

Python	Made	Easy
Up	and	Running	with	Python
	

	

	

Published	by	
Az	Elite	Publishing	Inc.	

ISBN-13:

978-1502393470

	

	

ISBN-10:

1502393476

Manufactured	in	Canada
Published	simultaneously	in	Canada
10	9	38	30	2	3	4	

	

	

No	part	of	this	publication	may	b	reproduced	or	transmitted	in	any	form	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	otherwise,	without	the	prior	written
permission	of	the	publisher.	For	information	on	getting	permission	for	reprints	and
experts,	contact	contact@inspirednotions.com.

Notice	of	Liability:	

The	information	in	this	book	is	distribution	on	as	“As	Is”	Basis,	without	warranty.	While
every	precaution	has	been	taken	in	the	preparation	of	this	book,	neither	the	author	nor
publisher	shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	lose	or
damage	caused	or	alleged	to	be	caused	directly	or	indirectly	by	the	instructions	contained
in	this	book	or	by	the	computer	software	and	hardware	products	described	in	it.

	

FREE	Guru	Level	Training	For	Beginners
(Value	$37	per	month,	Yours	FREE)	

	

https://spsuccess.clickfunnels.com/techgift

TABLE	OF	CONTENTS
	

Python	Made	Easy

Chapter	1:	Jumping	into	Python

The	History	of	Python

Benefits	of	Python

Chapter	2:	Getting	Started

Installing	Python	and	an	IDE

Installing	an	IDE

Example	Program

Chapter	3:		Building	Our	First	Programs

Indentation

Variables

Numbers

Strings

Operators

PROJECT:	Variables

Conditional	Operators	(If/Else	Statements)

If	Statement

If/Else	Statement.

Nested	Statements

PROJECT:	Decision	Making

Loops

While	Loops

For	Loops

PROJECT:	Loops

BONUS

Chapter	4:	Lists	and	Tuples

What	Are	Lists?

Accessing	Items

Boolean	Statements	and	Lists

Creating	Tuples

Creating	Lists

Chapter	5:	Functions

What	Are	Functions?

Defining	Functions

Parameters	and	Returning	Functions

Example	Function

Passing	Parameters	in	Functions

Variables	in	Functions

Chapter	6:	Classes

What	Are	Classes?

Defining	and	Creating	Classes

Class	Terminology

Using	Classes	and	Self

Chapter	7:	Importing	Modules

What	Are	Modules?

Defining	Modules

Chapter	8:	File	I/O

What	is	File	I/O?

Opening	Files

Cursor

Other	I/O	Functions

tell()

readline()

write()

close()

Chapter	9:	Error	Handling

What	Is	Exception	Handling?

Bugs	and	Human	Errors

Exceptions

Conclusion

BONUS

BONUS

Introduction
“When	I	got	started,	I	was	a	sideshow.	At	my	first	Consumer	Electronics	Show,	in	1977	in
Chicago,	people	came	from	all	over	the	floor	to	see	the	‘lady	programmer.’	They	had	me
dressed	in	a	turquoise	lab	coat	with	my	name	embroidered	on	the	pocket.”-	Brenda
Laurel

	

Hello,

	

Welcome	to	Python	made	easy.

	

Before	I	resume	to	tell	you	about	Python	and	Python	programming	I’d	like	to	tell	you	that
I’ve	been	through	the	pains	and	struggles	that	any	aspiring	programmer	goes	through.
Going	through	books	on	the	concept	was	difficult-	not	because	I	didn’t	understand	them-
but	because	there	was	so	much	technical	jargon	that	I	had	to	read	the	same	thing	4	times
until	the	author	of	the	book	got	through	to	me.

	

You’ll	see	that	several	books	on	programming	use	a	lot	of	technical	jargon	which	alienates
a	reader	and	especially	one	who	has	no	idea	about	Python	or	programming	at	all

	

On	my	path	to	learning	programming	with	Python	I	learned	that	the	program	isn’t	difficult
to	understand.	It’s	actually	one	of	the	easiest	programming	languages	that	I’ve	come
across.	It	is	easy	to	comprehend	and	the	codes	are	far	easier	than	I’d	expected	them	to	be.
So,	I’ve	simplified	certain	concepts	and	explained	various	codes	and	concepts,	in	this
book,	so	that	any	layman	can	understand	Python	programming.

	

I’ve	included	exercises	in	this	book	that	will	help	you	familiarize	yourself	with	Python
programming	because	I	discovered	that	doing	such	exercises	helps	readers	get	a	hang	of
the	program	a	lot	faster.

	

Since	I	am	someone	who	can	relate	to	the	pain	that	an	aspiring	programmer	goes	through,
I	have	written	this	book	for	you	while	keeping	your	woes	and	worries	in	mind.

	

When	you	read	this	book	you	will	see	that	programming	isn’t	as	technical	and	difficult	as
people	make	it	out	to	be.	You	don’t	even	need	to	know	the	basics	of	programming	because
I	have	divided	this	book	into	several	chapters	and	sections	that	will	help	you	understand
the	program	a	lot	faster.	This	way	you	can	learn	programming	from	scratch	and	learn

everything	that	you	need	to	know	as	a	Python	programmer.

	

So,	if	you	are	learning	to	use	this	programming	language,	all	you	need	to	do	is	to	fire	up
your	laptop	and	start	reading	this	book.	Click	on	the	various	links	I’ve	added	here	to	help
you	get	more	content	on	Python	programming.

I	have	also	added	various	exercises	at	the	end	of	different	chapters.	Revise	your	concepts
with	these	exercises	and	if	there’s	anything	that	you’ve	missed	out	on,	or	skipped,	you	can
always	go	back	and	read	the	chapter	all	over	again.

You	will	come	across	various	codes	that	will	show	you	how	you	can	make	codes	with
Python.	Go	through	these	codes	and	try	to	make	your	own	too.	
I	hope	that	you	enjoy	your	journey	and	that	this	book	assists	you	on	your	path,	too.

	

Thank	you,	for	downloading	this	book.	Now,	let’s	get	to	the	main	part!

GOOD	LUCK!

Chapter	1: 	Jumping	into	Python
	

“I	believe	that	movies	are	fast	becoming	antique	and	dinosauric	as	a	medium.	Film	is	a
medium	for	the	over-40s	and	television	has	gone	the	same	way.	If	you’re	going	to	look
towards	the	new	generation,	then	of	course	you’re	going	to	have	to	be	a	lot	more	random,
spontaneous,	irreverent	and	provocative	with	your	programming.”	Malcolm	McLaren
	
So,	you	are	interested	in	learning	Python?	Python	is	a	cutting	edge	programming	language
that	 is	 geared	 toward	 simplicity.	 Python	 was	 created	 to	 be	 written	 productively	 with
maximum	 readability,	 without	 having	 to	 sacrifice	 quality.	 If	 you’re	 reading	 this	 book,
you’ve	probably	 already	 researched	Python	 and	have	 a	 good	 idea	 of	what	 the	 language
could	 potentially	 offer.	 Well,	 the	 hype	 is	 true.	 The	 language	 has	 received	 increased
attention	in	recent	years	for	a	good	reason	–	it’s	easy	to	learn,	it’s	extremely	readable,	and
the	software	quality	it	creates	is	unmatched.

	

Even	if	you	have	never	written	a	single	line	of	code	in	your	life,	Python	is	an	excellent
place	to	start	learning.	One	great	thing	about	programming	is	that	all	languages	are	very
similar	 to	 one	 another.	 Sure,	 they	 all	 have	 different	 syntax	 and	 different	 features,	 but
generally	 programming	 code	 transplanted	 from	 one	 language	 to	 another	 will	 look	 very
similar.	If	you	learn	the	introductory	concepts	in	one	language,	you	can	easily	apply	it	to
other	 languages	as	well.	Likewise,	 if	you	are	coming	 to	Python	with	a	background	 in	a
different	language,	you	should	find	the	transition	relatively	easy.

	

Your	typical	Python	program	will	contain	one-third	the	code	of	your	typical	C++	or	Java
program,	which	is	one	of	the	reasons	why	it	has	become	so	popular	in	recent	years.	There
is	simply	less	code	(without	sacrificing	the	readability	of	the	language),	and	this	leads	to
less	 debugging	 and	 fewer	 errors	 to	 sort	 out.	 Python	 can	 be	 used	 to	 program	 virtually
anything.

	

The	History	of	Python
Python	was	 first	created	 in	 the	 late	1980s	by	Guido	van	Rossum	at	CWI,	 located	 in	 the
Netherlands.	 In	 the	 beginning,	 the	 development	 of	 the	 language	 started	 as	 a	 hobby	 for
Rossum,	originally	meant	to	kill	some	time	during	a	winter	vacation.	The	2nd	version	of
the	language,	Python	2.0	was	released	in	2000,	kick	starting	its	popularity.	The	release	of
the	second	version	came	with	increased	transparency	and	community	participation	in	the
development	process.	Python	3	made	its	debut	in	2008,	and	originally	was	not	backwards-
compatible,	which	hindered	its	growth.	Since	then,	the	language	has	been	back	ported	to
work	with	previous	versions	of	the	language.	In	this	book	we	will	be	covering	Python	2
exclusively,	as	Python	3	has	not	been	adopted	by	most	large	organizations	at	this	time.

Benefits	of	Python
	

Python	was	originally	developed	 to	be	 a	 simpler,	more	 readable	programming	 language
that	 didn’t	 sacrifice	 functionality.	 Today	 Python	 is	 more	 popular	 than	 ever,	 and	 has
become	known	for;

	

Software	 Quality. 	 Python	 code	 is	 stripped	 down.	 It’s	 simple,	 but	 its
efficient.	For	this	reason,	programs	written	in	Python	are	typically	a	higher
level	of	quality.
Portability. 	Python	as	a	language	hasn’t	changed	all	of	that	much	over	the
years	and	for	that	reason,	it	is	extremely	portable.	You	could	copy	code	from
a	program	written	10	years	ago,	and	paste	it	into	a	program	today	without	an
issue.
Library	 Support. 	 Libraries	 are	 community-created,	 pre-built	 functions.
There	 is	 nearly	 an	 unlimited	 number	 of	 Python	 libraries	 available	 today,
each	bringing	its	own	benefits	to	the	table.
It’s	 fun. 	 Python	 strips	 the	 code	 down	 and	 uses	 indentations	 instead	 of
brackets	to	determine	what	is	run	and	when.	This,	combined	with	its	built-in
toolset	make	it	a	joy	to	code,	which	has	brought	many	new	users	on	board.

	

Python	is	also	an	excellent	programming	language	for	those	of	you	who	are	learning
programming	or	about	programming	languages	for	the	first	time.	You	will	find	that	Python
is	a	programming	language	that	teaches	you	to	write	codes	that	can	be	read	easily.	Python
recognizes	the	importances	of	readability.	This	is	why	readability	and	terse	codes	are	part
of	the	program.

	

The	best	part	about	Python	is	that	it	is	very	easy	to	understand-	not	just	for	beginners	or
intermediates	but	also	for	those	who	are	learning	about	programming	from	scratch.	This	is
a	great	programming	language	and	one	that	you	will	have	on	your	tips	within	a	few	weeks,
if	you	are	persistent	and	consistent,	too.

	

I’ve	always	promoted	the	language	and	insist	that	anyone	who	wants	to	get	a	basic	idea	of
what	programming	is	all	about	should	start	by	learning	Python.	This	programming
language	is	also	beneficial	in	the	long	run.	You’ll	find	yourself	enjoying	programming	and
you	won’t	get	as	frustrated	as	you	do	or	might	when	learning	various	other	programming
languages	either.	This	is	why	several	programmers	who	have	shifted	to	Python,	from	other
programming	languages,	feel	happier	and	are	more	productive,	too.

	

Writing	codes	with	the	programming	language	is	a	lot	of	fun	too.	You	can	make	readable
codes	that	are	easy	to	maintain	or	modify	as	well.

	

So,	if	you	want	to	get	into	programming	and	understand	how	to	make	codes,	Python	is
your	best	friend.	It	is	used	widely	and	several	programmers	prefer	Python	over	other
programming	languages,	too.

	

All	in	all,	anyone	wanting	to	learn	programming	or	coding	should	start	by	learning	Python
and	then,	move	on	to	other	programming	languages	once	they’ve	mastered	this	program.
	

Summary
	

							This	chapter	discusses	the	following:

How	Python	was	created
The	benefits	of	the	programming	language
Why	beginners	should	learn	to	program	with	Python
What	makes	Python	one	of	the	easiest	programming	languages	for	anyone	aspiring
to	become	a	programmer

	
	
	

	

	

	

	

Chapter	2:	Getting	Started
“Python	has	been	an	important	part	of	Google	since	the	beginning,	and	remains	so	as	the

system	grows	and	evolves.	Today	dozens	of	Google	engineers	use	Python,	and	we’re
looking	for	more	people	with	skills	in	this	language.”	-	Peter	Norvig,	director	of	search

at	Google.

	

In	this	chapter	you	will	learn:

	

What	is	the	Integrated	Development	Environment
How	to	make	a	sample	program?

	

Its	time	to	get	to	know	Python!	There	will	be	a	few	resources	that	you	need	to	know	about
before	we	dive	head-first	into	the	code.	We’ll	start	by	installing	the	best	IDE	for	Python
use,	PyCharm.

	

Integrated	Development	Environment
	

If	you	already	know	about	IDEs,	feel	free	to	skip	on	this	section.	If	you	do	not,	I’d	advise
you	to	read	it	first.

	

Regardless	 of	 what	 programming	 language	 you	 go	 for,	 you	 will	 need	 an	 IDE	 (an
abbreviation	 for	 Integrated	Development	 Environment).	 An	 IDE	 provides	 programmers
with	the	tools	she	or	he	needs:

	

The	Source	Code	Editor-	 this	is	a	text	editor	program	that	can	be	used	to	edit	 the
source	codes	of	various	programs	on	your	computer.
Build	automation	tools-	these	tools	are	used	for	build	automation.	Build	automation
is	 something	 that	 programmers	 do	 quite	 frequently.	 These	 tools	 enable	 you	 to
compile	 sources	 codes	 in	 the	 form	 of	 binary	 codes,	 running	 automated	 tests	 and
such	like.
Debugger-	you	will	always	come	across	some	bug	or	the	other.	The	debugger	helps
you	detect	and	then,	get	rid	of	these	bugs	so	that	the	computer	program	is	free	of
bugs	and	errors.

Installing	Python	and	an	IDE
	

Python	is	relatively	easy	to	install,	and	doesn’t	require	a	whole	lot	of	knowledge.	Navigate
to	the	download	page	located	here:

	

https://www.python.org/download/releases/2.7.8/

	

This	 is	 the	most	 commonly	 used	 version	 of	 Python.	Make	 sure	 that	 you	 download	 the
correct	file,	based	on	your	operating	system.	Some	operating	systems	might	not	be	capable
of	supporting	a	particular	version	of	the	programming	language.

	

Open	the	installation	file	and	click	“Install	for	all	users.”

Installing	an	IDE
	

For	an	IDE,	we	will	be	using	PyCharm.	You	can	access	their	download	page	here:

	

http://www.jetbrains.com/pycharm/download/

	

PyCharm	is	one	of	the	most	popular	IDE’s	for	Python.	It’s	simple,	easy	to	use,	and	comes
with	 a	 built	 in	 command	 prompt,	 which	 truly	 simplifies	 things	 for	 beginners.	 The	 best
feature	 is	 that	 the	community	edition	 is	available	completely	for	 free,	offering	all	of	 the
standard	features	for	Python	development.	Make	sure	to	select	your	operating	system	from
the	tabs	at	the	top	of	the	page	before	downloading.	Your	download	will	be	more	than	100
MB,	so	it	could	take	some	time	to	complete.	The	installation	process	is	relatively	straight
forward.

http://www.jetbrains.com/pycharm/download/

Example	Program
	

You’ll	be	shocked	by	how	little	code	 is	actually	 required	when	programming	 in	Python.
Compared	to	other	languages,	you	might	see	half	(or	less)	of	the	total	number	of	lines	of
code.	But	don’t	mistake	that	for	a	lack	of	depth.	Python	is	robust,	with	enough	features	for
companies	like	Google	and	Facebook	to	choose	Python	as	a	primary	language	for	some	of
their	largest	business	processes.

	

Remember	 that	Python	 in	 its	simplest	 form	is	nothing	more	 than	a	 text	 file	with	Python
statements.	If	you	are	coming	to	Python	from	C#	and	other	similar	languages,	executing
files	is	a	bit	different	in	Python,	and	often	a	less	visual	process.

	

Here	 I	will	walk	 you	 through	 the	 creation	 of	 a	 sample	 program.	 It	will	 be	 your	 typical
“Hello,	World”	opener	that	you’ve	likely	seen	before.

	

Step	1:	Open	PyCharm.

	

Step	2:	Go	to	File	>	New	Project

	

Step	3:	In	the	“Project	name:”	section,	enter	“HelloPythonWorld”,	 then	click	OK.	Make
sure	you	have	the	correct	interpreter	selected.	Your	screen	should	look	like	this:

	

	

	

	

	

	

	

	

	

	

	

	

	

Step	4: 	In	the	project	window,	right	click	on	the	folder	named	“HelloPython	World”	and

select
New	 >
Python
File.	
When

prompted,	name	the	file	“HelloP”.

	

Step	5:	Copy	and	paste	the	following	code	into	the	text	editor:

	

print	“Hello,	World!”

	

Step	6: 	In	the	“Run”	Menu,	click	“Run”.

	

Step	7: 	You	will	be	prompted	to	specify	what	you	would	like	to	run.	Select	“HelloP”.

	

Step	8: 	Look	at	 the	 logs	 that	were	generated	after	 running	 the	program.	It	doesn’t	 look
like	much.	You	should	be	seeing	something	like	this;

	

While
this	not
seem
like

anything	 significant,	 the	 logs	 have	 signalled	 that	 the	 program	 ran	 correctly.	 This	 is
excellent!	However,	many	users	will	prefer	to	see	a	visual	representation	of	their	program.
Here’s	a	simple	way	to	do	so;

	

Step	9: 	 Click	 your	 start	 button.	Use	 the	 search	 function	 (or	manually	 navigate)	 to	 the
“Python	(command	line)”	program.

