely the trivial one x* =  0 for all 
indices i (corresponding to interior points Pi). Here is the crucial observation. 
For any solution set (xj), select a variable Xj taking the maximal value (in a 
finite list, there is always a maximum). Since this value Xj is the average of 
the four values at its neighboring points, the only possibility is that these four 
values are equal, and equal to the maximal value. Iterating this observation 
at neighboring points, we eventually reach a boundary point where the value 
is 0. Hence the maximal value is itself 0. The same argument shows that the 
minimal value is 0. Finally, we see that all x* =  0, which proves the claim. 
More generally, the mean value property shows that any solution takes values 
between its minimum and its maximum on the boundary. In other words, any 
solution reaches both a maximum and a minimum at a boundary point.

1.4.2 Another Illustration of the Fundamental Principle

Scenery : A  river, a heap of peanuts, and a certain number of sleeping monkeys 
(in the shade of a palm tree!). Say there are N  monkeys and x peanuts.

A ction : A first monkey wakes up, counts the peanuts and finds that if he 
throws one into the river, which he does, the rest is divisible by N  (isn’t he 
smart!). He then eats his share and goes back to sleep (to the end of the story). 
Then a second monkey (as clever as the first one) wakes up —ignoring that 
another one has woken up before him—counts the peanuts and finds that if he 
throws a single one into the river—which he also does—the rest is divisible by 
N. He eats what he thinks is his share and goes back to sleep (also until the
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end o f the story). And so on, until the Nth and last monkey, who makes the 
same observation, acts similarly.

Q uestion . I f  N  is given, find the smallest number of peanuts that is compatible 
with this story. For example, check that with 5 monkeys, an initial number of 
3121 peanuts works. The successive remainders in this particular case are

2496 , 1996, 1596, 1276, 1020.

A n sw e r . Let Xi be the number of peanuts remaining when the first г monkeys 
have eaten what they thought was their share. We have xq =  x and then

Xi =  (x  — 1) ( l  — yy) , . . . ,  =  (ж* — 1) ( l  — ) .

We find relations in the form

Xi — Xq ( l  ) — Aiy

where Ai is independent from x. The resolution of the homogeneous system— Л» 
are all zero— is easy enough. Starting from an arbitrary xo, one can compute 
successively z i, x2i ... The divisibility condition at the ith stage requires di­
visibility by TV1, and to end up in whole numbers, it is necessary to start with a 
multiple of N n  . Thus we write the general solution of the homogeneous system 
as

xo =  cN n  , xi =  • • •

Integral values of с will lead to integral solutions of the homogeneous system, 
while other values of this parameter will lead to general solutions— not neces­
sarily integral ones. There only remains to find a particular solution of the 
nonhomogeneous system. But I claim that

X =  Xo =  1 — N  =  =  X2 =  • • • =  xn

is one: Just play the game with negative numbers. Indeed, if there are I  — N  
peanuts in the heap (a debt), and we throw one away (thus increasing the debt 
by one), we end up with —N  peanuts. After eating his share (in this case, paying 
his part of the debt), the heap will again resume its size of 1 — N . And the next 
monkey does similarly. Now, the general solution of the nonhomogeneous system 
is the sum of this particular (negative) solution and of the general solution of 
the associated homogeneous system

x =  l  - N  +  cN n .

The minimal positive one is obtained with с =  1

xmin =  l - N  +  N " .

For N  =  5, we obtain z min =  1 -  5 4- 55 =  -4  +  5 • 252 — 5 • 625 4 — 3121.
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1.4.3 The Euler Theorem / +  v  =  e +  2

The following experiment gives a  plausible P R O O F  o f the Euler theorem on the 
sphere.

Let the surface of a sphere be partitioned into / pools (faces), separated by 
e dams (edges). Suppose that each edge is common to two faces having among 
their vertices the two ends of this edge. In this proof, three or more faces may 
have a common vertex. We plan to irrigate the complete sphere by destruction 
of a minimal number of dams, starting with one single pool filled with water. 
At least one dam has to be broken to fill an empty pool. If we do this in the 
most economical way, exactly / — 1 dams have to be broken to completely flood 
the sphere. Having done that, we may count the number of intact ones. These 
will form a tree, namely a connected system of dams with no loop. But any 
such tree can be drawn in the following way:

>■ Start with the basic unit configuration containing 1 edge and 2 vertices

>■ Add successively branches, increasing simultaneously both the number of 
edges and the number of vertices by 1.

As we see, the iterative construction of any tree preserves the relation e =  v — 1 
at all steps. In particular, in our case we find

number of broken edges =  / — 1, 

number of intact edges =  v — 1.

Adding these relations, we find

e =  total number of edges =  / +  v — 2.

This is the announced relation. ■

Com ment. Notice that on the surface of a sphere, any cycle of dams isolates 
a region: Whence the tree (or forest) structure of the intact dams after any 
complete flooding of the sphere. This is not the case on the surface of a torus 
where one equator does not separate two territories. In this case, a flooding of 
the complete surface my leave two cycles of dams intact. The corresponding 
Euler relation for any polygonal partition of a torus is / +  v =  e. Hence the 
linear system corresponding to a partition into pentagons and hexagons on a 
torus is homogeneous: It is the homogeneous system associated to the linear 
system obtained from the sphere. In this case, the number of pentagons is 
necessarily 0, while the number of hexagons is variable.

1.4.4 Fullerenes, Radiolarians 

Fullerenes

Pure natural carbon can be found in several allotropic forms: Carbon powder, 
graphite, diamond, and as we now know, fullerenes of several types correspond­
ing to stable molecules Cn in the form of tubes or spheres. The most famous



26 CHAPTER 1. LINEAR SYSTEMS: ELIMINATION METHOD

one is the buckminsterfullerene Ceo, which illustrates a decomposition of the 
sphere into hexagons and pentagons. It is by looking for linear molecules con­
taining many carbon atoms in sidereal space that H a ro ld  W . K r o t o  (born 
1939, professor at the University of Sussex, Brighton, G.-B.). finally under­
stood the simple form that the carbon atoms can display in Cqo (the actual 
discovery can be dated precisely 4.09.85: See N atu re , vol.318). Eventually, he 
found that these molecules are already produced—in small quantities— by pipe 
smokers! The 1996 Nobel prize in chemistry was indeed attributed to him and 
R. Curl, R.E. Smalley for their understanding of these beautiful molecules. In 
С  в  Oj the carbon atoms are placed at the vertices of 12 pentagons, members of 
a partition of the sphere also containing 20 hexagons (think of a football ball!). 
The molecule Сво has diameter «  lOA (lA =  Ю-10 m. represents roughly 
the diameter of an hydrogen atom). Hence the diameter of a molecule Ceo is 
about 1 nanometer (=  10-9 m.). It is now possible to synthesize rather inex­
pensively macroscopic quantities of the buckminsterfullerene Ceo (purified at 
99.5%). Other cage-like molecules containing only carbon atoms can be found 
or synthesized: C70 (played an important part at the beginning of the theory), 
C24o>- • ■ Long tubes of carbon atoms are promised a brilliant future! The term 
“fullerene” has been chosen by Kroto in honor of the American engineer and 
philosopher R ichard Buckminster F u lle r  (1895-1983), who constructed 
geodesic domes, based on hexagonal and pentagonal decompositions of a hemi­
sphere (US pavilion at the world exhibit in Montreal 1967, Union Tank building 
in Baton Rouge, Louisiana, etc.) In 2001, fullerenes were even found in rocks 
from the end of the Permian.

Radiolarian

This is a class of unicellular beings (protozoa belonging to marine plankton) 
having a skeleton in the shape of a polyhedral structure, allowing their pseu­
dopodia to radiate through the pierced faces, most of them— not all—having a 
hexagonal shape, e.g. Aulonia hexagona. They are traditionally considered in 
the animal reign, since they can move and capture other small organisms (amoe- 
baes, leukocytes). Their radiating thin feet allow them mobility (for capturing 
other microorganisms). The skeleton itself exhibits many hexagonal holes, a 
reason for the terminology hexagonal radiolarian. Nevertheless, each of them 
exhibits a few exceptional faces: Either they are perfect and only have twelve 
pentagonal holes, or they have extra heptagonal (rarely octagonal) ones.

1.5 Exercises
1. (a) Consider all possible repartitions of the surface of a sphere by curvilinear 
squares and triangles where each vertex is adjacent to four of these faces. Are 
there many possibilities? Is there a fixed number of triangles? Or squares? Does 
the cube lead to a special solution of the considered type? Is there a solution 
with squares only? (Repeat the discussion made for hexagons and pentagons in
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this context.)
(b) Same as before for the repartitions of the surface of a sphere by curvilinear 
pentagons and triangles (where each vertex is still adjacent to four of these 
faces). Are there many possibilities? Is there a fixed number of triangles? Or 
pentagons? Is there a solution with triangles only?

2. (a) Consider all possible repartitions of the surface of a sphere by curvilinear 
squares and hexagons, where each vertex is adjacent to three of these faces. Are 
there many possibilities? Is there a fixed number of squares? or hexagons? Is 
there a solution with squares only?
(b) Same as before for the repartitions of the surface of a sphere by curvilinear 
triangles and octagons (where each vertex is still adjacent to three of these 
faces). Are there many possibilities? Is there a fixed number of triangles? or 
octagons? Is there a solution with triangles only?

3. Give a particular solution of the following linear system

(  у +  z w =  2 
(S ) < i  +  2 +  u =  2

[  x + y + u  =  2

having x =  у =  z and и =  w. What is the general solution of (5)?

4. Consider the following linear system

(  X\ +  2x2 - х з  +  2x4 =  a 
< X i  — X 2 +  X 3  — X\ —  Ь

[  4xi -  X2 4- 2хз -  *4 — 2.

For which values of a and b is it compatible? Find its general solution when it 
is compatible.

5. Let us consider functions / defined on the integers between 0 and a certain 
positive integer iV, satisfying

f ( n )  =  14- average of (/(n -  1), f ( n  +  1)) (1 ^  n <  N).

(a) Check that the function h defined by h(n) =  - n 2 is a particular solution of 
the required functional equation.
(b) All functions g of the form g(n) =  A n+B  satisfy the associated homogeneous 
conditions.
(c) Deduce the solution / satisfying the two limit conditions / (0) =  0 and 
f ( N )  =  0.

6. Find correct coefficients x ,. . . ,  w for the chemical reaction

x Br~  -f у H + +  z МГ1О4 — * uBrO$ 4- v Mn2+ + w  H2O.

7. Same as before for the coupled reactions

*Fe  +  *OH~  — ■> *Fe (OH ) 2 4- * e " ,

*H20  4- *02  +  *e~  — * * O H ~ ,

*F e (O H )2 4- *02  + *#20 —  ̂ *Fe (OH )3.
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8 . Consider the following linear system in n variables

X\ 4- £2 =  ai
X2 + z 3 =  a2

Xn “Ь Xi =  an

Discuss completely the cases n 
integer n?

2, 3, and 4. Can you generalize to any positive

9. Let M i, М 2,... ,Mn be n given points in the plane R 2. When is it possible 
to find a closed polygonal line P0, P i, .. . ,  Pn- 1, Pn =  Po such that М,- is th e 
midpoint between Р{_ г and Pt (1 ^  i  ^  71)? When it is possible, are there many 
possibilities?

10. Let P i, P2,... ,Pn be n given points in the space R 3. Is it always possible 
to find disjoint balls B* with center P{ (1 ^  i  ^  n) such that Bi is tangent to  
both B{-\ and B*+1, where Bo =  Bn and Bn+i =  B\. The problem is to find 
the radii of these balls, 21s a function of the distance of consecutive Pi's.

11* The equation of a plane in the usual space has the form

ax 4- by -1- cz =  d,

where a, 6, c, and d are parameters depending on the plane. Find all planes 
containing the points Pi =  (1,1, 1) and P2 =  (1,2,3).

12. Are the following arrays

11 1 1 0 0 0 0\ (Q 1 1 0 0 0 0\0 0 1 0 0 0 0 0 0 1 1 1 0 00 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 1 0 0 0 0 0 0 1 0 0
\0 0 0 0 0 0 oy 0 0 0 1 1 У

row-reduced? What is their rank?

13. How many free variables are there in the homogeneous system

/0 1 1 0 0 0 0\
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0

\o 0 0 0 0 0 0/

14. What is the rank of the following homogeneous system in three variables
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as a function of the parameter t?

15. What is the rank of the following array

/1
2

\n n 4- 1 n 4- 2

16. Solve the following nonlinear system

n \ 
71+ 1

2n — 1/

x2yz =  18
xy3z =  24
xyzA =  6.

17. Is it possible to find a, /?, and re such that

f sin a 4- tan (3 — x2 =  2
< 2 sin a 4- 2 tan p 4- x2 =  1
I — sin a — tan (5 — x2 — 0?

18. Find the simplest linear systems having many solutions, or no solution.

Notes
The elimination procedure is often called Gaussian, or Gauss-Jordan elimina­
tion. However, it was used since the antiquity by the Chinese, as reported by a 
manuscript of the third century of our era (see the book by Peter Gabriel listed 
in the references at the end of this volume). Hence it would be more accurate 
to call it the fang-cheng algorithm.

Keywords for W eb Search

Aulonia hexagona (or hexagons)
Buckminster Fuller, fullerenes 
Icosahedron, Platonic solids 
www.mathworld.wolfram.com 
Partial pivoting (row operations)
Fang-cheng algorithm (according to Chang Ts’ang)
Gaussian or Gauss-Jordan elimination

http://www.mathworld.wolfram.com
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-  L i s t e n

-  t h i n k

-  a c t

One row operation is particularly unsuitable in this situation: Which one?



Chapter 2

Vector Spaces

Linear equations in n variables are mathematical objects: They can be added 
and multiplied by numerical quantities. We say that they form a vector space.

2.1 The Language

2.1.1 Axiomatic Properties

D efin ition . Any set E  consisting of mathematical objects which may be added, 
and multiplied by numbers, having the properties listed below is a vector space.

For simplicity, let us assume that the numbers involved are real numbers. 
However, not all the properties of the real number system R  will be used, and 
one could equally well use only rational numbers (or complex numbers, to be 
introduced in Sec. 3.3.2). The properties implicitly used of numbers are listed 
at the end of this chapter. Here are the formal properties of addition and 
multiplication required in a vector space.

For any pair x, у  in E, an element x  +  y  in E  is well-defined, and this sum has 
the properties:

1. x  +  (y  +  z) =  (x  +  y ) +  z (associativity).

2. x  +  y  =  y  +  x ( commutativity).

3. There is a unique 0 in E  such that x  +  0 =  x  for all x  in E.

4- Any x  in E  has a unique opposite x ' in E  such that x  +  x ' =  0.

On the other hand, for any pair consisting of a number a and an element x  in 
E , an element ax in E  is well-defined, and this multiplication satisfies:

5. a(bx) =  (ab)x.

6. a(x +  y ) =  ax +  ay (distributivity).

31
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7. (a +  6)x  =  ax +  6x  ( distributivity with respect to the sum of numbers).

8 . l x  =  x  (1 denotes the unit number).

For example, it is easy to see that x' =  (—l)x  satisfies x  +  x ' =  0. It is 
essential to observe that in general, the elements of a vector space cannot be 
multiplied together: In a vector space, the presence of an inner multiplicative law 
is not required (not forbidden either). The preceding list of axiomatic properties 
is not to be learnt by heart. Associativity, commutativity, distributivity,... 
are so natural that we shall hardly ever refer to them explicitly. In short, a 
vector space is a set in which finite sums of multiples of elements, called linear 
combinations, can be made.

The elements of a vector space are called vectors while numbers are called 
scalars. It is suitable to use different alphabets for them. For example, if p 
denotes the row (2,3, —1), namely the homogeneous equation 2x i+ 3^2—хз =  0, 
the multiple ap denotes (2a, 3a, —a), namely the equation 2a x i+ 3ax2 —ахз =  0. 
I f  p' =  (1,2,2) is another row of the same type (homogeneous equation in three 
variables), then

2/> +  p' =  (4,6, -2 ) +  (1,2,2) =  (5,8,0)

represents the equation 5xi +  8^2 +  Охз =  0 of the same type. The zero row is 
(0,0,0): It corresponds to the (trivial) equation in three variables

Oxi +  0x2 +  Охз =  0.

As a rule, the elements of an abstract vector space E  will be typed with a 
boldface font as in a, x. This should help one to distinguish them from usual 
numbers a, 6, x ,... In particular, one has to distinguish between the zero vector 
0 G E  and the zero scalar 0. In specific examples, we may use a notation which is 
better adapted to the situation. For instance p may denote a row (of a specified 
length), v  a vector in the usual 3-space, f  a function, etc. The notation should 
only be chosen in such a way as to suggest the correct interpretation.

2.1.2 An  Important Principle

Here is a basic principle that follows from the axioms of vector spaces. 

Proposition . I f  a is a scalar and x  is a vector, then

ax =  0 if  and only if  a =  0 or x  =  0.

P ro o f.  For any x  £ E

Ox +  Ox =  (0 +  0)x =  Ox,

and adding the opposite (Ox)' of Ox, we find Ox =  0. FVom this, we easily 
deduce x ' =  ( - l ) x  (simply written - x ) :  Indeed

x  +  ( - l ) x  =  ( 1 +  ( - ! ) ) *  =  O x  =  0.
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For any scalar a, we have

aO 4- aO =  a( 0 +  0) =  aO.

Adding the opposite of aO, we find aO =  0. This already proves that if a =  0 or 
x  =  0, then ax =  0. Conversely, if a is a nonzero scalar, it is invertible and

a-1 (ax) =  (a_ 1a)x =  lx  =  x.

Hence аф  0 and ax =  0 implies x =  a-1 (ax) =  a_10 =  0. ■

2.1.3 Examples

(1) The set of linear homogeneous equations in n variables is a vector space. In
fact, we have identified a linear homogeneous equation a\X\  + ---- h anxn =  0
to the row (a i, . . . , an), and the set of rows of fixed length n is a vector space 
denoted by Rn. Its elements are the rows

p =  (a i, .. . ,  an), p =  (a^,. . . ,  an), ...

Linear combinations of rows are computed according to the rule

ap 4- p' — (aai +  a^,. . . ,  aan 4~ a^).

With rows p i, ... ,pm> one т а У als° consider the linear combinations

aipi 4- a2p2 4------H ampm,

where a i,a2, . . . , am are scalars. Such linear combinations can also be abbrevi­
ated in the form of a sum of the generic term aipi f°r the values of the index i 
between 1 and m:

d\p\ +  a2p2 H------h ampm =  ^  dipi-
l^ t ^ m

Another, closely related vector space, is the space consisting of the linear equa­
tions in n variables, represented by the rows (a i,. . . ,  a„ | b). Since addition and 
multiplication of equations by scalars are computed termwise, this space is a 
splitting image of R n+i-

(2) A  list of n scalars written vertically is called an n-tuple. For example, a 
solution set of an equation in n variables is an n-tuple. One should be careful 
about distinguishing rows of length n, and n-tuples which are columns of hight 
n. All n-tuples, with termwise addition and multiplication by numbers, form 
a vector space denoted by R n. The spaces R n (for variable values of n) play 
a fundamental part in linear algebra. In a sense, R n and Rn are symmetrical 
objects (see Chapter 9). The usefulness of the algebraic structure on n-tuples 
has already appeared when we presented the general solution of a linear system
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in n variables as the sum of a particular solution of the linear system and the 
general solution of the associated homogeneous system:

( s l \ ( P l \ ( hA * Pi + Л1 \
S2

=
P2

+
h2

=
P2 + /*2

\ S n ) \P n ) \hnj \Pn ~b hnJ

For 71 =  1, the space R 1 can be identified with the particular vector space R  
consisting of the scalars.

(3) A  linear homogeneous system containing m  equations in n variables has 
been identified with an array of size m  x n. All arrays of fixed size m  x n  form 
a vector space if addition and multiplication by scalars are defined component­
wise. The axiomatic properties required for a vector space are satisfied by these 
laws. Hence the rectangular arrays of fixed size m x n  constitute a vector space 
M min(R ) (also denoted by R™). For example, the sum of two arrays of size
2 x 3 (2 rows and 3 columns) is defined by

f d \ l  a i2  <*1з\ +  f b n  b\2 b\2 ,\ _  Л *11 +  b \ i  a i2  +  bl2  <*13 +  ^13^ 

\(L2 l < * 2 2  <*2 3 /  \ & 2 1  & 2 2  ^ 2 3  J  \ < * 2 1  H "  & 2 1  < * 2 2  " b  ^ 2 2  & 2 3  " I"  ^ 2 3 /

The multiplication by a scalar is similarly defined by

q f  ап a\2 а1з\ _  /аац aa\2 aa\z 
\ a 2\ 022 <*23)  \<*<*21 <*<*22 <*<*23

Of course, an array of size 1 x n is a single row of length n, while an array of 
size m  x 1 is a single column of height m.

(4) A  geometrical representation of the space R 2 is given by a choice of Cartesian 
coordinates in the Euclidean plane. To the pair (®) we associate the point P  
having coordinates x and у in this plane. In this way, pairs correspond 1-1 to 
points. The multiplication of a pair by a scalar, as the sum of two pairs, are 
defined componentwise:

.W
\v2J \av2J

/vA  fw A  _  Ы  + w A  
\V 2 )  \ y J 2J  \V 2  +  1V2J '

This makes it more intuitive to replace the point P  by the vector v =  O P. As 
a rule, elements of R 2 will be represented by v, x, and so on. The addition now
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corresponds to the usual parallelogram rule for adding vectors.

A  similar geometrical representation for the space R 3 of triples of numbers 
occurs with a choice of Cartesian coordinates in the usual Euclidean space. Here, 
triples correspond 1-1 to points. Each triple (х*)г=1,2,з corresponds to a point 
P  having the coordinates x*. We identify the vertically written triple (x») with 
the vector v  =  OP, where P  has for coordinates the three scalars x, in the list. 
As a rule, the elements of this space will be represented by v, x, and so on.

If 4-tuples can be interpreted by vectors in space-time, it is difficult to build 
a representation for R n for large values of n:

We simply consider that the elements of R n are n-tuples, namely 
vertically written lists of n scalars.

Comment. Observe that the usual Euclidean plane (or space) only becomes 
a vector space once an origin is chosen: This origin is then the zero 0 of this 
vector space. The addition (and multiplication by scalars) is not defined until 
an origin has been chosen.

2.1.4 Vector Subspaces

A subset У  of a vector space E  which is a vector space with the same laws as 
E  (and the same zero vector as E ), is a subspace of E.

D efin ition . A subspace of a vector space E  is a subset V  that contains the 
zero vector 0 G E, and such that

v  and w  in V  implies av +  w  in V  for any scalar a.

The zero vector of E  alone, V  =  {0 }  is the smallest subspace of E\ the 
whole space itself, V  =  E  is the largest. Hence, when E  ф {0 }, there are two 
trivial—extreme— examples of subspaces. We are mainly interested in nontrivial 
subspaces of a vector space E. But the trivial ones often occur as particular 
cases in general statements, and it would be awkward to exclude them a priori.

Examples. (1) Let us give the general form of the nontrivial subspaces of R 3. 
First, we observe that the lines going through the origin (also called homoge­
neous lines) furnish infinitely many examples of subspaces of R 3. Secondly, the
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planes containing the origin (homogeneous planes) furnish infinitely many other 
examples of subspaces of R 3. As we shall see later, these are all the nontrivial 
subspaces of R 3.

(2) Consider a system (HS )  of homogeneous linear equations in n variables. The 
solutions of this system form a subset of the space R n of n-tuples (xi)i^i^n- 
By definition, a linear system is homogeneous precisely when it admits the 
trivial solution (consisting of 0’s only). In Sec. 1.2.2, we observed that the sum 
of two solutions, as well as the multiples of a solution, are again solutions of 
any homogeneous system. With the present terminology, we may say that the 
solutions of (H S )  form a vector subspace of R n.

2.2 Finitely Generated Vector Spaces

2.2.1 Generators

Starting from a finite family of elements a i,a 2, . . . , a n of a vector space E , 
we can construct a vector subspace V  of E  as follows. Consider the subset 
consisting of all linear combinations of these vectors

V  =  set of linear combinations of a i, a2, . . . ,  an 

=  : any scalars Xj| subset of E.

This is a subspace since the trivial combination (all coefficients are 0) produces 
the zero vector of E, a multiple of a linear combination is again a linear combi­
nation:

a (x ia i 4- x2a2 4------1- xnan) =  axiai 4- ax2a2 4------ Ь ax„an

(by the axioms of vector spaces, valid in E ), and similarly, the sum of two linear 
combinations

(xxai 4----- h xnan) 4- (y iai 4----- f- ynan) =  (xi 4- 2/i)ai 4------ h (xn 4- 2/n)an,

is again a linear combination. This subspace is called the linear span of the 
finite subset аь а2, . .. ,an (or of the family (ai)i^i«-n), and denoted by

V  =  C(a i,a2,...,an ) =  £(а* : 1 <  i  <  n).

It is the smallest subspace containing a i,a2, ... ,an, since any subspace W  of 
E , containing these elements, will also contain their linear combinations, hence 
contain C (a i, a2, .. . ,  an).

We also say that V =  C (a i, a2, . . . , an) is generated by a i , a2, . . . ,  an, that 
these elements generate, or are generators of V .

D efin ition . A vector space E  is finitely generated when it has a finite gener­
ating family ai, a2, ..., an: E — £(ai, a2, .. . ,  an).



The commutativity of addition shows that

£(&i , a2, .. . ,  an) =  £ (a2, ab ..., an),

and this subspace does not depend on the order in which the elements a* are 
listed. It is also obvious that if с Ф 0

£ (a  i , a2, . . . ,  an) =  £ (ca i, a2, .. . ,  an)-

Hence this subspace £ (a i, a2, ..., an) does not change if we replace any element 
ai by one of its nonzero multiples са* (с Ф 0).

Proposition . With the previous notation, for any scalar с and i Ф j

£ (a i, . . . ,  a ,,.. . ,  an) =  £ (a i, . . . ,  â  +  c&j, . . . ,  an).

Before proving this proposition, let us recall the meaning of some set theo­
retic symbols (see Sec. 2.4.1).

x E E  means x is an element of E , 

or x belongs to E ,

V  С E  means У  is a subset of E,

E  D V  means E  contains V.

P roof. Let us only prove the typical equality

£ (a i,a 2, . . . , a n) =  £ (a i +  ca2,a2, . . . , an).

By definition, for any scalar с we have

ai =  ai +  ca2, a2, .. . ,  an € £ (a i, a2, .. . ,  an),

hence
£ (a i,a 2, . . . ,a n) С £ (ab a2, ... ,an).

Since conversely ai =  aj — ca2, what we just observed also shows that 

£ (ai , a2, .. . ,  an) С £(^ i, a2, . . . ,  an), 

so that finally, the equality

£ (a i, a2, .. . ,  an) =  £ (^ i, ̂ 2> • • •»&n) 

follows by double inclusion. ■
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F irs t  A pp lica tion . Let A denote a rectangular array of coefficients (corre­
sponding to a linear system) containing m  rows p i, . . . ,  pm of a certain type. In 
the vector space E  of rows of this type, consider the row space of A, namely the 
subspace

£(rows of A) =  C(p i , p2, • • •, Pm)

generated by the rows of A. The preceding considerations show that a row 
operation does not change the row space:

Row operations preserve the row space of an array.

Performing successive row operations, we conclude that the row spaces of A  and 
of any row-equivalent form are the same. In particular, if row operations are 
performed until a reduced form is obtained

A ~  A ' ~  ~  U: row-reduced form,

the row space of A  is the same as the row space of U :

£(rows of A) =  £(rows of U).

Obviously, the row space of U is generated by its first nonzero rows.

Second Application. Let us interpret a linear system of size m x n i n  vector 
form, using the m-tuples

a \ j

'"mj,

b =  : e R m ( l < i < n ) ,

formed by the columns of its array of coefficients. We may rewrite the system 
in the equivalent form

а ц

*1  I 1 I +  *••  +  S n

v&m l

or more simply

(5 ) z ia i +  • • • +  xn&n =  b.

(1) The system (5) is compatible precisely when x ia i -\---- +  xnan =  b  holds
for suitable values of the coefficients xt-, namely when b is a linear combination 
of the vectors а;-:

b € £ (a i,a2,...,an ).

Since the inclusion £ (a i, a2, .. ., an) С £ (a i, a2, ...,  an, b) is obvious, (S ) is 
compatible precisely when

£(ai} a2,..., an) =  £(ai, a2,..., an, b).
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(2) The same system (S ) can be solved for all data b G R m precisely when the 
linear span of a i , . . . ,  an is the whole space

£ (ab a2,...,a n ) =  R m,

namely when the m-tuples a i , .. .,  гц form a set of generators of R m.

(3) Assume now that (S) has infinitely many solutions (for a suitably given right- 
hand side b), but all have the same value Xj for some fixed j  (recall Example 
1.1.2, where the number of pentagons x =  12 had a fixed value). To fix ideas, 
let us assume that X\ has the same value in all solutions of (S ). By the basic 
principle of linear algebra, all solutions are obtained from a particular one, by 
addition of a solution of

(H S ) x ia i ------ f- xnan =  0.

Hence x\ has a fixed value in all solutions of (S ) when all solutions of (HS)  
have a zero value for x\. This simply means that ai is not a linear combination 
of a2, . . . ,  an. Indeed, any expression

ai =  c2a2 +  • • • +  Cnan,

corresponds to a relation

aj — c2a2 ■ • • Cnan — 0,

hence to a solution of (HS)  having a first coefficient x i =  1 Ф 0. In other 
words, x\ has a fixed value in all solutions of (S)  precisely when ai is not a 
linear combination of a2, .. .,  an, namely

ai £ £ (a2, . . . , a n).

More generally, Xj has a fixed value in all solutions of (S)  precisely when a  ̂ is 
not a linear combination of the other m-tuples a*:

aj  (fc. £ (a i , . . . ,  a j _ i , a^-f-i,. . . ,  an).

2.2.2 Linear Independence

By the basic principle of linear algebra, a linear system

(S)  Xiai 4------ Ь £nan =  b,

has at most one solution when the associated homogeneous system 

(HS)  xiai H------ (- xnan =  0,

only has the trivial solution x\ — 0, .. .,  xn =  0. This happens when no aj can 
be written as a linear combination of the other a*’s. Indeed, if aj  is a linear 
combination of the other a ’̂s, say

aj  — ciai -1---- +  Cj-ia.j- i  4- Cj+iaj+i 4------- f- Cnan,



40 CHAPTER 2. VECTOR SPACES

then (H S )  has a solution set with Xj =  1, hence a nontrivial solution. It is 
natural to say that the m -tuples a i , . . . ,  â , are linearly independent when none 
is a linear combination of the others. As we have just observed, a linear system
(S ) has at most one solution when its columns, the m-tuples a* (1 ^  i  ^  n), 
are linearly independent. This suggests a general definition, valid in any vector 
space.

D efin ition . A finite family (vi)i^t^n of elements of a vector space E  is linearly 
independent when only the trivial linear combination of these elements gives the 
zero vector, namely when:

x*v * =  x iv i ■+------ Ь xnvn =  0 implies Xi =  0 for all i.

An infinite family of vectors is independent when all its finite subfamilies are 
independent When this is not the case, the family is linearly dependent: There
is a nontrivial dependence relation Xivi + ---- f- xnv n =  0, having at least one
nonzero coefficient

If the coefficient Xj in X1V1 -\------ 1- xnvn =  0 is nonzero, we can solve

v i  =

and the corresponding vector Vj is a linear combination of the other v^s. If 
a finite sum £\ x{Vi — 0 has a nonzero coefficient, then one vector is a linear 
combination of the others: But we do not know a priori which one. One tech­
nical advantage of the preceding definition is its symmetry: To prove that the 
n vectors Vj are independent, instead of having to show that

Vi is not a linear combination of v 2, V3, ... 

v 2 is not a linear combination of v i ,  V3, ...

vn is not a linear combination of v i , . . . ,  vn_ i ,

we simply have to show that

x \ 4------h xnvn =  0 implies x\ =  0, . . . ,  xn =  0.

Comment. I f a subset of the vector space E  is linearly independent, it does not 
contain the vector 0 £ E. Indeed, 1 0 =  0 is a nontrivial dependence relation. 
This leads to the following observation: In the trivial vector space E  =  { 0 } ,  the 
only linearly independent subset is the empty set (an exceptional case!). From 
now on, we shall simply write 0 instead of 0 for the zero vector, relying on the 
reader for the proper interpretation.

Example. The nonzero rows of a row-reduced array are independent. I f

( \ p \  *  \  P i

U =
0 P2

0 iP r

P2

Pr

\ 0 ••• /
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with nonzero pivots p i, a linear combination Y laiPi vanishes only if a\ =  0: 
The first coefficient of this row is indeed a\p\. Taking into account this fact, 
one can next look at the coefficient of index given by the second pivot, and see 
that a2 =  0- Continuing in this way, we prove that all coefficients are zero.

2.2.3 The Dimension

Having discussed the notions of generating subset and of linearly independent 
subset, we combine the two. It is obvious that if we add elements to a gener­
ating subset of a space E , the enlarged set will a fortiori generate E. On the 
other hand, removing elements from a linearly independent set preserves linear 
independence.

Theorem. Assume that v i , v 2, . . . , v n are n linear combinations of certain 
elements w j , . . . ,  w m of a vector space, namely

v b v 2, . . . , v n e C{w b . . . ,w m).

I f  n >  m, then the set v i, v 2, . . . ,  vn is linearly dependent.

P ro o f. Let us start with n vectors v b v 2).. .,  v n, in the subspace generated 
by w i , . . . ,  w m, where n >  m. Let us write these linear combinations Vj more 
explicitly as

v j  =  aij-wi 4- a2jW2 +  • • • +  amjWm (1 ^  j  <  n).

Now, let us form linear combinations of these

z i v i  =  Ziauwi +  sia21w 2 -I------ hxiamiw m

xnvn =  znainw i +  xnCi2nw 2 -\------h znamnwm

xi wj  =  (z ian + ---- f-xnain)wi

+  ••• +

(cciami +  * * ■ +  z namn)w m.

To obtain zero with such a linear combination, we can simply choose the coef­
ficients Xi solution of the homogeneous linear system

+  £2ai2 +  • • • +  xnain =  0,

< •

£iami +  i 2am2 +  • • • +  xnamn =  0.

Since this system has more variables than equations (n > m), it has a nontrivial 
solution: The vectors Vj (1 <  j  <  n) are linearly dependent. ■
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The preceding basic result may be reformulated as:

Any family having more elements than a generating set is linearly 
dependent,

or equivalently:

Any linearly independent subset of C(w b  . . . ,  w m) has at most m 
elements.

Definition. A basis of a vector space is a linearly independent and generating 
family.

Let us consider finitely generated vector spaces, namely vector spaces E  in 
which there is a finite family v i , . . . ,  v n of elements such that E  =  C (y\, . . . ,  v n). 
If this family is linearly dependent, one of its elements can be expressed as a 
function of the others, and deleting it, we obtain a set of generators having one 
less element. Continuing in this way, we finally reach a basis of E. We have 
thus proved the first part of the following basic theorem.

Theorem. Let E be a finitely generated vector space. Then E has a finite basis. 
Two bases of E have the same number of elements.

P r o o f . Take two bases A and В o f E , and let card A, card В  denote their 
respective number of elements. Then

A generates and В independent ==> card В ^  card A,
В generates and A independent = >  card .4 <  card £ .

This proves card A =  card В . ■

Definition. The common number of elements in all bases of a finitely generated 
vector space E is called dimension of E, and is denoted by dim E.

To be remembered! If the vector space E has dimension n, then any inde­
pendent subset of E  containing n elements, or any generating set containing n 
elements, is a basis of E. The existence of a basis in a finitely generated vector 
space E  can be obtained in two complementary ways. First, a basis of i? is a 
minimal generating set of this space. From any generating set, it is possible 
to extract a basis of E. Second, a basis is also a maximal linearly independent 
subset o f E. Starting from any independent set in E , we may build a basis 
by successive introduction of elements which are not linear combinations o f  the 
previous ones. In a finitely generated vector space, this procedure will eventu­
ally furnish a basis, since any independent set has at most as many elements as 
there is in a generating subset.

Examples. (1) The vector space E =  R n has dimension n. To prove this, we 
have to find n elements forming a basis of this space. I claim that the following
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n-tuples

(Л
е 1 =

0
у е2 =

1
, •••, еп —

0

\0) W W
constitute a basis of the space. Let us make arbitrary linear combinations of 
these vectors. By definition

/ * л / 0 \ (x i  N
0 Х2 0 *2

+ +  . . . + —

W \ о ) \ Х п ) \ Х П)

Hence taking suitable coefficients X{ , we can obtain any n-tuple: These elements 
ej make up a set of generators of R n. Moreover, a linear combination of these 
can furnish the zero n-tuple only if all coefficients X{ vanish: They are indepen­
dent. In particular for n =  1, we see that the field of scalars is a one-dimensional 
vector space: Any nonzero element is a basis of this space. In a vector space 
E  ф {0 }, there are infinitely many bases. However, the precedent basis of R n 
is the most natural one, and is therefore called the canonical basis of R n. In an 
abstract vector space, there is usually no way of selecting a natural basis among 
all possible ones.

(2) In a similar vein, consider the vector space R™ consisting of arrays of size 
m x n. It has a canonical basis consisting of the arrays

/1 0 0 .
'

(0 1 0 . ■ °\0 0 0 0 0 0

Еп  = 0 0 0 > F \2 = 0 0 0

1о ■ o j \0 • 0 /

where Eij has only one nonzero coefficient— this being a 1—placed at the inter­
section of the ith row and jth  column. Hence this vector space has dimension 
mn.

Fundamental Application. Let A be any rectangular array of coefficients. 
Using row operations, we can find a reduced row-equivalent form of A , say 
A ~  U. We have seen £(rows of A) =  £(rows of U). Now, the nonzero rows of 
U form a system of generators of this space. Since they are independent, they 
constitute a basis o f the row-space:

r =  dim £(rows of A).

Two procedures A ~ U  and A ~  U' leading to row-reduced forms of A furnish 
two bases of £(rows of A )y hence have the same number of elements: г =  г'.
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This proves that the rank r is independent of the particular method of reduction 
used to find it, and the row-rank of A is unambiguously defined by

rank A =  dim £(rows of A ).

This is a first achievement of the language of linear algebra. Let us recall its 
filiation:

>■ If a homogeneous linear system has more variables than equations, 
then it has a nontrivial solution

>- Any independent set in £ (w b . . . ,  w m) has at most m elements

>• Two bases of a finitely generated vector space have the same 
number of elements.

Let us come back to the subspace V  С R n consisting of the solutions o f the 
homogeneous system A x =  0: It has dimension n — r. Indeed, attributing suc­
cessively the values 1, 0 , . . . ,  0 , and then 0 , 1, 0 , . . . ,  0 , etc. to the free variables, 
we find a basis of V. This proves that the sum

rank A +  dim V =  r + ( n  — r ) = n

is the same for all arrays A o f the same size m x n. This is a first form o f the 
rank-nullity theorem, to be proved in Sec. 4.3.1.

Theorem  (Incomplete B asis). Let E =  £ (v i , v2, . . . ,  v m) be a finitely gen­
erated vector space, and S a linearly independent subset in E. Then there is a 
basis of E consisting of S and certain Vj }s.

P r o o f . Start from an independent subset S С E: If it does not generate E , 
then at least one among the V j’s is not in the subspace C(S), and we consider 
the independent set S' =  5 U {v j} .  After at most m such adjunctions, we obtain 
a maximal independent set, hence a basis of E  of the required form. ■

2.3 Infinite-Dimensional Vector Spaces
The language of linear algebra is not restricted to finitely generated spaces.

For example, the set E =  ^ (R ; R ) of all functions R  —> R  is a vector space. 
The zero function is the function that vanishes identically

/  =  0 <=> f(x )  =  0 for all i g R .

We add real-valued functions on R  as follows

( f  +  ff)(x) =  f (x )  +  g(x),

and multiply them by scalars similarly

(a f)(x ) =  a f(x ).
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(It turns out that we can also multiply two functions, hence speak of a multipli­
cation law in this vector space; but this possibility is irrelevant here.) Hence a 
function /  : R  —* R  may also be called vector, when considered as an element of 
the vector space .F(R; R ) . This vector space is huge, and it is more reasonable 
to work with subspaces. For example, we learn in a first calculus course that the 
zero function is continuous, the sum of two continuous functions is continuous, 
and so are the multiples of continuous functions. Hence we may say that the 
subset of continuous functions C (R ;R ) is a subspace of / '(R ;R ) .

For any subset A of a vector space E, the linear span C(A) of A is the 
smallest subspace of E containing A. It consists of the linear combinations— 
finite sums of multiples— of elements of A. If (а*)*€/  is any family in A, the 
notation

]T)
finite

represents a finite sum, obtained by taking at most finitely many х* Ф 0. These 
are the linear combinations that are considered in linear algebra: Remember

Infinite sums o f nonzero elements are not defined in vector spaces.

The following properties of a vector space E are equivalent by definition:
(г) E is not finitely generated

(гг) For each finite subset A c  E, there is an x  € E ,x £  C(A)
(in) For each positive integer n, E contains independent subsets 

of cardinality greater than n.
When they are satisfied, we say that E is infinite dimensional.

2.3.1 The Space of Polynomials
The simplest, and probably also most natural infinite-dimensional space is the 
space of polynomials.

Definition. A polynomial in one variable x is a finite sum of multiples of the 
monomials xn (n € N).

By definition, a polynomial is a linear combination /  =  £ finite а»х* of the 
integral powers of the variable x

x° =  1, x, x2t . . .  , xn, . . .

For any nonzero polynomial f  there is a maximal power in £ йп1,;е а*хг that 
occurs with nonzero coefficient: This maximal power is the degree of f .  Hence

d e g  (  X /finite a *x< )  =  n  a n /  0 a n d  a * =  0 for all i >  n.

Here are some polynomials

x3 -  lOx, x n +  l , -------— =  l  +  x + -----hxn_1.x — 1
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The degree of the first is 3, the degree of the second is n, and the degree of the 
last is n — 1. But the following expressions are not polynomials

x2 4- x “ 2 =  x2 4- l /я 2, i  +  1 4 -x -l----- +  x n H-------

We learn in a calculus course that the last infinite series may be identified with 
1 /(1  — x) when \x\ <  1: It is not a polynomial.

Each polynomial f  =  ^finite defines a polynomial function

^ , /(s )= E f in it e aia;< :

with which we may identify it,1 since if Infinite =  ôr
many values of x, then ai =  6* for all i.

The addition of linear combinations corresponds to the addition of functions 
(namely, adding their values), and a multiplication of a linear combination by 
a scalar corresponds to the multiplication of the corresponding function by the 
same scalar. (It turns out that we can also multiply together two polynomial 
functions, but this possibility is irrelevant here.) The definition of polynomials 
makes it obvious that a basis of the space of polynomials is furnished by the 
basic family

x° =  1, x, x2, . . .  , xn, . . .

A finite linear combination of the powers x* vanishes by definition only when 
all coefficients vanish, hence this family is independent. On the other hand, the 
space of polynomials is generated by these powers

П =  C{x* : i e  N).

The powers i < n generate an nth-dimensional subspace

n < n =  £ ( 1, x , . . . ,  xn_1) =  £ (х г : 0 <  i < n).

We shall adopt the convention that the degree of the zero polynomial is less 
than 0. The inequality

deg( /  4- g) <  max(deg / ,  degg),

is then true in all cases (even when g =  —/ ) ,  and { /  € П : deg /  <  n } contains 
the zero polynomial: We have

П<n =  { /  € П : deg/  <  n}.

This sequence of subspaces of the space of polynomials starts by

П<о =  {0 } : The trivial subspace consisting of 0 only,
П<1 =  R  : The subspace of constant polynomials,

П<2 : The subspace of polynomials a 4- bx.
1 Here we use the fact that the scalar field is infinite. Recall that a polynomial /  o f degree 

n  ^  1 has at most n roots: There are at most n  values of x  such that f ( x )  =  0.
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It increases indefinitely

{0 } С R  С П<2 С n <3 с  • • • С П<п С • • • С П.

The expressions а +  Ъх +  сх2 for some scalars а, Ь, and с make up the subspace 
П<з, of dimension 3. The quadratic polynomials, are the polynomials of degree
2 , namely the expressions а +  bx +  cx2 where с Ф 0. Note that the subset of 
quadratic polynomials is not a subspace of П since the sum of two polynomials 
of degree 2 may have degree less than 2: For example

( i 2 - b i + l )  +  { - x 2 +  1) =  x  +  2

has degree 1. (The quadratic polynomials constitute the set theoretic comple­
ment of П<2 in П<з).

Remark. The powers i ^  n generate an infinite-dimensional subspace

Wn =  C(xn,xn+1, . . . )  =  C(xl -.i^ n ).

The order of a nonzero polynomial ^finite0*3'1 *s by definition the smallest 
power i for which the coefficient а* ф 0. Hence

ord (  Efinite a*xl)  =  n On ф 0 and a* =  0 for all i < n.

Let us adopt the convention that ordO >  n for all integers n € N, so that

ord( /  -f g) ^  min(ord / ,  ord 5),

is true in general (even if g =  — / ) ,  and for each integer n ^  0

W„ =  { /  € П : ord /  ^  71}

is an infinite-dimensional subspace of П. The elements of this subspace are 
the polynomials divisible by xn. The sequence formed by the subspaces Wn 
decreases indefinitely

П  =  W o D  W i D  W 2 D  • • • Э  W n D  • • • Э  { 0} .

2.3.2 Existence of Bases: The Mathematical Credo
All mathematicians believe that

Every vector space Ф {0 } has a basis.

Life is indeed easier if we accept it, and the language of vector spaces is simplified 
if we accept it in the following general form.

Postulate. Let E be a nonzero vector space, A\ and A2 two subsets of E such 
that A i is linearly independent, and A 2 generates E. Then there is a basis 
В =  A\ U A'2 of E where A'2 is a subset of A2. ■
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In particular, taking A2 =  E, we obtain the general incomplete basis theo­
rem.

Corollary. Any independent subset A of a vector space E ф {0 }  may be 
completed into a basis of E. In particular, for any nonzero x  €  E, there is a 
basis of E containing x. ■

The preceding postulate can be derived from the axiom of choice.2 We take 
it from granted. The following example is meant to illustrate the difficulties 
that may arise in vector spaces that are not finitely generated.

Example. Consider the vector space E  o f all sequences a  =  (a n )n^o o f  scalars. 
Addition of sequences is defined componentwise

a +  b  =  (an)n^ 0 +  (6n)n^o =  (о-n +  bn)n^0.

Multiplication of sequences by a scalar is similarly defined componentwise

aa  =  a (a n)n^o =

The particular sequences

e0 =  (1 0 0 0 0 . . . ) ,  ei =  (0 1 0 0 0 . . . ) ,  e2 =  (0 0 1 0 0 . . . ) ,  . . .

are independent. They generate the subspace consisting of the sequences which 
are finally 0 (think of polynomials). For example, the constant sequence

fo =  1 =  (1 1 1 1 1 . . . )

is not in the span £(ei : i £ N ) since it is not a linear combination o f the 
e» (remember that linear combinations are finite sums). More generally, the 
sequences

f0, fj =  (0 1 2j 3J Aj . . . )  1)

together with the e* (г ^  0) constitute a free subset, not a generating set. We 
may still add the sequences

(0 1 22 З3 44 . . . ) ,  (112! 3 !4 !...) ,  (0 11' 22’  33* .. . ) .

The trouble is that we can continue forever, and never attain an explicit basis. 
Mathematical induction is not powerful enough to produce such a basis and 
a general maximality principle (equivalent to the axiom of choice) has to be 
invoked here. With it, it is easily seen that there is a basis of E  containing 
the sequences that we have mentioned. But it is not possible to enumerate it 
explicitly.

2Set theory has several axiomatic foundations: In all currently adopted ones, there is such
a statement. Speaking of the axiom of choice, the famous philosopher Bertrand Russel used to
say: “A t first it seems obvious, but the more you think about it, the stranger the deductions 
from this axiom seem to become; in the end you cease to understand what is meant by it!”
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2.3.3 Infinite-Dimensional Examples
It is not always possible to index a basis of an infinite-dimensional vector space
with the set N  of natural numbers. Let us illustrate this on some examples, 
borrowed from algebra and analysis (we shall use complex scalars in this section, 
although the complex field С will only be introduced in Sec. 3.3.2 below). This 
section will not be referred to, and may be skipped by readers unfamiliar with 
the context and its methods.

Definition. A rational function /  =  p/q is the quotient of two polynomials p 
and q, where q Ф 0 is not the zero polynomial.

We identify a polynomial p with the quotient p/1, and two quotients pi/qi 
and ръ/чч are identified when p\q2 — qip2, so that we may use simplified forms 
for rational functions. Each rational function has a representation f  =  p/q in 
simplified form where the polynomials p and q are relatively prime (have no 
common factor). In this form, q is uniquely determined up to a multiplication 
by a nonzero constant, and the finite set Zq o f its zeros is the set of poles Pf of 
/ .  The value f(x )  =  p(x)/q(x) is well-defined provided x is not in this set Pf 
so that f  defines a map

field is infinite, the common domain of two rational functions is also infinite and 
with the usual definition for the sum and multiplication by scalars, the set of 
real (or complex) rational functions is a vector space.

where the a* are n distinct scalars. We have to prove that all c* =  0. Without 
loss of generality, it is enough to show c\ =  0. Consider the equality

Since the а, (г ^  2) are different from a*, the sum in the right-hand side is 
bounded in a neighborhood of a\. Hence has the same property: This 
implies C\ =  0. ■

How can we complete the preceding independent set into a basis of the 
whole space of rational functions? Obviously, since polynomials are rational 
functions (p is identified with p /1), we may add the basis (xj )j^о of the space 
of polynomials. But the linear span of the preceding functions does not contain 
the powers l/(x -  a)j  for j  ^  2. And due to the fact that the denominator

D f  =  R  — Pf — > R  

having for domain the complement of its set of poles. Since the real (or complex)

Lemma. The family ( --------) is linearly independent.
\X — a/a€ R

P roof . Consider a finite linear combination
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of has no real root, we cannot express this rational function as a linear 
combination of the preceding ones. Eventually, let us indicate without proof 
how we may finally reach a basis of this space.

Theorem 1 . The family

i 1
x\

(x -  a)j+1 ’ (x2 +  bx +  c)i+1 ’ (x2 +  bx +  c)*+1 

(j € N; a, 6, с € R  with b2 <  4c), 

constitutes a basis of the vector space of real rational functions. ■

The meaning of this theorem is the following. Any rational function is a 
(finite) linear combination of simple rational functions listed in the theorem. 
Its interest is obvious for finding primitives of rational functions. It is also 
useful for computing iterated derivatives of such functions. But if we have this 
application in mind, we may note that while it is easy to write down the nth 
derivative of it is no so easy to compute iterated derivatives of

(x2 +  bx +  c)J'+1 ’ (x2 +  bx +  c)J'+1 *

The situation is simpler if we use complex scalars since we may then factor the 
denominators into degree 1 polynomials.

Theorem 2. The family

^ ' (x -  a^+i ’ (j' e  N; “  e  ° )  

constitutes a basis of the vector space of complex rational functions. ®

In other words, every complex rational function is a (finite) linear combi­
nation of elements of the preceding list. Grouping them suitably, we find that 
any complex rational function f  is the sum of a polynomial p(x) and o f finitely 
many principal parts

_i______. _  _  p  (  1 \
— Q>i (x -  at)m< \x — a » / ’

_ CM 
x

associated to the different poles a* of / .  Here, P{ is a polynomial having zero 
constant term: Р»(0) =  0.

Finally, here is an example which plays an important part in analysis. 

Theorem  3. The family

X?eax (j  G N; a € R )

is linearly independent in the vector space of all functions R  —* R .
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P roof . We have to consider (finite) linear combinations of functions of the 
mentioned type producing the zero function. Therefore, we introduce finitely 
many distinct exponents a* € R , with finitely many scalars c\j such that

CijX êaiX =  0 (vanishes identically).
finite

We must then prove that all Cij =  0. Grouping the terms corresponding to the 
same exponent (with the same index г), we see that we have to prove that a 
finite sum YlPie<XiX having polynomial coefficients pi, that vanishes identically 
has all pi =  0. We show this by induction on the number m of terms in such a 
sum.
(а) Case m =  1. Let p(x)eax vanish identically, where p is a polynomial. Since 
eaxe-<ix _  eax-ax _  eo _  ^  ^he exponential never vanishes and the assumption 
implies that p(x) =  0 vanishes identically. This can only happen if p =  0 is the 
trivial polynomial (having all zero coefficients).
(б) Induction step. Assume that for some m ^  1

У  P i(x)eaiX =  0 for all x  = >  Pi =  0 (1 ^  i <  m)
l^i^m

(where the pi s are polynomials, and the ai are distinct scalars). Consider a 
dependence relation having one more term

У  Pi(x)eaiX + p m+i(x)eam+iI =  0 for all x
l^i^m

(with polynomial coefficients pj, and am+i distinct from all preceding aj’s). If 
we multiply this identity by e-am+lX, we get

^ 2  Pi{x)eaiX +  pm+i{x) =  0 for all x,
l^t^m

where all a* =  at- — am+i are distinct and nonzero scalars. Differentiating this 
identity, we infer

qi(x)eiiX +  p'm+1{x) =  0 for all i ,

where qi =  diPi has the same degree as pi. Iterating this procedure d 4-1 
times where d =  degpm+i, we obtain a simpler identity

r i(x )e aiX =  0 for all x ,
l<t^m

still with polynomials r* having the same degree as Pi. By induction assumption 
however, the only possibility is now г* =  0 ( 1 ^ г ^  m). The degree considera­
tion shows that pi =  0 for the same indices i. There only remains a dependence 
relation

pm+i(x)eQm+l1 =  0 for all x .
As we have seen in the first part of the proof, it implies pm+1 =  0 also. ■
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Although we have considered real scalars, the reader may observe that the 
preceding proof also works in the complex case.

2.4 Appendix

2.4.1 Set Theory, Notation
A set is a collection of mathematical objects. It is given by a list between 
brackets, e.g. the set consisting of the two numbers 1 and 2 is {1 ,2 } . For 
infinite sets we use dots, e.g. the set of natural integers is

N  =  { 0 , 1,2 ,3 , . . . } .

or we list the property which is characteristic of the set. For example, the set 
of even numbers is

E =  {0 ,2 ,4 ,6 , . . . }  =  {2n : n is a natural integer},

the set of prime integers, or simply the set of primes is

P =  {2 ,3 ,5 ,7 ,1 1 ,.. .}  C N.

To indicate that an element belongs to a set, we use the € symbol: Instead of 
“23 is a prime” we may equivalently write “23 € P ” , which is read “23 is an 
element of—or belongs to— the set P  of primes” . The negation of € is denoted 
by e.g. 1 £ P: the integer 1 is not a prime.3 The set of even integers and the 
set of primes are subsets of—or contained in— the set of natural numbers N. 
This relation, also called inclusion is represented by the sign С  (as a reminder 
of the first letter in “contained” ), e.g. P  с  N. The notation А С В is also 
symmetrically denoted by В D A. To prove an equality of two sets A and В , we 
may proceed by double inclusion, namely prove А с  В and В С A. When two 
sets E , F  are given, we may define their union, denoted by E U F  =  F  U E  (a 
reminder of the first letter in “union” ): It is the set consisting o f the elements 
which belong to at least one of the sets in question. For example, the union of 
the set of natural numbers N  and the set of negative integers { —1, ~ 2, —3,. - ■} 
is the set Z of rational integers (first letter of “Zahl” , which is the German word 
for “number” ). The intersection, of two sets E and F, denoted by EC\F =  FC\Et 
consists of their common elements. For example, the intersection of the set of 
even numbers and the set of primes is { 2}, a set consisting of a single element, 
also called a singleton set. Here are two equivalent notations:

2 € P  and {2 } С P.

If E  is a set, the subsets of E constitute a new set

________________ 'Р(Б) =  {A : A is a subset of E}.
3Here is a reason for this: We like to have unique prime decompositions (up to order) of 

integers, e.g. 6  =  2*3.  If we accepted 1 as a prime, we could write 6 =  2 - 3 =  1 - 2 * 3  =  
1 - 1 * 2 - 3  =  . . . ,  and hence would not have unique factorizations.
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The empty set 0  is a subset of any set E, hence 0  G V(E) and this shows that 
V(E) is never empty! By convention, E  itself is also a subset of E: E € V(E). 
If two subsets A and В satisfy an inclusion А с  В, we denote by В -  A the 
relative complement consisting of the elements of В not in A. The complement 
of a subset А С E is the subset

A° =  E -  A =  { z  G E : x £ A).

By definition, the complement of A° is A itself

(Ac)c =  A.

The complement of a union is the intersection of the complements

(A U B )C =  AC{1 BC.

The union of any family of sets is the set consisting of the elements which belong 
to at least one. For three sets, A , B, and C, this union is the set A U В U C. 
It can be obtained by first taking the union of A and B, and then the union of 
A U В and C. Hence

(A U B) U С  =  A U В U С =  A U (B U C).

This is the associativity of the “U” operation. Similar considerations hold for 
the intersection:

( А П В ) П С  =  А п В п С  =  Ап(ВГ\С).

There is also a distributivity relation

A C ( B U C )  =  (A n B )U (A n C )

(proof by double inclusion: Make a picture!). These operations make the basis 
of the Boolean algebra of subsets of a set E.

When E and F  are two sets, their Cartesian product E x F  is the set of 
vertically written pairs (*) where x is taken in E and у in F. In particular, when 
E =  F, the Cartesian product E2 =  E  x E consists of pairs (*) of elements of 
E ,E 3 =  E x E x E  consists of vertically written triples. More generally, a list 
o f n elements of E , written vertically, is called an n-tuple, and

En =  E x E X “ - x E
'-----------v-----------/

n terms

denotes the set o f n-tuples of elements of E. Here are some examples of n-tuples

/ * Л  
22

€ R 3; У . *2 €

\ X n /

G En (x ,y ,z ,x i G E).
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We reserve the notation En for the set of rows (x i ,x 2, . . . ,  xn) consisting of n 
elements of E.

