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Preface

The purpose of the present book is to use the phase-integral approx
imation of arbitrary order generated from an unspecified base func
tion, which is described in Chapter 4, in a systematic treatment of the 
Stark effect for a hydrogenic atom or ion in a homogeneous electric 
field. Previously the Carlini1 (JWKB) approximation has often been 
used to treat this problem, and there have many times appeared dis
crepancies between results obtained by the use of that approximation 
and accurate numerical results. As has been pointed out in particu
lar by Farrelly and Reinhardt (1983) the reason for this is in general 
not that the approximation method is inadequate, but that it has 
often been used incorrectly. When it is used in an appropriate way, 
the discrepancies disappear, and one often obtains highly accurate 
energies for the Stark problem already in the first-order approxima
tion. This conclusion applies, even to a larger extent, to the approach 
based on the still more efficient phase-integral approximation of arbi
trary order generated from an unspecified base function, which for 
the Stark effect in hydrogenic atoms or ions yields analytical formu
las expressed in terms of complete elliptic integrals, which can be 
evaluated efficiently by means of standard computer programs.

In Chapter 8 a large number of phase-integral results are com
pared to results obtained by other methods. Of the 198 different 
states discussed there, which correspond either to different quantum 
numbers or to the same quantum numbers but different electric field

1 As regards the motivation for the name Carlini approximation we refer to Froman 
and Proman (1985) or to Chapter 1 in Froman and Froman (2002).
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strengths, the phase-integral energy values are judged to be at least 
as accurate as the results obtained by other methods in more than 
half of the cases. It may also be mentioned that, compared to the 
results obtained by other methods, the phase-integral energy values 
can contain up to six more digits.

We would like to thank Professor R. J. Damburg and 
Professor V. V. Kolosov for valuable correspondence and Professor 
M. Lakshmanan for letting us share his experience concerning elliptic 
functions and elliptic integrals. The results presented in Chapter 7 
and Chapter 8 could not have been obtained without Research Engi
neer Anders Hokback’s first-class work. We are also indebted to him 
for having drawn the figure in Chapter 1 with the use of a computer 
program. During decades we have had the privilege of having close 
contact with Professor Ulf Uhlhorn and have profited very much from 
his great scientific knowledge. Concerning the present book we have 
had many useful discussions with him. In particular he has helped us 
to draw the figures in Chapter 5 with the use of a computer program.

Nanny Froman 
Per Olof Froman
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Chapter 1 

Introduction

Since the Schrodinger equation for a hydrogenic atom or ion in a 
homogeneous electric field is separable in parabolic coordinates, the 
system is more easily accessible to an accurate theoretical treatment 
than other atoms or ions in electric fields. Furthermore, a Rydberg 
state of any atom or ion, i.e., a state in which one electron is in 
a highly excited state and the nucleus is shielded by the core of 
the other electrons, resembles a hydrogenic state in the sense that 
a single electron moves far away from an ionic core and does not 
penetrate into the core unless the magnetic quantum number m is 
small enough. Such an atom or ion is thus approximately hydrogenic. 
In the interstellar space there occur very highly excited Rydberg 
atoms, with values of the principal quantum number of the valence 
electron of the order of magnitude of one hundred. They are therefore 
closely hydrogenic and may be exposed to strong electric fields. With 
the ever increasing accuracy and sofistication of experiments the need 
for accurate analytical methods of analysis will increase, and the 
treatment of the Stark effect in hydrogenic atoms or ions may serve 
as a model problem for the treatment of Rydberg states. Thus, apart 
from the intrinsic interest of its own, the Stark effect problem for a 
hydrogenic atom or ion plays the role of a model problem, from which 
one can obtain information about the properties of Rydberg states. 
For comprehensive reviews of the properties of Rydberg states, see 
Gallagher (1988, 1994).

The quasistationary nature of the Stark resonances, due to the fact 
that the energy eigenvalue spectrum of one of the coupled differential

1
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equations, resulting from the separation of the Schrodinger equa
tion in parabolic coordinates, is continuous, with wave functions 
extending to infinity, makes the hydrogenic Stark effect problem intri
cate in spite of its seeming simplicity.

B rie f review o f different aspects studied and various  
methods used

Precise experimental results on Stark levels in atomic hydrogen have 
been reported by many authors, and a great number of theoretical 
papers have appeared in which different methods are used for the 
study of the Stark resonances. Semi-classical methods are adequate 
for highly excited states and have been used by several authors. 
The Stark effect for levels well below the top of the barrier was 
treated with the aid of Carlini (JWKB) technique, although rather 
crudely, already in the early days of quantum mechanics. Later there 
appeared improved treatments of that kind, in which also levels near 
the top of the barrier were considered. Another important method 
for determination of the positions of the Stark levels is the Rayleigh- 
Schrodinger perturbation theory, but it is not applicable in low orders 
for highly excited states and strong fields. However, perturbation the
ory of the Stark effect in atomic hydrogen has been made tractable 
to arbitrarily high orders by a restatement of the perturbation the
ory formulas that allows the perturbation series to be obtained from 
recursive relations run on a computer. The perturbation series is not 
convergent but asymptotic, and Borel summation together with the 
use of Pade approximants greatly accelerates the approach towards 
accurate energy values and is an efficient tool for obtaining accu
rate results for the Stark effect. It will, however, not be discussed in 
this book, since we restrict ourselves to the use of the phase-integral 
approximation generated from an appropriately chosen base func
tion. This approach, which is capable of yielding explicit analytical 
formulas, is for the first time applied to the Stark effect in a system
atic way in this book.

There occur in the literature different ways of defining the posi
tions and the half-widths of the resonance levels. One finds defini
tions based on considerations of the probability amplitude, or based
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on the rapid variation of the phase shift with energy, as well as def
initions relating the real part of a complex energy eigenvalue to the 
position of the Stark level and its imaginary part to the width of 
the level. Different aspects of the last mentioned approach, i.e., the 
use of complex energy eigenvalues, and comparisons with different 
formulas for the half-width at low fields can be found in Yamabe, 
Tachibana and Silverstone (1977). For narrow levels the differing 
definitions yield essentially the same numerical results. However, for 
broad levels slightly below the top of the potential barrier and for 
autoionizing levels above the top of the barrier the differing defini
tions yield appreciable differences in the results. The broad levels are 
not of Lorentzian shape but are highly asymmetric, and hence the 
concept of half-width loses to some extent its precise meaning. As 
a consequence of this fact it is obvious that the methods based on 
complex energies are inadequate for broad levels.

The advent of tunable lasers created a radically new situation as 
to the possibility for selective excitation of high Rydberg states and 
for making precise measurements on their properties. Highly excited 
atoms are very sensitive to external fields, and currently used field 
ionization methods are very powerful for detecting Rydberg states. 
As a consequence of these circumstances, such an old problem as the 
Stark effect in atomic hydrogen attracted a renewed interest.

B rie f account o f the background o f this book

Papers concerning the Stark effect of a hydrogenic atom in a homo
geneous electric field appeared already in the early days of quan
tum mechanics. On the basis of the matrix mechanics invented 
by Heisenberg (1925), Born and Jordan (1925), Dirac (1925), and 
Born, Heisenberg and Jordan (1926), Pauli (1926) obtained for the 
spectrum of the hydrogen atom and for the Stark effect of that 
atom results that agreed with experimental data. In connection 
with his development of wave mechanics Schrodinger (1926) made 
an application to the Stark effect in atomic hydrogen. He sepa
rated the time-independent Schrodinger equation for the problem 
in question in parabolic coordinates and used first-order perturba
tion theory to treat the two resulting ordinary differential equations.
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In the paper where Wentzel (1926) presented his rediscovery of the 
Carlini (JWKB) approximation, he applied this approximation to 
the treatment of the two ordinary differential equations just men
tioned. Waller (1926) treated instead these two ordinary differential 
equations by expressing their solutions with the use of series expan
sions in powers of the field strength. By successive approximations he 
obtained a second-order formula for the energy levels of a hydrogen
like ion in a homogeneous electric field. Only slightly later Epstein 
(1926) also presented a theory for the Stark effect in a hydrogen
like ion, based on the time-independent Schrodinger equation, which 
he, after separation in parabolic coordinates, treated by successive 
approximations and obtained results up to the second order in the 
electric field strength. Van Vleck (1926) used the formula for the 
energy levels of a hydrogen atom in an electric field, obtained inde
pendently by Waller and Epstein, to calculate the dielectric constant 
of atomic hydrogen. The Stark effect in hydrogenic atoms or ions 
was thus treated by means of quantum mechanics very soon after its 
discovery.

Oppenheimer (1928) developed a method for computing the proba
bilities for transitions between states of the same energy, represented 
by almost orthogonal eigenfunctions, and applied the resulting for
mula to treat the ionization of hydrogen atoms in a homogeneous 
electric field. Somewhat later Lanczos (1930a, 1930b) treated the 
Stark effect for a hydrogen atom in a strong electric field by deriv
ing an approximate asymptotic solution for the one of the previ
ously mentioned ordinary differential equations that has a continuous 
energy spectrum. He pointed out that the Stark levels are not sharp 
but have a finite width which he discussed. Lanczos (1930c) also 
improved the method of asymptotic treatment of the Stark effect for a 
hydrogen atom, with the magnetic quantum number m equal to zero, 
in a strong electric field. The asymptotic method he used is closely 
related to the first order of the Carlini (JWKB) approximation along 
with Jeffreys’ (1925) connection formulas for that approximation, the 
one-directional validity of which is, however, not discussed. For the 
positions of the Stark levels Lanczos arrived at a quantization con
dition of the Bohr-Sommerfeld type, which he expressed in terms 
of complete elliptic integrals of the first and second kind. He also
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discussed the breakdown of perturbation treatments for strong elec
tric fields. On the basis partly of the time-independent and partly of 
the time-dependent Schrodinger equation, Lanczos (1931) discussed, 
although in a not quite clear way, the weakening of the intensities 
of the spectral lines and the ionization of atomic hydrogen in strong 
electric fields. For the disintegration constant he obtained an expres
sion in terms of complete elliptic integrals of the first and second 
kind.

Publications with relevance to this book

We shall consider mainly publications in which asymptotic meth
ods are used, but we also mention numerical methods, since we use 
numerical results for comparison with our phase-integral results. For 
a general review of the field we refer to Bethe and Salpeter (1957), 
Ryde (1976), Bayfield (1979), Koch (1981), Gallas, Leuchs, Walther 
and Figger (1985), Lisitsa (1987) and Gallagher (1988, 1994).

Rice and Good (1962) calculated the positions of the Stark lev
els of atomic hydrogen in a homogeneous electric field by using the 
Carlini (JWKB) approximation combined with comparison equation 
technique for the treatment of the time-independent Schrodinger 
equation separated in parabolic coordinates. They considered in 
particular the case when the energy lies close to the top of 
the barrier. For the positions of the energy levels the authors 
obtained quantization conditions expressed in terms of complete 
elliptic integrals of the first and second kind. Furthermore, they 
improved Lanczos’ (1930b, 1930c, 1931) estimate of the depen
dence of the lifetime on field ionization and calculated also the half
width of the Stark levels. Thus they obtained formulas for the 
lifetime and the half-width of the Stark levels in terms of com
plete elliptic integrals of the first and second kind. Due to a need 
for explicit values of the ionization probabilities up to very high 
energy levels, several electric field ionization probabilities for a hydro
gen atom in an electric field were calculated by Bailey, Hiskes and 
Riviere (1965) by the methods of Lanczos (1931) and Rice and 
Good (1962). The results were presented graphically and in a table. 
Guschina and Nikulin (1975) calculated the resonance energy and the
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decay probability for a particular quasistationary state of a hydro
gen atom in a homogeneous electric field by numerical integration 
of the two coupled differential equations obtained by separation of 
the time-independent Schrodinger equation in parabolic coordinates. 
The values obtained for the resonance energy agree perfectly with 
values obtained by Rayleigh-Schrodinger perturbation theory up to 
the fourth power in the electric field strength and rather well with 
values obtained by Bailey, Hiskes and Riviere (1965). The values of 
the decay probability agree rather well with those obtained by Bai
ley, Hiskes and Riviere (1965). To solve the two differential equations, 
obtained by separation in parabolic coordinates of the Schrodinger 
equation for a hydrogenic atom in a homogeneous electric field, 
Bekenstein and Krieger (1969) used the Carlini (JWKB) approx
imation and derived quantization conditions in the fifth order of 
that approximation. From these quantization conditions the authors 
obtained for the positions of the Stark energy levels a series up to 
the fourth power of the electric field strength. This series agrees, for 
those states for which comparison could be made, with the corre
sponding series obtained by perturbation theory. The general con
clusion of Bekenstein and Krieger seems to be that the use of the 
Carlini (JWKB) approximation is superior to the use of perturba
tion theory for all Stark levels of a hydrogenic atom. Alliluev and 
Malkin (1974) derived the perturbation series for the Stark effect of 
atomic hydrogen up to the fourth power of the electric field strength. 
They find that their result is in complete agreement with the results 
of previous authors up to the third-order correction. Although they 
find a disagreement in their fourth-order correction with the result 
obtained by Bekenstein and Krieger (1969), they express the opinion 
that the correct Carlini (JWKB) approximation and perturbation 
theory lead to identical results in the case of weak electric fields. 
Furthermore, Alliluev and Malkin (1974) quote Basu’s (1934) result 
for the fourth-order correction, which is published in a journal that 
is almost inaccessible, and point out that his fourth-order formula 
contains errors. Herrick (1976) confirms on page 3534 that Alliluev 
and Malkin (1974) corrected errors in both the Basu (1934) for
mula and in the WKB expansion of Bekenstein and Krieger (1969). 
Yamabe, Tachibana and Silverstone (1977) developed the theoiy of
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the ionization of a hydrogen atom in an electric field analytically 
and corrected Oppenheimer’s (1928) formula for the ionization in a 
weak electric field. As a general conclusion of this and other results, 
the authors state that the field ionization of hydrogen is unsuspect- 
edly insidious, having left a legacy of errors. Drukarev (1978) cal
culated in the quasiclassical approximation the energies and widths 
of energy levels of a hydrogen atom in a homogeneous electric field. 
Later Drukarev (1982) considered the Stark effect when the energy 
level lies at the top of the barrier. Gallas, Walther and Werner 
(1982a) used the first-order Carlini (JWKB) approximation to treat 
the Stark effect in a hydrogen atom for arbitrary values of the mag
netic quantum number m. In the two coupled, ordinary differential 
equations, obtained after separation in parabolic coordinates, these 
authors erroneously replaced m2 — 1 by m2 and obtained differential 
equations that are not correct. Many other authors have also made 
this serious mistake, and therefore it is important to emphasize that 
the replacement of m2 -  1 by m2, or /(/ + 1 ) by (I + 1 /2)2 in a 
radial problem, is not to be made in the differential equations but 
only in the first-order Carlini (JWKB) approximation, and that this 
replacement in the higher-order corrections does not give a correct 
result. For the positions of the Stark levels well below the top of 
the barrier the authors obtained quantization conditions expressed 
in terms of complete elliptic integrals of the first, second and third 
kind, which they extended in an unsatisfactory way to energy lev
els above the top of the barrier. Somewhat later Gallas, Walther 
and Werner (1982b) used the first-order Carlini (JWKB) approxi
mation and handled the three-turning-point problem also when the 
energy may lie close to the top of the barrier, but they made the 
same mistake as in their previous paper (1982a). For the ionization 
rate of a hydrogenic atom or ion in an electric field they obtained a 
simple formula, expressed in terms of complete elliptic integrals of 
the first, second and third kind, which they found to be in excellent 
agreement with results obtained from numerically exact calculations, 
and which for energies well below the top of the barrier agrees with 
the formula obtained by Rice and Good (1962). On the basis of, on 
the one hand the first-order Carlini (JWKB) approximation com
bined with comparision equation results, and on the other hand a
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purely numerical method, Farrelly and Reinhardt (1983) performed 
calculations of complex energy eigenvalues for a hydrogen atom in 
a homogeneous electric field. They demonstrated the efficiency and 
remarkable accuracy of the Carlini (JWKB) approximation already 
in the first-order approximation and pointed out that previous dis
crepancies between results obtained by the use of that approximation 
and accurate numerical results, which had usually been attributed 
to the break-down of the approximation, are rather due to a failure 
to use the approximation in a correct and uniform way. The authors 
concluded that an appropriate approach based on the approximation 
in question is an efficient and highly accurate method for the calcu
lation of complex energy eigenvalues for the Stark problem. Korsch 
and Mohlenkamp (1983) performed, independently of Farrelly and 
Reinhardt (1983), a similar investigation. By means of comparison 
equation technique Kolosov (1983) determined the energy and the 
ionization probability of a hydrogen atom in a homogeneous electric 
field, when the energies of the differential equation describing tun
neling through the potential barrier lie near the top of the barrier. 
Formulas for the energy and the ionization probability in some previ
ous papers are characterized as either erroneous or too complicated.

Though the exact solution of the Stark effect problem for hydro
genic atoms or ions can in principle be obtained by numerical 
integration of the two ordinary differential equations, resulting from 
the separation of the three-dimensional Schrodinger equation in 
parabolic coordinates, exact calculations encounter computational 
difficulties and have hence been rather few [see, however, Alexander 
(1969) and Hirschfelder and Curtiss (1971)] until the extensive cal
culations of positions and widths of Stark levels by Damburg and 
Kolosov (1976a, 1976b, 1977, 1978a, 1978b, 1979, 1980, 1981, 1982) 
and by Kolosov (1983, 1987) began to appear. A numerical method 
for calculating normalized wave functions and absolute values for the 
densitiy of oscillator strengths in the photoabsorption spectrum of 
hydrogenic atoms or ions in the presence of a homogeneous electric 
field has been presented by Luc-Koenig and Bachelier (1980a,b).
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Treatment in this book

In the present book we treat the Stark effect for a hydrogenic atom or 
ion in a homogeneous electric field with the use of the phase-integral 
approximation generated from a conveniently chosen base function; 
see for a detailed presentation of that approximation Chapter 1 in 
Proman and Froman (1996) and for a summary Section 4.1 in the 
present book. We shall give a non-relativistic treatment of the prob
lem in which electron spin, fine structure and hyperfine structure 
are not taken into account. Furthermore, we assume that the time 
for electric field ionization due to the Stark effect is much smaller 
than the time for emission of a photon from the state in question. 
Some previous authors have combined the Carlini (JWKB) approxi
mation and comparison equation technique; see for instance Rice and 
Good (1962), Bailey, Hiskes and Riviere (1965) and Harmin (1981). 
We do not proceed in a corresponding way, since comparison equa
tion technique has already been used to obtain the general, analytic, 
arbitrary-order phase-integral formulas on which we base our treat
ment of the Stark effect; see Froman and Froman (1996). In par
ticular we use an arbitrary-order phase-integral formula for barrier 
transmission (Froman and Froman 2002), which allows the energy to 
lie close to and even above the top of the barrier. Our treatment is 
thus in several respects more satisfactory and more straightforward 
than previous asymptotic treatments. Finally we arrive at phase- 
integral formulas, expressed in terms of complete elliptic integrals of 
the first, second and third kind, for Stark level profiles, positions and 
half-widths.

We share the opinion expressed by Farrelly and Reinhardt (1983) 
that discrepancies between Stark effect results obtained by the use 
of the Carlini (JWKB) approximation and by accurate numerical 
calculations cannot be attributed to the break-down of the approx
imation, but are due to a failure to use the approximation in a 
correct way. An appropriate approach based on the phase-integral 
approximation of arbitrary order generated from an appropriately 
chosen base function is a still more efficient and often highly accu
rate method for the treatment of several problems, not only in quan
tum mechanics, but in various fields of theoretical physics. With
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great success it has for instance been used in the study of black- 
hole normal modes (Proman, Froman, Andersson and Hokback 1992; 
Andersson, Araujo and Schutz 1993) and in the study of cosmologi
cal perturbations during inflation (Rojas and Villalba 2007). See also 
Athavan et al. (2001a-c), which concerns the two-center Coulomb 
problem, and where the reason for the possibility of obtaining their 
accurate results is the presence of the unspecified base function from 
which the phase-integral approximation is generated. Such accu
rate results cannot be obtained by means of the Carlini (JWKB) 
approximation, since there is no unspecified base function in that 
approximation.

We shall now illustrate the accuracy of the energy values obtained 
by means of our phase-integral formulas. For 198 different Stark 
states of a hydrogen atom, with either different quantum numbers 
or the same quantum numbers but different electric field strengths, 
we present in the tables in Chapter 8 values of the energy and the 
half-width that have been calculated by means of the phase-integral 
approximation generated from an appropriate base function as well 
as by other methods. We emphasize that all results there have been 
obtained by neglecting fine structure corrections. Compared to the 
best energy values obtained by other methods, the optimum phase- 
integral energy values are for these states judged to be at least as 
accurate in more than half of the cases; see Fig. 1.1. The phase- 
integral formulas can sometimes give results of surprisingly great 
accuracy. Compared to the numerically obtained results, the phase- 
integral results in Chapter 8 can contain up to seven more digits 
for the energy eigenvalues. A more detailed presentation of the accu
racy of the phase-integral energies versus the accuracy of the energies 
obtained by other methods is given in Fig. 1.1.

For large field strengths (thin barriers) the phase-integral method 
gives usually better results than for small field strengths (thick bar
riers). The phase-integral method is therefore an important comple
ment to the numerical methods, which are in general less accurate 
for large field strengths than for small field strengths. For very thick 
barriers the numerical methods do not give good values of the half
widths, and for extremely thick barriers they may sometimes only 
give upper limits for the half-widths, while the phase-integral method
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Difference between num ber of digits

Fig. 1 .1 . For the 198 cases in the tables in Chapter 8 we have on the horizontal 
axis in this figure plotted the difference between the number of correct digits in the 
optimum phase-integral energy value, obtained with ф included, and the number 
of correct digits in the best energy value obtained by other methods, while on the 
vertical axis we have plotted the number of cases corresponding to different values 
of this difference. Recalling a property of asymptotic series, we have considered 
the error of the optimum phase-integral energy values E to be of the order of the 
smallest difference between the E-values for two consecutive optimum orders of 
the phase-integral approximation. When the phase-integral values of E are judged 
to be less accurate than the other values of E, we have in general considered all 
digits in the best of the other values to be correct. Since there is certainly an 
unknown number of exceptions from this assumption, the part of the figure that 
lies to the left of the origin underestimates the accuracy of the phase-integral 
method. According to this figure there are 98 cases in which the energy values 
obtained by the phase-integral method are at least as accurate as those obtained 
by other methods, but because of what has just been said, we believe that the 
energy values are obtained at least as accurately by the phase-integral method as 
by other methods in more than half of the cases.

gives rather accurate values; see Tables 8.10c, 8 . lOf and 8.101 in 
Chapter 8 . For large values of the quantum number n<i the phase- 
integral method gives often more accurate results than for small 
values of
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Table 1 .1 . The data in this table, which have been taken from Table 8.7 
in Chapter 8, refer to a hydrogen atom with the quantum numbers m = 0, 
rii = 0, П2 = 29 and n = \m\ + 1 + тц + 712 = 30 in an electric field of the strength 
800 V/cm. The value called RSPT 4- PA has been obtained by Silverstone and 
Koch (1979), who remarked that the two underlined digits are uncertain. In the 
value called Numerical, which has been obtained by Damburg and Kolosov (pri
vate communication from Damburg to Nanny Froman in a letter dated 22 Febru
ary 1985) there is some doubt about the underlined digit. Like Damburg and 
Kolosov we have used the conversion factor 1 au = 5.142 260 3 V/cm.

Method of calculation —E x  104 au Г x 107 au

lst-order phase-integral approximation 7.844 656 2.849
3rd-order 7.844 648 053 2.853 2
5th-order 7.844 648 046 2.853 2

Numerical (Damburg and Kolosov) 7.844 648 04

RSPT + PA (Silverstone and Koch) 7.844 68

numerically by Damburg and Kolosov. The agreement between our 
results in the third and fifth orders of approximation indicates in fact 
that the last digit in the value obtained by Damburg and Kolosov 
may be wrong by one unit in the last digit. The last digit in the 
value obtained by Silverstone and Koch (1979) is wrong by three 
units. The number of reliable digits for E obtained by the phase- 
integral method is nine. We emphasize that the results in Table 1.1 
have been obtained by disregarding the fine structure corrections, 
which may be of the order of 1СГ6 to 1СГ5. Therefore the results in 
this table that are extremely accurate do not represent experimen
tal reality; they are only intended to show the accuracy obtainable 
by different methods of calculation. There does not seem to exist 
an experimental value for the energy of a hydrogen atom with the 
quantum numbers m = 0, n\ — 0, П2 = 29 in an electric field with 
the strength 800 V/cm.

B rie f account o f the contents o f this book

In Chapter 2 the time-dependent Schrodinger equation, describ
ing the Stark effect of a hydrogenic atom or ion in a homoge
neous electric field, is separated with respect to time dependence,
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center of mass motion, and internal motion. The time-independent 
Schrodinger equation for the internal motion is then separated in 
parabolic coordinates. The result is a system of two coupled differ
ential equations, one with a discrete energy spectrum, and the other 
with a continuous energy spectrum. Enclosing the independent vari
able 77 of the differential equation with a continuous energy spectrum 
in the large but finite interval, 0  < 77 < p, i.e., imposing on the wave 
function g (77) the boundary conditions g (0 ) = 0  and g (p) = 0 , we 
perform an analysis of the properties of the eigenfunctions of the two 
coupled differential equations. In Chapter 3 we consider the develop
ment in time of the wave function for the internal motion. The result 
is an exact formula for the probability amplitude of a decaying state. 
The eigenfunctions of the above-mentioned two coupled differential 
equations appear in this formula, which provides the basis for the fur
ther treatment of the hydrogenic Stark effect by means of the phase- 
integral approximation generated from an appropriate base function. 
With the use of this approximation, which is briefly described in 
Chapter 4, we obtain in Chapter 5 a more explicit expression for the 
development in time of the probability amplitude of a decaying state. 
This expression, which is obtained in the limit p —* 0 0 , contains an 
energy-dependent quantity (П'/П")2, which can be interpreted as the 
level profile. It yields a natural definition of the position and (when 
the spectral line is not too broad) of the half-width of the Stark level. 
In Chapter 6  it is described how one transforms the phase-integral 
formulas derived in Chapter 5 into formulas expressed in terms of 
complete elliptic integrals of the first, second and third kind. The 
formulas thus obtained are collected in Chapter 7 . These formulas 
along with well-known properties of complete elliptic integrals, such 
as for instance series expansions, can be exploited for analytic stud
ies of the Stark effect. Complete elliptic integrals can be evaluated 
very rapidly by means of standard computer programs, and with the 
use of the formulas in Chapter 7 a comprehensive numerical material 
concerning the Stark effect of atomic hydrogen has been obtained. It 
is presented in Chapter 8 , where positions and half-widths for vari
ous levels are compared with corresponding results reported by other 
authors.



Chapter 2

Schrodinger Equation, its Separation and 
its Exact Eigenfunctions

When a hydrogenic atom or ion, in which the nucleus has the charge 
Ze(e > 0), the mass and the position f\ = (rci, 2/1 , 2 1 ), and the 
electron has the charge —e(e > 0 ), the mass д2 and the position 
Г2 = (ж2 ,У2}22)> is placed in a homogeneous electric field of the 
strength F(> 0) and with the direction of the positive 2-axis, the 
Hamiltonian of this system is

h2 h2 Ze2
2/xi 1 2 ^  | f i - f 2|H = Afl -  — Afb -  -- ----— ~ ZeFzi + eFz2, (2.1)

if we do not take into account relativistic effects, spin and the fine 
structure of the hydrogenic energy levels. The imposed electric field 
F  is thus assumed to be so strong that the Stark splitting is large 
compared to the fine structure splitting. Introducing the position 
vector го = (яо> yo,zo) f°r the center of mass, i.e.,

.  _  w f t + w f t  (2 2)
Ml + М2

and the relative position vector f  = (x,y,z) of the electron, i.e.,

f  = f 2 -  r i ,  (2.3a)
r  = |f2 -  fi|, (2.3b)

15
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one can write (2 .1 ) as 

H = - h2

where
L2^  + r

M =

Ze2

M1 + M2
eFz

(2.4)

Ml М2
Ml + M  2

is the reduced mass. The Schrodinger equation for the system is

(2.5)

hd'i
Яф = - - - з г -  г at

Putting

*  = X o (fo k (r  )T(t) 

and recalling (2.4), we can write (2.6) as 

ft2

(2.6)

(2.7)

Xo(ro) [

X (H  V2M

2(Ml+M2)Af0 + (Z " 1)eFZ0. X°(f0)

( —  -  H±±ZaieFz
Mi + M2

h d r(t)
iT(t) dt
(2.8)

Since each term in (2 .8 ) must be equal to a constant, we put

2 (M l+ M 2 )A ? ° + (Z ~ l)eFZ0] X ° (f0) =  £ ° ’ 

ft2 . Ze2 /xi + Z/X2 -f \

Xo(fo) 1
l  f h \  

X(r) \2/x
4----------— —eFz x(F) =

г /Х1+М2 У
/I dT(t) 

iT(t) dt — Eq + E.