	

	

	

	

	

Step	10: 	Once	the	command	prompt	opens,	type	the	same	line	of	code	from	step	5	into
the	command	prompt.	You	should	see	the	following:

	

	

	

As	you	can	see,	the	command	was	executed	within	the	command	prompt.

	

This	gives	you	a	good	overview	of	how	to	go	about	creating	a	project	and	watching	it	run.
Unlike	 other	 programming	 languages,	 Python	 doesn’t	 need	 or	 utilize	 a	 graphical	 user
interface	when	running	a	program.	This	can	be	confusing	for	those	that	are	coming	over
from	other	visual	programming	languages,	but	ultimately	doesn’t	effect	much.

	

Summary
	

							Here	are	the	points	that	were	covered	in	this	chapter:

What	is	an	IDE
What	does	an	IDE	consist	of
How	to	make	a	sample	program	with	Python
The	basics	of	programming	with	Python

	

Chapter	3:		Building	Our	First	Programs
“Now,	it’s	my	belief	that	Python	is	a	lot	easier	than	to	teach	to	students	programming	and
teach	them	C	or	C++	or	Java	at	the	same	time	because	all	the	details	of	the	languages	are
so	much	harder.	Other	scripting	languages	really	don’t	work	very	well	there	either .”-
Guido	van	Rossam

	

In	this	chapter	you	will	learn:

What	are	indentations
The	basics	of	Python	Programming
The	components	of	Python	Programming
Basic	coding

	

	

Now	that	we	have	seen	Python	in	action,	it’s	time	to	dive	in	head	first.	Before	coding	our
own	 program,	 there	 are	 a	 few	 things	 that	 need	 to	 be	 understood	 about	 the	 language	 to
make	the	early	learning	process	go	as	seamlessly	as	possible.

	

Indentation
														One	of	the	first	caveats	that	experienced	programmers	run	into	when	making	the
switch	 to	Python	 is	 the	 fact	 that	 the	 language	does	not	 use	braces	 to	 indicate	 blocks	of
code	–	 instead	all	blocks	of	code	are	denoted	by	 indentation.	This	 indentation	 is	a	strict
function	of	the	language.	If	you	indent	the	wrong	number	of	spaces	–	the	program	won’t
run	correctly.	So,	you	need	to	be	careful	when	making	codes.	Using	comments	to	help	you
spot	a	code	can	help	identify	a	code.

	

	

In	 Python,	 the	 number	 of	 spaces	 for	 indentations	 is	 variable.	 However,	 all	 of	 the
statements	within	a	single	block	of	code	have	to	be	intended	the	same	amount.	To	drive
this	point	home,	the	following	code	would	run	fine;

	

if	True:

print “ True ”

else:

		print “ False ”

	

Notice	 that	both	“print”	statements	are	 indented	different	amounts.	This	 is	 fine,	because
they	are	two	separate	blocks	of	code.	Here’s	an	example	of	incorrectly	indented	code;

	

if	True:

print “ Answer ”

print “ True ”

else:

print “ Answer ”

		 print “ False ”

	

This	block	of	code	won’t	run	properly.	Both	“print”	commands	inside	the	“else”	statement
belong	 to	 one	 block	 of	 code,	 but	 are	 not	 indented	 the	 same	 amount.	 This	 causes	 the
interpreter	to	regard	“print	“False””	as	if	it	were	it’s	own	statement,	outside	of	the	“else”
statement’s	influence.

	

Variables
	

Variables,	in	every	programming	language,	are	memory	locations	that	store	values	and	so,
every	time	you	create	a	variable,	you	also	reserve	memory	for	that	particular	variable.

Unlike	some	other	programming	languages,	you	need	not	declare	a	variable	explicitly	in
Python.	All	you	need	to	do	is	to	use	the	equal	to	(=)	sign	to	assign	a	value	to	a	variable.
Here’s	an	example:

	

age=	29

city=	X

name=	Ron

	

print	age

print	city

print	name

As	you	run	the	program,	you	will	get	the	following	output:

29
X
Ron

With	Python	you	can	assign	one	value	to	several	variables	at	the	same	time.	The	general
syntax	for	this	is	as	follows	:

	

x=	y=	z=	2

	

One	can	assign	more	than	one	value	to	several	variables,	too.

Data	Types
All	programming	languages	available	today	use	data	types	as	a	way	to	store	information,
categorized	 by	 similarities.	 Like	 many	 other	 languages,	 Python	 uses	 the	 standard	 data
types.	These	include;

Numbers
Number	data	types	are	used	to	store	numeric	values.	Unlike	other	languages	that	include
several	different	data	types	for	storing	numbers	based	on	storage	needs,	Python	creates	a
new	object	with	a	new	memory	allocation	for	larger	numbers.	Although	for	our	purposes
you	won’t	have	to	worry	about	individual	number	data	types,	the	different	numerical	types
include;

	

int	(signed	integers)
long	(long	integers)
float	(floating	point	values)
complex	(complex	numbers)

	

Numbers	do	not	 require	 that	you	name	the	data	 type.	Here	 is	an	example	of	assigning	a
number	to	a	variable;

	

var1	=	3

var2	=	5

	

Now “ var	1 ”	holds	the	value	3,	and “ var	2 ”	holds	the	value	5.

Strings
Phrases	 or	 words	 are	 stored	 as	 strings.	 Strings	 are	 always	 within	 quotations.	 Anything
inside	of	quotation	marks	 is	considered	 to	be	a	string,	whether	or	not	 it	 is	assigned	 to	a
variable.	Some	examples	of	the	different	ways	in	which	strings	are	used	include;

	

str	=	‘Hello	World!’

	

print	str										#	Prints	complete	string

print	str[0]							#	Prints	first	character	of	the	string

print	str[2:5]					#	Prints	characters	starting	from	3rd	to	5th

print	str[2:]						#	Prints	string	starting	from	3rd	character

print	str	*	3						#	Prints	string	three	times

print	str	+	“YOYO”	#	Prints	concatenated	string

	

These	commands	would	produce	an	output	that	looks	like:

	

Hello	World!

H

llo

llo	World!

Hello	World!Hello	World!Hello	World!

Hello	World!YOYO

	

Lists: Python	lists	provide	very	versatile	ways	 to	store	 lists	of	 items.	A	list
contains	items	that	are	separated	by	commas	and	enclosed	within	brackets.
There	 are	 multiple	 ways	 to	 access	 information	 that	 is	 stored	 within	 lists.
Here	are	some	examples	of	the	more	popular	ways	to	use	strings:

	

list	=	[‘abcd’,	786	,	2.23,	‘john’,	70.2]

tinylist	=	[123,	‘john’]

print	list										#	Prints	complete	list

print	list[0]							#	Prints	first	element	of	the	list

print	list[1:3]					#	Prints	elements	starting	from	2nd	till	3rd

print	list[2:]						#	Prints	elements	starting	from	3rd	element

print	tinylist	*	2		#	Prints	list	two	times

print	list	+	tinylist	#	Prints	concatenated	lists

	

Which	would	produce	the	following	results;

	

[‘abcd’,	786,	2.23,	‘john’,	70.200000000000003]

abcd

[786,	2.23]

[2.23,	‘john’,	70.200000000000003]

[123,	‘john’,	123,	‘john’]

[‘abcd’,	786,	2.23,	‘john’,	70.200000000000003,	123,	‘john’]

Tuples: In	many	ways,	Tuples	are	similar	to	lists.	They	contain	a	number	of
values	 that	 are	 separated	 by	 commas.	 Unlike	 lists,	 Tuples	 have	 their	 data
enclosed	within	parenthesis	instead	of	brackets.	Tuples	are	not	able	to	have
their	values	updated.
Dictionary: A	Python	dictionary	 is	 a	 table.	They	are	very	 similar	 to	 arrays
and	 can	 be	 used	 to	 store	 large	 amounts	 of	 data.	 There	 is	 no	 order	within
dictionaries.

Operators
Operators	 are	used	 to	 change	or	 check	 the	value	of	 a	provided	piece	of	data.	There	 are
many	different	types	of	operators	including	arthmetic	operators	(+,	-,	/,	%.	*),	comparison
operators,	 assignment	 operators,	 logical	 operators,	 bitwise	 operators,	 membership
operators	 and	 identity	 operators.	 For	 our	 purposes	 today,	 we	 will	 simply	 focus	 on
arithmetic	operators	and	comparison	operators.

	

The	Different	types	of	arithmetic	operators	include;

	

+- Addition.	Adds	two	values	on	either	side	of	the	operator	together.

-									-	Subtraction.	Subtracts	right	side	from	left	side.

-	Multiplication.	Multiplies	values	on	both	sides	of	the	operator	together.
/ 	-	Division.	Divides	left	hand	side	from	right	hand	side.
% 	 -	Modulus.	Divides	 left	hand	 side	 from	 right	hand	 side	and	 returns	 the
remainder

	

The	Different	types	of	comparison	operators	include;

	

==	-	Checks	to	see	if	two	values	on	either	side	are	equal	or	not.	If	they	are
then	the	condition	returns	true.
!=	-	Checks	to	see	if	two	values	on	either	side	are	equal	or	not.	If	they	are
not,	the	condition	returns	true.

							-	Greater	than.

<	-	Less	than.
>=	-	Greater	than	or	equal	to.
<=	-	Less	than	or	equal	to.

PROJECT:	Variables

Try	to	complete	this	project	on	your	own	without	looking	at	the	answer.

Create	2	numbers	and	2	strings.	Add	the	numbers	together	and	then	print	the
total.	Then,	display	the	strings	four	times	a	piece.

	

Answer

var1	=	3

var2	=	5

str1	= “ Testing ”

str2	= “ Testing2 ”

var3	=	var1	+	var2

print(var3)

print	str1	*4

print	str2	*	4

	

Now	you	should	have	an	understanding	of	the	basic	set	of	operators	that	are	available	to
you.	Think	 about	 the	 different	ways	 in	which	 these	 could	 be	 used,	 and	 how	you	might
manipulate	or	check	data	using	them.	Now	we	will	put	these	to	use	using	decision	making
statements;

Conditional	Operators	(If/Else	Statements)
Python	 also	 makes	 use	 of	 decision	 making	 statements.	 These	 structures	 allow	 the
programmer	 to	 specify	 one	 or	more	 conditions	 that	will	 be	 tested	 by	 the	 program.	The
program	 will	 determine	 if	 the	 statement	 is	 true,	 and	 execute	 the	 code	 given.	 If	 the
statement	is	false,	the	programmer	may	also	provide	additional	statements	and	code	to	run.
Python	uses	a	number	of	different	types	of	decision	making	statements;

If	Statement
If	 statements	 allow	 the	 program	 to	 check	 to	 see	 whether	 a	 statement	 is	 true,	 and	 then
execute	code	that	corresponds	with	a	true	statement.	Here	is	an	example	of	an	if	statement;

	

var	=	55

if	(var		==	55)	:	print	“Value	of	expression	is	55”

print	“Good	bye!”

	

This	If	Statement	checks	to	see	if	the	variable	“var”	is	equal	to	55.	If	the	value	of	“var”	is
55,	then	it	will	print	the	expression	“Value	of	expression	is	55”.	Should	the	variable	not	be
equal	to	55,	the	program	would	only	print	“Good	Bye!”

If/Else	Statement.
	

An	 If	 statement	 can	 also	 include	 another	 path	 for	 the	 program	 to	 take.	 In	 the	 previous
example,	 had	 the	 var	 stored	 a	 value	 of	 87,	 the	 program	would	 have	 not	 run	 any	 code,
except	 for	 saying	 “Good	 bye!”	 The	 else	 statement	 contains	 code	 that	 runs	 should	 the
boolean	expression	returned	by	the	If	statement	be	false.	Here	is	an	example	of	an	if/else
statement;

	

temperature	=	float(input(‘What	is	the	temperature?	‘))

if	temperature	>	65:

print(‘Wear	shorts.’)

else:

print(‘Wear	jeans.’)

print(‘Enjoy	the	sun.’)

	

This	program	begins	by	prompting	the	user	to	tell	them	what	the	temperature	is.	The	user
enters	 the	 temperature,	 which	 is	 stored	 in	 a	 float	 variable	 named	 “temperature.”	 This
variable	 is	 then	checked	by	 the	program.	The	 If	Statement	 states	 that	 if	 the	 temperature
provided	by	 the	 user	 is	 higher	 than	65,	 print	 the	 line	 “Wear	 shorts.”	Keep	 in	mind	 that
there	can	be	multiple	if	statements	in	the	same	block	of	code.	When	that	happens,	you	use
the	term	“elif”	which	stands	for	“elseif.”	In	example:

	

temperature	=	float(input(‘What	is	the	temperature?	‘))

if	temperature	<	50:

print(‘Bundle	Up’)

elif	temperature	>	75:

print(‘Go	Swimming.’)

else:

print(‘Either	Or’)

	

This	program	instructs	the	computer	to	print	“Bundle	up”	when	the	temperature	is	below
50,	 “Go	 Swimming”	 when	 the	 temperature	 is	 above	 75,	 and	 “Either	 Or”	 when	 the
temperature	is	between	50	and	75.

	

This	is	where	the	Else	Statement	comes	in.	The	Else	Statement	only	comes	into	play	if	the
temperature	is	not	higher	than	65,	so	the	Boolean	expression	returned	by	the	If	Statement
is	 False.	 If	 the	 user	 entered	 a	 temperature	 of	 64,	 then	 the	 program	would	 print	 “Wear
jeans.”	Regardless	of	what	the	user	enters,	the	program	prints	“Enjoy	the	sun.”

Nested	Statements
It	 is	 also	 important	 to	 note	 that	 If/Else	 Statements	 can	 be	 nested	 inside	 of	 one	 another.
Consider	 the	 last	 example.	 What	 if	 we	 wanted	 the	 program	 to	 instruct	 the	 user	 to	 go
shirtless	if	the	temperature	was	over	80	degrees?	We	could	nest	a	new	if	statement	within
the	previous	statement.	It	would	look	like	this;

	

temperature	=	float(input(‘What	is	the	temperature?	‘))

humidity	=	float(input(‘What	is	the	humidity?	‘))

if	temperature	>	65:

print(‘Wear	shorts.’)

if	humidity	>=	80:

print(‘Go	Shirtless.’)

else:

print(‘Wear	jeans.’)

print(‘Enjoy	the	sun.’)

This	program	adds	a	new	conditional	 statement	 into	 the	mix.	Now,	 it	 asks	 the	user	 two
questions.	 First,	 they	 provide	 the	 temperature.	 Then,	 they	 provide	 the	 humidity.	 If	 the
temperature	is	both	over	65	degrees	and	over	80	humidity,	the	program	tells	them	to	wear
shorts,	and	go	shirtless.	Should	the	user	enter	a	temperature	of	70	and	a	humidity	of	60,
the	program	would	just	tell	the	user	to	wear	shorts.

	

PROJECT:	Decision	Making
	

Now	that	you	are	familiar	with	decision	making	statements,	it’s	time	for	you
to	try	it	on	your	own.	Try	to	complete	the	project	on	your	own	without
looking	at	the	answer.	Create	a	program	that	asks	the	user	for	the	time	(1-
24).	Depending	on	what	time	it	is,	print	a	different	phrase.	If	the	time	is
before	10,	print “ Good	Morning. ”	If	the	time	is	before	19,	print “ Good
Day. ”	If	the	time	is	after	19,	print “ Good	Night. ”

	

Answer

time	=	float(input(‘What	time	is	it?	(1-24)	‘))

if	time	<	10:

print	“Good	morning”

elif	time	<	19:

print “ Good	day ”

else

print “ Good	night ”

	

Loops
	

Loops	 are	 present	 in	 every	 programming	 language.	 Loops	 exist	 to	 allow	 a	 program	 to
execute	a	 certain	block	of	 code	a	 specified	number	of	 times.	Within	a	 loop,	 the	code	 is
executed	one	run	after	another.	The	program	stays	within	a	loop	until	it	has	run	a	specified
amount	of	times.	There	can	be	multiple	statements	within	a	loop.	The	following	types	of
loops	are	present	in	the	Python	Programming	Language;

While	Loops
	

The	while	 loop	 allows	 the	 program	 to	 repeat	 a	 statement	 or	 several	 statements	while	 a
condition	is	 true.	The	condition	is	 tested	by	the	program	before	executing	the	statement.
Here	is	an	example	of	a	While	Loop;

	

counter	=	0

while	(counter	<	8):

print	‘The	counter	is:’,	count

counter	=	counter	+	1

	

This	program	sets	counter	 to	0.	Then,	while	counter	 is	equal	 to	 less	 than	8,	 it	prints	 the
value	of	 the	counter	variable	and	adds	one	 to	 it	each	 time	 the	code	 is	 run.	The	result	 in
your	logs	should	look	like	this;

	

The	counter	is:	0

The	counter	is:	1

The	counter	is:	2

The	counter	is:	3

The	counter	is:	4

The	counter	is:	5

The	counter	is:	6

The	counter	is:	7

	

You	can	also	use	Else	Statements	inside	of	loops.	In	loops,	else	statements	work	exactly
the	same	way	as	they	do	in	if	statements.	If	the	condition	is	returned	as	False,	the	program
is	 provided	 another	 path	 to	 take.	Here	 is	 an	 an	 example	 of	 a	While	Loop	with	 an	Else
Statement;

	

counter	=	0

while	counter	<	8:

print	counter,	”	is		less	than	8”

count	=	counter	+	1

else:

print	counter,	”	is	not	less	than	8”

	

This	program	sets	counter	to	0.	While	counter	is	less	than	8,	the	While	loop	is	looped	by
the	program.	It	prints	the	value	of	the	counter,	and	adds	one	to	it	each	time.	Once	the	loop
has	run	and	counter	is	equal	to	8,	then	the	else	statement	will	run.	When	run,	the	logs	look
something	like	this;

0	is	less	than	8

1	is	less	than	8

2	is	less	than	8

3	is	less	than	8

4	is	less	than	8

5	is	less	than	8

6	is	less	than	8

7	is	less	than	8

8	is	not	less	than	8

For	Loops
For	 loops	 are	very	 similar	 to	While	Loops.	They	allow	you	 to	 repeat	 a	piece	of	 code	 a
number	of	times.	Here	is	an	example	of	a	For	Loop;

	

for	count	in	[1,	2,	3]:

print(count)

print(‘Python’	*	count)

print(‘Done	counting.’)

for	color	in	[‘red’,	‘blue’,	‘green’]:

print(color)

	

This	 program	 uses	 the	 count	 function,	 and	 lists	 three	 numbers.	 The	 first	 For	Loop	will
cycle	through	3	times,	one	for	each	number	listed.	Each	time	it	will	print	 the	count,	and
print	 the	 word	 Python	 that	 many	 times.	 When	 finished,	 the	 program	 prints “ Done
Counting. ”	The	log	output	for	this	program	looks	like	this;

	

1

Python

2

PythonPython

3

PythonPythonPython

Done	counting.

red

blue

green

	

Break	Statements
The	break	statement	is	used	to	break	the	for	or	while	loop.