A map or mapping from a set E to a set F  is a correspondence which to 
each element x G E associates one element у G F. We often denote a map 
by f  : E —> F } and we indicate the correspondence at the level o f elements by 
x ь-> у =  /(x ) .  For example, a map {1 ,2 ,3 } —» R  is a correspondence

1 i— * xu
2 •— ♦ x2,
3 i— > x3.

Such a map may be identified with the vertically written triple (Xi)<=i,2,3- When 
I  is any set, a map f  from I  to E  can also be viewed as a list o f elements of E 
indexed by I: If f(i)  =  x*, namely if /  : i »-> x», we identify /  to the list of its 
values, which constitutes & family (Хг)*е/ of elements of E , indexed by I. When 
j  is a particular element of J, the element Xj G E is called the jth  component 
of the family in question.

If f  : E —> F y E  is the domain and F  the target o f / ,  and for each x G E 
there is only one corresponding element / ( x )  G F. The graph o f /  is the subset

Gf  =  { ( f ^ ) ' . x € E } c E x F .

The image of /  is the subset

im /  =  f(E ) =  {y £ F : у =  / ( x )  for some x G E }  С F.

When f(E ) =  F, we say that /  is surjective, or onto. When

х Ф у = >  / W  ^  /(2/),

we say that /  is injective, or 1-1 (read “one-to-one” ). When both conditions 
hold, we say that f  is bijective, or 1-1 onto. When there is a bijection between 
two sets E and F, they are equipotent, and this is a definition of the fact that 
they have the same cardinality (same number of elements). Let f  : E  —> F  be a 
map, and A a subset of E. Restricting the domain of /  to A , we obtain a map 
/| a '■ A —> F, called restriction of f  to the subset A. The numerical map on E 
defined by

, . J 1 if x G A 
^ - \o  if x $ A ,  

is called characteristic function of A.

Fundam ental Sets o f  N um bers

We have introduced the canonical sets N  and Z. Here are larger ones

Q :  set of rational numbers m/n ( m , n G Z , n ^ 0 ) ,
R  : set of real numbers (scalars),
С  : set of complex numbers (to be introduced in Sec. 3.3.2).
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A b ou t the “ sigm a” sum m ation sym bol

To save space, we often use the “sigma” summation symbol as follows

/(1 )  + / ( 2 ) +  ■■■ +  / ( « ) =  E  /(<).

Here, the free variable i may be replaced by any other:

E  / ( о  =  E  m  =  E  m -
l<i<n Kj'^n l< ^ n

The result depends on the choice of function f  and on the length n of the 
summation. The triangle inequality

|ai H------- 1- an| ^  |ai | H------- h |an|

is now simply written

| e  a‘ | <  E  ia'i-

By convention, a sum containing no term is 0: 2o< n< i f(n )  =  0 since there are 
no integers between 0 and 1. A summation is extended over a certain range, 
determined by a property of its free variable, explicitly described under the £  
symbol. In linear algebra, the free variable is often an index, as in

fll +  • * • +  On =  ^   ̂ O-i'

An nth degree polynomial is simply written

anxn +  an_ ix n-1  H------- 1- a\x +  a0 =  ^  a{Xl.
O t̂^n

A product of terms may similarly be represented by a big П symbol

/ ( l ) / ( 2 ) 1 ■ • / ( n )  =  П  / « =  П  / ( Я -
l^i^n K K n

By convention, a product with no term is equal to 1.

Logical sym bols

Mathematicians use the logical quantifiers as abbreviations:

V x . . .  is read “for all x . .. ” , and 3 x . . .  is read “there exists a n i . . . "
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2.4.2 Axioms for Fields of Scalars
The scalars, elements of a field K y are represented by a, 6, c , . . .

1. a +  (b +  c) =  (a 4- b) +  с

2. CL b =  b +  CL

3. 30  e K , V a e K :  0 +  a =  a

4. V a e t f ,  3 - a e K : a  +  ( -a )  =  0

5. a(fec) =  (ab)c

6. ab =  6a

7. 3 1 (^ 0 )< =  K , V a e K :  la  =  a

8. V a € i f , a Ф 0, 3 a-1  e  i f  : aa-1  =  1

9. a(6 +  c) =  ab -f ac (Distributivity)

2.5 Exercises
1. Show that the columns containing pivots of a row-reduced array are inde­
pendent.

2. Let a, b, с  be three elements of a vector space, (a) If a and b  are independent, 
b  and с are independent, does it follow that a and с  are independent? (b) If 
a and b  are independent, b  and с are independent, a and с are independent, 
does it follow that a, b, and с are independent?

3. By definition, the monomials 1, x, x2, . . . ,  xn, . . .  form a basis of the space 
of polynomials П. Show that the polynomials 1, x - 1, ( x - 1)2, . . . ,  ( x - l ) n, .- -  
also form a basis of this space.

4. (a) The set of functions t »—► f(t)  =  acos(£ +  6), where a and 6 are arbitrary 
real numbers, is a natural vector space: Explain why.
(b) What is the dimension of the vector space generated by

cos2 £, cos 2*, sin2 1, and sin2t?

Is this vector space the same as the space generated by 1, cos2£, and sin2£?

5. The set of linear equations ajXi H----- +  anxn =  6 is a vector space E. What
is its dimension? Is the subset consisting in equations having a solution a vector 
subspace o f E?

6 . Show that the intersection of two subspaces of a vector space E is a vector 
subspace o f E. More generally, show that the intersection of any family of 
subspaces o f a vector space E is a vector subspace of E. Give an example of

К  is an 

additive 

Abelian group

К  — {0 } is a 

multiplicative 

Abelian group
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two subspaces V”, W  of R 2 such that V  U W  is not a subspace. Show that a 
space of dimension greater than or equal to 2 (over the real field R ) is not a 
union of finitely many 1-dimensional subspaces.

7. What is the linear span of the 2n vectors ± e i ±  e2 ±  • • • ±  en in R n? Extract 
a maximal subset of independent vectors from the preceding family.

8 . Find a basis of the subspace of R n consisting of the n-tuples (x{) such that
x* =  0-

9. The set of sequences (а*)*^о =  (ао> <*i». . . ,  а „ , . . . )  of real numbers is a vector 
space E  if we define scalar multiplication and addition componentwise

c(fl()j 0,\ j • • • j • • •) =  (c&Oj СЛ\,. .. , C(Ln, . . .),
(a o ,a i,. . .  , a „ , . . . )  +  (6o ,b i,. . .  , 6n, . . . )  =  (ao 4- 6o ,a\ +  6i , . . .  ,an +  6„ , .. . ) .

Which of the following conditions characterize a vector subspace of E:

(а) ai+1 =  of (i ^  0)

(б) ai+i =  2а» +  1 (i ^  0)

(c) a»+i =  ai 4- a{- i  (i ^ 1)

(d) а» ^  0 (г ^  0)

(e) ao is an integer

( / )  The ai are 0 for i sufficiently large.

10. The sum of two vector subspaces V  and W  of a fixed vector space E is 
defined by

У  +  =  { v  +  w  : v G V , w €  W ] С E.

Show that V + W  is a vector subspace of E. What is V +V ?  When is V +W  =  V ? 
What are the properties of this composition law: Associativity, commutativity, 
existence of a neutral element? Let us define an external multiplication of 
subspaces by scalars as follows

0V =  {0 } ,  and aV =  V  if а Ф 0.

Check the formal properties satisfied by this external multiplication: Is the set of 
subspaces of E  a vector space with respect to these addition and multiplication?

11. (a) Let T be a fixed positive number. Prove that the set of T-periodic 
functions /  : R  —> R  is a vector space.
(6) Is the set of periodic functions (arbitrary periods) a vector space?

12. Let П be the space of polynomials in one variable x. (a) The set of 
polynomials having degree greater than or equal to some positive integer n is 
not a subspace of the vector space of polynomials. Why?
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(b) Let V be a subspace of a vector space E. Is the complement V е =  { v  G E : 
v  $ V ] a subspace of E ? Do you see a relation between this question and the 
preceding one?
(c) Prove that the subset of polynomials vanishing at the point x  =  2 is a 
subspace of П. Is the subset of polynomials divisible by a fixed positive power 
(x—2)d of x —2 a subspace of П? If yes, give a basis of this subspace. For m  ^  1, 
let Vm be the subspace spanned by 1, x m, x2m, . . . ,  xkm, . .. Give a condition on 
m and £ in order to have Vm contained in V*.

13. (a) Show that for any field К  and any set E , the set of functions from E 
to К

F{E\ K ) =  { f  : E  —> K }

is a vector space over К .
(b) Check that the set F 2 =  {0 ,1 } with addition and multiplication defined by

+ 0 1 0 1
0 0 1 0 0 0
1 1 0 1 0 1

is a field.
(c) For any subset А с  E let 1A 
defined by

1 a ( x )

so that the map А $A defines a bijection V(E) Д  T(E\ F 2). The power set 
of E can thus be identified with a vector space. To which operations on subsets 
do addition and multiplication of functions correspond?
(d) The field F 2 defined in (b) is the field of integers mod 2 : 0 represents the 
“ even” class, and 1 the “ odd” class. Check that the field of integers mod 3 has 
addition and multiplication tables

+ 0 1 2 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

In fact, for any prime integer p =  2, 3, 5, 7, 11, 1 3 ,..., the classes m od p 
constitute a finite field F p with p elements. In such a field, the scalars

1, 14-1, 1 +  1 +  1, . . . , n l  =  l  +  l  +  . . .  +  l ,  . . .
---------- v--------- '

n terms

denote the characteristic function E —> F 2,

f  1 if x G A 
[0  if x £ A,

are not all different!



2.5. EXERCISES

Notes
Here is the feeling of dimension, as vulgarized by Karl Sabbagh

( . . . )  moving from two dimensions to three, three to four, and four to 
many carries with it an idea of a multidimensional “space” in which 
things exist or happen in the same way as in our familiar three- 
dimensional space. If I  hold my finger in the air above my desktop, 
I can describe its position with three numbers: the perpendicular 
distance from the surface and the horizontal distances from the two 
edges of the desk, which are at right angles. I  don’t know what it 
would mean to describe it by four figures, or five or six. ..

[from The Riemann Hypothesis]

Repeat definitions until you understand them!



Chapter 3

Matrix Multiplication

In typography, the word matrix refers to a lead rectangle on which the characters 
are placed in view of the printing process. By analogy, in mathematics the term 
matrix refers to any rectangular array containing mathematical entities. If it 
has m rows and n columns, it is a matrix o f size m x n (read m  by n). In 
Chapter 1, arrays were viewed as representations of linear systems. Here, we 
deal with matrices in a more general and abstract way: Matrices o f the same 
size form a vector space. Two matrices of suitable size may even be multiplied 
together.

3.1 Row by Column Multiplication

3.1.1 Linear Fractional Transformations

To guess how to define the multiplication of 2 x 2 matrices, let us consider the 
composition of linear fractional transformations. Such a function is defined by

r ( \ ax +  b ,
У ~  f ( x) — -----—з where ad ф be.cx +  d

The condition ad ф be implies that с and d are not both 0, hence the denom­
inator is not identically 0 . Moreover it also shows ^ ф jj so that numerator 
and denominator are not proportional. The function /  is not a constant, and 
is well-defined except where the denominator vanishes. When e Ф 0, the point 
x  =  —d/c is not in the domain of f :  This is a vertical asymptote for its graph. 
(For у =  a/с , there is a horizontal asymptote; linear fractional transformations 
are bijective maps if we add a point “infinity” to the line, and extend in a 
natural way the definition of / . )  If we make a change of variable

at +  В
x — 9\4 — — , f where aS Ф #7 ,7  t +  o

60
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we find a composite in the form o f another linear fractional transformation

-  ^ 3 ± f± ^  -  (fla + + M)
c^ + f  +  d {ca 4- dry)t 4- (c0 4- dS) '

This suggests to define the product o f 2 x 2 matrices by

(a  b\ (a  P\ _  foot 4- a/? 4- bS\
\c d j \7  6 J \̂ ca 4- d*y ф  4- dSJ '

3.1.2 Linear Changes of Variables
The multiplication law for matrices (to be introduced below) can be motivated 
more generally as follows. In

т/i =  a n Z i-f ••• 4-ain^n

Ут — O m l^ l-!-  *•* ~\~0.mnXni

let us consider a linear change o f  variables

£1 =  &nti4- -\~b\ptp 
i I •

xn =  bniti+  ••• 4-bnptp.

For the ith variable yi we have

=  aii^i 4- •“ 4- 0>inXn

=  aii(6n£i 4- +  biptp)

4- ••• 4-
Q’tn(^nl^l 4* bnptp)

=  (S fca*fĉ fc 1^ 1 +  ••• + 1 ( E  k^bkp)

Hence we have found the expressions

yi =  cii^ i+  • • • +Ciptp

Ут —  C m l^ l"b *•* 4 'Cm ptp,

with the coefficients

C{j = aikbkj (1 ^  i < m , l  ^  j  < p ).
l<k<n
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In short, the result of the linear change of variables is

Vi =  HjCijtj where cy =  2̂ kaikbkj.

In particular when m =  n =  p =  2 we recover the result of the preceding 
subsection, where the notation was

an =  a, ai2 =  6 ,. bn =  oc, b\2 =  /? ,. . .

3.1.3 Definition of the Matrix Product
The product of a matrix A of size m x n and a matrix В of size n x  p is the 
matrix С  =  AB of size m x p  having the entries

Cij — anbij Ч- di2b2j  “b ■ * * “H Qinbuj

=  52 aikbkj (* < i  < m»l < j  ^ p ) '
1

Observe that the entry c#  can be computed from the knowledge o f the ith 
row of A and the jth  column of В only. The coefficients of the product are 
obtained by multiplication of the rows of A by the columns o f B. Here is an 
illustration of the coefficients involved in the computation of C23

(О  О О О сЛ  
•  •  •  •  •
О О О О О
о о о о о

Лэ о 
о о
О О О о
о о 

\ 0  о

сЛ
о {о о о о \  

о о ■ о 
о о о о
о о о о

Taking р =  1, we see that a matrix A of size m x n  can be multiplied by an 
n-tuple x  and the result is the m-tuple

Ax  =

( an xi +  
^21^1 +

■f- ainxn  ̂
4- a2nxn

\amiXi +  • • ■ +  dmnxn/

Hence the simple equation A x  =  0 is equivalent to the homogeneous system

( H S )

ацЖ1 +  
0>2\Х\ +

*4" ainxn — 0 
+  CL2nXn =  0

=  0.

The symbolic way o f writing linear systems is now explained by matrix multi­
plication: The general linear system is similarly written A x  =  b.
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E xam ple: D iscretization  o f  Graphs

The screen of a computer is a matrix of pixels 0 and 1 (black and white case). 
Any picture can thus be identified with a matrix of 0’s and l ’s. In particular, 
the graph of a function is such a matrix.

Let us assume that our screen is a square, and let A =  (a^) be the digitalize 
tion of the graph of a function / .  By definition we only take one active pixel in 
each column. In the neighborhood of a point where the derivative is large, this 
is not very good on the visual point of view; but this respects the fundamental 
mathematical principle that each value of x  has only one image f(x ). Hence

1 if i =  f { j )
0 otherwise.

In a picture of this graph, the row number increases towards the bottom, con­
trary to the usual convention for Cartesian coordinates: We respect the matrix 
convention. But the j -axis has the usual orientation. Consider a second digi­
talized graph В =  (bij):

bij =
1 if i =  g(j)
0 otherwise.

The matrix product С =  AB  =  (c^) has the coefficients

Cij -  aikbkj- 
к

In such a product, there is only one nonzero element in the j th column of В 
(but there may be no, or many nonzero elements in the zth row of A).

к X 3 t 3\ j i Cij

к J

У =  / ( z ) x =  g{t) У =  /( s W )

In the row by column product, a single b coefficient is nonzero, the one for which 
к =  g (j)} and this one is bkj =  1. Hence

Cij =  O'igU) •

This coefficient is often zero: It is nonzero precisely when its first index i is f(k)

=  1 Ш )
otherwise.C ij  —  a ig ( j )

We recognize the matrix of the digitalized graph of the composite f o g :
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The matrix product of digitalized graphs is the digitalized graph of 
the composition.

Properties o f  the M atrix  P rodu ct

By definition, the first row of a matrix product is obtained by products of the 
first row of A successively with all the columns of В 

(
ац a, 12 • • • ciin

\

b\j
b2j

bnj

One crucial case of product is when A is a row of length n and В  a column of 
the same length: The product is a 1 x  1 matrix, namely a scalar (no need to 
embed it between parentheses)

(fll, tt2, . .  •, &n)

(  Xi\ 
X2

VX" /

a iz i +  a2X2 H--------1- anz„.

Conversely, the product of a unicolumn matrix by a row matrix leads to a 
rectangular matrix

( bA
62

(a i,a 2, . •j &n) =

(b\ai 
b2a 1

61 аг . 
62^2 •

. b\an ̂  
■ 62a„

\pm) \pmai bma2 . • bmanJ

The matrix product is not commutative: Even for square matrices, we may find 
AB Ф BA. However, it is obviously distributive with respect to addition. For 
example, the square of a sum can be computed as follows

(A 4- B )2 =  (A +  B)(A  4- В) =  A{A  4- В) 4- В (A  4- B)
=  A2 + AB +  BA +  B2.

But here, AB  4- BA is not usually equal to 2AB.

Here is another interesting product:

(a n  . . .  a\j . . .  ain  ̂
a2i . . .  a2j . . .  a2n

\ ^ m l  • • • Gmj • • • Q>mnJ W

0 
~

(  aij\

1 II ajj

■ • o
'
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We infer that the matrix product by e; extracts the j  th column of the matrix A 

A ej — aj =  j  th column of A.

From this, we may deduce the next important result.

Theorem. The matrix product is associative: (AB)C =  A(BC) for matrices 
of adapted sizes.

P r o o f .  Let b j denote the jth  column of B. By definition of the multiplication 
“row by column” , the j  th column of AB is Ahj. On the other hand, we have 
seen that this column is also (AB)(ej). This shows

A(Bej) =  Ahj =  (jth column of AB) =  (AB)(ej).

For any column vector x  =  ^  ж»е* we easity deduce

A(Bx) = (AB)x.
Namely

jth  column of (AB)C is (AB) (jth  column of C) = (AB)cj, 
while the first part proves

jth  column of A(BC) is A (jth column of (BC)) =  A(Bcj).
The theorem is proved. ■

Definition. A diagonal matrix is a square matrix having zero entries outside 
its main diagonal: aij =  0 for all i Ф j .

The products with a diagonal matrix are especially simple to compute. Here 
is an example

/c i  0 0 . . .  0 \ / ац • • • o-ij • • • ain\
О С2 0 0

Vo 0 ...

(  cian  
C2̂ 21

0 2 1 0>2j • • • <*2n

C n / \ fln l • • • °m j • • • fln n /

. . .  c\a\j . . .  c ia in^

. . . C2d2j • • • C2̂ 2n

\Cnflnl • • • • • • Cnann/
A diagonal matrix having diagonal entries c i , . . . ,  Cn (as in the preceding equal­
ity) may safely be abbreviated by diag ( c i , . . . ,  Cn).

Definition. The identity matrix In is the diagonal matrix 

In =  d ia g ( l , . . .  ,1) (s iz en x n )
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having 1 }s on its main diagonal.

The conventional notation is In =  (Sij) where

0 if i Ф j
1 if г =  j ,

is the Kronecker symbol. Hence

In =

/1 0 0 . . 0 (Л
0 1 0 . . 0 0
0 0 1 . . 0 0

0 0 0 . . 1 0
0 0 . . 0

These matrices act as multiplicative units: If A has size m x n, then

Im.A =  A =  AIn.

Definition. A matrix A of size m x n  is left invertible when there is a matrix 
В of size n x m  such that BA  =  In.

When BA  =  / n, we say that В is a left inverse of A. One uses a similar 
terminology for “right” instead of “left” : A right inverse С  of A is characterized 
by AC  =  Im. The case of square matrices is particularly important.

Definition. A square matrix A is invertible when there is a square matrix В 
of the same size which is both a left and a right inverse of A, namely when

AB  =  BA  =  In.

3*1.4 The Map Produced by Matrix Multiplication
Each matrix A of size m x n defines a map

La R n
x

-> R m 
-> у  =  Ax.

In fact, the matrix product has been defined so as to reproduce the composition 
o f maps. Let us see this on the example of 2 x 2 matrices. Using the same 
notation as at the beginning of this chapter, we consider the transformations

у  =  Ax, x  =  Bt,

or in extenso
I  Vi =  
I 2/2 =

ax i -f bx2 
cx i +  dx2.

( x i  =  
\ x 2 =

=  at\ +  (3t2 
7<i +  &2-
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Hence

f y\ =  a(ati +  (3t2) +  6(7*1 +  Л2) =  (aoc +  brf)t\ +  (a0 +  bS)t2 
\ У2 =  c(ati +  (3t2) +  +  St2) =  (ca -f ^7)^1 +  (c0 +  d6)t2.

As with linear fractional transformations, the matrix product has been defined 
in such a way as to have

у  =  Ax =  A(Bt) equal to у  =  (AB)t.

This equality
(AB)  t =  A(Bt)

shows that the mappings
t ^ y  =  (A B )(t), 

t ^ x  =  B t h H y  =  ylx =  A(Bt)

are equal:

M atrix multiplication corresponds to composition o f  maps

Lb
Lab

La -  La (Lb (t)).

In fact, the matrix product is precisely defined in such a way as to have this 
property. Since the composition of mappings is associative, it is then obvious 
that the matrix product is also associative.

A  consequence of the equalities

A ej  =  aj =  jth  column of A

is the following. The image of the canonical basis by the mapping La is the 
family of columns of A. The image of the whole space R n by La consists of the 
linear combinations of the columns of A , hence is the column space of A

im(La ) =  ^(columns of A).

3.2 Row Operations and Matrix Multiplication
With respect to coefficientwise addition and multiplication by scalars, the ma­
trices of fixed size m x n form a vector space of dimension mn. The canonical 
basis of this space is

(Eij)l^i^m,
where Eij denotes the matrix having only one nonzero coefficient— a 1— placed 
at the intersection of the ith row and jth  column.
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3.2.1 Elementary Matrices
It is easy to formulate the row operations as matrix products.

Definition. The elementary matrices are the matrices obtained from an iden­
tity matrix Im by a single row operation.

The identity matrix Im itself is an elementary matrix: It is obtained from 
Im by multiplying any of its rows by the nonzero scalar 1. Let us now consider 
the three nontrivial cases separately.

(1) Let Ei(c) denote the elementary matrix obtained from Im by multiplying 
its ith row by the nonzero scalar c. Hence

Ei(c) =  Im +  (c -  l)Eu.

Then, for any matrix A of size m x n, Ei(c)A is obtained from A by multiplying 
its ith row by c. For example

f c  0\ fax . . .  an\ _  fcai . . .  can\
\0 l ) \ b i  . . .  bnJ - \ b ! . . .  bn ) '

If с ф 0, this is a row operation. Observe that abbreviating the rows by pi, the 
preceding matrix product can simply be written

(; ° ) ft) - te) ■
as if the rows were scalars. The elementary matrices of the first type Ei(c) are 
diagonal matrices: They have zero entries ay (i ф j )  outside the main diagonal.

(2) Next, consider the elementary matrix obtained from Im by exchange o f its 
ith and j  th rows

Pij ~  Pji =  Im ~  Eii +  Eij — Ejj + Ej{.

A left multiplication by Pij exchanges the ith and jth rows of A. For example

Pl2 = 0 0

Vo

o\

0

1 /

Here is a typical case 

'0/ 0 Л  fa\ . . .  an\ _  fb i . . .  bn\
\1 0 )\ Ь г ... bnJ ~  \ai ... a n ) 9
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which can be abbreviated

or simply

(3) Finally, let Eij(c) be the matrix obtained by adding с times the jth  row to 
the ith row of Im

(c) =  Im +  cEij (i ф j).

This matrix has a с located in the (ij) position, and when i >  j ,  this coefficient 
appears below the main diagonal. A left multiplication by Еу(с) (г ф j) ,  replaces 
the ith row pi of A by pi +  cpj. For example, if we add с times the first row to

the second row of ^ , we obtain ^  ^ , and a left multiplication by this

matrix replaces the second row p2 of A by p2 +  cp\

Л  0 \ / o i  . . .  ai . . .  an \
\ c  l ) \ b i  . . .  bn J  \ c a i + b i  . . .  can +  bnj ’

f 1 = (  *  )
\ c  1 j  \p 2)  \c p i + P2j

Let us summarize our observations:

A left multiplication by an elementary matrix reproduces the row 
operation that produced it.

Caution. Some books reserve the denomination of elementary matrix to the 
third type Eij(с) (i ф j) . Products of these special elementary matrices cannot 
produce matrices of the first and second general type (see Sec. 10.3.2). However, 
consider the following sequence of row operations, where с is a nonzero scalar:

P1 W~c~lpaW~c’lp2V\P2J \Cpl + P 2J \cp\ +  P2)  \ ср 1 J 

It corresponds to the identity

С ОС ‘ПС 9 - С -Г)-
In particular, up to a sign, a permutation of rows may be obtained using only 
the special operations of the third type

G oc. .)(! a-G »)■
Since row operations are invertible, the elementary matrices are left invertible, 
and in fact invertible: The inverses are elementary matrices of the same form

Eiic) - 1 =  Ei(l/c), P r1 =  pijt Е Ж Г 1 =  Eij(—c).
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Proposition. All products of elementary matrices are invertible.

P r o o f .  If the inverse of the elementary matrix E{ is (1 ^  i ^  /с), then the 
inverse of E\ • • • Ek is Fk • • • F\ as the following computations show

Alternatively, one may argue as follows. Let A be left invertible, say BA  =  J, 
and assume that this left inverse is also left invertible, say С В =  I. (In our case, 
В  is a product of elementary matrices, hence left invertible.) I claim that A is 
invertible, with inverse B. Observe that by associativity of the matrix product

Hence С — A, and С В =  I  is simply AB  =  I. This proves that В  is also a right 
inverse of A.

3.2.2 An Inversion Algorithm

Here is a useful definition.

Definition. A square matrix A =  (ay) is upper-triangular when it has zero 
entries below its main diagonal: aij =  0 for all i >  j .  It is lower-triangular 
when it has zero entries above its main diagonal: ay =  0 for all i <  j -  It is 
triangular when it is either upper-triangular or lower-triangular.

For example, if we add a multiple of the ith row to the jth  row o f the identity 
matrix, we obtain an upper-triangular matrix when i >  j ,  and a lower-triangular 
one when i <  j .  A row-reduced form of a square matrix is a particular case 
of an upper-triangular matrix, but the following upper-triangular matrix is not 
row-reduced

E i---E kFk -~ Fi =  ••• =  ExFx =  7,

Fk * "F\Ei • • • Ek
=i

(undo first what has been done last, see Sec. 4.5.1).

Proposition . Any squaw matrix A of maximal rank is invertible.

P r o o f . Take a square matrix A of maximal rank r =  m =  n. Using suitable 
row operations, we may bring A into echelon form, say A ~  U. Since by 
assumption A  has maximal rank, this echelon form has l ’s on the diagonal.



3.2. ROW OPERATIONS AND MATRIX MULTIPLICATION 71

Using the matrix multiplication formalism for the row operations we get

/1  * . . .  *\

0 1 *
U = Ek ■ • • E\ A

№ 0 \

Pursuing suitable row operations, we may attain a row-reduced echelon form, 
where 0’s are to be found above each pivot: The only possibility for this row- 
reduced echelon form is the identity matrix

V =  E f - E k-- -EiA =

/1  0 

0 1

Vo ...

0\

0 1 /

=  In-

Hence after multiplication by a finite number of elementary matrices, we reach 
the identity matrix

Et • • • E\A =  In.

This shows that the matrix В =  Et • • • E\ is a left inverse of A. But we have 
proved that В is a product of elementary matrices, hence is invertible:

B~l =  B~lI  =  B~\BA) =  (B~1B)A =  IA  =  A.

The inverse o f A  is В =  Et • • • E\. ■

Algorithm. To find the inverse of a square matrix A of maximal rank, we have 
to perform row operations on A until we reach the row-reduced echelon form 
rref(A) =  I. The inverse A~l is the product of the elementary matrices used 
to achieve this form. Here is a practical way of proceeding. Observe that if we 
carry the same row operations on the extended array (A 11), of size n x 2n, each 
such operation acts on the second part as well, namely

E(A  11) =  (EA  | E l) =  (EA \ E).

The second part of the array acts as a memory for the operations performed. 
Hence finally

E f - E l(A\I) =  (Ee - - -E 1A \ E c E l) =  ( I \ A - 1).

Here is a procedure for inverting a square matrix A of maximal rank:

The inverse of A is found in the second half of the reduced row- 
echelon form of (A  11).
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Example. Let us find the inverse of the matrix

Let us carry the following row operations on the extended array

1 3 1 0 °\ Л 1 3 1 0 °\
2 - 1 0 1 0 -  0 2 - 1 0 1 0 I
3 3 0 0 1 / \o 1 - 3 - 2 0 I

1 3 1 0 °\ Л l 3 1 0 ° \
1 - 3 - 2 0 1 -  0 l - 3 - 2 0 1
2 - 1 0 1 0 / Vo 0 5 4 1 - v

1 0 6 3 0 - 1

3.2.3 LU Factorizations

In this subsection A will denote a square, invertible matrix, say o f size n x  n. 
If A =  LU is the product of two triangular matrices, the first one L lower- 
triangular, the second one U upper-triangular, then the system A x =  b can be 
solved in two easy steps. Putting С/х =  y, we have to solve

Hence we start by solving Ly =  b, which is a lower-triangular system. Having 
done that, there remains to solve С/х =  y, which is an upper-triangular system.

Exam ple. Let us solve the following system

0 0 1 I  \ T?
0 1 - 3 - 2 0  1

1 0  0 3 - f  
0 1 0 - 2 + j  
o o i  I  '

Hence

Ax =  L С/х =  b.
=y
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We first solve

This system is simply
V l
VI +У2

=  bi 
=  62

t 2/1 +  2/2 +  2/3 =  b3.
We see successively (working from top to bottom)

(
2/1 =  h
У2 =  6 2  — 2 / 1  =  — b\ +  6 2  
2/3 =  63 — У\ — У2 =  —62 4- Ьз-

Let us check this: Indeed 

(i
Then we have to solve the system

namely, with the found values of the t/t’s

1 1
Л  h

0 1
1 x 2

0 0 1 /  U

This is the triangular system

#1 4- %2 +  X3 =
X2 +  X 3  =

b 1
-b\ 4- 62

[ x3 =  —62 4- 63.

As we are used to, we now work by back-substitution (from bottom to

xz =  —62 4- 63 
X2 — —b\ 4- 62 — ( “ 62 4- 63)

=  —61 4- 262 — 63 
X\ =  b\ — (—b\ 4- 2b2 — 63) — (—62 4- 63)

=  26i — b2-

We may now verify
2b\ — 62 

—61 4- 262 — 63 
—62 4- 63

The conclusion is the following
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If we know a decomposition of A as a product LU (L lower-triangular 
matrix, U upper-triangular matrix), then the system Ax. =  b  is 
equivalent to two successive triangular systems.

The next question is then: How can one find the factors L and U from A  (when 
this is possible)? Here is an answer.

If it is possible to bring A into row-reduced form U, only using oper­
ations consisting of “adding to a row a multiple of a previous one, ” 
then A =  LU with U equal to this row-reduced form, and L is upper- 
triangular with 1 }s on its main diagonal.

This is easy to see. Indeed, the row operations in question involve multipli­
cations by matrices Eij(c) which are of the mentioned form, and so is their 
product E:

A ~  EA =  U implies A =  E~l U =  L\U.
We can take

=  E~l : product in the reverse order of the E ij(-c ) ,

also lower-triangular, with ones on its main diagonal. More explicitly, if the ith 
row pi(U) o f U is obtained from pi (ith row of A) by successive subtractions of 
previous pivot rows

Pi{U) =  Pi — 4 i( ls t  pivot row) — ^2 (2nd pivot row) — • • • , 

then we have conversely

Pi =  Pi(U) 4- (1st pivot row) +  £i2(2nd pivot row) H----- ,

namely since the pivot rows are also the rows of U (when a pivot row is reached, 
it is kept constant in the procedure)

Pi =  Pi(U) +  UlPl(U) -f ti2P2{U) H-----

=  J 2 e* P k ( U ) + P i ( U ) .  
k<i

This is exactly the ith row of LU where the coefficients of the ith row of L  are 
the multipliers used in the elimination: The ith coefficient of L is 1, and tij  =  0 
for j  >  i. This procedure calls for several comments.
(1) Recall that the row operations used to bring A in a row-reduced form are 
not uniquely determined. This is reflected in the result in the following way. 
It is easy to factor U =  DU\ where D is diagonal (contains the pivot entries), 
and U\ is upper-triangular with l ’s on its main diagonal. Then A =  LU\ with 
L =  L\D is lower-triangular. (More generally, one can transfer a partial number 
o f pivot entries from U to L.) It would be better to write

A ^ h D U u
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with both L\ and U\ having l ’s on their main diagonal, while D is the diagonal 
matrix formed with the pivots entries p^s. The three factors are then uniquely 
determined (when they exist).
(2) It may be impossible to bring A into row-reduced form without exchange of 
rows. For example, this is the case for the matrix

0
° l )l  d)

But using row operations of the type mentioned, we may always attain a form 

/
0

Qi ШШШЯШШШШ Я  Ш Ш  Ш \
о

шшшяяшшшшшшшшаявяшвяшаяш
V

where all entries below a pivot qi(Ф 0) are zero. A permutation matrix P 
(product of elementary Pi:' s, corresponding to exchanges of rows) will now 
bring this matrix in row-reduced form

V ~ P V  =  U.

Reversing the row operations, we find

A ~ EA =  V ~  PV  =  U, 
A = E - 1V =  E~1P~1U =  LWU ,

where W  = P~l is a permutation matrix (having the same rows as the identity 
matrix, in a possibly different order). Let us show how to proceed to reach V 
on an example:

/0 0 0 0 1\ (0 0 0 0 1\
0 1 2 1 0 0 1 2 1 0
0 0 0 0 1 0 0 0 0 1
0 2 4 3 1 0 0 0 1 1

V 1 2 3 4 5/ V 0 - 1 2 V

( 0 0 0 0
0 0 2 1
0 0 0 0
0 0 0 Ш

0 -1 0

(0 0 0 0 l\
0 1 2 1 0
0 0 0 0 1
0 0 0 1 1

0 - 1 0 *)

P  
0 
0 
0 
0 /

(the (ft’s are the framed coefficients).
The final question is: How can we recognize if a given invertible matrix A 

can be written in the LU form? An answer to this question will be given in 
Sec. 11.3.3.
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3.2.4 Simultaneous Resolution of Linear Systems
If two linear systems having the same matrix of coefficients A are to be solved, 
say

(S) A x  =  b, (S)' A x  =  b\

we might save time by carrying out row operations on the extended matrix 
(A  | b  b ') . In the same vein, we might be interested in solving the particular 
systems

(Si) A x  =  e  i, . . . ,  (Sn) A x  =  en,

where the ei are the basic n-tuples. For this purpose, we may group all systems 
in one single extended array

(A | ei . . .  e„).

The complete resolution is attained when the first part is in reduced echelon 
form. Assuming that this system has as many equations as variables, and has 
maximal rank: r =  m =  n, we find the unique solution Xj of (Sj) in the 
(n +  j)th  column of this reduced echelon form. The solution of the general 
system A x  =  b =  (bi) is the linear combination

bixi 4- ■ • * 4- bnxn

of these particular solutions. With matrix multiplication, a regular system 
Ax  =  b  is solved by x  =  A -1 b. This row by column multiplication shows that 
the columns of A~l are precisely the particular solutions x^.

3.3 Matrix Multiplication by Blocks

3.3.1 Explanation of the Method
In a matrix product AB, let us consider В as an ntuple of rows pi. Here is a 
particular case showing how the product is computed:

Pi
(a b c) \p2 ) =  (a b c)

W
=  ap\ 4- bp2 +  срз?

just as if the entries pi were scalars. From this observation follows that

fa\ b\ c\ 
CL2 Ь2 C2

faipi 4- biP2 +  С1Рз\ 
a2pi +  b2p2 +  C2P3

\ /

This is precisely what was systematically used with row operations. More gen- 
erally, we see that
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The rows o f  a matrix product AB are linear combinations 
o f the rows o f the second factor B.

We used this for the interpretation of row operations by left matrix multiplica­
tion A ~  U =  EA. Treating rows formally as scalars in a matrix product, is 
a first case of block multiplication. We intend to show how this principle works 
quite generally.

By definition, the matrix product of two matrices A and В o f adapted sizes, 
is given by

i4(bi • • • bn) = (i4bi • • • Abn),
where b j is the j  th column of B. Let us consider explicitly the simplest case, 
namely В =  x  has only one column. Instead of considering A as ntuple of rows

Лх =

f  a\\X\ +  •• • + G l n ^ n  ^ ( p i  A (P l\
a 2\X\ +  * * • + a 2nx n

—
P 2 X

=
P2

+  •• • + Q'tnnXn \ P n x ) \PnJ

introduce its columns аj, so that

( a\\X\ +  ••• + &1 n X n ^ ^ l \
a 2 \X\ +  • ■ + 0>2n,Xn

=  =  (ai 'Ax = • an) i
\CLm\X\ +  ••• + 0>mnXn )

3 \x n )

formally as if the columns of A were scalars. The same method works when В 
has several columns

xi уi zi
(ai • • • an) — (12 j хз ai 12 j Vjaj 12 j zjaj • • • )

Уп %п •

We infer the following general principle

The columns o f a matrix product AB are linear combina­
tions o f  the columns o f the first fa ctor A.

The possibility of the block multiplication

A{Bi | B2 |... | Bn) =  (ABi | AB2 I... | ABn)

follows from the definition of the matrix product. This was used for the inversion 
algorithm, when we wrote

(A\I)  ~ (U\*) =  E(A\I)  =  (EA\E)
~  F{EA  | E) =  (FEA \ FE ) =  (I | FE) = {I | A " 1).
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Symmetrically, it is obvious that a block multiplication is valid when the first 
matrix is partitioned as follows

An)  \AnB j

More generally, we see that

A\\ /  A\B\ A 1B2 A 1B3
■■■ (Bi I B2 1S3) = ...........................
A „ /  \AnB i AnB2 АпВз

Coming back to

we may introduce a partition of A into p and q columns, with a corresponding 
partition of В into p and q rows. We then have

(A [  I A'{\ ( B ' \ _  fA [B ' +  A'{B"\
I AV  \B")  \A'2B ' + A2B n)  *

simply since the row by column multiplications may be decomposed as

У !  Qikblcj =  ^   ̂&ikbkj +  ^   ̂Q-ikbkj- 
k^p k>p

If the В matrices are also decomposed by a vertical separation, we conclude

M i I A '{\ ( B[ I B'2\  _  (A \B [ + A "B " I A [B '2 +  А '{В 'Л  
I AV  I B 'i)  \A '2B[ +  A2B " I A'2B '2 +  A 'IB 'i) ■

This is exactly the same formula as for the product of 2 x 2 matrices: Formally, 
the blocks are treated as scalars, but the order in which they are multiplied 
is important. Fast multiplication algorithms are based on this possibility (see 
3.4.3). For example, if A '2 =  0 and B'{ =  0, we get

(A [ A '{\ (B [ В ' Л _ ( А [ В '1 А[В '2 +  А'{В'Л 
VO A !i)\  0 B ' i ) - \  0 A2B2 ) ’

More general cases with an arbitrary number of blocks (of suitable sizes) are 
obviously valid. Let us simply summarize these observations in the following 
way:

Row by column multiplication can be made when the ma­
trices are decomposed into blocks o f  compatible sizes.
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3.3.2 The Field of Complex Numbers
Let us solve the equation X 2 =  - I  in the algebra of 2 x 2 real matrices: We are 

looking for the matrices X  =  ( a , | such that
Vе d)

fa  b\ fa  b\ _  fa 2 +  be ab+ bd\ _  1 0 \
\c d) \c d )~ \ a c  +  cd bc + d2J ~ \  0 —1 /

Here are the conditions

J a2 +  be =  —1, (a +  d)b =  0,
У (a-{-d)c =  0, bc +  d2 =  —1.

The first equation shows that be =  — 1 -  a2 <  —1 < 0  hence b and с are nonzero 
and have opposite signs (the same conclusion follows from the last equation). 
The next two equations furnish a +  d =  0, от d =  —a (hence a2 =  d2). If we 
take arbitrary values for a and 6 ^ 0 ,  and then

с =  —(1 +  a2) /6  and d =  —a,

we find infinitely many matrices

* = ( _ 4 *  ! a)  ( M O ) .

which are all solutions of X 2 =  —I. (In a noncommutative algebra, a quadratic 
equation may have infinitely many solutions.) Let us choose one of them, say

J

Then we can consider the matrices of the form

al “Ь bJ.
( л  :  -

They form a subspace of the space of 2 x 2 matrices. Since / ,  J  is a basis of this 
subspace, it has dimension 2. The product of two matrices al +  bJ and a l  +  /3J 
again has the same form:

{al +  bJ){aI +  pJ) =  aaI +  (a/3 +  ba)J +  b0J2 
=  (aa — b/3)I 4- (a(5 4- ba)J.

Observe that
(al 4- bJ)(aI -  bJ) =  (a2 4- b2)I  

is nonzero when al +  bJ ^  0. Hence al +  bJ ^  0 implies

al 4- bJ invertible and (al 4- bJ)~x =  0 I  4- -9-аг 4- о a* +  bz
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We obtain thus a model for the complex numbers. Instead of a i 4- b «7, we write 
z =  a +  ib, and define

a =  9£(z) real part of z ,
b =  $ (z )  imaginary part of z }
z =  a — bi (complex) conjugate of z,

\z\ =  y/a2 4- b2 absolute value of z.

As we have seen, \z\ =  0 only when z =  0 (a =  0 and b =  0), and any z Ф 0 is 
invertible with

__ i_ 1 _ z _  Щг) .Щг)
2 _  2 _  |г|2 “  |z|2 1 |z|2 '

The set of complex numbers is the complex field C. We view it as a plane, 
identifying the basis / ,  J to the canonical basis of R 2.

3.4 Appendix

3.4.1 Affine Maps

A matrix A of size m x n  defines a map

R n — » R m 
x  i— ► Ax,

also denoted by A. Such a map has the basic property AO =  0. Any map 
/  : R n —* R m of the form

x  i— * / ( x )  =  Ax +  b

for some b € R m, is called an affine map. Since / ( 0 )  =  b , such a map c a n  be 
given by a matrix multiplication only when b  =  0. However, one may also view 
affine maps as being induced by matrix multiplication as follows. The matrices 
of size (m +  1) x (n 4-1)

/ \
A b

\ 0  . . .  0 V
define maps R n+1 —> R m+1. On the subset Vi consisting of vectors with last 
component 1, we recover the affine maps
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Since V\ does not contain the 0 vector, it is not a vector subspace. But if V 
denotes the subspace consisting of vectors having last component 0, then

Vi =  { t  4- v  : v  e  V } =  t 4- V,

where t denotes any vector having last component 1. We view it as a translate of 
a vector subspace. Any subset of a vector space which is obtained by translation 
from a vector subspace is called affine subspace. For example, the set of solutions 
of a linear system is an affine subspace: It is a translate of the subspace of 
solutions of the associated homogeneous system.

Notice how affine maps compose

( \
A b

\ o . . .  0 V

/ ( \
A! AB АЪ'+ Ъ

\ o  ... 0 4 1̂ 0 . . .  0 1 /

3.4.2 The Field of Quaternions
It is possible to construct a larger field than C, namely the field of quaternions 
H. However, in this field ab may differ from ba: This field is not commutative 
(hence is not a good candidate for a field of scalars of vector spaces). Never­
theless, its construction may be based on block multiplication of matrices, and 
therefore furnishes an interesting example of this method. Let us start with the 
four basic matrices

- ( ” )■ - C O -  * " * - ( ?  !)■
They satisfy

i2 =  j 2 =  k2 =  —J, i j  =  к =  —j  i and cyclic permutations.

Embedding 2 x 2  complex matrices by blocks in 4 x  4 real matrices, we get 
injective maps

H — ♦ M 2(C) — ♦ M i(R ).
A quaternion is an expression

q =  al 4- bi 4- cj 4- dk (a,6,c, d £ R ).

As with complex numbers, a conjugation can be introduced for quaternions

q =  a l  — bi — cj — dk.

One can check
q q  =  q q  =  a2 4* b2 +  c2 4- d2.

From this follows that any nonzero quaternion q is invertible with 

q - l =  q/yV (N =  q q ^ O ) .

Hence H  is a noncommutative field.
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3.4.3 The Strassen Algorithm
The product of two 2 x 2  matrices is given by

)  “  ( c  d )
We find

A — p +  s +  t — v, В =  r +  v, С  =  q +  t, D = p  — q +  r +  u.

where
p =  (a +  d)(a  +  <5)
q =  (c 4- d)a 
r =  a(/3 -  6)

< s =  { b - d ) ( y  +  6)
t =  d(7  -  a)
it =  ( c - a ) ( / ?  +  a)
v =  (6 +  a)<5.

With this method, only 7 multiplications— instead of 8— are needed (it is t r u e  
that 18 sums occur, but with some fast processors, the time to compute t h e m  
may be neglected). This tiny advantage becomes more and more important i f  
it is used repeatedly: A square matrix of size 1024 x 1024 can be considered a s  
a 2 x 2 matrix of blocks, each of size 512 x 512, etc. Observe that the a b o v e  
formulas are valid even for a noncommutative product, which is the case w it hi 
blocks. For general n x n  matrices, where n is not a power o f 2, it is advantageous 
to complete the matrix by 0’s up to the nearest 2m x 2m size. Hence the m ethod  
is useful for large size matrices.

Here is an estimate of the tune cost for this multiplication method (neglecting 
tune taken by additions). Let us only consider the case where n =  2m. Then, 
instead of n3 =  23m =  8m operations, only

7m =  2m lo*2 7 __ n log2 7 

will be required. The exponent is the logarithm to the base 2 o f 7

b g 2 7 =  =  2.80735... log 2

The Strassen algorithm has order 0 (n 2,8- ) .

3.5 Exercises
X. Let a, b  € R 3 be linearly independent. Find all vectors x ,y  € R 3 such that
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2. Draw the image of the unit square by the linear map having matrix

С
cos ip sm ip 
sin (p cos tp

in the canonical basis of R 2. Compute M 2, and the nth power of M  (to simplify 
the notation, you may put cos<p =  a and sin<p =  b).

3. Compute the square and the cube of

4 o a

Can you guess the form of An? Prove your guess by induction.

4. Solve the equation X 2 =  I  in the algebra M 2(R) consisting of 2 x 2 real 
matrices.

5. Let
b(s)

« » ]

■c.o
(o !)•

» « > - ( $  I/ ,)-  
Compute a(t)6(s)a(t)-1 . With

*> -  (i “«). 
compute a(t)p(s) — fi(s)a(t).

6. Show that any matrix of size 2n x 2n of the form T  =  ^  (where X

is any n x n matrix) satisfies T 2 =  0. When T2 — 0, prove that the inverse of
I  +  T  is I  -  T.

7. Compute all powers of the matrices

Л) 1 0 0\
0 0 1 0
0 0 0 1 

\1 0 0 0 /

Any square matrix T  (or linear map T  : E  —» E) such that T k =  0 for some 
positive integer к, is called nilpotent. If T k =  0, show that I Л-Т +  • • • +  x k~l 
is the inverse of I — T.

(o 1 0 °\
0 0 1 0
0 0 0 1

0 0 0 /

8. Compute all powers of the matrix

/ 1 0  0
0 1 1
0 1 1

^ 1 0  0

1\
0
0
V
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9. Are the following matrices row-reduced? triangular?

Prove carefully the implications (for square matrices)

row-reduced =Ф- upper-triangular, 

upper-triangular and maximal rank = >  row-reduced.

10. Using suitable row operations, determine the inverse of the matrices

/1 2 3 4\
0 1 5 6
0 0 1 7

\0 0 0 V
11. Compute the first twelve powers (!) of

A =

(2 -1 6  3 
1 - 2  0
4 5 - 3  

VO 35 - 8

Л

12. The inverse of 

/0  1

0 0 
\1 ai

More generally, find the inverse of

' ( \
0 In

. 1

Q.n > \ 1 la /

(size (n +  1) x (n +  1) )■

13. What is the inverse of a square matrix

(0  0 
0

0 a2
\ai 0

0
Gn—1

0

0'п\
0

0
0 /

14. Is there a 2 x 2 matrix X  such that X 2 =  Л  
X  such that

/0  0 1\
=  0 0 0 I ?

\0 0 0 /

? Is there a 3 x 3 matrix
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15. Let A be any square matrix. Prove

ker А с кет А2 с ker A3 с • • •

If ker Л =  ker A2, prove that all subsequent inclusions are equalities:

ker An =  кегЛп+1 (n ^  1).

Use the preceding observation to prove that there is no 3 x 3 matrix X  such 
that

16. Let Xi denote three distinct real numbers. Show that for each choice of 
distinct values yi, there is one and only one linear fractional transformation /  
such that f (xi)  =  y{ (i =  1,2,3).

17. Let В =  (bij)ij^о be the lower triangular matrix containing the binomial 
coefficients =  Q)

/1  0 0 0 ...\
1 1 0  0 
1 2  1 0
1 3  3 1

В =

V  : : :

Show that B2 =  DBD~l where D is the diagonal matrix having entries 1, 2, 
4 ,... ,2г, . .. in its diagonal. (We may consider that В has infinite size, since its 
triangular form furnishes each coefficient of B2 as a finite sum; the corresponding 
result contains its analogues for all finite N x N  sizes.) Show that this implies

B2n =  DnBD~n (n ^  0).

Hint: Use the easily proved relations

0 ( 0  - ( Ю
OsU£i-k

18. Compute

(? O'(;)=(::)
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(where a  — 7t/5, and x is determined by | =  hence is the positive root
of x =  x +  1) to illustrate the multiplications geometrically as in the following 
picture

Notes

The matrix multiplication for pixel matrices was (first?) systematically used 
by Jean-Pierre Reveilles in his PhD. The digitalization of a straight line is not 
obvious, particularly when its slope is irrational. The Bresenham algorithm 
shows how to do it: See

J.-P. Reveilles: Geometrie et ordinateurs I et II: droites, cercles et paraboles, 
Gazette des mathematiciens de la SMF 78 (1998), 31-49, 79 (1999), 29-44.

positive root of x =  x +  1 is the golden ratio. Its approximate value is 
x =  1.6180.... In Chapter 6, we shall see its relation to the Fibonacci numbers.

For the matrix multiplication in connection with games and puzzles (exercise 
1»), see www.trigam.ch by J. Bauer and J.-P. Lebet.

Quest for  an identity:

http://www.trigam.ch


EXERCISES

Remember: First rows, then columns!



Chapter 4

Linear Maps

The concept of linearity has made its way in everyday life. One speaks o f linear 
growth, linear amplifier, etc. Linearity first refers to proportionality between 
causes and consequences.

4.1 Linearity

4.1.1 Preliminary Considerations
(1) Here is a familiar example: A bank delivers a fixed interest rate on deposits. 
After a certain time lapse, an initial capital С yields an interest I  =  { (C) -  We 
represent this situation by a box—the bank—acting as a function, producing 
the interest:

CITYBANK I.

Proportional deposits will produce proportional interests. Moreover, if another 
capital C' yields the interest I' under the same circumstances, then the capital 
С + С will produce the interest I + Г  on the same account. These facts are

88
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used in the false assumption method for finding which capital С  placed during 
three years at a rate 5%, bears an interest of say $150. Here we assume that an 
initial capital of $100 is placed under the same conditions and find an interest 
of $15. Then we conclude that if we have obtained ten times this sum, it is 
because the initial capital was ten times larger: С  =  $1000.

Observe however that if the data

С : capital, Ir: interest rate, T: time 

are grouped in a vector, then we obtain a nonlinear box

CITYBANK I.

Indeed, when C, 7r , and T  are simultaneously multiplied by a factor a, the 
interest yielded is multiplied by a factor a3, instead of the factor a as linearity 
would require.

(2) Many physical laws have a linear character:

>■ The intensity /  o f an electrical current in a conducting medium is propor­
tional to the applied tension V  (voltage)

V — RI (Ohm’s law).

Here, R is the resistance of the considered medium.

>• For one mole of a perfect gas in a fixed volume V, the pressure p is 
proportional to the (absolute) temperature T

pV  =  RT (perfect gases law).

Here R =  Nk (N: Avogadro’s number, к: Boltzmann’s constant).

>• The deformation A t of a “solid” is proportional to the force acting on it. 
More precisely, the relative elongation in percent A tjt  of a certain rod of 
length t  is proportional to the tension (constraint) cr applied to it:

A t 11 =  cr/E (Hooke’s law).

(3) In control theory, certain physical systems called plants, are studied. A 
plant is a device having an output depending on an input. Typically, the plant 
could be a thermostat controlling the temperature in a car, where the input 
would consist of both outside and inside temperature, and output is directed 
to the ventilation and climate control system of the car. Another example of 
plant is a linear amplifier, namely an electronic device which amplifies a signal 
in a faithful way, at least in a certain domain of frequencies. Such a plant can 
be considered as a black box, having a certain number of input ports, where 
the signals s* enter, and a (possibly different) number of exit ports producing 
outputs ej. The plant has linear characteristics when:
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>■ An amplified signal produces an amplified output by the same factor 

>■ Superposed input signals produce superposed outputs.

If the action of the black box is represented by a map /

S =  ( S i) e =  (e ,),

its linearity characteristics may be formalized as follows:

/(a s )  =  ae =  a /(s )  (homogeneity)
/ ( si 4- s2) =  e i 4- e2 =  / ( Si) 4- / ( s2) (additivity).

4.1.2 Definition and First Properties
Let us now come to a precise mathematical definition.
D efinition. A mapping f  : E —► F between two vector spaces is linear when 
the following properties hold

/ (a x )  =  a /(x ) ,  / ( x  4- у) =  / ( x )  +  / ( у ) (x, у  G E, a scalar).

Taking a =  0 in /(a x )  =  a /(x ) ,  we see that it implies / ( 0 e ) =  s ân( ŝ
for the zero element of E, Op for the zero element of F). Instead o f 0e  ^ * * 
we shall simply write 0, relying on the reader for a proper understanding о 
which zero element appears. Also observe that the two required identities can 
be gathered into a single one

/(a x  +  y) =  a /(x )  4 -/ (y ) .

Indeed, у  =  0 gives homogeneity, while a =  1 gives additivity. Of course, this 
relation implies

/(a x  4- by) =  a /(x )  4- bf{ y),
and more generally

/ ( 5 3  QiXi) =  “ ./<>.)
l<i<n l^i<n

(as an induction on the number n of terms in the sum shows), hence:

Linear maps transform linear combinations into linear combinations 
having the same coefficients.

Geometrical Interpretation. The characterization of linearity by / (a x + y )  ^ 
a /(x )  +  / ( y) has the following geometrical meaning. Interpret the scalar a as 
“time” t and consider v t =  tx +  у as giving a parameterization of the straight 
line going through у (t =  0) having direction given by x  (at least if this vector 
is nonzero). Then the images / ( v t) should also constitute a parameterization 
* /(x) +  } (y)  of a straight line based at / ( y) (t =  0) and having direction given 
by /(x )  (same comment). Hence:
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Linear maps transform straight lines into straight lines (or points).

Comment. A linear map taking values in the one-dimensional vector space 
consisting of the scalars is usually called a linear form. This terminology comes 
from the use of form for any homogeneous function f  : E —► R  taking scalar 
values. We shall study quadratic forms on a vector space E , namely functions 
f  : E —> R  satisfying

f (ax)  =  a2/ ( x )  (a scalar).

Similarly, a cubic form f  on E satisfies

f (ax)  =  a3/ (x )  (a scalar).

The function (x, y, z) ■-> f ( x , y , z )  =  (xyz)1̂ 3 is homogeneous of degree 1 since 

f (ax,ay,az) =  (a3)1/3(xyz)l/3 =  a(xyz)1/3 =  af(x,y,z) .

But note that g(x, y) =  \Jx2 +  y2 is only positively homogeneous: 

g(ax, ay) =  у/ a2x2 +  a2y2 =  \a\ y/x^Ty2 =  \a\g(x, y).

4.1.3 Examples of Linear Maps
(1) A map /  : R  —» R  of the form f (x)  =  ax 4- 6 is linear only if b =  0. Indeed, 
linearity requires /(0 )  =  0. When b Ф 0, the function f (x)  =  ax +  6 is called 
affine, or badly enough affine linear (see Sec. 3.4.1) (hence an affine linear map 
is not linear in the sense of linear algebra).

(2) In Sec. 3.1.4, we have considered the linear map

LA : R n — * R m
x  •— ► Ax,

produced by left multiplication by a matrix A of size m x n .  The characteristic 
property of linear maps

LA(ax +  y ) =  A(ax +  y) =  a A x  +  Ay  =  aLA(x.) +  LA( y)

is satisfied (matrix multiplication is distributive). We shall prove that any linear 
map from R n to R m is given by a matrix multiplication as before. This example 
turns out to produce the most general linear map /  : R n —* R m. Recall that 
the jth  column of a matrix A is given by Aej where ej is the n-tuple having 
0’s except at the jth  place, where it has a 1. Hence, there is only one possible 
matrix A for any given linear map /  : R n —> R m. The notation x  ь-> у  =  Ax 
generalizes the one dimensional case: Any linear map R  —> R  is given in the 
form x  н-+ у — ax.
(3) The derivation operation is linear. This map /  »-> indeed has the property

(a f +  g)' =  a f  +  g' (a scalar),



characteristic of linearity. We may consider this map as being defined on the 
vector space of polynomials, with (xJ)' =  jx -7 (j  ^  1).