(2.9a)

(2.9b)

(2.9c)

The physically relevant solution of (2.9a), which represents the 
motion of the center of mass, is when Z= 1

Хо(пз) = const x ехр(г/схжо 4- ikyy0 + ikzzo)
= const x ехр(г£ • fo), Z = 1 , (2.10a)
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where

and when Z ф\

-2 I jl2 . jl2 _ 2(/*l + М2 )До^  "Г Кг — д2 ’

Хо(го) = const x exp(ifcxzo + г/здоМ
1 (-кго" I )

where

к, = 4- M2)(Z -  l)eF
ft2

1/3

The solution of (2.9c) is

T(t) = const x exp г(£"о 4- E)t

(2 .1 1 a)

Z ±  1 , 

(2 .10b)

(2 .1 1 b)

(2.12)

Except for a constant normalization factor the solution (2.7) can thus 
be written as

(2.13)

iEot\ 
b )

(2.14a)

Ф = ^о(Пь*Мг,£), 
where ^o(rb,£) is given by either of the formulas

(  i*) = ехр(г/схх0 + ikyVo + ikzz0) exp [ —

Л г _= exp ( гА; • r0 -----— I , Z = 1 ,

ipo(ro*t) = ехр(гА:хгг0 + г/здо)
/ k*\ (  iE0t\ 

x Аг f - kzq -  -ф ) exp (---- — 1 , Z ф 1,

(2.14b)

with Eo and к, obtained from (2 .1 1 a) and (2 .1 1 b), and r , t ) is 
given by

1>(r,t) = x(r)ex  p
(  iEt\
V b)' (2.15)

x ( r )  being a solution of the differential equation (2.9b), i.e., the 
time-independent Schrodinger equation for the internal motion:

f - f -Д ?  -  —  + eF z)x  = EX,
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where
F  = Ml + Zjm  2-p (2.17)

Ml + М2
is the effective electric field strength. We note that the effective elec
tric field F  is equal to the imposed electric field F  for a hydrogen 
atom [Z — 1 ) but slightly different from F  for a hydrogenic ion 
{2 ф  1).

2.1 Separation of the time-independent Schrodinger 
equation for the internal motion

In a well-known way we introduce the parabolic coordinates £(> 
0 ),T7(> 0 ) and ip by writing

x = {fr)1'2 cos</?, (2.18a)
У = (^7?)1 2̂ sincp, (2.18b)

z = \ {4 -n )-  (2.18c)

Hence

r  = (*2 + y2 + z2)1'2 = |(S + r,). (2.19)

We obtain from (2.18c) and (2.19)
£ = r + 2 , 0 < £ < oo, (2 .2 0 a)
T) = r — z, 0 < 77 < oo, (2 .2 0 b)

and from (2.18a) and (2.18b)

= arctan  ̂ . (2 .2 0 c)

We also note that
g(a,y,z) 1 (2.21)

and hence

dx dydz = ■£ (£ + drj dip. (2 .2 2 )

To solve the time-independent Schrodinger equation (2.16) we put

X = {2 .23)
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where 0 ) is a normalization factor, which we for the sake of 
simplicity assume to be real, and note that

4
Д* = ( £1/2 J ^ l/ 2  + _L + „1/2 & 1/2 + + 1  

v  e e *  4  ̂ + 4 ^ + ^
a 2

£77 3</52
(2.24)

Recalling (2.18c), (2.19), (2.23) and (2.24), we can write (2.16) as

i + v  

+ tv

and hence

{ d2f ( 0  J_ V d?9(v)
./(€) di2 4$ g(ri) dr)2 4 ??_

4/j.Ze2
h2(£ + T])

HeF(£ -  77) 2д£ 
ft2 + ft2 +

1
Ф(¥>) dip2

Ф(р) dtp2
— ™2 — —TTL

= o

(2.25)

(2.26a)

4£t?
4 + 4

+ iv

/ « )
AfxZe2

V <Рф}) \
4? ' g{rj) drj2 4?7

__________ j u e F ( g - q )  2д Д
ft2(^ + 77) h? ft2 = m2, (2.26b)

where m2 is a  separation constant. We can write (2.26b) as

S d2f ( 0  MeFf2 1 -  m2
/ (0  <*S2 4ft* 2ft2 4£

, V d2g{r)) neF-q2 imEti 1 -  m2
H-----Г Т --- — ----- 1------7T^----- Г ^TZTT 1

fiZe'
g(rj) drj2 ' 4fr2 ' 2h2 

and from this equation it follows that
4 rj h2

z d2f ( 0  iieF e  + №  + l - ^ 2 = _ Zu
f { 0  d ?  4th2 ' 2h2 ' 4£

7/ d?g(r]) _ fieFij2 _ рЕт) 1 — m2

(2.27)

(2.28a)

5 (77) A72 ' 4ft2 ' 2ft2 1 4т; Z2’ (2-28b)
where Zi and Z2 are separation constants subjected to the condition

/zZe2
-Zi + Zo —

h2 ‘
(2.29)
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For hydrogen atoms (Z = 1) and with units such that fx = e = h = 1 
one sees from the tables in Chapter 8 that 0 < Z\ < 1, and hence 
it follows from (2.29) that 0 < Z<i < 1. With the further restriction 
that F = 0 Yamabe, Tachibana and Silverstone (1977) give in their 
Eqs. (13)-(15) analytical expressions for Z\ and Z2 in terms of 771,772 
and |тп|. The equations (2.26a), (2.28a) and (2.28b) can be written as

т2 Л\
4- т 2Ф = 0, 0 < (p < 27Г, (2.30)

dip*

d2f
-Ш + R( 0 f  = 0, 0 < £< «= , (2.31a)

pi/-\ _  Zi 1 - m 2 neF£ fo 3 1 Ы
Щ) ~m* + T  + ~ ~йё' (2'31b)

+ R{v)g = 0, 0 < T] < 0 0 , (2.32a)

а д - Й +а +Ц ^ +ф .  «*»>
The general solution of (2.30) is an arbitrary linear combination of 
the functions exp (±imip). Since the wave function x must be single
valued when ip changes by 2ir, the only possible values of m are the
integers m = 0 , ±1 , ±2 , __

The behavior of the solutions /(£) and g(rj) of the differential equa
tions (2.31a,b) and (2.32a,b), respectively, for small values of £ and 
77, respectively, can be found in a well-known way by means of the 
indicial equation.

For m ф 0  the result is that there are solutions /(£) and #(77) 
that for small values of £ and 77 are approximately proportional to 
£(i+|m|)2 an(j ^(1+|m|)2? respectively. Hence /(O/?1 2̂ and 
are approximately proportional to §£H /2 an(i ^±1™!/̂  respectively. 
Since we require x, which is given by (2.23), to be finite everywhere, 
we do not accept the minus signs in these expressions. Therefore 
the physically acceptable solutions /(£) and <7(77) are for small val
ues of £ and 77 equal to £(1+M)a and 77(1+H )2, respectively, times a 
power series in £ and 77, respectively, with the constant term different 
from zero.
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For m = 0 the indicial equation yields one function /(£)/£̂ 2 that 
is approximately equal to a constant for small values of £, and one 
finds that there is another function /(£)/£1/2 that is approximately 
proportional to In £ for small values of £. Similarly one obtains two 
functions g{rj)/rj1 2̂ with corresponding behavior for small values of 
77. Of these functions we accept only those that are approximately 
equal to a constant (different from zero) for small values of £ and 77, 
respectively, since otherwise x would not be finite everywhere.

For any allowed value of m, i.e., for m = 0, ±1, ±2 , . . . ,  one 
thus obtains the physically acceptable wave function which is 
finite everywhere, from the particular solution /(£) that is equal 
to £(1+H )2 times a power series in £ with the constant term dif
ferent from zero and from the particular solution 3 (77) that is equal 
to 77(1+H )2 times a power series in 77 with the constant term differ
ent from zero. These particular solutions /(£) and <7(77), which are 
single-valued and uniquely determined except for arbitrary constant 
factors, obviously tend to zero as £ —> 0 and 77 — 0 , respectively.

The differential equation (2.31a,b) for /(£) has the form of a radial 
Schr5dinger equation for a particle in a potential well. For given val
ues of m and Z\ there is therefore a series of discrete values of E 
(characterized by the quantum number щ = 0 , 1 , 2 , . . . )  for which 
this differential equation has acceptable solutions. On the other hand, 
if F Ф 0 (which we shall assume from now on) the differential equa
tion (2.32a,b) for <7(77) is the same as that for a particle that can 
penetrate a potential barrier, and hence this differential equation 
has, for given values of m and Z2, physically acceptable solutions 
for all possible values of E. It is convenient to confine the system 
in a region such that 0 < £ < 00  and 0 < 77 < p, where p is a 
large positive number, which we shall finally let it tend to infin
ity. From (2.20a,b) it follows that this confinement in the 77-space 
corresponds to the confinement 2  > (x2 + y2)/(2p) — p/2 in the 
xyz-space. When p is finite, we impose on <7(77) the condition that 
p(p) = 0. For given values of F,?n and ^ [=  [iZe2/h2 — Z\ accord
ing to (2.29)] we then get a discrete series of very closely spaced 
E-values (characterized by the quantum number s = 0 ,1 ,2 ,,..) . 
Thus, for a given effective field strength F  and given quantum 
numbers m, щ, and s one obtains from (2.31a,b) E as a function
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of Zi, and one obtains from (2.32a,b) E as a function of Z2(= 
fiZe2/h2 — Z\). The requirement that these two energy eigenvalues 
coincide, together with the relation (2.29) between Z\ and Z2 then 
determines the values of E , Z\ and Z2. The relation (5.25) in Chapter
5 shows that for given values of F, m and щ the discrete values of E , 
like those of Z\ and Z2, are closely spaced. Since E increases as the 
quantum number 5 that determines the discrete values of E increases, 
we can denote the eigenvalues of E by Е т}Пи3, the corresponding val
ues of Zi and Z2 by Zi(m,niyEm.nx.8) and Z2(m,ni.Fm,nbs)) апс* 
the eigenfunctions of (2.31a,b) and (2.32a,b) along with (2.29) by 
/ (m ,n i,£ m,nil5; 0  and p(m ,ni.ETn>TlbS;r?). These eigenfunctions are 
chosen to be real. The corresponding eigenfunction (2.23) is denoted 
by x(m i n i )Em,nus\x,y,z). Since the normalized eigenfunction Ф(</?) 
is equal to ехр(гггк/?)/(27г)1/2, we can write (2.23) as
X(m , T ii, Emjix x,y,z) = Q (m , n x, n \ , Em.ni ,s ; x, у , z)

(2.33)

with
x(tyi, Ti\, Ет^ц! x, y, z)

_  f  (m, n 1 , Ещ,ль<; 0  g(m, тц, JSm>Wl*7) ехр(гту>) (2 34ч
С1/2 (27r)V2 ’ v ‘

where m is an integer (positive, negative or zero), n\ and s are non
negative integers, and EmyTluS is a discrete set of energy eigenvalues, 
which depend on m, n\ and s as well as on the large quantity p and 
are closely spaced with respect to the quantum number s.

2.2 Properties of the eigenfunctions of the
time-independent Schrodinger equation for the 
internal motion

Considering two states with the quantum numbers m, n\, 5 and 
m/,n/i ,s /, we first note that since the functions exp(imip) form an 
orthogonal set on the interval 0 < ip <, it follows from (2.33), (2.34) 
and (2.22) that

III X Em,ni, si г)

xx(m ',n i  z)dx dydz = 0 if m Ф m!. (2.35)
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Using (2.22), (2.33) and (2.34), we obtain, since the normal
ization factor in (2.33) and the functions / (m ,n i,£ m>nbS;£) and 
<?(m,ni, EminuS]r}) are assumed to be real,

J  J  J" X Em,n\,S) x i 2/) )̂x(̂ , , ^m,n[jS'i x, y, z)dx dy dz

= Г2(т, 7ii, Em}rll)S)Q(m, n j ,  Emn^S')

* 4̂ j  ,s> 0/(^> ̂ 1 ? ̂ rn,n\ ,s' 5 0 ^

dsnX / g(m ,ni,Eminiy,T])g(m,n\,Em,n'^]ri)—
Jo V
1 /*°°

"I" T I fip̂ i nh ̂ m,rii,s'i O/C771) 711) Em̂n> 3»\£)
4 Л) v

X [  (7(771, 72-1, Em̂nXi3 \ T̂giTTL-i 72>i, Em n̂ gf'y f])dTJ . (2.36) 
./0

We write the differential equation (2.31a,b) as 

^2/(m, w i , ^ m ,W| ,$; £)

№Етп,п\ ,s . (771, T ii, £771, 7 i i , s)  1 771 _jieF ^
2h2 £ 4£2 4ft2""

X / (771, 77-1, Emn̂XyS] £) — 0, 

when the quantum numbers axe m,7ii, s, and as 

d2 f  (771, n\, J5m]n; iS' ; 0

I^Em jt\  ,s' Z  1 (t71, 71 j , £ 7 7 1, 721, s )  1 — 771 __
2Д2 £ 4£2 4/i2 _

(2.37a)

x  / ( 7 7 1 ,T i i ,ЕтуП>1у3>; £ )  — 0, (2.37b)

when the quantum numbers are 771, s . Multiplying (2.37a) 
by / (m ,n i,£ m>n'l>3/;0 and (2.37b) by /(m ,nb and
subtracting from each other the two equations thus obtained,
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we get

(  ~ E m n̂ )̂S/) Z\(lTli Til, £/m,ni,s) — ^1> • '̂m,n/1,s/)

V 2* + £
X /  ( m ,  n i > E m n̂i ,s 5 0 / 1771» n l > Em,n\ ,s' 5 0

)

d_ df (ш, Ti ,̂ Em,n\ ,s' 0
Щ

/(m, nX, ■fi’rn,Til ,5' > 0
df (ш, 7Ц, Em^n^s'i £) (2.38)

Integrating (2.38) from £ = 0 to £ = oo, and recalling the boundary 
conditions imposed at £ = 0 and £ = oo, we get

и f°°
7^2 (^m,ni,s ~ ■£'т,п'1,в/) I / (^ j ̂ 1)-̂ m.ribS?

J roo
f  (ш, 711, 0

0
х/(ш, 77-1, J5m<n' jS/*, ̂ )-^- = 0, (2.39)

i.e.,

J roo
f  (771, 7T-1, Е туП 1у } £)/(771, 7lx, jS'5 £)^£

0
= 2fl2[Zi(7n,7Zi,£?m)nbS) -  Z i f o X , JSm^aQ] 

ц{Ет>П1,$ ~
Г ° °

x  J  f{™ in iiE Tn>niyS\£)f(rn)Tii)Ern n̂>i)s,:>fi)~jp'

if E m ,n u s Ф  E m ^ s ,  (2.40)

Prom the differential equation (2.32a,b) we similarly obtain

[  9{rn, 7ii, £ m>Ul)S; 77)0 (771, ti'x, E m>n' >s/; rj)dr}
Jo

_ 2 ^ ^ 2 (771, 71x, £/m>ni>s) — ^ 2 (771, Tlx, E j n ^  >s')]
^ { E m ,n i,s ~ E m jn.\ ,s')

ГР / ^

JO 4if E m n̂  1)S ф  E m jn ^ s ’ . (2.41)
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Inserting (2.40) and (2.41) into (2.36), and noting that from (2.29) 
it follows that

Since the energy eigenvalues Em,niiS are enumerable, while the 
number of possible values of p is not enumerable, we can choose 
p such that Em,nuS Ф- Em̂n>uS> for all quantum numbers unless 
m = m ',n i = n[, and s = s'. We can also justify the possibility of 
choosing p in this way by noting that there is only a finite, although 
very large, number of quantum numbers that is relevant for the prob
lem under consideration. The states for which EmjnuS = Emin'lt3r can 
thus be disregarded unless n\ = n\ and s' = s. Choosing p in the 
above-mentioned way, we obtain from (2.35) and (2.43)

When F Ф 0, m = га', щ = щ, s = s' and p is sufficiently large, the 
first term on the right-hand side of (2.36) is negligible compared to 
the second term because of the magnitudes of the 77-integrals. Hence 
we obtain approximately

An alternative justfication of the approximation of (2.36) that 
leads to (2.45) will be given in the paragraph containing (5.20)

Z\ (771, ть\, Ет)П1 j5) Z\ (ттг, 7ij, Em^ )S' )
= —[^2(771, 7ii, £m>ni)S) — ^ 2 (771, 7i j, ,5')] s (2.42)

we obtain

J J J  X*(™,ni,Em ,7li,S) Я, y, z)

x X{m, n\, Em y, z)dx dy dz = 0
if Em ni S Ф E771,71',,S'* (2.43)

J  J  J  X*(rn, n i,E m,nus\x, y, z)

x  x(m',n[ , Em\n\,S-;2:,y, z)dxdy dz = 0 

unless m = m!, щ = n\, s = s' . (2.44)



and (5.21) in Chapter 5. If we normalize f(m , n i, ЕтгПи$;(,) and 
g(m,nu Em<niy,-q) such that

f [ / K n b W 0 ] 2f  = 1, (2-46)

[Q(t71,тцЕт)П1у3)] f  \g{rn,n\Emn̂iyS\T])\ drj = 1, (2.47) 
Jo

we obtain from (2.45)

J  J  J  X*{‘m ,m ,ETntnuS-,x,y,z)x{m ,ni,Em>nuS-,x,y,z)dxdydz = l.
(2.48)

From (2.44) and (2.48) it follows that

J  J  J  X*(™> ̂ 1 , ж, y, z)x{m’,п'ъ Ет . ^ \ х ,  у, z)dx dy dz

= fini ,n'lfis1s/ • (2.49)
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Chapter 3

Development in Time of the Probability 
Amplitude for a Decaying State

The time-dependent wave function for the internal
motion is expanded as a superposition of solutions of the form (2.15) 
in the following way

Ip(x,y,z-,t) = C(m, n\, Emtni ,s)x (m> n i , Em,m,s',x,y,z)

x exp( iEmiTll̂ 3t/Fi). (3*1)
From (2.49) and (3.1) it follows that

ip*(x,y,z,t)ip(x,y,z-,t)dxdydz = ^  \С(т,тц,Em>nus)|2

(3.2)
and hence

JJJ ip*(x,y,z-,t)il>(x,y,z-,t)dxdydz = 1 (3.3)

if
Y ,  \C(m,nu Em,ni,s)\2 = l. (3.4)

m,n i ,s

The coefficients C(m ,ni,EmiTluS) are determined from the require
ment that at the time t = 0 the wave function ip(x,y,z,t) is equal 
to a given wave function il>(x,y,z; 0). Using (3.1) and (2.49), one 
therefore finds that

C(m, П1 , #771,ni.s) = J J J  X (^> ̂ 1 у x, ?/, z) 

x'ip(x,yiz’,0)dxdy dz. (3.5)
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The probability amplitude p(t) that the electron is still in the initial 
state ф(х, у, z] 0) at the time t(> 0) is by definition

28 Stark Effect in a Hydrogenic Atom or Ion

p(t) = J J J  ip*(x,y,z-,$)il>(x,y,z\t)dxdy dz, (3.6)

and the probability that the electron is still in the initial state 
г/>(х,у, 2 ;0) at the time t(> 0) is \p(t)\2. Inserting the expansion (3.1) 
for ?/>(x, y, t) and the corresponding expansion for ф(х, у, г; 0) into
(3.6) and using (2.49), we obtain the formula

P(t) = 5 2  |C(m, n i , Em.w,,s)|2 exp , (3.7)

which is analogous to the Fock-Krylov theorem; see Krylov and Fock 
(1947) and Drukarev, Froman and Froman (1979).

With the aid of (2.33) we can write (3.1) as

Tp{x,V,z-,t) = 5 2  C (m ,nb £m,niiS)Q (m ,n i,£ m,n,,s)
771,71 i,S

x х { т ,п ъ Ет<Пиа;х,у,г)ехр  (3-8)

and (3.5) as

(7(771, Til } «̂ 771,711 ,S)

= n(m , Til, -Е?7П,71г,в) j j j  X ^1’ ^rntn\ts\̂ 5 У J

x t/>(x,y,z;0)dxdy dz, (3.9)

Q being real.
Assuming that p is sufficiently large, in order that, according to

(5.25) in Chapter 5, the difference Д£ = ЕтуПи8+1 — Ет)Пи3 between 
two neighboring energy levels with the same quantum numbers m and 
n i be so small that the sum with respect to s can be replaced by an 
integral over E , we can write (3.8) as

oo oo

ip(x ,y>z;t)=  5 2  5 2  [ C(m,ni,E)
m =—оощ=0

x{m,m,E\x,y,z)exp dE, (3.10)
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where x (m ,nb E]x,y,z) is given by (2.34), with Em,nus replaced by 
£, and

C(m, m ,E )=  ^  711 ’ n i ' д ) . (3.11)
A E

With the use of (3.9), with Em,nuS replaced by E , we can write 
(3.11) as

C{m,nu E) = .и ? ^ ь д)| H I r ( m , n u E-,x,y,z)

xip(x,y,z;0)dxdy dz. (3.12)

By similarly replacing the sum with respect to s by an integral over 
E , one can with the use of (3.11) write (3.4) as

Е Е /
—  „  __n Jm = —oo n i= 0

AE
oo oo

dE

Г A  F
-  E  (»•“ )

7П= — ООЩ=0

and (3.7) as

00 °° л|С(ш,пь £)|2 __ (  iEt
hP(t)=  £  £  / ' ^ д д ^ ' -ехр ! 

m = —oo щ = 0

m = —oo n i = 0 1 4  /J

(3.14)



Chapter 4

Phase-Integral Method

ince the treatment in Chapter 5 is based on phase-integral formulas
t iat are scattered in different publications, we collect in the present
с apter background material that is necessary for reading Chapter 5.

The phase-integral method for solving differential equations of the 
type

dPxp
~fc2 + R{z)1> = o, (4.1)

where R(z) is an unspecified analytic function of the complex variable 
z, involves the following items:

(i) Arbitrary-order phase-integral approximation generated from 
mi unspecified base function Q(z) as described in Chapter 1 of 

oman and Proman (1996) and in Proman and Proman (2002); 
f /  Dajnmert and P. O. Proman (1980).

°̂Г so^ nS connection problems developed by Froman 
an oman (1965), generalized to apply to the phase-integral 
approximation referred to in item (i).

upplementary quantities, expressed analytically in terms of 
p e-mtegrals. An example is the quantity 0, which is of deci- 
lve importance, when two generalized classical turning points 

po enti barrier lie close to each other; see Section 4.3.

referred'toyin' itenWi) ‘ t S ! "  the ..phase-inteSral approximation 
tainino- tA о • l . we c°llect connection formulas per- 
of 0 2(z\\ я 6 transition point [first-order zero or first-order pole 

O a real potential barrier, which can be derived by

30
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means of the method mentioned in item (ii) combined with compar
ison equation technique for obtaining the supplementary quantity 
ф mentioned in item (iii) and appearing in the connection formula 
for a real potential barrier. Finally we present quantization condi
tions for single-well potentials, which can be derived by means of the 
connection formulas pertaining to a single transition point.

4.1 Phase-integral approximation generated from an 
unspecified base function

For a detailed description of this approximation we refer to Chapter 1 
in Froman and Froman (1996) and to Froman and Froman (2002). 
A brief description is given below.

We introduce into (4.1) a “small” bookkeeping parameter Л that 
will finally be put equal to unity. Thus we get the auxiliary differential 
equation

d2/ip Q M
A2

+ R (z)-Q '(z) Ф = 0, (4.2)

which goes over into (4.1) when Л = 1. The function Q(z) is the 
unspecified base function from which the phase-integral approxima
tion is generated. This function is often chosen to be equal to Rl/2(z), 
but in many physical problems it is important to use the possibility 
of choosing Q(z) differently in order to achieve the result that the 
phase-integral approximation be valid close to certain exceptional 
points [e.g., the origin in connection with the radial Schrodinger equa
tion, and the poles of Q2(0  and Q2{rj) at £ = 0 and rj = 0 in the 
Stark effect problem treated in this book; see Eqs. (5.1) and (5.2)], 
where the approximation would fail, if Q(z) were chosen to be equal 
to Rlf2(z). The function Q(z) is in general chosen such that it is 
approximately equal to Rl/2(z) except possibly in the neighborhood 
of the exceptional points.

The auxiliary differential equation (4.2) has two linearly indepen
dent solutions fi(z) and /2 (2 ) of the form

/1(2 ) = q 1/2{z) exp[+iw(z)], 
/2(2 ) = g_1/2(z)exp [-w (z)],

(4.3a)
(4.3b)
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where

w(z) = J  q(z)dz. (4.4)

Inserting (4.3a) or (4.3b) for ф into (4.2), we obtain

+ + ДМ  _  -  °- <«>

Introducing instead of z the variable

C = J ZQ(z)dz, (4.6)

we can write (4.5) in the form

where

eo = Q-V 2{z)d2Q -l/2(z) m  _  L (4.8)
V W  dz2 Q\z) K

To obtain a formal solution of (4.7), we put
ч oo

where Yq is assumed to be different from zero, and Ŷ n (n = 
0 ,1 ,2 ,...)  are independent of Л. Inserting the expansion (4.9) into
(4.7), expanding the left-hand side in powers of Л, and putting the 
coefficient of each power of Л equal to zero, we get Yo = dbl and a 
recurrence formula, from which one can successively obtain the func
tions Y*i, V4 , ̂ 6» • • •» each one of which can be expressed in terms of 
£(b defined in (4.8), and derivatives of £0 with respect to £. Since we 
have both + and — in the exponents of (4.3a,b), it is no restriction 
to choose Yq = 1. The first few functions Y2n are then

Y0 = 1, (4.10a)

Y2 = ^eo, (4.10b)

< 4 i0c )
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The choice of the unspecified base function Q(z) shows itself only in 
the expressions (4.6) and (4.8) for £ and £q which depend explicitly on 
R(z) and Q(z), while the functions Y2n> which are expressed in terms 
of Eq and derivatives of £o with respect to £, do not depend explicitly 
on R(z) and the choice of the base function Q(z). The expressions 
for the functions Ŷ n can therefore be determined once and for all. 
We also remark that at the zeros and poles of Q2(z) the functions 
Q(z) and Q~1/2(z) may have branch points, whereas the functions 
£o> Учи and q(z)/Q(z) are single-valued. Truncating the infinite series 
in (4.9) at n = iV, we obtain

N
q(z) = Q(z)J2Y2n  A2"’ 1- (4.11)

n=0

Inserting (4.11) into (4.3a,b) along with (4.4) and putting Л = 1, 
we get the phase-integral functions of the order 2N + 1, generated 
from the base function Q(z), which are approximate solutions of the 
differential equation (4.1). For N > 0 the function q(z) has poles at 
the transition zeros, i.e., the zeros of Q2(z), and simple zeros in the 
neighborhood of each transition zero (N. Froman 1970).

In the first order the phase-integral approximation is the same as 
the usual Carlini (JWKB) approximation1 if Q(z) = Rl/2(z), but 
in higher orders it differs in essential respects from that approxima
tion of corresponding order; see Dammert and P. 0 . Froman (1980) 
and Chapter 1 in Froman and Froman (1996). Although the phase- 
integral approximation generated from an unspecified base function 
is in higher order essentially different from the Carlini approxima
tion, there are between these two approximations relations which we 
shall now discuss. According to (4.3a,b), (4.4) and (4.11) with Л = 1 
the (27V + l)th-order phase-integral approximation generated from 
the base function Q(z) is

, exP [± *£  GM £ - 0 V2ndz] 104■Ф --------- --------------------тщ ------ • (4-12)

1 As regards the motivation for the name Carlini approximation we refer to Froman 
and Froman (1985) or to Chapter 1 in Froman and Froman (2002).
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When one derives the Carlini (JWKB) approximation one introduces 
a factor 1 /A2 in front of R(z) in the differential equation (4.1) and 
puts

[
r z  "1

г / ^ y 2n(z)An_1 dz . (4.13)

Jz ° 71=0

One obtains (after A has been put equal to unity) in the first order

exp [±г J ?  Rlf2(z)dz\ 
ф 1 (4.14a
V Rl/A(z)

in the third order

« « < ( , ) «  р (Ь )

and in the fifth order

ехр[± г/;оД ^ ( г )(1 + У2 + У4)& ]

Д 1/4(,) exp [ £ + ( * _ £ ) ]  ’

where У2 and У4 are given by (4.10b) and (4.10c) along with (4.6) and
(4.8) with Q2(z) = R(z). It is seen that for the phase-integral approx
imation there is in every order a simple connection between phase and 
amplitude, while for the higher orders of the Carlini (JWKB) approx
imation the expression for the amplitude is complicated. When the 
base function Q{z) is chosen to be equal to R1 2̂(z) the phase in 
a  classically allowed region is the same for both approximations. It 
should also be remarked that when one determines the functions 
Yin with n > 0 by means of the recurrence formula for the phase- 
integral approximation, one obtains directly the simple expressions 
(4.10b,c), but when one determines these functions by means of the 
usual recurrence formula for the Carlini (JWKB) approximation, one 
obtains for n > 0 complicated expressions, the simplification of which 
to the form (4.10b,c) requires rather complicated calculations.

The criterion for the determination of the base function is that 
eo be small compared to unity in the region of the complex 2-plane 
relevant for the problem under consideration. As an example of how 
this was done in a situation where the condition for the validity of
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the semi-classical approximation is not fulfilled, and hence the choice 
Q2{z) = R(z) is not very useful, we refer to N. Froman (1979) and in 
particular to Eqs. (14) and (58) there. With her appropriate choice of 
Q2{z), which is significantly different from R(z) in the whole relevant 
region of the complex 2-plane, she obtained very accurate results; see 
Table 4 in N. Froman (1979).