Break	statements	are	usually	used	when	external	conditions	require	that	a	loop	be	broken.
This	can	be	used	to	prevent	the	loop’s	execution	even	before	it	is	False.	It	will	disrupt	the
execution	of	the	code	and	start	again.	This	will	also	impact	the	else	block	which	will	not
be	executed	due	to	the	break	statement.	The	syntax	for	the	break	statement	is	as	follows:

	

while	(expression	A)	:

Statement_A
				Statement_B

……..

if	expression	B
				break

Now,	let’s	see	how	this	works:

	

Numbers=	2,	4,	6	,	8,	10

num_sum=	0

count=	0

for	a	in	numbers

count=	count+	2

if	count==	8:

Break

Print

The	conditions	have	been	set	and	Python	is	told	to	break	the	loop	if	the	count	is	8.	This	is
why	you	will	get	an	output	in	which	all	numbers	before	8	are	added	to	one	another.	Hence,
you	will	get	an	output	of	20.	After	this,	the	loop	will	break	due	to	the	insertion	of	the
break	statement.	You	will	also	see	that	though	the	loop	hasn’t	been	completed,	it	will
break.	
You	can	also	insert	the	break	statement	in	a	while	loop.	Here’s	how	this	is	done-

num_sum=	0
count=	0
while	(count<8)
num_sum=	num_sum+count
count=	count+2

if	count	==	8

Break	
Print

Here,	the	break	statement	will	be	effective	when	the	count	is	equal	to	8.	Again,	you	will
get	the	same	result	as	before.	When	the	count	is	no	longer	less	than	8,	the	loop	will	break
due	to	the	insertion	of	the	break	statement	and	it	will	start	all	over	again.

	
	
	
	
	

The	Continue	Statement
The	point	of	the	continue	statement	is	to	“pause”	or	halt	the	loop	and	then,	continue	it
from	the	same	point.	This,	too,	is	used	for	the	while	and	for	loop.	Here’s	how	the	continue
statement	works:

For	a	in	range	(8)	
if	(a=	4	or	a=	6)
continue	
print	(a)

So,	in	this	case	I’ve	inserted	the	continue	statement	while	placing	the	condition	that	if	that
value	of	a	is	equal	to	4	or	6,	the	continue	statement	must	take	a	break.	The	continue
statement	will	halt	at	these	numbers	and	then,	go	on	to	the	next	integer	after	4	and	6.	So,
you	will	get	the	following	output-	a=	0,	1,	2,	3,	5,	7,	8.

As	you	can	see,	the	values	of	a,	when	it	was	equal	to	4	or	6,	is	not	shown	due	to	the
continue	statement.	Once	this	loop	is	completed,	it	will	restart	and	the	continue	statement
will	continue	being	effective	the	same	way	so	long	as	it	is	inserted	in	the	statement.

Pass	Statement
This	statement	is	used	when	you	do	not	want	a	code	to	execute	a	statement.	It	is	more	of	a
null	operation	because	nothing	really	happens	with	it.	However,	you	can	use	it	if	you	are
yet	to	make	your	code.	Let’s	see	how	this	statement	works:

for	letter	in	Christmas
if	letter	==	a
pass
print	Congrats
print	‘Current	Letter:’,	letter

print	Merry	Christmas

You	will	get	the	following	output:

My	Letter	:	C

Congrats

My	Letter	:	h

My	Letter	:	r

My	Letter	:	i

My	Letter	:	s

My	Letter	:	t

My	Letter	:	m

My	Letter	:	a

My	Letter	:	s

Happy	Christmas!

If	any	code	were	inserted	between	C	and	h,	it	could	be	replaced	with	the	pass	statement.

Many	people	are	unclear	about	the	difference	between	the	pass	and	continue	statements.
The	pass	statement	doesn’t	do	anything	significant	as	such	while	the	continue	statement
will	halt	the	execution	of	the	code	and	resume	from	the	next	line.

PROJECT:	Loops
	

Now	you	are	familiar	with	Loops,	so	let’s	test	your	skills	with	a	project.	Try
not	to	look	at	the	answer	until	you	have	finished	your	own	program.	In	this
project	we	will	count	by	two’s,	up	to	100.	Set	a	number	variable
named “ num1 ”	to	2.	Use	a	While	Loop	to	add	2	to	num1	every	time	it	loops
and	display	the	number.	When	100	is	reached,	the	program	should	say “ 100!
I’ve	just	learned	the	basics	of	Python! ”

	

Answer:

num1	=	2

while	num1	<	100:

print	num1

num1	=	num1	+	2

else:

print	num1,	“!	I’ve	just	learned	the	basics	of	Python!”

Summary
The	following	points	were	discussed	in	this	chapter:

Indentations	in	Python
Variables
How	variables	work
How	Strings	and	Numbers	work	in	Python
What	are	lists
How	the	else,	else	if	and	nested	statements	work
The	Utility	of	loops
The	different	types	of	loops
How	to	break	a	loop
How	to	‘pause’	a	loop
How	to	use	the	pass	statement

Chapter	4: 	Lists	and	Tuples
“In	our	daily	lives	as	programmers,	we	process	text	strings	a	lot.	So	I	tried	to	work	hard	on
text	processing,	namely	the	string	class	and	regular	expressions.	Regular	expressions	are
built	into	the	language	and	are	very	tuned	up	for	use.”-	Yukihiro	Matsumoto

	

In	this	chapter	you	will	learn	about:

	

Lists
Tuples
Dictionaries
Accessing	lists	and	dictionaries
Changing	the	values	in	a	dictionary

	

Now	 that	 we	 have	 built	 our	 first	 program,	 let’s	 look	 at	 some	 of	 the	 more	 advanced
concepts	 of	 the	 language.	 Python	 is	 an	 in-depth	 language	 that	 provides	 plenty	 of
functionality,	but	advanced	concepts	can	get	a	little	overwhelming.	Lists	are	a	simple	step
forward	 that	 teaches	 you	 some	 advanced	 concepts	 without	 	 presenting	 too	 much
information	in	one	fell	swoop.
	

http://www.brainyquote.com/quotes/quotes/y/yukihiroma213509.html?src=t_programmers
http://www.brainyquote.com/quotes/authors/y/yukihiro_matsumoto.html

What	Are	Lists?
Lists	allow	you	to	deal	with	multiple	different	data	items	and	process	them	in	a	sequence.
As	we	went	over	earlier,	there	are	multiple	different	data	types	that	contain	more	than	one
item.	These	include;

	

Strings	(pieces	of	text)
Tuples	(lists	and	ordered	groups	of	several	individual	items	of	data)
Dictionaries	(groups	of	key-value	pairs)

	

These	are	the	most	commonly	used	data	types	that	are	able	to	store	multiple	different	data
items.	This	data	can	then	be	accessed	using	an	index.

Accessing	Items
Individual	 items	 that	 are	 contained	 within	 a	 sequence	 can	 be	 obtained	 using	 an	 index.
Basically,	an	index	is	a	number	that	corresponds	with	where	the	data	is	stored	within	the
sequence.	Accessing	items	that	are	contained	within	a	tuple	is	done	in	the	same	way	that
you	would	access	 items	of	any	other	data	 type	as	well.	Here	 is	an	example	of	accessing
items	in	a	list	of	tuple;

	

fruits	=	[‘apples’,	‘bananas’,	‘oranges’,	‘grapes’,	‘mangos’]

fruits[2]

‘oranges’

	

	

Each	item	contained	within	the	list	is	represented	by	a	number.	The	first	item	in	all	lists	is
referred	to	as “ 0 ” .	In	this	example,	Apples	are	0,	bananas	are	1,	oranges	are	2,	grapes	are
3,	and	mangoes	are	4.	You	can	call	on	the	program	to	display	any	of	the	different	fruits,
based	on	where	they	are	contained	within	the	list.	There	are	many	ways	in	which	you	can
access	 and	utilize	 this	data	 as	well,	 slicing,	 and	pulling	 individual	pieces	of	data	out	of
each	of	the	data	containers	within	the	list.		Here	is	an	example	of	pulling	multiple	different
pieces	of	data	out	of	a	list;

	

fruits	=	[‘apples’,	‘bananas’,	‘oranges’,	‘grapes’,	‘mangos’]

fruits[2:4]

[‘oranges’,	‘mangos’]

	

	

In	this	example	you	call	on	both	2	and	4,	displaying	both	oranges	and	mangoes.	Accessing
items	 in	 lists	 is	 consistent	 and	 quite	 simple.	 You	 can	 use	 the	 same	 commands	 across
multiple	data	types,	which	makes	the	entire	process	much	easier	to	handle.	

Boolean	Statements	and	Lists
You	can	also	pull	boolean	statements	from	lists	as	well.	This	is	great	for	situations	where
you	want	to	check	the	contents	of	a	list	of	tuple.	Sticking	with	the	fruits	example,	you	can
ask	the	program	to	check	your	given	list	and	return	whether	or	not	it	contains	the	data	that
you	are	looking	for.

	

Does	the	List	contain	raspberry?

‘raspberry’	in	fruits

False

You	can	also	ask	it	the	other	way	around.

‘raspberry’	not	in	fruits

True

You	can	also	check	for	specific	inclusions	in	different	data	containers.

‘ana’	in	‘banana’

True

	

Creating	Tuples
Tuples	 as	 a	 data	 type	 are	 often	 used	 in	 conjunction	with,	 or	 to	 replace	 lists.	Tuples	 are
immutable	 ordered	 groups	 of	 items	 or	 elements.	 Think	 of	 them	 like	 containers.	 Every
tuple	 is	 made	 up	 of	 many	 individuals	 containers	 that	 contain	 data.	 You	 specify	 which
container	you	wou8ld	like	to	access	when	accessing	the	data,	and	then	may	use	that	data	in
a	 variety	 of	 different	ways.	They	 are	 comma-separated	 lists	 of	 values	 that	 are	 enclosed
within	parenthesis.

	

	

Creating	a	tuple	is	simple.	Here	is	a	command	that	allows	you	to	create	a	tuple;

	

blank_tuple	=	()

	

You	 have	 now	 created	 a	 tuple	 named “ blank_tuple ”	 that	 contains	 no	 data	 as	 of	 yet.
Remember	that	all	items	contained	within	a	tuple	must	be	followed	by	a	comma,	even	if
they	are	the	only	item	within	the	tuple.	So	a	tuple	that	contains	a	single	item	would	have
(item1,)	 within	 the	 parenthesis.	 Tuples	 are	 accessed	 in	 the	 same	 way	 that	 lists	 are
accessed.

Creating	Lists
Lists	 are	 the	most	 common	method	 for	 storing	multiple	 values	 in	 Python.	 They	 are	 an
ordered,	 comma-separated	 list	 that	 are	 enclosed	 within	 brackets.	 Lists	 are	 different
because	 they	 can	 store	many	different	 items –	 they	 all	 do	not	 have	 to	 be	 the	 same	data
type.		Here	are	some	examples	provided	in	an	earlier	chapter	about	using	lists;

	

print	str										#	Prints	complete	string

print	str[0]							#	Prints	first	character	of	the	string

print	str[2:5]					#	Prints	characters	starting	from	3rd	to	5th

print	str[2:]						#	Prints	string	starting	from	3rd	character

print	str	*	3						#	Prints	string	three	times

print	str	+	“YOYO”	#	Prints	concatenated	string

	

Here	are	some	methods	that	can	be	used	to	append,	change,	and	edit	lists	that	have	already
been	created.	These	are	extremely	useful	 for	manipulating	data	 that	 is	already	contained
within	the	list,	once	it	has	been	declared.

	

list.append(X) –	Add	an	item	to	the	end	of	your	list.

List.extend(L) –	This	extends	the	list	by	appending	all	of	the	items	that	are
already	contained	within	the	list.

List.insert(i,	x) –	The	insert	command	allows	you	to	insert	an	item	at	a
given	position.	You	can	choose	to	insert	a	new	piece	of	data	into	the	middle
of	the	list,	pushing	everything	behind	it	farther	down.

List.remove(X) –	Remove	an	item	from	your	list,	in	the	position	represented
by	x.

list.pop([i]) –	Remove	an	item	from	the	list	at	the	specified	postion	and
return	it.	If	you	do	not	specify	a	position,	the	last	item	in	the	list	will	be
removed	and	returned.

List.index(x) –	The	index	command	returns	the	item	at	the	index	location
that	you	have	called	on.

List.reverse()	-	Reverses	all	elements	within	the	list.

	

	

All	off	 these	commands	are	great	ways	 to	append,	change,	and	edit	a	 list	 that	you	have
already	created.	You	will	find	that	frequently	you	may	want	to	add	item	sto	a	list,	or	edit
data	already	placed	within	the	list	based	on	the	actions	of	your	user.

Dictionaries
	

Other	languages	refer	to	dictionaries	as	associative	arrays	or	associative	memories.
Dictionaries	are	indexed	by	strings	and	numbers	which	act	like	keys.	One	can	also	use	a
tuple	as	a	key.	However,	the	tuple	must	only	contain	strings,	tuples	or	numbers.

The	{}	braces	are	used	to	make	a	dictionary.	These	contain	key:value	pairs.	Dictionaries
wil	store	values	with	keys	and	then,	they	access	or	extract	the	same	values	using	the	keys.
If	you	want	to	delete	a	key	you	can	so	with del .

It	is	possible	to	get	a	list	of	the	keys	by	using	the	key()	method.	This	will	give	you	an
entire	list	of	al	the	keys	within	the	dictionary.	Here	is	the	syntax	of	a	dictionary:

dict=	{‘Ana’:	‘1980’,	‘Ben’:	‘1930’,	‘Christine’:	‘2012}
	

How	to	Access	the	Values	within	a	Dictionary

You	can	also	access	the	values	within	the	dictionary	by	using	the	square	brackets.	Here’s
how	you	can	do	so:

dict	=	{‘Name’:	‘Chris’,	‘Age’:	20,	‘Salary	per	month’:	‘$20’};

	

print	“dict[‘Name’]:	“,	dict[‘Name’];

print	“dict[‘Age’]:	“,	dict[‘Age’];

	

As	can	be	seen,	the	name,	age	and	salary	of	the	employee	is	defined	within	the	curly
brackets.	Access	is	given	to	them	by	using	the	square	brackets.	When	you	execute	this
code	you	will	get:

	

dict[‘Name’]	:	Chris

dict[‘Age’]:	20

	

Always	use	keys	that	do	exist	or	else	Python	will	notify	you	of	an	error.	

You	can	also	update	the	dictionary	or	modify	it	by	changing	various	values	within	the
existing	dictionary,	too.		So,	let’s	modify	the	dictionary	we	used	above:

dict	=	{‘Name’:	‘Chris’,	‘Age’:	20,	‘Salary	per	month’:	‘$20’};

	

dict[‘Age’]=	21

dict	[‘Marital	Status’]=	“Engaged”

	

print	“dict[‘Name’]:	“,	dict[‘Name’];

print	“dict[Marital	Status]:	“,	dict[Marital	Status];

	

After	introducing	these	changes,	you	should	get	the	following	output:

	

dict[‘Age’]:		21

dict[‘Marital	Status’]:		Engaged

	

Likewise,	it	is	also	possible	to	delete	content	from	the	dictionary	by	using	the	del
statement.	Here’s	an	example	of	how	this	can	be	done:

	

dict	=	{‘Name’:	‘Chris’,	‘Age’:	20,	‘Salary’:	‘$20’};

	

del	dict[‘Name’];

dict.clear();				

del	dict	;							

	

print	“dict[‘Age’]:	“,	dict[‘Age’];

print	“dict[‘Marital	Status’]:	“,	dict[‘Marital	Status’];

When	executed,	this	will	give	you	the	following	result:

dict[‘Age’]:

Traceback	(most	recent	call	last):

		File	“main.py”,	line	9,	in

print	“dict[‘Age’]:	“,	dict[‘Age’];

TypeError:	‘type’	object	has	no	attribute	‘__getitem__’

	

Note:	You	cannot	duplicate	the	same	key	in	a	dictionary.

	

PROJECT:	Lists	and	Tuples

Now	you	are	familiar	with	lists	and	tuples,	so	let’s	test	your	skills	with	a
project.	Try	not	to	look	at	the	answer	until	you	have	finished	your	own
program.	In	this	project	we	will	be	making	a	camping	checklist.	Create	a	list
named “ camping ”	and	include	tent,	swimwear,	cooking	supplies,	and	a	first
aid	kit.	Use	the	append	command	to	add	life-jackets.	Then,	insert	hiking
boots	into	position	3	on	your	list,	and	display	the	list.