(4) The operation consisting in taking the primitive— vanishing at the origin o f 
continuous functions, is a linear operation. It is given by

/ — * Г
Jo

(5) The evaluation of functions at a point is linear. For example, the evaluation 
of polynomials at 7r =  3.14159... is a linear form /  »-+ /(7r). An efficient
procedure for evaluating a polynomial / ( x )  =  ao 4- a\x 4- a2x2 H----- at 7Г is given
by

/ ( 7г) =  a0 4- 7r(ai +  7r(a2 +  7г(- ••)••• ))•
(6) A  rotation around an axis containing the origin in the usual space R  is a 
linear operation.
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4.2 General Results
Let /  and g be two linear maps E —* F  between the same vector spaces. Then 
for each scalar c, the map h =  c f  4- g defined by

x  ♦ h(x) =  c f  (x) +  g(x) 

is also linear: Here is the verification of the formal identity required

h(ax +  y) =  c f  (ax +  y) +  g(ax +  y)
=  с(а/ (x) +  f (y) )  +  ag(x) +  g( y)
=  acf(x) +  ag(x) +  cf (y)  4- g(y)
=  а (с / +  g){x) +  (cf 4- 5)(y)
=  ah(x) 4- h(y).

4.2.1 Image and Kernel of a Linear Map
For any map f  : E -* F  between sets, and any subset X  С E,  we denote its 
image by f (X)  =  { / (x )  : x  e  X }  с  F. The image of /  is f (E ), namely

i m /  =  { / ( x ) 6 F : x € £ } c F .

The inverse image of a subset Y  С F is

f ~ l (Y) = { x e E :  f (x)  e  Y)  с  E.

Note that this definition does not require f  to be invertible, but when it is, the 
inverse image of У is also the image of У by the inverse of /  so that the notation 
is coherent.
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Theorem. Let f  : E  —► F  be a linear map. Then:

(a) The inverse image f ~ l (W) of any vector subspace W  С F  
is a vector subspace of E

(b) The image f (V)  of any vector subspace V С E is a subspace of F.

P r o o f , (a) Let us consider a subspace W  of F. If x ,y  G namely
/ ( * ) , / ( У) €  W, then

f (ax  +  y) =  a /(x )  +  / ( y) € W.

This means that ax +  y  6 / -1 (W ), hence proves the first assertion.
(6) Let now V be any subspace of E. Take two elements of f (V) :  They can be 
written in the form / ( x )  and / ( y) for some x, у G V.  Then

a /(x )  +  ДУ) =  f (dx  +  y) G f (V)

is in the image of V. Hence f (V)  is a subspace of F.  ■
Corollary 1. For any linear map f  : E —> F, / -1 (0) is a subspace of E and 
im /  =  f (E)  is a subspace of F. ■
Corollary 2. Consider two linear maps f ,g  : E F. Then the coincidence 
subset

{ x e S : / ( x )  =  S(x )}
is a vector subspace of E.
P r o o f . The coincidence subset of /  and g consists precisely of the x  G E  such 
that

( /  -  S )W  =  / (x )  -  s(x ) =  0, 
hence is the inverse image of the subspace {0 } by the linear map /  — g. U
Definitions. Let f  : E —> F be a linear map. The kernel of f  is the subspace 
ker /  =  / _1(0) of E. The image of f  is the subspace f (E)  of F. The nullity of 
f  is the dimension (when finite) of its kernel. The rank of f  is the dimension 
(when finite) of its image.

If a linear map f  : E -> F  is injective, then 0 G E is the only element having 
image O G f ,  hence ker /  =  {0 }. There is a converse.
Proposition. For a linear map f  between vector spaces, 

ker /  =  {0 } <=> /  injective.

PROOF. Quite generally, for any linear map /

Д х ) =  / ( у )  <=» / ( x )  -  / ( у )  =  0
/(x -y )  

x  -  у  G ker / .

If ker/  =  {0 }, we thus have
Д х ) =  Д у ) «= »  x  — у  =  0 Ф=> x  =  у.

This proves that /  is injective. и
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The general form of the basic principle o f linear algebra (Sec. 1.3.2) may 
now be formulated as follows. If f  : E —> F  is linear, and b  G F  is given, there 
is a solution x G E  o f /(x) =  b precisely when b G im / .  When this is so, if p 
is a particular solution, namely / ( p) =  b, for any solution x, we have

/(x) = b = /(p), 
/ (x -p )  = / ( x ) - / (  p) = 0, 

x -  p G кет f.

Hence any solution is the sum of the particular solution p and an element in 
the kernel of / :

x = p + xo (xo G ker/ ) .  

4.2.2 How to Construct Linear Maps
Here is a general method for the construction of linear maps.

Proposition 1. Let (ai)iej  be a linearly independent subset of the vector space 
E. For any choice of a family (b i)i€j in a vector space F , there is a linear map 
f  : E  —> F such that /(a*) =  bi for all i G I.
P r o o f .  It is possible to enlarge the linearly independent family (ai)t€ / into a 
basis (a*)i€j of E (if E is infinite dimensional, this is the mathematical credo). 
Now each element x  G E has a unique expression x  =  35 a ^ n ear
combination of the elements of this basis. The components Xi are well-defined for 
all indices i G J. We define / ( x )  =  я»Ьь forgetting the components Xi for
i G J — I. This map is linear. For example, one can check that it is homogeneous 
by simply observing that the components of cx  =  CE x'ai =  S ie J  cx'ai are 
the scalars cx*, whence

/(cx) = = c ^ X i  a, = c/(x).
»€/ 16/

A similar verification shows the additivity of / .  *

Proposition 2. Let f ,g  : E -> F be two linear maps. If f  and g agree on a 
subset S С E, then they agree on the linear span £{S). If f  and g agree on a 
set of generators of E, then f  =  g.

PROOF. The coincidence set of f  and g is equal to the subspace ker(/ — <?) s0 
that both statements follow. •

The preceding argument may be presented in the following equivalent, but 
more computational way. For any x  G E in the linear span of a family (ai)»e/> 
there is (at least) one representation x  =  £\  a ^ .  Hence we obtain

/ ( x) =  /(S iia i)  =  EiXi/(ai) =  D iX ^ a ,) =  ^(Exiai) =  g(x).

Due to its fundamental importance, we formulate explicitly a statement based 
on the preceding two propositions.
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Propos ition  3. Let (e i)i€/ be a basis of the vector space E. For any choice 
of family (b*)t€/ in a vector space F , there is one and only one linear map 
f  : E  —» F  such that /(e*) =  b* for all i G I .  ■

W ith the assumptions of Proposition 3, the linear map / : e* b» is

in jective  when the family (b*) is linearly independent in F ,

surjective  when the family (b*) generates F.

Com ment. Let e i , . . . , en denote the canonical basis of R n. Then any linear 
map / : R n —► F  is completely determined by the images b* =  /(e*) o f the basis 
vectors, and these images may be prescribed arbitrarily. Here is the formula 
giving / explicitly

x =  £  х*е< i— * / (x ) =  Y I  x*b*-

We may write this in matrix form 

/ х Л

: i— ♦ x ib i H------ 1- xnbn =  (b i . . .  b n)

Thus the row of vectors (b i . . .  bn) appears as the block matrix representing /.

4.2.3 Matrix Description of Linear Maps

The classical case of matrix description is the following.

Theorem. Let m and n be two positive integers. Then any linear map f  : 
R n —> R m is given by a matrix multiplication: There is a unique m x n  matrix 
A such that / (x ) =  A x  for all x  G R n.

P ro o f . Let denote the canonical basis of R n. Define the matrix A

by
jth  column of A  =  f (e j ) .

Then consider the linear map g produced by matrix multiplication p (x ) =  Ax  
(x  G R n). Then / and g agree on the generating set ( е Д  hence / =  g by the 
Proposition 2 of the preceding subsection. ■

The matrix description o f a linear map is a kind of photo of / depending on 
the viewpoint, here represented by a choice o f bases. The problem of determining 
how the matrix description varies under a change o f bases will be undertaken 
below (see Sec. 4.4.4).

In terpretation . Any linear plant (Sec. 4.1.1), or “black box” having a finite 
number of inputs and outputs, has an action given by a matrix product. Hence 
without any knowledge of the internal structure of the box, its function may be
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{

described by a matrix multiplication. The behavior o f the box is fully deter­
mined when we only know the outputs corresponding to the basic inputs: All 
Si =  0 except one Sj =  1 (for all possible values o f j ) .

Remarks. (1) The statement o f the preceding theorem is also valid when m — 0 
and/or n =  0 if it is correctly interpreted, namely if the following convention is 
made. Each matrix consists of

its size m  x  n (a pair o f natural integers), 
its entries (an array of numbers).

Two matrices are equal only when they have the same size and the same entries. 
For example, a matrix o f size 0 x n  has no entries, but the two matrices o f sizes
0 x n and 0 x m (having no entries either) are equal only when n =  vn. The 
matrices Omxо and Ooxn can be multiplied, resulting in the zero matrix Omxn 
of size m x n: The empty “row by column” sums produce zeros at all relevant 
places. This product corresponds to the factorization R n -> {0 }  -> R m o f the 
trivial 0 map.

(2) Even without fimteness assumption, any linear map has a generalized matrix 
description. I f {e j) jq j  is a basis of a vector space E , while (£i)ie/ 1S a basis o f a 
vector space F , any linear map f  : E  —> F  is described by a generalized matrix 
A  having entries a^ such that

f ( e j )  =
<€/

/ ( £ « * , )  =
j € J  i e i

Since by definition there are only finitely many nonzero coefficients in these 
sums, they may be computed in any order, and we can write the result in the 
form / (x ) =  у  =  E i2/i£i. The components

Vi —  ̂  ai jX j  

j

are given by a formal “row by column” matrix multiplication just as in the finite- 
imensional case. The matrix of / appears as a generalized array o f scalars

M a t e,e (/ )  =  (a»j - ) ( i j )€ J x J

depending on the choices of bases of E  and F. In block form, the matrix o f /  is 
e row \ j(e j))j€ j depending only on the choice of a basis in E. In the finite- 

dimensional case, we recover an array of size m x n, where m  is the cardinality 
ot I  and n the cardinality of J.

Application.

Let us consider a rotation of an angle a  in the usual Cartesian plane R 2- This 
is obviously a linear map Л а : R 2 -* R*. Hence it has a matrix description (in
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the canonical basis) with a 2 x 2 matrix having for columns the images o f the 
basis vectors. Here are pictures

sin a '
62 Ra(ei) . -

4.

Raie^)

/ a

\

\
 ̂1

0 cos a e\ — sin a 0

showing

^ ( e i )  =  ( COsa)  , R a(e2)  =  ( " sinaN) .
4 '  \sm a j 4 '  \ cosa J

Hence the matrix M a representing this rotation is

M  (c °s a  -s in oA  
Vasina cos a  J

Since the composition o f two rotations is again a rotation, R a+p =  RQoR p} we 
see that

/cos(a4-/3) —sin(a +  /?)\ _  /cosa -s in c A  /cos/? - s in /Л 
Vsin(a +  /3) cos(a +  p ) J ~  ysina cos a  J \s\nfi cos f3 J

_  /cos a cos (3 — sin a sin /5 — sin a cos /? — cos a sin
— ysinacos/? +  cosasin/3 cos a cos fi -  sin a sin (3 ) '

Comparing the first columns, we recover the addition formulas

{ cos(a +  (3) =  cos a cos /? — sin a sin (3 
sin(a +  /3) =  sin a cos /3 +  cos a sin /3.

For example, when (3 =  a

/cos 2a -s in 2 a \  _  /cos a  — sina\ 
Vsin2a cos 2a J ~~ [s in  a cos a )

( cos2 a  — sin2 a —2 sin a  cos a  \
2 sin a  cos a cos2 a — sin2 a J ’

We also recognize the duplication formulas

{
cos 2a =  cos2 a  — sin2 a
sin 2a =  2 sin a  cos a. 

More generally, from Rna — #£» we infer

(cos na — sin na\ _  /cos a — sin a\n 
sin па cos па J — ^sina cos a  J



4.3 The Dimension Theorem for Linear Maps
Let us examine more closely the situation for linear maps defined on a finite­
dimensional vector space.

4.3.1 The Rank-Nullity Theorem
Here is a first formulation of one of the main results o f linear algebra.

Theorem. Let E  and F  be two vector spaces. Assume that E  is finite dimen 
sional. Then for any linear map f  : E  —» F , the image of f  is finite dimensiona 
and

dim ker f  +  dim im / =  dim E.

P r o o f .  Put к =  dim ker / ^  n =  dim E  and take a basis ( e i , .  • • , e fc) 
kernel. It is possible to complete this linearly independent subset into a basis 
of E , say by adding elements ek+u •••»©»• I claim that

/ (efc+ i),. . . ,  / (en) is a basis of the image f (E ) .

(a ) I f  у  6 f (E ), we can find an element x e £  such that у  =  / (x )- Since the 
е» (1 ^  i  ^  n) form a basis of E , there is a (unique) representation x  =  z^xj e5 
so that / (x ) =  But for j  <  к the images f ( e j )  are zero so that

У =  / W  =  E j> fc xi/ ( ei)-

This proves that the /(e^) ( j  >  k) generate the image o f f .
(b) Take any linear combination of the form

ai/(efc+i) +  • • • +  an-fc/(en) =  0.

We see that
f(a\ek+\ 4------ an- ken) =

namely aiek+\ H------ an- ken 6 ker/. By assumption, it is possible to write

aie fc+i +  • ■ • +  an_ fcen =  biei +  • • • +  Ькек G ker /, 

whence a linear dependence relation

- b i e i -------- Ькек +  aiek+i -4------- \- an- ken =  0.

By the independence assumption, all coefficients in this relation are zero, and 
in particular

ai = 0 ,...,an_ fc =  0.
Hence / (efc+1) , . . . , / ( e n) are independent.
Now (a) and (6) prove that the f (e j )  ( j  >  k) form a basis o f the image o f /• 
This space has dimension n -  k, and

dim ker / +  dim im f  =  к +  (n -  k) =  n =  dim E. ■

98 CHAPTER 4. LINEAR M A P S



4.3. THE DIMENSION THEOREM FOR LINEAR MAPS 99

Examples. (1) Consider the vertical projection onto the xy-plane in the usual 
3-dimensional space

The kernel o f this linear map is the vertical axis, a 1-dimensional subspace, 
while its image is the 2-dimensional horizontal plane

1 +  2 =  3 =  d im R 3.

(2) The derivation operator D , restricted to polynomials of degrees ^  n has for 
kernel the constants (multiples of the constant 1). This kernel has dimension 1. 
The image o f D  consists of the polynomials of degrees <  n, having basis 1 =  я0, 
x ,... ,xn-1, hence o f dimension n. The sum 1 +  n is indeed the dimension o f the 
space o f polynomials having degrees <  n.

(3) Let (a, 6, с) Ф (0,0,0) and consider the linear form ip : R 3 —► R  defined by

( A
I у I i— > ax +  by +  cz.

The kernel of ip is the subspace consisting of the solutions of the homogeneous 
equation ax+by+cz =  0. This homogeneous system consists o f a single equation 
in three variables, hence has rank 1 since a, b, and с are not all 0. There is only 
one pivot variable, so that this space has dimension 2. It is a homogeneous 
plane (it contains the origin). More generally, when V  is a finite-dimensional 
space and : V  —> R  is a nonzero linear form, then the image <p(V) =  R  
has dimension 1 so that kery? has dimension dim V  — 1. By analogy with the 
3-dimensional case V  =  R 3, we say that ker tp is a hyperplane in V.

4.3.2 Row-Rank versus Column-Rank

The rank-nullity theorem dim ker / +  dim im / =  dim E  has important conse­
quences. To formulate a particularly important one, we introduce a definition.

D efin ition . The transpose of a matrix A  =  (a y ) is the matrix В  =  (6y) 
having for rows the columns of A, namely bij =  a ji.

I f  A  has size m  x  n, then В  has size n x m. Transposition is a mirror 
symmetry in the sense that if it is performed twice in succession, the original 
matrix is recovered. We denote by $4 the transpose of A. Here is this symmetry



For example, the transpose of a lower-triangular matrix is an upper-triangular 
matrix. In particular, with the notation introduced before (Sec. 3.2.1) %j 
Eji-

Theorem. The rank of a matrix A is equal to the rank of its transpose A.

PROOF. Consider the linear map / : х и  A x  produced by left multiplication 
by A, so that ker / is the space o f solutions o f the homogeneous system x —
The dimension o f this space is the number o f free variables: dim ker / — n r * 

Hence
dim im / — n — dim ker / =  n  — (n  — r ) =  r.

Now the image of / consists precisely of the elements

/ (* )  =  / ( E j  =  E j  xj f ( ej ) ’

namely
im / =  £ (/ (e i ) , . . . ,  f {e n) )  =  £(columns o f A ).

I f  we define the column-rank of the matrix A  by

s =  dim£(columns of A) =  dim£(rows of И),

■we just proved r — s.

Corollary. Let A be an m x n matrix. Then:

A : R n — * R m surjective <=*• ‘A : R m — * R n injective 
A : R n — > R m injective «= >  ‘A : R m — > R n surjective.

PROOF. The rank of A is the dimension of its image, so that

rank of A is m <=> A  surjective.

By the rank-nullity theorem

rank of lA is m  < = » dim ker lA =  0 <=> lA  injective.

nam ely k e r ‘A = { 0 }

Hence the first statement follows from the equality of the ranks o f A  and o f A- 
The second statement is obtained by replacing A  by A. ^

The equality row-rank (A ) =  column-rank (A ) is not obvious, even for square 
matrices A. Since we consider it as a crucial result of linear algebra, let us 
rephrase its proof in a slightly different way. The row operations have been 
introduced in such a way as to preserve the set of solutions of the homogeneous 
system Ax =  0

row operations leave ker A fixed.
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This basic property is also obvious in the interpretation of row operations as 
left multiplication by invertible matrices

A ~  В <=> В =  E A  (E  invertible)

==> ker В =  ker EA =  ker A.

But the image of A varies when row operations are performed. However, the 
dimension relation: dim ker / 4- dim im / =  dim E , forces the dimension of the 
image to remain constant under row operations, since they leave dim ker / fixed. 
I f  row operations carry A into an echelon form £/, the images of A and of U 
have the same dimension. But a basis of the image of U  consists of its pivot 
columns, so that dim im U =  r.

4.3.3 Application: Invertible Matrices
Another important application of the rank-nullity theorem for a linear map 
f  : E  —> E  of a finite-dimensional space E  into itself is

/ injective <*=>■ / surjective .

dim  k e r/ = 0  d im  im  / = d im  E

For the linear map x  »-» A x  : R n —> R n produced by a square matrix A  o f size 
n x n, it shows that A  is injective when n — r  =  dim ker A  =  0, hence when the 
rank of A  is maximal: r  =  n.

Theorem. For a square matrix A, the following conditions are equivalent:

(г) A  is injective 

(гг) A  is surjective 

( in ) A is bijective

(iv ) A is invertible
(v) A has maximal rank r  =  n

(m ) A  is row-equivalent to the identity. ■

In particular, if A  is left invertible, say BA  =  Jn, then A  is injective, hence 
invertible. There is a square matrix С  such that AC =  I n. By associativity of 
the matrix product

B =  B In =  В (AC ) =  (B A )C  =  I nC  =  C,

so that left and right inverse coincide (another independent proof of this result 
may be found in the appendix to this chapter).

This situation should remind us o f similar properties for maps of a finite set
S into itself. W ith infinite sets, these equivalences fail (see Sec. 4.5.1). The 
above equivalences also fail for linear maps of an infinite-dimensional vector 
space into itself.
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Let us now give a simple condition implying invertibility o f a matrix. I t  is  
based on the existence o f an absolute value on the scalars, namely a map a \a\ 
having the properties

|a| ^  0 for all scalars a, |a| =  0 only fo r a =  0,
|ab| =  |a||6|, |a 4- b| <  |a| +  |6| ( Triangle Inequality).

Theorem  ( G ershgorin ). Let A  =  (a »j)i^ t j^ n  be a square matrix satisfying 

|ai*| >  ( !  ^  ^  n)-

Then A is invertible.

P r o o f .  It is enough to prove that A is injective. Take any x  =  ( x j )  £ ker A

aijXj = 0  (1 ^  i  ^  n).

Choose an index i  such that |x»| =  maxj \xj\. We have

~ aiixi ~

Iait t̂| =  | Q>ijXj j,
M  N  ^  \aij\\Xj\

^  Iх» I \aij\-

Hence we see that

( M - E , *  Ы )  Ы ^ о .
But by assumption we have |а«| -  £  |a ij| >  0, so that \Xi\ =  0. Since this 
component |Xi| is maximal, all other ones are also zero, and x  =  0. ®

Hemarfc. The preceding statement uses the absolute value o f the real field.
s sue , it cannot be formulated for any field of scalars. But it is also valid if 

scalars are taken in the complex field (see Sec. 11.2.2).

4.4 Isomorphisms

ŝ uĉ eĉ  Avertible square matrices. Let us generalize the results 
obtained ш the general context of vector spaces.

4.4.1 Generalities

spaces /fl'/iere Is  ̂ °morphlsm «  a linear bijective map between two vector 
Гш огр ^с ^morphism between two vector spaces, they are called

Note that if / ; E  - »  F  i* яп .

linear, hence also an isom orph^ P m’ Л е  inVerSe : F  “ * E  “
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Proposition . Two finite-dimensional vector spaces E  and F  are isomorphic 
precisely when they have the same dimension.

P r o o f .  Take any isomorphism f  : E  — > F. Since / is injective, ker / =  {0 }, 
dim ker / =  0; since / is surjective, im / =  F , dim im / =  dim F. Hence

dim E  =  dim im / +  dim ker / =  dim F.

Conversely, if E  and F  have the same dimension n, take bases (e*) o f E, (fj) of 
F: Since they have the same number of elements by assumption, we may index 
them by the same index set 1 ^  i ^  n. The mapping

x  =  E i xiei '--- > У =  E t x&

defines an isomorphism between E  and F. Ш

Examples. (1) We have identified linear homogeneous equations

a\Xi H------ b anxn =  0

with row vectors, namely matrices (a i , . . . , an) of size l x n ,  Now we can say 
more precisely that linear homogeneous equations in n variables and row 71- 

tuples constitute isomorphic vector spaces.

(2) The space R 4 o f 4-tuples and the space Mat2x2(R ) o f 2 x 2 matrices have 
dimension 4. They are isomorphic vector spaces. Here is a natural isomorphism 
between them

(a\
b
с \

\dj

(3) Row vectors and column vectors of the same length form isomorphic vector 
spaces. More generally, the transposition of matrices A t-*  (Sec. 4.3.2) is an 
isomorphism MatmXn(R-) ~ > Matnxm(R ).

(4) A  rotation in the usual space R 3 is an isomorphism.

Com ment. The elements a i,a 2, . . . , a™ generate a vector space E  precisely 
when the linear map

: и—  ^  s iai 

\ x m )  1<<<m

from R m to E  is surjective (hence m  ^  d im £ ). The same elements are linearly 
independent precisely when this linear map is injective (hence m  ^  dim E ). The 
elements a i , a2, . . . ,  an form a basis of E  precisely when the linear map

® Л

; •—  J2  Xtei
Xn)  1̂ '^n

from' R n to E  is bijective— an isomorphism— hence when n  =  dim E.
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4.4.2 Models of Finite-Dimensional Vector Spaces

г? a r̂ea^  Proved that two finite-dimensional vector spaces o f dimension

finitp-Him1101̂  1C] П ^art ĉu âr’ the vector spaces R n appear as paradigms o f  
this resultenS1° na SpaC6S' ^ Ue to ^ s imP°rtance, we formulate and prove again

Z o Z Z to c  toR n . finite-dimensional space E  of dimension n > 1 is

elempnt y  c  ttm! °  00se.a (v i)i^ t<n  o f the vector space E. Hence each 
sav x  =  V  ^  a UJ?C*!le rePresentati°n as a linear combination o f the v t ’s, 

i £tVj. et / (x ) denote the n-tuple formed by the components of x:

Xi

/ (* )  = 1  : I € R T

n.

This map is bijective by definition. It is linear and its inverse R n -  E  is

I » £ 1<i<n XiVi. я

vector scarp*escription of a linear map / : E  —* F  between finite-dimensional
spaces ТЪрч ' ц & consequence ° f  choices of bases in both domain and target 
spaces. These cho.ces are reflected by vertical isomorphisms

E  j?

(e)I 1(0
R n - I *  Rm .

the image o f t t j f  ГеСа11“ ® that the column o f the matrix A  o f / is
of the target space ^  VeCt0r’ or of its components in the chosen basis (w .)

we find 

x
-  Z  xi vo ^  / (x ) =  V '  V -

For the components, we see that th*
multiplication correspondence is given by the matrix

Ы  —  Л(х<) =
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4.4.3 Change of Basis: Components of Vectors

A  one-dimensional vector space E  is simply a line with a marked 0 on it. Any 
nonzero element e constitutes a basis o f this space. We may see it as a choice 
o f unit. Any x € E  has the form x =  ae, where a is the component o f x in this 
basis. I f  we take another choice o f unit, say e =  se with s Ф 0,

x =  a e — (a/s) se =  (a/s) e

so that the component of the same element x  is a/s. When we take a larger 
unit, the components are smaller: They vary in the opposite way, and for this 
reason, the term contravariance is also often used. This simple observation will 
now be generalized in an n-dimensional space.

Let ( e i , . . . ,  en) denote the canonical basis of R n. We are going to consider 
simultaneously another basis ( e i , . . .  ,en) of the same space, say

S\j

J2 s« e i-
l< i< n

Let x  =  (x{) € R n be any n-tuple. Its components in the canonical basis are 
the scalars X{. How do we determine its components in the other basis? They 
are defined by

x =  Y I  =  Vi£i'
l< »< n

In other words, we are interested in the transformation (x ») »-» (yi). This is 
certainly a linear operation, and in fact a bijective one, hence an isomorphism. 
A  particularly simple case occurs for the n-tuples si jej  =  Sj where the
new components a y  are all 0 except the jth  equal to 1. In other words, the 
bijection we are looking for is determined by

f s l j \ Л Л

sj j 1

\Snj/ w

j  th place.

Thus the inverse is determined by

ej i— * jth  column of 5,

hence is S itself. We infer that the required isomorphism is S'-1 and we have 
solved our problem:

(г/i) =  s ~ \ x  {).



Here is a diagram summing up the situation:

M e -  (* i ) i< i< n : n-tuple o f components o f x  in the basis (e*)

[x]£ ~  (lh)i<<<n : n-tuple o f components o f x  in the basis (e ,).

We have established

М е = 5 - 1[Х]С, [x]e =  S [x ]€l

=  ^ th column o f S ) =  4 -  Note that the inverse 
onp-Hir^o n°  i ltSG ° ccurs m this transformation formula, just as in the 
c o n t rn v n  nS1° na case' components o f a vector are therefore also called
ular tn h T  C0T1̂ >0̂ 'en ŝ to recall this transformation property (and in partic- 

Sec U .S ) fr0m ° ther- false components—-to be defined later: see

tion^First^ ш Г  formulas РГеСеё“ 8 formuIas are written with bIock multiplica‘

A i  j

£, =  M  I =  E  sa ei  ( K i < n )
\snj,

may simply be rewritten

(e i , . . . ,£ n) =  (eb . . . , e n)5.
Hence
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( e i , . . . , en) 

Here we read the components in the e-basis

-  (e i , . . . ,e n
2/1 \ Vi\ / x i\

, where I : =  5 _1

<Уп/  \Уп / \XnJ
Formally, the situation is similar tn j -

to the one-dimensional case.
Finally, observe that since Гр Л ie fk • , , ч -

the unit matrix so that we recover ^  iS ° f  R "  (в1' ‘ ' e "> *
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4.4.4 Change of Basis: Matrices of Linear Maps

Let us consider a linear map / : R n —* R n. As we have seen, it is represented 
by a matrix, say / (x ) =  Ax. Consider a new basis ( e » ) i ^ n  of R n. What is 
the matrix of / in this new basis? Call

A  =  Matc(/ ) =  Mate,e(/ ), В  =  Mat £( f )  =  Mat£)C(/).

Consider the following diagram:

M e A  [/(x)]e 

51 j s -

M « ^  l/(x )]c •

We infer that

В  =  S ' 1 AS.

Two matrices A and В  related by such an equality are called similar matrices.

More generally, if / : E  —> F  is a linear map, selecting an input basis (e*) of 
E , an output basis (£j) o f F , the matrix representation A  =  Mate,c(/ ) is given 
by the following diagram:

X M  / (x )

I I
(x]e ~  [/(X)]..

4.4.5 The Trace of Square Matrices

By a change of basis, the appearance o f a matrix changes a lot. However, the 
sum of the diagonal elements o f a square matrix is invariant.

D efin ition . Let A  =  (atJ) be a square matrix of size n x n. Then the sum 
A =  £ к « „ а*  of the diagonal elements is called the trace of the matrix A.

The trace is a linear form on the vector space o f square matrices of given 
size n x n: It takes scalar values.

Proposition . Let A be a matrix of size n  x m, В a matrix of size m  x n, so 
that AB and BA are well-defined, square matrices of sizes n x n and m  x m 
respectively. Then

tr (A B ) =  tr(B A ).

P r o o f .  The square matrix AB  has size n x n and its diagonal entries are

(AB )n  — ацЬц +  • • • +  o,imbmi (1 ^  i ^  n).
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Hence

tr (A B ) =

whence the result.

In particular, if A  =  (a i , . . . ,  am)  is a row and В  =  \b\,. ■., bm) IS a column, 
the trace of the square matrix B A  (o f rank less than or equal to one) is equa 
to the scalar AB.

Corollary 1. For square matrices A and В of the same size, we have

tr (A B ) =  tr (B A ). "

We can now show that the trace of a matrix is invariant with respect to a 
coordinate change.

Corollary 2. Let A be a square matrix, S an invertible matrix of the same 
size. Then tr(S~ l AS) =  tr A.

P ro o f . Use the first corollary for the matrices A\ =  S -1 and A 2 =  AS. We 
obtain

tr(S -1AS ) =  tr (A i A 2) =  tr (A 2A i)  =  t r (A 5 5 _1) =  tr A.

Caution. The trace of a product does in general depend on the order o f its 
factors: I f  we exchange the first two factors in a product o f n ^  3 factors

tr (A i A 2 • • • A n) ф tr (A 2A i • • • A n) (in general).

The proposition only shows that a circular permutation does not change its 
value. For example, with three matrices,

tr (A B C ) =  tr (BCA ) =  tr (C A B )

may differ from
tr (В А С ) =  tr (ACB ) =  tr (CBA ).

4.5 Appendix

4.5.1 Inverting Maps Between Sets
I f  / : E  —> F  and g : F  —♦ G are two maps, then:

g o f : E - * F —* G  injective = »  f  injective 

g o f : E —* F —>G surjective = *  g surjective.

Y i  dubu -4------1- Qtimbmi
l< i< n  l^ i^ n

^  ̂ Ьцац +  • • • +  ^  ] bmiaim 
l^ i^ n  l< i< n

(B A )u  H------ 1- (B A )mm =  tr (B A ),
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For example if G =  E

go  f  =  ide = >  f  injective and g surjective.

But in general, nothing more can be said. Here is an example. Consider the 
maps /, g : N  —► N  defined by

f (n )  =  2 n, g{2n) =  g(2n +  1) =  n

(so that g(m ) is the integral part of m/2). Obviously g {f (n )) =  g{2n) =  n 
hence

go f  =  id.

However, neither f  nor g is bijective: Neither is invertible. The left inverse g o f 
/ is not a right inverse of f .  Here is a representation of this situation.

even integers \

odd integers

But if a map / : E  —► F  is both left and right invertible, then these inverses 
coincide by associativity of the composition of maps: I f  g,h : F  —> E  are two 
maps such that g о f  =  ids, J oh =  idF then

„  л f  „ h -  / 9 ° idp =  9
9 ^ \ ids oh =  h.

Finally, if / and g are invertible, the composite g о f  is also invertible

g o f  : E - L f - ^ G ,  

( s o / ) - 1 : e £ - f £ - G ,

( s ° / ) _1 =  r ' o g - 1-

More generally, a composition o f invertible maps is invertible and

(/n О /п- l  ° ° Л Г 1 =  / f1 °  • • ■ О fn—1 ° I n 1-

To undo a composition, start by undoing what has been done last: Just as you 
would with knitting!

4.5.2 Another Proof of Invertibility
Let us show how one may establish the main invertibility result without the 
rank theory.

Proposition . Let E  be a finite-dimensional space and let f  : E  —► E  be a linear 
map. I f  f  is left invertible, then f  is invertible.
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P r o o f . Let n  =  dim E, so that the dimension o f the space o f linear maps 
E  -> E  is N  =  n2 (This is obvious with the matrix representation of linear 
maps.) The N  4- 1 linear maps

Ie , /, f , ■■■,/"

cannot be linearly independent: Let

5 >/* = o
i^N

be a nontrivial linear dependence relation. There is a smallest index j  with 
nonzero coefficient

d jf*  +  aj+ i/ j+1 +  • • • =  0 (aj Ф 0), 

and multiplying by the inverse of a j , we get a simpler relation

m  + W  + -*-) = o.
Using the left inverse of f  ( j  times), we deduce

Ie +  bj+if 4- bj+2 /2 H---=  0.

Hence
I e  =  f { - b j+1 -  bj+2f ------),

showing that f  has a right inverse and is thus invertible.

Example. Let N  be a square matrix of size n x n, satisfying N k =  О for some 
integer к >  1. Then I n ±  N  are invertible and for example

(Jn -  N ) - 1 =  Jn +  N  +  N 2 +  • 4- AT*"1.

Indeed, the product of this finite sum with I n — N  is

In +  N  +  N 2 --------h N k~l
-  N  -  N 2 ----------N k~l -  N k

=  In — N k

=  In•



A n  illustration  o f  the use o f  linearity

The area under the parabola у =  1 — x2 between x =  — 1 and x  =  1 is 

J  ( \ - x 2)dx =  1 ( l - r 2)d x  =  2 [ z - y ] ‘  =  2 ( l - l / 3 )  =  4/3.

We can use this to compute the area of more sophisticated figures as follows.

4.5. APPENDIX Ш

Proportionality

3/4

—1 —a —1 —a

Linear combination (superposition)

A =  Aq — 2A\ +  Л 2 B =  ( l  +  a )i±a

Conclusion
A =  _ 

3■A — 1(1 +  a)2-

This sequence o f figures is adapted from an article by R. Nelsen:

The Area of a Salinon: The Mathematical Magazine 75, nb.2 (2002) p. 130.
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4.6 Exercises

1. Is the transformation between $ and £  linear? Same question for Fahrenheit 
and Celsius degrees, Greenwich Mean Tim e and local time in New York, radians 
and degrees.

2. (a) Let f  : R 3 —+ R 3 be given by left multiplication by the matrix

A =

in the canonical basis е 1,е 2,ёз o f R 3. What is the matrix o f / in the basis 
63,e2,e i?

(b) In the canonical basis o f R 4, a linear map / is described by the matrix

(a
0
0

\b

b\
0
0
a j

What is the matrix o f / in the basis eu e4, e2, e3? Is A  similar to

B =

(b
0
0

\ a

a\
0
0

b)
(c) Let / : R n —> R n be an invertible linear map. Compare the matrix A  of 
/ in a basis (e t ) i^ ^ n and the matrix В  of / in the basis (/ (e j))i^ t<n - More 
generally, let / : R n —♦ R n be a linear map, g : R n —► R n be an invertible 
linear map such that fg  =  g f . Compare the matrix A  o f / in a basis (e i)i^ i^ n  
and the matrix В  of / in the basis (у (е » ))к ^ п.

3. We consider the following maps of the space of polynomials П into itself

p{x)
p{x)
p{x)
p(x)

p(x)

p ( x -  1),

1 +  p ( x -  1), 

-p {x  +  2),

2 p(x3), 
p(x)2.

Which ones are linear?

T  Г т Г Д  ̂  Г п Г 1Х description of rotations given in 4.2.3, show that cosna =  
of thp f i r i  ^  a \ 1ScaLpolynomial of degree n in cos a  (Chebyshev polynomials

p o l v n o i  u  L  Sh0W that Sin(n +  =  sin-  Unicosa) (n I 0) with a 
П О egree n (Chebyshev polynomials of the second kind).
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5. Consider the two matrices

Determine the image of the region x ^  0, у ^  0 by

A, B, A B , BA, A B A , A2B , ЯЛВ .

Conclude (without computation) that all finite products

where each factor X{ is equal to A  or В , are different.

6 . Consider the following three matrices

( I  1/2 l/ 2\ /1/2 0 0 \ /1/2 0 0\
A =  j 0 1/2 0 , В  =  I 1/2 1 1/2 , С  =  0 1/2 0 .

\0 0 1/2/ \ 0 0 1/2/ \ l/2 1/2 1/

Let Л  be the basic triangle having vertices at the extremities o f the canonical 
basis. What is the image of this triangle Д  by the linear maps (make pictures)

A , В, C, AB, BA, A2B, A B C ,...?

Conclude (without computation) that all finite products in A, В , and С  are 
different.

7. Let n i>y denote the space of polynomials in two variables x and у, and V  the 
subspace of polynomials o f total degree less than or equal to 3: V  is spanned 
by the monomials x'yj  for integers i  and j  such that 0 ^  deg(x 'y j ) =  i  +  j  ^  3.
(a) Give a basis of V: What is the dimension o f this space? The linear maps 
д/дх, д/ду: V —* V  are defined by

д/дх(хгу*) =  resp. д/ду(хгу*) =  j x ly*~l

(by convention ix l~l =  0 for i =  0, and jy*~ l =  0 for j  =  0). Give the matrix 
of the linear map F  =  д/дх — д/ду : V  —* V  in the chosen basis. What is the 
dimension o f ker f  and im /?

Give the matrix of the linear map D  =  х(д/дх) — у{д/ду) : V  —♦ V  (in the 
same basis).

(b) Let Д  =  д2/д2х  +  д2/д2у be the Laplace operator in n iiy . Prove that the 
kernel of Д is infinite dimensional: Its elements are the harmonic polynomials. 
Find a basis o f V  П ker Д.

8 . Let М 3 denote the vector space o f 3 x 3 matrices and let
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We consider the following linear maps М 3 —> М 3

/ : A  1— ► A M ,

9 : A 1— ► M A M .

Give bases for their kernels. What are the dimensions o f their images: Checl 
the rank-nullity theorem for / and g.

9. Prove that the following matrices are invertible

/4
1
1

V2

1
1 -1

-3  0
1 6

\ ( 4 5 0 1\
1 10 -1 1

> 1 1 3 1

/ - 3 1 4

10. Let E  and F  be two vector spaces. Prove that / is linear whenever its graph 
{ (у) : У =  /0*0}  С E  x F  is a subspace o f E  x F  (with its natural structure of 
vector space).

11. Let

к.
be a sequence of linear maps with im /{ =  ker /i+1 (0 ^  i  <  n). Prove

( - 1 ) ’  dim Vi =  0.
l^i^n

12. Let

Vi ^  v2 
/ 4 T 1 / 2

v4 Л .  K3

be a diagram consisting of linear maps with im/, =  ker/i+1 ( И  К  4, where
/;))• Prove dim Vi +d im K 3 =  dimVb +  dimV4. W hat happens in the 

particular case where /2 =  0 and /4 =  0?

13. Let E, F  be two vector spaces, Hom(£:,F) denote the set o f linear maps
and Sub(£) the set of vector subspaces o f E. Is the map

injective, surjective?

Sub(£ )
ker/
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Chapter 5

The Rank Theorem

The abstract language o f linear algebra has allowed us to prove the invariance 
of the rank, as well as the equalities between row- and column-rank. This is the 
rank theory, which has far-reaching consequences: Some o f them are presented 
in this chapter. On the other hand, we give further examples showing how the 
general concept of vector does enrich the mathematical description o f natural 
phenomena:

^  A  velocity (vector) is more precise than a speed (scalar)

A  colored pixel is richer than a grey one

A  pyramid of ages contains more information than a bare total population 
figure.

5.1 More on Row- versus Column-Rank
We have already seen that the row-rank r =  dim £(rows o f A ) is the same as 
the column-rank dim£(columns of A ) =  dim im (A). In other words, the ranks 
o f a matrix A and its transpose *A are the same. More can be said.

5.1.1 Factorizations of a Matrix

Proposition . Any matrix A of size m x n  and rank r admits a factorization 
A  =  S T  where the size of S is m x r  and the size of T  is r x n .

P r o o f . Proceeding with row operations, we can find an echelon form o f the 
matrix A, say A ~  JJ =  E A t where E  is invertible of size m x m

/. * * * \ f * .... * \
* * * * 0 *
* * * * 0 .... 0

V* * * * /  ̂0 .... о /
116
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In this matrix product, the last m — r  columns of E ~ l may be ignored together 
with the last m — r  rows of U since these are identically zero. This produces a 
factorization A =  E ~ l Ur o f the desired form. ■

Com ment. A  factorization of a matrix A of rank r  and size m x n  corresponds 
to a factorization

A : R "  R r R m

The preceding factorization may also be deduced as follows. Let us take any 
basis of the row space of A, say t i , . . . ,  t r. All rows may be expressed as linear 
combinations of these

Pi =  S t lt i  + ----- 1- S irtr =  sik^k-

Take the j th component o f these row identities

Q>ij =  P ij =  S i l t i j  +  • • • 4* S{r t rj  =  sik tk j-

Here is a matrix factorization A =  ST  with S  =  (Sik) o f size m x r  and T  =  (tkj ) 
of size r x n .  Grouping the preceding equations in a column, we find

a j  =  t\ js l  +  • ■ • 4- t r jS r  =  sk tk ji

for the corresponding mtuples, and this shows that

column-rank (A ) ^  г  =  row-rank (A ).

O f course, the same result holds for the transpose o f A

column-rank ( lA ) <  row-rank ( lA ) .
V-------------------- '  '--------V------- '

row-rank (A )  colum n-rank (A )

This proves once more the equality o f the ranks in question, and therefore we 
may simply speak of rank of a matrix without specifying which one is considered.

5.1.2 Low Rank Examples
Let us first consider the rank 1 case: All rows of A  are proportional (all columns 
are also proportional). Such a matrix can be factorized into a product of a 
column matrix by a row matrix

f a  i ) ( aib\ ... aibn \

H { d m )

(bi . . . b n )  =

\am bi • • • ( LmbnJ

Any matrix o f this type has rank less than or equal to 1: The rank is 0 when 
all entries are 0. A ll columns of A are proportional to a =  \ai>... ,am), hence 
the image of A consists of multiples of this vector. More precisely

/аЛ / х Л  /аЛ
A x =  : (6i . . .  bn) : =  I : y>(x),

\amJ \xnJ \amJ
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where <p(x) =  b\X\ H------ b bnxn. This shows that for any linear A  : R n > R
of rank less than or equal to 1, there is a linear form <p : R n —» R  anc* a vector 
a G R m such that A x  =  a</?(x), namely A  =  ay?.

Here are some examples o f rank 2. Let ж», Vj (1 ^  ^ 3 ^  n ) arbitrary rea* 
numbers and consider

A  =  (a,ij) with ay  =  cos(x* -  у j ) -

I claim that the rank o f A is less than or equal to 2. Indeed

cos(xi — у j )  =  cos X{ cos yj +  sin Xi sin y j,

whence A  =  С  +  S with

С  =  (cos X{ cosyj) =  (ai&j), 5  =  (sin Xi sin y j)  =  {cidj).

By the preceding considerations, we see that rank(C) <  1, rank(S) ^  ^  
the rank of a matrix is the dimension of its image, and each element o f im( 
is the sum of an element in im С  and an element in im 5, we have

dim im (C +  S) ^  dim im С  4- dim im S  ^  2.

Another way of reaching the same conclusion consists in writing the matrix 
product

A =

( COS X i s in xA
COS X 2 sin X2

\cos xn sin xn)

/cos yi •• • cos yn\
I sin уi • • • sin yn )  ’

corresponding to a factorization A  : R n —> R 2 —> R n. Hence the dimension о 
the image of the composite cannot be greater than the dimension o f the image 
o f the second map, having rank less than or equal to 2.

5.1.3 A  Basis for the Column Space
Let A  be a matrix of size m  x n having columns a i , . .  •, an G R m» s0 that 

^(columns of A) =  £ (a i , . . . ,  an) С R m.

Any linear dependence relation between columns

z ia i  +  хга2 + ---- 1- xnan =  0,

can be written
X\\
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namely corresponds to an element x  in ker A. Since row operations preserve the 
kernel, they also preserve the linear relations between columns. In particular, 
if A ~  jB, any subset of independent columns of A corresponds to a subset of 
independent columns (same indices) of B. I f  the rank of A is r, we can take for 
В  a row-reduced form U } with pivot columns having indices j\ <  • • • <  j r . The 
columns of A of the same indices j\ <  • • • <  j r are independent, hence

The columns of A of indices j\ <  • • • <  j r constitute a basis of the 
r -dimensional space ^(columns of A).

Let us say it slightly differently: Any row operation is given by a left multiplica­
tion A ~  В =  EA, where E  denotes an invertible matrix of size m  x m, hence an 
isomorphism Rm —► Rm. Since the columns of В — EA  are Ea.j (1 ^  j  <  n), 
we see that the left multiplication by E  defines ал isomorphism

£(columns of A) =  £ (а ь . . . ,  an) £ (£ a i , . . . ,  £ a n) =  ^(columns o f B).

The row operations carry a basis of the column space of A onto a basis of the 
column space o f U. Reversing the operations, any basis of the column space of 
U is mapped 1-1 onto a basis of the column space of A.

5.2 Direct Sum of Vector Spaces

5.2.1 Sum of Two Subspaces

Let V  and W  be two subspaces of a vector space E. We define their sum by

V W  =  {v +  w :  v G V , w G  W }.

This is the subspace o f E  generated by V  and W. I f  A is a set of generators of 
V, В  a set of generators of W , then A U В  generates V  Л-W . I f v e V ^ w G W ',  
and x  e  V  П W, then

v +  w  =  (v +  x) +  (w -  x), 

v'GV w'€W

shows that the elements o f V  -f W  may have several representations as sums 
v +  w  (v € V, w  E W ). Uniqueness o f decompositions requires V  П W  =  {0 }. 
Conversely, when this condition is satisfied,

v +  w  =  v' +  w / ( v , v ' € V ; w , w '  e  W )

implies
v - v ' g V ,  v - v / =  w /- w 6 ^ 1 

hence v —  v' G V  П  W  =  {0}, v =  v' and w' =  w, namely uniqueness.
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Example. Let E  be the usual 3-dimensional space, V  the horizontal plane 
defined by z =  0, and W  the vertical plane defined by у =  0. Then each vectoi 
of R  has a decomposition

+

w  w  w
with components in V  (resp. W ). This proves V  +  W  =  R 3. But the same 
vector may be decomposed in several ways

(a any scalar), with components in V  resp. IV. Different decompositions differ 
by a choice o f element

€ V  П W: у =  0 and z =  0.

Proposition . The following properties concerning two subspaces V  and W  of 
a vector space E , are equivalent:

(г) I f  A is a basis of V  and В a basis of W, 
then A U В is a basis of V  +  W  

(гг) I f  A  (resp. В ) is an independent subset of V  (resp. W ) 
then A U В is an independent subset of V  +  W  

( i i i )  v  +  w  =  0 (v  G V, w  € W ) implies v  =  w  =  0 
(гг>) Each x  e  V  -f W  has a unique decomposition 

x  =  v  +  w  (v  e  V , w  e  W )
(v ) V n \ V  =  {0}.

P r o o f . Since the proof follows easily from the preliminary considerations, we 
leave the assiduous reader write it in detail. *

Notice that when the subspaces V  and W  are finite dimensional, a condition 
equivalent to (г) is

dim (V +  W ) =  dim V  +  dim W.

D efin ition . Two subspaces V  and W  of a vector space E  are independent
when V  П W  — {0 },  hence all the conditions of the preceding proposition are 
satisfied.

A  good way of constructing examples of independent subspaces o f E  is as 
follows. Take a basis (e i) ie/ 0f E. Then for disjoint subsets K , L  С /, the 
subspaces generated by the corresponding basis elements

V =  C(et : i e  К ), W  =  £ (e t : i  e  L ),

are independent. When I  =  К  U L, then the corresponding subspaces have a 
sum equal to E.



5.2. DIRECT SUM OF VECTOR SPACES 121

5.2.2 Supplementary Subspaces

A  basis of the space П<п of polynomials of degrees less than n is 1, x , . . . ,  xn_1. 
The monomials xn, xn+1, ... generate an independent subspace Wn (Sec. 2.3.1) 
of the space П of all polynomials, such that П<п +  Wn =  П.

Quite generally, let V  be a subspace of a vector space E. It follows from the 
mathematical credo (Sec. 2.3.2) that there is a basis (e i)j€j  of V , and that we 
can complete it into a basis (e i)j€/ of E. The elements (e i)i£i - j  make up a 
basis of a subspace W  of E  which is independent o f V  and such that E  =  V + W .

D efin ition . Two subspaces V, W  of a vector space E  are supplementary sub­
spaces, or supplement of each other, when they are independent and generate 
E, namely when

V П W =  {0 }  and V  +  W  =  E.

Example. Let / =  p/q be a rational function, written as a quotient o f two 
polynomials p and q. The Euclidean division of p by q (according to decreasing 
powers o f the variable x ) leads to two uniquely determined polynomials m  and 
r satisfying

p =  mq 4* r  (deg r  <  deg q).

Hence p r
-  =  m  +  -  (deg r  <  deg q).
Я Q

This shows that the subset— a subspace— of rational functions g =  J (with 
deg r  <  deg q) is a supplement of the subspace of polynomials. If we work with 
real (or complex) coefficients, this supplement consists of the rational functions 
g such that g(x ) —> 0 when x —> oo.

As we have seen, it follows from the mathematical credo that each subspace
V  of a vector space E  has a supplement W, and there is a surjective linear map 
with domain E  and kernel V, namely

f  : E  — * W  
x =  y +  z i— > z (y G V, 2 e W ) .

Proposition . Let f  : E  —» F  be a linear map, and W  a subspace of E. The 
restriction of f  to W  is injective precisely when W  and ker / are independent. 
The restriction f\w to any supplement W  of ker/ furnishes an isomorphism 
W ^ i m f .

P ro of. The restriction of / to a subspace W  is injective when

(ker/) П W  =  ker f\w =  {0}>

namely when W  is independent from ker f .  On the other hand

imf\w =  f { W )  =  f ( V  +  W )  (if V C  ker/)
=  f ( E )  =  im / (if V  +  W  =  E) ,

so that the proposition follows. u
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Coib lla ry  1 . Let E  be a vector space, V  a subspace of E . Then two supple­
ments of V  in E  are isomorphic.

PROOF. A s we have observed, there is a linear map / : E  —> F  having V  as 
kernel. The proposition shows that if W  is a supplement o f V, then the res­
triction o f / furnishes an isomorphism W  im /. I f  W ' is also a supplement 
of V , we have

E d W
H im/,

E d W'

so that W  and W ' are isomorphic. ■

Corolla ry  2. Two linear maps f  : E  —► F , f  : E  —> F ' having the same 
kernel, have isomorphic images.

P ro o f . Let us choose a supplement W  to the common kernel V  o f / and f . 
Then by the proposition, both images are isomorphic to W:

ry  l m f c F
E D W

^  i m / 'c F ' ,

hence are isomorphic. ■

Comments. Recall that the rank-nullity theorem (Sec. 4.3.1) was just proved 
by constructing a supplement o f ker /. In fact, the above proposition constitutes 
a generalization (without finiteness assumption) o f the rank-nullity theorem: 
The decomposition E  =  ker / +  W, кег/ П W  =  {0 }  for a finite-dimensional 
vector space E , leads to

dim E  =  dim ker / -f dim Wj ,

=dim im /

in view o f the isomorphism W  ^  im/. In Sec. 7.4.2, we shall show how a 
natural supplement W  o f ker / can be obtained with an inner product, hence a 
natural isomorphism between the row and column spaces o f (real, or complex) 
matrices. The above second corollary is to be compared to the main property 
o f row operations:

A  and A! — E A  ~  A  have the same kernel hence isomorphic images.

D efin ition . The codimension of a subspace V  of a vector space E  is the di­
mension of any supplement W  of V  in E.

In general, this codimension may be infinite. But even if V  is infinite dimen­
sional, its codimension may be finite. For example, if ip : E  —* R  is a nonzero 
linear form, its kernel has codimension 1. Indeed, any supplement to ker (p is 
isomorphic to the one-dimensional space R .
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When V  is a subspace of a finite-dimensional vector space E , then for any 
supplement W  of V

dim V  +  dim W  =  dim E, 

hence the codimension of V  is dim E  — dim V, whence the terminology.

5.2.3 Direct Sum of Two Subspaces

Another useful equivalent formulation of independence for two subspaces con­
sists in introducing the direct-sum vector space V  ® W  having for elements the 
pairs (v , w ) where v  £ V  and w  £ W . Addition of such pairs is defined compo­
nentwise, multiplication by scalars similarly. Then the addition of components 
defines a natural sum map

E : V e W  — » E
(v , w ) I— > v  +  w.

This map is linear since

a (v, w ) +  (v ', w ')  =  (av +  v ', aw +  w ')

(by definition of the composition laws in V  0  W ) maps to

(a v  +  v ')  +  (aw  +  w ') =  a (v  -I- w ) 4- (v ' 4- w ')

(by the axiomatic properties valid in the vector space E ), and this is

a E (v ,w ) 4- E (v ',w ') ,

as required for E to be linear. The image of E is by definition the subspace
V  4- W. By definition, V  and W  are independent when E is an isomorphism

V ® W  V  +  W C E
(v ,w ) I--- > V +  w.

In this case, it is convenient to identify the direct sum with its image in E , and 
write V  ®  W  С E. We may even say that a sum V  +  W  o f subspaces is a direct 
sum when it is isomorphic to V  ® W, namely when V  П W  =  {0 }. Hence, E  is 
the direct sum of V  and W  when they are supplementary subspaces

E  =  V  4=> V  +  W  =  E  and V  C W  =  {0 }.

When V  and W  are finite dimensional, it is obvious that V  ® W  is also finite 
dimensional, and

dim (V  0  W ) =  dim V  +  dim W.

Proposition . Let V  and W  be two finite-dimensional subspaces of E. Then
V  +  W  is also finite dimensional, and

dim (V +  W ) =  dim V  +  dim W -  dim (V П W ).
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PROOF. The sum map E : V  ф W  —> E  has image V  4- W . Its kernel consists 
of the pairs (v , w ) with v  4- w  =  0, w  =  —v  € V  П W , hence is isomorphic to
V  П W  via

V  П W  kerE, v i— ► ( v , - v ) .

By the rank-nullity theorem, we have

dim (V ф W ) =  dim im E +  dim kerE, 

dim V  +  dim W  =  d im (V  4- W ) 4- d im (V  П W).

The announced formula follows. I

Application . Let us show how to construct a basis o f the intersection o f two 
subspaces У , W  of R n from given bases (v< )1<f<p o f V  and (w j ) \ ^ q o f W. 
Consider the matrix

A =  ( v b . . . , v p | w b . . . , w 9),

of size n x  (p +  q). Since the columns o f this matrix generate the subspace

£ (v b . . . |Vp, w i , . . . , w <7) =  V  +  W,

the rank of A  is r  =  dim (V 4- W). By row operations, we can bring A into a 
row-reduced echelon form U  =  EA. The isomorphism produced by left multipli­
cation by E  in R n moves the spaces under consideration into a simple position, 
in which the problem is more easily solved. Since row operations preserve lin­
ear relations of columns, the first p columns of U  are independent, hence are 
©ь • • •, ep, and U  has the form

U =  E A  =  (E v i , . . . ,  E vp | Ev/i, . . . ,  £ w 9)

“  (e l> • • • I ep | Ul, . . . , Ug),

where the s nonpivot columns occur in the second block. For the same reason, 
the last q columns of U  are also independent, while the pivot columns in this 
block are ep+ i, . . . ,  er . As we see, the isomorphism produced by multiplication 
by E  replaces V  by E V  =  Rp (with its canonical basis), and W  by E W  (w ith  
a basis containing r  — p canonical elements). The equality

dim V  4- dim W  =  dim(V  4- W)  +  dim (V  П W)  
p +  q =  r  4- s,

shows that

s =  dim (V П W)
is the number o f nonpivot columns of U  (or A). I  claim that the truncations 
u ' £ R p =  E V  of the nonpivot columns Uj give a basis of the intersection o f  
E V  and E W . Each û - is obtained from the corresponding uj  by forgetting its 
last components

R p Э u' =  -  ] T  ukjek € EW,
p+\^k^r
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hence lies in R pn E W . Since these linear combinations, together with the pivot 
columns ep+ i, . . . ,  e r generate E W , they form a basis of this space. This proves 
that the u'- (corresponding to nonpivot columns) are independent and belong 
to the 5-dimensional space E V  П E W : They form a basis of this space. By 
definition, the components of the u'- are the first r components of the nonpivot 
columns, so that we can write

u'i =  H  Uki ek =  2  UkjEvk.

Using the inverse isomorphism E ~ l , we find that the vectors 

Vj =  ^  UfcjVfc ( j  nonpivot column),
l^k^r

form a basis of the intersection of V  and W. In the following picture, three 
nonpivot columns lead to a basis of the intersection: The coefficients of the V j’s 
are found in the shaded rectangles.

(  1 0 \

0 I  0 0
1 * 0 * * 0
0 0 1 * * 0  
0 0 0 1 
о 0 /

5.2.4 Independent Subspaces (General Case)
The preceding definition o f independence for two subspaces may be generalized 
to arbitrary families as follows.