It is an essential advantage of the phase-integral approximation 
generated from an unspecified base function versus the Carlini 
(JWKB) approximation that the former approximation contains the 
unspecified base function Q(z), which one can take advantage of in 
several ways. The criterion for the determination of the base func
tion mentioned in the previous paragraph does not determine Q(z) 
uniquely. It turns out that, within certain limits, the results are not 
very sensitive to the choice of Q(z), when the approximation is used 
in higher orders. However, with a convenient choice of Q(z) already 
the first-order approximation can be very good. On the other hand, 
an inconvenient, but possible, choice of Q(z) introduces in the first- 
order approximation an unnecessarily large error that is, however, in 
general corrected already in the third-order approximation. In many 
important cases the function Q2(z) can be chosen to be identical 
to R(z). In other important cases, for instance, when one wants to 
include the immediate neighborhood of a first- or second-order pole 
of R(z) in the region of validity of the phase-integral approximation, 
the function Q2{z) is in general chosen to be approximately equal to 
R(z) except in the neighborhood of the pole.

The freedom that one has in the choice of the base function Q(z) 
will now be illuminated in a concrete way. For a radial Schrodinger 
equation the usual choice of Q2{z) is

Q\z) = R{z) -  j^ -y  (4.15a)

However, the replacement of (4.15a) by

№  = “  (4Л5Ь)

where the coefficient of l/z should be comparatively small, does not 
destroy the great accuracy of the results usually obtained with the 
phase-integral approximation in higher orders. There is thus a whole
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set of base functions that may be used, and there are various ways 
in which one can take advantage of this non-uniqueness to make the 
choice of the base function well adapted to the particular problem 
under consideration. For instance, by adapting the choice of Q2(z) 
to the analytical form of Я(г) one can sometimes achieve the result 
that the integrals occurring in the phase-integral approximation can 
be evaluated analytically. To give an example we assume that R(z) 
contains only exp(z) but not z itself. In this case it is convenient to 
replace the choice (4.15b) by the choice

(4Л5с)

By a convenient choice of Q2(z), for instance a convenient choice of 
the unspecified coefficient in (4.15b) or (4.15c), one can sometimes 
attain the result that, for example, eigenvalues or phase-shifts are 
obtained exactly for some particular parameter value in every order of 
the phase-integral approximation. By making this exactness fulfilled 
in the limit of a parameter value, for which the phase-integral result 
without this adaptation would not be good, one can actually extend 
the region of validity of the phase-integral treatment; see pages 16 
and 17 in Froman, Froman and Larsson (1994). When the differential 
equation contains one or more parameters, the accurate calculation 
of the wave function may require different choices of the base function 
Q(z) for different ranges of the parameter values. To illustrate this 
fact we consider a radial Schrodinger equation. For sufficiently large 
values of the angular momentum quantum number I we obtain an 
accurate phase-integral approximation (valid also close to z = 0) if 
we choose Q2(z) according to (4.15a), (4.15b) or (4.15c). If the value 
of I is too small, the phase-integral approximation with this choice 
of Q2(z) is not good. It can be considerably improved (except close 
to z = 0), when the absolute value of the coefficient of 1 /z in R(z) 
is sufficiently large, if one instead chooses

Q2(z) = Я(г) + JH + i ! . (4.15d)
z*

The corresponding phase-integral approximation is not valid close to
2 = 0, but the wave function that is regular and tends to zl+1, when 
z is a dimensionless variable that tends to zero, can be obtained
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sufficiently far away from z — 0 by means of the connection for
mula that will be presented in Subsection 4.2.2 of this chapter. The 
presence of the unspecified base function Q(z) in the phase-integral 
approximation is thus very important from several points of view.

When the first-order approximation is used, it is often convenient 
to choose the constant lower limit of integration in the definition 
(4.4) of w(z) to be a zero or a first-order pole of Q2{z). This is, 
however, in general not possible when a higher-order approximation 
is used, since the integral in (4.4) would then in general be divergent. 
If the lower limit of integration in (4.4) is an odd-order zero or an 
odd-order pole of Q2{z), it is possible and convenient to replace the
definition (4.4) of w(z) by the definition (N. Frdman 1966b, 1966c, 
1970)

where t is the odd-order zero or odd-order pole in question, and Гг(г) 
is a path of integration that starts at the point corresponding to 2

ation, encircles t in the positive or in the negative direction and ends 
at 2 . It is immaterial for the value of the integral in (4.16) whether 
the path of integration encircles t in the positive or in the negative 
direction, but the terminal point must be the point 2: in the complex 
-г-plane under consideration. For the first-order approximation the 
definition (4.4), with the lower limit of integration equal to t , and 
the definition (4.16) are identical.

It is useful to introduce a short-hand notation for the integral on 
the right-hand side of (4.16) by the definition

For the first order of the phase-integral approximation one can 
replace (t) by t on the left-hand side of (4.17) and thus get an ordi
nary integral from t to z instead of half of the integral along the 
contour Г*(2). In analogy to (4.17) one defines a short-hand nota
tion for an integral in which the upper limit of integration is an 
odd-order zero or an odd-order pole of Q2(z). When one has two 
transition points of that kind as limits of integration, one requires

(4.16)

on a Riemann sheet adjacent to the complex 2-plane under consider-

(4.17)



38 Stark Effect in a Hydrogenic Atom or Ion

that the contours of integration pertaining to the lower and upper 
limits of integration are encircled in the same direction. The defini
tion of the short-hand notation with both limits within parentheses 
implies then that the integral is equal to half of the integral along a 
closed loop enclosing both transition points. The simplified notation 
on the left-hand side of (4.17) for the integral on the right-hand side 
of (4.17) was introduced by Froman, Froman and Lundborg (1988), 
pages 160 and 161. It makes it possible to use, for an arbitrary order 
of the phase-integral approximation, a similar simple notation and 
almost the same simple language (although in a generalized sense) 
as for the first order of the phase-integral approximation. One thus 
achieves a great formal and practical simplification in the treatment 
of concrete problems, when an arbitrary order of the phase-integral 
approximation is used.

We remark that the notations used above differ from the notations 
in the original papers published up to the middle of the 1980s in the 
respect that Q2(z) and Q^odM *n those papers correspond in later 
publications, and thus in the present chapter, to R(z) and Q2[z), 
respectively.

4.2 Connection formulas associated with a single 
transition point

4.2.1 Connection form ulas pertaining to a first-order  
transition zero on the real axis

The phase-integral formulas in this subsection are valid when R(z) 
and Q2(z) are real on the real 2-axis. For the first order of the 
phase-integral approximation Froman and Froman (1965) presented 
rigorous derivations of these connection formulas. Before the phase- 
integral approximation generated from an unspecified base function 
had been introduced, N. Froman (1970) derived arbitrary-order con
nection formulas associated with a first-order transition zero for 
the particular phase-integral approximation of arbitrary order corre
sponding to Q2(z) =  R(z). After the phase-integral approximation 
generated from an unspecified base function had been introduced, it 
turned out that these connection formulas remain valid also when
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Q2(z) ф R(z). Below we shall present these general connection 
formulas.

As already mentioned, the functions R(z) and Q2(z) are assumed 
to be real on the real z-axis (the x-axis). We assume that on this axis 
there is a generalized classical turning point £, i.e., a simple zero of 
Q2(z). In a generalized sense there is then on one side of t a classically 
allowed region, i.e., a region where Q2{x ) > 0, and on the other side 
of t a classically forbidden region, i.e., a region where Q2(x) < 0. 
Defining

w(x) =  [  q{z)dz,
J{t)

(4.18)

we can write the connection formula for tracing a phase-integral solu
tion of the differential equation (4.1) from the classically forbidden 
to the classically allowed region as

l<T1/2(z)l exp[-|w(x)|] +  C\q~1/2(x)\exp[|w(z)|]

2 Г 1/2(*)| COS N * ) l  -  \

it is valid provided that the condition

Cexp{|w(z)|) < exp{—|w(z)|}

(4.19)

(4.20)

is fulfilled at the point from which one makes the connection. 
A numerical study of the accuracy and the properties of the con
nection formula (4.19) with С =  0 has been published by N. Froman 
and W. Mrazek (1977).

The connection formula for tracing a phase-integral solution of the 
differential equation (4.1) from the classically allowed to the classi
cally forbidden region is

A\q 1/2(z)| exp j i  Ka:)| +  ^ |

+  B\q 1/2 (s) | exp j - i  [

> (A +  B)|g~1/2(x)|exp[|w(a:)|],

|w(z)| +  j

(4.21)

where A and В are constants, which are arbitrary, except for the 
requirement that |A -f 5|/(|Л| +  |i3|) must not be too close to zero.
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As a consequence of (4.21) one obtains the connection formula

COS K x)| +  5 — -A sin S\q 1/2(z)|exp[|tu(a;)|], (4.22)

where 5 is a real phase constant that must not be too close to a multi
ple of 7Г. We emphasize the one-directional validity of the connection 
formulas (4.19), (4.21) and (4.22), which means that the tracing of 
a solution must always be made in the direction of the arrow. This 
property of the connection formulas has been thoroughly investigated 
and even illustrated numerically by N. Froman (1966a) for the first 
order of the Carlini (JWKB) approximation. The whole discussion 
in that paper applies in principle also to the connection formulas 
for the higher orders of the phase-integral approximation generated 
from an unspecified base function. The one-directional validity of the 
connection formula (4.22) is obvious, since a change of the phase 6 on 
the left-hand side of (4.22) causes a change of the amplitude on the 
right-hand side of (4.22), while a change of the amplitude of the wave 
function in the classically forbidden region cannot cause a change of 
the phase of the wave function in the classically allowed region.

The arbitrary-order connection formulas (4.19), (4.21) and (4.22) 
can in many cases be used for obtaining very accurate solutions of 
physical problems, when the turning points are well separated, and 
there are no other transition points near the real axis in the region 
of the complex г-plane of interest. Within their range of applicability, 
these connection formulas are very useful because of their simplicity 
and the great ease with which they can be used. They have been 
discussed by Froman and Froman (2002); see Sections 3-10-3.13 and 
3.20 there.

4.2.2 Connection form ula pertaining to a first-order  
transition pole at the origin

Now we assume that in a certain region of the complex г-plane 
around a first-order transition pole at the origin, i.e., a first-order 
pole of Q2(z) at the origin, we have

n/ N _  1(1 +  1) , В t a function of г that is regular lA
о • I . • i . i • ?zl г in a region around the origin
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where 21 +  1 is a non-negative integer, and

~2 , \ Ё a function of z that is regular Q (z) =  — +  . . j  ,i . . (4.24)г m a region around the origin

We also assume that the absolute values of В and В are sufficiently 
large, while the absolute value of В — В and the absolute value of 
the difference between the two regular functions in (4.23) and (4.24) 
are sufficiently small. There is one particular curve on which w(z), 
defined as

w(z) =  [  q(z)dz, (4.25)
J( 0)

is real. For the first order of the phase-integral approximation this 
is the anti-Stokes line that emerges from the origin. Therefore we 
use, also for a higher order of the phase-integral approximation, the 
terminology “the anti-Stokes line that emerges from the origin” in 
a generalized sense to denote the line on which w(z) in (4.25) is 
real. For the first-order approximation Froman and Froman (1965) 
obtained a phase-integral formula [their Eq. (7.28)], valid sufficiently 
far away from the origin on the anti-Stokes line that emerges from 
the origin, for the particular solution 'ф(г) of the differential equation 
(4.1) that fulfills the condition

l i m M  =  l, (4.26)
0 zL+L

where -г is dimensionless. That formula can be generalized to be valid 
for an arbitrary order of the phase-integral approximation generated 
from an unspecified base function and under less restrictive assump
tions them in the original derivation. It can then be formulated as 
follows. On the lip of the anti-Stokes line emerging from the origin, 
where w(z) =  |ги(г)|, the solution of the differential equation (4.1) 
that fulfils the condition (4.26) is, sufficiently far away from the ori
gin, given by the phase-integral formula

=  (7rc) lt2q 1̂ 2(z)cos w{z) - (4.27)

where с is the residue of \ {̂z)\~2 at the origin, and the sign of 
(7гс)-1/ 2 has to be chosen appropriately; с is thus determined by 
the expansion of ip(z) in powers of z. For the special case that / =  0
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one finds that с =  B. When R(z) and Q2(z) are real on the real 
axis (the ж-axis), and 2 is a point x in the classically allowed region 
[Q2(x) > 0] adjacent to the origin, (4.27) can be written as

ф(х) =  (же) 1/2|q 1/2(x)|cos [ | /  q(z)dz -  -f ^  n 

If, in particular, I =  —1/2 this formula particularizes to 

ф(х) =  |g_1/2(x)|cos 

except for a constant factor.

f x 7Г
/ q{z)dz

J{ 0) ~ 4

(4.28)

(4.29)

4.3 Connection formula for a real, smooth, single-hump 
potential barrier

We denote by t' and tn the two relevant zeros of Q2(z), i.e., the two 
generalized classical turning points in the sub-barrier case (tf < t") 
and the two complex conjugate transition zeros in the super-barrier 
case (Imt; < 0,lm t;/ > 0), and we let x' be a point in the classically 
allowed region of the real z-axis to the left of the barrier and x"  a 
point in the classically allowed region of the real 2-axis to the right of 
the barrier. The points x' and xn must not lie too close to the points 
t; and tn. Using the short-hand notation defined in (4.17), we obtain 
from Eqs. (2.5.4a) and (2.5.4b) in Froman and Froman (2002)

ф(х') =  A'\q 1/2(x')\
rx'

e / q(z)d< 
J { v )

+ B,\q~1̂ 2(x,)\exp -г  Re [  q(z)dz 
L h*)

(4.30a)

and

^(x") =  A"|g-1/2(^)|exp +г Re
rxn
/  q(z) dx 

h n

+ B” \q~lf2(x” )\exp [■- i  Re [  q(z)dz
J(t

, (4.30b)



Phase-Integral Method 43

(4.32)

where according to Eqs. (2.5.5) and (2.5.6a) in Froman and Proman 
(2002)

<4 3 1 )

with

^  _  /  в exp [ - i  (|  +  tf) (62 +  l ) 1/ 2 ехр(+г<£) V

y(02 +  l ) 1/2exp(-i^ ) 0 ex p| + i (^  +  tf)j J
When the transition points that are not associated with the bar
rier lie sufficiently far away from t! and t'\ one has according to 
Eqs. (2.5.10a) and (2.5.2) in Froman and Froman (2002) for the 
quantity 6 in (4.32) the formula

0 «  exp(K) (4.33)
with

K  = h J A q{z)dz' (434)
where A is a closed contour of integration encircling both t! and 
t , but no other transition point, with the integration performed 
in the direction that in the first-order approximation yields К  > 0 
for energies below the top of the barrier and К  <  0 for energies 
above the top of the barrier. If higher-order approximations are used, 
the quantity К  may become negative also for energies below (but 
not too far from) the top of the barrier; see Table 1 in N. Froman 
(1980). When the transition points that are not associated with the 
barrier lie sufficiently far away from t' and t'\ one has according to 
Eq. (2.5.10b) in Froman and Froman (2002) for the quantity in
(4.32) the formula

~  0. (4.35)

The quantity ф in (4.32) will be discussed later. From (4.32) we 
obtain

( Oexp \-i (02 +  1)1/2ехр(+г<£)\
M  =  f # ~ Г ( я  n\l 1 ' (4-36)

у (в2 +  l ) 1/2 ехр(-гф) 0 e x p [ + i ( ~ - t fJ J  J

It is seen that one obtains M _1 from M by replacing d by — We 
emphasize that, except for (4.33) and (4.35), the above formulas are
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in principle exact, provided that one knows the quantities 0, d and 
which depend slightly on x ' and x " . Furthermore, if one knows 

0, and <£, the two transition zeros associated with the potential 
barrier need not lie very far away from transition points that are 
not associated with the barrier. However, when one introduces for 9, 
$ and ф the approximate expressions that for в and are given in
(4.33) and (4.35) and that for ф will be given in Subsection 4.3.2, the 
barrier is assumed to lie far away from all transition points that are 
not associated with the barrier.

When A and Bf are given constants, associated with a wave func
tion that is given at the point x\ the coefficients A" and Bn, which 
are obtained from (4.31) along with (4.32), depend slightly on x; 
and x via the quantities в, $ and 0, but one obtains the derivatives 
of ф (х ) and Tp(x") from (4.30a,b) by considering A \B ',A "  and B” 
formally as constants.

4.3.1 Wave function given as a standing wave

The case when the wave function is given as a standing wave on one 
side of the barrier requires a detailed treatment, since the resonance 
phenomenon may occur. Putting in (4.30a)

A! =  -SY exp 

B' =  -Q 'exp
■H)] (4.37a)

(4.37b)

where Q. is an arbitrary positive amplitude, and S' is an arbitrary 
real phase, we get

x ) — Q'|cjf 1/2(x')|cos ||Re 

and putting in (4.30b)

Г q(z)d2 + , - i

A" =  in *  exp 

В" =  exp

[<H)]
.-НУ

(4.38a)

(4.39a)

(4.39b)
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where ft" is a positive amplitude, and 6" is a real phase, we obtain

ф(х") =  ft" | q l/2(x")\ cos Re Г "/  q{z)dz
J(t")

(4.38b)

To be able to discuss resonance phenomena we need exact or very 
accurate formulas admitting of a detailed analysis of how 6" and ft" 
depend on 6f and ft'. Inserting (4.37a,b) and (4.39a,b) into (4.31) 
along with (4.32), and writing the resulting equation in a convenient 
form, we obtain

П"ехр i |  |

=  П '((02 +  1)1/2ехр

+  0exp 7Г 6
2 +  2 +  2 (4.40)

and the complex conjugate of (4.40). Separating (4.40) into real and 
imaginary parts, we get

n " COS (V -  | +  0  =  ft'[(02 + 1)1/2 +  <*] ■cos ( l  +  |  +  \  -  J ') ,

(4.41a)

tf'sin  ( V - f + ? )  =  f i 'K ^ + l ^ M s i n  ( f + | + | - ^ ) -  (4.41b)

According to (4.41a,b) the angle 5n — ф/ 2 +  d/2 lies in the same 
quadrant as the angle ж/2+ф/2+,д/2 — 6' (mod 2 n). From (4.41a,b) 
we get

6" =  arctan
Ф $ 

+  2 +  2 ’

(4.42a) 
1/2

П" =  П'|[(<92 +1) ̂ 2 -  0]2 + 40(02 + 1)1/2cos2 +  | + ’

(4.42b)

where the branch of arctan is to be chosen such that S/f is a continuous 
function of 5', with S" — ф/2 -f d/2 lying in the same quadrant as
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7t/2 4- ф/2 4- $/2 “  & (mod 27t). Alternatively we can write (4.42a) 
and (4.42) as

5" = arctan

a "  =  n'

=  Q'

U — 1 /  7Г \
------- tan — — г>
w 4 l  V2 /

ф •& 
+ 2 " 2 -

11 — 1 4n
sin V

и 4-1 u2 — 1 

u + 1 4u

1/2

u -  1 (it2 -  1)(1 -I- tan2 v)

1/2

where

u =  (i +  i/e2)1/2, 
ф $
2 ~ 2

Prom (4.43b) it follows that

(Ц - 1 \ 1/2 П" / ц + 1 \  
и 4-1 / — ГУ ~ l i i —1/

1/2

(4.43a)

(4.43b)

(4.44a)

(4.44b)

(4.45)

where the equality sign to the left is valid when v is an integer mul
tiple of 7Г, and the equality sign to the right is valid when v — 7t/ 2  is 
an integer multiple of 7Г.

4.3.2 Supplementary quantity ф

The quantity ф is particularly important when the energy lies close 
to the top of the barrier, but it is important also for energies well 
below the top, if one wants to obtain very accurate results with the 
use of higher orders of the phase-integral approximation. Under the 
assumption that d?Q2(z)/dz2 is not too close to zero at the top of 
the barrier, Froman, Froman and Lundborg (1996) derived for a com
plex potential barrier by means of comparison equation technique, 
adapted to yield formulas for supplementary quantities in the phase- 
integral method, an approximate, but very accurate, formula in the 
(2N 4- l)th order of the phase-integral approximation for a quantity 
ф [their Eqs. (5.5.30), (5.5.25a-g), (5.4.23) and (5.4.21)], from which
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one for a real potential barrier can obtain the following formula, as 
described in Section 3.45 of Proman and Froman (2002),

ф =  argr ( i  + iR )  -  К \n \Kq\ + £ $ (2n+1), (4.46)
'  '  n=0

where according to Eqs. (5.5.25a-c), (5.4.23) and (5.4.21) with A = 1 
in Froman, Roman and Lundborg (1996)

Ф(1) = K0, (4.47a)

_ _г (4" 7Ь» 

ф( ) =  ~ 2880Щ + 24Kq ~ Щ ’ iA7°)
with

N К
1< = Т к 2п = - ,  (4.48a)■ 1 * 'ГГ7Г

n = О

Л'гп =  ^ I  Y2nQ(z)dz, n =  0 ,1 ,2 , . . .  ,7V, (4.48b)

A being a contour of integration encircling i! and t” but no other 
transition point, with the integration performed in the direction that 
makes Kq positive when t' and tn are real, i.e., when the barrier is 
superdense, but negative when t! and t" axe complex conjugate, i.e., 
when the barrier is underdense.

We emphasize that for the validity of (4.46) with the expressions 
(4.47a-c) for </>(2n+1) the essential restriction is that \d2Q2(z)/dz2\ 
must not be too small at the top of the barrier, which means that 
close to its top the barrier is approximately parabolic, i.e., that the 
distance from the barrier to the transition points that are not asso
ciated with the barrier must be much larger than 11" — £;|. However, 
when the energy is close to the top of the barrier, it is the slight 
deviation from parabolic shape close to the top that determines the 
values of the quantities one needs accurate values of
these quantities for obtaining accurate values of ф in higher orders 
of the phase-integral approximation.
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The derivative of ф with respect to the energy E  will be needed in 
Chapter 5, and therefore we shall now give formulas for this deriva
tive. Prom (4.46) and (4.47a-c) one obtains 

dip f  dargr  ( !  +  гК) , r  Д dK К  dKo dф̂ 2n+l  ̂
dE = { ---------dK------------ lnlKolJ

(4.49)
with

^ L  =  d K o  ( 4  5 0 a )

dE d E ’ v
афР) i  dK0

dE ~ 24 Щ dE 
d<j№ (  7 K2 Щ \ dK0

(4.50b)

- (dE \ т к *  12K$ 2 Щ )  dE

+ ( J -  _  h V l l  (4.50c)
V24Kl KoJ dE '

According to sections 6.1.27 and 6.3.3 in Abramowitz and Stegun
(1965) the argument of the gamma function occurring in (4.49) can
be obtained from the formula

arg r ( -  + ^  ( y —----- arctan ̂  ^ ~ \ “  ( 7  +  2  In 2 )# ,
'  '  n = 0 \ 2 +  71 2 +  n /

(4 .5i)
where 7  =  Г;(1)/Г(1) is Euler’s constant. Prom (4.51) we obtain

d arg Г (| + iK) f ~  1___________

dR I  i ( n + i )  [ ( n + i ) 2 +  X 2]

- ( 7 + 2 1 n 2 )j^ | . (4.52)

The barrier connection formula presented in this section is valid 
uniformly for all energies, below and somewhat above the top of 
the barrier. We would also like to emphasize that while the con
nection formulas pertaining to a turning point are one-directional 
(N. Froman 1966a, Froman and Proman 2002), the barrier connection 
formula (4.30a,b) along with (4.31)-(4.35) is bi-directional. However, 
when the energy is close to a resonance energy, a careful discussion 
is required.
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4.4 Quantization conditions for single-well potentials
In this section we shall present quantization conditions for general 
single-well potentials [N. Proman (1966c, 1978), Froman and Froman 
(1965, 1978a, 1978b, 1978c, 1996, 2002), Paulsson, Karlsson and 
LeRoy (1983)], valid for any conveniently chosen order of the phase- 
integral approximation, in forms especially adapted to the treatment 
of the Stark effect in a hydrogenic atom or ion.

We assume that R(z) and Q2(z) are real on the real г-axis (the 
x-axis) and that R(z) is given by (4.23), i.e.,

D/ v 1(1 + 1) В a function of 2  that is regular 
R(z) =  — +  — +  . . , ., & . , (4.53)zz 2  m a region around the origin

and that

Q\z) =  R{z) -  ^ . (4.54)

When l ф —1/2 there is on the positive part of the real axis a 
classically forbidden region in the generalized sense delimited by the 
origin. It is assumed to be delimited also by a generalized classical 
turning point t', i.e., a first-order zero of Q2(z). In this region the 
wave function is

ф(х) =  const x Iq 1/2(rc)|exp — / q(z)dz
..................... I V P )

(4.55)

and this expression for the wave function remains valid close to the 
origin. With the use of (4.55) and the connection formula (4.19) one 
finds that in the classically allowed region (in the generalized sense) 
to the right of t! the wave function is

(4.56)

We assume that the classically allowed region delimited by i! is also 
delimited by another turning point t" [simple zero of Q2(z)], to the 
right of which there is a classically forbidden region extending to 
+ 0 0 . In this region the wave function is

r 7Г
/ q(z)dz A

LK(t') 4 _

ф(х) =  const x Iq 1/2(x)|exp
H / " )

q(z)dz\-\FL \J(i"
(4.57)



50 Stark Effect in a Hydrogenic Atom or Ion

By means of (4.57) and the connection formula (4.19) one finds that 
the physically acceptable wave function is given by

Ф{х) =  const x |<j~1/2(x)| cos
Г rx ■

/ q(z)dz — 7t/4 (4.58)

... ^  a.nowea region (m the generalized sense) to the lett
of t . By identifying (4.56) and (4.58) one obtains the quantization 
condition

Г(П /
j] {v) g{z)dz =  ( ^ + 2 , T ’ s =  0 , 1 , 2 , . . . ,

i.e.,

| ! / * « ) *
= 2 ) 7Г’

(4.59)

(4.60)

where is a closed contour of integration that encircles both t' and 
t but no other transition points.

When I 1/2 and В is positive, there is on the positive part 
of the real axis a generalized classically allowed region [Q2(x) > 0] 

e imited to the left by the origin. In this region the wave function 
is according to (4.29) given by the formula

Ф{х) =  const x |<T1/2(x)|cos /• J( 0)
q(z)dz (4.61)

en is sufficiently large, and x lies sufficiently far away from the 
rigm. e assume that the classically allowed region delimited by 
e origin is also delimited by a generalized classical turning point

f kmT 6 Zer° ^ t0 t îe ™hich there is a classically
еП ê^ on ex ênding to +oo. In the classically allowed region

' Г 6 inCtion is then S‘ven by (4.58). Identifying (4.58) and 
( -61), we obtain the quantization condition

i.e .,

f in ( 1 \
7 ( 0 )  q{z)dz =  \  2 /  ’ '  =  0 , 1 , 2 , . , . ,

bLLq{z)dz =(°+\У' « = 0 , 1 , 2 , . . . ,

(4.62)

(4.63)
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where is a closed contour of integration encircling the origin and 
t" but no other transiton points.

With the base function chosen according to (4.54), it is seen from 
(4.60) and (4.63) that one obtains the same quantization condition 
whether l ф -1/2 or I = -1/2. It should, however, be emphasized 
that the motivation for the formulas, on which the quantization con
dition is based, is quite different in the cases when l ф —1/2 and
I =  - 1/2.



Chapter 5

Derivation of Phase-Integral Formulas 
for Profiles, Energies and Half-Widths 
of Stark Levels

In Chapter 3 we investigated the development in time of a decay
ing state, expressed in terms of the time-independent eigenfunctions 
satisfying a system of two coupled differential equations, resulting 
from the separation of the Schrodinger equation in parabolic coordi
nates. In this analysis we obtained general expressions for the time- 
dependent wave function and the probability amplitude.

In the present chapter we shall start from the results obtained 
in hapter 3 and treat the Stark effect of a hydrogenic atom or 
ion with the use of the phase-integral approximation generated from 
an unspecified base function developed by the present authors and 

ne у described in Chapter 4 of this book. Phase-integral formulas 
or profiles, energies and half-widths of Stark levels are obtained.

e profile has a Lorentzian shape when the level is narrow but 
ь ° êntz ân shape when the level is broad. A formula for the

a wi t is derived on the assumption that the level is not too 
broad.

and^Jlj^b)] ^  ^  ôr 771 =  ̂^ is convenient to choose [cf. (2.31b)

+  ( M )

( м )

52
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The roots of Q2(0  are called £o> £2 and the roots of Q2(r}) are 
called 771, 772, 773. The choice of Q2(£) and Q2(r}) according to (5 .1) 
and (5.2) is analogous to the replacement of 1(1 +  1) by (I + 1/2)2 

in the first-order Carlini (JWKB) approximation associated with the 
radial Schrodinger equation.

The functions — Q2(£) and —Q2(rj) are qualitatively depicted in 
Figs. 5.1a-c and Figs. 5.2a-c for the cases m ф 0 and m =  0, respec
tively. The physically acceptable wave functions with the ^-variable 
correspond to discrete energy eigenvalues, while with the 77-variable 
there is associated a continuous energy spectrum, unless one encloses 
the 77-variable in a finite region, as we have done in Chapter 2.