	

	

Answer:

camping	=	[‘tent’,	‘swimwear’,	‘cooking	supplies’,	‘first	aid	kit’]

camping.append(‘lifejackets’)

camping.insert(3,	‘hiking	boots’)

print	camping

	

Summary
							The	following	was	discussed	in	this	chapter:

How	to	create	lists
How	to	create	tuples
What	are	tuples
What	are	dictionaries
When	to	use	dictionaries
Accessing	dictionaries
Changing	the	values	within	a	dictionary

Chapter	5:	Functions
“Programming	is	not	a	zero-sum	game.	Teaching	something	to	a	fellow	programmer
doesn’t	take	it	away	from	you.	I’m	happy	to	share	what	I	can,	because	I’m	in	it	for	the
love	of	programming.”- 	John	Carmack

	

In	this	chapter	you	will	learn	about

Functions
Different	types	of	functions
Arguments
How	to	use	arguments

	

Functions	are	the	bread	and	butter	of	any	large-scale	program.	All	fo	the	examples	that	we
have	worked	 on	 through	 this	 point	 have	 been	 top-down.	 This	means	 that	 the	 programs
begins	at	the	top	of	the	page	and	executes	through	the	bottom	of	the	page.	Functions	allow
you	to	create	and	call	on	code	located	elsewhere,	throughout	the	whole	of	your	program.
This	makes	it	easy	to	re-use	code	several	times	throughout	a	program.

http://www.brainyquote.com/quotes/quotes/j/johncarmac181825.html?src=t_programmer

What	Are	Functions?
Functions	are	pieces	of	code	that	can	be	called	to	within	your	program.	They	are	used	to
break	 up	 code	 and	 call	 on	 certain	 code	 as	 needed.	 For	 instance,	 in	 most	 top-down
programs,	 you	may	 need	 to	 use	 the	 same	 piece	 of	 code	 several	 times.	 This	means	 that
when	you	change	the	functionality	of	the	program,	you	mayhave	to	edit	the	same	block	of
code	several	times	throughout	the	program.	But,	by	creating	a	function –	you	can	then	call
on	that	code	several	times	throughout	the	program.

	

Later,	when	you	decide	to	change	the	functionality	of	that	program,	you	only	have	to	edit
the	code	once	to	make	changes	to	multiple	code	blocks	within	the	program.	A	function	is	a
block	of	organized,	re-usable	code	that	can	be	used	throughout	a	program.

	

All	 programming	 languages	 contain	 functions	 in	 one	 form	 or	 another.	 Functions	 are
defined	in	our	code	using	a	def	statement.	This	statement	is	followed	by	the	name	of	the
function,	with	some	parameters	outlined	in	parenthesis.

Defining	Functions
Functions	 must	 be	 defined	 to	 create	 and	 use	 certain	 functionality.	 There	 are	 many
functions	that	come	built	in	with	the	language	(such	as	the	print	function,	for	instance),	but
you	can	also	define	your	own.	When	defining	functions	there	are	multiple	things	that	need
to	be	noted;

	

Function	blocks	always	begin	with “ def ”	to	define	the	function.
All	 input	parameters	 and	arguments	must	be	placed	within	 the	parenthesis
when	you	define	a	function.
The	code	block	always	comes	after	a	colon	(:).
Using	the	statement “ return ”	will	cause	you	to	exit	the	function.

	

	

Here	is	an	example	of	defining	a	function;

	

function_name(parameters)

	

Defining	a	function	is	simple.

Parameters	and	Returning	Functions
When	your	computer	runs	a	function,	 it	does	not	see	the	function	name,	but	rather	what
the	 function	 executed.	 This	 means	 that	 functions	 just	 return	 the	 values	 that	 they	 are
supposed	to,	and	the	names	of	items	defined	within	the	parameters	can	not	be	called	from
elsewhere	in	the	program	until	they	were	turned.	To	make	this	a	bit	easier	to	understand,
let’s	pretend	that	the	function	that	we	have	created	uses	this	code;

	

A	=	multiply(5)

	

Now,	keep	 in	mind	 that	 the	multiply	function	 is	not	a	pre-defined	function,	so	 this	code
will	not	work	unless	you	create	 it	yourself.	The	program	would	 likely	 return	 something
like	this;

	

a	=	25

	

This	is	all	that	the	program	would	see	when	you	call	on	the	function,	and	is	the	only	data
point	 that	 you	 have	 available	 to	 use	 throughout	 the	 rest	 of	 your	 programs.	 It	 ran	 the
function	and	returned	a	piece	of	data	based	on	the	parameters	that	it	was	given	within	the
code.

Example	Function
Now	lets	check	out	 functions	 in	action	so	you	can	visually	 see	how	 they	work	within	a
program.	Here	is	an	example	function	that	you	can	enter	into	your	IDE;

	

def	hello():

print “ hello ”

return	1234

	

To	call	this	function,	you	use	this	code:

print	hello()

When	you	call	the “ hello() ”	function,	the	program	will	output	the	following	values;

	

hello

1234

	

So	what	exactly	 is	going	on	here?	A	number	of	 things	are	happening.	We	are	creating	a
function,	 calling	 that	 function,	 and	 observing	 the	 output.	 Keep	 in	 mind	 that	 in	 this
example,	while	 the	program	prints	both “ hello ”	and “ 1234, ”	 it	actually	does	not	know
that “ hello ”	was	printed	within	the	function.	The	program	will	only	be	aware	of	the	value
that	is	returned,	which	in	this	case	is	1234.

Passing	Parameters	in	Functions
Parameters	 can	 and	 often	 are	 passed	 to	 functions	 as	well.	 In	 our	 example	 earlier	 in	 the
chapter,	you	were	given	the	following	line	as	the	basic	was	to	define	functions;

	

function_name(parameters)

	

We	will	 now	go	over	 the	usage	of	 parameters	when	defining	 functions.	The	parameters
that	you	place	 in	 the	parenthesis	will	be	usable	by	 the	 function	 itself.	Perhaps	you	have
created	data	that	will	need	to	be	used	within	the	function?	You	can	pass	all	sorts	of	data
types	to	the	functions.	Here	is	an	example	program	that	allows	you	to	see	how	defining	a
function	and	passing	parameters	might	work	in	your	program.

	

w	=	4

h	=	5

Def	area(w,h):

return	w	*	h

print	area()

	

This	program	applies	width	and	height	values	to	the	parameters	w	and	h.	These	parameters
are	 then	 used	 in	 the	 creation	 of	 the	 function “ area. ”	 This	 function	multiples	 width	 by
height,	returning	the	value.	The	program	calls	on	this	function,	and	then	prints	the	value
returned.		The	output	should	be “ 20 ” .

	

Anonymous	Functions
Anonymous	 functions	 are	 different	 in	 the	 sense	 that	 the	 keyword,	 def,	 is	 not	 used	 to
declare	 them.	 If	you	want	 to	create	anonymous	 functions	you	need	 to	use	 the	keyword,
lambda.	They	can	take	several	arguments	at	the	same	time,

These	 can	 only	 return	 one	 value	 but	 they	 are	 incapable	 of	 holding	 more	 than	 one
expression.

Print	 cannot	 be	 invoked	 directly,	 seeing	 as	 how	 one	 needs	 to	 use	 expressions	 for
anonymous	 functions.	 Also,	 they	 can	 only	 access	 variables	 that	 are	 within	 their	 own
parameters	 or	 variables	 that	 are	 found	 in	 the	 global	 namespace.	 Lambda	 has	 its	 own
namespace,	too.

The	syntax	for	anonymous	functions	is	as	follows:

	

Lambda	[arg1		[,arg2,…..argx]]	:expression

Let’s	see	how	this	works:

	

sum	=	lambda	arg1,	arg2:	arg1	+	arg2;

	

print	“Value	of	total	:	“,	sum(60,	30)

print	“Value	of	total	:	“,	sum(50,	20)

You	will	get	the	following	result:

	

Value	of	total	:		80

Value	of	total	:		70

Lambda	is	mostly	used	for	small	anonymous	functions.	

As	you	can	see,	the	return	statement	is	not	utilized	where	lambda	functions	are	concerned.
An	expression	is	returned	by	the	function	instead.

Variables	in	Functions
	

Variables	 are	 often	 used	 in	 functions.	 The	 same	 variables	 may	 be	 used	 several	 times
throughout	 a	 Python	 program.	 The	 language	 has	 a	 unique	 way	 of	 dealing	 with	 this
situations.	So	far	we	have	only	be	using	global	variables.	Global	variables	are	accessible
throughout	 the	 entirety	 of	 the	 program.	 But,	 functions	 have	 their	 own	 special	 types	 of
variables.	These	are	called	local	variables.

	

What	this	means	is	that	you	could	have	two	variables	with	the	same	name,	for	the	sake	of
clarity,	 lets	pretend	 that	we	have	both	a	global	variable	named “ a ”	and	a	 local	variable
named “ a ”	located	inside	of	a	function.

	

Here	is	an	example	that	demonstrates	how	this	might	work	inside	of	a	program;

	

a	=	2

def	print_a():

a	=	5

print”int		print_func	a	=	“,	a

print_a()

print”a	=	“,	a,“is	a	global	variable	assigned	prior	to	the	function	print_a”

	

This	then	outputs:

	

Int	print_a	a	=	5

a	=	2	is	a	global	variable	assigned	prior	to	the	function	print_a

	

a	=	 2	was	 defined	 outside	 of	 the	 function,	 and	 therefore	 is	 a	 global	 variable.	The	 local
variable	that	is	located	inside	of	the	function	has	the	same	name,	but	has	been	assigned	a
different	 value.	 The	 local	 variable	 inside	 of	 the	 function	 can	 only	 be	 called	within	 that

function,	and	never	outside	of	 it.	The	global	variable	can	be	called	anywhere	within	 the
program	at	any	time.

	

Variable	 assignments	 inside	 of	 a	 function	will	 never	 overwrite	 the	 global	 variables	 that
have	already	been	declared.	For	all	intents	and	purposes –	local	variables	exist	only	inside
of	a	function.
	

	

Function	Arguments	

Arguments	are	used	to	call	a	function	and	there	are	primarily	4	types	of	functions	that	one
can	use:	default	arguments,	required	arguments,	keyword	arguments	and	variable-length
arguments.

	

Default	Arguments

When	no	value	is	assigned	to	the	function	call,	a	value	is	assigned	to	it	so	that	it	is
possible	to	invoke	the	function.	Here’s	an	example:

	

def	printinfo(name,	salary	=	3500):

“This	prints	a	passed	info	into	this	function”

print	“Name:	“,	name;

print	“Salary	“,	salary;

return;

	

printinfo(salary=4500,	name=“Jo”);

printinfo(name=“Jo”);

	
The	first	line	defines	the	default	value	of	the	argument.	The	default	value	of	the	argument
is	used	to	call	the	function.	The	last	two	lines	determine	the	value	that	is	to	be	returned	by
using	the	default	argument.	Thus	you	get	the	following	output:

	

Name:	Jo

Salary:	3500
Name:	Jo

Salary:	4500

	
Required	Arguments

As	is	obvious	by	the	name	of	these	arguments,	these	are	required	by	the	code.	You	need
these	to	prevent	syntax	errors	and	to	get	the	output	you	want.	One	argument	is	required	to
pass	an	argument.	The	program	will	tell	you	that	a	particular	function	requires	you	to	use
at	least	one	argument	so	it	can	be	passed	successfully.

	

Keyword	Arguments

Keyword	arguments	will	invoke	the	function	after	the	parameters	are	recognized	by	their
parameter	names.	The	value	of	the	keyword	argument	is	matched	with	the	parameter	name
and	so,	one	can	also	put	arguments	out	of	order.

	

def	printme(thisstring):

“This	prints	a	passed	string	into	this	function”

print	thisstring;

return;

#	Now	you	can	call	printme	function

printme(thisstring	=	“Our	string”);

	

	

printme()	is	the	function	here	and	once	the	code	is	executed	you	will	get	the	following
output:

	

Our	string

	
Variable-Length	Arguments
In	some	instances	you	might	need	to	pass	more	arguments	than	have	already	been
specified.	Going	back	to	the	function	to	redefine	it	can	be	a	tedious	process.	Variable-
Length	arguments	can	be	used	instead.	These	are	not	specified	in	the	function’s	definition
and	an	asterisk	(*)	is	used	to	define	such	arguments.	
There	are	non-keyword	variable	arguments	and	variable	key	arguments.

Non-keyword	variable	arguments	are	called	tuples.	These	are	inserted	so	that	they	are
made	accessible	to	the	program.	Here	is	the	syntax	for	non-keyword	variable	arguments:

	

def	function_name([formal_args,]	*vargs_tuple):

“function_documentation_string”
								function_body_suite
		return

	

The	asterisk	is	always	placed	in	front	of	a	variable	that	is	to	be	used	to	hold	remaining
arguments	when	formal	parameters	cannot	be	used	anymore.	These	allow	you	to	hold	a
variable	number	of	keywords	so	that	any	syntax	errors	can	be	avoided.	Now,	let’s	see	how
such	arguments	work:

	

def	printinfo(arg1,	*vartuple):

“This	prints	a	variable	passed	arguments”

print	“This	is	the	output:	“

print	arg1

for	var	in	vartuple:

print	var

return;

	

printinfo(100);

printinfo(20,30,40);

	
Arg1	holds	the	remaining	variables	here.	You	should	get	the	following	output:

	

This	is	the	output:

100

This	is	the	output:

20

30

40

	

	

There	are	keyword	variable	arguments	too	and	these	are	used	for	extra	keywords	(or	extra
sets	of	these).	They	are	stored	in	a	dictionary	and	the	corresponding	value	of	each
keyword	is	its	argument.	Two	asterisks	are	used	to	differentiate	keyword	variable
arguments	from	non-keyword	variable	arguments.	The	syntax	for	these	is:

	

def	function_name([formal_args,]	[*vargst,]	**vargs_tuple):

function_documentation_string”
								function_body_suite
		return

	

This	example	demonstrates	the	usage	of	the	double	asterisks:

	

def	z(a,	b,	c,	d):

	

…					print	(a,	b,	c,	d)

…

>>>	e	=	{‘a’:	‘apple’,	‘b’:	‘ball’,	‘c’:	‘cold’,	‘d’:	‘dart’

>>>	f(**d)

	

(‘apple’,	‘ball’,	‘cold’,	‘dart’)

	

You	can	use	single	and	double	asterisks	at	the	same	time,	too.

	

PROJECT:	Functions
	

Now	you	are	familiar	with	functions,	so	let’s	test	your	skills	with	a	project.
Try	not	to	look	at	the	answer	until	you	have	finished	your	own	program.	In
this	project	we	will	be	create	a	meal	planning	program.	Prompt	the	user	to
enter	whether	they	want	a	low	calorie,	or	high	calorie	meal.	Create	functions
for	both	types	of	meals.	If	they	choose	a	low	calorie	meal,	print “ chef	salad
with	low-fat	dressing ”	and	return	the	value	4.99	(the	price).	If	they	choose
the	high	calorie	meal,	print “ cheeseburger	with	french	fries ”	and	return	the
value	6.99.

	

	

Answer:

lowprice	=	4.99

highprice	=	6.99

def	low(lowprice,):

print	“Chef	salad	with	low-fat	dressing”

return	lowprice

def	high(high,):

print	“Cheeseburger	with	French	Fries”

return	highprice

meal	=	float(input(‘Enter	1	for	a	low	calorie	meal	or	2	for	a	high	calorie
meal’))

if	meal	==	1:

print	low(lowprice)

else:

print	high(high)

	

	
Summary

							In	this	chapter	we	learned	about:

Functions
Arguments
How	to	pass	parameters	in	functions
Arguments
Different	types	of	arguments-	default	arguments,	variable-length	arguments,
keyword	arguments,	non-keyword	arguments,	required	arguments	and	default
arguments
How	to	use	different	types	of	arguments

	

	

	

Chapter	6:	Classes	&	Objects
“It	always	helps	to	be	a	good	programmer.	It	is	important	to	like	computers	and	to	be	able
to	think	of	things	people	would	want	to	do	with	their	computers.”-	Bill	Budge

	

In	this	chapter	you	will	learn	about

Classes
Objects
Inheritance
Methods
Attributes

	

Now	that	you	have	a	basic	understanding	of	functions,	it’s	time	to	start	putting	it	all
together	with	classes.	Classes	expand	upon	the	functionality	provided	by	functions.	They
allow	for	greater	flexibility,	and	can	help	to	reduce	lines	of	code	in	your	program.

http://www.brainyquote.com/quotes/quotes/b/billbudge293054.html?src=t_programmer

What	Are	Classes?
Classes	are	in	a	way	very	similar	to	functions.	Unfortunately,	there	are	some	holes	in	the
functionality	 of	 functions.	 They	 cannot	 store	 or	 save	 any	 information –	 like	 variables.
Every	time	that	a	function	is	run,	it	starts	anew –	completely	fresh.	Classes	are	most	often
used	when	you	need	your	function	to	actually	effect	the	variables	and	parameters	that	you
are	sending	it –	rather	than	just	spitting	out	a	return	value.

	

If	you	were	creating	a	program	that	calculated	and	stored	the	value	of	all	of	your	assets,
you	will	need	to	change	variables	over	time.	Some	of	your	assets	will	depreciate,	requiring
that	 the	 variables	 stored	within	 functions	 are	 altered.	What	 if	 you	 purchased	 additional
assets	 that	 needed	 to	 be	 added	 to	 a	 list?	Maybe	 you	 invested	 in	 new	 features	 (like	 an
addition	to	a	home)	that	requires	that	the	assets	value	change	over	time.	It’s	for	situations
like	the	ones	we	just	mentioned	that	object-oriented-programming	was	created.

	

Classes	 are	 typically	used	 after	writing	 several	 functions	 that	manipulate	 similar	 sets	 of
data,	or	global	variables.	When	several	functions	are	altering	the	same	data,	it	is	best	that
they	be	grouped	 together	 as	multiple	different	 aspects	 of	 a	 single	objec	 (a	 class,	 in	 this
case).

	

A	class	is	a	blueprint.	On	it’s	own,	it	is	not	much	of	anything.	Classes	contain	a	number	of
statements	that	provide	instructions.	Variables	can	be	altered	within	classes.

Defining	and	Creating	Classes
Defining	and	creating	classes	 is	actually	very	similar	 to	defining	and	creating	functions.
All	you	need	to	do	is	to	specify	that	you	are	creating	a	class,	by	using	the	keyword	‘class’
and	then,	giving	the	class	a	class	name.	Here’s	how	classes	are	created:

class	ClassName:

class_suite

	

ClassName.__doc__.	will	enable	you	to	access	the	documentation	string	of	a	class.
Functions,	class	members	and	various	attributes	are	contained	in	the	class_suite.