D efin ition . A family (V{)i^[ of subspaces Vi С E is called independent, when 
a finite sum v t of elements v* € Vi can vanish only if v* =  0 for all i.

As we shall mainly be concerned with finite families of subspaces, we shall 
restrict the index set to be finite, or N . This is only a notational simplifica­
tion. (Recall however the infinite-dimensional examples in Sec. 2.3.3, where the 
relevance of more general index sets appears.)

Proposition . Let (Vt)t^o be an independent family of subspaces of E. Choose 
subsets Si С Vi (i  ^  0). I f  each Si is linearly independent, then the union 
UO0 Si С E  is also linearly independent.

P r o o f .  Let So =  {e* : i  € Jo} С Vo, Si =  {ej : j  6 /1 }  С V i } , . . .  be 
linearly independent subsets. I claim that the union of these sets is also linearly 
independent in E. Consider any linear relation

E i  Ьоез +  • • • =  0

vogVq vieVi



(finitely many components, each one containing at most finitely many nonzero 
elements). By definition of independence o f the subspaces V*

vo =  0, v i  =  0, . . .

By linear independence of (e*) in Vo, the first equality vo =  E i  a*e < =  0 implies 
that all at are zero. By linear independence o f (ej )  in Vi, the second equality 
V2 =  E j  bj£j =  0 implies similarly that all bj are zero, and so on. ■

Corollary. Let (V*)i^o be an independent family of nonzero vector subspaces 
in a finite-dimensional space E. Then this family is finite and

E t  dim Vi <  n =  dim E.

P ro o f . The union of bases Bi с  Vi is a linearly independent subset o f E , 
hence has at most n  elements. ®

The dimension of the sum of two finitely generated subspaces (Sec. 5.2.3)

dim V  +  dim W  =  dim (V +  W ) 4- d im (V  П W ),

can also be derived from the preceding proposition. Take a supplement V\ of
V  П W  in V, as well as a supplement W\ of V  П W  in W . Then the sums

V  = (V nw) + Vi, w = (V  П W ) + Wi

are direct sums, so that

dim V  =  dim (V П W ) +  dim V i, dim W  =  d im (F  П W ) +  dim W\.

Hence
dim V  +  dim W  =  dim V\ +  2 dim( V  П W ) +  dim W\.

Since Vi, V  П W , and W\ are independent with sum V  +  W , we have

dim Vi -f dim (V П W ) +  dim W\ =  d im (V  -f W ),

whence the result.

5.2.5 Finite Direct Sums of Vector Spaces
Let {Ei)i^i^£  be a finite family of vector spaces. By definition, the direct sum o f 
these spaces consists of the families ( v i , . . . ,  v*), where v f € Ei for all i. There is 
no basic difference with the product, although we write elements o f products in 
column, to conform with the convention concerning R n as consisting of column 
n-tuples. For example, the direct sum of n copies of R  is R n. The direct sum 
is a vector space with respect to componentwise addition and multiplication by 
scalars
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( v i , . . . , V*) +  ( v i , . . . , v ' )  =  (v i  +  v i , . . . ,  v £ +  v j ) ,  

f l (v i, . - - ,v < ) =  (a vb . . . ,a v £) (a € R ),
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and is denoted by E\ 0  • • • 0  Ее or 0 ^ ^  Ei. From bases o f the components 
Ei, we easily deduce a basis of the direct sum. If all Ei s are finite dimensional, 
we infer

dim(£?i 0  • • • 0  Ее) =  dim E\ 4- • • • 4- dim Ее.

I f  the Ei =  Vi С  E  are subspaces of a fixed space E, the addition in E  furnishes 
a linear map

E : V\ 0  • • • 0  Ve — * E

(V1,...,V/) l--- ♦ VJ +  --- +  V*.

Its image is by definition the sum of the subspaces Vi in E, and

V\ 4------ f  Vt =  ^ 2  W =  { v i  4------ h v* : Vj e Vi for all г},

dim(Vi H------ f  Ve) ^  dim(Vi 0  • • • 0  Ve) =  dim V\ 4------ hdimV*,

by the rank-nullity theorem. The kernel of E corresponds to the dependence 
relations between elements of the К ’s.

Proposition  1 . A family of subspaces of E  is independent when the
linear map ( v j , . . . ,  v*) »-> Vi H------ h v* given by addition is injective, hence an
isomorphism with its image

Vi 0  • • • 0  Ve Vi 4- • • • +  Ve С  E. ■

If all the subspaces V* are finite dimensional, they are independent precisely 
when

dim(Vi H------ f  Ve) =  dim V\ H------ h dim Ve.

When this is the case, the corresponding sum is also called direct and identified 
with K . The important point is

any element x  in a direct sum has a unique decomposition 

x  =  v* with Vi € V{ for all i.

Remark. The independence of subspaces V\, . . . ,  Vn implies that the intersec­
tions of any two different ones is reduced to {0 }: For г -ф j

x  € Vi П Vj = >  (x ) +  ( - x )  =  0 = >  x  =  0.
G Vi 6 Vj

But the conditions Vi D V j =  {0 }  for all i  ф j  are not sufficient for global 
independence. For example, three different homogeneous lines Li С  R 2 intersect 
in the origin only. But they cannot be independent since we can find nontrivial 
relations щ 4- v2 +  Уз =  0 (0 Ф Vi € L i) in the 2-dimensional space R 2. The same 
happens with four homogeneous lines in R 3. Here is a criterion for independence 
of finite families of subspaces of a vector space.
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Proposition  2. A family (V i)i^ i^ * of subspaces of E  is independent when

Ч П ^  =  {0 } ( U i « ) .
3&

P r o o f .  Assume that the family (V i ) i^ i^  is independent. F ix an index i and 
take v  =  у , =  E ^ i  Wj € V{ П E # <  Vj- Hence

V t - E ^ i V j  =  0

implies V{ =  0 since the subspaces are independent: Hence Vi П E jV i  Vi = {0 }.

Conversely, assume Vi П Y ^ jfrV j ~  (0}> and consider a relation E j v i  — ® 
where Vj G Vj for all j .  We may rewrite it as

Vi +  E i/ iV i  =  0,

or as

vi = -  E j*i Vj e vj n E № Vi = {0}: vi = °-
Since Vi П E jy i  Vj =  {0 }  for all г, we also deduce Vi =  0 for all г, hence the 
independence o f the subspaces Vi’s. "

We recover the initial definition for two subspaces Vi, V i С E: They are 
independent precisely when Vi П V2 =  { 0}.

5.3 Projectors

5.3.1 An Example and General Definition
Let us start by an example in the usual space R 3. Consider the vertical projec­
tion P  on the plane of equation z =  ax — by. This is a linear map and we can 
determine its matrix in the canonical basis (e i) o f R 3. By definition, a vertical 
projection preserves the first two components o f any vector. In particular, the 
image of the first basis vector has the form P e i =  *(1,0, ?). W e have to compute 
the third component. Since this image is in the plane, we have

? =  a l -  60 =  a,

and P e i  =  *(1,0, a). This is the first column in the matrix description o f P- 
The image o f the second basis vector is determined in a similar way

P e 2 =  ‘(0 , l , -6 ).

Finally, the third basis element ёз is vertical, so that P e 3 =  0 by definition. 
Here is the matrix o f P

( I  0 0\
M  =  10 1 0 .

\a - b 0/
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By definition o f a projection, P  is the identity on its image: P 2 =  P. One can 
check M 2 =  M .

D efin ition . Let E  be a vector space. We call projector in E  any linear map 
P  : E  —> E  such that P 2 =  P.

When dim E  ^  2, the quadratic equation P 2 — P  has infinitely many so­
lutions P  which are linear maps E  —> E. (Recall that the quadratic equation 
X 2 =  — I  also has infinitely many solutions X  which are 2 x 2  matrices.)

Example. Let E  be the space of functions / : R  —» R . For any such function, 
define f s by f s(x ) =  / (—x), and consider the linear map: E  — ► E

/ — • * /  =  * (/ + / .)■

The image g =  P f  is the average of / and its symmetric: It is an even function. 
Recall that even functions g are characterized by

g ( - x )  =  g(x) (x e  R ).

For an even function g, Pg =  g} and hence P 2f  — Pg  — g =  P f .  This proves 
P 2 =  P  so that P  is a projector. In fact, / =  P f  precisely when / is even, so 
that the image of f  is the subspace V  of even functions, on which P  acts by the 
identity. On the other hand, if h is an odd function, namely

h(—x)  =  — h(x) (x  € R ),

then P h  =  0: The kernel of P  is the subspace of odd functions. Any function f  
is the sum of an even one g =  P f  and an odd one h =  Q f  =  | (/  — f s) and

P f  =  P (g  +  h) =  Pg  +  Ph  =  Pg  =  g.

5.3.2 Geometrical Meaning of P 2 =  P

Let us discover the geometrical meaning of the algebraic condition P 2 =  P  for 
a linear map P  : E  —* E  of a vector space in itself. The two subspaces

V  =  P {E ) =  im P, W  =  ker P

will play a leading role. I f  x  G V, we can write x  =  Py  for some у  € E  and

P x  =  P (P y )  =  P 2y =  P y  =  x.

This shows that P  acts by the identity in the subspace V": P\v =  id\y. On 
the other hand, P  acts trivially in its kernel: P\w =  0\w- Grouping these two 
facts, we deduce that if x  has the form y  +  z  with у  € V  and z € W } then 
P x  =  у  is determined by additivity

x  =  y  +  z

p I I
у + о = у.
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It  turns out that any element x  G E  is of the preceding form  y  +  z. Here is the 
reason. For any х б £ ,  define у  =  P x  G V  and z  =  x  — P x , in order to have 
x  =  у  +  z. Then we have

P z  =  P (x  -  P x ) =  P x  -  P 2x  =  P x  -  P x  =  0 : z  G ker P  — W.

This decomposition o f x  G E

x  =  у  -+ z (y  G F, z € Ж )

is the only one since У  П W  =  {0 } .  In this decomposition, the action o f P  is 
fully described by

x  =  у  +  z

I I I
P x  =  у  +  0.

Let us say that P  projects E  onto V , in the direction parallel to W . Here is a 
picture o f a plane projector in the usual 3-dimensional space.

Recall (Sec. 5.2.3): A  space E  is the direct sum o f two supplementary sub­
spaces V  and W  when each element x  G E  can be written in a unique way

X =  y  +  z ( y G V . z  € W ) ,

namely when

E  =  V  +  W  and V n W  =  { 0}.

Hence we have proved the following proposition.

P rop os ition . Let P  : E  —» E  be a projector: P 2 =  P . Then E  is a direct sum 
of V  =  im P  and W  =  kerP, with P\y =  idy and P\w — 0\w• ®
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There is a 1-1 correspondence between the projectors P  in E  and the ordered 
pairs (VyW ) consisting of two supplementary subspaces of E. It is given by

P  i— ► (im P, ker P ) .

When P  is a projector in E , define Q =  I e  -  P . Since

Q2 =  I e  -  I EP  -  P Ib  +  P 2
=  I E - 2 P  +  P  =  I E -  P  =  Q,

Q is also a projector. By definition, Qx =  x  — P x , so that

Qx =  x  <*=> P x  =  0 

Qx =  0 <=> P x  =  x,

and
im Q =  ker P, ker P  =  im Q.

The relation P  +  Q =  I  shows that P  and Q play symmetric roles: It is sufficient 
to notice that the kernel of P  is the image of Q to be able to deduce that the 
image of P  is the kernel of Q (interchange the roles of P  and Q). The symmetry 
in P  and Q (or V  and W ) in the diagrams

E  V ® W  v e w  E
x  i— ► (P x , Q x) (y ,z ) i— ► y  +  z

is an invitation to generalize the preceding considerations to finite families of 
projectors.

Proposition . Let P\, . . . ,  Pi be a family of projectors in E  such that

P iP j =  P jP i =  0 for all i  Ф j.

Then P  =  Pi H------f Pi is a projector. The family of subspaces Vi =  imP* is
independent and P  is a projector onto the direct sum E t  Vi ■

P ro o f . Consider the algebraic identity

( A  +  • • ■ +  pt )2 =  E i, j  P iP j =  P? +  --- +  P e +  E i&  P iPi-

W ith our assumptions P iP j =  SijPi, we get

( Л  +  • • ■ +  pt f  =  P l  +  ■ • • +  p !  =  P i +  ■ ■ • +  Pt,

whence the result. ■

When P i , . . . ,  P i is a family of projectors in E  such that

P ^  =  PjP i =  0 ( M i ) ,
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we may replace E by im P  =  im (P i 4------h Рц) and thus assume

P i H-------1- Pt =  I e -

In this case, we have an isomorphism

E V\ Ф • • • 0  Vt 
x  I— * (P ix , . . . , P * x ) ,

with inverse given by the sum map

Vi ф ... $  ve E
(vi,...,v£) i— > vi +  --- +  v*.

5.3.3 Tricks of the Trade

Here are a few algebraic properties of projectors. I f  P  and Q are two projectors, 
then

P  4- Q projector <=$■ P Q  4- Q P  =  0.

Indeed P 2 =  P  and Q2 =  Q by assumption, so that

P  4- Q =  (P  4- Q )2 =  P 2 4- P Q  +  Q P  +  Q 2 « = »  P Q  +  Q P  =  0.

More can be said.

Proposition  1. I f  P  and Q are two projectors, then

P  +  Q projector <=> P Q  =  Q P  =  0.

PROOF. A s we have just seen, P - f  Q is a projector precisely when P Q + Q P  =
I f P Q  =  Q P  =  0, this condition is verified. Conversely, if P Q  4- Q P  =  0, we 
can multiply this identity on the left and on the right by Q, obtaining

Г Q PQ  + Q2P  = Q P Q  + Q P  = 0 
\ P Q 2 +  Q PQ  =  P Q  4- Q PQ  = 0 .

This shows Q P  =  -Q P Q  =  PQ , and 2PQ  =  0 (since P Q  4- Q P  =  0). Finally, 
we see that Q P  =  P Q  =  0 as expected. "

P rop os ition  2. I f  P  and Q are two projectors, then

P  — Q projector <=> PQ  =  Q P  =  Q.

P r o o f . As we have seen, P  — Q is a projector exactly when I  — (P  ~  0 )  7” 
(/ — P )  +  Q is a projector. Using the preceding proposition, we see that this is 
the case precisely when

( I - P ) Q  =  Q ( / - P )  =  0, 

namely when Q =  P Q  and Q =  Q P. *
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5.4 Appendix

5.4.1 Pyramid of Ages

Most countries spend a lot of money in the statistical study o f their population 
and its growth. A  first approach consists in evaluating the population as a 
positive integer. I f  this integer is large, its evolution as a function of time is 
best described by a Cartesian graph where time, as well as population are treated 
as real numbers. Newspapers mention exponential growth in this context (even 
when this is an understatement: With an exponential growth, the doubling time 
is constant; but the doubling time for the world population— close to 1000 years 
before Christ— has diminished dramatically to about 30 years around 1980, and 
was estimated to 47 years in 1997.)

N( t )

In a more sophisticated approach, statistics considers the breaking down of 
the population into age groups. Instead of the total number N (t )  o f population 
at time £, it is more informative to list the partial numbers n*(t) in different age 
groups (1 <  i  <  m)

N ( t )  =  щ  ( t )  +  n 2(£) -4------- 1- n m ( t ) .

This data is an m-tuple, hence a generalized vector. The partition between 
young, productive adults, and senior citizen is quite common. But statistics 
offices use a finer partition with 20 groups of 5 years each. (They even separate 
men and women, single, married, divorced, etc. thus achieving a quite large 
matrix of data: Here, we only consider the principle, explained in a simplified 
situation.) Hence we may say that such a model involves the 20-dimensional 
vector space R 20.

Let us now approach a modelling of the evolution of such a population. 
Assume that the evolution from one generation to the next is such that the new 
born are produced by the different age groups
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N N l

Til — fim  +  /2П 2 H----------h /тПт,

with specific fertilities (say /1 =  f 2 =  0, f m =  0). The next age groups n'k 
(k ^  2) come from the preceding ones nk- 1

-  РкПк- i  (2 ^  к ^  m),

with certain probabilities of survival pj. (This model ignores both emigration 
and immigration.) These relations can be gathered in a matrix product

/ n\  ̂
n2

/ п 'Л /2 /3 . . .  f m \
n'2 P2 0 0 . . .  0

= 0 Рз 0 . . .  0

\П'т ) \0 0 Pm  0 /

or in short

n; =  Ln.

The particular matrices L  that appear in this model are called Leslie matrices.

Under the assumption that the fertilities and survival probabilities remain con­
stant, the evolution after к generations is described by the Zcth power o f the 
corresponding Leslie matrix

nW  =  L fcn ( * £  1).

It is interesting to note that such a model can account for apparently irregular 
growth of the total sum N (t).

5.4.2 Color Theory

Children who play with paintboxes soon discover that mixing yellow with blue 
produces green. Hence these colors are not independent. Thus instead o f buying 
lots of paint tubes, one may consider that one tube of yellow and one tube of blue
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is equivalent to two tubes of green. (Note that this is not a strict equivalence: 
The entropy increases during the mixing, and it is not easy to separate green 
into its two components!) More precisely, one may form different combinations 
of blue В  and yellow У , written as linear combinations

В +  Y  =  2G : green, В  +  2У =  3G' : spring green, etc.

In short, we are building a model of color mixing within a vector space, using 
positive linear combinations of paints. In this space,

В  +  J  and 2B 4- 2 J

lead to 2V and resp. 4V, corresponding to the same hue (produced in double 
quantity in the second case). I f  hue is the only quality that interests us, we can 
limit ourselves in positive linear combinations having coefficients summing to 1, 
hence producing a unit quantity of desired color.

Available commercial paintboxes contain a set of generators for all colors, 
or so we hope! But as already noted, the dozen of paint tubes that they may 
contain are by no means independent. The relations

В +  Y  =  2G, В  +  2У =  3G'

can even be written as linear dependence relations

В +  Y  -  2G =  0, В  4- 2У -  3G' =  0.

Physical mixtures correspond to linear combinations having nonnegative coef­
ficients, but linear dependence relations have negative coefficients (in fact, the 
sum of the coefficients in a linear dependence relation is zero).

I f  we tend to be good with money, we may be looking for a minimal set o f 
generators. Experience shows that blue and yellow are independent colors. We 
can complete these into a basis for all colors by adding red R.

AID
Blue Red Yellow

Mixing the three in various proportions produces browns, or even black. In this 
naive theory, we consider that all hues may be obtained in the form 

aR +  bB +  cY, 0  0, b^O,  с ^  0, a +  6 +  c = l ,  

and conclude that our model vector space is three-dimensional, with basis R, 
Y, and B. This is the R Y B  color model for visual paint mixing. Pure hues are
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placed inside a triangle having vertices at the points Д, Y  and В . This triangle 
is reproduced in all “Teach yourself with Painting” books.

To describe the grey value of colors, we may add one dimension— represented 
by a diluter D — and thus consider linear combinations

aR + b B  +  cY  +  dD where a +  b +  c +  d =  1,

corresponding to the hue

aR -+ bB +  cJ (a +  b +  с <  1)

(all coefficients remaining nonnegative). To recover the first description, we 
have to cancel D. The original description is the projection onto the three- 
dimensional subspace generated by В, Я, and Y , parallel to the direction gen­
erated by the diluter D. The enriched description (with grey value) can be 
envisioned as a pyramid having for basis the preceding triangle o f colors, and 
vertex D  (projecting onto 0).

The preceding visual theory for paint mixing is a subtractive color theory 
where the mixing of two paints absorbs the corresponding wavelengths, hence 
the resulting visible color is the remaining reflected spectrum. A  physical theory 
for light-absorbing systems is based on the primary colors Cyan (greenish blue), 
Magenta (pinkish red), and Yellow. It is used in the process o f color printing. 
Quadrichromic printers use the С M Y  В  colors, with Black added (cheaper than 
mixing complementary colors).

In an additive theory, superposition of colored light rays produces completely 
different results (e.g. mixing all colors produces white). The RG B  additive 
theory has basis Red, Green, and Blue. It is well adapted for the interpretation 
of the behavior of colored computer screens. Handling images with computers, 
and printing them, emphasizes the differences o f the two theories. Here are 
pictures exhibiting the differences (and relations) between them.

Y e llow  Red B lue Cyan

C M Y  subtractive model R G B  add itive  m odel
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There is no absolute model for the understanding of a natural phenomenon. 
Each one is suited to a special purpose, and constitutes an idealization of one 
aspect o f this phenomenon. To illustrate this further, let us show how linear 
algebra can be used in another context linked with light propagation.

Po la riza tion

When using a polarizing filter in photography, one has to double the exposure 
time. Hence such a filter absorbs 50% of the incoming light. However, two 
superposed polarizing filters do not attenuate the luminosity by a factor | =

( I )  , in general. The relative orientation of the filters is crucial, showing that 
the scalar interpretation of the attenuation is not suitable in this context. The 
following experiment shows that the introduction of a third polarizing filter can 
even increase the transmission factor!

Fix two perpendicular polarizing filters in a light ray so that no light can 
go through. Introduce a third polarizing filter between them, whose polarizing 
direction makes an angle o f 45° with each: Observe now that some light goes 
through.

The Maxwell theory o f light with electromagnetic waves gives a satisfactory 
explanation. In this theory, light is constituted by a pair o f orthogonal vectors 
E , H, oscillating in a direction perpendicular to propagation. A  polarizing filter 
only selects one component of these fields in a specific direction. Let us fix our 
attention to the electric field: A  first polarizing filter with vertical orientation 
selects the vertical component of E. A  second orthogonal polarizing filter will 
select the horizontal component of E. When both act in a sequence, no light 
can go through. But when the third intermediate filter is introduced, selecting 
the diagonal component, it is easy to understand that some light is transmit­
ted. The amplitude of the initially vertically polarized ray is halved after going 
through the next two polarizing filters. Its intensity (the square of the ampli­
tude) experiences an attenuation factor of This vector description of light 
waves makes it natural to use matrices in this context. The intermediate filter 
corresponds to a diagonal projection of the electric field E  having matrix

The last horizontally polarizing filter is a vertical projection with matrix

« = (5  2)-
We have Q(e2) =  0 so that no light goes through with two orthogonal filters, 
while

« o P = ( v 2 1/2) ’ Q p W  =  & -
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Here is a picture o f the attenuation produced by three successive polarizing 
filters with respective angles of 45°.

5.4.3 Genetics

It  is known that genes— located in chromosomes— are responsible for the trans­
mission of characters in the reproduction process. Alleles are pairs o f genes 
located at the same level, or Iocils, of a pair of chromosomes. A  genotype is a 
pair of alleles at a locus of a chromosomic pair. Let us examine one locus, with 
two possible alleles A  and a occurring with the respective frequencies p and q 
(p +  Я =  1) in a given population.

1) I f  a father has the genotype AA , a descendent will inherit a gene A  from 
his father and a gene A  (probability p) or a (probability q) from his mother, so 
that his genotype will be

AA  with probability p, Aa with probability q.

2) Let us determine the genotypes of the the descendents of a father having 
genotype Aa. There is equiprobability that the son inherits A  or a from the fa­
ther. The second character, inherited from the mother, is independent from the 
first one. Here is a table summing up the possibilities, with their probabilities.

1: a {\) -  A A (  Ip ), Aa ( I q), aa (0)

Aa I
, « ( j ) -  A A (0 ), Aa ( ip ) , ao (I<?)

1[ Total: A A  (Ip ), A a {  1), aa (^g)

3) Finally, if the genotype of the father is aa, the genotype o f the son will be 

Aa with probability p, aa with probability q.

This explains the following complete table of possibilities
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genotype o f father 
1

genotype of son 
AA Aa aa

AA V Q 0

Aa b  5 b
aa 0 p я

which we view as a transition matrix

The possibilities for a two-generations jump are determined by iteration. I f  a 
grandfather has genotype A A, his son will have genotypes A A with probability 
p, Aa with probability q, and aa with probability 0. The possibilities for the 
grandson are gathered in the following table.

AA

Paths starting at AA  and arriving at AA  have a probability p2 +  \pq. We 
recognize a typical coefficient of the matrix product T 2.

AA (p) -  AA (P2) Aa (pq) aa (p)

Aa (q) - »  AA (b p ) Aa (±q) aa (\q2

aa (0) -> AA (0) Aa (0) aa (0).

5.4.4 Einstein Summation Convention
Let us take a basis (e b . . . ,  en) of R n. In order to avoid double indices, let us 
write the components of a basis vector in upper position

\ e p

Since we work in linear algebra, there is little risk of confusion with powers. 
I f  necessary, one may denote the square of the component ej as (e*)2 to avoid 
confusion between upper indices and powers. To be consistent, we shall also 
denote by upper indices all components of vectors. For example, we shall write

x =  E i « «  x%e*•
C o n v e n t i o n . When a summation concerns an index which appears both in 

upper and lower position, we delete it.
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Consequently, the above two formulas will here simply be written

f x l \

x =  s,ei =  (e1,...,en)
x2

w

(block multiplication). In order to be able to use this convention as often as 
possible (and delete all— or nearly all— summation signs), we have to be careful 
on the placement of indices. As we have already seen, the row index in a matrix 
should be placed in upper position (it refers to the components o f the column 
vectors). Hence we denote by A =  (a j) a typical matrix. Let us consider 
the product С  =  AB  of two matrices (o f compatible sizes). I f  A =  (a j )  and 
В =  (bjf), a typical entry of С  is

с\ =  аЩ  =  а{Ьке

where the appearance of the index j  in both positions suggests a summation on 
this index: The result is independent of the name o f this index. Formally, we 
can say that an index placed in both positions cancels out in the result, just as 
in a fraction. The unit matrix I n is the square matrix (<5j) o f size n  x n and 
entries

S\ =  J 0 
J 1 1 if i =  j.

(The indices of the Kronecker symbol now share an adequate position.) This 
unit matrix is characterized by the formulas

6)а { =  a\ and а)д{ -  a\.

In components, the formula Ax. =  у  is now written djX* =  yi where the summa­
tion on the index j  is implicitly made. As another example of this convention, 
the trace of a square matrix A =  (a }) is simply written tr A  =  a].

5.5 Exercises
1. Let

/1 1 ... r

M  =  : :

\ l  1 ... l,

What is the dimension of the kernel of M ? Show that a multiple of M  is a 
projector.

2. Using row operations, check that the rank of

/ 1 2  3 . . .  n \ 
A = | 2  3 4 ... n +  l l  

\3 4 5 . ..  n +  2/
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and o f its transpose are the same.

3. Find a basis o f the image of the linear map R 4 -> R 4 defined by the matrix

( 1 1 - 1 ° \
0 1 1 1
0 - 1 - 1 - 1

V - 1 - 1 1 0 /

4. Let P  be a projector in a vector space E , and define r  =  тр =  Ie ~ 2 P . Check 
t 2 =  Ie -  W ith Q =  Ie  — P  (complementary projector), let also a — 2Q — Ie , 
so that о 2 — I e • Show that in the usual 2-dimensional space, r  and a are 
symmetries. What is г  о a? Any linear map T  : E —> E such that T 2 =  Ie  is 
called a (generalized) symmetry, or an involution.

5. Let V\ and V2 be two vector subspaces of a vector space E. Prove that 
V i n V 2 is a vector subspace of E  as follows. I f /* : E  —+ F{ are linear maps with 
resp. kernels V{ (i =  1,2), consider the kernel of the linear map g =  (/ ь / 2) 
defined by

E  — * Fi 0 F2 
X I— > (/l(x),/2(x)).

6. Let E  be the vector space of polynomials in two variables x and y, and

V =  C(x +  y , ( x ±  y)2), W  =  £( l ,x,y,xy) .

What are the dimensions o f V, W, V  4- W,  and V  fl IV?

7. (a ) Let A  and В  be two matrices having the same number m  o f rows. How 
does one have to choose b € R m in order that both A x  =  b and By  =  b are 
compatible?

(6) Find the intersection of the images of the following matrices

/0 1 2\ / 1 - i  0\
A  =  I 1 1 1 1 , B =  0 0 1 

\2 1 0/ \ - l  1 0/

8. (A  Leslie Matrix) Consider a subdivision o f a population into three age 
groups, each containing a generation of roughly 30 years:

x\: #  o f young, x2: #  of workers, X3: #  of retired.

Assume that the fertility of the second age group is 2/3 (about 1.3 children per 
couple) and that the survival ratio from the first group to the second group is 
66% (due to illnesses, accidents, etc.) and 80% for the transition from second 
to third age group. We obtain the transition equations

xi =  §Z2, 4 =  I 1!. x3 =  |г 2-

Show that the transition matrix admits 1 (5,5,6) as an eigenvector: Which is the 
corresponding eigenvalue? The corresponding pyramid of ages is stable: Show 
that it decreases steadily like (2/3)”  =  e-Qn (a  =  log3/2).
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9. Consider the Leslie matrix A  of size 9 x 9  corresponding to fertilities /* =  0 
(г ф 2, 3), /2 =  1/2, /3 =  1/4, and transition probabilities po =  69%, pi =  61%, 
p2 =  51%, p3 =  42%, p4 =  33% ,p5 =  24%, p6 =  16%, p7 =  10%, p8 =  0. 
Write down the transition matrix A. Compute the sequence o f pyramid of ages 
Av , A 2vy . . . ,  A l0v corresponding to the initial condition

v =  *( 106,0,0,0,0,0,0,0,0).

Show in particular that the total population decreases twice, increases once, and 
then decreases again.

10. Let V  be a vector subspace of a space E. The set o f affine subspaces x  4- V  
(x  € E ) parallel to У  is a vector space if we define

a(x +  V ) =  ax +  V, 

(x  +  V ) +  (у +  V ) =  (x  +  y ) +  V,

when a is a scalar, and x, у G E. This vector space is called quotient of E  by V  
and denoted by E/V. Show that the map

+  V  : E — >E/V ,

is linear, surjective, with kernel V.  Show that for any surjective linear / : E  —> F  
with ker / =  V , F  is isomorphic to E/V. When E  is finite dimensional, show 
dim E/V =  dim E  -  dim V. Let E  =  R n x  R m and V  =  {0 }  x R m С E. What 
is E/V?

11. A  surjective linear map n : E  —* F  is called a quotient map. Show that for 
any quotient map 7Г there is a linear map о : F  —► E  such that 7г о с  =  idp (use 
a basis of F  to define a). I f V  =  ker7r and W  =  im j,  show that E  is the direct 
sum of V  and W  (for x € E, notice that x — отгх E ker7r). For each choice o f 
a, the composite F  E  — ► E/V  (see previous exercise) is an isomorphism.

12. Let W c . V c . E b Q  vector subspaces of a space E.  The canonical map

x +  W\— > x +  V  : E / W — >E/V

is linear. Show that its kernel is V/W С E/W. Conclude that the quotient o f 
E/W  by V/W  is isomorphic to E/V.
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Notes
The method (Sec. 5.2.3) (construction of a basis of the intersection of two sub­
spaces) comes from the article by Kung-Wei Yang

The Mathematical Magazine 70, nb.4 (1997), p. 297.
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Chapter 6

Eigenvectors and 
Eigenvalues

Here is the most important theoretical application o f the rank theory. A  whole 
chapter is devoted to the explanation o f this concept, and a first section con­
centrates on one of its particularly simple aspects.

6.1 Introduction

Some people smoke, some do not. A ll know that it is a hazard for your health 
to do so... and some try to stop, or convince their children not to start, with 
various degrees of success. How will the proportion of smokers/nonsmokers vary, 
in a simple model where

among smokers, | of their children smoke,
while

only  ̂ of nonsmokers descendants start smoking?

Let us introduce a subdivision of the population into generations (taking for 
granted that the preceding proportions remain constant in future generations). 
Thus we denote by S  and N  the distribution at a given time and by S ', N ' the 
distribution one generation later. Our assumption can be translated into the 
equations

5' = 15+1ЛГ, N '  =  l S + ± N .

The matrix formalism allows us to rewrite these equations in the form

The matrices A , A2, Л 3. .. furnish the dynamics of the evolution after one, two, 
t ree... generations. An interesting problem is to find one stable proportion
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(perhaps a limit one): For example, a train company might be interested in the 
proportion of smoking and nonsmoking carriages that it has to dispose in its 
network. In our particular example, let us check that the proportion 4, i  is 
stable 3

15 ' 15

In the same vein, the breakdown of a population according to age group can 
be represented by a vector v. It may be possible to describe the evolution of 
this vector by a matrix multiplication: v '  =  Aw. I f  the population changes, 
one may be especially concerned by the variation (or preservation) o f the shape 
o f the pyramid of ages. In the transition from one generation to the next one, 
this shape is preserved precisely when the vector representing the population is 
simply multiplied by a scalar v ' =  Av. In other words, assuming that we know 
the matrix A, can we find a stable pyramid of ages? This problem leads to the 
theory which is explained below.

6.2 Definitions and Examples
Let us call operator any linear map from a vector space E  into itself.

6.2.1 Definitions

D efin ition . An eigenvector of an operator T  is an element v  G E  such that

v  ф 0 and T v  is proportional to v.

We then write T v  =  Av with a scalar A. A  nonzero vector v  is an eigenvector 
of T  when

T v  =  Av, T v  — Av =  0, (T  — A/)v =  0, v € k e r (T  —A/). 

D efin ition . An eigenvalue of an operator T  is a scalar A such that

ker(T -  XI) ф {0 }.

The nonzero elements of ker(T — A I )  are the eigenvectors of T  corresponding 
to the eigenvalue A. The eigenvalues are the special values of a variable x such 
that ker(T — x l )  Ф {0 }. When E  is a finite-dimensional space, these are the 
values o f x such that the rank of T  -  x l  is not maximal.

D efin ition . I f  X is an eigenvalue of an operator T  in a vector space E,

Vx =  { v  e  E  : T v  =  A v } =  ker(T -  XI) 

is the eigenspace of T  relative to the eigenvalue X. Its dimension 

m\ =  dim V\ =  dim ker(T -  XI)
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is the geometric multiplicity of the eigenvalue X.

By definition

Л eigenvalue of T  «= >  V\ =  ker(T -  X I) ф {0 }  m\ ^  1,

and the geometric multiplicity of Л is the maximal number of linearly inde­
pendent eigenvectors that can be found for this eigenvalue. The rank theory 
explained in the first chapter allows us to compute this dimension by means of 
row operations: I f  r =  rank(T — XI), then this dimension is the number o f free 
variables

гад =  dim ker(T -  X I) =  n — r.

6.2.2 Simple 2 x2  Examples 

A  Special Method for Dimension 2

In the introduction to this chapter, we have encountered the matrix

Let us determine its eigenvectors. Since e i =  (J) is not an eigenvector (its 
image is the first column of the matrix), any eigenvector will have a nonzero 
second component. Hence we may only look for eigenvectors having a normal­
ized second component: We are looking for eigenvectors o f the special form (* ) ,  
with second component equal to 1. The problem now is simply to find a first 
component x with

This condition is

and leads to two equations for the pair Л and x

Eliminating Л we find the condition

| x + I  =  ( f n - i ) i ,

or

S ^  +  s Z - j b - H O ,  2x2 +  x -  1 =  0.



6.2. DEFINITIONS AND EXAMPLES 147

The roots of this quadratic equation are

(1) A  first eigenvector is obtained by taking x  =  v =  ( 1{ 2)- The correspond­
ing eigenvalue is

to the same eigenvalue. In particular, if we prefer integral components, we might 
take ( j ) , and if we prefer a sum of components equal to 1 as in the introduction, 

we would choose (3/3)-

(2) A  second eigenvector is obtained by taking x  =  — 1: w =  (^ J). The corre­
sponding eigenvalue is

M =  § ( - ! )  + !  =  §•

This method is restricted to the 2-dimensional case. But in this case, it is 
elementary and very effective.

A  Method for Dimension 2

Let us determine the eigenvectors of the matrix

Recall that they are the nonzero vectors v such that

Av =  Xv, Av — Xv =  0, (A — X I )v  =  0.

We can find such vectors provided кег(Л — XI) Ф {0 }, namely when A — XI is 
not injective, or equivalently not regular. Thus we determine first the values 
of a variable x such that the rank of A — x l  is not maximal. Let us proceed 
systematically with row operations

(2 _ з _x
0 - 5 -  %{x — 4) (x +  3)

The rank is not maximal when

2 ( 5 +  | (z - 4 ) ( : c  +  3)) =  10 +  (a: — 4 )(x  +  3) 

=  x2 — x — 2 
=  ( x - 2 ) ( x  +  l )
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vanishes. The corresponding eigenvectors will have components satisfying

2ui - (3 + X)v2 =  0.

We can take

1)2 — 2 

v\ =  3 -I- Л,

and hence

v =

w =

eigenvector relative to A =  — 1, 

eigenvector relative to Л =  2.

Observe that row operations furnish simultaneously the eigenvalues and the 

corresponding eigenvectors. (The reader should treat this matrix with the first 
particular method and compare them.)

6.2.3 A  4 x 4 Example

As a less trivial example, let us find the eigenvectors of the following 4x4 matrix

A =

(  0 2 - 2  0 \ 
1 1 0 - 1  

- 1 1 - 2  1 

V-l 1 - 2 1 /

We proceed with row operations in order to find simultaneously the eigenvalues 
and the eigenvectors:

A — x l =

f-x 2 - 2  0  \ t

1 1 — X 0 - 1 1

- 1 1 - 2- x  1

V -1 1 - 2  1 — x J
/ 1 1 -  X 0  - 1  \

- X 2 - 2  0 £2 +  x£\

Г 1
1 - 2 - x  1 £3 +  £\

V - 1 1 - 2  1 — x J £\ +  £\
/ 1 1 — X 0 - 1

0  2 + x- x2 -2  -x
0 2 — x - 2 - x  0

\0 2 — x - 2  - x /
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A — x l

/1 1 - x 0

0 2 - x - 2 —X
0 2 - x —2 -  X 0

\0 2 + x -x2 -2 -x j и

Л 1 — X 0 -1
0 2 — X -2 —X

0 0 —x +x

V o 0 -2 4- 2x 4- 2 — X  +  X 2

/1 1 — X 0 - 1 \

0 2 — X —2 —x

0 0 —x -fx

\0 0 2x x2 j 4- 2^3

Finally

/1 l- x  О -1 \
0 2- x -2 -x

0 0 —x +x 

\0 0 0 x2 + 2x/

The rank is 4 except in the following cases

x =  ±2: The rank is 3, 

x =  0: The rank is 2.

Let now A be one of these three eigenvalues. To find the corresponding eigen­

vectors, we solve the triangular homogeneous system

r Xl + (1 — X)X2 — £ 4 = 0

(2 - X)X2 -  2X3 ”  — 0
— Ахз + AX4 =  0

+ (A2 + 2A)x4 =  0.

The following four eigenvectors make up a basis of the whole space

for A = 0 (in ker A),

(Л
1

0

w

\ fl\
0

0

/ V1/

for A = 2
0

1

v J
for A = -2.

L
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6.2.4 Abstract Examples

(1) A symmetry is by definition an operator S satisfying S2 =  id. Without any 

special property of the vector space E  on which such an operator is defined, for 
any eigenvector v ( ^  0), we have

Sv =  Av = >  S2v = S(Av) =  ASv =  A2v 

S3 d A2 =  1 : A =  ± 1 .

The only possible eigenvalues of a symmetry operator are ±1. Here are special 
cases of this situation.

(la) Let E  = Mn be the space of square matrices of size n x n. Look at the 
transposition operator S : A lA. Obviously S2 = id so that transposition is a 

symmetry. The eigenvectors of transposition are now the matrices A for which 

lA =  ±A. For the eigenvalue +1, the eigenvectors are the matrices lA =  A, 
namely the symmetric matrices. For the eigenvalue —1, the eigenvectors are the 

matrices lA =  —A, namely the skew-symmetric matrices. Note that any (square) 

matrix A is a sum of a symmetric one A3 and a skew-symmetric one Aa• Indeed, 

for any square matrix A, A 4- lA is symmetric, while A — lA is skew-symmetric, 
and

А=\{А + 'А) + \(А-гА).

=A<\

In fact, this is the only decomposition of A as such a sum: Suppose A =  X  + У 
where X  is symmetric and Y is skew-symmetric. Then

A =  Х  + У,

lA =  tX  + tY  = X - Y }

whence A + lA =  2X , A — lA = 2У and necessarily

Х  =  1(Д + М), У  = 1 (Л - ‘А).

It is reasonable to call

X  =  2^A + lA) = Аа the symmetric part of A,

^  =  i(A  — lA) =  Aa the skew-symmetric part of A.

(lb) Let E be a vector space of functions on the real line, such that if a function 

/  is in E, its symmetric part f a defined by f a(x) =  / (—x) is also in E. Define 

an operator S : E  —* E by S f = f a. Obviously S2f  =  f  so that this operator 

is a symmetry. The eigenfunctions corresponding to the eigenvalue +1 are the 
solutions of S f — / , namely the functions /  satisfying f (—x) =  f(x) identically. 
These functions are called even functions. The eigenfunctions corresponding 

to the eigenvalue —1 are the odd functions, characterized by f ( —x) =  ~~fix)



6.2. DEFINITIONS AND EXAMPLES 151

(identically). As in the preceding example (la), any function /  can be written 
in a unique way as a sum of an even and an odd function

/(*) =  Ш (х) + /(-*)) + !(/(* ) - я - * ))  •
v  ----- ' '----- V----- '

even odd

For a polynomial 23o^t<na*xt’ the even part is

^ 2  <*2 
0 ^ i= 2 j even

while the odd part is

]T a2j+H 2j+1.
0 ^ t= 2 j+ l odd

Another example is supplied by the exponential function:

coshx =  |(ег -+ e~x) is the even part of the exponential 

sinhx =  \(ex — e~x) is the odd pari of the exponential.

Hence the preceding decomposition for the exponential is

f(x) = ex — coshx -f sinhx.

(2) The eigenvectors relative to the eigenvalue Л =  0 are the nonzero elements 

in the kernel of T. For example, let TV be a nilpotent operator, say N k =  0 for 
some integer к > 1, but N k~x ф 0. Then the image of N k~l is contained in 

the kernel of TV, hence consists of eigenvectors of N relative to the eigenvalue

0. For all v ^ O , the last nonzero element in the sequence v, N v, № v ,. .. is an 

eigenvector of N with eigenvalue 0.

(3) The eigenvectors relative to the eigenvalue A =  1 are the nonzero fixed 
elements. Consider for example the unit translation operator on continuous 

functions. Here, T acts in C(R) by

(T/)(x) = Дх + l) (fG C ( R)).

The eigenvectors relatively to the eigenvalue 1 are the functions /  satisfying

/(x + l) =  /(x) (x € R).

These are the periodic functions of period one. For example, the functions

sin27rA;x, cos27tA;x (fc ^  0)

are eigenvectors of the unit translation.

(4) In the vector space C°° of smooth (namely indefinitely differentiable) func­

tions /  on the real line, consider the derivation operator

D : /  i— * f  {f e C°°).
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Which functions /  have a derivative proportional to /?  In other words, for 

which functions /  is the derivative f  — D f a multiple of / , say D f =  A/? The 

answer is well-known: These are the exponentials f(t) =  ceAt. These are also 
eigenfunctions of the second derivative operator

D2 : /  i— > /" , D 2{ext) =  \2ext.

If we are looking for eigenfunctions of D in the subspace E  consisting of the 

functions /  e C°° satisfying / (1) =  / (0), then we have to select among the 

exponentials those for which eA =  e° =  1: The only real case is A =  0, and 

the corresponding eigenvectors are the constants. But if we are looking for 

eigenfunctions of D2 in the same subspace, we may proceed as follows. For A 
an integral multiple of the complex number 27гг, say A =  2t7r/c, the eigenvalue of 

D2 is the real number A2 = —47Г2k2 ^  0. The two complex eigenvectors e±2xirk 

are independent, correspond to the same eigenvalue A2, and may be combined 
into the real functions

c o s 2 t tkt =  | (e2inkt +  e~2iirk%  sm2nkt =  ±{e2i*kt -  e~ 2 iirk t) ,

which are thus real eigenvectors of D2 having nonpositive eigenvalues.

(5) For any eigenvector v of an operator P, say v ф 0 and Pv = Av, we have

P 2v = P(Av) =  A Pv =  A2v.

If P  is a projector, namely P2 = P, we infer A2v =  Av, hence A2 =  A (since

v  Ф  0). This proves that the only possible eigenvalues of a projector are A =  0 or 

1. The eigenspace corresponding to A =  0 is the kernel of P  while the eigenspace 

corresponding to A =  1 is ker (I — P) = im P, as we have seen.

(6) If v is an eigenvector of an operator T, say v ф 0 and Tv =  Av, then Tnv =  

Anv (n ^  1) and proceeding with linear combinations, /(T)v =  / (A)v for any 

polynomial /. Hence v is an eigenvector of f(T) relatively to the eigenvalue 

/(A). If f(T) =  0, then the eigenvalues are to be found among the zeros of /, 

namely the solutions of /(A) =  0. Several cases have appeared

^  T2 — /  = 0, T is a symmetry, the only possible eigenvalues are ±1

>■ T2 — T = 0, T is a projector, the only possible eigenvalues are 0 and 1

Tn =  0 (for some integer n ^  1), T is a nilpotent operator, the only 
possible eigenvalue is 0.

(7) Here is a useful trick for the construction of particularly simple examples. 
Let A = (aij) be a square matrix, and consider the column vector having all its 
components equal to 1. Then
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where s* =  Oij is the sum of the entries in the ith row. If all row sums 

are the same, say s* = ]TV a y  =  s for all i, we see that v  =  *(1, 1,...)  is an 
eigenvector of A with respect to the eigenvalue A = s. For example

Here is another example in dimension n:

(a b . . b) /  i\
b a . . b i

= (a + (n - 1)6)
1

\b b . . a) w w

(8) Finally, let us quote the important example of the Schrodinger equation. The 

Hamiltonian of a physical system is a partial differential operator H acting on a 

certain space of functions. The (suitably normalized) eigenvectors of H are the 
stationary states ip of the system. If Hip = Eip, the eigenvalue E  is the energy 

in the state ip. The partial differential equation Hip = Eip is the Schrodinger 

equation of the system. For the hydrogen atom, there is a sequence of stationary 

states ipn corresponding to energy levels En: Hipn =  Enipn (n ^  1).

6.3 General Results

6.3.1 Estimation of the Number of Eigenvalues

We intend to prove that an n x n matrix has at most n eigenvalues. This 

fundamental fact will be obtained as a consequence of an understanding of the 

relative position of the eigenspaces.

Recall that a family of subspaces V{ of a vector space E  is independent, if a 
finite sum ]T] v* of elements v* e К can vanish only when all v< = 0 (Sec. 5.2.4). 

Quite generally, without finiteness assumption on the dimension, we have the 

following result.

Theorem. The eigenspaces of an operator T : E  —> E  form an independent 

family of subspaces of E.

P r o o f . Consider a finite sum £  v* = 0 where Ty< =  A*v*> with distinct 
eigenvalues A*. We have to prove v* = 0 for all i. This is done by induction on 
the number of terms in this sum. If there is only one term, there is nothing to 
prove. The reduction of a sum to a shorter one is done as follows. Observe that 

the two relations

E A i V i  =  t ( e  V i)  =  0,

£  AiVj =  Al £  vf = 0 ,
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have the same first term. By subtraction, we obtain a shorter one

5 Z (A<“ Ai)v» = 0-

By induction hypothesis, each term in this shorter relation vanishes

(A* — Ai)vt = 0 for all i.

Since the eigenvalues are distinct, we deduce v* =  0 (г ^  2), and finally also
vi =  0. ■

The crucial property valid for a family of independent subspaces is the fol­
lowing:

If we choose an independent subset Si in each Vi (г € /), then the 

union Ut6/ Si С E is linearly independent.

It immediately furnishes the important result quoted at the head of this section.

Corollary. The sum of the geometric multiplicities of the eigenvalues is less 

than or equal to dim E. In particular, if dim E =  n < oo, then T ha£ at most n 
distinct eigenvalues. ■

6.3.2 Localization of Eigenvalues

It is easy to localize the eigenvalues of a matrix with the Gershgorin condition 
for invertibility (Sec. 4.3.3).

Theorem (Gershgorin). Let A = (ay) € Mn(R) be a square matrix, and 

define 74 =  E jy i la»jl (1 ^  г ^  n). Then the eigenvalues of A are contained in 
the union of the intervals [а« — r^a# -I- r j.

P roof. Let v ^  0 be an eigenvector of A , say Av = Av. In components 

Y lj aijVj =  Av», and

(A - ац)у{ =  a^Vj (1 ^  i ^  n).

зфг

Choose an index г such that |vt| is maximal (Ф 0 since v ф  0), and divide by Vi

Vi

This proves that A is in the interval centered at ац and of length 2г*.
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W arning. Just as for the Gershgorin invertibility condition, the preceding 
statement is not valid for any field of scalars since it uses the absolute value. 

For the complex field C, real intervals are to be replaced by complex discs 
(Sec. 11.2.2).

6.3.3 A  Method for Finding Eigenvectors

Let A be a square matrix of size n x  n. The eigenvectors of A are the nonzero 

n-tuples v e R n such that Aw is proportional to v. Here is a method for finding 
them. Start with any nonzero v E R n, and consider the sequence

v, Av,. . . ,  Akv , ...

Let fc ^  n be the smallest integer such that v, Aw, . . . ,  Akw is not independent. 
Hence there is a linear dependence relation having the form

Akw + a*_iAk~lw H--- h a\Av 4- aov = 0.

Consider the corresponding polynomial

p(x) =  xk 4- ak-\xk~l -\--- h aix 4- ao*

Any root of this polynomial leads to a factorization

p(x) =  (x - A)(xfc-1 + bk-2Xk~2 H--- 1- b\x 4- b0)}

and hence to

(A - A/)(Afc_1v + bk-2Ak~2w H--- h &i Aw 4- bow) =  0.

Since we are assuming that к is minimal, the vectors v ,A v ,... yAk~lw are 

linearly independent so that

Ak~lw + bk-2Ak~2w H--- h bi Aw + b0v ф 0.

This proves that this vector is an eigenvector of A relative to the eigenvalue 

A. In this way, each root of the polynomial p leads to an eigenvector. (If the 
root A is a complex number, the factorization has complex coefficients and we 

find an eigenvector with complex components.) With some luck on the choice 

of v ф 0 (some experience, accounting for a special form of the matrix A), 

one may find a small value of fc, and thus find eigenvectors relatively easily. In 

general however, fc =  n and there is no easy way of finding a factorization of 
this polynomial. (Evariste Galois (1811-1832) proved that there is no algebraic 

formula for finding the roots of an nth degree equation, when n ^  5.)

/ 2  3 -1\
Example. Let A = 0 1 0 . Taking v = eb we find successively 

\ 2 1 1 /
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Hence a linear dependence relation A2v =  3A v  or equivalently (A2 — 3A)v =  0. 

The factorization x2 — 3x =  x(x — 3) =  (x — 3)x leads to two eigenvectors:

(1) A(A — 3/)v = 0 implies that (A — 3/)v is an eigenvector of A relatively to 

the eigenvalue 0. Here is this eigenvector

(2) (A — 31)Av = 0 implies that Aw is an eigenvector of A relatively to the 
eigenvalue 3. Here it is

(3) Starting with v = e2, which is linearly independent from the previously 

found eigenvectors, one finds easily

A3e2 =  4A2e2 - 3Ae2, (A3 - 4A2 4- 3A)e2 =  0.

The factorization A(A—37) (A—I)e2 =  0 leads to a third eigenvector A(A—3/)e2 

with respect to the third eigenvalue 1.

6.3.4 Eigenvectors and Commutation

Two operators S and T commute when ST =  TS. When this is the case 
5(ker T) С kerT:

vGkerT ==> T(Sv) =  S T V = 0  <-=» 5v € kerT.

=o

When S and T commute, S also commutes with T — XI and 

S(ker(T - XI)) с  ker(T - X I) .
^ ^  - > 4- . v

Vx(T) VA(T)

Definition. A family of operators (iS't)te/ in vector space E is called irre­
ducible when the only subspaces V С E such that 5<(У”) С V for all i € I  are
V =  {0} and V = E.

A subspace V с  E such that Si(V) С V for all г € /  is often called an 
invariant subspace of the family (Si)i€l.

Lemma (Schur’s lemma). Let (Si)i$j be an irreducible family of operators 
in a vector space E. Then any operator T having an eigenvector, that commutes 
with all Si is a multiple of the identity.
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Proof. Let v be an eigenvector of T and A its eigenvalue. Then the eigenspace 

V\ =  ker(T - A I) is nonzero since it contains v ф 0. It is invariant under all S*:

xgKx <=> (T — A/)x =  0 = »  Si(T — A/)x = 0,

hence by the commutation property

(T - AI)S{X  =  0,

so that S{X 6 V\. Since the family (St)»e/ is irreducible by assumption, this 
eigenspace V\ is the whole space E: T = XI. ■

6.4 Applications of Eigenvectors

6.4.1 The Fibonacci Numbers

The Fibonacci sequence (/n)n^o is defined by

/о =  0, / i =  1 and fn+i =  fn + fn-i (n ^  1).

Here is the beginning of this sequence

0,1,1,2,3,5,8,13,21,34,55,89,...

We intend to show that it grows exponentially: For this purpose, we are going 

to give a formula for its general nth term.

This sequence arises for example if we consider the growth of rabbits, in a 

simple model, where a pair produces a new pair at each generation, admitting 

that fertility starts at the second generation. (Here, we disregard mortality, and 
admit that reproduction holds forever, a simplifying—but unreal—assumption.) 

For example, an initial pair does not reproduce in the first generation, being too 

young. It only starts at the second generation, producing a new pair. Let us 

represent old pairs by ё and young ones by <=*. At this stage, we have a family

ё

and at the next stage

ё <» ё .

The old pair has reproduced, while the young one has matured. Still one gen­

eration later, we shall have

ё cS> ё ё <» .

This is the way the Fibonacci sequence originally appeared. Each generation 

is constituted by a pyramid of ages having two components: The number of
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mature couples xn, the number of young couples yn. Let us make a vector with 
these components

■  Gi)H /n =  In  + Уп

The number of pairs fn is the sum of the number /n_ i of pairs which existed 

at the preceding generation and the number of young ones, produced by the 

old pairs, hence produced by the xn =  / n-2 pairs which already existed two 
generations before

fn = fn—1 “b fn—2-

These considerations suggest to use the matrix description for the evolution 

of the pyramid of ages of this population. Instead of fn, we have a vector 

fn — (/"I,) w^h sum of components f n. The transition is given by a 2 x 2 
symmetric matrix

^  0£,)-G
By induction we see 

and hence

1st column of An =  An ( ^  .

We see similarly that

O j V fn  )

2nd column of An =  An =  An_1 • =  An~l Q  

so that this second column is the first column of An~l . It proves 

An =  ^ n̂+l (a symmetric matrix).

The explicit determination of An will give an explicit form for f n.

Proposition. Let A =  i ( l  + v^5), д = J (1 - y/E) =  1 - A 6e the roots of the 
quadratic equation x2 = x + 1. Then the nth Fibonacci number is

fn — 7 g(^n - Mn) = integer closest to ^ A n.

P roo f. To compute the powers of the Fibonacci matrix A , we use a basis in 
which it is diagonal. For this, we determine the eigenvectors of A. Since the 
rst basis vector is not an eigenvector, we may only consider vectors having 

a nonzero second component. Hence (normalization), we may only look for
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eigenvectors having a second component equal to 1. Here is the condition for 
these eigenvectors

С И Т )muitipie °f (I)
Comparing the second components, the only possibility for the proportionality 

factor is x and comparing the first components, we see that (*) is an eigenvector 

precisely when x + 1 = x2. Since the quadratic equation x2 — x — 1 = 0 has two 
real roots

Л = 1(1 + ч/б) =  1.618034..., /x =  j ( l  - Vb) =  1 - A,

there are two independent eigenvectors. Let 5 be the matrix having for columns 

two such eigenvectors, say

5 = (t 1)'

This matrix is invertible (the eigenvectors are independent) and

AS =  A - (J j) (0 :)
(a column operation is given by a product—at the right side—by an elementary 

matrix). We have found

or equivalently A = SDS~l . Hence

An =  SDS~l • SDS-1 • • • SDS_1 =  SDnS~1.

Since

?)■
we see that

= 1st column of An = An( ] ) =  SDnS~l

We are interested in the second component
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This is the famous Binet Formula.1 From |^А*| < \ we infer |-̂ -/xn| < ^

f n = integer closest to ~T=An. ■
v5

From it, we may deduce the speed of growth of the Fibonacci sequence: Its 
growth is exponential

f n  «  ~ x n =  Cean, 

where С  =  ±  = 0,447... and a = log A = 0,481...

Comment. The convergence —> 0 is very fast, and the approximation 

f n  «  ^ A n is excellent. Here are a few values

4=A10 =  55.0036... «  f i0 =  55, 
v5

-^=A20 =  6765.00002956... «  / 20 = 6765,

-^A30 = 832040.00000024037 »  / 30 =  832 040,

/бо = 12 586269025.

6.4.2 Diagonalization

The operators which are given by a diagonal matrix in a basis have these basis 

elements as independent eigenvectors. Conversely, if a finite-dimensional space

V has a basis consisting of eigenvectors of an operator T, then the matrix of T 

in this basis is diagonal with the eigenvalues as entries in the diagonal.

Consider a square matrix A of size n x n admitting n independent eigen­
vectors Vi € R n, say .Av* = AtV». The matrix S having the vt- for columns is 
regular and
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This shows
/Ai 0 ••• 0\

: •• 0 
V 0 • •• 0 An/

Definition. A square matrix A is diagonalizable if there is an invertible matrix 
S such that

S~XAS = D : diagonal matrix.

Let ej be the j th vector in the canonical basis of R n. Then Dej =  Aje j where 

Aj is the entry of D placed in the jth  row and jth  column. FYom S_1AS = D, 
we infer

S~1ASej  = Dej = A jejt 

ASej =  S D ej = XjSej,

hence the jth  column Sej = Vj of 5 is an eigenvector for this matrix with 

respect to the eigenvalue Xj.