For the (2N +  l)th-order phase-integral approximation we have 
according to (4.11) with A = 1

N

9 (0  = <9(0 £  У2n (5.3)
71=0

\  0 ,n=|g'
VAAAAAAA/WWWWWV

K z y
F ig . 5 .1 a . Qualitative behavior of -Q 2(0  for m ф 0. The wavy line indicates 
a cut, and is a closed contour of integration, on which the phase of Q  ̂ (£) is 
indicated. The point £0 lies to the left of the origin.
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<2 = 0 1/2

7==--------Ц ----yA^WWWWWVi\ 11 I \  ̂ *?■» / I-----------V 71

The waw lir, Uai atlVe behavior of —Q2{r)) for m ф 0 in the sub-barrier case. 
The r>art J T  tvf Cli-tS’ аПС* ^ K 3X6 c*osed contours of integration,
line Thp пЬяоЬ 0П secon<  ̂ Riemann sheet is drawn as a broken
sheet. 6S о indicated in the figure refer to the first Riemann

and

N
<?(*?) =  Q (* ? )5 > 2n, (5.4)

71=0

where according to (4.10a-c), (4.8) and 

?o = l,

(4.6)

 ̂ (5.5a)

=  2®°’ (5.5b)

<№ »

4
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-Q'W

e'"=|e
WWWW--------------
0 V П,

T-—"

«« = _: \n'n\

F ig . 5 .1 c . Qualitative behavior of —Q2(r}) for m Ф 0 in the super-barrier case. 
The wavy lines are cuts, and Al and Лк are closed contours of integration. The 
part of Al that lies on the second Riemann sheet is drawn as a broken line. The 
phases of Q 1,2(r?) indicated in the figure refer to the the first Riemann sheet.

with

го = < r3/2( 0 | U ' 1/2(0 + (56a)

(  =  /? W

and

Y0 =  1,

Ya = 1*0,

y4
1 (  2 , d2£o\

~ ~ 8 \ + W ) '

(5.6b)

(5.7a)

(5.7b)

(5.7c)
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Q -\Q'
y W W W W W W W W X A

V L y
F ig . 5 .2 a . Qualitative behavior of —Q2( 0  f°r тп =  0. The wavy line is a cut, 
and the closed contour of integration, on which the phase of Q 1 2̂(C) is indicated, 
is called A^. The point £i lies at the origin.

-Q\ri)

0 A ---------- T)

F ig . 5 .2b . Qualitative behavior of — Q2(r}) for m =  0 in the sub-barrier case. 
The wavy lines are cuts, and Al and А к are closed contours of integration. The 
part of Aj, that lies on the second Riemann sheet is drawn as a broken line. 
The phases of Q 2(77) indicated in the figure refer to the first Riemann sheet. 
The point 771 lies at the origin.
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F ig . 5 .2 c . Qualitative behavior of —Q2{t}) for m =  0 in the super-barrier case. 
The wavy lines are cuts, and A l and Л к are closed contours of integration. The 
part of A l that lies on the second Riemann sheet is drawn as a broken line. 
The phases of Ql 2̂(rj) indicated in the figure refer to the first Riemann sheet. 
The point 771 lies at the origin.

with

+  ( 5 . 8 a )

С =  Г Я Ш т > .  (5.8b)

As in the discussion of the time-independent eigenfunctions in 
Chapter 2 , we confine the system such that 0  < £ < 0 0  and 0  < rj < p, 
where p is a large quantity which we shall finally let tend to infinity.

With Q2(£) given by (5 .1) the quantization condition associated 
with the differential equation (2.31a,b) is, with the aid of (4.60) when 
vn ф 0 and with the aid of (4.63) when m = 0, and with due regard
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to Figs. 5.1a and 5.2a, found to be

(5.9)

where щ  is a non-negative integer and [cf. (5 .3 )]
N

(5.10a)

Un =  / Y2nQ(0 <%, (5 .1 0 b)

with the contour of integration and the phase of <2 ( 0  shown in 
Figs. 5.1a and 5.2a. The justification of the quantization condition 
(5.9) is quite different in the cases when m Ф 0 and when m =  0, 
since (4.60) is derived with the aid of the connection formula (4.19), 
while (4.63) is derived with the aid of not only the connection formula 
(4.19) but also the particular case (4.29) of the connection formula
(4.28). We also recall the formula (2.46), which determines the nor
malization of the function /(m,ni, J5m>nbS;^), i.e.,

The only knowledge that is needed about the function 
/(m,Tii,£mjnijS;£) is (5.11) and the fact that the function in question 
is almost independent of p for large values of p.

With Q2(r]) given by (5.2) we recall (4.19) and (4.29) and normalize 
the physically acceptable solution #(m, ni, Еш>Пи8\ rj) of the differen
tial equation (2.32a,b) such that in the classically allowed region to 
the left of the barrier in Figs. 5.lb,с and Figs. 5 .2 b,с the phase- 
integral expression for this solution, with the use of the short-hand 
notation defined in (4.17), is

(5.11)
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with q(rj) given by (5.4) and (5.2) with E  =  Emn̂uS and the phase of 
Qlt2{r}) chosen as shown in Figs. 5.lb,с and Figs. 5.2b,c. We remark 
that the expression for the eigenfunction in the well to the left of 
the barrier, i.e., (5.12a) or (5.12b), is for m ф 0 the result of using 
the connection formula (4.19), but for m =  0 the result of using the 
particular case (4.29) of the connection formula (4.28). Although the 
right-hand sides look identical, except for the normalization factor, 
the justifications for these two formulas are quite different; see Sec
tion 4.2. The normalization factor n(m,ni, Em,nuS) in (2.33) will be 
determined later such that the condition (2.47) is fulfilled. To the 
left of the barrier (5.12a) and (5.12b) can for real values of 77 be 
rewritten as

1 / 9  Г  /*(7?2 ) 7Г
g{m, щ , Em>nitS; rj) =  q ' iv) cos Re J  q{v)dr) + 5' -  -

Re [  q(v)dv + * - iLI •'(»72) 4

(5.13)
where

(5.14)

with L defined as [cf. (5.4)]

L =  Re^ f  q(v)dri = £  Lin, (5.15a)
 ̂ n=0 

L2П =  R eJ / Y2nQ(n)dv, (5.15b)
2 J al

Al being the contour of integration shown in Figs. 5. lb,с when m Ф 0 
and in Figs. 5.2b,с when m =  0. According to the connection formula 
(4.38a,b) for a real potential barrier the particular solution of the 
differential equation (2.32a,b), which to the left of the barrier is given
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by (5.13), is to the right of the barrier [cf. Figs. 5. lb,с and Figs. 5.2b,c] 
given by

г // 7Г
Re / g{v)dv + 6" - -

LI *-4773)

with 6" and Cl" given by (4.43a,b), i.e.,

и — 15" =  arctan

и — 1

ф $ 
+  2 "  2 ’

(5.16)

(5.17a)

n" =  a ' 

= n'

Au
sin2 v

it +  1 u2 — 1 

и +  1 4 и

1/2

1/2

и —l (и2 — 1)(1 + tan2 г>)_ 

where according to (4.44a,b), (4.33), (4.35) and (5.14) 

u =  (1  +  l /e2)1̂  «  [1 +  exp(—2tf)]1/2-

(5.17b)

(5.18a)

Фv = 5’ (5.18b)
2 2 2  2 2 2  2

The quantity L is given by (5.15a,b), and the quantity К  is given by 
(4.48a,b), i.e.,

N
К = жК = 7T^/?2n,

71=0

i<2n = ^

(5.19a)

(5.19b)

the contour of integration Ajr< being depicted in Figs. 5.lb ,с [m Ф 0] 
and Figs. 5.2b,с [m =  0], and the integration along it being per
formed in such a direction that Kq is positive when the barrier is 
superdense but negative when the barrier is underdense. We remark 
that (4.48a,b) and (5.19a,b) are consistent, since the directions of 
integration along A and А к are different.
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For large values of 77 (< p) the cosine in (5.16) is a strongly oscil
lating function of 77, and with the use of (5 .2 ) we therefore obtain

1
[0 (77 1, T i\ , E m n̂ i j5 ; 77)] d i 7

■(£) £ , { i+“s[2( h £ , ’w*' 
(U"\2 f» dr, fn " \ 2 /•

“ W  1 ш * ш Г \ о г )  k
_  ( П " \ 2 (  4h2 \ 1/2 [ p dr, ( n " \

\S*J KixeFj /<„, 2 т ,^ я‘ \ п ') \neFJ

drj

+  5 "  - 1  d 7 ?

J  2|9(t?)|

'  1 (» eF T ,y 1/2 

n " \ 2 /4/t2p \ 1/2

i.e.,

[9(m,nu Emini,s-,ri)]2dr)*i 0 ^ )  ( ^ p )  ’ 5̂'20^

In a similar way one finds that fQ[g(rn,niyEm}nuS]rj)]2dr)/r) is equal 
to (П''/Q')2 times a factor that is approximately independent of p 
in the limit when p —> 0 0 . This, together with (5.20), justifies in 
another way the approximation of (2.36) that leads to (2.45), which 
is valid when p is sufficiently large. Inserting (5.20) into (2.47), we 
obtain

[n(rn,ni,Em,niiS)]:
n e F \ l/2fQ  
4h2pШ - (5.21)

The normalization factor П(т7г,П1, EmjnuS) thus depends on p, while 
<7 ( 7 7 1 , ni, Em^^r)) does not depend on p; see (5.12a,b).

The condition that g(m, n\, Emy7lus]rj) be equal to zero when 77 is 
equal to the very large quantity p implies according to (5.16) that

Re [  q(v)dn -f S" — — = — + an integer multiple of 7Г. (5.22)



For large values of r](<p) one obtains from (5.4), (5.5a) and (5.2)

*  ( f ^ F v V ' 2
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e E il  +  ^ + o ^ - 1)
Ah2 2h2 

1/2
V 4ft2 7

+ Ыь̂ ) £+0(??“3/2)’ 4 large’ (5-23)
and hence

£ ,  “ O w ^ )1 + (sSO1* B' < 5 ' M )

From (5.22) and (5.23) it follows that the spacing Д22 — Em,n i,5+l 
E m ,n u s between two neighboring energy levels £ m,ni,s+i and ^m,ni,s 
is approximately

(5.25)V /W
From (5.21) and (5.25) we obtain

[ft(m, ni, i?m>ni>s)]2 ^  p f  (5.26) 
A E  ~ 2 7 г& \ П " ) '

The quotient [ft(m,ni, Em>nijS)]2/AE is thus independent of p, since 
according to (5.17b) and (5.18a,b) Cl'/Cl" is independent of p.

Using (5.26), we can write (3.12) as

xip{x,y,z\0)dx dy dz, (5.27)

(3.13) as

Ё Ё у ( ( ^ ) V k » . , £ ) P ®  - 1, < 5 ^ )
т п = -о о щ = 0  ^  J  /

and (3.14) as

PW = /  ( f i r )  |C(m,m,£;)|2exp ( ^ p )  dE.

(5.29)
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By means of (5.28) and (5.29) one can easily confirm that p(0 ) = 1 . 
Inserting (5.27) into (5.29), we obtain

(§7) \JJJx4 m,nu E-,x,y,z)

l-^ pJ dE, (5.30)

where according to (2.34) with Em<nuS replaced by E

в - . . , .  f (T n ,n u E ;09 (m ,n u E-,ri)exp(invp) , col4X(m,nu b ,x ,y ,z ) ---------- ^ ------------- - щ -------- - щ щ -  (5.31)

with /(m, n\, £) normalized according to (5.11) with Em,nus 
replaced by E  and with g(m, n i , E ; 77) in the classically allowed region 
to the left of the barrier given by (5 .12a,b) with Em,nuS replaced by
E. According to (5.17b) and (5.18a,b) the energy dependence of the 
integral in (5.30) is negligible compared to the energy dependence of 
(П'/П" ) 2 when К  is sufficiently large, and then (Sl'/ft" ) 2 in (5.30) 
determines the profile of the Stark levels. The shape and half-width 
of such a level is thus determined by the profile (Q'/ft" ) 2 as function 
of E , and the position of the level is naturally defined as the energy 
for which the profile assumes its maximum value. This is the case 
also when К  is not sufficiently large, if one defines the profile not 
by means of the Fock-Krylov theorem but by means of the function 
^(m, 711, Em̂nuS\rj) in (5.16).

From (5.17a,b) and (5.18a,b) it is seen that if exp(2 K) »  1 , and if 
the energy E  increases continuously, which according to (5.14) and 
(5.15a,b) means that 6' decreases continuously, the quantity (П'ДУ' ) 2 

passes through sharp maxima at which v is equal to an integer mul
tiple of 7Г, and 6" increases steeply by 7Г, when E  passes through 
such a maximum. When the energy increases, the quantity exp (2 /C) 
decreases, and when E  approaches and passes through the top of the 
barrier, the profile (Q'/Q")2 becomes broader and gradually fades 
out for energies above the top of the barrier. At the same time the 
profile loses its original Lorentzian shape. The broad levels located 
close to or above the top of the barrier are highly asymmetric. For 
a precise characterization of those levels the full profile, calculated 
from (5.17b) along with (5.18a,b), must be used.

x ^{x,y: z]0)dx dy dz exp
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5.1 Positions of the Stark levels

As already mentioned, we define the positions of the Stark levels as 
the energies for which (П'/П")2 assumes its maxima for fixed F , m 
and rii. When the energy dependence of the u-dependent quantities 
in (5.17b) is much smaller than that of tanv, it is seen that the 
resonances, i.e., the minima of (О^/П7)2, occur when approximately

According to the approximate version of (5.18b) it follows from (5.32)

where П2 is an integer. To obtain a more accurate formula for the 
positions of the Stark levels we shall now calculate the energy deriva
tive of (П /ft )2 when the effective electric field strength F  and the 
quantum numbers m and щ are kept fixed. We obtain from (5.17b)

tan v =  0. (5.32)

that

(5.33)

- i L f — \2
d E ) (и — 1)2(1 + tan2 v)

2du/dE

from the approximate version of (5.18a)

dE [1 + exp(-21C)]i/2 w 
and from the approximate version of (5.18b)

du- JNJ

(5.34)

(5.35)

Inserting (5.35) and (5.36) into (5.34), we get

— 2 = 2(ц + 1 )dK/dE 
dE й(и — l)( l  + tan2 v)

l dj^L + ф) 
d E ~  2 dE (5.36)

(5.37)
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The values of v for which (П"/П)2 assumes its maxima and minima 
are obtained from the equation

22 2u2d(2L +  ф)/йЕ (и  — 1tan v — , 
(u + l)2dK/dE

the solutions of which are

A g ^ w e
( u + l ) 2dK/dE

tan*; — =  0 , (5.38)

-Ht-H N\

1/ 2 "

(5.39)
where the upper and lower signs correspond to maxima and minima, 
respectively, of (ГУ'ДУ)2, which one realizes by noting that (5.32) 
is obtained as an approximation of (5.39) when К  >  1 and one 
chooses the minus sign in (5.39). Prom (5.39) one thus finds that the 
resonances are obtained from the formula

tanv =  A, (5.40)

where

Д = 1 -

u2d(2L + 4>)/dE 
[ u + l ) 2dK/dE

Qи2 -  1 )2dK/dE 
u2(u + l)2d{2L + j))ldE

‘ (  (и2 -  1 )dK/dE \ 
\u2d(2L + $)/dE)

1/2

1 + / (u2 -  1 )dK/dE \ 
W d(2L + 4>)/dEj

1/21 -1

(5.41)

With the use of the approximate version of (5.18a) we can write 
(5.41) as

dK/dE _________________
A =  -

[exp(2iiT) -h 1]{[ехр(2АГ) 4- l]1/2 + exp(K)}2d(2L 4- Ф)/dE

w 7 1 i Г / dK/dE y l
1/2'

►x < 1 +
V [ехр(2ЛГ) +  l]d(2L + 4>)/dEj _ ./

- l

(5.42)

When the barrier is thick, we can write (5.42) approximately as

Д «  __exP( 4K)dKjdE barrjer. (5.43)
8d(2L + ф)/(Ш
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With the use of the approximate version of (5.18b) we obtain from
(5.40) the following improvement of (5.33)

L =  ^712 -f 7Г — ^ — arctan Л, (5.44)

where n2 is an integer.
The positions of the Stark levels En, where n = \m\ +  1 +  n\ +  n2i 

are obtained from the two simultaneous quantization conditions (5.9) 
and (5.44) along with (5.42).

5.2 Formulas for the calculation of dL/dE,  d K 2n/ d E  
and d K /  dE

The phase-integrals L, L and К  have besides the explicit energy 
dependence an implicit energy dependence, since Z\ and Z2 change 
when the energy changes. When the effective electric field strength F  
and the quantum numbers m and rt\ are kept fixed, while E  changes, 
we obtain from the quantization condition (5.9) and the relation
(2.29), according to which Z\ +  Z2 is equal to a constant,

(5.45)

• Q _  dl{E ,Z x) _ dL{EyZx) dL(E) Z\) dZi 
dE dE dZi dE 

_  dL(E,Z i) д Ц Е ^ г)  dZ2 
dE 8ZX dE

and hence

dZ2 dL(E,Zi)/dE
' d E - Щ Ё ^ т '  F ' m  a n d  n i  f i x e d ' (

It follows from the first-order approximation of (5.10a,b), (5.5a) and 
(5.1) that dL(E,Zi)/dE > 0 and dL(E,Zi)/dZi > 0, then from 
(5.46) that dZijdE > 0, and finally from (2.29) that dZx/dE < 0. 
When F,m  and nj are kept fixed, we obtain with the use of (5.46) 
[cf. (5.15a,b)]

dL2n(£ ,Z 2) ^ dL2n{E,Z2) dLinjE^Zj) dZ2 dL2n{E ,Z 2) 
dE dE dZ2 dE ~ dE

t dL2n(E,Z2) 8ЦЕ, Z\)/dE 7)
dL(E, Z\)jdZ\'  ̂ '



Similarly we obtain

dK2n{E, Z2) =  dK2n(E, Z2) dK2n(E,Z2) dL(E, Zx)/dE 
dE dE dZ2 dL{E,Zx)/dZi

(5.48)
We then obtain with the use of (5.15a) and (5.47)

dL- _  dLznjE, Z2) _  dL(E , Z2) dL(E , Z2) dL(E, Z\)/dE 
d E ~ dE ~ dE ^ 2  dt{E,Zi)/dZi

(5.49)
and with the use of (5.19a) and (5.48)

dK _  А  <^2»(-Б. Зг) _  8K(E, Z2) 
dE * 2 - '  dE dE

n =0

0 g ( £ , 2 2 )  dL(Ej Z\)/dE 
dZ2 dL(E, Z\)/dZ\

By means of (4.49), (4.50a-c), (4.52), (5.48), (5.49) and (5.50) one 
can calculate the derivatives in (5.42) and (5.43).

5.3 Half-widths of the Stark levels
We shall next give an explicit formula for the half-width Г on the 
energy scale of a not too broad Stark level. To this purpose we write 
(5.17b) with the use of the approximate version of (5.18a) as 

и +  1
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и — 1
. о

1 +  7------—Г2 sin v(u -  l )2
(u + l ) 2

и2 - 1
sin2 v

1 + (u W /i- u - W ft )
exp(2tf){[l + ехр(-27Г)]1/2 + l } 2

1 +
sin2 г;

| i[ l  +exp(-2K )}1' 4 -  \[X +  exp(-2^)]1/4}

(5.51)
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For a not too broad Stark level ал adequate approximate formula for 
Г is obtained when one neglects the change with energy of и over the 
width of the level. Thus one finds from (5.51) that (Q!/О!')2 assumes 
half of its maximum value when

|sinv| «  ^[1 + exp(-2K )]1/4 — ^[1 +  exp(—2K)]1̂ 4. (5.52) Z A
The half-width expressed in terms of the variable v is thus 
2arcsin{[l H- exp(—2K)]1̂ 4/2 — [1 + exp(—2К)]~г̂ 4/2}. By multi
plying this quantity by \dE/dv\, i.e., by \dv/dE\~l , which according 
to the approximate version of (5.18b) is equal to \d(L +  0/2)/dE|- 1 , 
we obtain the half-width Г, which is thus

4arcsin |^[1 + exp(-2i:f)]1/4 -  ^[1 + exp (-2 if)]-1/4 j
Г ”  \d(2L  +  4 > )/d E \ B = E n *

(5.53)
The quantity d(j>/dE in (5.53) is important when the energy 
approaches the top of the barrier, since it there cancels the singularity 
in d(2L)/dE. We can write (5.53) as

+  exp(-2/0]“1/4}

\T/h + d<j>/dE\E=En
(5.54)

where

r  =  (5.55)

is the time for a complete classical oscillation to and fro in the well to 
the left of the barrier. In the first-order approximation ф ~  —ф^ =  
l/(2AKo) for a thick barrier according to Eqs. (2.5.14) and (2.5.13b) 
in Froman and Froman (2002), and in (5.53) and (5.54) d<t>/dE can 
therefore be neglected when d(l/K0)/dE <  48dL/dE.

4arcsin j ^ [ l  + exp(-2if)]1/4 -  ^[1 
P _________ I f ___________________f _



Chapter 6

Procedure for Transformation of the 
Phase-Integral Formulas into Formulas 
Involving Complete Elliptic Integrals

The phase-integral quantities in the formulas obtained in Chapter 5 
can be expressed in terms of complete elliptic integrals. One thereby 
achieves the result that well-known properties of complete elliptic 
integrals, such as for instance series expansions, can be exploited 
for analytic studies. Furthermore, complete elliptic integrals can be 
evaluated very rapidly by means of standard computer programs.

In this chapter we shall describe the procedure for expressing the 
phase-integral formulas derived in Chapter 5 in terms of complete 
elliptic integrals. The integral in question is first expressed in terms 
of a Jacobian elliptic function and then in terms of complete ellip
tic integrals. Different elliptic functions are appropriate for different 
phase-integrals. For practical calculations it is most convenient to 
work with real quantities. For the phase-integrals associated with 
the 77-equation it is therefore appropriate to use different formulas 
for the sub-barrier case and for the super-barrier case. We indicate 
in this chapter, where we use the notations L̂ 2n+l\ И 2п+1\ Я^2п+1) 
instead of the notations L̂ n, ^2n, K2n used previously, the main 
steps in the procedure for expressing, for m Ф 0, L^  both in the 
sub-barrier case and in the super-barrier case and in the super
barrier case in terms of complete elliptic integrals.

From now on we shall use units such that fi =  e =  h =  1, i.e., 
atomic units when the nucleus is assumed to be infinitely heavy; see 
(2.5). Denoting the zeros of Q2(rj) by ?7i, 772 and we write (5.2)

69
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with /i =  e = f t = l a s

_Q\ri)
F{T) -  m)(ri -  T)2)(r) -  Т)з)

Ari2
(6.1)

where 771 =  0 when rrt =  0; see Figs. 5.2b and 5.2c.
Considering first LM in the sub-barrier case in Fig. 5.1b, we intro

duce the Jacobian elliptic function snu by the transformation

i.e.,

2 V ~ Vis n u  = ---------V 2 -гц

V =  rji +  (772 -  rji)sn2u.

(6.2)

(6.3)

Recalling (5.15a,b) and (5.7a), and using (6.1), (6.3) and gen
eral properties of Jacobian elliptic functions, we obtain after some 
calculations

F 1/2{ri2 -  ??i)2 (t?3 ~  VI) :1/2

Vl

ГГ}2
L(1) =  / Q{v)dri =

'K sn2u( 1 — sn2u)(\ — k2sn2u)
x [  - ,v- v* 7 4% " <*ц>Jo 1 -  0ilsnlu

where

fc2 = a2 _  Ы  -  ш)
i m - m Y  m

After having performed the integration in (6.4), we obtain

(6.4)

(6.5a,b)

L a ) = _ ^ 3 - m ) 3 /2 fc 2 (1 _ fc2) K{k)  -  E(k )
&

\ar )  1 — кг cr \  1 — cr
(6.6)

К, E  and П being complete elliptic integrals of the first, second and 
third kind, respectively. According to Section 117.03 on Page 14 in 
Byrd and Friedman (1971) we have the formula

П( т г ^ )  =  -  (fc2 -  a 2)II(<*2,fc)], (6.7)
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by means of which (6 .6 ) can be written as

LW =  Fl/2( ^ 3 - ^ ) 3/2/fc2(1 _  f t  K ? )  ( g - 1) _  !
3

K{k) -  E(k) 
k2

1 — k2( 1 - И

<6-8»
With the aid of the expressions (7.13c) and (7.13a/,b/,c/) in Chapter 7 
for P,k,2 ,a '2 and we can write (6 .8 ) as

L m  _  / 1/2t e ~  ^ ) 3/2 |fe/2(1 _  jfc'2)[3(l _  /?')(! _  fc'2/З') _  1] 

x +  fc2(1 _  fc2)(3(1 _  Л (1  _  fc2/?) _  J]

x ^ i - 3 f c 2(l -  0)(1 -  к2 0)П(а2, k)^. (6.9)

Using (7.3a), (7.6a) and (7.13d) in Chapter 7, we can write (6.9) in 
the form of (7.14a), with тф  0 , in Chapter 7.

Next we consider LM in the super-barrier case in Fig. 5.1c, where 
the zeros 772 and 773 of Q2(rj) are complex conjugate. Denoting their 
real and imaginary parts by 61 and =F<2i, respectively, we have

772 =  61 — mi, 773 =  &i-f mi, (6.10a,b)

ai being positive according to Fig. 5.1c. We introduce the Jacobian 
elliptic function cnu by the transformation [see Page 86 in Byrd and 
Friedman (1971)]

A + 771 -  77
cnu = (6 .11 )

A -771  + 77’ 

where

A = [(b1 - r h )2 + a12]1'2. (6.12)

771 + A (  771 -  A \ tс л o \

From (6.11) we obtain



72 Stark Effect in a Hydrogenic Atom or Ion

Using (5.7a), (5.15b), (6.1), (6.10a,b), (6.12), (6.13) and general prop
erties of the Jacobian elliptic functions, we obtain after some calcu
lations (see Fig. 5.1c)

L(1) =  Re^ J Q(ri)dn =  F 1/2A3/2{1 -  a)Re^

r2K+2iK' (1  _  CWM) ( fc'2 +  k2 еп 2ц )

J0 (1 +  cnu)2(l +  acnu) ’ 1 '

where К  =  К (к) and К ' — K(k!) with

fc2 =  A + ̂ - n i  fc/2 = 1 _ fc2 a = m Z A .  (6.15a, b,c)
2 A ’ ’ та +  A

Evaluating the integral in (6.14), we obtain

r(i) _  F l/2A3/2k2tc'2 
3 (1- a )

„  ,  J С(к)-Е(к) ,c ,E{k)
-  (1 +  5a) +  (5 +  a ) - j^ r

3a(l +  a) 2 2 ,2 _  Зтг(1 +  a )1/'2(fc2 +  a 2fc/2)1/2
+  + < * * , * ;  2(1 -  a)V2fc2fc/2

(6.16)

With the aid of the expressions (7.17f) and (7.17f') in Chapter 7 for 
/3 and /3' we obtain from (6.16) the formula

£<■> - 2Fl/̂ B b (l  -  *>) (l + fj  м

+ 3 2 ^ 1  n (* ! « ' I *  *)

Зтг/?[/У(/;2 +  а 2А:'2)]1/2 )  . .
4(а +  1) J ’

Using (7.18a) and (7.21a) in Chapter 7 one sees that (6.17) agrees 
with (7.22a), with тф  0, in Chapter 7.
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Considering К W in the super-barrier case in Fig. 5.1c, one simi
larly obtains

= -
2F l/2A3/2k2k,3

3(1 -  a)
(5 +  a)

K(k') -  E(k')
k'2

- (1+5a)m - ^ n ^ 2+a4'2,fc')
к2 ak'2 " V  ' (6Л8)

With the aid of (6.16b) along with (7.17f) and (7.17d',e',f) in Chap
ter 7 we obtain from (6.18) the formula

( 1 )  _  4 j r i / 2 ^ 3 / 2

к,2{1 - к гг)[ 1 +/2>С 3 p \ K {K )-E (k !)
2 ) №

+ k\ 1 -  к2) ( l  +  M )  _  ^ | ^ П (А / 2 + k2a°, k') .

(6.19)

Using (7.18a) and (7.21a) in Chapter 7 one sees that (6.19) agrees 
with (7.22d), with тф  0, in Chapter 7.

In Chapter 7 we collect formulas that have been derived as 
described in the present chapter, although with the use of a com
puter program.
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Chapter 7

Phase-lnegral Quantities and Their 
Partial Derivatives with Respect to 
E and Zi Expressed in Terms of 
Complete Elliptic Integrals
Anders Hokback and Per Olof Froman

In this chapter we collect and present, without derivation, in explicit, 
final form the relevant phase-integral quantities and their partial 
derivatives with respect to E  and Z\ expressed in terms of com
plete elliptic integrals for the first, third and fifth order of the phase- 
integral approximation. For the first- and third-order approximations 
some of the formulas were first derived by means of analytical calcu
lations, and then all formulas were obtained by means of a computer 
program. In practical calculations it is most convenient to work with 
real quantities. For the phase-integral quantities associated with the 
77-equation we therefore give different formulas for the sub-barrier 
and the super-barrier cases. As in Chapter 6 we use instead of Z/2n> 
L2n, n the notations L̂ 2n+1\ L̂ 2n+1\ K^2n+1\

It turns out that the (2n+ l)th-order contributions to the phase- 
integral quantities needed can be expressed in terms of func- 
tions tf(2n+1>(fc,/?), F<2n+1>(M ), G(2n+1) (*,/?) and Я<2п+1) (М ) ,  
F(2n+i)(fc,/?), 6 (2n+l\k, /3) with various expressions for the param
eters к and p. These functions axe therefore called “universal” func
tions. Their explicit expressions are derived for 2n + 1 equal to 1, 3 
and 5.