Here	is	the	basic	layout	for	creating	a	class;
	

#	Defining	a	class

class	class_name:

[statement	1]

[statement	2]

[statement	3]

[etc]

	

Now	 let’s	 get	 a	 little	 bit	 more	 in	 depth.	 Here	 is	 a	 class	 that	 would	 be	 used	 in	 a	 basic
banking	program.	This	class	instructs	the	program	how	to	go	about	displaying	the	balance,
depositing,	withdrawing,	and	overdrawing	accounts.	 It	 then	prints	 the	overall	balance	of
the	bank	account	after	withdrawing	5	from	it.

	

Class	BankAccount(object):

def	__init__(self,	initial_balance=0):

self.balance	=	initial_balance

def	deposit(self,	amount):

self.balance	+=	amount

def	withdraw(self,	amount):

self.balance	-=	amount

def	overdrawn(self):

return	self.balance	<	0

my_account	=	BankAccount(15)

my_account.withdraw(5)

print	my_account.balance

	

Notice	how	the	class	contains	several	different	functions	within	it?	The	deposit,	withdraw,
and	overdrawn	functions	all	provide	different	instructions	for	the	program,	while	altering
variables,	 which	 would	 not	 be	 possible	 if	 this	 same	 program	 was	 laid	 out	 in	 several
different	functions.	This	allows	several	different	functions	to	alter	a	variable	that	is	local
to	the	class	that	you	have	defined.
	

Class	Terminology
There	are	a	few	different	terms	that	you	need	to	understand	when	using	classes,	related	to
object	oriented	programming.

	

Class	–	A	user-defined	prototype	for	an	object	that	defines	a	number	of
different	attributes.
Class	variable	–	A	variable	that	is	present	within	a	class,	and	is	shared	by
all	instances	of	that	class.	They	are	defined	within	the	class,	but	not	within
the	methods	or	functions	that	they	class	contains.	Instance	variables	are	used
more	than	class	variables.
Data	Member	–	A	class	variable	that	holds	data	associated	with	the	class
and	its	objects.
Instance	Variable	–	A	variable	that	is	defined	inside	of	a	method	or
function.	It	only	exists	within	that	function	or	variable.
Method	–	A	special	function	that	is	defined	within	a	class.
Object	–	A	unique	instance	of	data	that	is	defined	by	the	class.

	

Using	Classes	and	Self
After	 creating	 classes,	 then	 you	 can	 use	 them	 throughout	 the	 entirety	 of	 your	 program.
Classes	can	be	called	at	any	time	throughout	the	program.	You	can	also	access	attributes
of	 the	 class	 from	 outside	 the	 instance,	 which	 allows	 you	 to	 use,	 alter,	 and	 manipulate
variables	used	by	the	class	from	elsewhere	within	your	program.

One	of	the	main	differences	between	methods	and	function	is	the	parameter	self. “ Self ”
refers	to	the	main	object	that	is	being	altered	by	an	operation.	Using	the	self	parameter	is	a
catch-all	for	whatever	is	being	altered	within	the	class.

What	Are	Objects?
	

Ask	any	programmer	about	Python	and	he/she	will	tell	you	that	it	is	an	object-oriented
program.	Objects	are	data	structures	which	consist	of	attributes,	class	variables,	instance
variables	and	other	data	of	the	sort.	An	object	is	always	defined	by	its	class.

	

When	you	create	a	single	object	within	a	class,	you	are	creating	an	instance	object.	If	you
want	to	create	an	instance	object	you	should	1)	use	the	class	name	to	invoke	that	class	and
2)	pass	in	an	argument	that	3)	the	__init__	argument	should	accept.

Let’s	create	a	new	class	here	and	then,	introduce	new	objects	to	it:

	

class	Student:

stuCount	=	0

def	__init__(self,	name,	age):

self.name	=	name

self.age	=	age

Student.stuCount	+=	1

	

def	displayCount(self):

print	“Total	Number	of	Students	%d”	%	Student.stuCount

def	displayStudent(self):

print	“Name	:	“,	self.name,		“,	Age:	“,	self.age

	

	

stuCount	is	a	variable	of	the	class,	Student,	in	this	example.	You	can	access	it	from	inside
or	outside	of	the	class	with	Student.stuCount.	
When	creating	new	instances	within	a	class,	you	need	to	initialize	it	first	and	this	is	done
with	the	__init__	function.	Python	will	use	this	function	for	initialization	purposes.	self	is
an	argument	that	Python	will	add	itself.

Now,	let’s	create	instance	objects:

	

stu1=	Student	(“Rob”, 24)

stu2=	Student	(“Alice”, 25)

	

Stu1	is	the	first	instance	of	the	class	while	stu2	is	second	instance	of	the	same	(Student)
class.

	

Inheritance
One	of	the	various	advantages	of	object-oriented	programming	is	that	you	need	not	make
the	same	class	all	over	again.	This	is	a	long	and	time-consuming	process.

You	can	derive	the	same	class	from	one	that	exists	already.	For	this	you	need	to	insert	the
parent	class	in	parentheses	and	this	should	be	done	right	after	the	new	class	name.

When	you	do	this	the	child	class	will	inherit	the	attributes	of	the	original/parent	class	and
various	data	members	and	methods	can	be	overridden	by	the	child	class.	The	syntax	for
inheritance	is	as	follows:

	

class	NameOfSubClass	(ParentClassA[,	ParentClassB,	….])

class_suite

	

Let’s	consider	the	Student	class	for	this:

	

class	Student
def__init__(self,	name,	age):
			self.name=name
			self.age=	age

	

This	was	the	original	class.	Now,	let’s	use	the	same	example	to	create	a	class	entitled
graduate	which	will	take	inherit	from	the	parent	class	(student).

	

class	Graduate	(Student):

def	__init__(self,	name):
														self.name=	name
														self.age=	name

	

See,	in	this	example	Student	was	the	parent	class	and	graduate	is	the	child	class.	I	inserted
the	name	of	the	parent	class,	right	after	that	of	the	child	class,	in	parentheses/brackets	and
the	child	class	inherits	the	attributes	of	the	parent	class.	__init__	was	redefined	for	the

child	class,	too.

	

It	is	also	possible	to	inherit	from	several	classes	at	the	same	time.	Here’s	the	syntax	for
inheritance	from	multiple	parent	classes:

	

class	1:

….

class	2:

…..
	

class	3(1,2)	
….

	

Define	the	two	classes	so	the	third	class	can	then,	inherit	from	both	parent	classes.	Let’s
consider	the	last	two	examples	and	make	a	third	class	(using	the	attributes	of	the	Student
and	Graduate	classes):

class	Student	(object)
def__init__(self):
		super	(Student,	self)	.__init__()

class	Graduate	(Student):

def	__init__(self):
											super	(Graduate,	self)	.__init__()

class	Masters	(Graduate)

def__init__(self):
							super	(Masters,	self)	.__init__()
	

class	GM	(Graduate,	Masters)
						def__init__(self):
								super(GM,	self)	.__init__()

	

How	to	Override	Parent	Class	Methods

It	is	a	good	idea	to	override	the	methods	of	the	parent	class.	This	way	you	can	change	the
functionality	of	the	subclass.	So,	if	you	want	to	override	the	method	of	a	class,	this	is	how
you	should	go	about	it:

	

class	Student	(object):
						def	__init__	(self):
												pass

def	message	(self):

print	“I	have	finally	graduated!”

class	Graduate	(Student):

def__init__(self):

super	(Graduate,	self)	.__init__()

def	message	(self):

print	“I	will	now	do	my	masters!”

super	(Graduate,	self).	message	()

	

Instead	of	calling	self.method,	call		the	super(subclass,	self).method.	This	way	you	can
override	self.method	so	the	child	class	is	now	able	to	use	super	(Graduate.self)	and	it	will
produce	the	second	(rather	than	the	first)	statement.

	

Accessing	Attributes

If	you	want	to	access	any	object’s	attributes,	you	need	to	use	the	dot	operator	for	this
purpose.	So,	let’s	say	you	want	to	access	the	attributes	of	stu1	and	stu2,	here’s	how	you’ll
do	so:

	

stu1.displayStudent()
stu2.displayStudent()

print	“Total	Number	of	Students	%d”	%	Student.stuCount

	
Put	the	entire	code	together	and	then,	execute	it.	You	will	get	the	following:

Name:	Rob,	Age:	24
Name:	Alice,	Age:	25
Total	Number	of	Students=	2

	

As	was	the	case	with	dictionaries,	you	can	use	the	del	statement	to	get	rid	of	or	to	modify
an	attribute	of	a	class	or	that	of	an	object.

	

Certain	functions	can	be	used	to	gain	access	to	an	attribute	too.	Here	are	examples	of	such
functions:

	

delattr(obj,	name)	: this	can	be	used	to	delete	the	attribute	of	an	object.

Setattr(obj,	name,	value): 	if	you	want	to	introduce	an	attribute	that	does	not	exist,	you	can
use	this	function	to	do	so.
getattr(obj,	name[,	default])	: 	this	is	used	to	gain	access	to	the	attribute.

	hasattr(obj,name): you	can	use	this	to	see	whether	an	object	has	attributes	that	can	be
modified.	If	it	does	not,	you	always	use	setattr	to	introduce	an	attribute.

	

Class	Attributes
Python	has	in-built	class	attributes	as	well.	One	can	access	any	of	these	attributes	with	the
dot	notation,	just	as	you	would	access	an	object	or	class	attribute.

__dict__-	the	class’	namespace	is	contained	by	this	dictionary.

__name__:	simply	the	class	name
__doc__:	the	documentation	string	of	the	class.	However,	if	there	is	none,	this	won’t	show.
__module__:	this	is	the	name	of	the	module	in	which	the	class	has	been	defined.

__bases__:	this	can	be	an	empty	tuple.

Let’s	use	these	class	attributes	for	the	aforementioned	code:

	

class	Student:

stuCount	=	0

def	__init__(self,	name,	age):

self.name	=	name

self.age	=	age

Student.stuCount	+=	1													

	

def	displayCount(self):

print	“Total	Number	of	Students	%d”	%	Student.stuCount

def	displayStudent(self):	
										print	“Name	:	“,	self.name,		“,	Age:	“,	self.age

print	“Student.__doc__:”,	Student.__doc__

print	“Student.__name__:”,	Student.__name__

print	“Student.__module__:”,	Student.__module__

print	“Student.__bases__:”,	Student.__bases__

print	“Student.__dict__:”,	Student.__dict__

	

When	you	do	so,	you	will	get	the	following	output:	
	

Student.__doc__:	Student	base	class	for	all	employees

Student.__name__:	Student

Student.__module__:	__main__

Student.__bases__:	()

Student.__dict__:	{‘__module__’:	‘__main__’,	‘displayCount’:	,	‘stuCount’:	0,	‘displaystudent’:	,
‘__doc__’:	‘Common	base	class	for	all	students,	‘__init__’:	}

	

What	Happens	to	Unnecessary	Objects?

Objects	take	up	space	but	those	objects	that	are	no	longer	used	or	required	are	destroyed
by	Python.	This	is	known	as	“garbage	collection”	because	that	is	quite	literally	what	the
program	does.	This	increases	memory	space	and	you	can	introduce	more	objects.

When	the	object’s	reference	count	is	at	zero	that	is	when	Python	knows	to	get	rid	of	the
object.	Every	time	an	object	is	given	a	new	name	its	reference	count	will	increase.	On	the
other	hand,	every	time	you	use	the	del	statement	or	if	the	reference	is	reassigned,	the
reference	count	will	decrease	until	it	reaches	0	and	is	then,	collected	by	the	program.

This	also	happens	in	other	programming	languages	(like	C,	C++	and	Java,	etc.)	and	you
usually	will	not	know	or	be	notified	of	garbage	collection	because	the	program	handles
this	on	its	own.

PROJECT:	Classes
	

Now	you	are	familiar	with	classes,	so	let’s	test	your	skills	with	a	project.	Try
not	to	look	at	the	answer	until	you	have	finished	your	own	program.	In	this
project	we	will	be	create	a	class	that	stores	employ	information.	This	class
will	contain	3	functions.	The	first	function	(__init__)	will	store	the	name,
salary	and	total	employee	count.	The	second	class,	displayCount	will	display
the	total	employee	count,	and	the	third	class,	displayEmployee,	will	display
all	of	the	recorded	information	on	a	given	employee

	

	

	

	

	

Answer:

class	Employee:

‘Common	base	class	for	all	employees’

empCount	=	0

def	__init__(self,	name,	salary):

self.name	=	name

self.salary	=	salary

Employee.empCount	+=	1

def	displayCount(self):

print	“Total	Employee	%d”	%	Employee.empCount

def	displayEmployee(self):

print	“Name	:	“,	self.name,		“,	Salary:	“,	self.salary

	

	

Summary
							This	chapter’s	focus	was	on:

Classes
Objects
Inheritance
Attributes
How	to	access	attributes

The	destruction	of	unnecessary	objects

Chapter	7:	Importing	Modules
“From	the	viewpoint	of	what	you	can	do,	therefore,	languages	do	differ	-	but	the
differences	are	limited.	For	example,	Python	and	Ruby	provide	almost	the	same	power	to
the	programmer.”-	Yukihiro	Matsumoto

	

In	this	chapter	you	will	learn:

	

About	Modules
How	to	use	modules
How	to	import	modules

	

In	the	last	chapter	we	covered	classes	which	allow	you	to	declare	multiple	functions	and
then	 call	 to	 them	as	 needed	 thorughout	 the	 code.	These	 combinations	 of	 variables	 	 and
functions	 that	 can	 be	 called	 to	 form	 a	 nice,	 neat	 package	which	 can	make	 them	much
easier	to	deal	with.

http://www.brainyquote.com/quotes/quotes/y/yukihiroma213499.html?src=t_programmer
http://www.brainyquote.com/quotes/authors/y/yukihiro_matsumoto.html

What	Are	Modules?
Now,	 what	 are	 modules?	 They	 are	 generally	 definitions	 of	 variables,	 functions,	 and
classes.	Think	of	 them	as	the	next	rung	on	the	ladder.	Multiple	classes	can	be	contained
within	functions,	and	multiple	functions	can	be	contained	within	modules.	A	module	looks
very	 similar	 to	 any	 other	 Python	 program	 that	 you	might	 code,	 and	 often	 contain	 large
portions	of	code	that	might	be	called	to	throughout	a	larger	program.

	

Modules	were	created	because	when	you	quit	 the	Python	interpreter	and	then	attempt	 to
enter	it	again,	your	created	functions	and	variables	that	were	read	by	the	interpreter	will	be
lost.	When	writing	 a	 longer	 program	 this	 can	 be	 a	 very	 serious	 issue.	 The	 longer	 your
program	gets –	the	more	you	want	to	separate	the	blocks	of	code	so	that	you	know	where
to	access	those	blocks	and	can	use	them	several	times	throughout	your	program.

	

Modules	 are	 files	 that	 contain	 Python	 definitions	 and	 statements.	 They	 are	 typically
appended	with	 the	 suffix	 .py,	which	 you	may	have	 to	 use	when	 calling	 to	 the	 file.	The
name	of	the	module	(a	string)	is	available	as	a	global	variable.

Defining	Modules
Modules	are	different	because	 they	allow	you	to	 import	all	of	 the	module,	or	bits	of	 the
module	 into	other	programs.	Create	a	new	file	named	moduletest.py,	 and	 then	 input	 the
following	code;	Your	average	module	might	look	like	this;
	

	

#	Define	variables:

numberone	=	1

ageofgrandma	=	79

#	define	some	functions

def	printhello():

print	“hello”

def	timesfour(input):

print	input	*	4

#	define	a	class

class	baseballCard:

def	__init__(self):

self.brand	=	raw_input(“What	brand	is	the	card?	“)

self.player	=	raw_input(“What	player	is	on	the	card?	“)

self.price	=	raw_input(“How	much	did	it	cost?	“)

self.age	=	raw_input(“How	old	is	it	(in	years)?	“)

def	printdetails(self):

print	“This	card	is	of	”	+	self.player	+	“,

print	self.brand,	“card,	of	”	+	self.player,	“is “	+	self.age	+ “ years	old	and
costs

”	+	self.price	+	”	dollars.”

	

Looks	 pretty	 familiar	 right?	 It	 looks	 like	 any	old	Python	program	 that	 you	might	 code.
Now,	you	can	import	specific	sections	of	code	from	any	module,	which	can	then	be	used
within	your	programs.	In	order	to	import	portions	of	code	from	a	module,	you	must	use	an
import	operator.	If	you	wanted	to	important	an	entire	module,	it	is	relatively	simple;

	

###	mainprogam.py

###	IMPORTS	ANOTHER	MODULE

import	testmodule

	

Keep	in	mind	that	in	this	example,	we	are	assuming	that	the	module	is	located	in	the	same
directory	as	the	mainprogram.py	file.	But,	you	can	also	import	very	specific	segments	of
your	 program	 as	 well.	 This	 is	 great	 for	 when	 you	 want	 to	 call	 on	 a	 specific	 class	 or
variables	that	are	contained	within	your	modules.

	

Import	statements	are	most	commonly	contained	within	the	beginning	of	a	Python	file,	but
can	 technically	 be	 found	 anywhere	within	 a	 program.	Here	 is	 an	 example	of	 calling	on
specific	portions	of	code	contained	within	a	module;

	
	

###	USING	AN	IMPORTED	MODULE

print	testmodule.age

baseballCard	=	moduletest.baseballCard()

baseballCard.printdetails()

	

	

This	 is	 a	 straightforward	 example	 of	 how	 you	 can	 call	 on	 various	 aspects	 of	 a	module
from	your	main	program.	You	can	import	either	your	whole	module,	or	very	specific	parts
of	the	module.	You	can	even	call	on	global	values	of	a	module,	and	assign	them	to	your
program	locally.	An	example	of	this	would	be;

	

	

#	Assigning	to	a	local	name

timesfour	=	moduletest.timesfour

	

	

This	assigns	the	value	given	by	the “ timefour ”	function	and	assigns	it	to	a	local	variable.
This	is	great	for	when	you	want	to	take	global	variables	and	give	them	a	local	assignment.
This	can	make	variables	easier	to	call	to,	without	having	to	call	the	module	as	a	whole.