An operator T in a vector space V is diagonalizable if there exists a basis of

V in which the matrix of T is diagonal.

Theorem. Let T be an operator in a finite-dimensional real vector space V. 

Then T is diagonalizable precisely when V has a basis consisting of eigenvectors 
of T, hence precisely when

rn a = dim V,

a sum extended over the eigenvalues of T. ■

Corollary 1. Any operator in an n-dimensional vector space E, having n 

distinct eigenvalues is diagonalizable.

P ro o f . Indeed, any system of eigenvectors corresponding to distinct eigenval­

ues is linearly independent. ■

Corollary 2. Any triangular matrix having distinct entries in its diagonal is 

diagonalizable.

P ro o f . Each diagonal entry an of a triangular matrix A is an eigenvalue: 
Indeed row operations show that the rank of A — ац1 is less than n, so that 

ker(A — an I) ф {0}. Hence the assumption implies that A has n distinct 

eigenvalues. ■

Examples. (1) The 3 x 3  matrix
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has the three eigenvalues 1, 2, and 3, hence is diagonalizable.

(2) The matrix cannot be put into diagonal form with real scalars.

cannot be put into diagonal formMore generally, the matrices f C0S ̂  S*n ̂
у sin ip cos (p J

with real scalars (when ip is not an integral multiple of n). However, in the 

complex field they have two distinct eigenvalues е±г̂ , so that these matrices 
have diagonal forms over C.

(3) The matrix A

-C.9 has only one eigenvalue A = 1. The corresponding

eigenspace is ker(A-I) = ker
(o o)'

a subspace of dimension 1. The geometric

multiplicity of this eigenvalue is 1, so that A cannot be diagonalized.

(4) The matrices

fa  b ... b\

A =

\6 b ... a j 

can be diagonalized. Indeed A + (b- a)In =  bM where

M  =

v  i

Л
i

V

has rank 1, hence a kernel of dimension n —1 by the rank-nullity theorem. In any 
basis of R n containing *(1,..., 1) and a basis of ker M, M  will be represented 

by a diagonal matrix. The same holds for A = bM + (a - b)In.

6.5 Appendix

6.5.1 Eigenvectors of A B  and of B A

Let A be a matrix of size m x n  and В a matrix of size nxm . Then the product 

AB is a well-defined square matrix of size m x m while BA is a well-defined 
square matrix of size n x n . We have the following result.

Proposition. The nonzero eigenvalues of AB and BA are the same.

Proof. Let v  /  О be an eigenvector of AB, say AB\ =  Av where А ф 0. Then 

(BA)Bv = B(AB)v = B{Av) = ASv. But £ v  ф 0 since ABv =  Av ф 0, and 
hence £v  is an eigenvector of BA relatively to the same eigenvalue A. ■
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The preceding proof shows that for А Ф 0, V\(AB) С V\(BA)} the converse 
inclusion being true by symmetry. Hence

Vx(AB) = VX(BA) if A 5* 0.

This proves the following statement.

Corollary. The geometric multiplicities of the nonzero eigenvalues of AB and 
BA are the same. ■

6.5.2 Complements on the Fibonacci Numbers

Let us simply indicate a few more properties of the Fibonacci numbers

f i  + /2  H---- 1~ fn =  fn+ 2 “  1)

/ 1  + /3  H---- 1- /2n-l =  /2n>

Л - / 2  + " -  + (- 1 )П+7 п  =  (-1 )П+7п-1 + 1,

/ 1  + /2  “1----  ̂fn =  fnfn+li
fn  + fn+1 =  Л » . 

gcd ( / „ ,  fm ) =  /gcd(n.m)*

The last formula justifies the numbering starting with /0 =  0, /1 =  1: With this 

choice, if n divides m then fn also divides /m, and the arithmetic properties of 

the sequence (/n) are most easily formulated.

From /4 =  (3/2)/3, it follows that f n ^  (3/2)n—2 for all n ^  4. More 

precisely, one has

/n ^ ( l,6 1 )n“2 for all 4,

but fn < (1,62)n-2 for infinitely талу values of n.

The positive root A of i 2 =  x + 1 is the golden section. By definition 

A =  1 + i ,  and iteration leads to the formula

1 1  1 
A =  l  + -r =  l +  , 1 =  ■ -  =  1 + —  i •

A 1 + t  1 + 11 1 ~
Л 1+ x+.

Also by definition, A = y/\ + A, and iteration now leads to

=  ^i + VTTx = ---=\ji + ]/i + \/̂  + V T ^ .

6.6 Exercises

1. Find the eigenvectors of

(1 O '

3 1
5 5
2 4
5 5
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2 . If v is an eigenvector of an operator T, and S is any invertible operator, 

show that S 1v is an eigenvector of T' =  S~lTS with the same eigenvalue.

3. If T is an operator satisfying T2 =  —T, what are the possible eigenvalues of 

T? Give a few examples of 3 x 3 matrices satisfying this relation.

4. Show that if a power of N  vanishes, the only eigenvalue of I  ± N  is 1.

5. Let M  denote the n x n matrix

M  =

/1 1

Vi 1

Observe that M 2 — nM : What are the possible eigenvalues of M? What are 

the possible eigenvalues of a ln + 6M? (As we have seen in (6.4.2), all these 
matrices are diagonalizable.)

6 . Determine the number of ways Tn a train of length n can be built using 
carriages of length 1 and 2 only. Here are the first values

Ti =  l 

T2 = 2 

T3 = 3

T4 =  5 _______

7. Show that the matrices ^  , and ^  , have only one eigenvalue.

8 . (a) Show that the matrices ^  have two independent eigenvectors. Give 

the eigenvectors and eigenvalues explicitly for the particular matrices

( a b\ fa  b\ fa  b\

\b 0) '  \b a ) ' [b - a ) '

In particular, what are the eigenvectors and eigenvalues of Q  ^ . Compute

the nth power An of .

(b) Diagonalize

_  (cos t sin t \

\smt -cost )  ’

9. The Perrin sequence is defined by

{
f*(l) = 0, P{2) = 2, P (3) =  3 and 
P(n) = P(n — 2) + P(n — 3) (n>4 ).
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Prove
P(n + 1)/P(n) -> a = 1.3247... (n -  oo)

where a  is the positive root of x3 = x + 1.

10. The “Tribonacci” sequence is defined by

J T{ 1) = 1, T(2) =  1, T{3) = 2 and 

\ T(n) = T(n - 1) + T(n - 2) + T(n - 3) (n 2 4).

Prove
T(n + 1 )/T(n) -> (3 =  1.83929... (n 

where (3 is the positive root of ж3 = я2 + ж + 1.

oo

11. Let

-c. -• O'
\ 1f i 2\

)■ s  =
3 1

/ I
4 V

Compute the eigenvalues of the square matrices AB and BA an compare them. 

12 . Compute all powers An of the matrix

/ 2 - 1 - л1 2 1
\-l

Diagonalize the following matrix

1 2 /

(° 1 1 Л
1 0 1 1Л = 1 1 0 1

V1 1 1 0/

What are the powers An (n ^  1) of A?

14. Let V denote the space of polynomials of degree less than 5. Consider the 

operator T in V defined by

pit) dt.

Give the matrix of T in the canonical basis of V. What are the eigenvectors 

and eigenvalues of T?

15. Compute

G D'GHS)
for n =  1, 2, 3, and 4. Can you guess a formula for an and 6n?

16. Prove that /2П+1/2П-1 divides /|n+i + /In-1 + * ôr 71 ^  ^  âCt’ ^ 

can be proved that

The only pairs of positive integers a > b such that 

ab divides a2 4- b2 + 1 are a =  /гп+i > ^ =  /2n— i*
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Notes

Leonardo da Pisa («1180-1250) is also known as Fibonacci (son of Bonaccio). 

He is the author of the famous Liber Abaci («1202): Book of the Abacus.

Here is another milestone

Jacques P.M. Binet: C.R.Acad.Sc. Paris, №  17 (1843) p.559-567

and a recent edition of a classical text

Nicolai N.Vorobiev: Fibonacci Numbers, Birkhauser Verlag (2002),
ISBN: 3-7643-6135-2

The general method for finding eigenvalues and eigenvectors based on row op­
erations was promoted in several articles:

W. A. McWorter Jr, L.F. Meyers, Computing Eigenvalues and Eigenvectors 

without Determinants, Mathematics Magazine 71, nb.2 (1998), 24-33

S. Axler: Down with determinants, Amer. Math. Monthly, 102 (1995), 139-154

Keywords for Web Search

Fibonacci phyllotaxis 

Golden Ratio, golden section 
Story of Phi

Whenever possible, use eigenvectors!



Chapter 7

Inner-Product Spaces

Here starts the second part of this book. It concerns lengths and angles. For 
example, the graphs of the linear functions у = |x and у =  ^ x  are orthogonal. 

How does one recognize orthogonality of two vectors? A carpenter who has a 

flexible frame knows that it is a perfect rectangle when both diagonals have the 
same length.

In our language, u and v are orthogonal when u + v and u — v have the same 

length. The concept of inner product—a bilinear notion—gives the general 

context for these considerations. Whereas the restriction to real scalars was 
only a simplifying assumption in the first part of this book, it is essential for 

inner products.

7.1 About Multiplication and Products

The multiplication of scalars is an operation formally described by a mapping

(x, y) i— » xy : R 2 — ♦ R,

which is not linear. However, if we fix one variable—say у = t/o—then the map 
x •-> xy0 : R  —> R  is linear. Hence this multiplication gives rise to two families 

of linear maps x i-> xyo, у »-> хоу : R  -» R. For this reason, we say that the 
product R 2 R  is bilinear. The graph of this function is a surface containing 

two families of lines.

167
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0 1

7.1.1 The Dot Product in Plane Geometry

Let us start with a triangle in the Euclidean plane, having sides with known 

positive lengths a, 6, and c. Suppose that we have to determine the angles (or 

their cosines) of this triangle. Call a  the angle at vertex A (resp. /3, 7  for 

the other angles). We know that the length of the orthogonal projection of a 

segment is shrunk by a factor equal to the cosine of the angle between the two 
directions.

С

A first relation between the angles a and (3 is found if we project the sides AC 
and В  С  onto AB

с = b cos a + a cos /3.

Projecting similarly onto the other sides, we are led to two further equations 

(which can be obtained from the first one by the use of circular permutations).
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Here is the system

b cos a + a cos/? = с
с cos/? + 6COS7  = a 

с cos a  4- + a cos 7 =  b.

It is linear in the three variables x\ =  cos a, x2 = cos/?, and X3 =  cos7 . Let us 

solve it by elimination, using row operations:

^  a 0 I c\ / b a 0  | с 

О с 6 | a I ~ [ 0 с b \ a 
,c 0 a j b) ^0 —fa  a

We find
a2 + b2 - c2 

2acos7 = ---------, cos 7  =
a2 + b2 - c2

b ’ ™  ' 2ab

as well as two similar expressions for the other angles. We have obtained the 

law of cosines

c2 = a2 + b2 - 2ab cos 7 .

In particular, we get the Pythagorean theorem

c2 =  a2 4- b2 «=> COS7  = 0 .

We deduce the length of a vector in the plane R 2:

a = has square length £(a)2 =  a\ + a\.

Vectors are used for measuring lengths!
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We may now find the length of a vector in the usual 3-space:

/ 1 \
a = I a2 I has square length a2 =  £(S)2 =  (a? + a2) + a\ =

W  "

Let us now consider two independent vectors a and b € R 3, and define с =  b —a. 
Since

a2 = J2°-l b2 = ̂ bl c2 = J2(bi -a i)2.
the law of cosines (in the plane generated by these two vectors) gives 

с2 = $^(a» - bi)2 = ^ 2  al + ^ 2  b2 - 2ab cos 7 , 

where 7 is the angle between a and b. Since

- bi)2 =  -  2aibi + bf),

we are simply left with £ —2aibi = — 2abcos'y, and this proves

^ 2 aibi = a6 cos 7 .

The function F(a, b) = *s linear in a if b is fixed, symmetric in a and

b, hence also linear in b if a is fixed. It is a bilinear function. The right-hand 

side ab cos 7  has a geometrical meaning, whence its interest. For example,

a orthogonal to b COS7 = 0 J 2 aibi =  °-

Application. The four hydrogen atoms in the methane molecule CH\ are 
placed symmetrically so that the angles ZHCH for any pair of hydrogen atoms 

are equal. Here is a computation of this angle. The tetrahedron having vertices
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has for edges the diagonals of faces of a cube, hence is a regular tetrahedron 

(see picture). We place the hydrogen atoms at the vertices of this regular 

tetrahedron, and the carbon atom at the origin which is its center of gravity.

H

Let us compute the angle 7  =  A.HCH formed by the two top hydrogen atoms. 
It is the angle between the vectors

0 - 0

Since these vectors have the same length \/3, their dot product is

V/3v/3cos7  = ^1^ • 1^ =  —1 — 1 + 1 =  — l t

whence cos 7 =  — ̂  and 7 has a value to two decimal places of 109.47 degrees.

7.1.2 The Dot Product in R n

D efinition. The dot product of two n-tuples x = (xi), у =  (yi) € R n is

x • у =  ^ 2  х*У* =  {matrix product).
1

The norm ||x|| ^  0 of x, also called length of x, is given by

||x]|2 = X  • x = У2 xi =  t* x (matrix product). 
l< t<n
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We expect to be able to interpret x-y as the product of ||x|| ||y|| by the cosine 

of a generalized angle between x and y. This possibility rests on the following 

inequalities

(x’y e R n ) '

In the context of n-tuples, this is the Cauchy inequality

|x-y|< INIllyll-

It is a consequence of the following more precise result.

Proposition. For x = (a?i), у = (у*) € R n, we have

M 2||y||2 - (x ■ y)2 = 5Z(x<Vj -  XjVi)2 > 0. 
i<j

P r o o f . Let us simply compute the right-hand side

Y^friV i ~ xiV if =  3 “  xiy i)2
*<j ijtj

= 2 Л  (ХЫ  + ХЫ  ~ 2х*У№У<)
all i,j

=  5 ^  (ХЫ  + x2i yi - 2xi У&М)
all i,j

= 5Z _  XiVixi yA
all i,j

i j  i j

=  M 2||y||2 - (x *y )2.

Since a sum of squares is nonnegative, the result follows. *

For n > l ,  there are \n[n— 1) pairs 1 ^  i < j  ^  n. In particular when n =  3 

there are only three pairs 1 ^  i < j  ^  3, and the corresponding XiVj — xj  У* » 

namely

Х2У3 ~ Х3У2, Х3У1 - xiyz, Х1У2 - x2y\ 

may be considered as the components of a vector in R 3, hence a definition of the 
cross product in the 3-dimensional space. This case deserves special attention, 

and we shall study it systematically in Sec. 10.1.2.

7.2 Abstract Inner Products and Norms

7.2.1 Definition and Examples

Let E be a real vector space. An inner product in E is a real-valued map F  of 

two variables E x E  R , such that:
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(PI) x и-» F{x, y) is linear for all у € E 

(P2) P(y, x) =  F(x, у) (x, у G E)

(P3) F(x,x) > 0 for all x ф 0.

By the symmetry (P2), the map у F(x, y) is also linear for each x € E, so 

that F is bilinear. Observe that the linearity in each variable separately implies

F(x,0) =  F (0 ,y )=0  (x,y e E ) .

As a rule, an inner product will be denoted by (x | y), instead of F(x,y).

Definition. A pair consisting of a vector space E and an inner product in E, 
is called inner-product space. In an inner-product space E, the norm of an 
element x G E  is defined by

llx l| =  (x | x)1/2 = F(XjX)1/2.

A unit vector is any x G E with ||x|| =  1. A finite-dimensional inner-product 
space is called a Euclidean space.

Observe that by definition of the norm, we have

l|Ax|| =  |A| ||x|| (Ag R , x GS).

Examples. (1) The canonical inner product in R n is the dot product (Sec. 7.1.2)

x • У = El<j<n XiVi = by- 

In general, if F  is any inner product in R n, we may consider the matrix 

G  =  (,gij) :  дц =  F(ei} e,-) = F (e j, е{) =  gj{

(the identity matrix (6%) for the dot product). Since F  is bilinear we can expand 

F(Y,iXiei,'Ej yj ej ) = E tj 9ijxiVj> 

whence a matrix formulation for this inner product

F(x,y) =  x • Gy =  hcGy.

By assumption

x-G x> 0 for all x ^O .

A symmetric matrix G having this property is said to be positive definite, and 
this property is denoted by G »  0. Starting with any invertible matrix A of size 

n x n, we may consider the inner product in R n defined by F(x, y) = Ax • Ay. 

In this case

F(x, y) =  \Ax) Ay = ЬсМЛу =  x • lAAy, 

so that the corresponding symmetric matrix is G = lAA »  0.



174 CHAPTER 7. INNER-PRODUCT SPACES

(2) In the infinite-dimensional vector space E =  C([0,1]), we may define an 

inner product by

(/!<?)=  f  f(t)g(t)
Jo

dt.

More generally, we may choose a positive, continuous density w > 0 on [0,1] 

and define an inner product by

(f\9)w= [  f{t)g(t)w(t)dt. 
Jo

7.2.2 The Cauchy-Schwarz-Bunyakovskii Inequality

In the context of inner-product spaces, here is a fundamental inequality. 

Theorem. Let E be an inner-product space. Then

l(x|y)K||x||||y|| (X,y €25), 

with an equality |(x | y)| =  ||x|| ||y|| precisely when x and у are proportional.

P roo f. If x =  0, there is nothing to prove. Let us assume ||x|| Ф  0 from now 

on. By positivity of inner products

0 < (tx  + y|tx + y) = ||x||2 t2 + 2(x I y) t + ||y||2

for all scalars t. Since ||x|| ф 0, this is a quadratic function of t, and since it 

does not change sign, its discriminant is nonpositive

4(x|y)2 -4||x||2||y||2 <0.

Moreover, if this discriminant vanishes, there is a real root, hence a value of t 

in R  for which the norm of tx + у vanishes: x and у are proportional. ■

Comment. If x ф 0, taking explicitly

t =  -(x|y)/||x||2,

the single inequality (tx 4- у | tx 4- y) ^  0 also leads to the theorem.

Definition. In an inner-product space, two vectors x and у are orthogonal, 

denoted by x _L y, when their inner product vanishes: (x | y) =0 .

As we have seen, the Cauchy-Schwarz inequality shows

and this quotient (x | y)/(||x|| ||y||) G [-1, 1] may be interpreted as the cosine 
of an angle

0 =<Kx,y)6 [<M 4=* с о в в = ^ М е [ - 1, 1].

With this interpretation, the angle between two orthogonal vectors is a right 

angle, since its cosine vanishes.



7.2. ABSTRACT INNER PRODUCTS AND NORMS 175

7.2.3 The Pythagorean Theorem

In any inner-product space, we say that two vectors x, у are orthogonal when 
(x | у) = 0 and denote this by x J_ y. We can now give the general version of 

the Pythagorean theorem.

Theorem. In any inner-product space

x i y  <=>■ ||x + y||2 =  ||x||2 + ||y||2.

P ro o f . Let us compute the square of the norm of x + у using the bi-linearity 

of the inner product

||x + y||2 = (x + y |x + y) = (x|x + y) + (y | x + y)

=  (x | x) + (x | y) + (y | x) + (y | y)

=  ||x||2 + 2(x | y) + ||y||2.

The conclusion follows. ®

A family (x*)^/ of elements of an inner-product space E  consisting of mu­

tually orthogonal vectors х* X Xj (г Ф j ), is simply called an orthogonal family 

of E.

Corollary 1. For any finite orthogonal family (x*)i t̂<fe> we have

I £  ».|f - £  W -

P ro o f . We can make an induction on the number of vectors, based on the 

theorem for two vectors. For the case of n > 2 vectors, we observe

x i i E ^ X i  = >  llxx + t E ^ x O l f H l x i M E o ! * ! ! 2- 

Hence the induction hypothesis furnishes the conclusion. ®

Corollary 2. Any orthogonal family not containing the zero vector is linearly 

independent.

P ro o f . Let (x*) be a finite family consisting of nonzero mutually orthog­

onal vectors Xi _L Xj (i Ф j)- If E a*x» =  ^ en

Е»а?1М2Ч1Е»а*х*112==0

shows that all summands а2||х*||2 vanish. Since ||x*|| Ф 0, we conclude a, 0 

for all indices i.

O ther proof . Assume E t  a*x< =  Then

0 =  (xj | E i a*x0  =  E i  а<(Ъ I x*) =  aillxil l2»

hence aj =  0 (since ||х;|| ф 0 by assumption), for all mdices j . m



7.2.4 More Identities

Let us come back to the identities

||x + y||2 =  ||x||2 + 2(x|y ) + ||y||2, 

IIх  — y||2 =  IM|2 -  2(x | y ) + ||y||2.

(1) If we add them, we find

IIх  + y||2 + IIх  -  y||2 =  2||x||2 + 2||y||2.

This is the parallelogram equality:

The sum of the squares of the sides is equal to the sum of the squares 
of the diagonals.
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Equivalently

l|x|]2 + ||y||2 = — yH2 *  IIх — yH2 ,

shows that the sum ||x||2-f||y||2 is the mean value of the squares of the diagonals. 

The condition ||x+y|| =  ||x—y|| characterizes rectangles among parallelograms.

(2) If we subtract them, we find

IIх  + У||2 ~ IIх  ~ y||2 =  4(x | y),

which shows that the inner product of two vectors can be computed from their 

norms. This is often referred to as the polarization identity.

Proposition (Minkowski Inequality). In any inner-product space, we have

11х  + у 1 К М  + |1у 11-

P ro o f . Let us start once more from the square of the norm of a sum

IIх  + y||2 =  ||x ||2 + 2(x | y ) -f ||y||2.

The Cauchy-Schwarz inequality leads to

IIх + УН2 ^  l|x||2 + 2||x||||y|| + ||y||2 = (||x|| + ||y||)2, 

hence the announced inequality. ■
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Definition. A norm in a real vector space E is any map

E — > R

X > ||x||,

satisfying the following axioms:

(N1) ||x|| > 0 for all x Ф0 

(N2) ||ox|| = |q|||x|| (a scalar)

(N3) ||х  + у К ||х || + ||у ||.

A normed space is a pair (E, || ■ ||) consisting of a (real) vector space E and a 

norm || • || : E  —* R.

Any inner-product space is a normed space: (N1) and (N2) hold trivially, 

while (N3) is the Minkowski inequality, which has just been proved. Let us give 

more properties of the norm in any inner-product space.

Proposition. When the norm is deduced from an inner product, we have 

||u|| =  ||v|| = *  ||au + bv|| =  ||bu + av|| (a,be R).

For any pair of nonzero vectors u, v, we also have

U V II II u v ||

ll||2 ||V ||* N ||U|| ||v||

PROOF. Simply compute the square of the norm using the inner product:

||au 4- 6v ||2 =  (au + bv | au 4- bv) =  a2||u||2 + 2ab(u | v) + b ||v|| .

When ||u|| =  ||v||, this expression is symmetric in u and v, whence the first 

assertion. For the second assertion, let us denote by и =  ||u||, u i — u/u, 
u' =  m /u  = u /u2, and similarly for v. The first part may be applied to the

unit vectors ui and vi

i .  . и и , , II ||-u + v ll 
К  - v'|| = I i Ul - = I - + i V l|| = --- ,

which is the announced result. 8

Corollary. Let a, b, and с be three nonzero vectors in the Euclidean plane R 2. 

Then
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PROOF. As in the proof of the proposition, let us use the notation a =  ||a||, 

a! =  a/a2, and similarly for b and c. The triangle inequality gives

\\d'-c'\\̂\\d'-b'\\ + \\b'-c%

with equality precisely when the extremities of a', 6', and c ' are on a straight 

line. Using the proposition, we deduce

l)g-cl  ̂ l|g-S|l , \\ь-г\\'
ас ab be

Multiplying this inequality by abc, we get the announced result. ■

With another notation, the result is easier to remember:

е/ ^  ac + bd.

This is the Ptolemy inequality. The equality ef = ac + bd holds precisely when 

the vertices of the quadrilateral lie on a circle: Ptolemy’s theorem. Indeed in 
this case, it is well known that the inversion

x i— ► x1 =  x/x2 =  xi/x,

transforms this circle into a straight line, and the triangle inequality becomes 
an equality.

Theorem. Let E be an inner-product space, and a finite family in E.

Consider the n x n  symmetric matrix A = (ay) having entries aij = ||а* — а̂ ||2- 

Then for any x = (x<) € Rn with £ i x< = 0 we have

(x | j4x) =  ^  X iX j| | a i- a j| | 2 < 0 .

P roof . Since

llaj -  =  (a* -  a, | a* -  a*) =  ||a i||2 -  2(a< | a,-) + I M 2, 

the inner product (in R n) (x | .Ax) is the sum of three terms

Y ,  Z i Z j i k l l 2 =  £ i  х ; ||а4||2 Y .j  =  0 .
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] £  х*хз\Ы\2 = E <*< ] £ * * 1М 2 =  °*

and

-2 ^  | a,) =  - 2 ^ ^ ^ ^  I E j xj* j)  =  “ 2|| Е » II <  0.
l* ij* n

The announced result follows. ■

7.3 Orthonormal Bases

An orthonormal family in an inner-product space E is simply an orthogonal 

family consisting of unit (namely normalized) elements.

Definition. An orthonormal basis of an inner-product space E is a basis (ej)j€/ 

consisting of mutually orthogonal unit vectors, namely such that

||et|| =  l,  e i l e j  ( i ^ j e l ) .

We may abbreviate these conditions with the Kronecker symbol:

(e» | e,*) =  Sij ( i j  e  I ) .

For example, the canonical basis ( e * ) i^ n of R n is an orthonormal basis. Ob­

serve that if x =  (x^ 6 R n, then =  x • e,-. Here is the generalization to any 

inner-product space.

Theorem. Let (e»)te/ be an orthonormal basis of an inner-product space E. 

Then the components of an element x =  E»e/ x*e* ^ & are 9™еп the inner 
products

х{ =  (x | в») (г € I).

Proof . If x =  E ie / (a linear combination), take the inner product 

with any basis vector e :̂

(x | ej) =  ( 5 ^Xiei| e j) =  Y s Xi (e* I ei) =  ху  “
*€/ =Ji.

7.3.1 Euclidean Spaces

A finite-dimensional inner-product space will be called a Euclidean space. In 

such a space, it is easy to prove that there is an orthonormal basis.

Theorem 1. Any Euclidean space E has an orthonormal basis (ei)i^i^n-
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P ro o f . The theorem is trivial if dim E  =  1, and we prove it by induction on 

the dimension n of E. If n > 1, we can find a normed vector eo in E : Take any 

nonzero x e  E and put eo = p x .  Consider the vector subspace

у  = {у e E  : (у I e0) = 0}

= ker(y (y | e0)) С E ,

which does not contain e0, hence V ф E: dimV" < n =  dim-E. By induction 

hypothesis, we can find an orthonormal basis eb . . . ,  em of V. I claim that 

eo ,e i,...,em is a basis of E. Since any orthonormal family is linearly indepen­

dent, it is sufficient to prove that it generates E. But if x G E, observe that 
x - (x | e0)e0 G V

(x - (x | e0)e0 | e0) =  (x | e0) - (x | e0)(e0 | e0) =  0.

Hence

X - (x I e0)e0 = net

l^t^m

x = (x | e0)e0 + ^

This proves the claim. Moreover n = dimE = m 4- 1 so that m — n — 1. ■

As an application, let us determine all inner products in R n, namely all 

real-valued functions F of two variables in R n such that:

F(x ,y) =  (x | y)F is bilinear 

F(x,x) =  \\x \\2f  > 0  if x ф  0.

Take an orthonormal basis (Cz)i^i^n of R n with respect to this inner product,
say

SU

<Snj/

(where (e*) denotes the canonical basis of R n). In this basis, we have

ej  = y^Qtjgt,

so that

9ij = (ei | ej)F = ^2  akiCLejSkt = a'ikakj (a'ik = aki). 
k,e k

These identities show that the matrix G = (gij) is equal to the matrix product 
lAA where A = (a.ij). Hence we have

(x | y ) F = (EiXiei | S j V j e j )  = J2i, jx i9ijVj

= bcGy = WAAy = Ax-Ay.

I
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This proves that any inner product F  in R n is obtained from the dot product 

by means of a linear change of coordinates, according to

(x | y)F = *(Лх)(Лу) =  Ax-Ay (x,у e R n),

for some invertible matrix A. Remembering the first example of Sec. 7.2.1, we 
have obtained the following result.

Theorem 2. There is a one-to-one correspondence between inner products F 

in R n and symmetric, positive-definite matrices G 0 of size n x n: It is given 
by

(x | y)F =  Sc Gy.

Each positive-definite matrix G 0 can be written (in general in several ways) 

G =  lAA for some invertible matrix A, so that

(x | y)/r =  Ax - Ay (x,y e R n). ■

7.3.2 The Best Approximation Theorem

Theorem 1. Let E  be an inner-product space, V a subspace of E, and x £ E. 

The following conditions for an element у £ V are equivalent:

(i) x - у ± v for all v £ V

(ii) ||x - y|| =  minv€V ||x - v||.

There is at most one у £ V satisfying them.

PROOF, (г) =» (гг) If x - у _L V, then for each v £ V, we can write

II* -  v||2 =  ll(x  -  y) +  (y -  v )ll2
= l|x-y||2 + ||y-v||2 

> ||x-y||2 (v e V),

by the Pythagorean theorem. Hence when v varies in V, ||x — v|| is minimal 
when v =  y. As we now see, this minimum is only reached when ||y — v||2 =  0, 

hence when у =  v. This gives the uniqueness part of the statement.

(гг) =ф  (г) For any v € V, the scalar function

11—* f(t) = ||x - (y + tv)||2 = ((x - y) - tv I (x - y) - tv)

has a minimum for t = 0. But the equalities

fit) = ||x - y||2 - 2t(x - у | V) + t2||V||2, 

f'(t) = —2(x — у | v) + 2t||v||2,

/'(0) = -2(x - у | v) = 0

show that x - y l v .
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Here are pictures illustrating the orthogonality of the best approximation.

x G E plumb line

water

Theorem 2 (Best Approxim ation). Let E  be an inner-product space, V the 

subspace generated by a finite orthonormal system (eb . ..  em) in E . Then for 

a llx e  E there is a unique linear combination у =  E i< t<m a'*e* ^ ^  for

IIх — у|| =  min ||x — v||.

This linear combination has the components х» =  (x | e*) (1 ^  i ^  m).

P roof . Take у = Then

(х-У |е3) = (x - У.е, | e,).

= (x I ej) - Е<У«(вг I e^)

= (x Ю  - V&j

= (x | e3) - y,,

so that x — у is orthogonal to all ej (1 ^  j  ^  m) precisely when the components 

Vj of у are given by the inner products (x I e,). Hence Theorem 2 follows from 
Theorem 1. ■

For any finite orthonormal family (ej)jgj, we can use the Pythagorean the­
orem to compute the norm of x

Ixll2 =
| { x ~ Y 2 xi ei )  +  J 2 x i ei

j eJ

= ||x - 5I sH I  + ||Е *л

where

j£ J je j

We may conclude that xj ^  ||x||2 with an equality only if x is a linear 
combination of the vectors ej (j  e J).
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Corollary 1 (Bessel inequality). Let x € E. Then, for all finite orthonor- 

mal families (ej)j6j ,  we have

£ ( x  | e ,-)2 < ||x||2. ■

Remark. The Cauchy-Schwarz inequality is a simple consequence of the Bessel 
inequality. If у ф 0, consider the orthonormal system consisting in a single 

vector e =  ei =  y/||y||. In this case, the Bessel inequality reads

(x|e)2 |̂|x||2.

Taking the positive square root, we deduce |(x | e)| < ||x||, namely

l ( x  I у ) | / | | у | |  ^  l|x ||.

Corollary 2. If  E  is an inner-product space and V a finite-dimensional sub­

space of E, then there is an orthogonal projector P  : E  —» E  having image 
P(E) =  V . This projector associates to any x G E  the element у =  P(x) G V 

which is closest to it.

PROOF. It is enough to use the fact that V possesses an orthonormal basis 
to be able to apply the best approximation theorem. This projector 

is explicitly given by

x i—■* -P(x) = Y I (x I e»)e<,
l^*<m

namely the sum of the (rank one) orthogonal projectors Р» : x (x | е»)е». ■ 

These fundamental results have numerous and important applications.

7.3.3 First Application: Periodic Functions

Let us consider the space E  consisting of the continuous functions f  : [0,1] —> R  

with the inner product defined by

(f\ 9)= f  m g (t)d t  
Jo

In particular,

л
(/ | 1) =  / f(t) dt = mean value (or average) of /.

Jo

Let ek e E  denote the particular functions ek(t) =  cos27tkt (A: ^  0). It is well 

known that
(efc | e€) = 0 when к Ф £,
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while

2||efc||2 = 2 f 1 
Jo

cos2 2nkt d t=  1 for к > 1.

Hence the functions

1, V2ek (k ^  1)

form an orthonormal system in E. The best approximation of a function /  € E 
by a finite linear combination Qk^k {N fixed) has the coefficients

a0 = (/ | 1), afc =  2( /|e fc) (1 ^ k ^ N ) .

Similar considerations hold for the orthogonal system consisting of the functions

ffc(£) = sin27r kt (k ^  1).

Comment. The space of continuous periodic functions /  with period 1

/(* + !) =  /(*) (t€  R), 

is also an inner-product space with respect to the previous definition

( / Ы =  [ l f(t)9(t)dt.
Jo

Best approximations of a given periodic function /  by trigonometrical polyno­
mials of the form

<*0 + ^2  (ak cos 2nkt + bk sin 2irkt) 
l^k^N

(where N ^  1 is a fixed integer), are typically considered in the theory of Fourier 

series. The study of their convergence when N  —► oo is not a topic tackled by 
linear algebra.

7.3.4 Second Application: Least Squares M ethod

The radioactivity of a pure chemical element decreases exponentially with time: 

The half-life depends on the substance under consideration. If we are to identify 

the type of source producing such an activity, we try to determine its half-life.

Theoretically, the intensity of radioactivity is described by a function N (t) =  

Ce where the constants С  =  N(0) (initial intensity) and a  (type of sub­
stance) have to be determined.

Several measurements, made at different times, lead to experimental data 
rom which the values of С  and a have to be deduced. Ideally, the measurements 
at times t{ should detect intensities N(ti) =  Ce~ati.
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N(t) =  N0e~at

t

Let us adopt a logarithmic scale: у = log N(t) = mt + h (h — logC> m — a). 

у =  log N  =  mt + h

In fact, the measurements produce a cloud of points Pi =  (U,Xi) and we have 

to determine a best fit straight line for these data. Since we are looking for a 
straight line, the unknown variables of the problem are m and h. The conditions 

linking these two variables are the equations

mti + h =  Xi (1 ^  i ^  *0 *

This is a linear system of n equations in 2 variables. In general, this system is 

incompatible and the situation seems hopeless!

Xi =  j/* = mti + h

t

---------- -------------- - U

The only reasonable hope is to find an approximate solution. Instead of 

mti + h — Xi = 0 (1 ^  i ^  n )j
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we introduce error terms

mti 4- h - Xi =  £i ( 1 < г < п ) .

Then rn and h have to be determined in order to minimize these errors in a 

sensible sense. Asking for a minimal sum £  e* would allow one large individual 

£i to be compensated by another large opposite £j in the sum, hence this is 

not a satisfactory condition. A better idea would be to require X) Iе»I to 
minimal. Unfortunately, this condition is a challenging one, difficult to use and 

still open for research. The next idea is to minimize This is good enough,

has a geometrical meaning and leads to an easy answer! It is known since the 

nineteenth century as the least squares approximation method.

Let us write the given system in vector form

m t 4- h i = x

where

t = 1 = x =  € R  •

The best fit is determined by the choice of m and h so that the linear combination

у = mt 4- h i =  x

is closest to the measured vector x. This means that ||y—x|| has to be minimized. 

Equivalently ||y — x||2 =  has to be minimized. This best approximation 

is furnished by taking for у the orthogonal projection of x in the subspace V 

generated by t and 1. This orthogonal projection is characterized by

x — y = x — mt — h i J_ t and 1.

In this way, we obtain two equations for the variables m and h:

f (x 11) — m(t 11) — h (l 11) =  0

\ (x 11) - m(t I X) - h{ l | 1) =  o.
This is a linear system

f (t 11) m 4- (1 11) h =  (x 11)

\ (t | l ) m + ( l  11)A =  (x j 1).

Incidentally, observe that if we take at least two distinct measure times U, the 

vectors t and 1 are independent, and the subspace V = C(t, 1) has dimension

2. In the Cauchy-Schwarz inequality, we have a strict inequality

i(t i i ) i  < iitii м .
We shall use this in the form

l l t f l l i l l2 -  |(t 11)|2 >  0.
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In particular, this shows that the above 2 x 2  system has maximal rank 2. Its

solution is: . ч, , 4
_  (x I t ) ( l I 1) - (X 1 1)(1 11)

m  (t I t ) ( l  I 1) -  (t I 1)(1 I t)

_  (t I t ) (x  I 1) -  (t I l ) ( x  I t)

( t  I t ) ( l  11) -  ( t  11 )(111) ■

As (1 | 1) =  n (number of measurements), we can divide both numerator and 

denominator of these expressions by n2 and use the notation (ai) =  - E  a* ôr

averages:

_  (X jtj) -  (X j)(t j)

171 ~ <*?>-<*i>2

, _  (г2Ж )  -

( ® - ( t i ) 2 *

These formulas give the regression coefficients used in all sciences and beyond!

7.4 Orthogonal Subspaces

D efinition. We say that two subspaces V\, V2 of an inner-product space E are 

orthogonal when all vectors of V\ are orthogonal to all vectors of V2

(vi | v2) =  0 for all vi e Vi and v2 6 V2.

Taking v =  vi =  v2 G Vi П V2, we see that ||v||2 = (vi | v2) =  0, hence v = 0:

Two orthogonal subspaces have intersection {0}.

Example. In R 3, a line and a plane (containing the origin) are orthogonal m 

the preceding sense precisely when all vectors in the plane are orthogona to a 

generator of the line: This is the usual definition of orthogonality of a line an 

a plane.

But two planes of R 3 are never orthogonal in the preceding sense since their 

intersection contains a line.
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7.4.1 Orthogonal of a Subset

For every subset X  С 25, we define the orthogonal of X  as follows

X 1 = {у e E : у _L x for all x € X}

= п  Н у н  (* I y))-
xG*

Hence X L is a subspace of E.

Proposition 1. Let E be an inner-product space and V a finite-dimensional 

subspace of E. Then V1- is a supplement of V : There is an orthogonal sum 

decomposition E =  V 0  V1 and VL1- — (У1 )-1 =  V .

PROOF. The first part is a reformulation of the best approximation theorem 

(7.3.2). Indeed, if x € 25, we may take its best approximation у in V, so that 

x — у =  z is orthogonal to V and x = y + z e V +  VL. The sum map is the 

inverse of x i—► (y, z), and we have the following isomorphisms

E  ^  V ^ V 1 E  =  V + V± 
x . — ♦ (y, z) i— ► x =  y + z.

Now let us prove that the orthogonal of V1 is V. Take any x € E  and write it 
x = у -f z with у e V and z € VL. Quite generally

(x | z) =  (y + z | z) =  (y | z) +(z | z).

=o

If now x ± У-1, we have x _L z and the preceding equalities reduce to 

0 =  (x|z) =  (yjjz)+(z|z),

=0

whence

IN I2 =  (z I z) =  0, z =  0.

In this case x = у is in V. ■

Corollary 1. Let A =  {ai , ... ,an} be a finite subset of E. Then

A11 =  {A1)1 = C(A)

is the smallest subspace containing A, hence is the linear span of A.

P ro of . For any subspace V containing A, we have

A c V  =4- Al  Э VL = >  A±l  С Vl±  =  V. ■

In other words, the following conditions for a vector Ъ £ E  are equivalent:

(i) b is a linear combination of the a*

(ii) b is orthogonal to all v e A1-

(iii) v _L a, (1 ^  i ^  n) implies v _L b.

Corollary 2. Let v ф 0 and V\ =  {v}-1-. Then every x orthogonal to V\ is a 
multiple of v and E = Rv © Vi. ■
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Corollary 3. Let V be a finite-dimensional subspace of an inner-product space 

E. If  V ф E , then there is a unit vector v e E orthogonal to V. ■

Comment. Notice that the finiteness assumption cannot be dropped from the 

preceding statements. For example, let E  = С (I) be the space of continuous 

functions on a closed and bounded interval /  С R, with inner product defined 

by

(/ I s) = J  f(x)g(x)dx.

Then, it is shown in a calculus course that the only continuous function /  which 

is orthogonal to all polynomials is the zero function /  = 0. (This result is not 
obvious: It is follows from the approximation theorem of Weierstrass.)

Proposition 2. Any family of orthogonal subspaces of an inner-product space 
is independent.

P RO O F . We have to show that a finite sum E t v* mutually orthogonal 
vectors v* _L (г ф j ) can only vanish if all components v* are zero. Assuming 

that E ivt = we can estimate an inner product by a typical vector Vj of this 
sum

E i K  I vj) =  ( £ i vi | vj) = o.

By orthogonality assumption, the inner products (v* | V j )  = 0 vanish for i Ф j. 

There only remains ||vj||2 = (vj | Vj) = 0, which proves Vj = 0. ■

Another PROOF. If an orthogonal sum v* = ® vanishes, the Pythagorean 

theorem gives

D N iH lE H f= °-  
t i

Hence ||vi||2 =  0 for all i, so that v* = 0 for all i. ■

7.4.2 The Support of a Linear Map

D efin ition . Let E be an inner-product space and f  : E  -* F a linear map with 
a finite-dimensional kernel. Then, the support of f  is the orthogonal of the 

kernel of f:

supp /  = (ker/)■*■.

Under the assumptions of the definition, the support of /  is a supplement 

to ker / ,  hence the restriction

f r  — /IsuppZ : supp /  — * im /

is an isomorphism (Sec. 5.2.2) (the index V  is a reminder for restriction, as 

well as for rank of / —dimension of its image—when it is finite).
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Let us determine the support of the linear map R n —► R m defined by a 

matrix A of size m x n: It is also called support of the matrix A. Denote by R 

the row space of A

R = £(rows of A) : subspace of R„, 

lR = £(transposed rows of A)

= £(columns of 1А)

=  im lA : subspace of R n.

By block multiplication we get

because it is canonical, independent of the inner product and transposition, 

while supp A = im lA depends on them).

Pix\

f im * /

so that

Ax = 0,

piX =  0 (1 ^  i  ^  m),

px =  0 ( р€Я ) ,

V • x = о СрегЯ)

(with the dot product in R n), are all equivalent. This proves

x € ker А x _L lR,

hence

ker A = (4Я)Х,

(ker A)1 =  (4Л)Х± =  *Я, 

supp A = lR = im $4.

T/ie equality between the row-rank and the column-rank of A is now explained 

by an isomorphism

supp A =  im lA — > im A.

Let us make a picture of the linear action of A (sketching imA with fat lines
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Let us summarize what we have obtained.

Proposition. The support of A is (ker .A)-1" = im 54, and A induces an iso­

morphism

AT : supp A im A.

The restriction of *AA : R "  —* R m —* R " to the support of A is an isomor- 

phism

(гАА)г : supp A supp A. ■

Here is a symmetric picture for the action of lA.
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The following diagram may still help visualizing the actions of A and 54:

—> 0

Corollary. We have

im 54A = im 54, ker 54A =  ker A, 

imA54 = im A, ker A 54 = ker lA.

P ro o f .  Since the restriction of 54 gives an isomorphism im  A —* im  54, we 

have

im lAA =  54(im A) =  im 54.

The inclusion ker 54 С ker 54A is obvious. Conversely, if x € ker 54A, then

54 Ax = О =Ф Sc54Ax =  0 <=> Ax =  0,

Мхи»

and the equality ker 54 =  ker 54A is proved. The last two equalities are obtained 

by replacing A by 54. "

7.4.3 Least Squares Revisited

Let us consider any linear system

Ax =  b (x variable in R n, b given in R m), (^)

where A is a matrix of size m x n, hence defines a linear map A : R n —> R-m- 
If (S) has no solution (is incompatible), it is because b ^ imA. However, the 

linear system

54Ax  = 54b (x variable in R n, b given in R m) )

is always compatible since we have just seen that im 54A =  im 54 (Sec. 7.4.2). 

Let us call

(54A)r : im 54 im  54

the restriction of 54A: If A has rank r, the size of (54A)r is r x r . Let us check 

that (54A)“1(54b) is a solution of (S'):

x =  (54A)-J(54b),

Ax = A (54A)~J(54b) (instead of b),

54 Ax = 54A(54A)“1(54b) = 54 b.
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The general solution of (S') is obtained by adding to it any solution of the asso­
ciated homogeneous system (HS'). Here is a diagram illustrating the situation:

supp A 4-̂ - R m Э b 

(‘AA)-‘ | [P

x € supp A — * im Л С R m Э Ph =  Ax.

We are going to prove that x =  (tAA)~1 (*АЪ) minimizes ||Ax — b||. In other 

words, Ax = A (i4A)“ 1($4b) is the orthogonal projection of b in im $4.

Proposition. The orthogonal projector of R m onto the subspace im A is

P = A (tAA)71 (54), 

and the orthogonal projector of R n onto the subspace supp A =  im 54 is

Q = tA (A tA );1A.

PROOF. If у € (im A )1 =  ker 54, then Py =  A (54A)” 1 (54y) =  0. On the other 

hand, if у =  Ax € im A, then

Py =  A (54A)“1(54y) = A (54A)"1(54A)x  = Ax =  y.

This proves that P  is the orthogonal projector on im A. Replacing A by 54, we 

find the symmetric formula for Q. и

Let us check algebraically that P  is a projector

P 2 =  А (‘AA) " 1 (‘А) А (AA) " 1 (54)

=  А{ьАА);\1АА)г{ьАА );1{1А)

= а Са а );\*а ) =  р .

Moreover, since 54A, ($4A)r, and (54Л) " 1 are symmetric

lP  = “A ‘ ( M r  = А(‘АА)-‘ (‘А) = P,

so that P  is an orthogonal projector.

Let us reformulate the preceding result when A is injective. This will often 

be the case if A has size m xn where m is greater than n: (5) has more equations 

than variables. In this case, the rank of A is r = n.

Theorem. Let A be a matrix of size m x n  defining an injective linear map 
R n _  R m Then suppj4 = R n, ‘AA : R n -> R " «  invertible, and for each

given b € R m, there is a unique x  6 R n for which ||Ax - b|| is minimal: It is

x = ( tAA)-1CAb).

The orthogonal projector P  : R m —* R m °nto im A is

P  = А{1АА)~1{1А). ■
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7.5 Appendix: Finite Probability Spaces

The purpose of this appendix is to explain the algebraic independence notion oc­

curring in probability theory, and its relation to orthogonality in inner-product 

spaces. It also shows the relevance of multiplying vectors component by com­

ponent, an operation not considered in linear algebra.

Definition. A finite probability space (ft, pr) is a pair consisting of a finite set 
ft and a map pr : ft -+ R >0 such that E wgn pr(w) =  1.

By definition, ft cannot be empty and if ft =  {cj} is a singleton, then pr(u>) =

1. But if ft has more than one element, the values of pr satisfy 0 < pr(o>) < 1. 

In the context of finite probability spaces, the set ft is called sample space, the 

elements of ft are the outcomes, or elementary outcomes, and the subsets of ft 

are the events. We define the probability of an event A С ft by the formula

P(A) =  £  pr(u,) (А СП).
w€A

If A =  {u} is a singleton set, then P(A) =  pr(w): P  extends the probability pr.

7.5.1 Random  Variables

Let (ft,pr) be a finite probability space.

Definition. A random variable is a function /  : ft —► R . The expectation of 
f  is the sum

E (f) = ^  pi(u)f(uj). 

wefi

The set of random variables is a vector space with respect to the usual 

multiplication by scalars and addition of functions. If ft =  {wi,u>2> • • • i^n}» 
then a random variable is completely determined by its values

=  /(^ i) , X 2 =  /(u>2), •.. ,  X n = / Ю ,

that we consider as the components of a vector. The vector space of random 

variables, also denoted by R n, is thus identified with R n

(X  Л

\X nJ

R) *—♦ Rn (n : cardinality of ft).
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The usual multiplication of functions, defined by fg{u) = f(u)g(u), corresponds 

to the multiplication in R n

fXi\

X 2
(YA (X iY A

y2
—

x 2y2

\YnJ \xnYnJ

The expectation of the random variable /  is by definition the

E (f) = £  pr{y)i)Xi.

sum

In the sum, we may gather all outcomes и such that J(u) is equal to a fixed 

value A
{/ =  A} = {w e П : / И  =  A} = /- ‘ (A),

and write

E (f) = £  > *{ / = *}•
Л€/(П)

The expectation E : R n —► R  is linear, namely

E{af + bg) =  aE (f) + bE(g) (a, b (E R; f,g  G R n).

Since the expectation of a random variable /  is a linear combination of its values, 

with positive coefficients

E (f)>  0 if f > 0 .

This implies that
E (f) < E(g) if f ^ g

(observe that E(g) - E (f) = E(g - f) > 0 since g - f >  0). A random variable 

/  is said to be centered if its expectation is 0, namely if

J5(f) = £  Р г И / М  = Y . XPU  = A) =  °-

We shall consider the space of random variables R n as a Euclidean space 

with the inner product

(f\g) =  E(fg) = p r M / H s M -

In this space, the constants make up a one-dimensional subspace generated by 

the constant 1 (the vector X  having all components equal to 1). center 
random variable is simply a function orthogonal to the constant 1. The constant 
random variable taking the value с is c l (the vector having all its components
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equal to c). It is simply denoted by с when there is no risk of confusion with 

the scalar c. For example, E (f) also represents the constant random variable 
E (f)f. Since

(/ - •£(/) | 1) = E (f) - E (f) =  0,

we see that f  — E (f) is orthogonal to /, hence /  — E (f) =  f c is centered. There 
is an orthogonal, direct-sum decomposition

R f2 = R / 0 { i} i-

given by

/  =  £ ( / )  + u

The subspace of centered random variables has dimension n — 1 in R/ 2 -  R n.

Definition. Two random variables f  and g are called uncorrelated when their 
centered components are orthogonal.

Note that the conditions f c X gC) fc _L g, f  -L gc are equivalent.

Proposition. Two random variables f  and g are uncorrelated precisely when 
E(fg) =  E (f)E (g).

P ro o f . Write /  =  E (f) -f f c and g =  E(g) + gc so that

f g =  (E (f) + f c)(E(g)+ gc)

= E(f)E(g) + E (f)ge + E(g)fc +/cpc,
4-----------------------------V-------------------------------

centered

E{fg) = E(f)E(g) + E (fcgc).

Obviously

E (f 9) =  E(f)E(g) <=$> E (fcgc) =  0 fc -L 9c,

and by definition, this happens when /  and g are uncorrelated. ®

The preceding proof shows that

B(/c2) = E ( f )  - E (f)2.

This is the variance of the random variable /. Observe that the variance is 
positive precisely when /  is nonconstant.

Example. Consider the probability space П = {—1,0,+1} with pr(c*;) =  | for 
each outcome ш (equiprobability). Consider the two random variables /  and g 
defined by

f(x) =  x, 

g(± 1) =  1 and g(0) =  - 2.



They are centered. By definition fg  = f\s centered, so that

(f\9) = E (fg) = E (f) = 0 : f i g .

Hence /  and g are uncorrelated. But g = 3/ 2 — 2, so that g depends on /  in an 
obvious sense. With the vector notation
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7.5.2 Algebras of Random Variables

We intend to consider the functions—in particular the polynomials—of a ran­

dom variable X  € R fi. For this purpose, it is useful to introduce the notion of 

algebra of random variables.

Definition. A subset A С R n is a subalgebra when A is a vector subspace that 

contains the constant 1 and that is stable under multiplication of its elements.

A subalgebra is characterized by the two properties 

>■ A contains the constants c l (c € R),

>- /  and g e A = *  f  + g and fg £ A, 

since they imply

> / б Д , с €  R  = »  cf eA , 

so that A is necessarily a vector subspace of R n.

When A is an algebra of random variables, we denote by Ac = -4П (1}'L the 

subspace consisting of the centered /  in A. Since

f e A  = >  /с =  / - Я ( / ) / е А

we see that Ac is also the projection of A in Rj?.

Here is a general construction of subalgebras of R n. Let V be a partition 

of ft: V is a family of disjoint nonempty subsets with union ft. The random 
variables /  e R ^  which are constant on all elements of the partition V make 

up a subalgebra of R n . This subalgebra will be denoted by А-p. For A e V, 

consider the corresponding characteristic function
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Then these characteristic functions constitute a basis of the vector space Av- 

Indeed, if a function f  takes the constant value f(A ) on A £ V } we have

f = Y , m i A.
AZV

This shows that the dimension of Aj> is equal to the cardinality of V.

Theorem. Every subalgebra A of КЛ is of the form Aj> for a suitable partition
V of the fundamental space П.

PROOF. Consider the equivalence relation

и ~ о/ <=> f(u ) = f(u ') for all f  £ A.

Let V be the partition of П consisting in the equivalence classes of this relation. 

By definition, every /  £ Av is constant on the elements of the partition V hence 

A С Aj>. Let us show that this inclusion is an equality. It is enough to prove 

that the characteristic functions I  a of the equivalence classes A are in A. Now 
let A £ V be a fixed equivalence class. If A =  П, there is nothing to prove. 

Otherwise, for each equivalence class В  ф A there is a random variable fs  € A 
taking different values on the subsets A and B. Consider

/в - /в (В ) 

f B(A) - f B(B)

= a fB - b l £  A.

This function takes the value 1 on A and 0 on B. The product П ВфАдв 

corresponding to choices of j  в £ A is in the subalgebra Д, takes the value 1 on 
A and 0 on all other equivalence classes:

*a = Y I 9B e A-
ВфА

This ends the proof. ■

Example. Let /  : fi -» R  be a random variable. The smallest subalge­

bra containing /  (and 1) contains all powers /* (г ^  0) of /  and their linear 

combinations: These are the polynomials in / . Since the sum and product of 

polynomials are again polynomials, this smallest subalgebra containing /  con­
sists precisely of the polynomials in /. Observe that distinct polynomials may 

lead to the same function (for example, if f  only takes the values 0 and 1, then 

/  =  f 2)- We shall denote by R[/] this subalgebra. I claim that the partition 
corresponding to R[/] consists in the events

Л л =  { /  =  Л } =  / - 1(Л) ( A 6 A  =  / ( f t ) c R ) .

Obviously, each polynomial in f  is constant on all these events. Hence the 

equivalence relation introduced in the proof of the theorem is

ш ~ о/ <=> /(щ) = /(a/)
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for the given generator /. In particular, the dimension of R[/] is equal to the 

cardinality of f(Q ) С R.

For any F  : R  —> R  we may consider the composite random variable

F (f) =  F  о f  : f i X R - ^ R .

For example, if F(x) =  xi (г ^  0), then F (f) = /*. More generally, if F  is 
a polynomial, F (f) is the corresponding polynomial in /. The composite only 

depends on the restriction of F  to /(П) and for example, /* can be defined for 

negative integers as soon as 0 is not a value taken by / .

Corollary 1. Let f  be a random variable and F  : R  —'► R  be any function. 

Then there exists a polynomial p such that F (f) = p(f)- Any random variable 

g which is constant on the subsets {/ = A} (A 6 /(^ )) w a polynomial in f . ■

Corollary 2. Any subalgebra A of R n is generated by one random variable, 

hence is of the form A = R[/] for a suitable f  6 R n .

Proof. By the theorem A  =  A v  for some partition V. Now choose any /  

constant on the elements of V, but with distinct values on these subsets. Hence 

/  € А-p and

R[/] С Ar .

This inclusion is an equality since

dim R[/] = card V =  dim Av• u

7.5.3 Independence of Random Variables

Here is the probabilistic definition of independence for random variables. 

D efinition. Two random variables f  and g are called independent when

R[/]e X Rfolc

In other words, two random variables f  and g are called independent when 

all polynomials (or functions) in f  are uncorrelated with all polynomia (or 

functions) in g. This is an algebraic condition, much stronger than linear in e 

pendence of f c and gc.

Let us give an equivalent formulation for the independence of two random 

variables. Since the characteristic functions 1a of the events A — {/ — } (resp. 
1b of the events В =  {g = /z}) form a basis of R[/] (resp. R[p]), the functions 

l A,c form a set of generators of R[/]c (resp. the functions 1в,с orm a sê  0 

generators of R[<?]c) and we see that /  and g are independent precise у w en

the functions
l A, c = t A - P ( A ) l  (A =  {X  =  A})

are orthogonal to the functions

1b , c  =  1b - P ( B ) 1 (B  =  {Y =  n)).
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The inner product of these functions is easily computed

( Ia.c I l B,c) = (1a I 1B) - P (A )(11 1B) —P(B)(1A I 1) + P(A)P(B)
'----------v----------'

=0

= (1a I 1b ) - P(A)P(B).

Since

(и  I t B) = E(1a 1b ) =  E ( lAnB) = P(A П B),

we have

l AtC J_ / в ,с «=>  P{A П В )  =  P(A)P(B).

Definition. Two events A and В are called independent when

Р(АПВ)  = Р(А)Р{В),

or equivalently when their characteristic functions I  a , 1b are uncorrelated

1a,с -L 1b ,с-

The previous comments prove the following characterization.

Theorem. Two random variables f  and g are independent precisely when

{ /  =  A } and {< 7 =  /x } are independent for every pair (Л,/z )  G / ( £ 2 ) x g(Q)- ■

Comment. When x is a characteristic function, it takes the values 0 and 1 

only, so that x2 = X and R[x) has dimension ^  2: dim R[x)c ^  1- Characteristic 
functions are uncorrelated precisely when they are independent. But this is the 

only case where the property of being uncorrelated (for two random variables) 
is equivalent to independence.