77



78 Stark Effect in a Hydrogenic Atom or Ion

7.1 The ^-equation
With fjb = e = h = l w e  write (5.1) as

,7 .1)

where £o < 0 < £i < £2 when тф  0 [Fig. 5.1a] but £o < 0 — £i < £2 
when m =  0 [Fig. 5.2a]. We then introduce the parameters

= 0 = i ,  » - ( b - « , ) « » ,
6 - C o  £ 2  ,  1 X

(7.2a,b,c,d)

fc'2 =  l - f c 2, a12 =  q2~2̂  f f , /?' =  i  (7.2a',b',c')Q;

We note that from (7.2a',b') it follows that the expression for k2 in 
terms of k! 2 is the same as the expression for k'2 in terms of /с2, and 
that the expression for a 2 in terms of k'2 and a'2 is the same as the 
expression for a /2 in terms of k2 and a 2. Note also that a2 =  1 for 
m =  0 and that a'2 =  1 when 0?  =  1.

We introduce for the first-order approximation the functions

hx{k2,P) =  k2( 1 -  k2)[3(1 -  0){1 -  k2p) -  1], (7.3a) 

h(k2,p) = k2( l - k 2)fr (7.3b)

gi(k2,p) = l - k 2, (7.3c)

for the third-order approximation the functions

hs(k2J 3) = Y T f c # 2 + 1 + №  ~ 4fc2 + 1)1. (7-4a)

h(k2 ,0) =  - (1 _1fc2)3^ 3(-_8fel° + 23fc8 “  23fc6 -  23fc4 +  23fc2 “  8)

+ 3/32(4fc8 -  Ilk6 + 30/c4 -  life2 +  4) 
+ /3(-5fe6 -  19k4 -  19fc2 -  5) +  (5fc4 + 6fc2 +  5)], (7.4b)
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9 з ( к 2 , P )  =  - fc2 ( 1 l fc2) 3 ['g2(8fcl° -  23fc8 +  23fc6 +  23fc4 -  23fc2 +  8)

+ 2/?(—4ft8 +  lift6 -  30ft4 +  11A:2 -  4)
+ (ft6 + 7ft4 + 7ft2 +  1)], (7.4c)

and for the fifth-order approximation the functions

hs(k2,/3) =  L _ [ 7 , g 3(_i28A:18 +  624A:16 -  1215ft14 +  1 1 8 2 ft12

-  591ft10 -  591ft8 +  1182ft6 -  1215ft4 +  624ft2 -  128)
+  6/?2(224ft16 -  1086ft14 + 2100к12 -  2005A:10 + 2430A:8
-  2005ft6 +  2100ft4 -  1086ft2 +  224)
+  3/?(-168ft14 + 807ft12 -  1550ft10 + 15ft8 +  15ft6
-  1550ft4 +  807ft2 -  168) +  2(14ft12 -  66ft10
+  375ft8 + 250ft6 +  375ft4 -  66ft2 +  14)], (7.5a)

fs(k2,0) =  fciy [7/?5( l° 24ft24 ~  6528ft22 +  17440ft20

-  25027ft18 +  20335ft16 -  8737ft14 + 938ft12 -  8737ft10 
+  20335ft8 -  25027ft6 +  17440ft4 -  6528ft2 + 1024)
+  2/?4(—8960ft22 +  57024ft20 -  152036ft18 +  218123ft16
-  178649ft14 +  82418ft12 + 82418ft10 -  178649ft8 
+ 218123ft6 -  152036ft4 +  57024ft2 -  8960)
+ 2/33 (8064ft20 -  51216ft18 + 135841ft16 -  193367ft14 
+  155635ft12 -  181594ft10 +  155635ft8 -  193367ft6 
+  135841ft4 -  51216ft2 +  8064) +  8/32(-784ft18 +  4985ft16
-  13137ft14 +  18485ft12 -  589ft10 -  589ft8 + 18485ft6
-  13137ft4 +  4985ft2 -  784) +  /?(952ft16 -  6157ft14
+ 16253ft12 -  46143ft10 -  1490ft8 -  46143ft6 +  16253ft4
-  6157ft2 + 952) +  2(—14ft14 + 97ft12 +  481ft10 +  3020ft8 
+  3020ft6 +  481 ft4 + 97ft2 -14)] ,  (7.5b)
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9ь(к2,Р) = - ^6(1 * fc2)7[7/34(1024fc24 -  6528к22 +  17440/c20

-  25027ifc18 + 20335A:16 -  8737A:14 +  938/c12 -  8737fc10 
+  20335fc8 -  25027/c6 +  17440/c4 -  6528A:2 +  1024)
+  8/33(—1792/c22 +  11456/c20 -  30708fc18 +  44309A:16
-  36439A;14 + 16758/c12 +  16758A:10 -  36439к8 

+ 44309A:6 -  30708fc4 +  11456A:2 -  1792) +  2/?2(4480fc
-  28752к18 +  77365fc16 -  112225fc14 +  92263fc12
-  109270fc10 +  92263fc8 -  112225A;6 +  77365A:4
-  28752Л:2 + 4480) +  8/3(—224fc18 +  1446fc16 -  3905&
+ 5711&12 + 556/c10 +  556fc8 +  5711 A;6 -  3905к4 + 1446k2
-  224) +  (56fc16 -  365/г14 + 985A:12 -  5199fc10 -  5290fc‘
-  5199fc6 +  985fc4 -  365A:2 +  56)].

.20

.14

,8

(7.5c)

For the first-order approximation we introduce the “universal” 
functions

k'2

H ^ (k,P ) =  -  Ы к Р , Р ) К { к ) +h , ( k 2, 0 ) ^

-  3(1 -  <5m,o)fc2(l - m -  k2/3)U(a2,k) 

F m (k,0) =  -  h (k’\ 0 ) - ^ -~2 E{k) -  h ( k 2,0 ) E{k) 

G *\ k,0 )  =  gx{k'2, 0 ) K {k )^ E{k) +91(к2, р ф  

in terms of which we have

dU1') h ,u 
8Ё  ~ F W F  (k’® '  

d l ^  2 
dZ, ~ F W h G (l\ k ,p ) .

(7.6a)

(7.6b)

(7.6c)

(7.7a)

(7.7b)

(7-7c)



For the third-order approximation we introduce the “universal” 
functions

H™(k,/3) =  hi{k '\ 0)K{- ] ~2E{k) -  h3(k2, 0 ) ^ - ,  (7.8a) 

F (3)(fc,/3) =  h (k ,2,l3')K {k )~2E{k) + (7.8b)

Phase-lnegral Quantities and Their Partial Derivatives 81

G(3) (*,/?) =

(7.8c)

in terms of which we have

m  (7-9a) 

a£<3) 1 F<3> (M ), (7.9b)
dE 6F 3/2h5 

д №  1 
Ж *  “  3F3/2A7

G(3)(fc,/?)- (7.9c)

For the fifth-order approximation we introduce the “universal” 
functions

tf<5> (M ) =  -

(7.10a)

^ (S)( M )  =  -

(7.10b)

G(5\ k ,0 ) = g 5(k,\ 0 ')^ 1̂  + g 5(fc2, / 3 ) ^ .  (7.10c) 

in terms of which we have

1 1 Я ' з ш к 5 Я 1 Я М '  < 7 Л 1 , )

З г  -  Р-ПЬ)

ж  * ш д а ° И ( М ) ' (7Л,С)
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7.2 The ^-equation in the sub-barrier case
With ц =  e = h =  lw e write (5.2) as

Q2(v) =  (7.12)
4 r)z

where 771 =  0 when m =  0; see Figs. 5.2b and 5.2c. We then introduce 
the parameters

« - А .773 -  771 771 a 2
(7.13a, b,c,d)

k'2 =  l - k \  a '2 P' =  \ -  (7.13a',b',c')

We note that from (7.13a; ,b') it follows that the expression for к2 in 
terms of к/2 is the same as the expression for к/2 in terms of A;2, and 
that the expression for a 2 in terms of k/2 and a '2 is the same as the 
expression for a!2 in terms of k2 and a2.

Furthermore, we introduce the same functions /i2n+i(&2> /?)» 
f 2n+i{k2,0 ) and g2n+i{k2,P), as well as the same “universal” 
functions Ĥ 2n+l\k,ff), F (2n+1)(/c,/3) and G(2n+1)(/c,/3) as for the 
^-equation; see Section 7.1. In terms of these “universal” functions 
we have

0 L «
dE

a id )

K(!) =

ал:*1»

ак^1)
52,

- ^ > ( W ) , (7.14a)

Д ^ (1)( м ) , (7.14b)

р 1 ч С"{к,!3),

FVl

(7.14c)

(7.14d)

Fh1/2F ^ ( k \ n (7.14e)

(7.14f)
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£(3) =  “ l i F V W F ( 3 ) ( M ) ’ (7Л5а) 
дЬ(3> 1 ,,,
дЁ ~  ~ 6 F 3/2/i5'F (7.15b) 

1 G<3>(fc,/?), (7.15c)
5Z i 3 F 3/2/i7 

K {z) = ------
18 j

ЭЁ =  ^ (7.15e)

~&zT =  ~ 3 F V 4 7 G(3) k̂ 7̂’15f^

L(55 )= - 3 6 0 fW ^ 5)^ ^  (716a)

(7Л6Ь)
9L®  1

aZi ~  60F 5/2/i13

# (5) =  ------ L _
360F3/2 

д/^5> 1

G<5>(fc,/?), (7.16c)

К(5) =  т ^ н {ь )^ ’ (7Л М )

F^(k',p '),  (7.16e)
dE 120F V 411 

дК ®  1
dZl 60F5/2h13

G{b\k',0).  (7.16f)

7.3 The 77-equation in the super-barrier case
Recalling the formula (7 .1 2 ) for Q2(ij), which remains valid in the 
superbarrier case (still with щ =  0  when m =  0 ), we introduce the 
parameters [cf. Page 86  in Byrd and Friedman (1971)]

oi =  —Im?72 =  1пз77з(>0), 6X =  Re7j2 =  ReT/з, , .(7.17a, b,c)
A =  [(bi -  m)2 +  a i2]1/2,

A*  = A + b - \  a = ^ 4 ,  / 3 = ^ 1 ,  (7.17d,e,f)
2 A 771 + A a - 1

k'2 =  1 — k2, a' — 1/a, p = ? L ± l r e - / 3 .  (7.17d',e',f')
a — 1
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We note that from (7.176! ,d) it follows that the expression for k? 
in terms of k12 is the same as the expression for k'2 in terms of k2, and 
that the expression for a in terms of a1 is the same as the expression 
for a' in terms of a.

Furthermore we introduce for the first-order approximation the 
functions

= A:2(l — к2) ^1 +  2 ^ j ’ (7.18a)

h {k2,/3) = k2(j3 — 1), (7.18b)
§i(k2,0) =  k2, (7.18c)

for the third-order approximation the functions 

h (k 2,0)  = 3[4fc2 + 1 +  /?(—32fc4 +  20 k2 +  1)], (7.19a)

1з{к2,Р) =  ~ ^ ~ - щ { 1 3 3(~40Ш 10 +  8704fc8 -  5632fc6 +  1028/c4

-  5k2 +  2) +  3/?2(512fc8 -  832fc6 +  324A:4 -  7k2 + 2)
+ /3(-160fc6 +  180fc4 -  23k2 +  6) +  (4ifc4 -  7k2 +  2)],

(7.19b)

Ы к2,Р) = fc2j[ff2(-4096fc10 + 8704A:8 -  5632A:6 +  1028fc4

-  5k2 -  2) + 2/3(512fc8 -  832/c6 +  324A;4 -  7k2 +  2)
+  (—32fc6 + 36fc4 -  5A;2 +  2)], (7.19c)

and for the fifth-order approximation the functions

h {k 2,0) = * - [7/33(—4194304Л:18 + 17301504/c16

-  28311552A;14 + 23138304fc12 -  9694080/c10 +  1878000A:8
-  118104fc6 + 231fc4 -  ЗА:2 + 8) + 3/32(3670016A:16
-  13303808A;14 + 18356224A;12 -  11803904A;10 +  340526A:8
-  324792A;6 + 1037A:4 -  121fc2 + 56) + 3/?(-344064A;14 
+ 1075200A:12 -  1205760A:W -I- 562704A:8 -  88624A:6
+ 681 A:4 -  165A:2 + 56) + (14336A:12 -  37632A:10 
+ 32400A:8 -  9320A;6 + 285A:4 -  153A:2 + 56)], (7.20a)
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M k2,0)

9s(k2,/3)

= ~ fc2)3 [7/35(-536870912fc24 +  3019898880ft22

-  7197425664ft20 +  9427222528ft18 -  7351107584ft16 
+ 3446448128ft14 -  929052672ft12 +  127330256ft10
-  6465440ft8 +  22573ft6 -  149ft4 +  32ft2 +  16)
+  /?4(2348810240ft22 -  12037652480ft20+25618284544fc18 
-29121183744ft16 + 18885009408ft14 -6871478784ft12 
+  1265964112ft10 -  88234984ft8 +  484753ft6 -  3393ft4 
+  48ft2 + 560) + 2/?3(—264241152ft20 +  1222115328ft18
-  2287730688ft16 + 2201284608ft14 -  1135273088ft12 
+  292752720ft10 -  29175440ft8 +  268455ft6 -  783ft4
-  800ft2 +  560) +  2/?2(25690112ft18 -  105971712ft16 
+ 171026432ft14 -  134278912ft12 + 51043120ft10
-  7636896ft8 + 127361ft6 +  1639ft4 -  1424ft2 + 560)
+  /?(—1949696ft16 + 7067648ft14 -  9554432ft12
+ 5752880ft10 -  1363600ft8 +  45063ft6 + 3121ft4
-  1824ft2 + 560) + (14336ft14 -  44800ft12 + 48336ft10
-  19400ft8 +  1245ft6 + 627ft4 -  400ft2 +  112)], (7.20b)

fc6(! Z fc2)3 [7/34(—536870912ft24 +  3019898880ft22

-  7197425664ft20 +  9427222528ft18 -  7351107584ft16 
+ 3446448128ft14 -  929052672ft12 +  127330256ft10
-  6465440ft8 +  22573ft6 -  149ft4 + 32ft2 + 16)
+  4/33 (469762048ft22 -  2407530496ft20 +  5122818048ft18
-  5820776448ft16 + 3771392000ft14 -  1369831936ft12 
+ 251440784ft10 -  17363608ft8 + 90621ft6 -  1053ft4
-  16ft2 + 112) +  2/?2 (—146800640ft20 +  678952960ft18
-  1270349824ft16 + 1220718592ft14 -  627705472ft12 
+  160824208ft10 -  15772129ft8 +  134017ft6 -  1618ft4
-  544ft2 + 336) + 4/3(3670016ft18 -  15138816ft16
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+ 24410112ft14 -  19113216ft12 +  7216976ft10 -  1061048/г8 
+  16253ft6 -  61ft4 -  272ft2 +  112) +  (-114688ft16 
+  415744ft14 -  561664ft12 +  337456ft10 -  79520ft8 
+  2619ft6 +  173ft4 -  288ft2 +  112)]. (7.20c)

For the first-order approximation we introduce the “universal” 
functions

Sfi\k,0 ) =  +  Si(ft,2 ,/J ')B (*)ft'2

+ T < 1 - 5- « » { 5 S T T j l № a +  “ v " , , !

-  afc/2ri(fc2 + a 2 ft'2, ft) |

+ г I  ,02 R, M ' )  -  E(k') - 2 E(k')hi{k , p )  ^ hi{k , p) ^2

-  2 ^  -  tmfi)a'P'k2n(k'2 +  a '2ft2, ft')

F « ( M )  =  - f fk'2 /Q/\/ l ( *  ,̂/2

f c 2

in terms of which we have

d L «  A1/2 _,n , ч 
a s  ~  2 ^ / 2  ̂  

ai-W 1
<3(1)(ft„0),5Zi FWAW  

ак-а) a i/2

2
ЭЕ

9^(4
az. Я/2д1/2 G(1)(ft',a')-

(7.21a)

(7.21b)

(7.21c)

(7.22a)

(7.22b)

(7.22c)

(7.22d)

(7.22e)

(7.22f)
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For the third-order approximation we introduce the “universal” 
functions

H<-3\k,/3) =  h3(k2,0 )—{k\ 2E(k) -  h3(k'2

— г
к 2

/2 a!\K{k') -  E(k')

,„K(k)
к'2

h3(k'2J ' ) к'2

FW(k,0) = -\ f3(k2,/3) 

& 3\к,р) =  -  д3(к\0)  

in terms of which we have

Ф )  =

2 m K (k )-E (k )
k2
2 a\ K(k) — E(k) „ К (k) 

-------¥ ---------- дг(к , 0 ) - й г

144^!/2Л3/2 
dL& 1
ЭЕ 192F3/2y45/2 

dL®  1
dZi ~  96РЗ/2Л7/2 

K&  =  _  1

dI<W

ReH^(k,P),

F (3) ( M ) ,

72Fl/2A3/2
1

dE
dKW

96Fs/2A5/2 
1 G ^{k',0).

(7.23a)

(7.23b)

(7.23c)

(7.24a)

(7.24b)

(7.24c)

(7.24d)

(7.24e)

(7.24f)
dZx 48 F 3/2 A7/2

For the fifth-order approximation we introduce the “universal” 
functions

tf(5)(M) = h(k2,0 ) ^ ^ ^ -  + h(k'2,0')K{k)

+ i h (k ,2,0') к'2

к'2

+ h5(k2,0 )—r2

F (5\k,0)  =

<5(5 ) ( M )  =

„2 a/̂ (fc ')  -  £(fcQ . E /,_2 „^(A ;')

U k 12̂ ')  k,2

(7.25a) 

, (7.25b)

95(k2,0) , (7.25c)
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in terms of which we have

t<" - 4 i 0 8 O f b w Ite S (5 ,<t - , ,>' (7'26a) 
д ь (5) 1
S b  = ^ i u o F ^ A ^ ^ ' ik' e> (7.26b)

Ж - 5 о™ Р 7 = а ^ с ,5>1‘ ' Я -  <7'26c)

K 6 ) ~ - 2 5 o 4 o'f»/M»/»lm i?W (t’w ' ( 7 ' 2 6 d )

<9|f(5) i 
5E  "~ 30720F5/2An /2 (7.26e) 

i 
-  ~15360F5/2^i3/2G( >  ̂)• (7.26f)



Chapter 8

Numerical Results
Anders Hokback and Per Olof Froman

Values of the energy E  and the half-width Г for different states of 
a hydrogen atom in an electric field F [=  F  according to (2.17)] of 
various strengths, obtained both in previous work by other authors 
and in the present work with the use of the phase-integral formulas, 
are presented in the tables of the present chapter. We use atomic 
units (au), i.e., such units that \x =  e =  h =  1. The positions E  of 
the Stark levels were obtained from (5.33) except for the state with 
n = 30 in Table 8.7, where the more accurate formula (5.40) along 
with (5.42) has been used. The half-widths Г were obtained from
(5.54) along with (5.55) and are therefore accurate only when the 
barrier is sufficiently thick, which means that Г is sufficiently small.

We emphasize that the results obtained by us, as well as those 
obtained by the other authors quoted in this chapter, are obtained 
by neglecting the fine structure corrections. This is not a serious 
disadvantage for us, since our main intention has been to compare the 
accuracy obtainable by the phase-integral method with the accuracy 
obtainable by other methods of computation. For the experimental 
data corresponding to the theoretical values presented in this chapter 
we refer to the publications mentioned in this chapter.

Table 8.1 gives results concerning the Stark effect for the ground 
state (m = щ  =  n2 = 0, n = 1) of the hydrogen atom. For each 
value of the field strength F , the first line gives results obtained 
by Hehenberger, McIntosh and Brandas (1974) by means of Weyl’s

89
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T a b le  8 .1 . m  =  n\ =  пг =  0, n =  1.

F - E Г К

0.04 0.503 7 718  
0.503 771591

3.9 x  10“ 6 
3.89 x  10“ 6

0.505 4 3.1 x  10~6 5.38 0.516 8
0.503 87 3.97 x  10-6 5.258 0.520 26
0.503 74 3.83 x 10" 6 5.275 7 0.520 225
0.50171 3.91 x  10-6 5.27 0.515 0
0 .50367 4.02 x 10-6 5.252 0.520 17
0.503 76 3.83 x  10“ 6 5.276 1 0.520 232

0.08 0.51756  
0.517495 363

4.54 x Н Г 3 
4.511 0 x  10" 3

0.5191 3.9 x 10" 3 1.73 0.5358
0.5179 4.63 x  10-3 1.639 0.542 5
0.517 3 4.48 x 10" 3 1.655 0.542 30
0.507 5.9 x  10“ 3 1.54 0.530
0.5156 5.0 x  10-3 1.60 0.541 4
0.5177 4.3 x 10~3 1.66 0.542 5

0.12 0.5374  
0.535 567

2.99 x  10“ 2 
2.942 З х  10" 2

0.53651 2.83 x 10~2 0.68 0.554 85
0.53640 3.26 x  10“ 2 0.603 0.564 34
0.535 21 3.15 x  Н Г 2 0.620 0.564 02
0.520 3.6 x  10~2 0.49 0.548
0.538 2.4 x 10~2 0.63 0.565
0.551 1.4 x К Г 2 0.79 0.570

0.16 0.555 4 
0.547 78

7.14 x 10“ 2 
7.119 5 x  1 0 "2

0.5485 7.8 x К Г 2 0.17 0.570 4
0.5490 9.0 x 10“ 2 0.10 0.582 1
0.5473 8.6 x 1 0 "2 0.12 0.581 7
0.537 5.2 x  10“ 2 0.07 0.566
0.568 3.0 x 10" 2 0.27 0.590

0.20
0.595 1.3 x 10~2 0.55 0.600
0.570 55 
0.55260

1.209 x lO' 1 
1.2493 x 10“ x

0.5535 1.5 x 10" 1 - 0 .1 5 0.582 3
0.5542 1.80 x 10-1 - 0.22 0.595 8
0.552 2 1.71 x 10" 1 - 0.20 0.595 4
0.56 0.9 x 10" 1 - 0.11 0.584
0.51 1.2 x К Г 1 -0 .5 2 0.580
0.48 1.1 x 10“ x -0 .7 3 0.567

( Continued)
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T a b le  8 .1 . (Continued)

- E К Zi

0.24

0.28

0.32

0.36

0.40

0.583 
0.550 82 
0.552 3 
0.552 7 
0.5509  
0.57 
0.52 
0.49

0 .5434
0.545 8
0.5454
0.544 3
0.57
0.52
0.49

1.74 x  10" 1 
1.892 7 x  10' 
2.6 x 10_1 
3.1 x  10_1 
2.9 x К Г 1 
1.8 x К Г 1 
2.4 x 10" 1 
2.0 x  Н Г 1

2.643 x  10
4.0 x  К Г 1 
4.8 x 10_l 
4.5 x  Н Г 1
3.0 x  10-1
4.0 x К Г 1 
3.4 x 10_1

-0.38
-0.46
-0.43
-0.3
-0.7
- 0.8

-0.56
-0.64
-0.61
-0.4
- 0.8
-0.9

0.4938 0.563 1
0.502 1.0 - 0 .9

0.495 1.3 - 1.1

0.501 1.2 - 1.0

0.54 0.9 - 0.8

0.48 1.2 - 1.1

0.46 1.1 - 1.2

0.591 
0.606 2 
0.605 9 
0.597 
0.594 
0.582

0.598 
0.613 8 
0.614 0 
0.605 5 
0.604 7 
0.594

0.5311 3.507 x П Г 1
0.534 8 5.7 x 10“ 1 -0 .7 1 0.602

0.5331 7.0 x 10_1 -0 .8 0 0.619 3

0.5334 6.5 x 10“ 1 -0 .7 5 0.620 1

0.56 4.6 x 10_1 - 0.6 0.6118

0.51 6.1 x К Г 1 - 0 .9 0.6121

0.48 5.3 x 10“ 1 - 1.0 0.602

0.514 4 4.497 x 10_1
0.519 9 7.8 x 10-1 -0 .8 3 0.605

0.5161 9.8 x 10_1 -0 .9 3 0.622 8

0.518 6 9.1 x lO" 1 - 0.88 0.624 5

0.55 6.5 x 10" 1 - 0 .7 0.616 2

0.50 8.8 x 1 0 "1 - 1.0 0.6171

0.47 7.7 x 10" 1 - 1.1 0.609

0.607 
0.624 7 
0.6276  
0.6190  
0.620 2 
0.614
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theory, the second line gives numerical results obtained by Damburg 
and Kolosov (1976a), and the lines 3-8 give our phase-integral results 

oth with ф included (the lines 3, 4 and 5 giving the results in the 
rst , thiid- and fifth-order approximations, respectively) and with 

ф neglected (the lines 6, 7 and 8 giving the results in the first-, third- 
and fifth-order approximations, respectively).

Damburg and Kolosov (1976a) state that their data for E  are in 
complete agreement with those of Alexander (1969).

By means of a variational method FYoelich and Brandas (1975) 
ave calculated values of E  which are close to those given by 

Hehenberger, McIntosh and Brandas (1974).
Korsch and Mohlenkamp (1983) have used a semiclassical complex- 

energy treatment to calculate results corresponding to those obtained 
by Hehenberger, McIntosh and Brandas (1974). They get results that 
agree approximately with those obtained by Hehenberger, McIntosh 
an r n̂(las (1974) although with a less number of digits.
, a^ 6S (c) give results concerning the Stark effect for

e three states m = 0,щ  = 0,n2 =  1 (Table 8.2(a)), \m\ =  1,ти =
,, П2~ (ТаЫе 8-2(Ь)), and то =  0,ni =  l , n 2 =  0 (Table 8.2(c)) of 

e у rogen atom with the principal quantum number n =  |ra| +  
r 712 — 2 in an electric field. For each state and each value
l ? 6 s r̂enSth F , the first line gives the value of E

n_C,U ^  y use Perturbation expansion including terms 
P о he fourth power of F  (Alliluev and Malkin (1974)) given by 

urg and Kolosov (1976a) in their Table 2, the second line gives 
flQ7fi r'ler'Cf̂  *'esults for E  and Г obtained by Damburg and Kolosov
inchirWt m, V 6 *ineS 3 8 give our Phase-integral results both with ф 
fifth-r. l 6 mes  ̂anc* ® giving the results in the first-, third- and 
lines l  Г  T : ° Xlmations’ respectively) and with ф neglected (the 
aDDm’imaf glVmg the results in the first-, third- and fifth-order
approximations, respectively).

the numprir^611* °i °Ur optimum Phase-integral results for E  with 
is in general Л Г  <• °btained ЬУ Hamburg and Kolosov (1976a)

8 2 Ы п С ь Т  ^  State m = ° ’^  = ° ’ " 2 =  1 (Table
»  -  0 . » ,  ,  1 , 712 “  0 , " г  ‘  0  ( Т * Ь ,е  8 ' 2 ( Ъ ”  “ “



Numerical Results

T a b le  8 .2 (a ) . m =  0 ,n i =  0, n 2 =  l ,n  =  2.

93

F - E Г К Z\

0.004 0.138 5098  
0.138 548 793 
0.138 69

4.439 3 x 10~6 
4.1 x  10“ 6 4.14 0.268 5

0.138 551 4.443 x 10" 6 4.1014 0.270021
0.138 548 72 4.438 9 x  10" 6 4.1019 0.2700234
0.138 14 4.9 x  10" 6 4.06 0.268 0
0.138 523 4.49 x 10“ 6 4.097 0.270 00
0.138 543 4.450 x  10-6 4.1011 0.270 019

0.008 0.156 2309  
0.156 3768  
0.156 45

4.1616 x 10~3 
4.5 x  10-3 0.43 0.289

0.156 387 4.673 2 x  10“ 3 0.404 0 0.291 315
0.156 3764 4.670 6 x Н Г 3 0.404 3 0.291 3228
0.154 9 4.7 x  10" 3 0.30 0.287
0.157 4 2.7 x 10”3 0.49 0.292
0.159 1.3 x  10~3 0.67 0.294

0.012 0.181138  
0.171517  
0.17162

1.899 0 x 10" 2 
3.0 x 10~2 -0 .6 1 0.305

0.171536 3.105 x К Г 2 -0 .6 3 3  5 0.30847
0.1715172 3.103 x 10“2 -0 .6 3 3  1 0.308484
0.174 2.4 x 10" 2 -0 .4 9 0.306 6
0.1701 2.7 x  10~2 -0 .7 2 0.307 4
0.168 2.4 x 10-2 - 0.86 0.305 5

0.016 0.217 79 
0.179 94 
0.180 2

0.44119 x  10" 1 
0.96 x 10" 1 -1 .2 7 0.315

0.179 964 1.015 x  10_1 -1 .3 0 3  2 0.319 36
0.179 9396 1.014 x  10" 1 -1 .3 0 2  6 0.319 387
0.183 0.89 x 10" 1 - 1.1 0.317 5
0.179 930 0.99 x  10" 1 -1 .3 0 5 0.319 33
0.178 7 0.96 x  10' 1 -1 .3 6 0.318 5

0.020 0.272 3 
0.1811  
0.1819

0.873 9 x 10_1 
2.5 x  10' 1 -1 .8 7 0.320

0.181165 2.742 x  10" 1 -1 .9 1 0 2 0.324 42

0.181140 2.740 x 10" 1 -1 .9 0 9 3 0.324 478

0.185 2.4 x  10' 1 -1 .7 3 0.323

0.1816 2.73 x 10' 1 -1 .8 9 0.324 7

0.180 87 2.71 x lO' 1 -1 .9 2 0.324 28
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T a b le  8 .2 (b ). |m| =  1 ,щ  =  0, n 2 =  0, n  =  2.