	

Python	modules	should	be	relatively	simple	for	you	to	understand	at	this	point.	Modules
provide	 you	with	 yet	 another	 organizational	 technique	 that	 give	 you	more	 control	 over
your	 program	 as	 a	 whole.	 You	 can	 use	 them	 to	 create	 increasingly	 complex	 programs,
without	 feeling	 overwhelmed	 by	 the	 amount	 of	 code	 that	 you	 are	 creating.	 Splitting
programs	up	into	classes,	functions	and	modules	makes	it	easier	to	organize	your	code	and
gives	 you	 a	 consistent	 way	 to	 call	 to	 certain	 blocks	 of	 code	 that	may	 need	 to	 be	 used
throughout	your	program.
	

	

	

PROJECT:	Modules
	

	

Use	our	previous	example	as	a	guide.	Create	a	module	that	stores
information	about	movies.	One	class,	titled “ movieInfo ”	should	contain
relevant	information	about	the	movie	including	the	name,	director,	star,
runtime	(in	minutes)	and	price.		Have	these	values	stored	using	raw_input.
Also	create	a	function	that	then	prints	those	details.

	

	

Answer:

#	define	a	class

class	movieInfo:

def	__init__(self):

self.name	=	raw_input(“What	is	the	name	of	the	movie?	“)

self.director	=	raw_input(“What	is	the	name	of	the	director?	“)

self.star	=	raw_input(“Who	stars	in	the	movie?”)

self.runtime	=	raw_input(“What	is	the	runtime	of	the	movie?	“)

self.price	=	raw_input(“How	much	did	the	movie	cost?	“)

def	printdetails(self):

print		self.name	+	self.director	+	self.star	+	self.runtime	+	self.price

	

Summary

The	following	points	were	covered	in	this	chapter:

	

Modules

What	are	modules

How	to	use	modules

Defining	modules
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Chapter	8:	File	I/O
“Our	society	expects	that	everyone	should	learn	to	write,	even	though	very	few	become
professional	writers.	Similarly,	I	think	that	everyone	should	learn	how	to	program,	even
though	very	few	will	become	professional	programmers.”-	Mitchel	Resnick

	

This	chapter	will	teach	you	about

	

Input/output	files
Methods
Directories
Types	of	methods
Cursors

	

Now	that	you	know	how	to	load	external	code	into	your	programs,	we	will	look	into	file
input	 and	 output	with	 normal	 text	 files.	 This	 is	 ideal	 for	when	 you	would	 like	 to	 store
information	in	a	text	file,	call	for	information	from	that	text	file,	or	use	it	in	a	variety	of
ways.	File	I/O	commands	are	important,	and	used	in	any	large	scale	Python	program.

	

http://www.brainyquote.com/quotes/quotes/m/mitchelres643065.html?src=t_programmers

What	is	File	I/O?
File	I/O	refers	to	using	(inputing	and	outputing)	data	using	normal	text	files.	There	are	a
number	 of	 commands	 and	 functions	 built	 directly	 into	 Python	 that	 allow	 you	 to	 create,
open,	 append,	 and	 call	 to	 text	 files	 and	 the	 information	 stored	 on	 them.	 You	 can	 pass
parameters,	and	use	them	as	data	dumps	that	can	be	called	to	at	a	later	date.

	

You	 can	 also	 put	 information	 into	 Python	 and	 it	 will	 then,	 produce	 the	 same
information/data	on	to	your	screen.	All	you	need	to	do	is	to	use	the	print	statement	for	this.
Print	will	convert	 the	expression	 into	a	string	and	 this	will	enable	Python	 to	display	 the
message	on	your	screen.	For	example,	if	you		put	in print	“I	am	using	Python,”	,	“I	 love
using	this	programming	language!”;	Python	will	produce	the	following	output:

	

I	am	using	Python,		I	love	using	Python!

	

	

Let’s	take	a	look	at	some	of	the	basics	of	File	I/O	now,	and	look	at	how	they	might	be	used
in	the	programs	that	you	create.

Opening	Files
In	order	to	open	files,	you	will	be	using	the	open()	function.	It	 is	fairly	self	explanatory.
You	pass	parameters	 to	 the	open()	 function,	 telling	 it	how	you	would	 like	 it	 to	open	 the
file.	A	few	of	the	different	parameters	that	you	might	pass	to	the	files	include;

	

r	–	for	read-only	files.
w	-	for	write-only	files.
a	–	for	appending	files.
r+	-	for	both	reading	and	writing	files.

	

These	 same	 parameters	 are	 present	 throughout	 your	 operating	 system	 and	 in	 other
programming	 languages	 as	 well.	 Opening	 a	 normal	 text	 file	 is	 relatively	 simple	 and
straightforward.	Here	is	an	example	of	opening	a	file	using	Python;

	

openfile	=	open(‘pathtofile’,	‘r’)

openfile.read()

	

This	instructs	the	program	to	open	a	file	at	a	given	path	and	then	read	the	contents	of	that
file.	The	text	in	.txt	files	is	completely	unformated.	You	can	also	print	the	information	that
the	program	reads	with	the	following	code;

	

print	openfile.read()

	

	

This	allows	you	to	display	any	of	the	data	that	is	stored	within	the	text	file.	Try	typing	this
into	your	IDE	now.

	

Did	 it	 work?	 Probably	 not.	 We	 are	 introducing	 a	 new	 concept	 that	 has	 not	 yet	 been
covered	 in	 this	 book.	You	 failed	 to	 print	 the	 read	 data	 because	 the	 cursor	 had	 changed
positions. “ Cursor?	What	Cursor? ”	you	are	probably	asking	right	now.

Cursors
A	cursor	is	an	unseen	market	of	where	the	program	will	read	functions	from	(along	with
other	I/O	functions),	letting	it	know	where	to	start	from.	In	order	to	set	the	cursor	where
you	 need	 it	 to	 be,	 you	must	 use	 the	 seek()	 function.	The	 seek()	 function	 is	 used	 in	 the
following	form;

	

seek(offset,	whence)

	

	

Whence	-	Whence	is	an	optional	inclusion	within	the	seek()	function.	When
the	whence	is	0,	the	program	will	read	and	count	all	of	the	bytes	and	letters
contained	within	the	text	file	from	the	very	beginning.	When	it	is	set	to	1,
the	bytes	will	be	counted	from	the	current	position	of	the	cursor.	If	it	is	set	to
2,	then	the	bytes	are	counted	from	the	end	of	the	file	only.	When	there	is
nothing	in	its	stead,	0	is	assumed	by	the	program.
Offset –	The	offset	describes	how	far	from	whence	the	cursor	movies.	So	for
example,	an	offset	of	openfile.seek(45,0)	would	move	the	cursor	45	bytes
from	the	beginning	of	the	file.	An	offset	of	openfile.seek(10,1)	would	move
the	cursor	10	byes	from	the	current	position	of	the	cursor.	Negatives	can	also
be	used,	which	denote	the	position	from	the	end	of	the	file.	For	instance,
openfile.seek(-77,0)	would	move	the	cursor	77	bytes	behind	the	end	of	the
file.

	

This	may	 seem	overly	 complicated	 of	 reading.txt	 files,	 and	 it	 definitely	 is	 for	 the	 basic
commands.	 But,	 this	 function	 provides	 deeper	 functionality,	 allowing	 you	 to	 determine
where	 the	program	begins	 reading	 the	file	 from.	This	provides	versatility	when	working
with.txt	files.

Other	I/O	Functions
There	 are	 a	 large	 number	 of	 different	 I/O	 functions	 that	 you	 can	 call	 on	 and	 use	when
dealing	with	.txt	files.	These	functions	include;

	

	

	

	

	

	

raw_input														
What	this	function	does	is	that	it	will	read	a	standard	input	line	and	then,	return	the	same
line	in	the	form	of	a	string.

string=	raw_input	(“Enter	your	input:		”)
print	“Received	input	is	:	”,	string

Now,	any	string	you	enter	will	be	read	and	displayed	on	to	your	screen.

Enter	your	input:	I	like	Python
Received	input	is:	I	like	Python

This	message	will	also	show	on	your	screen.

Input
The	input	and	raw_input	functions	are	very	similar	to	one	another.	The	only	exception	is
that	input	assumes	that	anything	entered	into	the	program	is	valid	and	the	result	evaluated
by	the	function	is	then,	returned	to	you.

str=	input	(“Enter	your	input:		“);
print	“Received	input	is	:”	str

Enter	your	input:	[a-2	for	a	in	range	(2,	12,	10)]
Received	input	is:	0,	10,	8

Now,	let’s	put	in	some	values	to	see	what	happens:

tell()
Returns	 where	 the	 cursor	 is	 currently	 located	 within	 the	 file.	 There	 are	 no	 additional
parameters	with	this	function.	It	is	useful	for	determining	how	your	code	is	effecting	the
placement	 of	 the	 cursor,	 and	 provides	 added	 control.	 You	 can	 access	 it	 by	 typing
fileobjectname.tell()	-	with	fileobjectname	being	the	name	of	the	file	that	you	are	opening.
The	position	of	your	cursor	may	change	as	your	code	 runs,	 and	 tell()	 is	very	useful	 for
examining	how	your	code	effects	the	placement	of	that	cursor.

seek	(offset[,	from])	method
A	file’s	current	position	is	changed	using	this	method	and	offset	is	an	argument	that	will
indicate	the	quantity	of	bytes	that	should	be	moved.	The	‘from’	argument	will	tell	you
where	the	file	needs	to	be	moved	from.

When	from	is	set	to	0	this	means	that	the	bytes	need	to	be	moved	from	the	beginning	of
the	file.	If	it	is	set	to	1	that	means	the	bytes	have	to	be	moved	from	the	current	position	of
the	file	and	if	it	is	set	to	2	the	end	of	the	file	is	considered	to	be	the	reference	position	of
the	file.

readline()
This	function	reads	from	where	the	cursor	is	currently	located	until	the	end	of	the	line.	The
end	of	the	line	is	not	the	edge	of	the	screen,	it	is	where “ enter ”	is	hit,	creating	a	new	line
in	a	 .txt	 file.	Remember	 that	an	 individual	 line	can	go	on	an	unlimited	amount	 in	a	 text
file.	There	are	no	parameters	that	need	to	be	passed	when	using	readline().

	

For	instance,	if	you	had	an	example	text	file	that	looked	like	this;

	

Line	1

Line	3

Line	4

Line	6

	

The	returned	list	would	look	like	this;

	

Index	0	=	Line	1

Index	1	= “

Index	2	=	Line	3

Index	3	=	Line	4

Index	4	= “

Index	5	=	Line	6

	

Each	 line	 in	 a	 .txt	 file	 constitutes	 a	 different	 index	 within	 the	 code.	 This	 makes	 the
placement	of	your	data	predictable.

os.rename(current_file_name,	new_file_name)

	

	

When	you	want	to	create	a	new	line,	you	use	the	following	command: “ \n ”	at	the	end	of
any	string.

	
renaming	&	deleting	files
	

When	 renaming	 your	 file	 you	 need	 to	 use	 2	 arguments-	 the	 current	 filename	 and	 the
filename	that	you	intend	to	use	in	order	to	rename	the	existing	file.	The	syntax	for	this	is
as	follows:

	

write()
The	write()	command,	as	you	might	guess,	is	used	to	write	data	to	the	file.	It	writes	from
the	position	of	the	cursor,	and	will	overwrite	any	text	that	comes	after	it.	If	you	would	like
to	add	information	to	the	end	of	the	already	stored	data,	make	sure	that	your	cursor	is	set
to	the	end	of	the	file.	You	can	also	use	writelines()	for	writing	multiple	lines	to	a	single	.txt
document.	

close()
Close	is	typically	used	to	close	the	file	that	it	can	no	longer	be	used	for	reading	or	writing
the	 data.	 The	 close()	 command	 is	 one	 that	 can	 help	 you	 to	 ensure	 that	 data	 is	 not
inadvertently	edited	past	the	pont	that	you	would	like	it	to	be.

	

read()	method

This	method,	as	is	obvious	by	the	name	of	the	method,	will	read	a	string	in	a	file.	Here	s
the	syntax	for	the	method:

	

fileObject.read([count]);

	

The	method	will	read	the	file	from	the	very	beginning.	If	count	cannot	be	detected	by	the
method	(because	it	is	missing),	it	will	read	as	much	data	as	it	can.

	

Directories
	

The	files	are	contained	in	the	directories	and	Python	can	easily	access	these.	Python’s	OS
module	can	be	used	to	create,	modify,	change	and	move	the	directories,	too.

	

The	mkdir()	Method

This	method	is	used	to	create	new	directories	within	the	existing	directory.	To	do	this	you
need	to	provide	the	method	with	an	argument	that	contains	the	name	of	the	directory	that
you	intend	on	creating.	The	syntax	for	this	is	as	follows:

	

os.mkdir(“yournewdir”)

	

So,	let’s	create	a	directory	entitled	‘mynewdir’	within	a	directory	that	already	exists:

	

import	os

os.mkdir(“mynewdir”)

	

The	chdir()	Method
	

If	you	feel	the	need	to	change	or	modify	the	current	directory,	you’ll	have	to	use	this
method.	This	method	will	take	the	argument,	which	is	also	the	directory’s	name,	so	you
can	introduce	changes	to	and	existing	directory.

The	syntax	for	this	is	as	follows:

	

os.chdir(“yournewdir”)

	
Now,	if	you	you	want	to	go	into	the	“/mycomputer/newdir”	directory,	this	is	how	you	will
do	so:

	

import	os

os.chdir(“/mycomputer/newdir”)

	

The	getcwd()	Method
This	method	will	only	display	the	existing	and	working	directory.	The	syntax	for	this	is	as
follows:

os.getcwd()

Here’s	an	example	of	how	this	method	can	be	used:

	

import	os
os.getcwd()

	
The	rmdir()	Method
	

This	method	is	used	to	delete	a	directory	that	has	been	passed	in	the	form	of	an	argument
in	a	method.

PROJECT:	File	I/O
	

Using	our	previous	examples,	create	a	document,	newfile.txt	that
says “ Hello	world ”	on	one	line,	and “ Hello	FileI/O ”	on	another	line,	then
read	it	and	print	it.

	

	

Answer:

file	=	open(“newfile.txt”,	“w”)

file.write(“hello	world	in	the	new	file\n”)

file.write(“and	another	line\n”)

file.close()

file2	=	open(‘newfile.txt’,	‘r’)

print	file2.read()

	

Summary
							This	chapter	covers	the	following:

Input/output	files
How	to	open	files

																																																																																							Cursors													
How	to	use	cursors
Directories
Different	types	of	methods
How	to	use	different	types	of	methods

Chapter	9: 	Error	Handling
	

	“When	someone	says:	‘I	want	a	programming	language	in	which	I	need	only	say	what	I
wish	done’,	give	him	a	lollipop.”	-	Alan	J.	Perlis

	

In	this	chapter	you	will	learn:

	

The	basics	of	error	handling
Different	types	of	errors
How	to	deal	with	these	errors

	

All	 programs	 have	 errors.	 It	 is	 of	 the	 utmost	 importance	 that	 you	 know	 how	 to	 handle
errors,	exceptions,	and	problems	and	give	you	a	good	idea	of	how	to	go	about	fixing	those
errors	should	they	arise.	Error	handling	is	important	for	usability.

What	Is	Exception	Handling?
Exception	handling	is	the	process	of	handling	errors,	exceptions	and	problems.	There	are	a
number	 of	 different	 errors	 that	 are	 commonly	 seen	 in	 nearly	 any	 program.	 By	 default,
programs	have	certain	error	codes	that	they	will	provide	to	the	programmer,	depending	on
what	the	error	is.	Of	course,	you	want	to	make	sure	that	when	errors	do	arise	(for	both	the
programmer	and	 the	user)	 that	 the	error	messages	are	descriptive	and	give	some	 idea	of
what	the	issue	might	be.

	

Some	of	the	different	types	of	errors	and	exceptions	that	you	might	deal	with	on	a	day	to
day	basis	include;

Bugs	and	Human	Errors
Bugs	and	human	errors	are	the	most	common	problems	that	you	willr	un	into	throughout
your	programming	career.	Exception	handling	begins	with	gaining	a	deeper	understanding
of	 the	 different	 types	 of	 codes	 that	will	 be	 output	 by	 the	 program	when	 it	 runs	 into	 an
issue.	Here	is	what	an	error	message	might	look	at.

	

Traceback	(most	recent	call	last):

File	“/home/ryan/errortest.py”,	line	8,	in	-toplevel-

answer	=	menu(<	I’ll	snip	it	here	>)

File	“/home/ryan/errortest.py”,	line	6,	in	menu

return	raw_input(question)	-	1

TypeError:	unsupported	operand	type(s)	for	-:	‘str’	and	‘int’

	

Now,	this	probably	doesn’t	look	too	straightforward	to	programmers	that	do	not	have	a	lot
of	experience.	Python	is	telling	you	a	number	of	different	things	here.	Look	at	this	line;

File	“/home/ryan/errortest.py”,	line	8,	in	-toplevel-

	

This	line	gives	us	some	vital	information.	First	of	all,	it	lets	us	know	which	file	the	error
occurred	within.	This	 is	 extremely	 important	 for	 larger	programs	 that	have	a	number	of
different	modules.	Without	this,	it	would	be	difficult	to	determine	exactly	where	the	error
might	be.

	

It	then	tells	us	what	line	the	error	is	located	on.	This	lets	us	know	the	first	place	we	should
look	for	the	issue.	Keep	in	mind	that	the	actual	issue	could	come	from	another	line	within
the	code.	Perhaps	the	line	the	error	references	is	calling	a	variable	that	was	never	defined?
There	are	multiple	reasons	why	an	exception	could	be	triggered,	and	not	all	of	them	will
be	apparent	just	by	looking	at	a	single	line	of	code.
	