7.6 Exercises

1. Compute the angle of the diagonal of a cube with one adjacent edge.

2 . (a) What is the angle between the two lines

d\ : x =  y, z =  0, 

d>2 : z = y, x =  0,

in the usual space R 3? (Make a picture!)

(6) Same question for the two lines

d\ : x = y = z, 

d2 z =  y + x -  1 = 0.

3. Give the matrix of the orthogonal projector on x\ = x2 =  =  x* m
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4. Consider the plane of equation x — 2y — z =  0 in the usual space R 3. Find 
the matrices (in the canonical basis of R 3) of the vertical projector on this 
plane, resp. of the orthogonal projector on the same plane. Do these matrices 
commute?

5. Give an orthonormal basis o f the subspace of R 4 defined by the homogeneous 
system

Xi +  X2 — Зхз — X4 =  0 
X\ — 3X 2 +  Х з  — X4 = 0  

X j  X 2  X 3 X4 — 0.

Find the matrix o f the orthogonal projector onto this subspace (in the canonical 
basis of R 4).

6. For a fixed vector a € R 3, find all eigenvectors and eigenvalues of the linear 
map

x i— > а Л x  : R 3 — > R 3.

7. I f  a, b 6 R 3 are two given vectors, the equation a A  x  =  b represents a 
linear system (S ) for the components x, of x. Write down this linear system 
and— by row operations— find the conditions under which it has a solution. 
Formulate the compatibility conditions in an equivalent geometric form. What is 
the geometrical meaning of the associated homogeneous system (HS) a A x  =  0?

8 . Fix a € R n, b e R m and define a linear map Га,ь : R n — * by 
7а,ь(х) =  (a • x ) b. (a) Determine the matrix of Та,ь with respect to the 
canonical bases o f R n and R m.
(b) When m  =  n, find all eigenvectors and eigenvalues of the operator Та,ь-

9. Let a, b, с be three elements of an inner-product space, with

||a +  b  +  c||2 =  ||a||2 +  ||b||2 +  ||c||2.

Does it imply that these elements are orthogonal?

10. Let a i , . . . ,  a„ € R  be positive. Prove

( E < a < ) (E i  !/“ <) 5s " 2‘

When does the equality hold?

11. Prove

12. Let ub . . . ,  uni v i , . . . ,  v „  be elements of an inner-product space E. Con- 

sider the n x n matrix

(ui I v i )  ••• (ui I v n)\
: (Gram matrix)

(un I V i)  ••• (un I Vn)/

/Jo
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having the inner products p^  =  (и* | V j) as entries, (a) Assume that in an 
orthonormal system (ejt), we have

u» = Y Iaikek» v>= Y2 ь№ '
к I

Show P  =  A lB  where A  =  (a**) and В  =  (b jt). Conclude that if the elements
и,• and Vj belong to a subspace of dimension d, the rank o f P  is at most d.
(b) When и* =  V» (1 ^  i  <  n), show that ^  0.

13. A  3 x 3 regular system can be written in the form

(S ) : a • x  =  a, b • x  =  /?, с • x  =  7,

where the three vectors a, b, and с are independent. Solve the simpler system

{ a • x  =  1 
b • x  =  0 
с • x  =  0.

Show that the solution o f (S ) is obtained by a superposition: 

x  =  ^ ( a b A c  +  /?cAa +  7 a A b ) .

14. In the Euclidean space R 5, let V  =  £ (v i , v 2, V 3 )  where

v i  =  *(1112 1), v 2 =  \ l  0 0 1 -  2), v 3 =  *(2 1 —10 2).

What are dim V , dim V J_? Find an orthogonal basis o f V^~.

15. Let и» (1 ^  i ^  4 ) be four vectors in R 3. Assume that ||й* — Uj|| ^  6 for all 
pairs i  ф j .  Prove that (u* | u^) ^  1 — 52/2 for the same pairs. Conclude that 

S2 ^  8/3 (compute || £ { йг||2), and the equality 62 =  8/3 holds precisely when 
the extremities of the и* are the vertices of a regular tetrahedron (in this case 
£ t a i =  0).

16. Let (e t )i^ i^4 be the canonical basis of R 4, and define

v j  =  4ej  -  E t  ei e  V  (1 <  j  ^  4 ),

where V  is the 3-dimensional subspace { w } \  w  =  E i e i =  t( l , l , 1, 1) € £  (the 
subspace V  is also the kernel of the linear form (p : (Xi) •—+ £ * E*)* Compute 
the norms of these vectors, as well as their mutual angles. Conclude that the 
extremities of the vectors Vj are the vertices of a regular tetrahedron in the 
Euclidean space V  (isometric to R 3). What are the lengths of the edges o f this 
regular tetrahedron? What is the radius of the sphere inscribed in the regular 
tetrahedron having unit edges?

17. In an inner-product space, prove the equivalence

u J- v  <=> ||u|| ^  ||u 4- av|| for all scalars a.
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18. In an inner-product space, two vectors x  and у  satisfy

||x|| =  10, ||x +  y|| =  11, ||x — y|| =  9.

What is then ||y||? Make a picture.

19. Let E  be the vector space o f matrices of size m x n .  Show that the formula

(A\ B ) =  tr( lA  B )

defines an inner product in E. Show that for this inner product, the symmetric 
matrices are orthogonal to the skew-symmetric ones.

20. Give an orthonormal basis of the vector space generated by the functions

1, cost, sint, cos2*, 

with respect to the inner product

21. Give an orthogonal basis (P i)o^»<3 of the vector space consisting of the 
polynomial functions / =  a +  bx +  cx2 +  dx3 with inner product

(/ ls )  =  J  S (x )g (x )dx .

Choose P i of degree i  and use the normalization P » ( l )  =  1 (Legendre polyno­
mials).

22. Let £  be a Euclidean space and let V  be a subspace of E. Show that 
if we define the distance from x  G E  to V  as d(x, V ) — infyev  ||x — y|| =  
minyev  ||x — у ||, then d (x  +  v ,  V )  =  d(x} V ) for all v  G V.

V  x  +  V

Moreover, ||x+V|| =  d(x, V ) defines a norm on E/V  and this space is isomorphic 
and isometric to V^~ (see exercise 10 of Chapter 5 for the definition o f the 
quotient space E / V ).

23. Let T  be an operator in an inner-product space E } and v  a unit vector in 
E. Show

v  eigenvector of T  <=> (v  | T v )2 =  (T v  | T v ).
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Notes

The last theorem in Sec. 7.2.3 leads to a necessary and sufficient condition for a 
metric space to be isometric to a subset of an inner-product space (Schoenberg’s 
theorem). A  proof can be found in

P. de la Harpe and A. Valette: La propriete (T ) de Kazhdan (...)>
Societe Mathematique de France, Asterisque 175 (1989), p.63.



Chapter 8

Symmetric Operators

To compute the powers o f the matrix (which appeared in the context of

the Fibonacci numbers, see Sec. 6.4.2), we diagonalized it. The fact that this 
special matrix could be diagonalized came as a happy surprise. We shall now 
explain why this possibility was not shear luck! The main goal o f this chapter 
is the proof of the following important result:

Any real symmetric matrix can be diagonalized ( over the real field).

For example, the symmetric matrices ^  can all be diagonalized, and the

same method as for the Fibonacci matrix may be used to compute their powers. 
In fact, symmetry of a real, square matrix is a necessary and sufficient condition 
for the existence of an orthogonal basis in which it acquires a diagonal form.

8.1 Definition and First Properties
A  square matrix A  =  (fly ) is called symmetric when it is equal to its transpose

a%j — aji (1 <  i , j  ^  n).

Let us find a translation of this equality, which is independent of a choice of 
basis. As we know, the columns of A  are the components of the images o f the 
vectors o f the canonical basis o f R n:

A ej =  jth  column of A 

aij =  e i '  Aej.

The equalities ay  =  aji are equivalent to

ei • Aej =  ej • A e *  =  Aei • ej.

205
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By linearity of the inner product in its first variable, for a linear combination 
x  =  EjZtej, we deduce

x  • A ej =  E iXiei - A e j =  Е*ж*Ае» • e j =  АЕ^т^е» • e j =  A x  ■ e j.

Proceeding similarly for the second variable with у  =  E jV je j, we find

x - E jy jA e j =  A x -E jy je j ,

x - A y  =  A x - у  (x ,у  € R n).

8.1.1 Intrinsic Characterization of Symmetry
Our preliminary comments motivate the following definition.

D e fin it io n . Let T  be an operator in an inner-product space E . We say that T  
is symmetric when

(T x  | y ) =  (x  | Т у )  (x ,y  e  E ).

E xam ple. Let e be a unit vector. Then the operator

P  : x  i— ► (x  | e ) e,

is symmetric. Indeed,

( P x  | у )  =  ( ( x  I e ) e  I у )  =  (x  I e ) (e  | y )

is symmetric in x  and y, hence equal to (P y  | x ) =  (x  | P y ).  More generally, 
any finite sum of rank one operators of the preceding type

X h—* P (x ) =  J 2  (x  I ei )ei> 
teJ

is a symmetric operator.

P rop o s itio n . Let T  be a symmetric operator in an inner-product space E . 
Then, in any orthonormal basis (e*) of E , the matrix o f T  is symmetric.

P r o o f . Indeed, if Mat(e) (T )  =  (a y ), we have

aij =  (e* | T e j)  (ith component of T e j  given by inner product)
=  (Те* | e j )  (T  is symmetric)
=  (e j | Те*) (symmetry of the inner product)
=  aji component of Те* given by inner product),

hence the result. ■

I f  T  is a symmetric operator in E , it follows immediately from the definition 
that

i f  V  is a subspace of E  such that T (V )  С V, 
then the restriction o f T  to V  is symmetric.

Using the proposition, we conclude that if we start with a symmetric matrix 
A  o f size n x n, and a subspace V  с  R n such that A (V )  С V , then the restriction 
o f A  to V  is given by a symmetric matrix in any orthonormal basis o f V .
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8.1.2 General Properties of Symmetric Operators
Prom the definition o f symmetry, we may easily derive the basic properties of 
these operators.

P ro p o s itio n  1. Let T  be a symmetric operator in an inner-product space E . 
Then the kernel and the image of T  are orthogonal subspaces o f E . I f  E  is a 
Euclidean space, there is a direct-sum decomposition

E  =  ker T  0  im T.

P r o o f . I f  x  G kerT , we have

( x | T y ) i ( T x | y )  =  0 (y  G S ),

hence x  X  im T. This proves kerT _L im T. In particular k e rT D im T  =  {0 }, 
and these subspaces are independent. When the dimension of E  is finite, the 
rank-nullity theorem

dim E  =  dim ker T  +  dim im T ,

shows that the union o f bases o f ker T  and im T  is a basis of E. Hence every 
element x  G E  is a sum of an element у  € kerT and an element z € im T, an 
this decomposition is unique since these subspaces are independent. ■

C oro lla ry . Orthogonal projectors are characterized by the relations

p 2 =  P  and P  symmetric.

P r o o f . I f  P  is a projector, then any x  G E  can be written i  =  F x + ( x -  P x ) 
where x  -  P x  G ker P . When P  is an orthogonal projector, we deduce

(x  | P y )  =  (P x  | P y ) ( У 6 Д

hence P  is symmetric. The converse follows from the proposition. ■

k e rP  ke rF

0 im P

Nonsymmetric projector Symmetric projector

P ro p o s it io n  2. I f  X and p. are two distinct eigenvalues of a symmetric operator 
T , then the corresponding eigenspaces V\ and V» are orthogonal.



208 CHAPTER 8. SYMMETRIC OPERATORS

P r o o f . I f  T x  =  Ax and Т у  =  цу, we deduce

(T x  | y ) ±  (x  | Т у ),

(Ax | у ) =  (х|/лу),

* ( х |у ) =  M (x|y),

hence (А — д )(х  | у ) =  0. Since by assumption А — /х ф 0, we infer (х  | у )  =  0, 
namely х  ±  у. ■

8.2 Diagonalization

8.2.1 Statement of the Result

We now turn to the statement of the Spectral Theorem.

Theorem . Let T  be an operator in a Euclidean space E . Then T  is symmetric 
precisely when E  has an orthonormal basis consisting o f eigenvectors o f T .

One implication is easily seen. I f  E  has an orthonormal basis consisting of 
eigenvectors of T , the operator T  is represented by a diagonal matrix in this 
basis. This matrix is symmetric and hence so is T.

The converse, namely

i f  T  is a symmetric operator in a Euclidean space E , then E  has an 
orthonormal basis consisting of eigenvectors o f T,

is both deep and important. Several methods for constructing eigenvectors o f 
symmetric operators are available. None of them is completely elementary. We 
shall give a proof in two steps (Secs. 8.2.2, 8.2.3), based on two fundamental 
analytical results:

>■ A continuous function f  : S  —* R  defined on a closed and bounded subset 
S  of a Euclidean space, attains a maximum

>■ A differentiable function f  : I  —> R  which attains a maximum at an 
interior point o f an interval I , has a zero derivative at that point.

We ask the reader to accept these statements. In a calculus course, the first 
stated result concerning continuous numerical functions defined on a closed and 
bounded interval of R  is proved. The same property holds for closed and bounded 
subsets of a Euclidean space E. We shall use it for the unit sphere ||x|| =  1 in 
E. In Sec. 12.3.3, we shall give a second independent proof o f the existence o f 
eigenvectors for symmetric operators: It is based on the fundamental theorem 
of algebra.

Let T  be a symmetric operator in a Euclidean space E. From the spectral 
theorem, it follows that the set u C R o f  eigenvalues o f T  is not empty. For each
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eigenvalue A G a, the corresponding eigenspace is V\ =  ker(T — X I) Ф {0 }, and 
these eigenspaces are mutually orthogonal. More precisely there is an orthogonal 
direct-sum decomposition

£  =  0 VX.
A€cr

The kernel o f T  is kerT =  Vq. I claim that the image of T  is

®  Ух-
0/A €a

Indeed, if w  =  v a (v *  6 VA), then w  =  T v  where

v =  J 2  х у л -
0#A6 a

We recover the orthogonality of ker T  and im T  from the orthogonality of the 
eigenspaces.

8.2.2 Existence of Eigenvectors
Theorem . Any symmetric operator T  in a Euclidean space E  of dimension 
n ^  1 has at least one eigenvector: Any unit vector v which maximizes the 
expression (T x  | x ) among unit vectors x  £ E  is an eigenvector.

P r o o f . Let us consider the numerical function F (x ) =  (T x  | x ) on the set of 
unit vectors x  € E. Take any unit v  for which F (v )  is maximal. Put

V  =  R v , l^  =  { w 6 ^ : w l v }  =  V 1.

As the best approximation theorem shows, we have a direct-sum decomposition

E = V ® W  = R v e W ,

and correspondingly
Tv =  Av + z (z £ W).

I f  z ф 0, we write z =  with a unit vector w  G W  (/i =  Ilz ll)- I f  z — 0» we 
take [l — 0 and choose a unit vector w  arbitrarily in W . In all cases, we t us 

have
Tv =  Av + /iw

with two unit orthogonal vectors v and w. We are going to show that [ i — 0, 

hence v is an eigenvector of T :

Tv =  Av G Rv.

The components of Tv in the orthonormal basis v, w of the two-dimensional 
subspace £(v, w) that they generate, are given by an inner product: For examp e

=o =i
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Let us consider the parametric curve

11— ► x (t )  =  (cos t) v  4- (sin t ) w ,

in the subspace £ (v , w ), starting at the point x (0 ) =  v. By the Pythagorean 
theorem

llx W I|2 =  cos21 +  sin21 =  1,

this curve lies on the unit circle of the 2-dimensional subspace £ (v , w ), hence 
on the unit sphere of E . (The velocity of this parameterization is

x'(£) =  — sin t v  +  cos t w,

||x'(*)||2 =  sin21 +  cos21 =  1,

so that it is a constant speed parameterization with initial velocity x ' (0) =  w .) 
The real-valued function (o f a real variable)

f ( t )  =  (x(£) | T x ( t ) )  =  F (x ( t ) )

has a maximum for t =  0 so that its derivative must vanish at this point. We 
have

x(£) =  cos t v  4- sin t w,

T x (t )  =  cost T v  4- s in tTw ,

/ M  =  (v  I T v )  cos214- (w  | T w ) sin21

+  ( (v  | T w ) +  (w  | T v ) )  cos t sin t.

The derivatives o f both cos21 and sin21 vanish at t =  0 while the derivative o f 
sin t cos t  is 1 at this point. Hence

/'(0) =  (v  | T w ) 4- (w  | T v )  i  2 (v  | T w )

(because T  is symmetric). The vanishing of this derivative proves that T w  _L v. 
Hence ц =  0, T v  =  Av: v  is an eigenvector o f T. ■

C om m ent. As above, with F (x )  =  (x  | T x ), if a nonzero x  £ E  is not an 
eigenvector o f T , then F  is not maximal on the unit vector v i  =  x/||x||. There 
exists a unit vector v 2 for which F (v 2) >  F (v i ) .  I f  v 2 is still not an eigenvector 
° f  T ,  we may continue, defining a sequence o f unit v n with increasing .F (vn). 
I f  we manage to get a convergent sequence (v n)n^! with F (v n) converging to a 
maximum, then lim v n will be an eigenvector of T . This method o f construction 
o f eigenvectors is based on an optimization o f the Rayleigh quotients

(x | x ) ||x||

The construction of the greatest eigenvalue of T  as a conditional maximum

(x  | T x ) maximal under the condition (x  | x ) =  ||x||2 =  1
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suggests the use o f the Lagrange parameter method. Let us indeed introduce the 
Lagrange function

L  =  (x  | T x ) — A(x | x).

We have to find the unconditional extremes (or critical points) o f this function. 
These occur when its gradient vanishes. Using coordinates, with T  given by a 
matrix A, we easily find

grad (x  | A x ) =  A x  +  lAx.

In our case, T  is symmetric so that grad(x | T x ) =  2Tx. In particular for 
T  =  id, grad (x  | x ) =  2x. Hence we see that the condition for an unconditional 
extremum is

T x  — Ax =  \ grad L  =  0.

The extremes indeed occur when T x  =  Ax, namely when x  is a unit eigenvector.

8.2.3 Inductive Construction
Theorem . For any symmetric operator T  in a Euclidean space E , there is an 
orthonormal basis (e*) of E  consisting o f eigenvectors o f T , hence in which the 
matrix o f T  is diagonal.

P r o o f .  We shall prove this theorem by induction on the dimension o f E. Any 
operator in a one-dimensional space is a multiplication by a scalar, hence the 
case dim E  — 1 is trivially verified. Fix an integer n ^  2 and assume that the 
theorem has been established in ail dimensions less than n. Consider the case of 
a symmetric operator T  in a space E  of dimension n. Choose a unit eigenvector 
v  o f T : This is possible thanks to Theorem 1. Consider the subspace

W  =  { v } x  =  {w  € E  : w _L v }

o f E  (7.4.1). Since v  £ W , we have m  =  dim W  <  n. On the other hand, W  is 
an invariant subspace of T , namely T (W ) С W : I f  w _L v,

(T w  | v )  =  (w | T v ) =  (w | Av) =  A(w | v )  =  0

shows that T w  _L v. The restriction of T  to this subspace is a symmetric 
operator

Tw : W  — > W,

since the definition o f symmetry only refers to the inner product o f E. By 
induction assumption, there is an orthonormal basis (ej)i^i^m  of W  consisting 
in eigenvectors of T w , hence also of T. But

E  =  R v  0  W,

and simply adding eo =  v  to the orthonormal system (ej)i^t$m> we an 
orthonormal basis of V  consisting of eigenvectors of T. Finally, we may observe

П =  dim E  =  7 7 1 + 1 , 771 — 71— 1.
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The induction of the preceding proof is based on the fact that if we know that 
the symmetric operator T  has a nontrivial invariant subspace, say T (V )  С V, 
then its orthogonal W  =  V 1 is also invariant: T (W )  С W . This property is 
satisfied by other classes of operators (Sec. 12.3.4).

8.3 Applications

8.3.1 Quadratic Forms

Let A  =  (a.ij) € M n(R ) ba a square matrix. We can associate to this matrix a 
quadratic form  in n variables x i , x2, . . . ,  xn, namely an expression

Q.a(x) =  Q./i(xi,. . .  ,x n) =  ^   ̂ aijXiXj.

This correspondence defines a map

(  quadratic forms
M n(R ) — > < in n  variables f  .

V X \ , . . . , X n

The two sets under consideration are vector spaces and the map in question is 
linear. It is not injective: Its kernel consists of the skew-symmetric matrices 
lA  =  - A ,

aji =  - a i j  (1

But we know that

M n(R ) =  (  symmetric j  f skew-symmetric j  
I  matrices / I  matrices /

The decomposition is explicitly given in Sec. 6.2.4:

A  =  \ (A  +  lA ) +  \ { А - 1А ) .
V---- v„-----/  ̂ y >
symmetric skew-symmetric

I f  the quadratic form Q (x i , . . . ,  xn) is given, say

Q (x i , . . . ,X n )=  ^   ̂ aijX{X j,

we choose the symmetric matrix

an \a\2 .

\a\2 0,22

in order to have

Q (xb . . . , x n) =  (x  | Ax).
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Let (v i) i^ j^ n be an orthonormal basis consisting in eigenvectors o f A. I f

X =  Xiei =

we have

Q (x i , . . . ,  xn) =  (x  | A x)

— I
=

This is a representation of the quadratic form Q  as a linear combination of 
squares. Let us order the eigenvalues of A  in decreasing order

Ai ^  A2 ^  ^  Ap >  0 >  /xi ^  ^  Mg-

The case A  =  — I n shows that all eigenvalues may be negative, in which case 
p =  0 by convention. In general, the multiplicity of the zero eigenvalue is 

n — (p +  q). We can put

Ai =  1/a?, Hj =  - l / t f -

In a suitable orthonormal basis, the quadratic form can now be written more 
simply as an algebraic sum of squares

«<■...... * . ) -  E  ( I ) ’ -  £  ( I ) ’ -
l<i<P V

8.3.2 Classification of Quadrics
The discussion of the preceding subsection allows us to give a classification of 
quadrics o f R n having a center of symmetry. Such a quadric is a hypersur ace 

defined by an equation

Q (x  1, . . . ,  xn) =  a4 XiXj  ~  c’

or more simply by
Q (x ) =  (x  I A x ) =  с (с ф 0).

The unit sphere
x l  +  x\ +  • ■ ■ +  x l  =  1  

(unit circle when n  =  2, usual unit sphere in R 3 when n  =  3) is a simple example 
o f quadric. We shall not be interested in empty quadrics such as

- x \  - * 1  =  1, - * 1  -  *1  -  * 3  =  !•

Since a quadratic form is a homogeneous function of degree 2

Q(ax) = a2<3(x),
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and hence
Q (x ) — с <=3> Q (a x ) =  a 2c.

Taking a  =  |c|-1/2, we see that we only have to consider the two types

Q (x ) =  1 or Q (x ) =  - 1.

The preceding discussion proves the first part o f the following result.

Theorem . Let Q be a quadratic form  in R n. Then there is an orthonormal 
basis of R n fo r  which the centered quadric given by Q (x  i , . . . ,  xn) =  1 becomes

E  fe/Qi)2 - E&M )2 = i 
l ^ i ^ p  i > p

in the new coordinates. I f  p ^  1 and Q corresponds to the symmetric matrix 
A  G M n(R ), namely Q (x ) =  (x  | A x ), the greatest eigenvalue Ai of A  is positive 
and the minimal half-axis of the quadric is

a\ =  1/y/Xi.

The assumption that the quadric is nonempty is equivalent to saying that 

(x  | A x ) =  с2 >  0 for some vector x, 

and replacing x  by у  =  x/c, we can write

Ai =  max (x  | A x ) =  max  ̂ ^  (>  0) 
l|x||=i4 1 '  x#o ||x|| k J

! 1 1 
=  max

(у И у )= 1 11у112 т 1п (у|лу )= 1  ||у II2 ’

The minimal half-axis o f the quadric is obviously

fll =  . №  ,(у И у )= 1

whence the assertion. ■

As the preceding discussion has shown, the geometrical nature o f a quadric 
is easily described if we use an orthonormal basis in which the quadratic form is 
an algebraic sum of squares. The typical cases are p positive squares, q negative 
squares, where 0 ^  p +  q ^  n.

Exam ple. The quadric in R 3, given by the equation

xy +  xz +  yz =  1,

is a hyperboloid with two sheets. This surface has no intersection point with 
the coordinate axes since

у =  z =  0 = Ф  xy +  xz +  yz =  0.
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On the other hand, it cuts the coordinate planes according to hyperbolas: For 
example z =  0 leads to the curve xy =  1 in the xy-plane. Let us study this 
surface more systematically. We first construct the symmetric matrix

/ 0 1/2 l/ 2\
A =  ( 1/2 0 1/2 

\ l/2 1/2 0 /

which corresponds to the quadratic form

Q{x, t/, z) =  xy +  xz +  yz.

А л  orthonormal basis consisting o f eigenvectors of A  is easily found if we observe 
that the sums o f the rows of A  are the same, namely 1, hence a first eigenvector 
*(1,1,1) with eigenvalue Ai =  1. The orthogonal plane has equation x + y + z  =  0 
and is an eigenspace: The geometric multiplicity of the second eigenvalue is 2. 
This second eigenvalue is — ̂  and we have a complete list of eigenvalues

Ai =  1 >  0 >  A2 =  A3 =  2 ■

Two orthogonal eigenvectors in the plane are

(Other choices are equally suitable: No uniqueness has been claimed, and the 
matrix A  takes a diagonal form in several orthonormal bases.) An orthonormal 
basis of R 3 consisting o f eigenvectors of A  is

*(;)■ *(-",)• *(?)■
In this basis, the quadratic form is simply

Q (x yу, z) =  Q fa th 0  =  S2 -  2 +  C2)

where the coefficients of the squares are the eigenvalues. The surface corre­
sponding to the equation Q (x,y>z) =  1 is also given by

f 2 -  i p2 =  1 where p2 =  r}2 +  C2-

We recognize a surface having a revolution axis. It is a hyperboloid with two 
sheets. Its revolution axis is generated by the first eigenvector, name у 
“diagonal” o f the first octant. The minimal half-axis is

1/V T i =  1.
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Rem ark. In the usual 3-space, if an eigenvalue is positive while the other 
two are negative, we find a hyperboloid with two sheets as above. When two 
eigenvalues are positive and one is negative, we find a hyperboloid with only one 
sheet. Finally, when the three eigenvalues are positive, we find an ellipsoid. If 
an eigenvalue only is 0, we find a cylinder based on either an ellipse, a hyperbola 
(or in the degenerate case, a pair o f lines, in which case the quadric degenerates 
into a pair of planes).

Proposition. The unit ball fo r any inner product in  R n is a fu ll ellipsoid.

P ro of . Any inner product in R n is given by (x  | y )p  =  x  • G y  where G  is a 
positive-definite symmetric matrix (Theorem 2 in Sec. 7.3.1). The unit ball for 
this inner product is defined by

IM If  =  x  - G x  <  1.

In any orthonormal basis in which G  is diagonal, the quadratic form associated 
to G  takes the form of a sum of squares, say

Q (x ) =  x ■ G x =  Ai g ,
i

where the eigenvalues A* are all positive, repeated according to their (geometric) 
multiplicities. The unit ball ||х||̂  ^  1 has for boundary the quadric

<2(x) =  =  1. 
t

namely is the full ellipsoid having 1 /2-principal axes 1 /y/Xi. ■

8.3.3 Positive Definite Operators

The construction of the eigenvalues of a symmetric matrix S  has shown that 
the maximal eigenvalue of S  is

Amax =  max x • Sx.
I|x||=l

Replacing S  by —5, we find symmetrically that the minimal eigenvalue o f S  is

Amin =  min x • Sx, 
l|x||=l

so that

Amin ^  x ’ Sx ^ Amax (||x|| =  1),

and both bounds are reached for some unit vector. This proves the following 
result.
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P rop o s itio n . Let S  be a symmetric matrix o f size n x n ,  and а С  H  the set of 
its eigenvalues. Then

Л >  0 fo r  all A € a <*=> x  • S x >  0 fo r  all x  ф 0.

Moreover

A ^  0 fo r  all X € cr <*=>• x  • S x  >  0 fo r  all x  6 R n. ■

When x -S x  >  0 for all x  ф 0, S  is positive definite: S  0. When x -5x ^  0 
for all x  € R n, we say that S  is positive semi-definite and denote it by S  ^  0.

P ro p o s itio n . Let S  ^  0 be a symmetric positive semi-definite matrix. Then 
there is a unique square root T  =  S 1̂ 2 ^  0 of S : T 2 =  S. Moreover

ker S 1/2 =  ker S, supp S 1̂ 2 =  supp S, S  0 -Ф=» S 1̂ 2 0.

P r o o f .  Let T  be any symmetric matrix, and choose an orthonormal basis e in 
which it is diagonal. Then T 2 is a diagonal matrix in the same basis, having as 
diagonal entries the square o f the diagonal entries of T. The requirement T 2 =  S  
thus requires to take for diagonal entries of T  the square roots of the eigenvalues 
of S  ^  0. Moreover, T  ^  0 imposes the choice of nonnegative square roots of 
these eigenvalues. This shows that if the space R n is an orthogonal direct sum 
of eigenspaces Vx =  ker(5 -  X I) of S  (0 ^  A G a), then T  has necessarily the 
same eigenspaces as S  (distinct eigenvalues A corresponding to distinct y/X ^  0). 
The positive semi-definite square root T  of S  acts by multiplication by y/X ^  0 
in V\. It has the same kernel Vo as S, hence also the same support as 5. ■

In simple terms, the square root of S  is given by a diagonal matrix in any 
basis in which S  takes a diagonal form, and has diagonal entries equal to the 
square roots o f those o f S.

Let A  be any matrix of size m x n ,  corresponding to a linear map R n —> R  • 
Then *AA is a symmetric matrix of size n x n .  Since

x  • lA A x  =  A x - A x =  ||Ax||2 ^  0,

lA A  is positive semi-definite. I f  A  is injective, lAA  is positive definite: A A  0.

E xam ple . Consider the following matrix

/ 1 0 0

-1 1 0

0 -1 1

0 -1

\0
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of size (n +  1)  x n. Row operations show that rank A  =  n, hence A  is injective 
and lAA  is positive definite. Here it is

lA  =

lA A  =

f  1 -1 0

0 1 -1

0 0 1

[o 0

( 2 -1 0

-1 2

0 -1 2

\0

0

-1

o \

0

1 - 1/  

0 \

■1

2/

0.

D e fin it io n . For any matrix A  o f size m  x  n, its absolute value \A\ is the 
positive semi-definite matrix o f size n x n  defined by \A\ =  (M A ) 1/2 ^  0.

As we have seen, A , |A|, and |A|2 =  $4A have the same support. By restric­
tion to this support (which we denote by an index r  as in Sec. 7.4.3)

A r =  A|supp д : supp A  — ► im A  С R m 

is injective. Moreover, since

|| A x ||2 =  x  ■ MAx 

=  x  • |A|2x  

=  I I I A I x f ,

we have

Q (x ) =  x  • $4Ax ^  1 

II |A| x  || <  1.

This shows that A  maps a full ellipsoid of supp A  onto the unit ball o f im A  
in R m, while |A| maps the same ellipsoid onto the unit ball o f supp A. The 
correspondence

Jr : supp A  

|A| x

im A

Ax,

is a norm preserving linear map which will be studied more systematically in 
the context o f isometries (Sec. 12.1.2). The restriction o f A  to its support has 
a natural factorization A r =  Jr |A|r
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supp A И 1, supp A  

Ar

Jr im A  С R m.

P rop o s itio n . Let A  be any matrix of size m x n ,  corresponding to a linear map 
R n —> R m. Then with respect to the canonical Euclidean structure on these 
spaces, the image o f the unit ball o f R n by A  is a fu ll ellipsoid in the subspace 
im A  с  R m.

P r o o f . The inverse В  o f the isomorphism supp A  im A  induced by A  
transforms a full ellipsoid E r С im A  onto the unit ball Вг С supp A, hence the 
assertion when ker A  =  {0 }  (namely supp A  =  R n). In general, let P  be the 
orthogonal projector of R n onto the support of A  (kerP  =  ker A ). Then

A  : R n supp A  im A  С  R m

transforms the unit ball B n o f R n first onto the unit ball B r of supp A  and then 
onto the ellipsoid E r С im A  с  R m. (More precisely, A  applies the “cylinder” 
BT x  ker A  onto E T.) ■

8.4 Appendix

8.4.1 Principal Axes and Statistics
The result o f scientific experiments can often be represented graphically by a 
cloud of points in a Euclidean space R n, and we may be looking for a best fit 
approximation in the form of a straight line. We considered this situation in 
the 2-plane on the occasion of the least squares method. In higher dimension, 
another idea is called for.

Among all lines going through the center of gravity o f the set o f points, we 
may choose the one that maximizes the variance as follows.

Introduce the vectors r* =  О Pi (1 ^  i  ^  N ).  The center o f gravity o f the 
set o f points is the extremity of

Replacing if necessary rt by г*; =  г» — R 5 we may suppose that R  =  0.

E  ri = 0-
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The variance in a given direction given by a unit vector x  is by definition

/(*) = Y2 ix)2-
We intend to find a direction in which it is maximal. But

there is a symmetric operator T  fo r which / (x ) =  (x  | T x ).

Consider indeed the operators

Т{ : x  i— > (x  | 14)14,

for which
imTj С R 14, rankTj =  dim imT* ^  1.

We have
(x  I TiX) =  (x  I Ti)2.

These operators are symmetric

(TiX | у ) =  ((X  | I4)l4 I У) =  (X I r<)(r< | y ).

Hence their sum T  =  53 T* is also symmetric. The problem has been solved 
in the first section: The maximum occurs when the direction is given by an 
eigenvector of T  corresponding to its largest eigenvalue.

8.4.2 Functions of a Symmetric Operator
The square root of a symmetric, positive, semi-definite operator S  has already 
been defined. In an orthonormal basis in which 5  is represented by a diagonal 
matrix, S 1/2 ^  0 is also represented by a diagonal matrix.

More generally, let S  be any symmetric operator in a Euclidean space. Take 
an orthonormal basis in which S  is represented by a diagonal matrix

D  =

f  Ai 0 . . .  0 ^
0 A2 . . .  0

\0  0 . . .  An/

Then for any function f  defined on the set {A i : 1 <  г <  n} o f eigenvalues, the 
operator f (S )  is defined by its matrix

m  =

/ 7 (A i )  0 . . .  0 \ 
0 / (A2) . . .  0

=  diag (/ (A l), / (A2) , . . . ,  / (An))

\ 0 0 . . .  /(An)/

in the same basis.
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For example, if f ( x )  =  xn (n ^  1), we obviously obtain f (S )  =  S n. 
When / =  с is a constant, we find f ( S )  — c l .  Hence for any polynomial 
/ =  £is:n we bave / (5 ) =  £ ^ n OiSl . ^  & *s invertible, namely does not 
have the eigenvalue 0, f ( x )  =  ж-1 leads to f (S )  =  5 _1, inverse o f S. Note 
however that distinct polynomials / ф g may give the same f ( S )  =  g (S ). This 
happens precisely when /(A i) =  p(A,) (1 <  i  <  n). For a symmetric ma­
trix A, there is ал invertible matrix S  such that 5 -1A S  =  D  is diagonal, or 
A  =  S D S -1 . By definition, we have

f ( A )  =  f ( S D S - 1) =  S f (D )S ~ l .

P ro p o s itio n . Let S  and T  be two operators in a Euclidean space, with T  
symmetric and S  invertible. Then fo r any function f  defined on the spectrum 
of T

f i S ^ T S )  =  S - l f (T )S .

P r o o f . Let (e*) be an orthonormal basis consisting of eigenvectors of T

Тв{ =  А*е* (1 <  i ^  n).

By definition o f f ( T )  we have

f ( T ) e i  =  f (X i )e i}

S ~ l f { T ) e t  =  / (A O S " 1* ,

5 - 1/ (T )S e i =  / (Aj )e< (1 <  * <  n).

On the other hand,

(5 “ 1T 5 ) (5 - 1e i) =  S - 'T e t  =  5 " 1(A*ei) =  A<5_ 1e< (1 <  i  <  n)

proves that 5 - 1T 5  is diagonal in the basis (e*) =  (S _ 1e<) with the same eigen­
values A{. Hence by definition of f (S ~ 1T S ) we have

f (S ~ 1TS )£ i =  (1 <  t <  n).

By comparison

/ (5 - 1T 5 )e i =  5-7OT*S'e* (1

whence f { S ~ 1T S )  =  S ” 1 / (T )5 . ■

I f  A  is any matrix o f size m x n ,  then *AA is symmetric (o f size n x n ) and 
f ( lA A ) is well defined for any scalar function f  defined on the subset x  ^  0 of 
R . The square root function leads to the absolute value of A

\A\ =  (*AA)1/2.



8.4.3 Special Configurations

Here, we shall study finite sets v i , . . . ,  v n of generators o f a Euclidean space 
such that

(v * I v j )  < 0  f ° r a11 i  Ф j-

Here are some examples.
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The first in dimension 1 consists o f two vectors with v 2 =  —v i .  The other two 
examples, in the plane, already exhibit some characteristic features that we are 
going to discover in general.

Fix a set of generators v i , . . . ,  v n o f a Euclidean space E , and consider the 
Gram matrix, namely the symmetric matrix with entries

9ij =  (vt | V j) (1 < i , j < n ) .

The associated quadratic form is defined by

Q ( l l , .. ., Xn)  =  ^   ̂ 9 ijx i% j'

It is positive since

Q{xu...txn) = ( Y l XiVi I ^2xjyj )  = ||SXiV<||

and moreover

Q (.X  1  > • • • j X n )  ~  0 'i  J- ^   ̂ X i"V i =  0 .

Lem m a. With the assumption

9ij =  (v j | V j) О  whenever i  Ф j ,

we have

XiVi =  0 ==> N v i =  °-
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P r o o f .  Observe that the inequalities XiXj ^  \xiXj\ imply gijXiXj ^  g%j\xi%j\ 
when gij ^  0. Hence we have

Q (x i , . . . , x n) =  Y 9i' x i + Y ^ 9ii XiXi  
i & j 

>  Y 9iiX* + H 9 i j\ XiXj\ 
i i^ j

=  Q (|xi|,...,|xn|) ^  0

by positivity of Q. As a consequence,

Q (x i , . . . , x n) =  0 ==* Q(|*i|,...,l®n|) = 0, 

and the lemma follows from the previous observation. ■

Consider now any nontrivial linear dependence relation Хл<»^п x*v * =
Let

/ =  {1  i  ^  n : х{ Ф 0}  =  {1 ^  г <  n : |х*| Ф 0}  ф 0 .

Taking inner products with all Vj, we see that this linear dependence relation 
implies all relations

£  Xi9 i j  =  0 (1 <  j  <  n).
l^t^n

However if we assume that gij <  0 for i  Ф j ,  we see that when j  £ I

9H = 0 = > 9 i j  = 0. 

ie I ^

In this case, we conclude that the family (vj)ie/ is orthogonal to the family 
( v j ) ja i  and E  is an orthogonal sum of the two subspaces generate у t ese 
families. When I  ф { l , . . . , n } ,  its complement J  is not empty, and we say 
that the configuration v b . . . ,  v n is reducible. For example, the third picture at 
the beginning o f this section shows a reducible configuration, ort ogona sum о 
two configurations of the same type as the first one. It is interesting to stu у 
irreducible configurations, since all configurations can be bui t у in uc ion 
from irreducible ones. Such configurations are characterize у t e о owing 
property: Any partition { l , . . . , n }  =  /U«/ such that gij — 0 or а г G , J 

is trivial, namely either I  =  0  or J  — 0  •

P ro p o s it io n .  Le£ v i , . . . ,  v n be a set o f generators o f a Euclidean space E , with 
9 i j <  0 whenever i  ф j .  Assume that this configuration is irreducible, namely 
that in any partition { l , . . . , n }  =  /UJ such that gij =  0 fo r a li i  £ , 3 £ we 
have either I  =  0  or J  =  0  ■ Then d im # =  n or n -  I .  In the last casel aI 
linear dependence relations are proportional to a basic one, aving a po 

coefficients.
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PROOF. If the v* are independent, then dim E  =  n. Otherwise, there is a 
nontrivial linear dependence relation =  о and we have seen that it
implies |zj|vj =  0. Moreover, by the irreducibility assumption,

J = {1 ̂  j  ̂  71: Xj = 0} = 0,

and all Xi Ф 0. Replacing all coefficients X{ by their opposite if necessary, we 
may assume that at least one o f them is positive. In the linear dependence 
relation

Y^{\xi\ -  x j v i  =  0, 

at least one coefficient vanishes, so that

I  =  {1 <  i  : \xi\ ф ж,} ф { l , . . . , n } .

By the irreducibility assumption, this subset I  must be empty:

Xi =  |xi| > 0  (1 ^  i  ^  n).

This already proves that when the Vi are dependent, there is a linear dependence 
relation £  x{Vi =  0 with all Xi >  0. But if £  Vi^i =  0 is any linear dependence 
relation, we may choose the scalar a in such a way that one coefficient in

] Г ( х »  -  a y jv i =  0

vanishes. As we have seen, the irreducibility assumption then implies that all 
coefficients vanish. Hence all linear dependence relations between the V i’s are 
proportional to the nontrivial one Y^xiv i =  0- In other words, the surjective 
linear map

/ : ( » ) — * $ > v i, R ”  — * -Б

has a kernel of dimension 1. By the rank-nullity theorem, 

dim E  =  n — dim ker / =  n — 1, 

and the proposition is proved. и

The four vectors

give an example o f an irreducible configuration in the space R 3. (The reader 
should make a picture o f this interesting configuration.)



8.5 Exercises

1. Find the eigenvalues and the corresponding eigenvectors o f the symmetric 
matrix

ft2
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X „ t2

2. Diagonalize the quadratic form

Q (x , y, z)  =  7x2 +  4xy +  6y2 +  4j/2 +  5z2 

and determine the quadric with equation Q (x,y , z) =  1.

3. Determine the symmetric matrix corresponding to the quadratic form

Q ( x , у, =  ( x -  y )2 +  ( y -  z )2 +  (z -  x ) 2.

Is it positive definite? What is the surface Q(x,y,  z) =  1?

4. Let A  be a symmetric matrix of size n x n ,  and b  € R n. Consider the map 
R n —* R  defined by

x  i— > f ( x )  =  \ A x  • x  -  x  • b.

Is it linear? Prove that / has an extremum at x  =  xo precisely when Axo =  b.

5. Let T  be a symmetric operator in an inner-product space E , and v  a unit 
vector in E. Show

v  eigenvector of T  <*=*► (v  | T v ) 2 =  (v  | T 2v ).

6. Let E  be the space consisting of the n x n  matrices, with the inner product 
(A  | B )  =  tr( гА В ). Prove that the operator Т : А и  $4 is symmetric.

7. Let

- G  J ) - e - * - G  !)■
(a ) Check that the quadratic form Q (x, y) =  x2 -  xy -  y2 is invariant under В , 
namely if we write it

Q Q j  =  (x  y ) S ^ J  with S  symmetric,

B l X) ) = Q fX

then

3 )JJ \Уу

(b) Find the principal axes (and the asymptotes) of the curves x2—xy—y2 =  ±1.
(c) I f  (/n)n^o denotes the Fibonacci sequence (/o =  0, f\ =  1,. • .), prove that 
all integral points P n =  ( ^ + 1)  (n ^  0), are on the curve Q {x,y ) =  1 (observe
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thzit В Pfi — Prove similarly that all tlie points Pn — ^/2 ^ 1),

are on the curve Q {x ,y ) =  —1.

8. Let T  be a symmetric operator in an inner-product space E , and V  a finite­
dimensional subspace of E. Let Py  : E  —> V  denote the orthogonal projection 
onto V  (which exists by the best approximation theorem). The operator T v  '
V  —> V  induced in V  by T  is defined by Т у  =  PyT\y> namely by

T y (v ) =  P y (T v )  ( v G F ) .

Show that Ту is & symmetric operator in V.

9. What are the absolute values of the matrices

10. Show that the following matrices are positive definite

/4 1 0 °\ ( 6 l 0 / 2  -1  - l \
1 4 1 l 6 1 0

» 1 _1  2 0 10 1 4
1

0 l 6 1
U  о > )\0 0 1 4 \2 0 1

What are the eigenvalues of the last one?

V V V

.
фффффф 
фффффф 

^ У Ф Ф Ф Ф

ФФФ 
ФФФФ

ФФФФ<. , 
фффффС 
фффффф 
' v ? W  

ФФФ
. ф ф ф ф  

ффффф 
ФФ< “ “

ффффффф<
фффффффф*

Here is a symmetric matrix!



Chapter 9

Duality

Duality is a complex notion having ramifications in analysis, geometry, alge­
bra (to mention only mathematics). It refers to a certain symmetry of order 
two, similar to a mirror image. A  duality has to furnish a picture in which 
some properties are reversed. When applied twice, the original picture should 
reappear.

9.1 Geometric Introduction

9.1.1 Duality for Platonic Solids

The cube has six faces and eight vertices while the octahedron has eight faces 
and six vertices (note that they have the same number of edges). The numbers 
o f faces and vertices for these solids are exchanged. This exchange is an examp e 
o f duality. More precisely, here is a geometrical explanation for it. Linking the 
center o f the faces of a cube produces a regular octahedron. Similarly, in ’ g 
the center of the faces of a regular octahedron furnishes a cube. Hence iterating 
twice this construction reproduces the initial solid, up to scale.

/  ...... / / - 4 V - /

<d> Af a
>

/ 4 /| \ УV)
The preceding geometric duality construction can be made for all Platonic 

solids. Here is a list o f these regular polyhedra.

227
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v vertices e edges f  faces f  - e  +  v

tetrahedron 4 6 4 2

cube 8 12 6 2

octahedron 6 12 8 2

dodecahedron 20 30 12 2

icosahedron 12 30 20 2

The exchange of the numbers of faces and vertices

f  *— > v

(leaving the number e of edges invariant) produces a symmetry

tetrahedron <— > tetrahedron 

cube <— > octahedron 

icosahedron <— > dodecahedron.

Here is a geometrical illustration of the duality for the dodecahedron and 
the icosahedron.

Linear algebra provides a far-reaching generalization o f the duality between 
the cube and the octahedron (see the comment in Sec. 9.3.3).
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9.1.2 The Pappus Theorem and its Dual

Let us trace two straight lines i  and t '  in a plane. Choose three points on each 
of them

А, В , С  € £,

a в\  a  € e.
Let us denote generally by P Q  the straight line going through two distinct 
points P  and Q. Then the three intersection points

A B ' П A 'B , 

A C  П A'C, 

B C ' П B 'C

are aligned, say on the straight line s.
Here is an illustration of this configuration.

£'

This is the Pappus theorem. To obtain its dual, we exchange

point <■— * line,

€ *— ► Э,

in the previous statement.
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Then we obtain the following dual theorem. Take two points L  and V  in the 
plane. Choose three lines going through each o f these points, say

о., 6, с Э L\ o!, b1, d  Э L f.

Then the three lines linking pairs of intersection points

a • b' & a1 • 6, a - c' h a ' • c, 6 • c' & b' • с

are concurrent: We may call S  their common intersection point. (Observe that 
the notation is chosen in a good mnemonic way: Capitals for points and small 
letters for lines translate duality into an exchange o f lower- and upper-case 
letters.)

S

In these statements, it is understood that two parallels have a common point 
at infinity.

We shall not prove these geometric theorems. But let us simply note that i f  
one as been proved, the other one is automatically proved also since

the axioms of projective geometry are invariant under duality.

For example. There is one and only one line containing a given pair o f distinct 
points, and dually, two distinct lines have one and only one common point (pos-
S1 ? П^У ^  they are parallel). This axiom imposes that a line has a point 
at infinity, and this point is common to all parallel lines, but different for non 
parallel ones. (There is one point at infinity in each direction.)
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9.2 Dual of a Vector Space
A  paradigm of duality is furnished by the correspondence

R n: column vectors <— » R n: row vectors.

To understand the nature o f this transposition, we view a row vector as a 1 x n 
matrix, hence as a linear map

(a i • • • an) : R n — » R-

This is a linear form on column vectors

x  =  (ж») i— ♦ a\X\ H------ h anxn.

Before studying linear forms systematically, let us illustrate their natural ap­
pearance.

A  physical measure may sometimes be viewed as a linear form. Consider for 
example an ingot composed of unknown quantities of copper, silver, and gold. 
Say x  kilos o f copper, у kilos of silver, and z kilos of gold. A  measure o f its 
weight (in kilos) gives a first linear equation

x  +  у +  z =  A.

In the 3-dimensional space, this first measure indicates that the triple describing 
the composition of this ingot is on a certain plane. Then, we can measure the 
volume (in liters: weight =  volume x density). Since the densities o f the three 
constituents are different, we obtain a second independent relation, say

x/d +  y/e +  z/ f =  B.

Finally, the value (in dollars) of the ingot furnishes a third equation

xp +  yq +  zr =  С

allowing the precise determination of the triple (x ,y , z).

9.2.1 Definition and First Properties
When ip and ф : E  -> R  are linear forms, then a<p +  ф (a scalar) denotes the 

function
aip +  ф : x  1— ♦ ay?(x) +  ^ (x ).

This is again a linear form, and this shows that the linear forms constitute a 
vector space: A  vector subspace of the space of all functions —*

D e fin it io n . The dual of a vector space E  is the vector space E '  whose elements 

are the linear forms on E

E* =  {<p: E  ->  R  linear}.
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I f  0 ^  a G £ , there is a basis o f E  containing this element, and since we may 
define a linear map E  —> R  by prescribing arbitrarily the images o f the basis 
vectors, there is a linear form ip G E *  such that <̂ >(a) =  1 ^ 0 .  In particular, we 
see that if E  Ф {0 }, then E* Ф {0 }.

P ro p o s itio n  1. Let ip € E * be a nonzero linear form  on E , and let a G E  be 
any element such that <p(а) Ф 0. then there is a direct-sum decomposition

E  =  R a 0 ker<  ̂
x  =  у  4- z,

given by у  =  (y>(x)/y>(a)) a, z =  x  -  (tp(x)/tp{a )) a.

P r o o f . It is enough to check that z, as defined in the statement, belongs to 
the kernel of ip

ip{x) =  tp(x) -  ^ у ^ ( а) =  °- 

The statement follows. и

In other words, any vector a not in the kernel of a linear form generates a 
supplement of this kernel: The kernel of a nonzero linear form has codimension
1. When E  is finite dimensional, the rank-nullity theorem

dim ker (p +  dim im ip =  dim E  (<p € E * ),

also shows

tp ф 0 <=> im</? =  R  <=> dim ker =  dim E  — 1.

C oro lla ry . Let ip, ip € E * . I f  ip vanishes on ker tp, then 'ф — X<p is a multiple 
of 4>-

P ro o f . I f  ip =  0, there is nothing to prove. Let us assume that (p ф 0, and 
choose a €  E  such that 9 (a ) ф 0. Consider the linear form (p(s)ip — ^ (а )<Л 
which vanishes on a and on ker<p by assumption. By the proposition, this linear 
form vanishes identically: We get a linear dependence relation

tp{а)я/> -  ip(a.)(p =  0,

from which we now deduce ip =  \<p, with Л =  t/>(a)/y>(a). *

Here is a generalization.

P ro p o s itio n  2. Let ipi € E* (1 <  i  <  m ) be a finite set o f linear forms. I f  0. 
linear form  гр G E * vanishes on П к к т ^ 1̂ *' then rp is a linear combination 
of the <pi.

P ro o f . Let us proceed by induction on m, noting that for m  =  1, it is the 
statement o f the above corollary. Let now m  ^  2, and consider the subspace

V  =  p| ker ipi Э V  П ker tp\ =  p| kery>j,
2̂ t^m l^t^m
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as well as the restrictions of ip and (p\ to V. By assumption, ip\v vanishes on 
kery>i|v hence there is a scalar Ai such that гр\у =  namely гр — X\ip\
vanishes on V. By the induction assumption, гр — X\ipi is a linear combination 
o f <p2 say

ip — X\ipi =  ^  Xiifi,
2̂ m

hence the result. ■

9.2.2 Dual Bases
Let E  be a vector space. Choose a basis (e t)<€/ o f E. Then each x  G E  has a 
unique expression x  =  and for each index j  G /, the map

Ej : x  i— > X j, £  — ► R,

is linear: It is the j th  coordinate form  corresponding to the chosen basis. By 
definition we have

£?'(ei)  =  &ij >

and these equalities characterize uniquely the coordinate forms corresponding 
to the basis (e j ) i€/. We may write

x  =  5 > ( x ) e i. 
t€/

For any linear form (p G E *, we have

¥>(*) =  ^ £ i(x )v5 (e i).
*€/

Let us define а,- =  <р(е*) (г G /). Hence

y?(x) =  a»£i(x) (x  G i?).
»€/

It is tempting to write

ip =  ^2 a' €i 
*€/

but as this may be an infinite sum, it is only a symbolic expression. However, 
one may be comforted by the fact that when evaluated on a specific vector x g £  
it has only finitely т а лу  nonzero terms, since by definition o f a basis, the linear 
combination x  =  я»е* has only finitely т а лу  nonzero coefficients X{.

P ro p o s it io n . When the dimension of E  is finite, then E * is also finite dimen­
sional and d im #* =  d im £. Moreover, fo r each basis (e t-)i^*^n of E , there is 
a unique basis (£t)i^*<n of E* fo r which £j(e<) =  tfy (1 ^  t, j  ^ n ) .
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P r o o f .  As in the preliminary comments, if (p G E * is any linear form on E y 
we can write

4> — ^  cijEj where a,j =  (p(ej). 
i<i<n

This proves that the family (£ j)i^ j^ n generates the dual E * . There only remains 
to show that these coordinate forms Sj are independent. But if Y lj aj £j  =  0 is 
a linear dependence relation, we may estimate it on the basis vector e*

0 =  2 ^  aj £j ( e i )  =  djSij =  ai.
K K n  i^ j^n

Hence all coefficients in the linear dependence relation vanish. ■

D e fin it io n . The basis o f E * , such that £j(ei)  =  8ij, is the dual
basis of (e<)K i<n.

Let us remember that the components of a linear form </? G E *  in the dual 
basis o f (e < )i£ ^ n are the values

9.2.3 Bidual of a Vector Space
The construction of a dual may be iterated:

The dual o f E * is the space o f linear forms on E * .

To get a feeling for this abstract construction, let us comment on the general 
situation. In the first half of the twentieth century, mathematicians used to 
speak o f a function f ( x )  because it was understood that in this notation, the 
variable was x. Later on, it appeared useful to have / as a variable, often 
keeping x  =  a fixed! For example, the Dirac function was precisely interpreted 
as an evaluation

/ — >/(a )

on a particular function space. Here is a picture illustrating this interpretation

Г functions \ evaluation
t  / / - * £a

Д а ).

We prefer to speak of a function / (not mentioning its variable), keeping f ( x )  
for the image of x  under this map. This distinction is particularly important 
with an evaluation map ea having a function / as a variable: The value o f this 
evaluation ea at the point f  is

e a (f ) =  Д а ).

In our case, we evaluate linear forms ip at a fixed vector a G E

£a -> <p(a).
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In this way, the evaluation appears as a linear form on E *, namely an element 
of the dual of this space E *

e& € (E T )m =  E *\

Finally, letting the element a vary in E , we obtain a (linear!) map

e : E  — * E ** t a i— ► ea.

Theorem . The linear map e : E  —♦ E** defined by a e& =  (v3 ^ (a) )  ** 
injective. When E  is finite dimensional, it is a canonical isomorphism.

P r o o f .  The meaning o f ea =  0 is y?(a) =  £a(¥>) — 0 f°r Ihiear forms (p. 
It implies a =  0 (another application of the incomplete basis theorem!). Hence 
kere =  {0 }:  The linear map £ is injective. In the finite-dimensional case, we 
have seen

dim E  =  dim E *  =  dim E** 

and e is automatically surjective. и

Quite generally, the injective linear map e always defines a canonical embed­
ding o f the space E  in its bidual.

9.3 Dual of a Normed Space
Recall that a normed space (Sec. 7.2.4) is a pair consisting of a real vector space 
E  and a map x »-» ||x|| : E  —> R , satisfying:

(N1) ||x|| >  0 when x  Ф 0 

(N2) ||ax|| =  |o|||x|| (a scalar)

(N3) ||х +  у|К1|х|| +  Цу||.

Taking a =  0 in (N2), we see that ||0|| =  0, so that ||x|| >  0 for all x  6 E.

9.3.1 Dual Norm
Let E  be a normed space. Let us show how one can define the norm of a lmear 

form on E.

E xam ple . Consider a linear form in the usual plane R  , say

: f =  '— ► ax +  by.

The graph of <£> is a plane in R 2 x R  =  R 3- If we fix a unit vector r  € R  , the 

ratio
iy>(af)i/iiafii =  mm  =  i ^ i

is the same for all nonzero scalars a, and represents the slope of the line generate 

by in the graph of <p. By definition, the norm of ip is the least upper
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bound of all |v>(r)| for unit vectors f: We recognize the definition of the slope 
o f a plane, here the graph o f (p. Observe that the norm o f ip depends on the 
choice of norm in R 2. One possibility is to take the Euclidean norm

||f|| =  yjx1 +  у2 i i f = ( ^ j .

The case of a linear form on </? : R n —► R , say x  =  (x j) *s treatec*
similarly.

D e fin it io n . The norm of the linear form  (p G E * is the least constant с fo r  
which

|y>(x)| <  c||x|| (x  G E ).

I t  is denoted by ||v?||* or more simply by ||<p||.