- E К Zx

0.004

0.008

0.012

0.016

0.020

0.126304 8
0.126 316 885 8.1 x  10” 7
0.12643 7.2 x 10" 7 5.05 0.5230
0.126 323 8.19 x 10" 7 4.980 0.524 364
0 .1263153 8.028 x 10~7 4.989 4 0.524 354
0.126 0 8.35 x  10" 7 4.975 0.522
0.126 302 8.25 x  10" 7 4.976 0.524 33
0.126 314 6 8.032 x  10" 7 4.989 3 0.524 353
0.130 9011
0.131 188 59 2.024 4 x  10-3
0.13116 1.97 x 10-3 0.93 0.549
0.13122 2.14 x 10~3 0.879 0.551 55
0.131175 2.10 x 1 0 "3 0.889 0.55148
0.129 2.7 x 10“ 3 0.76 0.546
0.131177 1.96 x 10" 3 0.875 0.55147
0.1321 1.4 x 10' 3 0.97 0.553 1
0.140 8344
0.1359716 1.168 7 x  10" 2
0.135 90 1.47 x 10” 2 0.18 0.572
0.13611 1.59 x  10~2 0.23 0.575 82
0.13605 1.55 x 10" 2 0.21 0.575 75
0.136 7 1.0 x 10~2 0.13 0.574
0.132 1.1 x 10“ 2 0.46 0.570
0.129 0.9 x 10-2 0.67 0.564
0.159 514
0.136437 2.755 2 x 10- 2
0.136 91 4.4 x 10" 2 -0 .7 9 0.588
0.13700 4.9 x 10“ 2 -0 .8 4 0.591 8
0.13715 4.7 x 10~2 -0 .8 2 0.592 1
0.139 3.9 x 10" 2 - 0.66 0.592
0.1359 4.4 x  10" 2 -0 .9 0 0.590
0.134 3.9 x 10~2 -0 .9 9 0.587
0.19171
0.13150 0.51881 x 1.0" 1
0.1341 1.0 x 1 0"1 -1 .2 4 0.597
0.133 7 1.10 x 1 0 -1 -1 .3 2 0.600 4
0.134 3 1.08 x 10-1 -1 .2 9 0.601 4
0.137 0.9 x 10_1 - 1.11 0.601 3
0.1336 1.07 x 10" 1 -1 .3 3 0.600 2
0.132 8 1.02 x 10_1 -1 .3 5 0.599 0



Numerical Results

T a b le  8 .2 (c ) . m =  0, n\ =  1, пг =  0 ,n =  2.

95

К Zi

0.004

0.008

0.012

0.016

0.020

0 .1143102
0.114 305 339 1.364 3 x  10" 7
0.114 40 1.2 x 10-7 5.99 0.7694
0.114314 1.39 x  10" 7 5.893 0.770 61
0.114 302 1.340 3 x 10" 7 5.9124 0.770 577
0.113 99 1.32 x  10~7 5.92 0.768 2
0.114 295 1.40 x 10" 7 5.890 0.77055
0.114 3043 1.339 7 x  10“ 7 5.912 7 0.770583

0 .1066335
0.106 6684 8.509 6 x 10" 4
0.106 58 7.7 x 10" 4 1.48 0.791 7
0.106 72 8.8 x 10-4 1.40 0.794 52
0.106 645 8.49 x 10" 4 1.42 0.794 35
0.105 0 10.7 x 10" 4 1.33 0.788
0.106 4 9.2 x 10“ 4 1.38 0.793 7
0.106 80 7.8 x 10~4 1.44 0.794 7

0.103 747
0.100621 6.881 5 x  10' 3
0.1003 7.4 x  10-3 0.24 0.814
0.100 72 8.3 x 10" 3 0.173 0.8185
0.100 58 7.9 x  10“ 3 0.197 0.818 2
0.098 8 6.3 x  10“3 0.14 0.811
0.103 3.7 x  10" 3 0.30 0.823
0.106 1.6 x К Г 3 0.55 0.831

0.109 013
0.092 728 1.7147 x 10" 2
0.092 3 2.3 x 10-2 -0 .3 7 0.830
0.092 83 2.60 x 10~2 -0 .4 4 5 0.835 2
0.092 76 2.45 x 10" 2 -0 .4 1 1 0.835 04
0.094 1.7 x 10" 2 -0 .2 8 0.834
0.090 2.0 x 10“ 2 -0 .6 1 0.828
0.086 1.6 x  1 0 '2 -0 .7 7 0.819

0.12738
0.082 41 3.044 x 10-2
0.0820 4.9 x 10" 2 -0 .7 9 0.839
0.082 39 5.7 x 10" 2 - 0.88 0.844 2
0.082 73 5.3 x 10-2 -0 .8 3 0.844 98
0.085 4.2 x 10" 2 - 0.66 0.845
0.081 5.1 x  10-2 -0 .9 3 0.841

0.079 4.4 x 10" 2 - 1.0 0.836
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Tables 8.3(a), (b) give results concerning the Stark effect for the two 
states m =  0, ni =  О, П2 =  4 (Table 8.3(a)) and m =  0, n\ =  4, =  0 
(Table 8.3(b)) of a hydrogen atom with the principal quantum number 
n =  |m| +  1 +  щ  +  n2 =  5. For each value of the electric field strength
F , the first line gives the value of E  calculated by the use of the pertur
bation expansion including terms up to the fourth power of F  (Alliluev 
and Melkin (1974)) given by Damburg and Kolosov (1976a) in their 
Table 3, the second line gives the numerical results for E  and Г obtained 
by Damburg and Kolosov (1976a), the third line gives the numerical 
results for E  and Г calculated by Luc-Koenig and Bachelier (1980a) in 
their Table 2, and the lines 4-9 give our phase-integral results both with 
ф included (the lines 4, 5 and 6 giving the results in the first-, third- 
and fifth-order approximations, respectively) and with ф neglected (the 
lines 7, 8 and 9 giving the results in the first-, third- and fifth-order 
approximations, respectively).

The agreement of our optimum phase-integral results for E  with 
the numerical results obtained by Damburg and Kolosov (1976a) and 
by Luc-Koenig and Bachelier (1980(a)) is very good for the state 
7тг =  0, Tii = 0,ri2 = 4 (Table 8.3(a)) but in general less good for the 
state m = 0,7ii =  4,n2 = 0 (Table 8.3(b)).

Table 8.4 gives results concerning the Stark effect for the state 
\m\ =1, щ = 3, ri2 = 0 of the hydrogen atom with the principal quan
tum number n = \m\ + 1  + n\ +  = 5. For each value of the electric 
field strength F  the first line gives the results of Guschina and Nikulin 
(1975) quoted by Damburg and Kolosov (1976a) in their Table 4, the 
second line gives the numerical results obtained by Damburg and 
Kolosov (1976a) in their Table 4, the third line gives the numeri
cal results obtained by Luc-Koenig and Bachelier (1980a) in their 
Table 2, and the lines 4-9 give our phase-integral results both with ф 
included (the lines 4, 5 and 6 giving the results in the first-, third- and 
fifth-order approximations, respectively) and with ф neglected (the 
lines 7, 8 and 9 giving the results in the first-, third- and fifth-order 
approximations, respectively).

Although the results obtained by Guschina and Nikulin (1975) and 
by Damburg and Kolosov (1976a) are rather close to each other, the 
latter authors believe that their data are more accurate. Compar
ison with our results is somewhat difficult, since we do not know



Numerical Results

T a b le  8 .3 (a ) . m =  0, щ  =  0, n-i =  4, n =  5.
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F x  104 - E Г К Zi

1.0 0 .02317714  
0 .023179196 2 
0.023179 196 289 73 
0.023 183

4.2 x  10~12 
4.229 x 10" 12 
4.10 x 10" 12 9.67 0.10846

0.02317921 4.2279 x 10" 12 9.650 9 0.108 71026
0.023179196 23 4.227 8 x  10~12 9.6509 0.108 710362
0.023169 4.39 x 10" 12 9.63 0.10843
0.02317910 4.230 x 10" 12 9.650 7 0.108 7100
0.023179 193 4.2279 x  10" :12 9.6509 0.108 710355

1.5 0.024 93217  
0.024 956 749 
0.024 956 749 516 
0.024 960

1.919 x 10“ 6 
1.922 x  10" 6 
1.88 x 1 0"6 3.05 0.1128

0.024 956 77 1.920 2 x 10' 6 3.0380 0 .1131663
0.024 956 74942 1.920 2 x 10" 6 3.0380 0.113166 54
0.024 92 2.18 x К Г 6 2.98 0.1127
0.024 954 1.95 x 10" 6 3.033 0.113159
0.024 955 9 1.928 x  10" 6 3.036 6 0.113165

2.0 0.026 837 90 

0.02697136

0.026 973

1.783 Ox l O " 4 

1.92 x 10" 4 0.517 0.1175
0.026971 40 1.947 7 x  10" 4 0.508 90 0.1179194
0.026 9713670 1.947 7 x  10“ 4 0.508 90 0.11791984
0.02689 2.2 x 10"4 0.40 0.1173
0.02702 1.3 x 10" 4 0.57 0.11801
0.0271 0.7 x 10" 4 0.7 0.1182

2.5 0.028 93341  
0.028 96828

0.028970

0.853 10 x  10" 3 

1.369 x 10" 3 -0 .7 1 3 0.1219
0.028968 34 1.383 0 x lO ' 3 -0 .7 2 0 3 1 0.1224269
0.028 968293 1.383 0 x 10“ 3 -0 .7 2 0  31 0.122 42747
0.0291 1.21 x  10"3 -0 .6 1 0.1221
0.028 93 1.25 x  10' 3 -0 .7 6 0.12235
0.028 8 1.12 x 10"3 -0 .8 7 0.122 2

[Continued)
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T a b le  8 .3 (a ) . {Continued)

F  x 10' —E К Zi

3.0

3.5

4.0

4.5

0.031 265 1

0 .0305381 1.9698 x  10" 3

0.030 543 5.07 x  10-3 -1 .7 2 8 0.1254
0.030 53816 5.123 3 x  10" 3 -1 .7 3 7  9 0.125 922 8
0.030 538093 5.123 3 x  10“ 3 -1 .7 3 7  9 0.125 923 60
0.030 65 4.90 x  10~3 -1 .6 3 0.125 6
0.030 55 5.10 x  10~3 -1 .7 2 6 0.125 95
0.030 528 5.06 x  10“ 3 -1 .7 4 8 0.125 90

0.033 8870
0 .0314338 0.364 34 x 10-2

0.031447 1.61 x  10“ 2 - 2.88 0.1274
0.031434 02 1.632 8 x 10" 2 -2 .9 0 0  2 0.128 0241
0.031433 939 1.632 8 x  10" 2 -2 .9 0 0  2 0.128 025 14
0.03155 1.56 x 10" 2 - 2 .8 0 0 .1276
0.031444 1.6324 x 10~2 -2 .8 9 1 0.128 044
0.031437 1.6324 x  10~2 -2 .8 9 8 0 .128030

0.036 860
0.031408 0.63513 x  10“ 2

0.031 44 5.67 x  10~2 -4 .3 6 0.127 7
0.03140871 5.8015 x  10“ 2 -4 .3 8 4  1 0.128 3 366
0.031408 603 5.8016 x 10“ 2 -4 .3 8 4  1 0.128 338 12
0.03154 5.47 x 10“ 2 - 4 .2 8 0 .1279
0.031413 5.799 x  10" 2 -4 .3 8 1 0.128 345
0.031409 7 5.8015 x  10“ 2 -4 .3 8 3  3 0.128 340

0.040 25

0.02998 0.127 3 x  10" 1

0.030 06 3.04 x 10_1 -6 .3 8 0.125 3
0.029 984 6 3.184 3 x 10_1 -6 .4 2 8  8 0.125 966
0.029 98440 3.184 6 x 1 0 "1 -6 .4 2 8  8 0.125 968 3
0.03018 2.90 x К Г 1 -6 .3 0 0.125 5
0.029 987 3.182 8 x  10_1 -6 .4 2 7 5 0.125 970
0.029984 6 3.1845 x lO * 1 -6 .4 2 8  7 0.125 968 8



Numerical Results

T a b le  8 .3 (b ) . m =  0, n\ =  4, щ  =  0, n =  5.

99

F  x Ю4 —E  Г  К  Zi

0.015 813 91

0.015 807 764 5 2 x 10-11
0.015 807 764455 1.432 x 10" 11
0.015 808 3 1.2 x  10-11 9.18 0.913 3
0.015 8081 1.464 x  10“ n 9.099 7 0.913 640
0.015 807 66 1.4063 x 10_ u 9.1196 0.913632
0.015 79 1.3 x 10~n 9.15 0.913 0
0.015 807 58 1.466 x 10" 11 9.098 8 0.913 631
0.015 807 757 1.405 9 x 10" 11 9.1197 0.913 6343

0.014 55759
0.014 535 2049 4.026 x 10“8
0.014535 205 2 4.029 x  10-8
0.014 532 3.5 x  К Г 8 5.18 0.918 2
0.014 5358 4.12 x 10~8 5.101 0.918 61
0.014 534 97 3.952 8 x 10~8 5.1209 0.918 596
0.014 50 3.9 x 10' 8 5.14 0.9176
0.014534 2 4.14 x 10~8 5.098 0.918 57
0.014535 07 3.953 0 x  10-8 5.1211 0.918591

0.013 385 92

0.013328925 3.2719 x  10-6

0.013 320 2.9 x  10-6 2.93 0.9234
0.013 3302 3.35 x 10" 6 2.859 0.924 02
0.013 3284 3.21 x 10“ 6 2.879 1 0.923 987
0.013 27 3.35 x  10“ 6 2.87 0.9224
0.013323 3.43 x  10-6 2.850 0.923 89
0.013 327 3.23 x  10” 6 2.878 0.923 97

0.012319 09
0.01220093 4.166 6 x  10" 5

0.012 18 3.8 x  10-5 1.58 0.929 3
0.012203 4.3 x 10~5 1.510 0.930 16
0.0121996 4.14 x 10' 5 1.531 0.930086
0.012 09 4.8 x 10-5 1.48 0.928
0.012186 4.5 x 10~5 1.49 0.929 8
0.012 206 4.0 x  10“ 5 1.537 0.930 20

0.01138469
0.011136 04 1.7914 x 10' 4

0.01111 1.73 x 10" 4 0.73 0.935 6

( Continued)
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Table 8 .3(b ). (Continued)

F x  104 - E Г К

0.011140 1.96 x НГ4 0.660 0.936 75
0.011133 8 1.87 x 10"4 0.683 0.936 634
0.0110 2.1 x 10~4 0.60 0.933
0.01115 1.67 x 10“4 0.67 0.9369
0.01124 1.1 x 10~4 0.79 0.939

4.0 0.01061772
0.01008206 4.2804 x 10~4

0.01004 4.6 x 10-4 0.14 0.941 5
0.010087 5.2 x 10-4 0.08 0.942 88
0.0100801 5.0 x 10~4 0.10 0.942 756
0.0100 3.6 x 10~4 0.08 0.940
0.0103 2.1 x 10~4 0.2 0.946
0.010 5 0.9 x 10~4 0.5 0.950

4.5 0.010060 59
0.00899479 7.588 2 x 10"4

0.00895 9.5 x 10"4 -0 .30 0.946 4
0.008999 10.8 x 10"4 -0.37 0.947 83
0.0089964 10.2 x 10-4 -0 .34 0.947 796
0.009 03 7.3 x 10~4 -0 .2 0.947 8
0.0088 7.9 x 10‘ 4 -0 .5 0.945
0.0086 6.1 x 10*4 -0 .7 0.941

5.0 0.0097631
0.0078517 1.1483 x 10"3

0.007 81 1.7 x 10~3 -0.66 0.9500
0.0078509 1.9 x 10"3 -0.75 0.9513
0.0078622 1.8 x 10~3 -0.70 0.951 5
0.007 9 1.5 x 10"3 -0 .6 0.952
0.007 77 1.7 x 10"3 -0 .8 0.950
0.007 6 1.4 x 10“3 -0 .9 0.948

exactly for which values of F (expressed in atomic units) the other 
authors have performed their calculations. Their field strengths were 
originally expressed in V/cm, and we do not know the exact values 
of the conversion factors used by these authors to express the field 
strengths, originally given in V/cm, in au. In our phase-integral cal
culations the values of F in atomic units (given in our Table 8.4) 
were considered to be exact.



Numerical Results

Tab le  8.4. \m\ = 1, щ  = 3, пг = 0, n = 5.

101

F - E Г К Zi

1.556 x 10“4 au 0.016 8401273 5.03 x 10"10 0.824 056 67
(0.8 x 106 V/cm)

0.016 855 237 2 
0.016 855 237 14 
0.016 8560

4.2 x 10~l° 
4.222 x 10~10 
3.8 x Ю"10 7.45 0.823 7

0.016 855 4 4.27 x 10~10 7.392 0.824 022
0.016 855 18 4.180 x НГ10 7.402 3 0.824 0174
0.016 836 4.1 x 10"10 7.41 0.8234
0.016854 9 4.28 x 10~10 7.391 0.824 013
0.016 855 219 4.179 x Ю-10 7.402 4 0.824 0181

1.944 8 x 10~4 au 0.016162 71 1.48 x 10~7 0.83052
(1.0 x 106 V/cm)

0.016179 388 5 
0.016179388 247 
0.016177 6

1.438 x 10“7
1.439 2 xlO "7 
1.3 x 10"7 4.50 0.8301

0.0161797 1.46 x 10"7 4.446 0.830471
0.016179 27 1.426 x 10-7 4.456 1 0.8304634
0.016 145 1.45 x 10-7 4.451 0.8295
0.016178 0 1.47 x 10"7 4.443 0.83044
0.01617914 1.427 x 10~7 4.455 9 0.830461

2.139 3 x 10-4 au 0.015 842 9 1.09 x 10"6 0.8339
(1.1 x 106 V/cm)

0.015 860468 

0.015 857

1.057 x 10"6 

0.97 x 10~6 3.48 0.833 4
0.015 8610 1.07 x 10“6 3.428 0.83384
0.015 860 29 1.048 x 10-6 3.438 7 0.833826
0.015 815 1.10 x 10~6 3.422 0.832 7
0.015 857 1.08 x 10“6 3.423 0.833 78
0.015 859 7 1.051 x O'6 3.4379 0.833816

2.528 2 x 10"4 au 0.015 255 . 1.78 x 10"5 0.84105
(1.3 x 106 V/cm)

0.015 269204 

0.015 260

1.756 0 x 10 '5 

1.6 x 10"5 2.01 0.8404
0.015 270 2 1.79 x 10-5 1.96 0.84099
0.015 2688 1.748 x 10"5 1.975 2 0.840 970
0.015 1 2.0 x 10"5 1.92 0.8392
0.015 258 1.85 x 10~5 1.95 0.840 79
0.015 268 2 1.739 x 10"5 1.974 5 0.840 961

( Continued)
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Table 8.4. ( Continued)

F - E Г К

2.917 2 x 10~4 au 0.014 735 0.995 x 10~4 0.848 86
(1.5 x 106 V/cm)

0.014 740243 0.976 51 x 10"4

0.014 725 0.94 x 10"4 1.05 0.848 0
0.014 742 1.02 x 10"4 1.01 0.848 72
0.014 7396 0.999 x 10~4 1.021 0.848 683
0.014 62 1.2 x 10~4 0.93 0.846 2
0.014 733 0.993 x 10~4 1.00 0.848 58
0.014 78 0.8 x 10~4 1.06 0.849 3

3.3061 x 10"4 au 0.014 27 3.03 x 10~4 - 0.857 24
(1.7 x 106 V/cm)

0.014 24249 2.785 3 x ПГ4

0.014 22 2.9 x 10“4 0.40 0.855 6
0.014246 3.15 x 10-4 0.355 0.856 52
0.014 242 8 3.08 x 10 '4 0.367 0.856 471
0.01412 3.06 x 10~4 0.29 0.854 0
0.014 32 1.9 x 10"4 0.43 0.857 7
0.014 5 1.0 x 10"4 0.6 0.860

Korsch and Mohlenkamp (1983) have used a semiclassical treat
ment of complex energy states to calculate results corresponding to 
those in our Table 8.4. The results in their Table 1 are in satisfactory 
agreement with the first-order approximation of our phase-integral 
results.

Table 8.5 gives results concerning the Stark effect of the hydrogen 
atom for four states with the principal quantum number n =  Iml-bH- 
Tii + 7i2 =  25, for one state with n = 12, and for one state with n =  7. 
For each state and each value of the electric field strength F  the first 
line gives the numerical results obtained by Damburg and Kolosov 
(1981); see their Fig. 1 for the state m  =  0,ni =  0, n2 =  24; see their 
Fig. 2 for the state |m| =  1,щ =  11, n2 =  12; see their Fig. 3 for 
the state \m\ =  1,щ =  12, n2 = 11, see their Fig. 4 and their Table
1 for the state m = 0, n\ = 24, n2 = 0, see their Table 2 for the state 
lm l =  2,7ii =  8, n2 = 1, see their Fig. 5 and their table 3 for the 
state \m\ =  l ,n i  = 3,n2 =  2. The lines 2-7 give our phase-integral
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results both with ф included (the lines 2, 3 and 4 giving the results 
in thejirst-, third- and fifth-order approximations, respectively) and 
with ф neglected (the lines 5, 6 and 7 giving the results in the first-, 
third- and fifth-order approximations, respectively).

For the state m  =  0,ni =  0,Ti2 =  24 the value of E  given by 
Damburg and Kolosov (1981) is somewhat more accurate than our 
optimum value when ф is neglected. In the third- and fifth-order 
approximations with ф included we get probably three more reliable 
digits than Damburg and Kolosov.

For the states |m| =  1, щ =  11, n2 =  12 and \m\ =  1, n\ =  12, n2 =
11 the last two digits in the values of E  obtained by Damburg and 
Kolosov (1981) differ from the results obtained by us in the third- 
and fifth-order approximations with ф included. This indicates that 
for these states the values of E  given by Damburg and Kolosov (1981) 
may not be quite correct.

For the state m =  0, щ =  24, n2 =  0 the value of E  obtained by 
Damburg and Kolosov (1981) agrees best with the phase-integral 
value of the fifth-order approximation with ф neglected. This is 
strange, since ф should be important also when the barrier is thick, 
if one wants results of great accuracy.

For the states \m\ =  2, ni =  8, n2 =  1 and \m\ =  1, n\ =  3, n2 =  2 
the fifth-order (with ф included) phase-integral values for E  agree 
satisfactorily with the corresponding values obtained by Damburg 
and Kolosov (1981).

Tables 8.6(a), (b) give results concerning the Stark effect of the 
hydrogen atom for states with the principal quantum number n =  
|m| + 1 +П1+П2 =  10 and n =  25 (Table 8.6(a)) and with n =  13,72 =  
14 and тг =  30 (Table 8.6(b)). The field strength F  is expressed in 
au in Table 8.6(a) but originally in V/cm in Table 8.6(b). For each 
state and each value of the electric field strength F  the first line 
gives the “theoretical” results obtained by Kolosov (1983); when he 
gives two values of Г, obtained from his Eqs. (31) and (32), we quote 
only that obtained from the more accurate Eq. (31). The second 
line quotes the numerically exact results given by Kolosov (1983). 
The lines 3-8 give our phase-integral results both with ф included 
(the lines 3, 4 and 5 giving the results in the first-, third- and fifth- 
order approximations, respectively) and with ф neglected (the lines
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6, 7 and 8 giving the results in the first-, third- and fifth- order 
approximations, respectively).

For the state m  =  0 ,n i = 0,ri2 = 9,i.e.,n =  10, with the electric 
field strength F — 1.0 x 10-5 au in Table 1 in Kolosov (1983) there is 
in the value of burner probably a misprint which we have corrected 
in our Table 8.6(a).

In Table 8.6(a) the electric field strengths F  (expressed in au) are 
simple numbers, which we have considered as exact values in atomic 
units. In Table 8.6(b) the electric field strengths F  are originally 
given in V/cm and have been converted into au by conversion fac
tors which we do not know exactly. After certain difficulties with 
these conversion factors we have in the third- and fifth-order approx
imations with ф included been able to reproduce all digits in the 
numerically exact values of E  obtained by Kolosov (1983). To achieve 
this result, we have used the conversion factor 1 au =  5.142 x 10“9 
V/cm for the states with n =  13 and n =  14 and the conversion 
factor 1 au =  5.142 2603 x 10“9 V/cm for the state with n =  30; it 
is not possible to reproduce all digits in the numerically exact results 
by the use of one and the same conversion factor.

Table 8.7 gives results concerning the Stark effect of the hydrogen 
atom for one state with the principal quantum number n =  |m| +1 + 
Щ +  ri2 =  25 and the field strength F =  2514 V/cm «  4.889 x 10~7 
au and one state with n =  \m\ + 1 +  щ -f- n2 =  30 and F =  800 
V/cm яз 1.556 x 10-7 au. To convert these field strengths from V/cm 
into au we have used the conversion factor 1 au =  5.142 2603 x 10 9 
V/cm (obtained as private communication from Professor Damburg). 
For each state and each electric field strength F  the first line in our 
Table 8.7 gives the value of E  obtained by combination of Rayleigh— 
Schrodinger perturbation theory of the order 24 with Pade approxi- 
mant technique (Silverstone and Koch 1979), the second line gives the 
numerical value of E  calculated according to the method of Damburg 
and Kolosov (1976a) and obtained as private communication from 
Damburg to Nanny Froman in a letter of 22 February 1985, and the 
lines 3-8 give our phase-integral results both with ф included (the 
lines 3, 4 and 5 giving the results in the first-, third- and fifth-ordei 
approximations, respectively) and with ф neglected (the lines 6, 7
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and 8 giving the results in the first-, third- and fifth-order approxi
mations, respectively).

Prom Figs 1, 2 and table 1 in Silverstone and Koch (1979) it is seen 
that merely Rayleigh-Schrodinger perturbation theory, even of very 
high orders (up to 24), cannot give values of E  that are sufficiently 
accurate to reproduce the experimental results. Therefore we have 
not included values of E  calculated in that way in our Table 8.7. The 
values obtained from the combination of Rayleigh-Schrodinger per
turbation theory of the order 24 with Pade approximant technique 
in the first line associated with each state and each field strength in 
our Table 8.7 are much more accurate. Still more accurate and more 
reliable than the values obtained by the combination of Rayleigh- 
Schrodinger perturbation theory of large orders with Pade approxi
mant technique, quoted in our Table 8.7, are the results that can be 
obtained by the numerical method of Damburg and Kolosov (1976a) 
or by the phase-integral method. For the state with n =  30 the digits 
in our Table 8.7 indicate that in the third- and fifth-order approx
imations with ф included, the phase-integral value of E  reproduces 
the numerical value calculated by Damburg and Kolosov (1976a).

For the state n =  30, m = 0,ni =  0,n 2 =  29 in the electric field 
F  =  800 V/cm «  1.556 x 10“7 au, Silverstone and Koch (1979) quote 
(in the caption to their Fig. 2) the energy value E — —7.844648 x 
10“4 au, which has been calculated by Damburg and Kolosov (private 
communication from Damburg to Silverstone and Koch). Silverstone 
and Koch (1979) say that this energy value was obtained by the phase 
shift method, but Damburg has informed us (private communication 
to Nanny Froman in a letter of 26 May 1980) that the energy value in 
question was determined as the value of E  for which the quantity В  
in Eq. (11) in Damburg and Kolosov (1980) is minimum. In a letter 
to Nanny Froman of 22 February 1985 Damburg communicated the 
improved value quoted in Table 8.7. We have calculated the positions 
of the Stark levels by means of the accurate formula (5.44) along with 
(5.42). The state m  =  0, nx =  0, n2 =  29, n =  \m\ +  1 + гц +  n2 =  30 
is also discussed in Chapter 1 of this book.

Table 8.8 gives results concerning the Stark effect for four states 
of the hydrogen atom with the quantum numbers m = 0, щ —1 and 
П 2 =  1 ,2 , 3 and 4, i.e., n =  \m\ + 1 + 72X + 7i2 = 9, 10, 11 and 12 in
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Table 8.8. F  =  1.5 x 10_5au,m =  0,тц =  7,n 2 =  1,2,3,4,  n =  9,10,11,12.

n -E x lO 3 Г К Zi

9 5.065 779842 36791 3.7 x 10~16
5.06584 3.5 x К Г 16 13.52 0.854 5
5.065 784 3.694 x Н Г16 13.496 0.854 6100
5.065 77963 3.6883 x 10"16 13.497 0.854 609 765
5.064 3.64 x Н Г16 13.50 0.854 4
5.065 771 3.695 x 10~16 13.496 0.854 609 2
5.065 779 69 3.688 3 x 10-16 13.497 0.854 609 768

10 4.09712164 6.368 x 10"8
4.0968 6.2 x 10~8 3.76 0.794 87
4.097126 6.371 x 10-8 3.7500 0.794 996 8
4.097 1215 6.369 x 10~8 3.750 1 0.794 99656
4.093 6.8 x 10~8 3.72 0.794 6
4.096 9 6.41 x 10"8 3.748 0.794 98
4.09707 6.38 x КГ8 3.7496 0.794 993

11 3.6007 1.353 x 10-4
3.6008 1.89 x 10"4 -1.083 0.763 0
3.601436 1.9081 x 10~4 -1.089 9 0.763190 2
3.6014314 1.908 0 x 10-4 -1.089 8 0.763189 94
3.610 1.80 x 10“4 -0 .99 0.763 6
3.6011 1.85 x 10"4 -1.093 0.763 17
3.596 1.77 x 10~4 -1.14 0.762 9

12 3.100 1.637xl0‘3
2.905 1.70 x 10"2 -7.72 0.716 71
2.903 689 1.7215 x 10~2 -7.739 9 0.716 7713
2.9036931 1.7214 x 10"2 -7.7398 0.716 771 63
2.908 1.68 x 10~2 -7.69 0.716 9
2.90372 1.7214 x 10~2 -7.739 6 0.716 773
2.903695 1.7214 x 10"2 -7.7398 0.716 7718

the electric field F =  1.5 x 10-5 au. For each state the first line gives 
results calculated by Luc-Koenig and Bachelier (1980a) and given 
in the caption to their Fig. 3; their notation Eq is defined in their 
Eq. (1). The lines 2-7 give our phase-integral results both with ф 
included (the lines 2, 3 and 4 giving the results in the first-, third- 
and fifth-order approximations, respectively) and with ф neglected 
(the lines 5, 6 and 7 giving the results in the first-, third- and fifth- 
order approximations, respectively).
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For the state with n2 = l,i.e .,n  =  9, the barrier is very thick 
(K  positive and large), and the phase-integral value of E  that agrees 
best with the value obtained by Luc-Koenig and Bachelier is obtained 
in the fifth-order approximation with ф neglected. For the state 
^2 =  2, i.e., n =  10, the phase-integral results in the fifth-order 
approximation with ф retained agree satisfactorily with the results 
obtained by Luc-Koenig and Bachelier. For the states with n2 =
3 and n2 = 4, i.e., n =  11 and n =  12, respectively, our optimum 
phase-integral results with ф included seem to be more accurate than 
the values obtained by Luc-Koenig and Bachelier. For the state with 
n2 =  4, i.e., n =  12, the value Г =  1.637 x 10“3 given by Luc-Koenig 
and Bachelier differs essentially from our value. The reason is that 
the definition of the half-width used by Luc-Koenig and Bachelier 
is not correct for this resonance, as Luc-Koenig told us in a letter 
of 29 August 2004. Nor is our formula (5.53) in Chapter 5 for the 
half-width useful, since the barrier is underdense.