TypeError:	unsupported	operand	type(s)	for	-:	‘str’	and	‘int’

	

This	lets	us	know	what	type	of	error	has	been	triggered	by	the	system.	This	can	provide
clues	as	to	what	the	issue	within	the	code	might	be,	which	makes	them	quite	easy	to	fix.

Exceptions
The	 other	 type	 of	 code	 error	 outside	 of	 human	 error	 is	 known	 as	 an	 exception.	 One
example	of	an	exception	would	be	when	you	are	asking	for	user	input	of	a	number.	The
code	works	 fine	when	 everything	goes	 as	 expected.	But	what	would	happen	 if	 the	user
accidentally	input	a	letter	instead	of	a	number?

	

Normally,	this	would	cause	the	program	to	crash	and	all	unsaved	data	to	be	lost.	Instead	of
crashing,	we	want	the	program	to	recognize	that	the	wrong	type	of	data	was	entered,	and
re-prompt	the	user	to	enter	the	correct	type	of	data.

	

Here	 is	 an	 example	 of	 how	 you	 would	 go	 about	 handling	 this	 exception	 using	 the
ValueError	command;
	

while	True:

try:

x	=	int(raw_input(“Please	enter	a	number:	“))

break

except	ValueError:

print	“Oops!		That	was	no	valid	number.		Try	again…”

	

Exception	handling	can	be	successful	when	using	the	try	statement.	There	are	a	number	of
reasons	for	this	including;

	

The	try	statement	is	executed.
If	there	is	no	exception,	the	clause	is	then	skipped	and	the	programs	executes
as	would	normally	be	expected.
If	an	exception	occurs	during	the	execution	of	the	clause,	then	the	clause	is
skipped.	In	this	case,	if	the	program	generated	a “ ValueError ”	exception,
the	print	command	would	then	be	executed	and	the	program	would	prompt
the	user	for	input	again.
If	an	exception	is	generated	and	does	not	match	the “ ValueError ”
exception,	it	is	then	passed	to	outer	try	statements	that	might	exist.	If	there
are	no	outer	try	statements,	this	is	known	as	an	unhandled	exception.

	

Summary
							The	following	points	have	been	covered	in	this	chapter:

Exception	handling
What	is	exception	handling?
What	are	bugs?
Human	errors
Exceptions
How	to	handle	exceptions

Conclusion
	

So,	now	you’ve	learned	the	basics	of	Python.	You’ve	learned	about	and	put	into	practice
all	of	the	basic	concepts	to	get	you	going	including	data	types,	decision	making	statements
and	loops.	Your	in	a	good	place	to	quickly	grow	your	skills.	From	here	on	out,	you	have	to
challenge	yourself!	Python	 is	a	deep	 language	with	quite	a	bit	 to	 learn,	but	with	a	basic
understanding	of	the	fundamentals	the	more	advanced	concepts	can	come	quite	easily.	If
you	compare	Python	with	other	programming	languages	you	will	 find	that	 it	 is	easier	 to
understand	and	coding	in	the	programming	language	is	better	too.

	

Also,	remember	that	you	don’t	need	to	have	a	degree	to	verify	that	you	know	how	to	code
or	how	 to	use	Python.	This	guide	has	given	you	all	 the	 information	you	need.	More	 so
than	any	other	aspect	of	programming	education –	experience	is	your	best	friend!	You	can
only	 become	 a	 better	 programmer	 when	 you	 are	 willing	 to	 put	 in	 the	 work	 and	 gain
experience	in	the	language	of	your	choice.	Practice	and	spend	some	time	on	bettering	your
concepts,	basics	and	skills.

	

Once	your	skills	in	a	programming	language	are	sufficient,	you	will	find	that	transferring
that	 knowledge	 to	 another	 language	 is	much	 easier.	 Since	 Python	 is	 one	 of	 the	 easiest
programming	languages	I	know,	I	suggest	that	most	aspiring	programmers	and	beginners
start	their	journey	by	using	this	programming	language.	It	shouldn’t	take	you	too	long	to
understand	Python	provided	you	are	willing	to	put	the	time	and	effort	required.

	

While	 there	 are	 differences	 between	 object	 oriented	 programming	 languages	 (and	 other
languages),	they	are	for	the	most	part	very	similar,	with	transferable	skills	and	concepts.

	

This	guide	walks	you	through	all	of	the	basic	concepts	for	programming	in	Python,	and	is
meant	to	be	a	guide	that	helps	you	to	learn	the	basics	and	expand	your	skills.

	

Python	 is	 a	 rapidly	 growing	 language	 that	 is	 used	 by	 some	 of	 the	 largest	 corporations
around	the	world.	Python	programmers	are	 in	high	demand,	a	 trend	which	will	continue
moving	forward.	The	best	part	is	that	you	can	master	this	language	within	a	few	days.	This
programming	 language	 is	 an	 excellent	 language	 for	 anyone	 wanting	 to	 jump	 into
programming	right	away.

	

	

	

BONUS
	

INTRODUCTION
	

Coding	is	like	a	game	of	chess,	only	grander,	and	with	chances	of	undoing	moves.		Like
chess,	coding	relies	on	a	select	set	of	moves	(think	statements	and	functions)	and	a
problem	that	has	to	be	resolved	by	playing	those	moves	until	the	goal	is	reached.

For	new	programmers	the	task	of	understanding	the	problem,	breaking	it	down,	creating	a
strategic	coding	plan,	and	then	playing	the	statements	to	process	the	goal	can	become
daunting.

Given	how	fast	paced	the	app	development	process	are:	with	short	deadlines,	and	reliant
on	agile	development	with	continuous	update	of	project	description,	coders	that	write
clean	codes	are	the	first	choice	for	contractors.	Then	again,	clean	and	easily	readable	code
is	faster	to	debug.

	

This	guide	will	hand	over	various	tools,	device,	and	tips	that	will	help	you	write	better	and
faster	code.

	

As	a	result,	you	can	spend	less	time	on	your	code,	deliver	results	faster,	gain	better
reviews	and	feedback	from	the	clients,	and	build	a	more	robust	portfolio.

Writing	Code
Programming	is	more	an	art	than	a	rigid	science	—the	reason	why	so	many	large	projects
fail	 to	get	off	the	ground	or	work.	But	as	with	any	modern	practice,	 time	and	a	sense	of
finding	scientific	rules,	has	brought	to	the	coding	world	various	tried	and	tested	methods
of	organizing	a	code	from	the	beginning.	Though	accomplished	programmers	create	their
own	unique	methodologies	for	writing	code,	new	programmers	are	well	advised	to	begin
with	some	of	the	more	streamlined	methodologies.

Some	of	the	prime	problems	that	you	can	face	during	that	time	is	deciphering	the	problem
right	 and	 starting	 out	 in	 the	 right	 direction	 for	 your	 coding	 journey.	 Coding	 is	 a	 long
journey	and	problems	in	anything	ranging	from	missing	a	coding	glitch	or	not	starting	out
in	the	right	manner	can	cause	serious	problems	for	everything	there	is	to	know	there.

This	 section	will	 highlight	 the	 various	methodologies	 currently	 being	 employed	 by	 the
programmers	and	will	help	you	overcome	any	problems	that	head	your	way.

	

Tested	Coding	Methodologies
New	 programmers	 should	 be	 aware	 of	 the	 multiple	 programming	methodologies	 being
employed	 by	 programmers.	 This	 will	 save	 you	 the	 trouble	 of	 employing	 absurd
methodologies	or	combining	multiple	methodologies.	Here’s	a	first	aid	box	for	starting	to
code	the	right	way	on	your	program.

	

Spaghetti	Programming
This	is	not	really	a	methodology,	but	result	that	new	programmers	achieve	with	ease	—a
tangled	mess	of	an	original	program	that	goes	through	multiple	modifications	to	make	it
work.	The	programmers	start	by	identifying	a	problem	and	creating	a	simple	program	for
resolving	a	part	of	the	problem	and	then	moving	ahead	with	multiple	modifications.	The
result	is	a	program	without	a	proper	flow,	but	that	somehow	works.

	

Structured	Programming
Keep	programs	organized	by	dividing	your	program	into	three	distinct	parts:

Sequences	-	Group	of	commands	that	the	machine	could	follow	consecutively

•							Branches	—	All	command	groups	that	have	a	condition	built	into	them,
causing	the	machine	to	follow	one	of	several	other	group	commands	over	others

▪							Loops	—		group	of	commands	dedicated	to	repeating	a	task	indefinitely	or	a
defined	number	of	times

	

Planning	the	program	beforehand	in	terms	of	the	sequences,	branches,	and	loops	is	best
suited	for	short	programs .

Top	Down	Programming
At	times	programs	get	lengthier	and	it	becomes	difficult	to	gain	a	panoramic	view	of	the
whole	program.	When	this	happens,	programmers	tend	to	break	the	program	into	multiple
blocks,	 each	 defined	 by	 the	 function	 it	 is	 supposed	 to	 perform.	The	 idea	 is	 that	writing
smaller	 chunks	 of	 programs	 is	 easier.	You	 start	 by	 identifying	 the	main	 tasks	 that	 your
program	must	perform	and	then	create	smaller	programs	for	each	task.	Finally,	you	paste
them	together	like	building	blocks	and	integrate	them	in	the	main.	This	makes	it	easier	to
find	and	modify	sub	programs	and	hence	make	a	better	program.

Event	-	Driven	Programming
Programming	where	 the	flow	is	determined	by	occurrence	of	events	 i.e.	 inputs	 from	the
user	 (touch,	 mouse	 clicks,	 key	 presses,	 etc)	 or	 inputs	 received	 from	 other	 threads	 or
programs.	Normally	 the	 program	 has	 a	main	 loop	 that	 is	 divided	 into	 two	 sections:	 an
event	detection	block	and	an	event	handler	block.	This	drastically	speeds	up	the	response
time	of	the	application	being	developed.

Object	Oriented	Programming
Currently	popular,	when	writing	a	code	using	this	methodology,	programmers	define	not
just	the	data	type	of	a	data	structure,	but	also	the	types	of	its	functions	that	can	be	applied
to	the	data	structure.	As	a	result,	 the	original	data	structure	becomes	a	standalone	object
with	data	and	 functions.	Later,	 the	programmer	can	code	 relationships	between	 two	and
more	objects	and	build	the	program	using	these	blocks.

	

The	 prime	 advantage	 of	 this	 programming	 method	 is	 that	 programmers	 can	 continue
creating	new	objects	without	having	to	make	any	change	to	any	module.

MAKING	READING	SIMPLER	–BEST
PRACTICES	FOR	WRITING
READABLE	CODES
Extensive	Documentation
Explain	your	work.		Add	comments	inside	programming	to	show	what	direction	you	are
taking:	what	a	group	of	commands,	or	a	chunk	of	code,	is	meant	to	do;	why	you’ve	added
it	 in	 the	 first	place,	and	more.	This	makes	 it	easier	 to	 read	your	code	and	see	how	each
chunk	of	program	connects	with	the	other.

Standardize	Indention	and	Naming	Schemes		
Indention	 makes	 it	 easier	 to	 skim	 through	 a	 program.	 It	 allows	 the	 reader	 to	 easily
differentiate	between	conditions/loops	and	the	code	that	is	relevant	to	them	or	outside	of
them.	Though	it	is	not	a	requirement	of	most	programming	languages,	it	will	allow	you	to
better	convey	the	structure	of	your	programs.

Employing	 a	 standard	 naming	 scheme	 for	 declaring	 variables,	 classes,	 functions,	 etc,
creates	symmetry	and	makes	it	easier	to	spot	a	problem	lines	away.	Two	popular	choices
include	 using	 underscores	 between	 strings/characters	 (e.g.	 first_variable_name),	 and	 in
case	of	not	leaving	spaces,	capitalizing	the	first	letter	of	every	word	except	the	first	word
(e.g.	firstVariableName)

Group	Codes
Use	comments	 to	 separate	blocks	of	code,	no	matter	how	small.	More	often	 than	not,	 a
task	requires	very	few	lines	of	code,	and	hence	can	become	easily	lost	in	the	sea	of	code.
To	prevent	this	from	happening,	simply	create	separate	blocks	by	adding	a	space	followed
by	a	short	comment	before	the	start	of	the	block.

Do	No	Evil
Often	known	as	 the	DIE	(Duplication	 is	Evil)	and	DRY	(Don’t	Repeat	Yourself),	 it	 is	a
principle	 that	 reminds	 programmers	 of	 the	 fundamental	 purpose	 of	 writing	 codes:	 to
automate	repetitive	tasks.	In	a	phrase,	the	same	piece	of	code	should	never	be	repeated	in
your	code.

Set	a	Line	Limit
Make	it	easier	to	read	your	code.	Avoid	writing	lengthy	horizontal	codes.	Standardize	the
characters	 you	want	 for	 a	 single	 line	 of	 code	 then	 break	 the	 line	 and	 start	 in	 the	 next.
Writing	 codes	 in	 vertical,	 column	 like	 (newspaper	 like),	 form	 makes	 reading	 more
comfortable	for	our	eyes.

Select	the	Right	Methodology
Nowadays,	object	oriented	programming	is	a	norm	for	creating	well-structured	programs.
But	at	times,	structured	and	procedural	programming	can	prove	beneficial.	A	good	rule	of
thumb	is	to	use	objects	when	data	representation	is	involved	(e.g.	data	from	a	database),
whereas,	 structured	 programming	 may	 be	 use	 for	 tasks	 that	 can	 be	 performed
independently.

SOLOMON	ON	DEBUGGING	–BEST
PRACTICES	FOR	DEBUGGING
CODES
The	9	Rules	of	Debugging
Dave	Agans,	near	legend	software	developer	and	holder	of	various	customary	titles,	once
stumbled	upon	the	Wisdom	of	Solomon	(while	Solomon	was	debugging	programs).	Here
are	the	9	rules	that	will	get	you	through	any	debugging	trouble	you’re	likely	to	face.

▪							Understand	the	system

▪							Make	it	fail

▪							Quit	thinking	and	look

▪							Divide	and	conquer

▪							Change	one	thing	at	a	time

▪							Keep	an	audit	trail

▪							Check	the	p	lug

▪							Get	a	fresh	view

▪							If	you	didn’t	fix	it,	it	ain’t	fixed

Let’s	see	each	in	brief:

Rule What	You	Need	to	Do

Understand	the
system

	

This	holds	true	especially	in	case	you	are	working	with	a
code	that’s	running	on	a	specific	platform	or	device.

	

•							Understand	how	the	system	processes	the	code	by
thoroughly	reading	the	instruction	manual.

•							Know	the	roadmap	for	the	code.	You	must	know
what	functions	are	where	and	how	the	coding	blocks
and	interfaces	do.

•							Know	the	tools	you’ll	be	using	and	how	they
debug.

Learn	all	the	instances	where	the	program	fails.	This	lets

Make	It	Fail

you	focus	on	hypothesizing	for	probable	causes.	It’s	like
knowing	how	you	can	make	a	sane	program	generate	the
same	error	again.		But	don’t	rely	on	this	if	the	problem	is
intermittent	i.e.	it	happens	only	once	in	a	while.

In	 case	 of	 intermittent	 failures,	 check	 for	 uninitialized
data,	 multi-thread	 synchronization,	 timing	 variations,
random	data	input,	etc.

Quit	thinking
and	look

The	worst	 thing	you	can	do	 is	 to	 rely	on	your	 intuition.
Guesswork	 is	 a	 capital	mistake.	 It	makes	 you	 twist	 the
debugging	 process	 to	 verify	 or	 falsify	 your	 guesswork.
It’s	a	waste	of	time,	and	most	of	the	code	you’ve	changed
will	end	up	creating	more	trouble	later.

•							See	the	error	occur	in	person

•							Find	the	details.	Don’t	guess	which	code	block	is
the	culprit,	find	the	lines.

•							Guess	only	to	focus	the	research.

Divide	and
conquer

It’s	hard	for	the	bug	to	remain	hidden	if	 its	hiding	place
keeps	getting	cut	in	half.

Find	 the	 problem	 by	 narrowing	 the	 search	 with
successive	 approximation	 i.e.	 find	 the	 range	 of
possibilities	where	the	bug	could	have	occurred.	Start	on
the	worst	hit	parts	and	fix	the	bugs	that	clearly	shout	out
their	 presence.	Don’t	 forget	 to	 fix	 the	 small	 noisy	 bugs
that	make	the	system	go	haywire.

Change	one	thing
at	a	time

Make	 the	process	predictable.	Remove	any	changes	you
made	that	did	not	return	the	expected	result.	Your	task	is
to	isolate	the	key	factor,	and	understand	it	before	pulling
the	guns	on	it.

Keep	an	Audit
Trail

Make	not	of	what	did,	in	the	exact	order	as	you	did,	and
what	happened	when	you	did	it.	Always	correlate	events,
and	no	matter	how	horrible	the	moment,	note	it	down.

Check	the	Plug
Avoid	falling	into	the	trap	of	obvious	assumptions.	They
often	 prove	 to	 be	 wrong.	 Always	 question	 your
assumptions	by	checking	them	for	bugs	in	the	first	place.

Take	 a	 break.	 Don’t	 shy	 away	 from	 asking	 for	 help	 or

Get	a	fresh	view
asking	 for	 insights	 from	 others.	 Bugs	 happen,	 and	 your
task	should	be	to	take	pride	in	getting	rid	of	them,	and	not
“getting	rid	of	them	yourself!”

If	you	didn’t	fix
it,	it	ain’t	fixed

Test	 and	 retest,	 and	 verify	 if	 it’s	 really	 fixed.	 Keep	 in
mind	that	a	bug	never	goes	away	on	its	own.	If	you	think
you’ve	 fixed	 it,	 take	out	 the	audit	book	and	make	 it	 fail
like	it	never	went	away	yourself.

	

	

The	80/20	Rule
80%	of	the	results	come	from	20%	of	effort	and	80%	of	effects	come	from	20%	of	causes.

Period.

The	80/20	rule	states	that	80%	of	the	results	come	from	20%	of	the	causes,	and	20%	of	the
results	come	from	80%	of	the	causes.	This	rule	is	also	known	as	the	Pareto	principle.