By definition, we have an optimal general inequality

lv>(x)l ^  IMI N1 (x  e  E )•

Taking unit vectors x  G E , we see that

Iv M I <  llvll (llx ll =  !)>

and since this is optimal

sup |^(x)| =  |MI-
l|x||=i

One can see similarly that

M  -  .» p  i # 1-
||x||#0 Ilx ll

P rop o s itio n . The map ip i-> ||</?|| is a norm on E * , namely, it satisfies the 
properties (N 1), (N 2 ), and (N3).

The norm just defined on E *  is called the dual norm  with respect to the 
given normed space (E , || • ||).

9.3.2 Dual of a Euclidean Space
Let E  be a Euclidean space, namely a finite-dimensional real vector space 
equipped with an inner product. Each v g £  defines a linear form

¥>v : x  i— ► (v  | x ),

simply since the inner product is linear in its second variable.

Theorem  (R iesz ). Every linear form <p on a Euclidean space E  is given by 
an inner product: There exists a vector v  G E  such that
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V?(x) =  (v  | x ) (x  € E ).

P ro o f . A s above, for v  e E , let us define <pv (x ) =  (v  | x ). The mapping

v  i— » ipv : E  — > E*

is linear. Since </?v (v ) =  (v  | v )  >  0 if v  ф 0, it is injective. Since E  is finite 
dimensional, it is an isomorphism. ■

The preceding proof has the advantage of being short, but it may be inter­
esting to know how to find the vector v  corresponding to a given linear form 
<p Ф 0. Here is a more constructive way o f proceeding. There is a unit n G E  
which is orthogonal to ker<p (Corollary 3 of Proposition 1 in Sec. 7.4.1). Since 
the inner product against this vector n vanishes on ker<p by definition, ipn is 
proportional to ip (Corollary o f Proposition 1 in Sec. 9.2.1). Explicitly, one may 
use the orthogonal sum decomposition

E  =  R n  0  ker ip

x  =  an +  w  (a =  (n | x ), w  G kery?),

to compute ip:

<p(x) =  atp(n) =  <p(n )(n  | x).

Hence we see p  =  (pv with v  =  y>(n)n.

C oro lla ry . The normed dual of a Euclidean space E  is isometric to E . More 
precisely, the linear mapping

E  — ► E*
v  i— > =  (v  | •)

is an isometry.

P r o o f . We only have to check that

\\(pv \\ =  sup |(v | x)| =  ||v||.
I|x||=l

But the Cauchy-Schwarz inequality gives

I(v I x)| ^  IIv11 (||x|| =  1),

hence ||v?v || ^  ||v||. Conversely if v  Ф 0 consider the unit vector x  =  v/||v|| for 
which

|(v | x)| =  (v  | v)/||v|| =  ||v||,
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I f  (и») is a basis of a Euclidean space E, the dual basis consists o f the linear 
forms (pj =  (v j | •) such that

=  (v j | и») =  6ц.

Identifying the dual E *  to E, we also call ( v j )  the dual basis o f (и*).

Exam ple. Let u i, U2, U3 be a basis of the usual Euclidean space R 3. Then the 
scalar triple product d =  щ  ■ (йг Л из) is nonzero, and the dual basis of (fl i ) is

v i  =  5  u 2 A  u 3,

V2 =  з й 3 Л й ь  

v 3 =  a u i  A U2- 

A  nice example of dual basis is obtained if we start with

u3

having vertices on the faces of the unit cube. Then d =  2 and the dual basis is 
proportional to

U2 A U3 =

9.3.3 Dual of Important Norms in R n

Let us now determine the norms of linear forms in R n for several norms 

llxll! =  \\(Xi)  111 =  E iM ,

IMU = IKsOlh =
||x||oo =  ||(xi)||oo =  max; |ii|,

on this space. Let us start by the quadratic norm: Since this one comes from 
the inner product

(у I x ) = Е г/iX;, ||x||| = (x  I x ), 
t

R n is a Euclidean space, isometric to its dual.

P ro p o s itio n  1. The norm of a linear form  (p =  (a») on the normed space 
(R n, II. lb) «  ll(ai)||2* The dual of (R n, ||. ||2) fe (Rn, II • lb).

P r o o f .  Here, we consider <p(x) =  33 ап п̂пег product y>(x) =  (a I x )
and use the Cauchy-Schwarz inequality (for the quadratic norm)

|y?(x)| =  I (a  I x)| <  ||a||2||x||2,

hence ||y?|| ^  ||a||2. But the choice x  =  a shows that y?(a) =  (a  | a) =  ||a ll2> so 
that conversely ||y?|| >  ||a||2. This proves ||y?|| =  ||a||2. "
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P ro p o s itio n  2. The norm of a linear form  <p =  (a*) on the normed space 
(R n> II • Hi) is IKaOlloo: The dual of (Rn, ||. ||i) is (Rn, ||. ||oo).

P ro of . The obvious inequalities

| £ i a i * t |  <  Е *  | a i X i |  ^  (ш ах » -  | с ц | )  E i  M  =  l l (a t ) | | o o | | ( * i ) l | i

show that the norm o f ip on (Rn, ||. ||i) is smaller or equal to ||(a*)||oo- Choosing 
x  =  in succession, we see that

1М 1^ И е ;)1 =  Ы  ( K j ^ n ) ,

so that the preceding estimate is optimal: ||y?|| ^  maxj \aj\ =  ||(ai)||oo- ■

P ro p o s it io n  3. The norm of a linear form  ip =  (a i) on the normed space 
(R n> II • Hoc) is ||(0i)|| i; The dual of (R n, ||. ||oo) «  (Rn, II • 111)- 

P r o o f .  The obvious inequalities (compare with the preceding proof)

IE i aix i | ^  E i  \aiXi\ <  E i  Ы  maXi 1̂ 1 =  ll(ai)lll ll(*»)lloo

show that the norm of ip on (Rn, ||. ||oo) is smaller or equal to ||(a«)||i. But we 
cannot find a smaller bound since the vector x  =  (sgn(ai)),1 normed if а ф О, 
also requires

I M I  ^  И х ) I =  E i a * Sg n ( a i )  =  E i l flil  =  I I W I I i -

Hence |H| =  £i|ai| =  |l(ai)||i. ■

C om m en t. The unit ball for ||. ||i is an octahedron, while the unit ball for 
the dual norm ||. ||oo is a cube: We recover the Platonic duality between these 
regular solids. The dodecahedron is the unit ball for a norm on R3 (which is 
not so easily given algebraically) whose dual norm has the icosahedron for unit 
ball (same remark). Notice that if В  is the unit ball for a norm in a real vector 
space, then В  is symmetric with respect to the origin in the following sense

x  € £  4=> - x  € B.

The tetrahedron does not have this symmetry, hence is not a unit ball for a 
norm on R3. Nevertheless, a general duality theory (independent o f norms) is 
available for convex sets. It leads to the expected duality for convex polyhedra 
(replace faces by vertices and conversely), and applies to the tetrahedron.

T h eorem  (H a h n -B a n a ch ). In any normed space E , we have

||x|| =  sup И Х)|/1М1- ■
4>ф о

This result is easy to establish in the usual space R3, with any norm. It is valid 
in any (even infinite) dimension. We shall not prove it.

C o ro lla ry . The canonical isomorphism E  —> E** is isometric. ■

Г1 if x > 0
1The sign function sgn is defined by sgn(x) =  < 0 if x =  0.

1—1 if * < 0
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9.4 Transposition of Linear Maps

9.4.1 Transposition of Operators in Euclidean Spaces
Let T  be an operator in a Euclidean space E.

D e fin it io n . We say that an operator T ' (in  E )  is a transpose of T  when

(T x  | y ) =  (x  | T 'y )  for all x, у  € 2?.

P rop o s itio n . Every operator T  has exactly one transposed operator T '  also 
denoted by *T.

P ro o f . Let us take an orthonormal basis (e*) of E, and let

A  =  (a y ) =  Mat(e) (T ), В  =  (b y ) =  M at(e)(T ') .

Taking x  =  e* and у  =  e^, we see that T '  is a transpose o f T  precisely when 
aj i  =  by, hence when the matrices of T  and of T '  (in this basis) are transposed, 
whence the assertion. ■

Since the determinant of a matrix is the same as the determinant of the 
transposed matrix, the preceding proof shows that an operator and its transpose 
have the same determinant. The existence o f a transpose o f T  can also be based 
on the Riesz theorem (Sec. 9.3.2). To define T 1 y , let us consider the linear form 
x  »-» (T x  | y ): It is given by an inner product against a vector, which by 
definition is T 'y . One can also show uniqueness o f transposition in an intrinsic 
way (namely without choice of a basis) as follows: I f  T '  and T "  are two transpose 
o f T , we have

(x  | T 'y )  =  (T x  | y )  =  (x  | T " y )  (x, у  € S ) ,

hence (x  | T 'y  -  T " y ) =  0 for all x, у  e  E . Taking x  =  Г у  -  T " у  we get 
И^У “  Г " у ||2 =  0, hence T 'y  — T "y  =  0. Since this is true for all у  € E , it 
proves V  =  T " .

D e fin it io n . An operator T  in a Euclidean space E  is

symmetric when ЬТ  =  T : (T x  | у ) =  (x  | Т у ),

skew-symmetric when lT  =  - T :  (T x  | у ) =  - ( x  | Т у ),  

orthogonal when гТ  =  T _1: (T x  | y ) =  (x  | T _1 y ), 

fo r  all x ,y  G E.

The proof of existence and uniqueness of transposition, made by use o f an 
orthonormal basis shows that in any orthonormal basis,

the matrix o f a symmetric operator is symmetric, 
the matrix of a skew-symmetric operator is skew-symmetric, 

the matrix o f an orthogonal operator is orthogonal.
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9.4.2 Abstract Formulation of Transposition

Just as a row vector is a matrix description o f a linear map R n —» R , we can 
view a column vector as an n x 1 matrix representing a linear map

This is the linear map characterized by 1 *—► x, and is a first instance of a 
transpose o f a linear map. More generally, let us examine the case of an m  x n  
matrix A. Up to now, we identified A  to the linear map

A  : R n — ♦ R m 
x  i— > A x ,

that it defines by left multiplication. But the matrix A  also defines a natural 
linear map

A! : Rm — * Rn 
(a i , . . . , a m) 1— * (ai , • • • ,am)A>

by right multiplication. The matrix o f this linear map with respect to the canon­
ical bases of R m and Rn is the transpose of A. This is easily seen: The entries 
in the first column of the matrix of A ' are the components of the image of the 
first basis vector (1 ,0 ,... ,  0): These entries are read in

(1,0 , . . . ,  0)A  =  pi : first row of A.

Similarly, the j th  column of the matrix of A ' is the j th  row of A, hence the state­
ment. Since row vectors correspond to linear forms, and matrix multip ication 
corresponds to composition of linear maps, A ' corresponds to the composition

ip i— > A'(<p) =  tpoA.

The following definition is an intrinsic description of the preceding particular 

case.

D e fin it io n . Let T  : E  —> F  be any linear map. The transpose of T  is the 

linear map
T * : F *  — > E m, Tm(<p) =  <p°T.

The notation T * is quite natural, but will soon be replaced by ‘T or V  since 
T *  is traditionally reserved for the adjoint of T , to be e e in ec'
By definition, we have ( T » i  =  <p(Tx) (x  e  E ). A  few diagrams may help to

visualize this duality



Hence we obtain a (linear!) map

£ { E ;F )  — > £ (F * -E * )

T  i— ♦ T*.

The following diagrams

E  E ,  - 5 . Ea,

E '  Z -  Щ  J L  E l ,  

show why duality reverses the order of composition:

(Т2о Г 1)* =  Г 1* о Г 2*.

P rop o s itio n . Let T  : E  -+  F  be a linear map and let A  be the matrix o f T
wit respect to some bases of E  and F . Then the matrix В  o f the transposed
operator T  . F  —» E  with respect to the dual bases is the transposed matrix 
В  =  54.

PROOF. T o simplify notation, let us only consider the case E  =  F . B y  definition 
o f the matrix A  of T  in the basis (e*)

Тез = E гае&
ei (Tej) =  £i (e*) =  a ij .

= 6 it

The matrix В  of T * in the dual basis (efc) is similarly defined by

T*ei =  52kbki£k
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But by definition E iiT e j) =  (6i о Т ) (е , )  =  (Т *е ,)(е ,),  so that a{j =  bj { . ■

The preceding result shows that the terminology o f transpose o f a linear map 
is well chosen, since it extends the matrix context. Transposition has other 

interesting duality features.

P rop o s itio n . For a linear map T  : E  —* F  and its transpose T *  we have:

kerT* =  {ip <= F * : гр vanishes on im T } 

im T  =  {<p g  E * : ip vanishes on k erT }.

P r o o f . The first assertion is trivial since

Ф € kerT* <*=> ^ o T  =  0 <=> V'limT =  0.

For the second assertion, notice that Т*"ф =  ipoT  vanishes on kerT. Conversely,
1 vanishes on kerT, the restriction of tp to a supplement W  cz im T  С  F

er(p corresponds to a linear form on im T  which can be extended into a 
mear orm -ф on F  (by a choice of supplement of this subspace in F ).  Hence 

<p =  ip o T  =  T*(-0) £ im T*. ■
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C oro lla ry . For the transpose T *  o f a linear map T  : E  —> F , we have:

T  surjective ■<=> T* injective 

T  injective <=> T * surjective. ■

9.5 Exercises

1. Draw the solid having vertices *(0 ,±1 ,±1 ), *(±1,0, ±1 ), and *(±1, ±1,0). 
How many vertices and faces does it have? What is its dual?

2. The Desargues theorem is the following statement. Let A B C  and A 'B 'C ' 
be two triangles in the plane. I f  the straight lines a linking A  and A ', b linking 
В  and B ' , and с linking С  and С ' go through a point 5, then the intersection 
points I i  o f the sides A B  and A 'B ', /2 of the sides B C  and B 'C \  and /3 o f the 
sides С  A  and C  A! are aligned. What is the dual statement?

3. I f  a hexagon has its vertices on an ellipse, then the pairs of opposite sides in­
tersect at three aligned points (Pascal’s theorem). Formulate the dual statement 
concerning a hexagon having sides tangent to an ellipse (Brianchon’s theorem; 
here, one may replace the ellipse by any conic curve).

4. Let v i , . . . ,  v n be elements o f a vector space E, ip i,. . . ,  ipn be elements o f 
the dual E *. Consider the n x  n matrix P  =  (<Pi(v j)) (Gram matrix). Let (e * ) 
be a basis o f E  and (e*) the dual basis of E * . If

v * =  aikek’ Vj =  ^ 2  bjtet, 
fc i

show P  =  A lB  where A  =  (a»fc) and В  =  (b jt) (see exercise 12 o f Chapter 7).

5. Let E  be a Euclidean space and 0 Ф ip € E*. Take any unit vector v  £ E, 
v  ±  ker<£>. Show that the inner product (vKv )v  I ’) represents the linear form 
(py namely y>(x) =  (<p(v)v | x ) (replacing v  by — v  does not change ^ (v )v ).

6. Let E  be a finite-dimensional normed space, ip a linear form on E . Recall 
that the norm of (p is defined by ||<p|| =  sup^n^ |<^(x)|. I f  <p ф 0, prove

min ||x|| =  1/IMI-
V>(x) = l

7. Let £  be a Euclidean space. Show that if ip is a linear form on E  with 
||<,p|| =  1, then the distance o f x  to ker</? is (exercise 22 o f Chapter 7)
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max d(x, ker<p) =  ||x||

8. Let a be a nonzero element of a Euclidean space E. Consider the linear 
map T  : E  —* R  defined by T x  =  (a | x ). What is the transpose o f T ?  I f  b 
is any nonzero element in a vector space F ,  and Та,ь • E  —> F  is defined by 
Та,ь(х) =  (a | x )b , what is the transpose o f Та,ь? What is the rank o f this 
transpose?

9. Let E  be any vector space. For any subset S  С E  define

S ±  =  { < p e E * :  <p(S) =  0 },

so that Ŝ ~ is a vector subspace of E * . Prove that for any subspace V  С. E , the 
transpose of 7r : E  —► E / V  (see exercise 10 o f Chapter 5 for the definition o f 
E / V ) gives an isomorphism

(E /V )*  ^  V х С E\

Notes

P a p p u s  o f  A l e x a n d r ia  is the last geometer o f the Alexandrian school. 
He writes his Collection (8 books) around 320 A.D.: The quoted theorem in 
Sec. 9.1.2 is Proposition 139 in his Book VII.

Here is an interesting visual experiment. Start with two identical hexagons



and add three segments in each to obtain dual pictures
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Observe how the brain forgets the original profile in favor o f the 3-dimensional 
representation.

K eyw ord s  fo r W eb  Search 

Johnson solids
Archimedean solids and duality: Catalan solids



Chapter 10

Determinants

Multilinearity appears naturally with volume considerations in vector spaces. A  
scalar the determinant— measures the volume-amplification factor produced 
by an operator in a finite-dimensional vector space. This volume-amplification 
factor is 0 precisely when the operator is singular (not maximal rank), whence 
its importance for the computation o f eigenvalues. Here is a picture illustrating 
the possible values for the rank and the determinant o f an operator.

(rank, det) for an n x n matrix

246
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10.1 From Space Geometry to Determinants

10.1.1 Areas in R 3

The relation between the area of a surface and the area of its orthogonal projec­
tion onto a plane is similar to the one given in Sec. 7.1.1 for lengths. A  picture 
shows that the ratio is given by the cosine of the angle of the two planes. Indeed, 
one linear dimension is preserved by projection, while the orthogonal linear di­
mension is shrunk by a factor equal to this cosine.

Let us consider any region of a plane П  С R 3 having area S, and its vertical 
projection onto the xy-plane having area Sxy =  S  cos7 (see picture).

Now, the cosine o f the angle between П  and the horizontal plane is given by the 
inner product of the two normals n and ёз to these planes (the unit norma n 

is defined up to a sign), so that

I f  we define a vector

we get

Sxy =  5 n  e3.

S =  5n ,

Sxy — S-es,

namely:

The area of the projection Sxy is the third component of S.

Since the definition of the vector S is independent from the direction of projec­
tion (again up to a sign), we get similarly the areas of the orizon a projec
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onto the y z -  and zx-planes

The three components Syz, Szx, and Sxy of the vector S in the orthonormal basis 
(ё {) are up to signs, the areas of the projections o f the planar region considere 
By the Pythagorean theorem

S2 =  S2yz +  S2zx +  S2xy.

A p p lica tion . Let us compute the area o f a triangle A B C  having its three 
vertices on the axes, say

o A  =  a e  j ,  O B  =  b e  2 , О С  =  c e  3.

The areas of its orthogonal projections are

area O B C  =  16c, area O C A  =  ^ca, area O A B  =  § ab.

and thus
S2 =  \{b2c2 +  c2a2 +  a2 b2).

Hence the area of the triangle A B C  is

S  =  \\/b2c2 4- c2a2 4- a2b2.

Com m ent. We can write the unit vector n orthogonal to П  as 

n =  cos a  e i +  cos (3 e2 4- cos 7 63.
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Hence

cos2 a  +  cos2 P  +  cos2 7 =  1.

Here ct, p, and 7 (resp. cos a, cos/?, and cos7) are the direction angles (resp. 
direction cosines) o f n with the coordinate axes in R 3. The preceding relation 
is a generalization of

cos2 a +  sin2 a  =  1.

Indeed, if we consider a unit vector

n — cos a e\ +  cos p  ej

in the plane R 2 (a  and P  are the direction angles with the coordinate axes in 
R 2), we also have

cos2 ol +  cos2 P  =  1 

(cos p  =  sin a, since p  =  §  — a ).

10.1.2 The Cross Product in R3

As a preliminary observation, consider two vectors € R2- These

vectors are proportional when the slopes b/a and d/c are the same (if a =  0, 
then с =  0 too). This happens when ad =  be, namely when ad — be =  0. Hence 
we get a criterion

a and independent Ф=> ad — Ьсф 0.

A t this point, we may wonder: Has the scalar ad — be any geometrical meaning? 
Here is an elementary computation to find it. Introducing polar coordinates, 
we may write

J a =  r  cos (p , Г  с =  s cos ф 
^ b =  r  sin 311 ^ d =  5 sin ф.

Hence we find

ad — be =  rs^ os^ s in ^  — sin (p cos ф) =  rs sin(^ — <p),

=  ±area  of the parallelogram generated by and ^

Here is a geometrical illustration of this formula.
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b/x =  d/c
a — x  

(a — x )d  =  ad — be

Now let us come to the 3-dimensional case. For two vectors

€ R 3,

the expressions XiUj — Xjyi ( i  <  j )  represent areas (up to sign). As our prelim­
inary observation has shown,

Х2У3 — Х3У2 =  ±area  of the parallelogram generated by and •

This is the area of a projection of the parallelogram generated by x  and y: The 
projection is obtained by forgetting the first component

X =  I X2 1 > I ) € R 2©
As we have seen in the previous section, the areas of the projections are the 
components o f a vector S which we define as a vector product o f x  and у .

D e fin ition . The cross product of x  =  (x i) and у  =  (y i) e  R 3 is defined in 
components by

(х2уз ~  Х3У2 
x A y  =  I xzyi — X1I/3 

\х\У2 -  x2yit

Notice that the index 1 is missing in the first component: i  =  2 <  j  — 3 (the 
index 2 is missing in the second, the index 3 is missing in the third). Instead o f 
the second term х\уз -  x3y1 appearing in we prefer its opposite— having
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the same square— for symmetry reasons. In this way, the three components are 
obtained by circular permutations. Recall now that we proved (Sec. 7.1.2)

l|x ||2| |y |]2 -  (X • y ) 2 =  Vj -  X j V i ) 2 .
i<3

Since

х -У  =  ||x|| ||y|| cosv>,

we recover

l| xA y||2 =  |]x||2||y||2 — (x  • y )2 

=  l|x||2||y||2( l - c o s 2^ )

=  ||x||2||y||2sm V ,

||х А У || =  ||x|| ||y|| |sinV|-

The norm of x  Л у  is the area of the parallelogram generated by the vectors x  
and y, while its components are (up to sign) the areas of its projections.

From the definition, we see immediately that

у  Л x  =  - х Л  у, x  Л x  =  0.

Let us also observe that 

(x  Л  y ) • x  =  ( x 2yz -  xzy2)x\ +  (хзу\ -  Х\Уъ)Х2 +  (х\У2 -  Х2У1 )ХЗ

=  Vl(X3X2 -  X2X3 )  +  У2 ( -Х з Х \  +  X1X3)  +  Уз(Х2Х 1 ~  X\X2)  =  0,

hence x A y l x .  Since x  Л у  =  - у  Л x  we also have symmetrically x A y l y .  
Hence x  Л у  is orthogonal to the plane generated by x  and y. In particular, if 
xz =  0 and уз =  0 (x  and у  horizontal), x  Л у  =  (х\У2 — X2yi)$3 is vertical. 
Its norm is the absolute value of the third component, equal to the area o f the 
parallelogram in the xy-plane generated by x  and y.

C om m en t. The cross product is only defined in R 3. (We use arrows on vectors 
as a reminder o f this particular situation.) Its components in the canonical basis 
o f this space are given by the above formulas, which fix their signs.

10.1.3 The Scalar Triple Product
A  combination o f the cross product and the inner product leads to an expression 
for the volumes in R 3. Here appears the linearity in three variables.

Theorem . Let x, y , and z E R 3. Then

(x  Л у ) • z =  x  • (у  Л z)

is, up to sign, equal to the volume of the parallelepiped generated by the three 
vectors x, y , and z. This scalar triple product vanishes precisely when these 
vectors are linearly dependent.
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P r o o f . W e have

(x  A y ) • z =  (х2уз -  £33/2 )2 1  +  (язЗ/i -  Х\уз)г2 +  (x\y2 -  х2у\)гз 

=  х\(у2гз -  2/3 *2 ) +  x2(y3zi -  2/1 z3) +  x3{y\z2 -  2/2 * 1 )

=  x - ( y A z ) .

On the other hand,
(x  A y ) • z =  ||x Л у || ||z|| cos </?,

where ip denotes the angle between z and a normal to the plane generated by x  
and y. This shows

(x  A y ) • z =  ±  area of parallelogram • height o f parallelepiped,

whence the assertion. *

C oro lla ry . The scalar triple product is symmetric with respect to circular per­
mutations of its arguments

x  • (y  A z ) =  у  • (z  A x ) =  z • (x  A y ). ■

A pp lica tion . Let us consider two distinct straight lines d\, d2 in the usual 
3-dimensional space. The distance between these lines may be defined as the 
minimal distance between variable points P i € d{. Here is a method to compute 
it. Take any pair of distinct points A, В  € d\ (resp. C, D  € d2) and consider 
the vectors

d i =  A B  =  O B  -  d A , 

d2 =  C D  =  O D  -  О С ,

which furnish the directions of these lines. Now with the vector u =  A C  linking 
two points of the lines, the scalar triple product u • (d i A d 2) gives the volume о 
a parallelepiped having basis of area ||di A d 2|| and height equal to the distance 
of the two lines. Hence we infer

distance between d\ and d2 =  ^  •
||diAd2||

Sum m ary. ( 1) Inner products are used for computing angles and lengths, here 
called norms, and in particular

x  _L у  «= >  x  • у  =  0.

Cross products are used for computing areas, and in particular

x, у  proportional <=> x  A у  =  0.

Scalar triple products are used for computing volumes, and in particular

x, y, and z linearly dependent <=>• x  • (y  A z ) =  0.
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In R 3, we have independence criteria

x  and у  are independent <==> x A y / O ,  

x, y , and z are independent <=> x  • (y  A z ) Ф 0.

Here are more properties of the cross product.

P rop o s itio n . The cross product in R 3 satisfies
(1) L a g r an g e  I d e n t it y : (x  л  y ) • (u л  v )  =  (x  • u )(y  • v )  -  (x  • v ) (y  • u),

(2) G ib b s  F o rm u la :  x  л  (у  л  z ) =  y (x  • z ) -  z (x  • y ),

(3) J a co b i Id e n t ity :  x  A (y  A z) +  у  a  (z  a  x ) 4- z A (x  A y ) =  0.

P r o o f . (1) Let us start by the particular case v  =  e i and u =  e*, intending 
to superpose these particular cases

( I )  (x  Л y ) • (e i Л e i )  =  0 =  Z i2/i — * iy i»
( I I )  (x  A y )  • ( e2 Л e i )  =  -3 rd  component o f x  Л у  =  Х2У1 -  ^il/2, 

( I I I )  (x  Л y )  • (e3 Л e j )  =  2nd component of x  Л у  =  Х3У1 -Х\уз,

ui(I) + u2(II)  +  uz(III) = (X  • u ) y i  -  X i ( y  • u ) .

This shows

(x  Л y )  ■ (u Л e i )  =  (x  • u )(y  • e i) — (x  • e i ) (y  • u).

Finally, we can still superpose similar results for v  =  e2 (resp. v  =  ёз)^ and 
find the announced general formula. Notice that taking in particular u — x  an 
v  =  y  we recover a previous formula

||x Л y ||2 =  ||x||2||y||2 sin2 <p.

(2) Let us determine the components of the double cross product x  Л (y  A z) in 
the canonical orthonormal basis (e*). The first one is

e r  (x  A (y  A z)).

This is a scalar triple product, hence invariant under a circular permutation of 

its arguments, say

e i • (x  A (y  A z ))  =  (y  A z ) ■ (e i A x).

Now, we can use the Lagrange identity (already proved)

(y  A z )  ■ (e i A x ) =  ( y - e i ) ( z - x ) - ( y - x ) ( z - e i )

=  У\(x  • z) — z\(x • y ).

This is the first component of the announced formula, and the 0̂ ег ŵ0 a 
obtained similarly. Observe that the double cross product x / \ (yA z ) is a vec о 
orthogonal to у  A z, hence in the plane generated by у  and z.

x A  (y  A z ) =  a y  +  6z.
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We have just determined the coefficients a and b of this linear combination.
(3) Let us use the Gibbs formula three times

x  A  ( y  A z)  =  y ( x  • z) -  z ( x  • y ) ,  

у  A (z A  x )  =  z ( y - x ) - x ( y - z ) ,  

z  A  ( x  A y )  =  x ( z  • y )  -  y ( z  • x ) .

Adding these expressions, in the right-hand side terms cancel by pairs, and we 
get the Jacobi identity. ■

Rem ark. The cross product is not associative. In fact, the Jacobi identity 

x  A (y  A z) -I- у  A (z A x ) +  z A (x  A y ) =  0,

can be rewritten

x  A (y  A z) =  —у A (z A x ) -  z A (x  A у )

=  (z A x ) A у +  (x  A y ) A z. 

correction!

The deviation from associativity is precisely visible in this form.

The scalar triple product is also denoted by

.D (x ,y ,z ) = x  - (y  A z ).

This function D  : R 3 x R 3 x R 3 —* R  is linear in each of its variables: We say 
that it is trilinear. Moreover, as we have seen

У> z) =  D (y , z, x ) =  D (  z, x, y ).

Since у  A z =  —z A у , we also have

D (x ,y ,z )  =  - D (  y ,x ,z ) =  -£ > (z ,y ,x ) =  -D (x , z , y ) -

Our purpose is to generalize these properties to all dimensions n ^  1.

10.2 Volume Forms in Vector Spaces

We are going to define a detector o f linear independence in R n, similar to the 
scalar triple product in R 3. This detector will measure the n-dimensional vol­
ume of a parallelepiped generated by n vectors: It will vanish precisely when 
the vectors are dependent. When n =  1, this volume is (up to sign) a length, 
when n = 2 (up to sign) an area.
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10.2.1 Properties of Volume Forms: Uniqueness

A volume form  in an n-dimensional space E  associates to each family of n  
elements v* in E  a scalar / (v i, v2, .. . ,  v n). This function has to vanish if two 
vectors of the family are equal, since this situation corresponds to a fiat or 
degenerated parallelepiped. We also require this function / to be homogeneous 
of degree 1 in each variable. Referring to our experience of the scalar triple 
product in the usual space R 3, we postulate homogeneity and additivity, hence 
linearity in each variable. Thus we shall study multilinear alternating functions

/ : E  x • -  x E  — ► R,

n factors

namely scalar functions in n variables v* G E  such that:

^  /(v b v 2» • • • , vn) is linear in each variable

^  /(v i 5 v 2> • • •) vn) vanishes if  two variables have the same value.

P ro p o s it io n  1. A multilinear alternating Junction f  in 2 variables v* € E , 
vanishes on all dependent families.

P ro o f.  Assume that in the dependent family (v t)i^j^n, there is a linear 
dependence relation of the form v i =  £ j> i  ajVj. Then

/ ( V l , v 2 , . . . , v n ) =  / ( Z ^ > 1  aj v j i  V2| ■ ■ ■ 1 v n)

=  ai  f  (VJ' • • •' vi  ■ • ' =  °-
j>  1

= 0

The situation is similar when any Vj can be expressed as a function of the other 
v j ’s. Hence the announced result. и

This proposition shows that functions of the preceding type with a number 
of variables m greater than n =  dim E  vanish identically.

P ro p o s it io n  2. Let f  : E  x E  - »  R  be a bi-additive function. Then the 
following properties are equivalent:

(0 / (v ,v )= 0  ( v e E )
( i i ) /(v,w ) = -/ (w ,v ) (v, w G E).

In words: f  is alternating precisely when it is skew-symmetric.

PROOF, ( i )  => ( i i )  Let us use the assumption for the sum v + w of two arbitrary 
elements v, w G E

=  / (v  +  W, V +  w )  =  /(V, v ) + / ( v ,  w )  +  /(w, V ) +  / К W ), ■

=0

We see /(v, w ) +  / (w, v ) =  0.
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(гг) => (г) I f f  is skew-symmetric, namely

/(v, w ) =  - / (w ,v ) (v ,w  <E V ), 

we may simply take v  =  w, so that we find

/ (v ,v ) = -/ (v ,v ) ,  2/(v, v )  =  0, / (v, v ) =  0. ■

The following result is obvious.

P ro p o s itio n  3. I f  f  : E  x  E  —> H  is linear in the first variable and skew- 
symmetric, then it is bilinear. Ш

The multilinear alternating forms

f  . E x  ••• x E — >R  (n =  dimE ).
v  y

n factors

are characterized by linearity in the first variable and skew-symmetry in each 
pair of variables

/ (v i +  a v i, v2, .. . ,  v n) =  / (v i, . . . ,  v n) +  a / (v i, . . . ,  v n) 

/ (v1, . . . , v <, . . . , v j , . . . , v n) =  - / (v b . . . , v i , . . . , v i , . . . , v n).

This set of forms is a vector space V  =  V (E )  since sums, and multiples by a 
scalar, of functions satisfying the preceding conditions, also satisfy them.

P ro p o s it io n  4- I f  f  €T> vanishes on a basis, then f  =  0. Two forms f , g £ U  
are necessarily proportional.

P ro o f. Take a basis (e»)i<t^n of E. Since any element of the space is a linear 
combination of the e*, we may estimate the function / as follows

/(EOiet-,E b je j, E с*е*,...) =  ^ ^ / (е ^ Е Ь ^ е ^ Е с ь е * , . . .)

=  E iJ  aibj / (eij E Ck&k> • • •)

=  aib jck / (ei, J e fc, • • •)

=  Et.j.fc,... QibjCk ■ • • / (e»,e j, efc,.. .)•

Now we may forget the monomials corresponding to families of indices i, j ,  к , ... 
not all distinct since /(ei,ej,efc,...) =  0 in these cases. Thus we are reduced 
to summing over families of distinct indices i , j , k , . . . ,  namely permutations of 
1,2,3,..., say /(ei,ej,efc,...) =  gy*... /(в1,е2,е з ,...) where all £ijk... are 
We have found

/(Eeiiei,Eb je j,E с*е*,...) =  (  ^  а^-с* • • -еу*...) / (e i,e2, e3, .. •)•

The knowledge of the single value / (eb e2, ..., en) determines f  completely. If 
this value is 0, then / vanishes identically. It proves that if / vanishes on a basis
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(here (e*)), it vanishes identically. Now we can deduce the second assertion of 
the proposition. For f ,g  SU'D, consider the linear combination

P(e l , • • •, en)/ -  / (e i, . . . ,  en)g  € V.

It vanishes on the basis (e*) by construction, hence vanishes identically 

f f fa , • • •, en) f  -  / (e i, . . . ,  en)g  =  0.

This proves the claim dim P ^  1. ■

C oro lla ry . The space T> has dimension less than or equal to 1. ■

D e fin it io n . A volume form in E  is a nonzero f  € V (E ).

A volume form / in a finite-dimensional space E  of dimension n >  1 is a 
nonzero multilinear alternating function

/ : E x  • • • x E  — > R.S v ✓
n factors

It constitutes a basis of T>(E): Any g € V (E )  is a multiple of /. As we have seen, 
a volume form / cannot vanish on any basis of E. It detects linear independence:

/ (v i , . . . ,  v n) =  0 <=> v i , . . . ,  vn linearly dependent, 

f ( y \, . . . ,  v n) фО <=> v i , . . . ,  vn linearly independent,

<=Ф v i , . . . , v n basis o f E.

In the next section, we shall prove that there is a volume form on any finite­
dimensional vector space E  ф {0 }.

I f (G i)i^ i^n is a basis of E, the requirement

/ (e i,e2, . . . , e n) =  + l

fixes the volume of the unit cube constructed on the chosen basis to be +1. It 
is a normalization condition. The formula (found in the proof of Proposition 4)

/ (S a ie i,E 6jej,Ecfcefc,...) =  (  /(еь е2>ез ,• • •)

might be used to define a volume form, hence prove its existence. However, if it 
is easy to see that it defines a multilinear function, it is not so obvious that it 
is an alternating one. We shall proceed in a more constructive way, furnishing 
a more effective computing method.
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10.2.2 Construction of Volume Forms in R n

Let us turn to the specific example of the space E  =  R n (n ^  1) with the 
canonical basis (e i , . . . ,  en).

D e fin ition . The normalized volume form  D n in R n is called determinant.

Let us show how to compute this determinant in all positive dimensions. 
When n =  1 we simply take the identity

D\ : R  — ► R, a i— » D\(a) =  a.

When n =  2, a nonzero alternating bilinear function

D 2 : R 2 x R 2 — > R

is given by

« А -»>«>■

When n  =  3, the scalar triple product is trilinear alternating, hence a volume 
form in R 3

Г>з(а, b, c) =  D (a, b, c) =  a  • (b  A c).

It is conventional to use the following notation for these determinants (or nor­
malized volume forms)

D 2(a , b ) =  a\b2 — b\a2 —

&i b\ Ci
cl2 b2 c2 .
&3 b$ сз

(A  similar notation for n =  1 would be awkward, since it would induce a con­
fusion with the absolute value.)

To give an explicit formula for the normalized volume form f  =  D n in R n, 
we use induction on the dimension. Here is how to proceed to define / =  D n 
from g =  D n- i  (n  ^  2).

Theorem . Let v  v ; : R n —» R n_1 denote the linear map that forgets the 
first component. I f  g denotes the determinant in R n_1, define f ( a, b,c, d , ...) 
by

ai P (b ;, c;, d;, ...) -  bi g (a7, c;, d ', ...) +  a  g (a', b', d ', . . . )  =F * * *

Then f  is the determinant in R n.

P r o o f . We have to check that the function / defined in the statement is the 
normalized volume form in R n. It is obvious that / is linear in each variable 
and vanishes when two consecutive vectors v* =  Vj.fi coincide. Hence this 
expression changes sign when we permute two consecutive vectors (Proposition

£ 3(a, b, c) =  a ■ (b  A c) =

a\ b\ 
a2 b2 ’
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2). In general, in order to permute v* and v i+ fc, we can start by к consecutive 
permutations of v* allowing it to by-pass successively V j+ i , .. . ,  ending up 
beyond the last mentioned

V i+1 , . . . , V i+fc,V i.

Then, к — 1 permutations of consecutive terms will bring v t+fc in first position. 
In all, 2k — 1 (odd) changes of sign will occur in the permutation of v* and Vj+*. 
This precisely gives a sign change. Finally, for the canonical basis (e,) of R n

/ (e  i , e 2,e3, . . . )  =  lg (e '2ie'3i. .

Note that e^, e3,. . .  is the canonical basis of R n_1. Since we are assuming 
that the volume form g is normalized, we have g{e2, e3, ...) =  + 1, and / is also 
normalized. ■

E xam ple. The inductive definition in dimension 3 (from dimension 2) reads 

/ (a ,b ,c ) =  a\g ( ( £ ) . ( * ) )  '  b g  ( ( * ) , ,  ( * ) )  +  ■«М ( ( * ) , .  ( £ ) )  ■ 

With the determinant notation, we obtain the expansion formula

a i bi Ci
b2 c 2

- b i
a 2 c2

+  Ci
a 2 62

a 2 62 c 2 =  a i
Ьз сз аз сз аз 63

аз Ьз сз

=  a i
Ь2 C2 d.2
63 сз d.3 
b4 04 d\

bi
a2 C2 d2 
аз сз d3 
<24 C4 d4

+  •

and we find

1>з(а, b, с) =  а\(Ь2сз -  63c2) -  bi(a2C3 _  азс2) 4- ci(a2&3 -  азb2)

=  aib2C3 +  а2ЬзС\ +  аз6хс2 — а\ЬзС2 — а2&1Сз — аз62сх 

=  a • (b Л с).

Here is the 4-dimensional case

a\ b\ Ci di 
a2 62 c2 d2 
аз Ьз сз d3
a4 64 C4 d4

As each 3 x 3  determinant is a sum of 6 terms, the expansion of a 4 x 4 deter­
minant produces 4 x 6 =  24 =  4! monomials.

Observe that we may consider the determinant D n as a function on n x n 
matrices, instead of a function on families of ntuples. The expansion of D n in 
terms of D n_ i  is very simple when the first row of the matrix has only one 
nonzero entry: For example

ai 0 0
a2 62 c2 
аз Ьз сз

b2 c2 . . .

II о ►-*

0 
•• • 

-0 
• • •
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By induction, we immediately obtain the following statement.

P rop o s itio n . The determinant o f a lower triangular matrix is the product of 
the diagonal entries

an 0 0 
a2i a22 0
3̂1 азг азз =  1̂1̂ 22

O’ni an2 anз ... ar

Moreover, for any volume form / G £>(Rn), we have

/ (.. .,  -f- ce j,. . . ,  e j , ...) =  / ( . .. , e*,.. . , e j , . . . )

/ (.. ., ее* +  e j , ...) =  / (. . . ,  e$,. . . ,  e j , .. .)

( l < 2 < j '^ n ,  с scalar). With f  =  D n, the first equality is a particular case of 
the preceding result for lower triangular matrices. The second one concerns its 
transpose and shows that its determinant is the same. For example if i  =  2 < 
j  =  3, we have

1 0 0 ... 0 1 0 0 . . 0
0 1 0 ... 0 0 1 1 . . 0
0 1 1 ... 0 =  1 = 0 0 1 . . 0

0 0 0 ... 1 0 0 0 . . 1

With the notation of Sec. 3.2.1, this observation concerns the elementary ma­
trices of the form A  =  I  +  cE ij (i  ф j ) y and shows that the determinants of A  
and its transpose lA  =  I  +  cE ji are equal to 1, hence are the same. We shall use 
this observation in the next section.

10.3 Determinant of an Operator

10.3.1 Volume-Amplification Factor

The scalar triple product in R 3 satisfies

£ (T (a ),T (b ),T (c ))  =  det(T )D (a,b ,c),

hence the determinant appears as a volume-amplification factor: The deter­
minant of an operator in any finite-dimensional vector space will similarly be 
defined as a

volume-amplification factor produced by this operator.
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Let us still assume that the finite-dimensional space E  is nonzero, so that 
we can choose a volume form / in E. For any linear operator T  : E  —» E , the 
composite

(v b v 2, ... ,v n) i— ► (T v i ,T v 2, .. • ,XVn) f { T v i , T v 2, . .. ,T v n).

is obviously multilinear and skew-symmetric, hence in V (E ), and thus a multiple 
of the volume form f .

D e fin it io n . The determinant of an operator T  in E  is the proportionality 

factor in the identity

/ (TV l, T v 2, .. -, T v n) =  det(T) / (v i, v2>.. . ,  v n)

valid fo r all families o f elements v* in E.

Observe that if the family (v*) is linearly dependent, so is its image (T (v ,)), 
and both sides vanish. Since any two volume forms are proportional, this de 
nition of det(T) is independent from the choice of volume form f .  By definition, 
the determinant of the identity operator is 1.

In R n, we can choose the normalized volume form D n, and we find for 
v j  =  e j (canonical basis)

D n (X e i,X e2, ... ,Г е „ ) =  d e t(T )D n(e u e2, ... ,e „ ) =  det(T).

Since T e j =  a., is the jth column of the matrix A  of T  in the canonical basis

det (T ) =  Dn (T e i , T e2,. . . ,  T en) =  D n (аг, a2,.. -, a „ ),

and

det(T) =

All &12 • • • 0>ln 
a2i a22 . • • 0‘2n

a-ni an2 • • • ann

This scalar is also written detT =  det A  In particular for the identity operator

det idE =  D n(eu  • • • j e« )  —

1 0 
0 1

0 0

=  1

Theorem . The determinant of the composition o f two operators in a f i  ' 
dimensional space E  is the product of their determinants, f  an 

n x n  matrices,
det(i4£ ) =  det(.A) det(B).

PROOF. This result is obvious if we refer to the geometrical ° f
the determinant given above: The volume-amplification factor produced by
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composition is the product of the successive volume-amplification factors. It is 
easy to formalize this proof. Take a basis (et) of E . By definition

f ( (A B )e i , (A £ )e2, .. . ,  (A B )e n) =  d e t(A £ )/ (e i, e2, • • •, en).

On the other hand, we may take Vj =  B e j , so that (A B )e j =  A (B e j ) =  A v j , 
and

Д (А В )е ь (А В )е2,... , (A B )e n) =  / (A vi, A v2, . . . ,  A vn)

=  det(A) / (v i, v2, . . . ,  v n)

=  det(A ) f (B e i , B e2, . . . ,  Ben)

=  det(A) det(B) / (e i, e2, ... ,e „).

Since f  Ф 0, f ( e i, e2, . . . , en) ^  0 , and by comparison we obtain

det (A B ) =  det (A ) det(B). ■

C o ro lla ry  1. Let A  and В  be square matrices o f the same size n  x n. Then 
det A B  =  det BA. I f  S  is an invertible matrix o f the same size, det S' Ф 0 and

detCS"1) =  1/ det S, det(S-1 AS) =  det A.

P ro o f . The first assertion comes from the multiplication property o f determi­
nants

det(A.B) =  det A det В =  det В det A  =  det(BA).

If S is invertible, with inverse S-1, we have

det(S_1) det(S) =  det (S _ 1S) =  det(7) =  1,

hence detS Ф 0 and detS -1 =  1/detS. Finally,

det(S-1 AS) =  det(ASS-1) =  det(A/) =  detA.

All statements are proved. ■

C o ro lla ry  2. Let P  ^  0 be a positive semi-definite matrix. Then det P  ^  0.

P ro o f . Since P  is symmetric, we may write P  =  S D S _1 where D  is a diagonal 
matrix, having the eigenvalues of P  as diagonal entries. By assumption, these 
eigenvalues are nonnegative, and the determinant of P , equal to the determinant 
of D, is the product of these nonnegative eigenvalues. ®

Due to its importance, we formulate and prove the following corollary of the 
theorem as a separate statement.

Prop os ition . A square matrix A  of size n x  n is invertible precisely when its 
determinant is nonzero.

P ro of . Recall that A is invertible when its rank is maximal. This happens 
precisely when the columns of A  are linearly independent, hence when the de­
terminant of these columns is nonzero. *
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A pp lica tions . (1) We have seen (Sec. 6.4.1) that the Fibonacci sequence may 

be computed by means of the symmetric matrix A  =  ^ , having determi­

nant —1. We have also proved

hence

In other words 

For example

ДП _  ( f n + 1 f n  
\  f n  f n —1

d e t A n =  f n + i f n - i  — f n  =  (“ I)” - 

/n+l/n-l =  /2 +  ( - l ) n =  /n2 ± l -

f 7f 5 = f *  +  1 : 13 • 5 =  65 =  r  +  1

f n + i f n - i  =  f l  -  1 =  ( f n  +  1 )(/n -  1) if П is odd.

(2) Consider the plane R 2 as the horizontal subspace of R 3. More precisely, 
introduce the linear embedding

/Xl
X  =  \ X 2

( x { \  _ fy i\  .
obtained by adding a third vanishing component. For x  =  I 1, у — ( ^  J  1 

R2, the definition of the cross product shows that

(  ° ^x  Л у  =  I О I =  det(£,£)e3.
\XiV2 -  X2y iJ

Hence for any 2 x 2 matrix A , we have

A x  A A y  =  det(^ f, Ay) e3

=  det(A (:r,y))e3 

=  det(yl) det(x,y) e3.

Hence the determinant of the 2 x 2 matrix A  is characterized by

Z lA Z | ’= d e t (^ )x A y .

10.3.2 Determinants and Row Operations
Here is a basic symmetry property of determinants.

Theorem,. For any square matrix A, we have det lA  =  det A.
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PR O O F. If the columns of A  are dependent, so are the rows, and both sides 
vanish. Otherwise A =  E\E2 " ' E S is a product of elementary matrices, and 
lA =  lE 3 • • • 1Е 21Е \. Since the determinants multiply, it is enough to prove the 
theorem for each E{. But two classes of elementary matrices are symmetric, 
and the third one consists of triangular matrices for which the statement has 
already been proved (see end of Sec. 10.2.2). ■

C oro lla ry  1. The determinant of a triangular matrix is the product o f its 
diagonal entries.

PRO O F. For lower triangular matrices, this result has already been proved: 
It is a consequence of the inductive method of computing determinants. For 
upper-triangular matrices, it now follows from the theorem. ■

C oro lla ry  2. For any square matrix A , we have

det |A| =  |detA|,

where \A\ =  (54Л)1/2 denotes the absolute value of A.

P ro o f. By definition \A\2 =  XA A  (see Sec. 8.3.3), so that

(det |A|)2 =  det\A\2 =  det lA A  =  det lA  det A  =  (det Л )2,

whence det |A| =  ± d e tA  Since \A\ ^ 0, we have det|A| ^  0 (10.3.1), and the 
statement follows. ■

By definition, the determinant in R n is a multilinear skew-symmetric func­
tion of n vectors Vi € R n This implies the following property

/(• • ■ V j , . . . V j +  CV( , . . .) =  f ( . . . V i , . . . V j , . . . )  +  c f ( . . . V i t . . . V i , . . . )
4---------- ------ -----"

=0

=  / (.. .V i,. ..V j,.. .).

Here are the basic rules:

(1 ) a determinant changes sign if  we exchange two columns
(2) i f  we multiply one column by a scalar a, it is multiplied by a
(3) it is unchanged if  we add a multiple o f one column to another.

These three properties characterize the behavior of determinants with respect 
to column operations. Since det lA  — det A , the preceding rules may be refor­
mulated for row operations:

(1У a determinant changes sign i f  we exchange two rows 
(2 У i f  we multiply one row by a scalar a, it is multiplied by a
(3)' it is unchanged if  we add a multiple o f one row to another.

As we know, row operations may always be performed in such a way as to bring 
the (square) matrix into a triangular shape for which the determinant is the
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product of the diagonal entries. Hence we may use this method for computing 
determinants, instead of the inductive method based on the expansion according 
to the first row.

Finally, note that a combination of the two methods is often used. For 
example, one may permute the first row with the ith row (hence a change of 
sign) and then expand the new determinant according to its first line. This 
corresponds to an expansion of the determinant according to its ith row. In 
doing so, signs have to be taken care of, and as one may check

b\ C\ d\
&2 b2 c2 d2 
о-з Ьз сз d3
(24 64 С4 d i

—a2
b\ ci d\
Ьз сз d3
64 C4 d\

+  b2
<21 Ci d\ 
a> 3 C3 d3 
<24 C4 d<\

=F • • •

R u le . To expand a determinant according to an arbitrary row or column, one 
has to remember that the signs are given by the following chessboard of signs

f +  -  +  -  - Л
-  +  -  +  ...
+  -  +  -  ...

\ ... - +У

For any fixed row index 1 ^  i  ^  n, we have

det .A =  J2  (- 1 )(+J a y d e t ^

where A ij denotes the (n — 1) x (n — 1) matrix obtained by erasing the ith row 
and jth  column from A. Since the chessboard of signs has +  along its main 
diagonal, the expansion according to the last row of a determinant is

ann det A nn -  flnn-1 det A nn- 1 ±  • • • =  ^ 2  ( ~ 1У апп~  ̂defc Ann~ j'
о <-j<n

C o ro lla ry . Let A  be a skew-symmetric matrix o f size n x n , where n is odd. 
Then det A  =  0.

P r o o f . We have
det A  =  det lA =  det { -A ) .

To obtain —A y each column of A  has to be multiplied by 1. Since the determi 
nant is multilinear, d e t(-A ) =  ( - l ) n det A. When n is odd, d e t(-A ) =  -  det A, 
and the preceding chain of equalities leads to

det A  =  det(—A ) =  — det A, 2det4 =  0, detX =  0. ■
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C om m en t. It can be shown that the determinant of a skew-symmetric matrix 
of even size is nonnegative. If M  is skew-symmetric of size 2n x 2n, there is an 
invertible matrix 5 (corresponding to a change of basis) such that

s - ' m s -W ) (block decomposition),

and det M  =  det S-1 M S =  (det A )2 ^  0. More precisely, there is a polynomial 
function of the coefficients of M , called Pfaffian of M, denoted P f M , such that 
P fM  =  d e tA  Hence detM  =  (P fM )2 ^  0 is nonnegative. For example

0 a 
—a 0

=  a2,

0 a b с 
- a  0 d e 
- b  - d  0 / 
- c  - e  - f  0

=  (a f  — be +  cd)2.

In the Maxwell electromagnetic theory, the pair consisting of an electric field 
E and a magnetic field В —six components— is replaced by the skew-symmetric 
matrix

/ 0 E\/c E 2/c E z/c^
—E i/с 0 — Bz B 2 
—E 2/c B 3 0 ~B\

^—Ез/с —B2 B i 0

From the last formula we infer
/

0 E i/c E 2/c Ез/с 
■Eil с 0 —Вз B 2 
E 2/c B 3 0 —B\ 
■Ез/с —B2 B i 0

=  (E  • B )2/c2.

10.4 Examples of Determinants
There are two methods of computation of determinants. The first one consists 
in using elementary row (or column) operations—under which the determinant 
has a known behavior—to bring the matrix into a triangular form. Since the 
determinant of a triangular matrix is the product of its diagonal entries, we may 
conclude. For example

100 101 102 -1  -1  -1 -1 -1  -1 -1  -1  -1
101 102 103 = 101 102 103 = 0 1 2 — 0 1 2
102 103 105 102 103 105 0 1 3 0 0 1

The second method consists in expanding the determinant according to a row 
(or a column), to bring it back to a smaller size. This second method is especially 
successful when one row (or column) has many 0’s. In general, a combination 
of the two methods is used. In some cases, induction or adapted tricks will lead 
to the final result. Let us give several examples.
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10.4.1 Geometric Examples

E xam p le  1. A rea  o f a Planar Triangle.

Let us consider the triangle having vertices

A =  (a i,a2), £  =  (61,62), and С =  (ci,c2).

The area of the parallelogram generated by the vectors A B  and A&  is given by 
the cross product. Hence

25 =
61 — a\ ci — 0.2
62 — &2 C2 — a2

1 0 0 
ai 61 — a\ ci — a2 
a2 62 — <22 C2 — a2

Without changing the determinant, we may add the first column to the second 
and third, whence

1 1 1 
a\ 61 Ci 
02 62 С2

s = i

E xam p le  2. Volume o f a Pyramid.
Take the pyramid having vertices A , £, C, and D  in R 3. The scalar triple 
product gives the volume of the parallelepiped

6V  =  A B  • (A C  A AD) =  D (A B , A C , A D ).

Hence
61 — a\ ci -  ai di -  ai

V  62 -  a2 C2 -  a2 d2 -  a2
63 -  а з  сз  -  а з  cfe -

As in the preceding example, we may add a first row (1 0 0 0) and a first column 
4(1 ai аг аз), and eventually, we find

__ 1

1 1 1 1  
ai 61 ci d\ 
аг 62 C2 d2 
аз 63 сз dz

E xam p le  3. Equation o f a Circle.
We are looking for the equation of the circle linking three points P i, £2, a^d 
P 3 in the plane R 2. Let us recall that the equation of the circle of center (a, b) 

and radius r >  0 is
(x  -  a)2 +  (y — b)2 =  r •

If we expand this equation, we obtain

x2 +  y2 -  2ax -2 b y  +  (a2 +  b2 -  r2) =  0.
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Multiplying by a nonvanishing factor A y we get the equation of the same circle. 
This shows that the general equation of a circle in the plane has the form

A (x 2 4- y2) 4- B x  4- Cy 4- D  =  0

with same coefficient for x2 and у2, and no term xy. Now, let us consider the 
determinant

=  0 .

The expansion of this determinant according to its first row leads to the equation

x2 +  y2 X У 1

* i  + y f X i 2/1 1

A  +  y\ X2 2/2 1

хз +  Уз Xz 2/3 1

(x2 4- y1
x\ yi 1 

X2 2/2 1 

*3  2/3 1

xA  +  у В  — С  =  0.

This is the equation of a circle. We recognize the coefficient of x 2 4- У2- It is 
the double of the area of the triangle P 1P2P3, hence nonzero precisely when the 
three given points Pi are not on a line. If we replace (x, y) by the coordinates 
of a point Pj, we get a determinant with two equal rows, hence with value 0. 
This proves that the points Pi, P2, and P3 lie on the circle.

Rem ark. The inequality a2 4- b2 >  a2 4- b2 -  r 2 is easily translated into the 
condition (*): В 2 +  C 2 >  A A D  for the equation of the circle. Conversely, any 
equation A (x 2 4* y2) 4- B x +  Cy +  D  =  0, where the coefficients satisfy (* ) is the 
equation of a real circle (having a positive radius).

10.4.2 Arithmetic and Algebraic Examples 

E xam ple 1. Fibonacci Numbers.

Let us consider the following determinants

D n =

1 0 
1 -1

0
0

1 -1

0 0 ... 1 1

For example

D i = 1, D 2 =
1-1 1 -1  0

1 1 =  2, L>3 = 1 1 -1
0 1 1

=  3.

It is tempting to believe that D n =  n {n >  1). This is not the case (here is a 
good place to remember that many sequences have the same first three terms,
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and indeed, many very natural sequences may have a same beginning: Guessing 
is no proof!). An expansion according to the first column of D n+ 1 (exercise) 
eventually shows that D n+\ =  D n +  D n-\. Hence D 4 =  A i +  D 2 =  3 +  2 — 5, 
D5 =  D 4 +  D 3 =  5 +  3 =  8. We recognize a shifted Fibonacci sequence

D i  =  /2, D 2 =  /3, D 3 =  /4, • • • (see Sec. 6.4.1).

This proves
D n  =  f n + i  ( n  >  ! )•

E xam p le  2. Vandermonde Determinants.

These are determinants having the general form

1 a a2 a3 ... 1 1 1 1 ...
1 b Ь2 63 ... a b с d ...

1 с с2 c3 ... a2 Ь2 с2 d2 ...
1 d d2 d3 ... a3 63 с3 d3 ...