Tables 8.9(a), (b) give results concerning the Stark effect for the two 
states m  =  0,72i =  9,n2 =  0 (Table 8.9(a)) and m =  0, n\ =  
0> ft2 =  9 (Table 8.9(b)) of the hydrogen atom with the principal quan
tum number n =  |m| +  1 + n\ +  n2 =  10 in electric fields of vari
ous strengths. For each state and each value of the field strength F , the 
first line gives the numerical results obtained by Damburg and Kolosov 
(1976b) and quoted by Luc-Koenig and Bachelier (1980a) in their Table 
1. The second line gives the numerical results calculated by Luc-Koenig 
and Bachelier (1980a) and given in their Table 1. The lines 3-8 give our 
phase-integral results both with <j> included (the lines 3, 4 and 5 giving 
the results in the first-, third- and fifth-order approximations, respec
tively) and with ф neglected (the lines 6, 7 and 8 giving the results in 
the first-, third- and fifth-order approximations, respectively).

The value of Г due to Luc-Koenig and Bachelier (1980a) for the 
field strength F  =  2.0 х 10-5 au is approximately ten times larger 
than the corresponding value of Г obtained by Damburg and Kolosov 
(1976b) and by us. One may therefore suspect that there is a misprint 
amounting to a factor of ten in the value given by Luc-Koenig and 
Bachelier (1980a) for the particular value of Г in question. This has 
been confirmed by Luc-Koenig in a letter to us of 29 August 2004, 
and therefore we give in our Table 8.9(a) the revised value. The values
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T ab le  8 .9 (a ). m  = 0 ,n i = 9 ,712 = 0, n =  10.

F  x  105 E x  103 К Zi

2.0

2.5

3.0

3.5

4.0

2.585 573 8 1.900 x 10"7
2.585 5739 1.903 x 10~7
2.584 1.7 x 10"7 3.29 0.966 1
2.585 7 1.95 x 10”7 3.211 0.966 34
2.585 52 1.867 x 10~7 3.232 0.966 324
2.579 1.87 x 10"7 3.24 0.965 7
2.585 1 1.97 x 10"7 3.205 0.966 29
2.585 46 1.871 x 10-7 3.231 0.966 318
2.064 665 1.250 x 10"5
2.064 666 1.293 x 10-5
2.061 1.2 x 10-5 1.02 0.971 7
2.065 1 1.33 x lO-5 0.95 0.972 17
2.0645 1.27 x 10~5 0.97 0.972 12
2.05 1.5 x 10“5 0.91 0.970 8
2.063 8 1.29 x 10~5 0.94 0.972 07
2.070 1.0 x 10~5 1.01 0.972 5
1.56315 6.956 x 10~5
1.56317 9.010 x 10~5
1.558 8.3 x lO-5 -0 .18 0.9774
1.563 6 9.4 x 10~5 -0 .26 0.978 03
1.563 22 8.9 x 10"5 -0.23 0.978 003
1.564 0 6.1 x 10-5 -0 .13 0.977 9
1.54 6.3 x 10-5 -0 .4 0.976
1.51 4.9 x 10“5 -0 .6 0.974
1.04077 1.571 x 10~4
1.041 2.388 x 10"4
1.037 2.7 x 10“4 —1.02 0.980 7
1.039 6 3.0 x 10"4 -1.13 0.9811
1.043 2.9 x 10-4 -1 .08 0.981 4
1.05 2.5 x 10"4 -0.92 0.981 7
1.038 2.9 x 10~4 -1.14 0.981 0
1.033 2.7 x 10”4 -1.15 0.980 6
0.48007 2.607 x 10~4
0.481 5.45 x 10“4
0.4819 6.5 x 10"4 -1.78 0.980 8
0.476 7.25 x 10~4 -1.93 0.980 59
0.483 7.30 x 10~4 -1.89 0.981 05
0.50 6.3 x 10“4 -1.69 0.981 7
0.477 7.22 x 10~4 -1.92 0.980 66
0.4818 7.23 x 10“4 -1.90 0.980 97
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Tab le  8 .9(b ). m  = 0, n i = 0 ,П2 = 9, n = 10.
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F  x 105 - E  x 103 Г  К  Z\

6.826384 6 7.145 x 10-6
6.826 385 7.327 x 10"6
6.8265 7.29 x 10-6 1.129 0.058 75
6.826 385 0 7.336 9 x 10“6 1.1253 0.058 854 80
6.826 384 56 7.336 9 x 10 '6 1.1253 0.058 854 828
6.817 9.1 x 10~6 1.03 0.058 71
6.825 8 7.2 x 10"6 1.119 0.058 852
6.829 6.2 x 10"6 1.16 0.058 867
7.202 314 6.797 x 10"5
7.202 9.861 x 10"5
7.202 38 9.79 x 10“5 -0.492 0.060 37
7.202 315 6 9.834 5 x 10"5 -0.494 77 0.060 487 05
7.202 315 05 9.834 5 x 10“5 -0.494 77 0.060 487081
7.21 8.34 x 10"5 -0.41 0.060 41
7.19 8.32 x 10~5 -0.57 0.06046
7.18 6.9 x 10”5 -0.71 0.060 40
7.535 1 .1.795 x 10-4
7.536 3.4 x 10“4
7.535 3 4.75 x 10-4 -1.837 0.061 77
7.535 064 4.766 8 x 10-4 -1.8413 0.061 90112
7.535 0634 4.766 8 x 10~4 -1.8413 0.061 901 161
7.544 4.6 x 10~4 -1.76 0.061 81
7.5363 4.76 x 10~4 -1.83 0.061 906
7.534 5 4.73 x 10”4 -1.85 0.061 899
7.7697 0.312 9 x 10~3
7.770 0.79 x 10~3
7.770 2 1.81 x 10"3 -3.480 0.062 76
7.769 7239 1.822 4 x 10"3 -3.485 8 0.062 89619
7.769 72304 1.8224 x 10~3 -3.485 8 0.062 896 242
7.777 1.78 x 10 '3 -3.42 0.062 79
7.770 2 1.822 4 x 10-3 -3.482 0.062 898
7.769 9 1.822 5 x 10"3 -3.485 0.062 8968
7.887 0.4660 x 10"3
7.981 2.7 x 10~3
7.888 7.39 x 10~3 -5.52 0.063 27
7.887121 7.432 3 x 10-3 -5.5311 0.063 417 92
7.887119 9 7.432 3 x 10"3 -5.5311 0.063 417987
7.894 7.2 x 10"3 -5.48 0.063 29
7.8873 7.431 x 10"3 -5.530 0.063 4185
7.88714 7.432 3 x 10~3 -5.530 9 0.063 41808
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of Г obtained by Luc-Koenig and Bachelier (1980a) and quoted in 
our Table 8.9(a) are for the field strengths 2.0 x 10"5, 2.5 x 10“5 and
3.0 x 10 5 the real half-widths and for the field strengths 3.5 x 10-5 
and 4.0 x 10 5 the Lorentzian half-widths. The values of Г obtained 
from Luc-Koenig and Bachelier (1980a) and quoted in our Table 
8.9(b) are for the field strengths 1.2 x 10-5 and 1.4 x 10~5 the real 
half-widths and for the field strengths 1.6 x 10~5,1.8 x 10“ 5 and
2.0 x 10 5 the Lorentzian half-widths.

Tables 8.10(a-l) give results concerning the Stark effect of the 
hydrogen atom when \m\ =  1 for the states with n =  14 (Table 
8.10(a)), n =  13 (Table 8.10(b)) and n =  12 (Table 8.10(c)) in the 
electric field F =  0.5 x 10“ 5 au, for the states with n  =  12 (Table 
8.10(d)), n =  11 (Table 8.10(e)) and n =  10 (Table 8.10(f)) in the 
electric field F  =  1.0 x 10“5 au, for the states with n =  11 (Table 
8*10(g)), n =  10 (Table 8.10(h)) and n =  9 (Table 8.10(i)) in the 
electric field F =  1.5 x 10“5 au, and for the states with n =  10 
(Table 8.10(j)), n =  9 (Table 8.10(k)) and n =  8 (Table 8.10(1)) in 
the electric field F  =  2.0 x 10~5 au. For each state and each value 
of the field strength F, the first line in all these tables gives the 
results obtained by Luc-Koenig and Bachelier (1980a) and presented 
in their Table 5. In our Tables 8.10(a-f) and 8.10(j-l) the lines 2-7 
give our phase-integral results both with ф included (the lines 2, 3, 4 
giving the results in the first-, third- and fifth-order approximations, 
respectively), and with ф neglected (the lines 5, 6, 7 giving the results 
in the first-, third- and fifth-order approximations, respectively). In 
our Tables 8.10(g-i) the second line gives results calculated by Luc- 
Koenig and Bachelier and quoted as private communication (1983) in 
Tables 2 and 4 in Korsch and Mohlenkamp (1983), and the lines 3-8 
give oui phase-integral results both with ф included (the lines 3, 4, 5 
giving the results in the first-, third- and fifth-order approximations, 
respectively), and with ф neglected (the lines 6, 7, 8 giving the results 
in the first-, third- and fifth-order approximations, respectively).

For large values of n2 (highly excited states of the ту-equation) one 
can in general obtain more accurate values of E  by the phase-integral 
method than by the numerical method used by Luc-Koenig and 

achelier (1980a), but for small values of n2 the numerical method 
is in general more accurate.
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Tab le  8 .10(a). F = 0.5 x 10-5au, \m\ = 1,n = 14.
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ni n2 - E  x 103 Г  К  Z\

4.00 1.1 x 10"3
3.933 6 4.37 x 10~3 -6.732 0.08955
3.933 3277 4.3905 x 10"3 -6.738 2 0.089 62637
3.933 32752 4.390 5 x 10~3 -6.738 2 0.089 626 384
3.935 4.31 x 10"3 -6.70 0.08957
3.933 35 4.3901 x 10"3 -6.737 7 0.089 626 6
3.933330 4.390 5 x 10-3 -6.738 2 0.089 62641
3.80 0.84 x 10"3
3.765 6 2.37 x 10*3 -5.723 0.17731
3.765 448 2 2.382 2 x 10"3 -5.728 6 0.177380466
3.765 448 08 2.382 2 x НГ3 -5.7286 0.177 380478
3.767 2.34 x 10"3 -5.69 0.177 35
3.765 49 2.3820 x 10"3 -5.7278 0.1773813
3.765 454 2.382 2 x 10”3 -5.728 4 0.177 3806
3.61 0.70 x 10"3
3.5904 1.322 x 10"3 -4.770 0.262 96
3.590 3112 1.3258 x 10-3 -4.775 4 0.263 028027
3.590 31109 1.325 8 x 10"3 -4.775 4 0.263 028036
3.592 1.30 x 10"3 -4.73 0.263022
3.590 38 1.325 7 x l O ' 3 -4.774 0.263 030
3.590325 1.325 8 x 10'3 -4.775 2 0.263 0285
3.41 4.2 x 10"4
3.407 66 7.49 x 10"4 -3.874 0.346 25
3.407 5714 7.516 2 x КГ4 -3.8789 0.346 319 002
3.40757121 7.516 2 x 10"4 -3.878 9 0.346 319 007
3.410 7.38 x 10"4 -3.83 0.346 35
3.407 7 7.5165 x 10“4 -3.876 0.346 324
3.40760 7.516 9 x 10"4 -3.878 2 0.346 320
3.219 3.1 x 10-4
3.216 61 4.29 x 10"4 -3.039 0.426 90
3.216 580 8 4.3014 x 10"4 -3.043 8 0.426 969 943
3.216580 65 4.3013 x 10-4 -3.043 8 0.426 969944
3.219 4.22 x 10"4 -2.99 0.427 04
3.216 8 4.303xl0“4 -3.039 0.426 98
3.216 64 4.301 6x l0" 4 -3.042 5 0.426 973
3.017 1.9 x 10*4
3.016 50 2.439 x 10“4 -2.273 0.504 59
3.016 5234 2.446 5 x 10"4 -2.2772 0.504 654 997

( Continued)
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Tab le  8 .10(a). ( Continued)

ni n 2 —E  x 103 Г К

3.016 523 19 2.446 5 x 10“4 -2.277 2 0.504 654 991
3.019 2.40 x 10-4 -2.21 0.5048
3.016 9 2.4471 x 10~4 -2.269 0.504 68
3.016 55 2.442 x 10“4 -2.276 6 0.504 657

6 6 2.807 1.1 x 10"4
2.806 7 1.340 x 10"4 -1.576 0.578 95
2.806 809 1 1.344 8 x 10“4 -1 .5794 0.579 02582
2.806 808 72 1.344 8 x 10"4 -1.579 4 0.579 025 799
2.810 1.31 x 10-4 -1 .50 0.579 2
2.8072 1.337 x 10"4 -1.571 0.579 06
2.806 3 1.32 x 10"4 -1.59 0.578 99

7 5 2.588 5.8 x ПГ5
2.587 5 6.78 x 10"5 -0.928 0.649 69
2.587 6251 6.814 6 x 10-5 -0.931 53 0.649 772 38
2.587 624 56 6.814 5 x 10"5 -0.931 52 0.649 772 338
2.591 6.4 x 10~5 -0.84 0.650 1
2.587 1 6.5 x 10“5 -0 .94 0.649 73
2.584 6.1 x 10"5 -1.00 0.649 5

8 4 2.360 2 2.7 x 10“5
2.360 1 2.94 x 10~5 -0.281 0.716 62
2.360 2991 2.960 6 x 10"5 -0.285 38 0.716 703 86
2.360 2983 2.960 5 x НГ5 -0.285 37 0.716 703 784
2.363 2.4 x 10“5 -0.22 0.716 9
2.355 2.2 x 10“5 -0 .4 0.716 1
2.346 1.8 x 10~5 -0 .6 0.715

9 3 2.1275 9.85 x 10"6
2.1272 9.7 x 10“6 0.451 0.779 75
2.127484 9.8259 x 10~6 0.445 32 0.779 8374
2.127482 7 9.825 4 x 10“6 0.445 35 0.779 837 22
2.123 10.5 x 10-6 0.36 0.779 3
2.130 6.8 x 10"6 0.51 0.780 1
2.136 3.6 x 10~6 0.6 0.780 8

10 2 1.89310 1.92 x 10"6
1.892 8 1.93 x 10“6 1.40 0.839 37
1.893098 1.9664 x 10"6 1.3941 0.839 472 0
1.893 095 6 1.9661 x 10~6 1.394 2 0.839 47177
1.889 2.3 x 10“6 1.32 0.838 9
1.8926 2.00 x Ю'6 1.38 0.839 42
1.893 5 1.8 x 10~6 1.40 0.839 53

( Continued)
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Table 8.10(a). ( Continued)

m П2 - E  x 103 Г К

l l 1 1.660368 1.674 x КГ7
1.6601 1.62 x 10"7 2.74 0.895 897
1.660372 1.674 x 10~7 2.722 3 0.8960007
1.6603680 1.672 x 10~7 2.722 7 0.89600012
1.658 1.8 x 10~7 2.69 0.895 6
1.660 2 1.70 x 10~7 2.717 0.895 97
1.660 31 1.678 x 10-7 2.721 5 0.895 993

12 0 1.429 565 4 4.086 x 10~9
1.429 2 3.7 x 10"9 4.69 0.9494
1.429 58 4.13 x 10-9 4.635 0.949531
1.429 561 4.046 x 10~9 4.645 3 0.949 5284
1.428 4.0 x 10"9 4.65 0.949 2
1.429 51 4.15 x 10"9 4.633 0.949 521
1.429 557 4.048 x 10"9 4.6452 0.949 5279

Korsch and Mohlenkamp (1983) have used semiclassical methods 
with real energy and with complex energy for resonant states cor
responding to states in our Tables 8.10(g-i). Their energy values are 
in satisfactory agreement with the first-order approximation, with ф 
retained, of our phase-integral results. The assertion in their Table
4 that states with n\ < 8 for n =  11 lie above the barrier is not 
in complete agreement with our results in Table 8.10(g), since К  is 
negative for the state with n\ =  8.

In Tables 8.10(c), 8.10(f) and 8.10(1) there are some states with 
very large K -values for which the numerical method gives only an 
upper limit for Г, while the phase-integral method gives a good value 
of Г.
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Table  8 .10(b). F  = 0.5 x 10"5au, |m| = l ,n  = 13.

n 1 712 - E  x 103 Г К

0 11 4.224 5.0 x 10-5
4.22407 5.68 x 10“5 -0.717 0.092 71
4.224 056 0 5.693 2 x 10“5 -0.71918 0.092 783 57
4.224 055 89 5.693 2 x 10~5 -0.719 18 0.092 783 58
4.228 5.15 x 10~5 -0.63 0.092 76
4.223 5.20 x 10“5 -0.75 0.092 77
4.218 4.6 x 10~5 -0 .84 0.092 72

1 10 4.0254 3.0 x 10~5
4.025 568 3.36 x 10"5 -0.320 0.182 97
4.025569 4 3.369 8 x 10~5 -0.321 84 0.183 042117
4.025 569 21 3.369 8 x 10~5 -0.32184 0.183 042126
4.029 2.7 x 10~5 -0.25 0.183 04
4.020 2.6 x 10"5 -0.44 0.182 9
4.012 2.1 x 10“5 -0 .6 0.182 7

2 9 3.8240 1.7 x 10~5
3.82399 1.813 x 10"5 0.106 0.270 61
3.824 0094 1.819 5 x 10"5 0.103 37 0.270 677 211
3.824 009 26 1.819 5 x 10“5 0.103 37 0.270 677 216
3.822 1.4 x 10"5 0.06 0.270 5
3.833 0.7 x 10-5 0.3 0.271 0
3.84 0.3 x 10"5 0.5 0.2713

3 8 3.6203 8.34 x 10-6
3.62025 8.56 x 10"6 0.587 0.355 56
3.620 276 6 8.599 3 x 10“6 0.584 01 0.355 628 623
3.620276 35 8.599 3 x 10“6 0.584 01 0.355 628 624
3.616 9.8 x 10"6 0.49 0.355 4
3.622 6.7 x 10"6 0.62 0.355 71
3.627 4.1 x 10~6 0.73 0.355 9

4 7 3.41542 3.31 x 10~6
3.41540 3.31 x 10~6 1.157 0.437 82
3.415 4260 3.327 4 x 10"6 1.1531 0.437 883 566
3.415425 72 3.3274 x 10~6 1.1531 0.437 883 562
3.411 4.1 x 10~6 1.06 0.437 6
3.4151 3.29 x 10-6 1.147 0.437 87
3.417 2.9 x 10“6 1.18 0.437 95

5 6 3.21036 9.616 x 10"7
3.21033 9.68 x 10"7 1.848 0.517 40
3.210363 2 9.755 3 x 10~7 1.8434 0.517466 23
3.21036287 9.755 3 x 10~7 1.843 4 0.517 466 222
3.207 11.5 x 10“7 1.78 0.517 2
3.2099 10.0 x 10"7 1.83 0.517 44
3.210 40 9.6 x 10"7 1.844 0.517 468

(Continued)
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Tab le  8 .10(b). (Continued)
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7Ц n2 - E  x 103 Г К Z\

6 5 3.005 480 2.049 x 10"7
3.00544 2.03 x 10~7 2.687 0.59433
3.005 479 3 2.052 2 x 10~7 2.681 5 0.594 402 36
3.005 478 93 2.052 1 x 10"7 2.681 5 0.594 402 342
3.003 2.3 x 10"7 2.63 0.594 1
3.005 2 2.08 x 10"7 2.676 0.594 38
3.005 42 2.059 x 10"7 2.680 0.594 398

7 4 2.800 685 5 2.992 3 x 10"8
2.800 64 2.95 x 10~8 3.696 0.668 63
2.800685 9 2.9930 x 10"8 3.689 7 0.668 693 99
2.800 685 47 2.992 9 x 10-8 3.689 7 0.668 693 959
2.799 3.2 x 10"8 3.66 0.668 5
2.800 58 3.01 x 10"8 3.688 0.668 685
2.80066 2.998 x 10"8 3.689 2 0.668 692

8 3 2.595 758 92 2.8830 x 10“9
2.595 69 2.83 x 10“9 4.907 0.740 26
2.595 7595 2.883 0 x 10"9 4.897 7 0.740 326 73
2.595 758 92 2.882 8 x 10-9 4.8978 0.740 326 674
2.594 3.0 x 10"9 4.87 0.740 1
2.595 72 2.890 x 10"9 4.896 7 0.740 322
2.595 752 2.884 x 10~9 4.897 6 0.740 326 0

9 2 2.390542 956 1.672 1 x 10_1°
2.390 46 1.63 x Ю"10 6.37 0.809 21
2.390544 1.672 5 x Ю-10 6.354 7 0.809 284 35
2.390542 94 1.672 1 x Ю"10 6.3548 0.809 284 255
2.389 3 1.73 x 10~10 6.34 0.809 1
2.39052 1.674 x 10_ i° 6.354 2 0.809 282
2.390541 1.6723 x К Г10 6.354 8 0.809 2841

10 1 2.184 962 854 4.899 0 x 10"12
2.184 86 4.7 x 10~12 8.17 0.875 48
2.184 965 4.903 x 10"12 8.1498 0.875 554 3
2.184 962 79 4.8986 x 10~12 8.150 2 0.875 554 09
2.1839 4.93 x 10"12 8.148 0.875 4
2.184 95 4.906 x 10“12 8.149 5 0.875 553
2.184 962 3 4.8987 x 10"12 8.150 2 0.875 554 04

11 0 1.978 993 997 4.8418 x 10“14
1.97885 4.4 x 10-14 10.53 0.939 05
1.979000 4.906 x 1 0 '14 10.480 0.9391284
1.978 9921 4.804 9 x 10~14 10.490 0.939127 35
1.97807 4.6 x 10"14 10.51 0.938 9
1.978988 4.909 x 10"14 10.480 0.939 1268
1.9789938 4.804 6 x 10"14 10.490 0.93912758
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T ab le  8 .10(c). F  = 0.5 x 10“ 5au, |m| =  1 ,n = 12.

ni n2 - E  x 103 Г К

0 10 4.466 560 3 8.193 x 10~9
4.466 7 8.12 x 10~9 4.417 0.095 27
4.466 560 5 8.1929 x 10"9 4.413 0 0.095 339 219
4.466 560 346 8.192 9 x 10“9 4.4130 0.095 339 228
4.465 8.8 x 10“9 4.38 0.095 26
4.46650 8.22 x 10“9 4.412 0.095 338 6
4.466 55 8.199 x 10“9 4.412 7 0.095 3391

1 9 4.2859173 1.775 x 10~9
4.2860 1.76 x 10~9 5.208 0.188 48
4.285 9174 1.774 7 x 10"9 5.203 2 0.188 547471
4.285 917 279 1.774 7 x 10~9 5.203 2 0.188 547 478
4.284 1.9 x 10~9 5.18 0.188 45
4.285 88 1.778 x 10"9 5.202 0.188 546 7
4.285912 1.7753 x 10~9 5.2031 0.188 54737

2 8 4.104 666 30 3.2218 x Ю"10
4.104 8 3.19 x 10_1° 6.085 0.279 55
4.104 6664 3.2218 x Ю"10 6.080 2 0.279 608 726
4.104 666 303 3.2218 x Ю"10 6.080 2 0.279 608 731
4.103 3.4 x 10“10 6.06 0.279 50
4.104 64 3.226 x Ю"10 6.079 7 0.279 608 0
4.104 664 3.222 3 x lO"10 6.080 2 0.279 608 66

3 7 3.922 792 971 4.799 7 x 10"11
3.9229 4.75 x 10-11 7.06 0.368 45
3.922 7931 4.7998 x 10“n 7.054 8 0.368 506 601
3.922 792971 4.7998 x 10~n 7.054 8 0.368506 603
3.9217 5.0 x 10- u 7.03 0.368 40

-* 3.92278 4.804 x 10"u 7.054 5 0.368 505 9
3.9227919 4.8001 x 10~n 7.054 8 0.368 506 56

4 6 3.740291621 5.708 9 x 10"12 ■

3.7404 5.64 x 10-12 8.15 0.455 17
3.7402918 5.7090 x 10~12 8.1409 0.455 224 808

1 3.740291621 5.7090 x 10"12 8.1409 0.455 224 806
3.739 5.9 x 10"12 8.12 0.45511
3.74028 5.712 x 10~12 8.140 7 0.455 224 2
3.7402911 5.7091 x 10~12 8.1409 0.455 224 78

5 5 3.557163 134 5.229 8 x 10"13 •

3.55723 5.16 x lO '13 9.364 0.539 69
3.5571634 5.2299 x 10“13 9.356 7 0.539 747481
3.557163134 5.2298 x 10~13 9.356 7 0.539 747474

( Continued)
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ni n2 - E  x 103 Г К Zi

3.556 5.4 x 10"13 9.34 0.539 63
3.557156 5.232 x 10"13 9.356 5 0.539 7470
3.557162 9 5.2298 x 10"13 9.356 7 0.539 74746

6 4 3.373 413570 3.514 0 x 10"14
3.37347 3.46 x 10"14 10.735 0.622 00
3.373 413 9 3.514 4 x 10"14 10.727 0.622 059 43
3.373413 569 3.514 3 x 10"14 10.727 0.622 059416
3.372 6 3.6 x 10"14 10.715 0.621 9
3.373408 3.515 4 x 10"14 10.726 0.622 0590
3.373 413 4 3.514 3 x 10"14 10.727 0.622 059406

7 3 3.189053 369 1.6280 x 10"15
3.18909 1.58 x 10"15 12.296 0.702 09
3.189 053 7 1.616 7 x 10"15 12.285 0.702 146 36
3.189053366 1.616 6 x 10"15 12.285 0.702 146 337
3.1883 1.64 x 10"15 12.278 0.702 02
3.189050 1.6171 x 10"15 12.285 0.702 1460
3.189 053 29 1.616 6 x 10"15 12.285 0.702 146 331

8 2 3.004 096870 4.6480 x 10"17
3.004 12 4.5 x 10“ 17 14.10 0.779 94
3.004 0974 4.581 0 x 10"17 14.086 0.779 995 08
3.004 096 86 4.5801 x 10"17 14.086 0.779 995 033
3.003 4.61 x 10"17 14.083 0.77987
3.004 094 4.5818 x 10"17 14.086 0.779 994 8
3.004 096 83 4.5801 x 10"17 14.086 0.779 995 030

9 1 2.818562001 CIO"17
2.818568 6.4 x 10"19 16.24 0.855 54
2.818 5630 6.662 x 10-19 16.219 0.855 593 68
2.81856197 6.656 x 10“ 19 16.219 0.855 593577
2.817 9 6.58 x 10"19 16.225 0.85547
2.818 560 6.663 x 10"19 16.219 0.855 5934
2.818 56198 6.6560 x 10"19 16.219 0.855 593 578

10 0 2.632470066 <10"17
2.632 45 3.0 x 10"21 18.94 0.92887
2.632474 3.346 x 10"21 18.883 0.928 932 0
2.6324689 3.2776 x 10"21 18.893 0.928 93138
2.6319 3.1 x 10"21 18.92 0.928 80
2.632 468 6 3.347 x 10"21 18.883 0.928 9313
2.63247005 3.277 5 x 10"21 18.893 0.928 93151
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T ab le  8 .10(d ). F  =  1.0 x lQ -5au, |m| = 1, n =  12.

n i n2 E  x 103

10 5.53 
5.354 5
5.353 898 2
5.353 89781 
5.357
5.353 93
5.353 900
5.19 
5.0875
5.087 052 6 
5.087052 29 
5.090 
5.08711
5.087 058
4.84
4.803 8
4.803 460 0
4.803 459 64 
4.807
4.803 55 
4.80348
4.52
4.5032 
4.503042 7 
4.503 042 35 
4.507
4.5032 
4.50309
4.19
4.184 73
4.184 655 2
4.184 654 70 
4.189 
4.1850
4.184 76 
3.85 
3.846 35 
3.846424 5