	

Various	examples	of	this	rule	are	floating	around	the	marketplace.	Here	are	the	ones	that
relate	to	the	development	process:

▪																																																																																																										80%	of	the	code	is	running	20%	of	the
runtime.

▪							20%	of	the	code	is	running	80%	of	the	runtime.

	

This	means	that	whatever	code	you	have	with	you	right	now,	and	which	needs	debugging,
has	 a	 small	 part	 that	 is	 running	most	 of	 the	 time,	 but	 a	 bigger	 chunk	 of	 it	 that	 is	 nor
running	all	the	time.

Coding	Lesson:	 You	 should	 not	 assume	 that	 debugging,	 or	 project’s	 progress,	 is	 ever
linear.

[EXAMPLE]

Become	Disciplined
Approach	debugging	as	a	process,	 and	not	a	 series	of	 random	 trial	 and	error	 steps.	You
can’t	count	on	your	luck	by	tweaking	some	knobs	in	the	code	and	hope	to	stumble	on	the
bug.	 Rather,	 make	 it	 a	 habit	 to	 follow	 the	 code’s	 execution	 process.	 Is	 the	 first	 block
getting	the	input	that	it	needs	to	produce	an	output	for	block	B?	Yes?,	move	on.	No?	Start
digging.

Debug	Other	People’s	Code
Coding	 is	 like	 communicating	 your	 opinionated	 solutions	 to	 a	 problem.	 It	 always	 has
some	assumptions,	and	which	most	likely	causes	errors	to	occur.	If	you	find	yourself	stuck
at	 debugging	 your	 own	 code,	 take	 a	 whiff	 of	 someone	 else’s	 code	 (think	 cross-peer
debugging	and	cross-peer	code	reviews).	By	debugging	someone	else’s	code,	it		becomes
easier	 to	 figure	 out	 assumptions	 that	 other	 people	 have	made.	This	 in	 turn	 can	bring	 to
light	some	of	the	ones	that	you	had	left	out	during	your	debugging	process.	Furthermore,
peer-review	debugging	sharpens	your	ability	to	pinpoint	common	causes	of	defects	more
quickly,	 and	 as	 a	 result	 teaches	 you	 to	 recognize	 (and	 abandon)	 your	 own	 bad
development	practices.

Think	like	a	Compiler
This	is	something	that	must	be	done	before	you	hit	the	compile	button.	This	is	an	exercise
in	 correcting	 as	many	 errors	 before	 you	 let	 the	 IDE’s	 integrated	 debugger	 to	 create	 the
program.	 The	 fact	 of	 the	 matter	 is	 that	 you’ll	 learn	 less	 from	 compiler’s	 automation
whereas	 by	 consciously	 examining	 the	 process	 will	 give	 you	 more	 depth	 to	 the	 basic
debugging	process,	and	hence	common	errors.

Debug	the	System	and	not	Part	of	Blocks	of	Code
It’s	a	mistake	to	start	debugging	by	focusing	only	on	part	the	code.	Always	pay	attention
to	the	interrelationships	between	modules,	which	is	only	possible	if	you	have	internalized
the	 “9	 rules	 of	 debugging”mentioned	 earlier.	 A	 rule	 of	 thumb	 is	 to	 read	 the	 code	 at
multiple	 levels	 of	 abstraction	 i.e.	 spend	 time	 understanding	what	multiple	 pieces	 of	 the
code	are	actually	doing	together.

CODE	BLUNDERS	–AVOIDING	THE
FATAL	MISTAKES
Over	 the	 years,	 programmers	 have	 come	 to	 acknowledge	 some	 common	 mistakes	 that
brings	 home	 the	message:	 it’s	 not	 about	 how	accomplished	you	 are.	Here	 are	 the	 top	8
mistakes	that	are	made	often	and	which	can	trouble	your	to	no	end:

Undeclared	Variables

int	main()

{

		cin>>b;

		cout<<b;

}

	
In	the	above	code,	the	variable	“b”has	not	been	declared.	There	is	no	memory	location	for
that	variable,	and	hence,	the	compiler	cannot	send	or	fetch	information	from	the	location
“b”.	This	is	rectified	in	the	code	below:

int	main()

{

		int	b;

		cin>>b;

		cout<<b;

}

	

	

Uninitialized	Variables
	

Not	all	languages	automatically	initialize	a	declared	variable	to	zero	e.g.	C++

int	variable;

while(variable<100)

{

		cout<<variable;

		variable++;

}

	

The	 above	 program	 will	 not	 enter	 the	 loop	 because	 the	 integer	 variable	 has	 not	 been
assigned	a	fixed	initial	value.

Hence	 the	 program	 would	 print	 all	 numbers	 within	 int	 range.	 Always	 remember	 to
initialize	your	variables.

int	variable	=0;

while(variable<100)

{

		cout<<variable;

		variable++;

}

	
Assigning	a	Variable	to	an	Uninitialized	Variable
	

Look	at	the	code	below	where	two	integers	are	added

int	y,	z;

int	add=y+z;

cout<<“Enter	the	two	numbers	you	want	to	add:	“;

cin>>y;

cin>>z;

cout<<“The	answer	is:	“<<add;

	

	

The	result	of	this	program	will	be	garbage	values	because	the	compiler	does	not	know	the
basic	 equations	 like	 we	 do.	 Once	 you	 have	 assigned	 a	 value	 to	 a	 variable,	 that	 value
remains	till	the	end	of	times	unless	you	reassign	them.	In	the	example	program,	because	y
and	z	 are	 not	 initialized,	add	will	 always	 equal	 some	unknown	number	no	matter	what
number	you	decide	to	input.	

Here’s	the	fixed	code:

int	y,	z;

	

int	add;	//initialized//

cout<<“Enter	the	two	numbers	you	want	to	add:	“;

cin>>y;

cin>>z;

sum=y+z;

cout<<“The	answer	is:	“<<add;

	

Undeclared	Functions
	

int	main()

{

		something();

}

void	something()

{

		//…

}

	

What	is	something?	Unknown	error.

You’re	assuming	that	the	compiler	will	dig	out	information	on	what	and	who	menu()	is.	It
won’t,	not	unless	you	declare	it	yourself.	Always	remember,	either	enter	a	prototype	for	a
function,	or	define	it	in	full	above	o	before	the	first	time	you	give	a	run	for	the	memory.

void	something();

int	main()

{

		something();

}

void	something()

{

		…

}

	

Will	know	what	something	is	like	it’s	best	bud.

Adding	Extra	Semicolons
	

int	trying;

	

for(trying=0;trying<100;trying++);

		cout<<trying;

	

Output	is	100.	Always.

Semicolons	have	no	place	after	loops,	if	statements,	and/or	definitions	of	functions.

int	trying;

	

for(trying=0;	trying<100;	trying++)

		cout<<trying;

	

Overstepping	Your	Array	Boundaries
	

There	are	limits	that	you	must	never	cross:

int	array[25];

	

//…

	

for(int	boundaries=1;	boundaries<=10;	x++)

	

		cout<<array[boundaries];

	

Where	are	correct	values?	Lost	in	the	digital	void…

Arrays	begin	indexing	at	0	and	they	always	end	their	indexing	at	length-1.	Period.		Hence
if	you	place	a	25	element	array,	then	the	first	position	is	at	zero	and	the	last	one	is	at	24.
So	if	you	want	to	see	your	buddy	“25”:

int	array[25];

	

//…

for(int	boundaries=0;	boundaries<10;	boundaries++)

		cout<<array[boundaries];

	

	

Misusing	the	operators:	||	and	&&
	

int	value;

do

{

		//…

		record=	27;

}while(!(record==27)	||	!(record==43))

	

This	code	makes	the	program	loop	round	like	a	record	baby…

The	only	time	that	the	while	loop	in	the	above	can	be	wrong	is	when	both	record==27	and
record==43	are	true,	and	as	a	result	cause	the	negation	of	each	to	be	false	i.e.	making	the	||
operation	return	false.

The	 code	 above	offers	 a	 tautology:	 it	 is	 always	 true	because	 the	record	can	never	 hold
both	the	values	at	the	same	time.	Hence,	if	the	program	was	suppose	to	only	loop		when
the	value	entered	for	record		was	neither	27	nor	43,	then	it	is	necessary	to	use:

&&	:	!(record==27)	&&	!(record==43).

This	means	“if	record	is	not	equal	to	27	and	record	is	also	not	equal	to	43”.

Programmers	 often	 mistake	 this	 logic	 by	 stating	 it	 as	 it	 is	 “this”	 or	 “that”,	 while
completely	ignoring	that	the	“other	than”		also	applies	to	the	entire	statement	and	the	two
terms	individually.	This	means	you	need	to	revisit	the	basics	of	Boolean	algebra	here!

No	matter,	the	proper	way	to	write	the	program	is	as	follows:

int	record;

	

do

{

		//…

		record=27;

}while(!(record==27)	&&	!(record==43))

	

WHAT	EVERY
PROGRAMMER/CODER	MUST	HAVE
Tools	for	Boosting	Productivity

Tool Function

WorkRave

Programming	is	“all-consuming”and	it’s	easy	to	get	caught
up	in	the	work.	Though	not	a	bad	thing,	working	all	day	on
a	computer	can	 start	 affecting	your	health	and	well-being.	
WorkRave	forces	you	to	take	mini-breaks	for	your	eyes	and
wrists.	After	a	set	time	period,	the	program	reminds	you	to
give	yourself	a	rest,	grab	a	coffee,	take	a	stroll,	or	any	other
non-computer	related	task.

Blinklist
A	 real	 computer	 geek	 is	 rarely	 satisfied	 with	 only	 one
computer.	 True	 that,	 but	 syncing	 multiple	 machines	 is	 a
pain.	Blinklist	makes	it	easier	to	share	bookmarks	as	well	as
note	from	anywhere.

CCleaner

Make	 your	 computer	 a	 lean	 mean	 development	 machine
with	this	gig.	Using	your	computer	for	extended	periods	can
lead	 to	 accumulation	 of	 a	 lot	 of	 junk.	 It	 slows	 it	 down.
CCleaner	 is	 the	software	 that	keeps	your	computer	registry
and	 other	 useless	 space	 hogging	 programs.	 Being	 on	 your
computer	all	 the	time	can	lead	to	the	accumulation	of	a	 lot
of	junk	that	can	slow	you	down.

EditPad
Pro

It’s	hard	to	imagine	a	programmer	who	has	not	relied	on	the
Notepad	to	do	some	of	their	work.	After	all,	it’s	simple	and
gets	 the	 job	 done.	 EditPad	 Pro	 kicks	 the	 functionality
several	 notches	 up.	 It	 grants	 you	 the	 ability	 to	 switch
between	 files	 using	 tabs.	 It	 also	 offers	 a	 kind	 of	 “back	 in
time”feature	 that	 lets	 you	 return	 to	 your	 previous	 editing
position.	Never	lose	your	place	with	this	tool!

Filezilla
FTP	is	an	incredibly	useful	tool	for	uploading	websites	and
sharing	 files.	 Filezilla	 is	 your	 free	 FTTP	 tool	 offering
standard	features	like	drag	and	drop,	resume,	among	support
for	a	variety	of	transfer	protocols.

http://www.workrave.org
http://www.blinklist.com
http://www.editpadpro.com/editpadlite.html
http://filezilla.sourceforge.net

Inspector
File

Recovery

It	happens	to	even	the	best	of	us:	we’re	working	happily	on
a	project	and	forget	to	save	a	file,	or	horrifyingly	“SHIFT	+
DELETE”and	 later	 realize	how	 important	 it	was.	 Inspector
File	 Recovery	 is	 the	 answer	 to	 all	 such	 day-mares	 and
nightmares.	 This	 program	 can	 bring	 the	 files	 from	 the
depths	 of	 the	 recycle	 bin	 even	 when	 your	 boot	 sector	 is
damaged	and	headers	are	missing.	Save	your	heart	the	shock
and	download	it	today!

KeePass
Forget	your	passwords?	Perhaps	because	you	have	so	many
of	them?	KeePass	makes	brain	cramps	of	such	a	thing	of	the
past.	 It	 can	 keep	 track	 of	 all	 your	 passwords	 and	make	 it
easier	to	remember	just	one	password.

MediaMax

No	matter	how	many	terabytes	you	have	on	your	computer,
you	can’t	call	it	unlimited,	or	even	risk	free.	Give	yourself	a
storage	boost	of	up	 to	25	GB	with	MediaMax,	a	free	web-
based	app	called	MediaMax.

Plaxo
Keep	your	contact	 information	updated	and	synched	on	all
your	smart	devices	with	Plaxo.	It	automatically	updates	any
contact	information	that	you	update	in	your	email	client	by
storing	it	(and	updating	it)	on	Plaxo’s	servers.

Ta-Da	List

Staying	 orderly	 when	 the	 programs	 wont	 debug	 the	 right
way	can	become	challenging	 even	 for	 the	most	 diligent	 of
workers.	 Ta-Da	 List	 helps	 you	 out	 by	 keeping	 all	 your
written	tasks	in	order	and	accessible	from	any	computer	you
use.

http://www.pcinspector.de/sites/file_recovery/info.htm?language=1
http://keepass.sourceforge.net
http://plaxo.com
http://www.tadalist.com

Tools	for	Better	Project	Management
	

Tool Function

Wunderlist

A	wonderfully	simple	and	basic	task	management	and	to-do
list	application.	It	allows	you	to	create	multiple	to-do	lists,
create	 detailed	 tasks,	 add	 reminders,	 and	 more.	 It	 also
allows	you	to	sync	your	 tablets,	smartphones,	 laptops,	and
PCs.	 The	 paid	 pro	 tier	 allows	 addition	 of	 sub-tasks,
emailing/printing,	and	sharing	tasks	to	other	workers.

Remember
the	Milk

Another	 basic	 task	 management	 app	 that	 offers	 extensive
online	 support	 through	 their	 website	 as	 well	 as	 iOS,
Android,	 and	Blackberry	 apps.	You	 can	 easily	 integrate	 it
with	your	existing	Twitter,	Gmail,	and	Outlook	accounts	as
well	as	Evernote	and	Google	Calendar.

The	app	will	 remind	you	 through	email,	 instant	messages,
and	texts	about	your	priorities	and	tasks.	Furthermore,	you
can	even	share	 the	 tasks	or	decide	 to	manage	 them	offline
as	well.

Toodledo
This	 is	 a	 full	 feature	 task	 management	 app	 with	 hotlist
features	 for	 determining	 your	 high	 priority	 tasks,	 fine
tuning	 of	 your	 tasks,	 and	 multiple	 filters,	 and	 a	 robust
scheduler	for	planning	your	days	(alarm	included)

Producteev

This	 offers	 a	 big	 picture	 view	 of	 your	 tasks.	 It	 is	 a	 good
solution	if	you	need	to	manage	tasks	for	multiple	people	but
are	not	ready	for	a	full-blown	management	software.	Create
teams	 and	 assign	 tasks	 and	 deadline;	 add	 notes,	 track
progress,	 and	 various	 other	 options	 to	 gain	 a	 panoramic
view	of	the	entire	process.

Google
Tasks

This	service	streamlines	task	management	and	is	best	suited
if	you	are	heavily	 reliant	on	Gmail	or	Google	Calendar	 in
your	 day	 to	 day	workflow.	 Tasks	 adds	 a	 task	 list	 to	 your
Gmail.	 It’s	 easily	 accessible,	 and	 lets	 you	 convert	 emails
into	 tasks	 as	 well	 as	 import	 new	 tasks	 into	 Google
Calendar.

	

https://www.wunderlist.com/
http://www.rememberthemilk.com/
http://www.toodledo.com/index.php
https://www.producteev.com/
https://mail.google.com/mail/help/tasks/

WHAT	EVERY	PROGRAMMER	MUST
KNOW
	

The	Programmer’Bill	of	Rights
	

Experts	 have	 long	 concluded	 that	 working	 conditions	 that	 are	 normally	 available	 for
programmers,	 no	 matter	 how	 high	 their	 salary	 package	 is,	 cripple	 them.	 Hence,	 Jeff
Atwood,	 coder	 and	 programmer	 incarnate	 brought	 the	 coding	 world	 a	 preposition	 for
adopting	a	Bill	of	Rights	for	programmers.	It	includes	things	that	programmers	must	not
be	denied:

▪							Every	programmer	shall	have	a	fast	PC

	

▪							Every	programmer	shall	have	two	monitors

	

▪							Every	programmer	shall	have	their	choice	of	mouse	and	keyboard

	

▪							Every	programmer	shall	have	a	comfortable	chair

	

▪							Every	programmer	shall	have	a	fast	internet	connection

	

▪							Every	programmer	shall	have	quiet	working	conditions

	

Programming	 requires	 focused	 mental	 concentration.	 Programmers	 cannot	 work
effectively	 in	 an	 interrupt-driven	 environment.	 Make	 sure	 your	 working	 environment
protects	 your	 programmers’	 flow	 state,	 otherwise	 they’ll	 waste	 most	 of	 their	 time
bouncing	back	and	forth	between	distractions.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

FREE	Guru	Level	Training	For	Beginners
(Value	$37	per	month,	Yours	FREE)	

	

	

	

	

	

	

https://spsuccess.clickfunnels.com/techgift

	Introduction
	Chapter 1: Jumping into Python
	Chapter 2: Getting Started
	Chapter 3: Building Our First Programs
	Chapter 4: Lists and Tuples
	Chapter 5: Functions
	Chapter 6: Classes & Objects
	Chapter 7: Importing Modules
	Chapter 8: File I/ O
	Chapter 9: Error Handling
	Conclusion
	BONUS INTRODUCTION
	MAKING READING SIMPLER –BEST PRACTICES FOR WRITING READABLE CODES
	SOLOMON ON DEBUGGING –BEST PRACTICES FOR DEBUGGING CODES
	CODE BLUNDERS –AVOIDING THE FATAL MISTAKES
	WHAT EVERY PROGRAMMER/ CODER MUST HAVE
	WHAT EVERY PROGRAMMER MUST KNOW