Here are the simplest cases

V i= l ,  V2 =
1 a 
1 b

=  b -  a,

=
1 a az 
1 b b2

( b - a ) ( c - a )

l a  a 
0 b -  a b2 - a 2 
О с -  a c2 -  a2

=  (b -  a)(c -  a)(c -  6).

b -  a b2 -  a: 
с -  a c2 — a"

1 6 +  a 
1 c +  a

In general, it is better to write a =  a\, b — a2i etc. We intend to prove

Vn =

1 ai a2
1 аг a2

гп a2

_n—1 
1_n—1a2

1-1

== n  (a i " aj')* 
i > j

An astute way of proving this consists in replacing the last row of Vn+i by a 
variable one (replace an+i by x). The polynomial

P(x)

1 ai a? • • a?
1 аг a| • . aj

1 an • • aS
1 a; X2 . . xn
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has degree ^  n. If we consider the special values P(a,j) when 1 ^  j  ^  n, we find 
a determinant having two equal rows. Hence this polynomial P  has the roots 
а ь а г , and is proportional to the monic polynomial I l i^ ^ n  (x -  ai)- ^  
we expand the above determinant according to its last row, we find that the 
leading coefficient of P (x ) is the n x n  upper-left sub-determinant Vn:

p (x )  =  vn П  (* -  a*).
l^ j^n

Substituting x  =  an+i, we find

Vfi+l =  Vn ■ -P(x)|x=an+1 Vn ' (&n+l aj )• 
1

The formula
Vn =  (&t Q>j) 

n>i>j> 1
is now easily seen to hold by induction. A  good way to remember which product

I I « j  or n »> j t0 to l°°k at the 2 x 2  case.

10.4.3 Examples in Calculus 

Exam ple 1. The Mean Value Theorem.

Let / and g be two real-valued differentiable functions on an interval [a, b\. 
Consider the linear combination of f  and g given by

ip(x)
f ( x )  -  /(a) f (b )  -  f (a )  
g (x ) - g { a )  g{b) -  g{a)

/(a) f ( x )  f (b )  
g{a) g (x ) g(b) 

1 1 1

Obviously <p(a) =  ip(b) =  0 (the last determinant has two identical columns in 
each case). Since (p is differentiable in [a, 6], the derivative of <p vanishes at an 
intermediate point, say

y>;(0  =  0 for some a <  £ <  b.

But it is easy to compute the derivative of a 2 x 2 determinant having variable 
entries in one column: Simply take the derivative of this column. (The general 
case is considered below.) Hence

* 4 0  =
m  т - п а )
9 (0  9 {b )~  9(a)

Assuming g(b) — g(a) ф 0, we infer

f t i )  _ № - f  (a)
9 '(0  9(b) -  9(a) '
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In particular, me may take the function g (x ) =  x. In this case g ' =  1 so that

m  = b — a

f ( b ) - f ( a )  =  f \ S ) (b - a ) ,

f (b ) =  f (a )  +  f ' ( 0 ( b - a ) .

Sometimes, this is written slightly differently with b =  a 4- h (h an increment) 
and £ =  a 4- 9h:

f (a  +  h) =  f (a )  4- h f '(a  4- Bh) for some 0 <  9 <  1.

Note however, that if we apply this weak form of the mean value theorem 
independently to / and g , we see that

f (a  4- h) =  /(a) 4- h f '(a  4- 0\h)> 

g(a  4- h ) =  g(a ) +  fig '(a  4- 02Ь)

for some ви в2 £ (0,1) (which might be different). The above form shows more 
precisely that there is a choice 0 <  9 <  1 for which

f ( g  4-h )  -  f (a ) _  f ' ( a +  Bh)
g(a +  h ) -  g(a ) g '(a  +  9h)

This is the Cauchy Mean Value Theorem. It is the main step in the derivat;°°  of 
L ’Hospital’s Rule for computing limits of quotients of differentia e

E xam p le  2. T h e  M ean  Value Theorem  in R 3-
It is easy to give a generalization of the preceding example. Consid 
differentiable functions /, g , and h and form the determinant

m  =

f (a )  f ( t )  №  
g(a ) g{t) g(b) 
h(a) h (t) h(b)

As before Ф vanishes at t =  a and t =  b (the corresponding ^ e r m in ^ t b s  
two identical columns) and consequently Ф' vanishes m- e ween, 
t =  т. This leads to

Ф '(т ) =

f (a )  f ' ( r )  f (b ) 
g(a) 9,(j )  9(b) 
h(a) h '(r )  h(b)

=  0 for some a < t  < b .

The triple of functions gives a parameterization of a trajectory in the usual 

space R 3 linking

A  =  (f {a ),g {a ),h (a )) (initial point) and B  =  (f(b ),g (.b ),h (b )) (final point).
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The derivative gives the velocity of the parameterization. Hence the interpreta­
tion of the preceding result: There is always an intermediate time r  for which 
the velocity is parallel to the plane generated by О A  and O B  (note that here, 
everything depends on the choice of the origin O ). A  naive 3-dimensional gen­
eralization of the mean value theorem would lead to believing that there is an 
intermediate r  for which the tangent vector Ф '(т) is proportional to the incre­
ment A B  =  O B  — oA. This is not true as the following example shows. If 
the trajectory is a helix, the velocity is never parallel to the increment obtained 
after one whole revolution.

Com plem ent. If a matrix A  has differentiable functions as entries, here is how 
to compute the derivative of its determinant. From the known expansion

d e t A  ^ ( ^ ' i ^ t l ^ t ,  E j  Q*j 2  G j , • • •) =  ^   ̂ Q i l ^ j2 • • • i

we find

(det A )' =  a'a aj2 ■ • -£ у - +  a^ aj 2 *’ +

Hence
а'п ai2 • ■ ai„ ац *12 •' * ain

(det A )1 =
a21 a22 • * a2n

+
a2i a22 ‘ ■ a2n

anl an2 • ■ ann anl an2 • ■ ann

Here appears a sum of determinants, each obtained from the given one by deriva­
tion of a single column. (By symmetry, one may also derive rows in succession.)

10.4.4 Symbolic Determinants

One can fill a row (or column) of a determinant with vectors instead of scalars. 
This means that this determinant has to be expanded according to this row. 
Hence it stands for a linear combination of the vectors in this row: The result 
is a vector. For example

ei ег ез 
a.i a2 аз 
bi b2 Ьз

=  ei
а2 аз 
b2 Ьз - e2 ai аз 

bi bz
+  e3

a i a2 
bi b2

We recognize the definition of the cross product:

ei e2 e3 ®i ai b\
ai аг аз = g2 a2 b2
bi b2 63 ёз аз 63

=  a  A  b.
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In this determinant representation of the cross product, the orthogonality of 
a A b and a is visible. Indeed, their dot product is computed as follows

ё 1 • а ё2 ■ а е3 • а ai а2 аз
ai a2 аз — ai аг аз
hi b2 Ьз bi b2 Ьз

=  0 .

Here is another application of this formalism. Consider three vectors a, 6, and 
с in the plane R 2 and the symbolic determinant

a b с 
a\ b\ ci 
CL2 62 C2

a, A  — b В  +  с С.

CL2 62 C2

Its first component is

(?! • a) A  -  (ej • b ) В +  (ei • с) С  =  ai A -  i>iS +  d C  =

The second component vanishes for a similar reason. It proves that

=  о (f>ic2 -  b2c i )  -  b(a\Ci -  aaci) +  c{a ih . -  a2b i) =  0.

CLi Ь\ Cl

a\ &i ci 
02 b2 C2

0.

a b с 
a\ bi ci 
0-2 2̂ C2

=  0

This is a linear dependence relation linking the three given vectors. It is non 
trivial if no pair consists of proportional vectors. Similarly,

a b e d
a\ bi Ci di 
CL2 62 C2 d2 
аз 63 сз d3

gives a linear dependence relation between four vectors in R  • Th* 
relation is the Lagrange identity

a D(b, c, d) -  b D(a, c, d) +  с D(a, b, d) -  d D(a, b, с) =  6.

The coefficients are the scalar triple products representing volumes P 
lelepiped. The proof of such an identity, based solely on e geo ^  
pretation (volume), seems to be a real challenge. The particu ar с 
interesting

a b с ёз 
ai bi ci 0 
аг b2 c2 0 
аз Ьз сз 1

=  0.
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An expansion according to the last column gives

a  b  с
CL\ Ь\ Ci 
d2 62 C2

This is a generalization of the linear dependence relation for three planar vec­
tors. This relation may also be established directly as follows. The first two 
components of

a b  с
CL\ Ь\ C\

O'2 62 C2

vanish (a determinant having two equal rows), while its third component is

аз Ьз Сз ai b\ Ci
ai 61 Ci — аг b2 c2
аг 62 c2 аз 63 сз

10.5 Appendix

10.5.1 Permutations and Signs

In the expression

det A  =  D(Eiaiiei, E^a^e^, • • •) =  Y 2  o,no>j2 • * * 

the signs are given by

£ijk‘-‘ =  ^ ( © i , • • •) =

They are invariant under a circular permutation concerning three indices

Eijkt"' — £jkit••• == £k ijt-" '

Half of the n! permutations on the n  integers {1 ,2 ,..., n } correspond to the +  
sign, while the other half correspond to the — sign. The above formula reads

det A  =  ^ 6 0rat7(i)ia (7(2)2 • • *
С7

where the sum is extended to all permutations a of {1 ,2 ,. .., n ) .  The signs ea 
can also be defined by the following formula

= ДОмо -  *a0))/ П(**_ 
i> j i> j

=  £>(a,b,c) e3.
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10.5.2 More Examples
Exam ple 1. A  4 x 4 determinant corresponding to a symmetric matrix. To 
compute

0 a b с
a 0 с b
b с 0 a
с b a 0

we add the last three rows to the first one

0 a b с a +  6 +  с a +  6 +  с a +  6-f с a +  b +  c

a 0 с b a 0 с b

6 с 0 a — b с 0 a

с b a 0 с b a 0

Now we have to compute
1 1
a 0
b с
с b

1 1
с b
0 a
a 0

From the last three columns, subtract the first one

1

ооо

- a  с -  a b - a
a —а с — a b — а _ c - b  - b  a - b
b c —b —b a — b b - c  a - с  - c
с b — с а — с —с

Add the third row to the first two

—a 
c — b

с — a b — a 
—b a — b

b - c  — a 
0

0
a - b - с

b - c - a
a - b - с

b — с а — с —с b - c a —с —с

=  (6 — с — a) (a — b — c)

1 0 1
0 1 i

b - c  а - с  - с

Still subtracting the first column from the last, we find

1 0 0 

( b - c - a ) ( a - b - c )  0  1  1

v b - c  a - с  - b

Finally, the determinant is

(Q  +  b +  c ) ( b - c - a ) ( a - b - C) [ - 6 - a  +

- ( a  +  b +  c)(b +  c - a ) ( c + a - b ) ( a  +  b c)
Cl =
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d a b с
a d с b
b с d a
с b a d

It is symmetric in a, 6, and c. This determinant is a particular case ( d =  0) of 

=  (d 4- a 4- b +  c)(d -  a +  b -  c )(d  4- a -  b — c )(d  -  a -  b 4- c), 

which will be proved in the next chapter. Here is another generalization

(a f  — be — cd)2 — Abcde.

Exam ple 2. It is surprising that the determinant

=  —(a +  b 4- c)(b  4- с — a)(c +  a — b)(a  4- b — c)

0 a b с
a 0 d e
b d 0 /
с е /  0

0 1 
1 0 a 
1 a2

1 1
2 b2
0

1 b2 0

has the same value as the above one: Subtracting the last column from the 
second and third ones, we get

0
- b 2

0 1 
a2 — b2 b2

1 a2 - c 2 
1 b2

—c

1
1 a2 — с 
1 b2

b2 a2 -  b2
—c

Subtract now the second row to the first and third ones

0 —b2 — a2 4- c2 a2 — 62 4- c2 
— 1 a2 — c2 — ~2

0 b2 - a 2 +  c2
—cr 
2 c2 b2 -  a2 4- c2 

Still subtract the second row from the first one

—b2 — a2 4~ c2 a2 — b2 4- c2

—62 — a2 4- c2 a2 — 62 4- c2 -2 b 2 a2 - b 2 -  <?
62 — a2 4- c2 2c2 62 — a2 4- c2 2 c2

We have found
,2 Jl . /2

-4 6 V  4- (ea -  62 -  c2)2 =  [a2 -  b2 -  c2 4- 26c][a2 -  b2 -  c2 -  26c]

=  [a2 -  (6 — c)2] [a2 — (6 +  c)2]
=  (a 4- 6 -  c)(a -  6 4- c)(a -  6 -  c)(a 4- 6 4- c).

E xam ple 3. The preceding determinant is a particular case of the following
one

0 d2 e2
d2 0 a2
e2 a2 0
f 2 b2 с

b2
с

2 0



_ ( а/ +  бе +  cd)(6e +  cd -  a f )(c d  +  a f  -  be){a f 4- b e -  cd).

When a, 6, c, and d are the lengths of a planar quadrilateral, and e, / its 
diagonals, we have the Ptolem y’s inequality (7.2.4)

a f  ^  be +  cd.

The equality case happens precisely when the quadrilateral can be inscribed 
in a circle: Ptolem y’s theorem. In this case, the determinant vanishes. ( e 
triangle inequality only gives a ^ b4-c, a strict inequality as long as the triang e 
is non-degenerated.)

10.6. EXERCISES

10.6 Exercises
1. Compute the distance between the diagonal and a disjoint edge in the unit 
cube. Prove that this distance is equal to the length of M N  (see picture), enc 
О С  and M N  are orthogonal (check it with the dot product).

с /

0.

/
A M  В

(b) Compute the volume of the regular octahedron having edges of unit length.

2. (a) Compute the volume of the regular tetrahedron havl“ S 'f  f ^ ^ h e  
length. Hint: Consider the regular tetrahedron inscribed in a 
following picture.
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(This matrix was used in Sec. 6.4.13. What is the determinant of S 

for the diagonalization of the Fibonacci matrix.)

4. Let a, b, and с € R 3 be linearly independent, (a) Prove that b  Л с, с A a, 
and a A b  are also linearly independent.
(b) What is the volume of the parallelepiped generated by b  Ac, с A a, and aAb?  

(as a function of the volume of the parallelepiped generated by a, b, and с)?

5. (a) Observe that 13 divides 299, 468, and 741. Deduce from this observation 
that the determinant

2 9 9 
4 6 8 
7 4 1

is also divisible by 13.
(6) From the fact that 17 divides 204, 527, and 255, conclude that 17 also divides 
the determinant

6. Compute the determinant

1000 1000 1000 1000
998 999 1000 1000
996 998 1000 1000
1000 1000 999 998

7. Prove
1
1
a2
b2

=  2(a2 -  1)(62 -  l) (c 2 -  1).

8. (a) Establish the Gibbs formula by the following method. First show that 
the matrix L *  of the linear map u h-> x  A u  is

0 -X z  |~S2~]4 
0 —xi

~x2 [®Г] 0 ,

Then observe that

(b) Show

x A ( y A z )  =  Lz(L$ (z ) ).

LxLy L$Lz  — ■i'xA y*

(c) Use the Gibbs formula in two different ways to compute the double cross 
product

( a A b )  A ( c A d ) .
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Deduce the Lagrange identity by comparison.

9. Define constants eijk  by e* A e, =  Ylk £ijk$k- The Lagrange identity leads 
to

(ёг A e j ) ( e n  Л ёт ) =  S im S jn  — S in S jm ,

^  ^ Sjjk&k ' ^  ^ £mnp&p =  ^  “y £i jk £mnk 

к  P  к

=  SimSjn ~~ SinSjm•

As a consequence, show that the family of e’s satisfies 81 identities!

10. Check the Lagrange identity in R3

( a  A b )  ■ ( c A d )  =
a • с a d  

b e  b  ■ d
=  det (;

a\ a2 a>3 
b\ 62 Ьз

in components (namely without considering first the particular cases с et an

a =  si ) -  4 
H .  Give a method for finding a linear relation between five vectors rn R  .

12. Let V  =  R 4 and consider the map

/ : V  x V  x V  -> V,

defined by
ei ег ез в4 

m f « \ ai °2 аз 04
/(a, b, c) ^  b2 fa

C l C2 СЗ C4

Prove that f  is trilinear, alternating (skew-symmetric)- product.
/ (a ,b ,c ) is orthogonal to a b, and c: It Z J e t  by a
Each component of /(a, b, c) is the volume of a paralleiepip 
projection on a suitable 3-dimensional coordinate su spac

13. Compute the determinants of the following magic squa

10 18 1 14 22

1 15 14 4
4 12 25 8 16

12 6 7 9
23 6 19 2 15

8 10 11 5
17 5 13 21 9

13 3 2 16
11 24 7 20 3
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(In a magic square containing the first n2 integers, the sum of each row and 
column is 5 =  |(n2 4-1).)

14. Compute the following determinant

a 0 0 0 0 0
a! b b' b" V " *
a" 0 с 0 0 0
a'” 0 c' d d! d"
* 0 c" 0 e 0
* 0 d " 0 e' /

15. Compute the following n x n  determinants by induction on n

2 1 0 ... о 2 - 1 0 ... 0
1 2 1 ... о - 1 2 - 1 ■ 0

D n = . K  =

0 1 2 0 - 1  2

16. Compute the determinants

D n =

1 1

17. (a) Compute

-1  -1  
1 -1  
1 1

-1
-1
1

(b) Show that the determinant of an n x n  matrix A  =  (a y ) where all coefficients 
ay =  ±1 is divisible by 2n—1

18. Compute the determinant of the following 2n x 2n  matrix

/a 0 
0 a

0 b 
\b 0

0 b\ 
b 0

a 0 
0 a j

using the following methods: (a) Use row operations, (6) Expand it according to 
its first row (and use induction), (c) Change of basis, using e i , e2n> e2> е 2п - ь -  • • > 
e«  > ©n*f"i (as in exercise 2 of Chapter 4).
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19. Compute the determinant of the symmetric matrix

A 4 —

(a
6
b

\b

b\
b
b

aJ

Use the following scheme for the generalization to size n x n .  mce n 
diagonalizable, its determinant is the product of its eigenvalues (accoun mg
for their geometric multiplicities). ,
Let M n denote the n x n  matrix having all entries equal to 1. serve ̂  a 
kerMn is an eigenspace of a ln +  p M n with respect to the eigenvaue 1 a  
The other eigenvalue of det(a ln +  0 M n)  is easily determined using e 
this matrix, or observe that the row sums are the same in a  n +  P  n’ 
we can guess an eigenvector of these matrices.

20. Consider the following n x n  determinant

D n(x ) =

1 +  x 
1

1
1 +  x

1 +  X

(a) Compute £>i(x), D 2(x ), and D z (x ). _  n
(b) Prove by induction that the derivative of D n(x ) satis es n
(c) Observe that D n{0) =  0. Deduce the value of D n{x)-

21. Give the value of the determinant of

/1 cos a cos 2a\
[ 1 cos b cos 26 I
VI cos с cos 2 c l

iize ( c  d )

as a product of three terms.

22. Consider square matrices of even size

(а) Observe that in general

det(£ ^ d e t A d e t t f - d e t B d e t C .

• ( In /n 1For this purpose, you may consider the matrices a/n/

(б) Observe that in general

with blocks of size n x n .

det ( 2  det {A D - B O
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(nevertheless, it can be shown that the equality holds when C D  =  D C ).
(c) Establish

det if i ) = det̂  _ B 
When D  is invertible, it can be shown quite generally that

det ^  =  det(AD -  B D ~ 1C D ).

23. Let D n denote the determinant of the following n x n  matrix

/a +  b ab 0 ...........  0 \
1 a -f b ab 0 ... 0
0 1 a +  b ab ' ■ 0

0 0 ... 1 a +  b ab 
\ 0 0 ... 1 a +  6/

Show that
D n =  (a +  b)Dn- i  — abDn- 2 (n ^  3), 

and deduce the value of D n for all integers n.

24. Compute the determinant

1 +  ai 1 1 ... 1
1 1 +  <22 1
1 1 l  +  a3 :

1 ... 1 1 +  an

25. (Gram determinants) Let u i, . . . ,  un, v i , . . . ,  v n be elements of a Euclidean 
space V, and let (е&) be ал orthonormal basis of V, with

u» =  ^2 aikek, Vj =  ^2  bjt*e-

Show
к i 

(U ilv O  (U !| vn;

detA detB,

(lin | Vi) ••• (un |vn) 

where A  — (a*fc) and В  =  (b ji) (see exercise 12 of Chapter 7). Formulate this 
equality in the usual space R 3, with its canonical basis.

26. Let

Un =  Un(x )

2 x 1  0 ...
1 2 i 1 0 ..
0 1 2x 1 (size n x  n),
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so that
U0 =  1, U i =  2x, U2 =  4x2 -  1.

Prove
Un+ i =  2xUn ~  Un- 1  (n  ^  !)•

Show £/n( l )  =  n +  1 (compare with exercise 4 of Chapter 4). Establish

Un( cos„) =  Sin(n +  1- ^  (n > 0 )
4 ' siny?

(Chebyshev polynomials of the second kind).

27. (Smith determinants). Let afj =  gcd(t, j )  denote the greatest common divi-
sor of the two integers г, j .  Consider the square matrix A  — n —
of size n x n .  (a) Write down explicitly these matrices for n — , > > an
compute their determinants. и D =
(b) Show that A  =  T D  lT  where T  is triangular with entries 0, 1 ana u  
diag(</?(l),.. .  , </?(n)) is diagonal. Recall that the Euler ^function is e ne

<p(k) =  number of integers in the range 1, . . . ,  к which are prime to к 

Conclude that ___
det A n =  </>(1) • • • <p(n ) =  11

Compare with the results obtained under (a).

28. Explain the following apparent paradox. The homogeneous system for two 

complex variables x, у:

j  (a +  ib)x +  (c +  id)y =  0 (H S )
\ (a' +  ib ')x  +  [d  +  id ')y  =

has a nontrivial solution exactly when

a +  ib c +  id _  g 
a' +  ib' d  +  id'

This complex condition leads to two real conditions

(  ad -  a'с =  bd' -  b'd 
\ ad' +  bd =  a'd +  b'c.

However, writing x =  Xi +  ix2, у =  Ш +  <»■•*«> ^  ^
parts, the homogeneous system (H S ) is equiva en

ax i — bx 2 +  cyi ~~ dyi — 0 
bx i +  ax2 +  dyi +  cy2 =  0 (H S )r

a 'x i - b 'x 2 +  c,y i - d ,y2 =  0
b'x\ +  o!x2 +  d'yi + c'2/2 =  °*
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This system has a nontrivial solution when the single real condition

•b'

- d
с

-d f

is satisfied. How is this possible?

Notes
The independence of projections is well illustrated in the frontispiece of the book 
by Douglas R. Hofstadter:

Godel-Escher-Bach, (Basic Books 1979).

In Scientific American (August 1991, p.90) the same picture is interpreted as a 
“Digital Sundial.”

K eyw ords for W e b  Search

Markus Raetz (artist who plays with the independence of projections).

Checking that he knows how to expand determinants!



Chapter 11 

Applications

Let T  be an operator in a finite-dimensional real vector space E  ф {0}- eca 
that an eigenvector of T  is a nonzero v  € V  such that T v  is proportiona о , 
say T v  =  Av. Thus we are interested in finding pairs (A, v ) satisfying

(T  -  A/)v =  0 and v  Ф 0.

In the geometric theory (Chapter 6), we were particularly interested in 
eigenvectors v. In the present algebraic theory, we are more interes e 
eigenvalues: The scalars A such that ker(T -  AI )  ф {0 }. fT°° rrfn  ф /q} 
eigenvectors are the nonzero elements in this kernel. But er( forrn:nant 
means that T  -  X I is not injective, hence not invertible. The determinant

precisely detects this situation:

det(T — X I) =  0-

An advantage of this purely algebraic characterization of the eigen 
is that it makes no reference to the eigenvectors (also un own

11.1 The Characteristic Polynomial

11.1.1 Definition and Basic Properties
As we have just observed, the eigenvalues of an operator T  are the ( real) roots

o f the polynomial r.
P t [x ) — det(T  — x i) -

D e fin it io n . The characteristic polynomial of an operator

p r {x ) =  det(T -  x i)-

Take a basis ( e O i ^ n  o f E .  determto^t o f  a n  operator can
operates by left multiplication m R  bin

285
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be computed in matrix form, we have

рт(х) =  det(T — x l )  =  det (A  — x l ) .

As we know by Sec. 4.4.4, another choice of basis leads to a similar matrix, say 
В  =  S-1AS for which

det(B -  x l )  =  d e t iS - 'A S  -  x S ^ S )  

=  det ( S ~ \ A - x I ) S )

=  det (S "1) det (A  — x l )  det S  

=  det (A  — x I )  — P a ( x ) -

This is in agreement with the fact that the characteristic polynomial of T  can 
be computed in any matrix description of this operator. All coefficients of рл 
are invariant under a change of basis. (Note however that the eigenvectors of 
A  and S ~ l A S  are not the same.)

P ro p o s itio n . The characteristic polynomial o f an n x n  matrix A  =  (a y ) & 

Pa {x ) =  ( a n - x )  +  qA{x),
l^t^n

where qA is a polynomial o f degree less than or equal to n — 2.

P r o o f . The statement is correct when n =  1 (obvious) and n =  2:

an — x a\2 
021 022 — X

=  (<*11 — z ) (a 22 ~  X )  ~  Q12021,

degree ^0

I f it is true in dimension n — 1, we may establish its truth in dimension n as 
follows. We expand the determinant of A  — x l  according to its first row and, 
using the induction assumption we obtain

det (A -  x l )  =  (а ц  -  x )  ̂  {an -  x ) +  q (x ) )  +  i j -

Here q (x ) is a polynomial of degree less than or equal to n — 3, and M \j is the 
determinant of the sub-matrix A\j of A  obtained by erasing the first row and 
the column containing ajj — x. Since A\j contains only n — 2 entries depending 
on x, the factor M \j is a polynomial of degree less than or equal to n — 2. We 
find

рт(х) =  (ац -  x ) (  Д  (ац -  x ) +  g (z )) +  (deg ^  n -  2) 
2^i<n

=  (an -  x ) (ац -  x ) +  (deg ^ n -  2).
2<t <n

The induction step is established and the proposition is proved.
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Theorem . The characteristic polynomial o f a matrix A  € M n(R ) is an nth 
degree polynomial having the following form

pA(x ) =  ( - l ) nxn +  ( - l ) n_1(tr A ) x11- 1 ± ---- h det A

P r o o f .  The constant term of the polynomial p a ( x )  is P a ( 0) =  det A. The 
preceding proposition shows that the coefficients of x n and of xn in P a \x ) 
and in — x) are fche same. The highest power of x  in this product
is obviously (—x )n =  ( —l ) nxn. Moreover, all monomials of degree n — 1 in the 
product are obtained by taking the constant term an in one factor, and the 
term —x  in all other ones. Their contribution is

(e11 +  -  +  enn) ( - * r 1 =  ( - i r - ^ t r  A )x n- 1.

The theorem is established. *
C oro lla ry . Any operator T  in an odd-dimensional т'eal vector space E  has at 

least a real eigenvalue.

P r o o f .  I f n =  dim E  is odd, the characteristic polynomial of the operator T  is

pT (x ) =  - x n +  (terms of deg <  n  -  1),

hence tends to — oo when x  —+ oo while it tends to -f oo when x  oo. By the 
intermediate value theorem (valid for all continuous functions), it as to vanis^ 
at some intermediate point, which is necessarily an eigenvalue.

is

is

11.1.2 Examples
The characteristic polynomial of a 2 x 2 matrix A

pA{x) =  x2 - ( t r A ) x  +  detA.

_  fa  b\
Explicitly, the characteristic polynomial of A  — [ c dJ*

x 2 - { a  +  d)x +  (a d -b c ).

The characteristic polynomial of a diagonal matrix diag (d\,

(4  - *)■••(<*»- * ) •

Since a change of basis does not change the characteristic ’ ^uct
that the characteristic polynomial of a diagonalizab e ma rix is afcrix p0r 
of degree one terms, where the * ’s are the eigenvalues of the matrix, 
example, we have seen in Sec. 6.4.2 that the n x n matrix

tdn) is

M
!

V 1

1\
1

1

is diagonalizable:
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>■ ker M  has dimension n -  1 (eigenspace corresponding to Л =  0) 

>■ *(1,..., 1) is an eigenvector with the eigenvalue A =  n.

Hence the characteristic polynomial of this matrix is

Pm (z ) =

In the same way, we see that the characteristic polynomial of

/a a 
a a

ctM —

a\
a

\a a C L )

is Pqm(z) =  (—x )n 1{na — x). The characteristic polynomial of olM  +  p i  is 
then

det(aM +  (31 -  x l )  =  рам {Р  -  x )

=  (0  -  x )n~ l (na  +  (3 -  x).

The characteristic polynomial of

A  =

(a  b . . .  
b a ... b

bM  +  (a -  b )I

a )

is thus
Pa (x )  =  (a -  b -  x )n 1 (a +  (n  -  1)6 -  x) 

In particular, for x =  0, we get

det A  =  (a — 6)n_1 (a +  (n — 1)6).

Specializing to a =  0 and 6 =  1, we obtain

0 1
1 0

1 1

11.2 The Spectrum of an Operator

11.2.1 Changing the Field of Scalars
Although we have mainly treated vector spaces over the real field R , it is im­
portant to consider other cases, and especially vector spaces over the complex
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field С (Sec. 3.3.3). It is obvious that the reduction algorithm for the solution 
of linear systems works over any field of scalars and furnishes solutions (i t ey 
exist), in the smallest field containing the coefficients. It is also obvious t at t e 
construction of volume forms in R n can be performed in the spaces w ere 
К  is any field of scalars. Similarly, any tf-linear map has a determinant whicn 
is an element of К . Any n x n  matrix A  with coefficients in К  defines a - 
map K n -> K n, and detA € K .  For К  =  R , considered as a subfield ot О, л
defines linear maps

R n — » R n (R-linear), Cn — ♦ Cn (C-linear).

They have the same determinant: detA € R  С С. In particular, the chara 
istic polynomials of the preceding linear maps are the same.

11.2.2 Roots of the Characteristic Polynomial
Let T  : E  -> E  be an operator in a finite-dimensional real vector space Е ф  {0}.

D e fin it io n . The complex roots o f the characteristic polynomial^ o f Г 
spectral values. The set of spectral values is the spectrum о  -  от 

operator T .

Theorem . Let A € a be a spectral value of T . Then.

I f  X is real, it is an eigenvalue t (V\ =  V.
I f  A i  R  there is a 2 -dimensional subspace V  such th

PROOF. The first assertion is
of the corresponding eigenspace Ex — ker(T „ „ hf,41s cf E  and replace E
m x >  1 of A. To prove the second assertion, hoos compiex eigenvector
by R " , and T  by its matrix A in this basu' A  , c „ C "
v  g C n, with respect to the spectral value A £ imap-inarv parts: Say
(given by matrix multiplication). Separate the real and imaginary pa

A =  A '+ iA " , v  =  v ' +  iv "  (A ',A "eR ; v , v  € R  )■

The complex identity

A (v ' + iv " ) =  (A ' +  iA " ) (v ' +  iv " ) ,  

leads to two real equalities

/ A v ' =  A V  -  A 'V '
| A v "  =  A 'V  +  A 'v .

v  — r lv 1 v"1 С R " generated by the real ve t̂o ŝ 
This shows that the subspace V — M   ̂ v  js not a multiple
v 7 and v "  is invariant under A. Since is no г ’ у  dimension 2. ■
of a real vector: v ' and v " are independent. Hence
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Recall now that a square matrix A  =  (a y ) of size n xn  (and real entries) hav­
ing large diagonal entries is invertible. More precisely, the Gershgorin theorem 
(Sec. 4.3.3) asserts that if

I flit I >  'У  ̂l&ij I (1 ^  ^  n),

then A  is invertible. The same result holds for the complex matrices A  — XI 
(А € C), and this proves that a spectral value A of A  can occur only if one 
inequality

\au — A| ^  la*il

holds for some 1 ^  i  <  n (Sec. 6.3.2). Since spectral values of A  are eigenvalues 
of the linear operator Cn —> Cn defined by multiplication by A, hence corre­
sponds to an eigenvector v  in Cn, the same estimates as in the real case prove 
the following result.

Theorem  ( G e rs h g o r in ). The spectrum of a square matrix A  =  (a y ) is con­
tained in the union of the complex discs

B i’. \z — a<i| ^  74 =  ^2  lay  I* "
3*i

Since the field of complex numbers С is algebraically closed, the characteristic 
polynomial of A is a product of first degree factors:

P a { x )  =  П  ( A i - x )  ( л » €  C ) 
l ^ n

(we have adapted the signs in order that both sides have the same leading 
coefficient ( - l ) n). Here, multiple roots correspond to repeated factors.

D e fin it io n . The algebraic multiplicity of a spectral value X is the highest power 
of x  — X that divides the characteristic polynomial рт-

A root A of a polynomial p has algebraic multiplicity /i when 

p(A) =  p'{X) =  • • • =  p ^ ~ l \ A) =  0 but p M (X ) ф 0.

Comparing

P a {x )  =  Y I  ( A *‘ ”  x )  ( Л* €  C )-

with the general form of the characteristic polynomial

P a { x )  =  ( - l ) nz n +  ( - l ) n-1(tr A )x n~l ± ---- 1- det A,

we infer
d e tA =  At, tr A  =  ^  A».

l^i^n l^t^n
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th^pectraw lbp»1 T brt IC “ ultiplicity of a spectral value A, grouping together 
spectral values A< which coincide with one A e  <7 we find
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P a ( x )  =  Ц  (А4 — x ) =  Д  (A -  x ) ^ . 

рша11у, comparing the degrees in

Р а ( х )  =  Ц ( \ - х ) “ \

we infer
A €<r

n =  degp* =
A€«t

A p p lica tion . Consider the matrix

A  =

^mce t e four row sums are the same, a first eigenvector is given by 1 (1 1 1 1).
°w, considering that the rows are permuted from the first one, we may try 

eigenvectors having entries ±1. Eventually, we find that

are eigenvectors with respective eigenvalues

а +  6 -fc  +  d, a -  b +  c — d, a -  b -  c +  d, a +  b -  c — d.

The trace of A  is 4a: It is the sum of the eigenvalues. The determinant is the 
product of the eigenvalues

det A  =  (a +  6 4- с +  d)(a — b +  c — d)(a — b — с +  d)(a +  b — c — d).

Finally, the characteristic polynomial of A  is the product of the A* — x  (it can 
also be obtained by replacing a by a — x in the determinant)

(a  +  b +  c +  d - x ) ( a - b  +  c - d -  x )(a  - b - c  +  d -  x )(a  +  b -  c — d — x).

P ro p o s it io n . The geometric multiplicity of an eigenvalue is less than or equal 
to its algebraic multiplicity:

m a =  dim ker (T  — A I )  < ц\.
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P r o o f .  Take a basis (e i , е г ,. . . ,  em) of the eigenspace V\ =  ker(T — X I) С E , 
and complete it into a basis of E. In this basis, the matrix A  of the operator T  
consists of four blocks: The first one is XIm followed by a zero block just below. 
The matrix of T  — x i  in the same basis also has four blocks: Here is how it 
looks like

A - x I  =  ( (A ~ ^ Ifn * ) .

Expanding according to the first column repeatedly (m  times), we find that 
Va ( x )  =  (A — x)m • (* ) is divisible by (Л — x )m. This proves fi ^  m. ■

C oro lla ry  1. A square matrix A  can be diagonalized over R  precisely when
о  С R  and 77iд =  fo r  all X E a.

P r o o f .  Indeed, if a single inequality m x <  fix holds, Y I  mA <  £  Мл =  so 
that there is no basis of R n consisting of eigenvectors of A. ■

Recall the simplest case (Sec. 6.4.2), systematically considered in elementary 
textbooks.

C oro lla ry  2. When the characteristic polynomial p a  has n  distinct real roots, 
then the matrix A can be diagonalized. ■

C oro lla ry  3. A triangular matrix A  — (a*j) having distinct diagonal entries 
an, can be diagonalized.

P ro o f . Indeed, if A  is triangular, so is A  — x i  and

P a {x )  =  det(A -  x i )  =  JJ (an -  x ).

Hence the announced result follows from the previous corollary. ■

R em ark . This theory can be made with any field of scalars F , if one counts 
algebraic multiplicities in an algebraic closure of F . But note that geometric 
multiplicities depend on the base field. For example

771a(R) <  m x (C ) <  fix.

When the characteristic polynomial of A  has n distinct complex roots, then it 
is possible to diagonalize A  in a suitable basis of C n.

Exam ples, (a ) Consider a matrix A  =  ( sin</?\ j^s characteristic
ysmy? cos<p J

polynomial is

x2 — (tr A )x  +  det A  =  x2 — (2 cos ip)x +  1 

=  (x  -  ei(fi) ( x  -  e " iv?).

When the angle ip is not an integral multiple of 7r, the spectral values e±tv? are 
distinct, and A  can be diagonalized (when (p is an integral multiple of 7Г, A  is 
diagonal).
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(b) Let N  be a nilpotent operator in R n. The only complex eigenvalue of N  is 0, 
hence the only spectral value of N  is 0: P n ( x )  =  (—a;)n- The algebraic mu lpic 
ity of this spectral value is n while the geometric multiplicity is im er
if N  ф 0 (this implies n  >  1). Hence N  cannot be diagonalized (even over tne
algebraically closed field C).
(c) When N  is nilpotent, the only complex eigenvalue of / ±  N  is 1. Hence t 
operators I  +  N  and I  -  N  have the same characteristic polynomial )

11.2.3 Existence of a Complex Eigenvalue
Since the characteristic polynomial of an operator always has a root in ^  
this field is algebraically closed), we infer that any operator • ,
has a complex eigenvalue, hence has an eigenvector in С . onsequ 
following version of the Schur lemma (Sec. 6.3.4) holds.

L em m a (S c h u r ’s lem m a ). Let №).£/ be an T
in a finite-dimensional space E  over the complex fie • ^
in E  that commutes with all Si is a multiple of the identity.

Another application of the existence of complex eigenvalues 
possibility of finding a complex triangular form for any square

D e fin it io n . A square matrix A  =  (а ц ) having real or J ^ ts a reai
said to be trigonalizable over the field R  (resp. )> w e such
(resp. complex) invertible matrix S (corresponding to a change of 

that S ~ l A S  =  T  is upper-triangular

A  =  STS -1, T  =  (U j) where U j =  0 fo r all pairs i >  j -  _

P ro p o s it io n . Any square matrix having real or complex coeffi

nalizable over the field C . =  ^  .§ a basis of

PROOF. Let v  be an eigenvector of A: v Ф 0 an 
C n haviner first element v. In such a basis, the ma rix

S ~ l AS =

/X \
и

Ao

\o /

This observation is the basis for a proof о t e pr  ̂ Assume that the result 
size of A. There is nothing to prove if A  as  ̂д  ^  size n *  n, in the
is true for matrices of size (n -  1) *  (n “  ^  a basis of C n 1 in
above formula A 0 has size (n -  1) x ( »  '  ^  Д ^ е  
which it is upper-triangular, say л ° 0

/1 0 •■ • С

S i =

/1
0

Vo

0 ••• 0\

So
5Г1»

/1
0

Vo

Snl
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Then, block multiplication shows that

'A 
0

Vo

S f1

/А * * • • • *  *\ 
0

Vo

To

is upper-triangular. Since this matrix is

5 f 1(5_1i4S)Si =  (S S ^ A iS S i ) ,

the proof is complete.

11.3 Cramer’s Rule

11.3.1 Solution of Regular Linear Systems

Here is a method for the resolution of regular linear systems of size n x n , based 
on determinants. To emphasize its geometrical meaning, let us start by the 2x2 
case

f a ix  +  h y  =  ci 
\ a2x  +  b2y =  c2.

This system can be written in vector form

xa +  yb =  c,

and is regular when a and b are linearly independent, which we^assume. We 
have to find the components of the given vector с in the basis a, b.

xa +  yb

Using the 2-dimensional volume form (area) D , the following pictures illustrate 
the fact that the solution for ж is a quotient of two determinants

D (a tS ) '
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xa
D (c , b ) =  D (x a ,b )

A regular 3 x 3  system

( a\x -I- b\y +  c\z =  d\ 
a2x  +  b2y +  c2z =  d2 
a3x  -I- b3y 4- c3z =  d3.

can be treated similarly using volumes instead of areas. In^vector f 
to determine the components of d in the basis a, b, an с

xa -f yb 4- zc =  d.

In order to eliminate у and z, we can multiply (dot product) _ g  л  
vector which is orthogonal to both b and c. Hence let us mu

xa • (b A c) =  d • (b A c).

We recognize scalar triple products

xD (a,b ,c) =  D ( d,b,c),

and deduce
_  Djd , b, c)

X ~  D (a,b,c)

. . . -  ь с are independent). Similar formu- 
(the denominator does not vanish since , >
las are found for the variables у and z.  ̂  ̂^

Just as the above picture gives the geometi■* ^  can make a 3-dimensional 
x of a 2 x 2 system (as a quotient of two areas;, 3 x 3 system (as a
illustration of the found formula for the solution 
quotient of two volumes).

D {x a ,b ) =  x D (a ,b )
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Here is the generalization for regular n x n  systems.

Theorem . Let A  be an n x n invertible matrix, having columns a i , . . . , a n. 
Then the solution x  of the linear system A  x  =  у  has the components

X ■ -  “  > У , ‘ ' • , a n ) ( l  <  n <  ri\
X> -  } ( a i , . . . , a „ . . . , a „ )  ( 1  <  n)'

where f  G I>(Rn) is any volume form  in R n.

P r o o f . By block multiplication, we have

/
у  =  A x =  (a i,...,a n )

For any volume form /, we can compute / (a i , . . . , y , . . . ,  a n) (where у  is placed 
in the j th  position) as follows

/ (a i, . . . , y , . . . , an) =  / (a i, . . . ,  X/fcX̂ afc,. . . ,  an)

=  /(a i, . . . ,  Xj&j, . . . ,  an)

=  xj  f  (ai »• • • > ai > • • • > an)- 

The announced formula follows since f  ф 0 does not vanish on any basis. ■
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In particular, we may take the normalized volume form / — D  — D n, namely 
the n-dimensional determinant, and obtain the usual Cramer rule

Xj ”  det A

^an . . .  1j  - Oln^

021 . . .  Oj . &2n
(1 <  j  <  ri),

\Onl . . .  Oj . Onn /

det B j 
det A  ’

where the matrix B j is obtained from A  by replacement of its j th  column by y.

11.3.2 Inversion of a Matrix
Let A  be an invertible matrix, say of size n x n .  We are looking for the inverse 
of A. As usual, the columns of this inverse are the images A  ej  of the asis 
vectors. Let us determine the first column x =  A  xei only (it is typica ). t is 
the solution of the system A x  =  ei and we may use the Cramer rule or t is 
purpose. Let Bj denote the matrices

Bj

whose determinants give the numerators in the Cramer ru e. e can 
the determinant of Bj according to its j th  column (having on у one 
entry)

det Bj =  (—1)J+1 det-Aij ,

where A ij  denotes the sub-matrix of size (n — 1) x (n — 1) obtained bŷ  
the row and column of A  containing a\j. Hence the first со umn о

<><*<»>■

More generally, it is easy to see that the entries of A  are

aj i  '  '  det A 

Note the transposition between the entries of the inverse and the cofactors.

E xam ples. (1) I f A  =  is invertible, then 5 =  ad -  be ф 0, and

c  f - m  ■*)■

(2) An n x n matrix h.ving I H «  “
inverse with integral coefficients too.
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(3) The Hilbert matrices

Hn =

( 1 1/2 

1/2 1/3

{ l j n  ■ ■■

1/n \

l/(2n — 1)/

are invertible. It can be shown that d e t#n is the inverse of an integer. For 
example

det Я 3 =  1/2160, det Я 4 =  1/6048000, det # 5 =  1/266716800000.

More precisely, it is known that the Hilbert matrices have integral inverses. For 
example (a minicomputer TI92 is useful here!)

f 16 -120 240 -140\

- 1 -120 1200 -2700 1680
4 — 240 - -2700 6480 -4200 >

\ -140 1680 -4200 2800 )

25 -300 1050 -1400 630 \
-300 4800 -18900 26880 -12600
1050 -18900 79380 - 117600 56700

-1400 26880 -117600 179200 -88200
630 -12600 56700 -88200 44100

Я Г 1 -

V
The determinant of H n becomes very small when the size n increases: det Hg «  
10-42. On the other hand, the coefficients of the inverse get very large: H 9 
has coefficients of the order of 1011. This shows that the Cramer rule is not to 
be favored for the numerical computation of H ~ l .

11.3.3 LU  Factorizations: Necessary Condition

Let A  be an invertible matrix, as in the previous subsection. Assume that it 
has a factorization A  =  L U  (Sec. 3.2.3) where

L  : lower-triangular with l ’s on the diagonal,
U : upper-triangular with pivots pi on the diagonal.

Then, for each integer к between 1 and n (A: =  n  — 2 in the picture below), 
multiplication by blocks (Sec. 3.3.1) with

(  Л *
* )

(  r n 0 \ ( * * \
Ak * * Lk 0 0 Uk * *

*  * * * *  * 1 0 0 0 * *
у * * * * I \ * * * 1 ) ,v\

0 0 0 * /
A L  U
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shows that A к 
Hence

= L kUk is also an L U  factorization (it has the same qualities), 

det Ak =  det L k det Uk =  det Uk =  Ц  Pi Ф 0

=  1

(we are assuming A  invertible, so that there are n pivots pi Ф 0). We even see 
here

Pk =  (2 <  fc <  n), pi =  an-
det Ak—l

The sub-determinants det-Аь corresponding to the square sub-matrices ex 
tracted from the top-left of A  are the principal minors of A. Assume now 
conversely that all the principal minors of A  are nonzero, and us s ow * 
A  has an L U  factorization. The first principal minor is the coefficient ац. 
nonzero, it can be taken as first pivot pi, and adding to the rows pt 
multiple of the first one, we get a first equivalent

fp i
0

\0 *•••*/

These special row operations keep all principal minors sec0nd
if the second principal minor is nonzero, the second coe c'e°  “  multiple of the 
row can be taken as pivot p2- Adding to the rows pi (

[p i * •
(p i

0
*

P2
0 P2- . • * 0 0rsj

U * • • * ) U 0

Continuing in this way (use an induction on n), we see that " ‘* ^ г/ ° " и1аг 
change or scalar multiplication of rows, A  is equiva en ^ having l ’s on
matrix U, hence A =  L U  for some lower^r.angular m ajn x^  ba g ^  ^

its diagonal. This gives a satisfactory answer to the last que 

Sec. 3.2.3.

11.4 Construction of Orthonormal Bases
Let be a finite family in an inner-product space E. Consider the

matrix _  , . \

tS'c matrix is the Gram determinant of the family 
The determinant of this symmetric ma

ff =  Gram(v1, . . . ,vn) =  det(vi |vi)-
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This determinant detects the linear independence of the (v*).

P rop o s itio n . The following properties are equivalent:

(г) The family (v*) is linearly independent 

( i i )  g =  det(g ij) ф 0 

( in )  g =  det(g^) >  0.

PROOF. We know (7.3.1) that there exists an orthonormal basis of the Eu­
clidean subspace V  =  £ (v i , . . . , v n) С E  generated by the v<. Take such a 
basis

e i , . . . , e p (p =  dimV  ^  n), 

and introduce the components of the Vj in this basis:

v j  =  5Z  ak^ k ^  j  ^ n)-

This gives a matrix A  =  (a# ) of size p x n  and G  =  (g ij) =  lA  A:

9i j  =  (Vj | V j)  =  (  5 3  ° « в< I 5 3  a k je k)

= a£iakj(el | efc) =  Y2etkatiakjfitk =  X/fc akiakj-

The rank of G is less than or equal to p. If p <  n, then det G  =  0. I f p =  n, the 
matrix A  is a square matrix (having the same determinant as lA ), and

g =  det G  =  det( lA  A ) =  (det A )2 ^  0.

Moreover g =  0 precisely when detA =  0, namely when the vectors v» are 
linearly dependent. ■

The case of two vectors is already interesting. Indeed, in this case

9 =  (x  | x )(y  | y ) -  (x  | y ) :
(x | x ) (x | y )
(y I x) (y|y)

is the Cauchy-Schwarz inequality once more! Observe that the equality can 
hold only if x  and у  linearly dependent (proportional).

Practically, the construction of orthogonal systems in an inner-product space 
can be done by an inductive procedure called Gram-Schmidt orthogonalization, 
that we explain now.

Theorem  (G ra m -S c h m id t ) . Let (vn)n^o be a (finite or infinite) system of 
independent vectors in an inner-product space E . Then there is an orthogonal 
system (en) having the following property: For each m

£ (e i, . . . ,  em) =  C,(y\,. . . ,  vm) С E.

Moreover, the vectors en are unique up to multiplication by scalars.
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P roof. We begin with eo =  vo and proceed by indeterminate coefficients or 
the next one: ei =  vo 4- a iv i =  e0 4- aiVi has to be orthogonal to eo — v0. 
More generally, since the subspaces generated by the (vt)t^m and the 
are the same, we have to take

em =  eo 4- x ie i 4------ 1- £m- i em-i 4- xmv m,

with the orthogonality conditions

(em I ej )  =  0 (J <  m).

These conditions furnish a linear system for the unknown coefficients. The P*°b- 
lem is to solve this system at each step. Thanks to the theory о e ermin ’ 
there is an elegant way to give the result. Consider the sym о ic e erm 
(10.4.4)

(vo I V o) • • • (v 0 I Vm)

(vm_ i | V0) • * • (Vm-1 I Vm)
V0 • • • Vm

which represents a vector em € E. Expanding it according to it 
find

em =  gm • v m 4- a linear combination of the v, for i  <  m»

where gm stands for the Gram determinant of the first to thftt
determinant is nonzero by the preceding proposition ( 
v o ,. . . ,  v m_ 1 are independent). We also see that

jC(v0, . . . ,  vm- i ,  vm) =  C(y0,. ■ •, Vm-l. em)- 

An easy induction shows that

£ (v 0). . . , v m- 1}vm) =  £ (e0, . . 4 em-i>em)-

Furthermore, distributing the inner products ш the ’qws  ̂hence zero;
i  <  m, (e* | em) is given by a determinant having u
em is orthogonal to the previously constructe et s.

11.5 A  Selection of Important Results

11 .5 .1  T h e  F rob en iu s  and C a y le y -H a m ilto n  T h e o r

Any monic polynomial is (up to sign) the characteristic polynomial of a s.uare

m  Q f r i v
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Theorem  (Froben ius). Let p (x ) =  xn 4- an_ ix n 1 4- • • • 4- ao be any monic 
polynomial o f degree n. Then the so-called companion matrix

A  =

(  0 1 0 
0 0 1

\—ao —a\ —a2 

has characteristic polynomial (—l ) np(x). 

P ro of . Indeed, let us compute

P a ( x )

0 \ 
0

an— 1)/

—X 1 0 •• 0
0 —x 1 0

—ao - a i (Nсз1 an- i  x

according to an expansion with respect to its last row. We find

P a (x ) =  (—Qn-i -  x ) ( - x ) n~ l  +  J 2  ( - “ i ) ( - l ) n+J+1 det Ajn ,
0 ^ n -2

where

det A jn =

- x  1 

0 —x

0 0 

0 0

0 0

0

=  { - x ) :

Thus

pA(x ) =  ( - l ) n (x n 4- an-\ xn 1 -I- a3х* )  =  ( - 1 )ПР(Х)>
O^'^n-2

and the theorem is proved. •

Th eorem  ( C a y le y -H a m ilto n ).  Let A  be a square matrix o f size n  x n and 
characteristic polynomial

P a ( x )  =  det (A  -  x l )  =  a0 4- a\x H------h an_ ix n_1 4- anxn.

Then
P a { A )  — ao I  4* a\A 4- • • • 4- an_i.An 4- anA n =  On
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P r o o f .  Let В  =  A  — x l » so that

del В  =  р д (х ) =  iio 4- 0i<r +  * "  +  On-bi'n * 4*

(fln =  (-1 )* ,  a * - i  =  ( - I ) * - 1 tr.4, but we shall not use it). The Invoreo of И \и

S ~ *  =  T ~ 5  Ваз! 
det В

where B ^  has entries 5', =  (—1)I+J det Bj,. This furnishes the identity 

ВВсы =  Bcof В  =  (det B) I  =  pa(*) I •

Since each entry o f B^,- is ±  det Bj,, where By is obtained from A — x i  by 
deleting one row and one column, these entries are polynomials of degree at 
most n  — 1 in x, and we may write

Beef =  B0 4- B tx  +  B2x2 +  • • • +  Bn_i® "-1.

Now, the identity рд (х) / =  Bcof В furnishes explicitly

QqI  +  a \x l +  a2x21A----- ho„xn/ =  (Bo4-B ii +  B2X2H f-Bn-i®  )C^ )

In this polynomial identity (having matrix coefficients), we may f
A, whence the result. More explicitly, we may identify the coeffic.ents of fake 
powers of x  in the preceding polynomial identity, obtaining

oqI  =  Bo A  
a\l =  B\A — Bo 
a2I  =  B2A  -  Bi 

ст-i/ = Bn-iA -  \ Y 2
On I  =  n

Let us multiply the second equation by A, the third ^uatio У 
(the last equation by A ') .  Adding, we obtain a telescopic sum

tt> An — В  -2A n l )  — B n - iA  >
Pa (A ) I  =  B0A +  (B 1A 2 - B 0A ) +  --- +  (B'‘- iA  n и

nam ely рд (Л )  =  On, whence the theorem. ^  д  js a linear combi-

Th is  theorem shows that the nth P ° " “  ° f  . д  the (n +  l)th  power of 
nation of the preceding powers of A. u 1 Hence an inductive method or 
A  is a linear combination o f the Precedin®.°°tions of /, А ,-.. Я " " 1 - ™ en .An f  
com puting aU powers o f A  as Unearr corn^ . .+ a n- l A n + ° "
invertible, we can also multiply the 
On by A -1 , obtaining

4п-2 +  апл п' 1 = 0„.
aoA- ' + a J + -  +  a" - lA
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Since ao =  det A  ^  0 in this case, we obtain an expression of the inverse as a 
linear combination of nonnegative powers of A:

( - Л ) " - 1 +  tr A ( - A ) n~2 +  ■ ■ ■ =  det A ■ A ~ '.

This leads to

A - 1 =  ( ( - Л ) " - 1 +  tr А  ( - Л ) " - 2 +  •••)•

11.5.2 Restricting Scalars from С to R
We may view the complex field С as a real vector space, with basis 1 and i. 
This choice of basis leads to an isomorphism R 2 С between these real vector 
spaces. Any С-linear map С —♦ С is given by multiplication z cz by some 
complex scalar с G С: Its determinant is c. This map is a fortiori R-linear, and 
if с =  a 4- ib (a, 6 G R ), its 2 x 2 matrix in the basis 1 and г, has for columns 
the components of

c l  =  a +  i6, resp. c i  =  ai — b = - b  +  ai.

Hence this real matrix is

The determinant of this R-linear map is

=  a2 4- b2 =  cc =  I cl2 G R.
a —b 
b a

This is the relation between the (complex) determinant of the С-linear map

fc  : С — ♦ С
Z I— * CZy

and the (real) determinant of the same map, but considered as an operator in 
the 2-dimensional real vector space C. Here is a generalization.

P ro p o s itio n . Let M  £ M n(C ) be an n  x  n matrix with complex entries and 
f  : C n —> C n the С -linear map that it defines, with det M  =  detc / G C. I f  } r 
denotes the same map as f , but considered as R -linear operator in C n =  R 2n, 
then

det /я =  | det M\2 G R.

P r o o f . Suppose that

M  =  A  +  iB  =  (ajk 4- ibjk) (ajk ,bjk G R )

(matrix of / in the canonical basis of C n). Take the real basis



of C n. The matrix of the real linear map / in this basis has for first columns 
the components of

/ Ы  =  £  (ajk +  ibjk )e j  =  ^  a^ +  5 3
l<j<n l< j< n  n<j^2n

We infer that the real matrix attached to / has the block form

* )  e  M 2n(R ) .

The last columns are formed by the components of

/(e„+fc) =  /(iejb) =  </(efc)

(since we assume that / is С -linear), hence these last columns are form У 

the components of

f ( e n+k) = i  ^  (ej* +  *J * )eJ =  S  (-*!#* +

The real matrix attached to / has the block form

(в a ) e M2n(R)'
(Notice that when M  is real, В  =  0 and all computations that follow are much 

simpler.) Consider the identity
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( A - B \ f i n =  ( A + i B A ' iB̂  
\ B  a )  i ln )  \ B - i A B  +  l AJ

Taking determinants, we obtain

A  - B  
В  A

*n  1n 

i l n  U n

A -\- iB  О 
О А - i B

In  In  

—i l n  H n

=  det(A +  i B)  det(.A -  iB)
I n  ^n  

— i l n  H n

But

I n  1 Л f i n  I n

—i l n  U n )
\ 0  2 i l n

I n  I n I n  I n

— i l n  i l n
0  2i l n

=  (2i )n,

=  det(A +  iB) det (A - i B )  =  \ det(A +  гВ)\' 

This is the announced result.

A - B  
В  A
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11.6 Appendix

11.6.1 Back to A B  and B A
Let us show that when A  and В  are rectangular matrices, A  of size m x n  (resp. 
В  of size n x  m), then A B  and B A  have the same characteristic polynomial 
up to a power of — x. Hence all nonzero eigenvalues of A B  and B A  have the 
same algebraic multiplicities (in Sec. 6.5.1, we proved that they have the same 
geometric multiplicities). Here, A B  is a square matrix of size m  x  m, while B A  
is a square matrix of size n x n .

A picture will help visualizing the situation

and
- (

B  = В

( m  rows, n columns)

(n rows, m columns).

Let us consider the following product by blocks 

/ A B 0

В 0

\ /
lm A

0 In

\ / A B A B A

В B A

lm A

0 In

s 

\ / 0 0

В B A

Since the matrix S  is obviously invertible, we deduce that 

/ A B 0

В 0

0 О

В B A

/

S ~ \

These similar matrices have the same characteristic polynomial, namely 

Pa b (x ) • ( x )n =  { - x ) m - p b a {x ) 

whence the affirmation.