0.20 x 10"2 
1.276 x К Г2
1.282 7 x 10“2
1.282 7 x 10-2
1.26 x 10-2
1.282 6 x 10~2
1.282 7 x 10~2
1.6 x 10-3
6.06 x 10~3
6.093 0 x 10-3
6.0930 x 1 0 '3
5.97 x 10~3 
6.0923 x 10*3
6.0930 x 10"3
1.2 x 10~3
3.02 x 10~3 
3.0350 x 10“3 
3.035 0 x 10~3
2.97 x 10~3
3.034 6 x 10~3
3.035 0 x 10~3
1.0 x 10-3 
1.556 x 10~3
1.5631 x 10~3
1.5631 x 10"3
1.53 x 10-3 
1.5630 x 10"3 
1.563 2 x 10"3
6.5 x 10-4 
8.17 x 10"4 
8.2026 x 10“4 
8.202 6 x 10-4
8.0 x 10~4 
8.205 x 10~4 
8.2033 x 10"4
3.2 x 10“4
4.27 x 10~4 
4.2880 x 10-4

-7.483  
-7.491 5 
-7.491 5 
-7 .45  
-7 .4911  
-7.491 5

-6.274  
-6.281 9 
-6.281 9 
-6 .24  
-6.281 2 
-6.281 8

-5.154  
-5.160 8 
-5 .1608  
-5.11  
-5.159 6 
-5.160 6

-4.112
-4.1189
-4.1189
-4.07
-4.117
-4.1183

-3.152
-3.1575
-3.1575
-3.10
-3.153
-3.156

-2.278 
-2.283 4

0.104 74 
0.104 840 57 
0.104 840 605 
0.104 76 
0.104 840 9 
0.104 84063

0.207 23 
0.207 32701 
0.207 327 039 
0.207 29 
0.207 3280 
0.207 32716

0.306 91 
0.306 99781 
0.306 997 832 
0.306 996 
0.307 000 
0.306 998 3

0.403 30 
0.403 389 428 
0.403 389 437 
0.403 43 
0.403 396 
0.403 391

0.495 89 
0.495 983 454 
0.495 983 4510 
0.496 09 
0.496 001 
0.495 988

0.584 07 
0.584 172 58

(Continued)
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ni n2 —E  x 103 Г  К  Z y

3.846 423 73 4.288 Ox 10~4 -2.283 4 0.584172 558
3.851 4.19 x 10"4 -2.21 0.584 4
3.847 1 4.288 9 x 10"4 -2.275 0.584 21
3.846 47 4.2805 x 10~4 -2.282 9 0.584 175
3.487 1.7 x 10"4
3.486 6 2.13 x 10"4 -1.490 0.66718
3.486 836 4 2.1401 x 10"4 -1.495 0 0.667 294 16
3.486 834 98 2.1401 x 10~4 -1.494 9 0.667 294 084
3.493 2.07 x 10~4 -1.41 0.667 6
3.4874 2.12 x 10"4 -1.487 0.66733
3.485 7 2.09 x 10"4 -1.51 0.667 22
3.106 8.2 x 10"5
3.106 0 9.36 x 10”5 -0.752 0.744 65
3.106 383 9.4336 x 10“5 -0.75767 0.744 769 2
3.106 380 2 9.4332 x 10~5 -0.757 64 0.744 76899
3.113 8.6 x 10~5 -0.66 0.745 2
3.104 8.7 x 10"5 -0.79 0.744 6
3.098 7.8 x 10"5 -0.87 0.744 1
2.708 7 3.0 x 10"5
2.708 2 3.17 x 10“5 0.027 0.816 2
2.708 779 3.2100 x 10"5 0.018 89 0.816304 6
2.708 772 9 3.209 5 x 10"5 0.018 98 0.816 30410
2.706 7 1.8 x 10-5 0.006 0.816 0
2.73 1.0 x lO-5 0.2 0.818
2.74 0.4 x 10"5 0.5 0.819
2.302 0 6.36 x 10"6
2.301 3 6.2 x КГ6 1.03 0.8820
2.302 070 6.351 x 10~6 1.018 8 0.8821663
2.302 056 7 6.3461 x 10"6 1.0192 0.882 165 08
2.294 7.6 x 10“6 0.94 0.8813
2.301 8 6.2 x 10"6 1.015 0.882 14
2.305 5.1 x 10 '6 1.06 0.8824

1.896 981 3.632 x 10”7
1.8961 3.3 x 10-7 2.62 0.943 1
1.89703 3.68 x 10-7 2.576 0.943 238
1.896 962 3.596 x 10-7 2.586 6 0.943 231 4
1.893 3.8 x 10“7 2.569 1 0.942 7
1.896 6 3.75 x 10"7 2.568 5 0.943 19
1.896 88 3.609 x 10"7 2.585 2 0.943 222
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Tab le  8 .10(e). F  =  1.0 x 10"5au, |m| = 1 ,n  =  11.

ni n2 —2? x 103 Г К Zi

0 9 5.899 0.94 x 10“4
5.89928 1.109 x 10“4 -0.807 0.109 76
5.899246 4 1.1133 x 10“4 -0.810 23 0.10986157
5.899 246 02 1.113 3 x ПГ4 -0.810 23 0.109 861594
5.907 1.02 x 10~4 -0.72 0.109 83
5.897 1.04 x 1 0 '4 -0.83 0.109 85
5.891 0.94 x 10“4 -0.91 0.109 79

1 8 5.565 5.8 x 10*5
5.564 987 6.44 x 10“5 -0.390 0.21605
5.564994 9 6.468 9 x 10~5 -0.393 33 0.216142 608
5.564 994 50 6.4689 x НГ5 -0.393 33 0.216 142 623
5.571 5.3 x 10“5 -0.31 0.21616
5.557 5.2 x 10~5 -0.49 0.216 0
5.54 4.2 x 10~5 -0 .7 0.2158

2 7 5.2241 3.3 x 10“5
5.22412 3.38 x 10-5 0.058 0.318 57
5.224165 2 3.393 6 x НГ5 0.054 872 0.318665 598
5.22416465 3.393 6 x 10~5 0.054 874 0.318 665 605
5.222 2.2 x 10~5 0.03 0.318 50
5.24 1.1 x 1(T5 0.3 0.319 1
5.26 0.5 x 10~5 0.5 0.319 6

3 6 4.8785 1.4 x 10“5
4.87842 1.516 x 10~5 0.573 0.417 22
4.878 4971 1.5254 x 10~5 0.569 37 0.417314 925
4.87849641 1.525 4 x 10"5 0.569 37 0.417314 920
4,871 1.7 x 10“5 0.47 0.416 9
4.882 1.2 x 10~5 0.61 0.41743
4.891 0.7 x 10~5 0.72 0.4178

4 5 4.5302 5.32 x 10~6
4.53014 5.32 x 10"6 1.200 0.51196
4.530232 2 5.361 5 x 10“6 1.195 6 0.512 06157
4.530 23136 5.3615 x КГ6 1.195 6 0.512 061545
4.523 6.6 x 10~6 1.10 0.5116
4.5296 5.33 x 10~6 1.188 0.512 034.532 4.7 x 10"6 1.22 0.512 15

5 4 4.18142 1.31 x 10“6
4.18131 1.297 x 1(T6 1.989 0.602 85
4.1814253 1.3115 x 10-6 1.983 4 0.602 950 36

( Continued)
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ni n2 - E  x 103 Г К

4.181 424 25 1.3115 x 10-6 1.9834 0.602 950320
4.176 1.5 x 10"6 1.92 0.602 6
4.180 7 1.34 x 10-6 1.974 0.602 91
4.18139 1.305 x 10“6 1.983 0 0.602 949

6 3 3.832 943 2.036 x 10"7
3.832 81 2.00 x 10"7 2.986 0.689 93
3.832 944 3 2.0336 x КГ7 2.9778 0.690 02814
3.832 942 87 2.0334 x 10“7 2.977 9 0.690 028058
3.829 2.2 x 10“7 2.94 0.689 7
3.832 6 2.06 x 10"7 2.974 0.69001
3.832 86 2.040 x 10~7 2.9768 0.690 023

7 2 3.484 5508 1.835 6 x 10~8
3.484 38 1.79 x 10-8 4.24 0.773 19
3.484 553 1.835 7 x 10"8 4.2287 0.773 294 5
3.484 5508 1.835 4 x 10~8 4.2288 0.773 294 30
3.482 1.95 x 10-8 4.20 0.773 0
3.484 43 1.844 x 10“8 4.227 0.773 285
3.484 53 1.837 x 10"8 4.2285 0.773 2925

8 1 3.135 804 72 8.233 9 x 10~10
3.135 6 7.9 x lO"10 5.84 0.852 62
3.135 809 8.241 x 10“10 5.8210 0.852 724 4
3.135 804 5 8.2333 x Ю-10 5.8215 0.852 724 07
3.133 8.4 x 10-1° 5.81 0.852 4
3.135 76 8.26 x 10_1° 5.8203 0.852 720
3.135 800 8.235 x КГ10 5.8214 0.852 723 7

9 0 2.786 465882 1.239 9 x lO"11
2.786 2 1.13 x 10"11 8.00 0.928 18
2.786 48 1.255 x 10"11 7.9492 0.928 298
2.786461 1.2288 x КГ11 7.9596 0.928 295 9
2.784 5 1.19 x 10"11 7.98 0.928 0
2.78644 1.256 x 10"11 7.9486 0.928 294
2.786 464 8 1.2288 x 10"11 7.9597 0.928 296 2



130 Stark Effect in a Hydrogenic Atom or Ion

Tab le  8 .10 (f). F  =  1.0 x  10~5au, \m\ = 1 ,n  = 10.

m n2 —E x  103 К Zi

6.324 857 
6.3251
6.324 8571 
6.324856 720 
6.322
6.324 75 
6.32484
6.023 885 0
6.024 1
6.023 885 4
6.023 885043 
6.021 
6.02382 
6.023877
5.721681 79 
5.721 9 
5.7216822
5.721681 789
5.720 
5.72164
5.721 678
5.418233 323 
5.4184
5.418233 8
5.418233 321
5.416 
5.41821 
5.418232
5.113542861 
5.1137 
5.1135435 
5.113 542 859
5.112
5.113 526 
5.1135422
4.807626 564
4.80774
4.8076274

1.116 2 x 10"8
1.10 x 10"8 
1.1162 x 1 0 '8
1.116 2 x 10~8
1.20 x 10“8 
1.120 x 10"8 
1.1170 x 10"8
2.122 6 x 10 '9
2.10 x КГ9
2.122 5 x 10“9
2.122 5 x 10~9
2.3 x 10~9 
2.127 x 10~9
2.123 2 x 10"9
3.234 3 x 10~10
3.19 x lO-10
3.234 4 x 10~10
3.234 3 x lO-10
3.4 x Ю"10 
3.238 x 10~10
3.234 7 x 10_1°
3.8120 x 10~u  
3.76 x 10"11
3.812 7 x 10- u
3.812 7 x 10"11
4.0 x 10~u 
3.816 x lO"11 
3.8129 x 10~n
3.312 9 x 10~12
3.26 x 10“ 12 
3.3130 x 10"12 
3.3129 x 10“12
3.42 x 10~12 
3.315 x 10"12
3.312 9 x 10"12 
1.9804 x 10“13
1.94 x 10-13 
1.9806 x lO"13

4.559
4.5534
4.5534
4.52
4.552
4.553 2

5.417
5.410 7
5.410 7 
5.38 
5.409 9 
5.4106

6.384
6.3770
6.3770
6.35
6.376 5
6.376 9

7.478
7.4703 
7.470 3 
7.45 
7.4700
7.4703

8.724
8.7151
8.7151 
8.70
8.714 9
8.715 1

10.16
10.146

0.113 54 
0.113 630 87 
0.113 630 891 
0.113 51 
0.113 6300 
0.113 630 7

0.224 21 
0.224 301271 
0.224 301283 
0.224 17 
0.224 300 2 
0.224 301 1

0.331 90 
0.331 984 207 
0.331984 212 
0.331 8 
0.331 983 2 
0.331 984 12

0.436 57 
0.436 652 674 
0.436 652 671 
0.436 50 
0.436 6518 
0.436 652 62

0.538 20 
0.538 280 375 
0.538 280 361 
0.538 1 
0.538 279 6 
0.538 28033

0.636 76 
0.636 842 28

(Continued)



Numerical Results

Table  8 .10(f). ( Continued)
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П1 П2 - E  x 103 Г К

4.807 626 558 1.9804 x 10"13 10.146 0.636 842 250
4.806 2.03 x 10"13 10.135 0.636 68
4.807 615 1.9813 x 10"13 10.146 0.636 8416
4.807 626 2 1.9804 x 10"13 10.146 0.636842 23

6 2 4.500511277 7.330 9 x 10“ 15
4.50060 7.1 x 10"15 11.83 0.732 24
4.500 512 5 7.330 x 10"15 11.816 0.732 31509
4.500 511261 7.3281 x 10"15 11.816 0.732 315 029
4.499 7.42 x 10"15 11.810 0.732 1
4.500 503 7.332 x 10"15 11.815 0.732 314 5
4.500511 1 7.3282 x 10"15 11.816 0.732 315 020

7 1 4.192 233 275 1.200 x 10"16
4.192 28 1.34 x 10"16 13.84 0.824 60
4.192 235 1.3991 x 10“16 13.815 0.824 677 7
4.192 23320 1.3978 x 10“ 16 13.816 0.824 677524
4.191 1.389 x 10” 16 13.819 0.824 50
4.192 228 1.3994 x 10~16 13.815 0.824 677 1
4.192 23319 1.397 8 x 10"16 13.816 0.824 677523

8 0 3.882 837521 < H T 17
3.882831 8.29 x 10"19 16.40 0.913 83
3.882 846 9.267 x 10~19 16.344 0.913 912
3.882 835 9.078 3 x 10"19 16.354 0.913 910 9
3.881 7 8.6 x 10"19 16.38 0.913 74
3.882 834 9.270 x 10"19 16.344 0.913 9108
3.882 837 48 9.0779 x 10"19 16.354 0.913 91110



Stark Effect in a Hydrogenic Atom or Ion

T ab le  8.10(g). F =  1.5 x 10~5au, \m\ =  l , n  = 11.

- E x  103 Г  К  Zi

-8.235 0.114 2

6.71 0.32 x 10-2
6.705 9 0.32 x 10~2
6.344 2.93 x 10"2
6.342 6638 2.946 8 x 10-2
6.342663 03 2.9468 x 10"2
6.348 2.88 x 10-2
6.342 70 2.946 5 x 10“2
6.342 665 2.946 8 x 10-2
6.19 0.20 x НГ2
6.194 7 0.20 x 10~2
6.0034 1.220 x 10~2
6.002 595 0 1.2275 x 10“2
6.002 594 35 1.2275 x 10~2
6.007 1.20 x 10~2
6.00265 1.2273 x 10-2
6.002 600 1.2275 x 10“2
5.72 2.0 x 10~3
5.7194 2.0 x 10~3
5.6338 5.49 x 10-3
5.633 2117 5.5226 x 10“3
5.633 21118 5.522 5 x 10“3
5.638 5.40 x 10~3
5.633 32 5.5218 x 10~3
5.63323 5.5226 x 10~3
5.26 1.4 x 10“3
5.2631 1.4 x 10"3
5.236 3 2.60 x 10~3
5.235975 2 2.615 8 x 10"3
5.235 97466 2.6158 x 10~3
5.241 2.56 x 10~3
5.2362 2.615 6 x 10“3
5.23602 2.6159 x 10"3
4.81 0.94 x 10-3
4.813 7 0.94 x 10“3
4.80991 1.270 x 10“3
4.8097766 1.2768 x 10‘ 3
4.809 775 74 1.2768 x 10“3
4.816 1.25 x 10"3
4.8102 1.2771 x 10"3
4.80990 1.2769 x 10-3

-8.246 8 0.114 346 29
-8.246 8 0.114 346 339
-8 .20 0.114 25
-8.246 5 0.114 346 6
-8.246 8 0.114 346 36

-6.832 0.226 07
-6 .8418 0.226 188 44
-6.841 8 0.226 188481
-6.80 0.226 14
-6.8413 0.226 189 5
-6 .8418 0.226 188 58

-5.557 0.334 67
-5.5661 0.334 784 56
-5.5661 0.334 784 590
-5.52 0.334 786
-5.5651 0.334 787
-5.565 9 0.334 785 0

-4.387 0.439 34
-4.3946 0.439 448 226
-4.3946 0.439 448 241
-4.34 0.439 51
-4.393 0.439455
-4.394 2 0.439 450

-3.314 0.539 3
-3.3210 0.539432 301
-3.3210 0.539 432 296
-3.26 0.539 6
-3.317 0.539452
-3.3198 0.539 438

( Continued)



Numerical Results

Tab le  8.10(g). (Continued)
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ni n2 —E  x 103 Г  К

4.34 4.5 x 10“4
4.345 9 4.5 x 10"4
4.351 49 6.20 x 10“4 -2.344 0.633 7
4.351625 3 6.239 5 x 10~4 -2.3506 0.633 84859
4.35162375 6.2394 x НГ4 -2.3506 0.633 848538
4.358 6.1 x 10"4 -2.28 0.634 1
4.352 5 6.241 x 10"4 -2.343 0.63389
4.351 71 6.231 x 10"4 -2.3498 0.633 853
3.86 2.4 x 10"4
3.8579 2.4 x 10 '4
3.858 2 2.87 x 10"4 -1.474 0.72156
3.858 616 2.889 2 x 10"4 -1.4810 0.7216980
3.858 6131 2.8891 x 10~4 -1.4809 0.72169785
3.867 2.79 x 10“4 -1.39 0.722 1
3.8594 2.86 x 10”4 -1.474 0.721 74
3.8570 2.82 x 10“4 -1.50 0.72160
3.331 0.82 x 10*4
3.330 8 0.82 x 10"4
3.3305 1.12 x КГ4 -0.656 0.8019
3.331311 1.1366 xlO "4 -0.664 15 0.802 1015
3.3313030 1.1365 x 10“4 -0.66405 0.802 10098
3.339 1.01 x 10“4 -0.57 0.802 6
3.327 1.02 x 10"4 -0.71 0.801 8
3.317 0.9 x 10~4 -0.81 0.8011
2.777 2.9 x 10"5
2.7765 2.9 x 10-5
2.7754 3.00 x 10~5 0.254 0.874 5
2.776 64 3.069 x 10“5 0.2405 0.874 682
2.776 621 3.066 9 x 10“5 0.24088 0.874 6801
2.768 2.8 x 10"5 0.18 0.873 9
2.788 1.6 x 10"5 0.36 0.875 6
2.81 0.7 x 10"5 0.54 0.877
2.21105 3.12 x 10"6
2.2111 3.12 x 10-6
2.209 5 2.9 x 10"6 1.62 0.939 9
2.21115 3.18 x 10~6 1.572 0.940 151
2.211004 3.112 x 10"6 1.583 0.9401382
2.202 3.5 x 10-6 1.53 0.9392
2.2099 3.3 x 10“6 1.56 0.940 04
2.2114 3.02 x 10-6 1.587 0.940 17



Table 8 .10(h). F  =  1.5 X 1(TS au, \m\ =  1 , n =  10. 

n i П2 —E  x 103 Г К  Z\

Stark Effect in a Hydrogenic Atom or Ion

7.155 1.5 x 10"4
7.155 4 1.5 x 10~4 0.1212
7.155 33 1.785 x 10-4 -0.931 0.12104
7.155 263 8 1.792 0 x 10“4 -0.934 35 0.121 156 58
7.155 263 09 1.7920 x 10"4 -0.934 35 0.121 156 616
7.166 1.67 x 10~4 -0.84 0.12112
7.154 1.70 x 10-4 -0 .95 0.121 146
7.147 1.59 x 10"4 -1 .0 0.12109
6.702 0.90 x 10~4
6.702 2 0.90 x 10~4 0.237 9
6.702059 1.031 x НГ4 -0.499 0.237 80
6.702 075 6 1.035 6 x 10~4 -0.501 96 0.237 923 51
6.702074 75 1.035 5 x 10"4 -0.50195 0.237 923 536
6.711 0.881 x 10~4 -0.41 0.238 0
6.694 0.879 x 10~4 -0.57 0.237 80
6.679 0.73 x 10-4 -0.71 0.237 6
6.238 5.0 x 10~5
6.2382 5.0 x 10-5 0.3500
6.23809 5.36 x 10-5 -0.036 0.349 92
6.238175 7 5.3845 x 10"5 -0.039 999 0.350 039 107
6.238174 69 5.384 5 x 10-5 -0.039996 0.350 039113
6.2389 3.34 x 10~5 -0.029 0.349 94
6.21 3.31 x 10-5 -0 .3 0.349 4
6.19 2.8 x 10~5 -0 .5 0.348 8
5.7660 2.3 x 10'5
5.7660 2.3 x 10“5 0.4573
5.765 91 2.36 x 10-5 0.496 0.457 20
5.766 053 0 2.3775 x НГ5 0.491 52 0.45732122
5.766 05163 2.3775 x 10"5 0.49152 0.457321203
5.755 2.6 x 10~5 0.40 0.456 9
5.772 1.7 x 10“5 0.55 0.457 5
5.79 0.9 x 10~5 0.68 0.4580
5.2892 8.01 x 10~6
5.2892 8.01 x 10"6 0.559 7
5.2890 7.93 x 10~6 1.154 0.559 6
5.289 235 8.0026 x 10~6 1.1484 0.559 712 96
5.289 2331 8.002 5 x 10“6 1.1484 0.559 712 915
5.279 9.9 x 10-6 1.05 0.559 25.288 5 7.90 x 10"6 1.141 0.559 685.292 6.9 x 10~6 1.18 0.559 84

( Continued)



Numerical Results

T ab le  8 .10(h). (Continued)
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ni П2 - E  x 103 Г К

5 3 4.8113 1.74 x 10"6
4.8113 1.74 x 10"6 0.6573
4.8111 1.73 x 10"6 2.005 0.657 16
4.811304 1.758 2 x 10-6 1.997 6 0.657 28048
4.8113017 1.758 1 x 10"6 1.997 7 0.657 280371
4.804 2.1 x 10-6 1.93 0.656 8
4.810 3 1.80 x 10"6 1.988 0.65723
4.81125 1.750 x 10~6 1.9972 0.657 278

6 2 4.33393 2.184 x 10~7
4.3339 2.184 x 10“7 0.750 1
4.333 7 2.14 x 10-7 3.12 0.749 98
4.333 935 2.185 8 x 10"7 3.1073 0.750 102 6
4.333 9310 2.185 4 x 10-7 3.1074 0.750102 35
4.329 2.4 x 10~7 3.07 0.749 7
4.333 5 2.21 x 10"7 3.103 0.750 08
4.33382 2.192 x 10-7 3.1063 0.750 096

7 1 3.856 7798 1.311 x 10"8
3.8568 1.311 x 10"8 0.838 2
3.8564 1.26 x 10“8 4.58 0.83805
3.856 787 1.312 4 x 10~8 4.564 9 0.838 182 8
3.856 779 5 1.311 2 x 10'8 4.5654 0.838182 30
3.853 1.37 x 10~8 4.55 0.8378
3.856 6 1.317 x 10~8 4.5635 0.838 173
3.856 76 1.312 2 x 10“8 4.5651 0.838 180 7

8 0 3.37916096 2.606 x Ю"10
3.3792 2.606 x lO-10 0.921 5
3.3787 2.4 x 10“10 6.61 0.9213
3.37919 2.637 x Ю-10 6.562 0.921 490
3.379 153 2.5816 x 10"10 6.5721 0.9214878
3.376 2.52 x 10_1° 6.59 0.9211
3.37911 2.642 x 10“10 6.561 0.921 484
3.379157 2.5816 x 10_1° 6.5721 0.9214881



Stark Effect in a Hydrogenic Atom or Ion

Table 8 .10(i). F  =  1.5 X l(T 5au, |m| =  1, n =  9.

- E  x 103 Г К

7.739 156 2 1.746 x 10~8
0.1258

7.739 5 1.72 x 10~8 4.504 0.125 72
7.739 1568 1.7460 x 10"8 4.497 2 0.125 830 54
7.739 156 204 1.7460 x 10"8 4.497 2 0.125 830 561
7.735 1.9 x 1 0 '8 4.46 0.12569
7.73901 1.753 x 10“8 4.495 8 0.125829 3
7.739 13 1-7474 x ПГ8 4.496 9 0.125 830 3
7.332 73751 3.104 x 10~9

0.2481
7.333 0 3.06 x 10-9 5.397 0.247 96
7.332 738 2 3.104 9 x 10"9 5.389 6 0.248 06140
7.332 737 516 3.104 9 x 10~9 5.389 6 0.248 061417
7.329 3.3 x 10~9 5.36 0.24790
7.332 65 3.112 x КГ9 5.388 7 0.248 0600
7.332 726 3.105 9 x 10~9 5.389 5 0.2480612
6.924478 531 4.281 x 10~10

6.924 8
0.366 7

4.22 x 10~10 6.415 0.366 55
6.9244794 4.2808 x 10-10 6.4075 0.366 656416
6.924478529 4.280 7 x 10_1° 6.4075 0.366 656420
6.921 4.5 x ПГ10 6.38 0.366 48
6.924 42 4.286 x 10"10 6.406 9 0.3666551
6.924 474 4.2813 x 10~10 6.407 4 0.366 656 31
6.514366972 4.362 x 10~n

6.5146
0.4816

4.28 x 10-11 7.584 0.481 48
6.514 3680 4.362 6 x 10“ u 7.575 0 0.481579 681
6.514366967 4.362 5 x 10~u 7.575 0 0.481 579 670
6.512 4.5 x К Г11 7.56 0.48139
6.514 33 4.366 x 10~u 7.574 7 0.481578 6
6.514 365 4.3627 x 10-11 7.5750 0.481579 61
6.102417677 3.068 2 x 10-12

6.102 6
0.5928

3.00 x 10~12 8.94 0.592 70
6.102 4190 3.0684 x 10~12 8.926 8 0.592 796 64
6.102 417667 
6.100

3.0682 x 10"12 8.926 9 0.592 796 609
3.16 x 10~12 8.91 0.592 606.10240 3.070 x 10~12 8.926 6 0.592 795 7

6.1024168 3.0683 x 10~12 8.926 9 0.592 796 57

(Continued)



Numerical Results

Tab le  8 .10(i). (Continued)
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ni n2 —E  x 103 Г К

5 2 5.688 666 472 1.3401 x 10"13
0.700 3

5.688 8 1.30 x 1 0 '13 10.53 0.70018
5.688 668 1.3403 x 10~13 10.516 0.700 274 92
5.688 66645 1.3401 x 10"13 10.516 0.700274846
5.687 1.36 x 10-13 10.508 0.700 07
5.688 65 1.3408 x 10~13 10.516 0.700 2741
5.688 6661 1.340 1 x 10"13 10.516 0.700 27483

6 1 5.273 166 722 3.0273 x 10“15
0.804 0

5.273 26 2.90 x 10“15 12.46 0.80389
5.273 170 3.030 x 10"15 12.433 0.803 985 0
5.27316660 3.026 9 x lO"15 12.434 0.803984 840
5.271 3.021 x lO-15 12.435 0.803 78
5.273 156 3.031 x НГ15 12.433 0.803 9843
5.273166 52 3.0269 x 10"15 12.434 0.803984 835

7 0 4.855 987 480 7.3 x 10"17
0.903 9

4.855 999 2.1 x 10-17 14.93 0.90380
4.856 000 2.384 x 10"17 14.877 0.903 9014
4.855 984 2.335 2 x 10"17 14.888 0.903 9003
4.854 2.2 x 10"17 14.91 0.903 69
4.855 980 2.385 x 10"17 14.877 0.903 9001
4.855 98738 2.3350 x 10"17 14.888 0.903 900 55



138 Stark Effect in a Hydrogenic Atom or Ion

T ab le  8 .1 0 (j). F  = 2.0 x 10~5au, \m\ =  l , n  =  10.

711 П2 - F  x 10s

7.75
7.6571
7.656 2284
7.656 227 35 
7.663 
7.6564
7.656 27
7.20
7.172 9
7.172 2726
7.172 271 53 
7.180 
7.1727
7.172 37
6.67
6.6572
6.656 856
6.656 8545 
6.665
6.657 6 
6.6571
6.11 
6.10782
6.107 796
6.107 7941
6.117 
6.1090 
6.10785 
5.524 
5.5230 
5.523 303 
5.5233002 
5.534 
5.5244 
5.521
4.904 
4.9034 
4.903994 
4.903 989 0

1.9 x 10~3
5.19 x 10-3 
5.2241 x 10"3 
5.224 1 x 10"3
5.10 x 10-3
5.223 x 10~3
5.224 2 x 10~3
1.6 x 10~3
2.69 x 10-3 
2.7066 x 10"3
2.706 6 x КГ3 
2.64 x 10“3
2.706 4 x 10~3
2.706 8 x lO"3
0.97 x 10-3
1.43 x 10"3
1.442 0 x 10~3
1.442 0 x 10~3 
1.41 x 10"3
1.442 3 x 10-3 
1.4420 x 10-3
5.7 x 10~4
7.67 x 10“4
7.706 9 x l O~4 
7.7069 x 10"4
7.5 x 10“4 
7.7073 x 10"4
7.69 x 10~4
3.1 x 10~4 
3.95 x 10“4 
3.9691 x 10“4 
3.969 1 x 10"4
3.84 x 10-4
3.94 x 10“4 
3.89 x 10“4
1.6 x 10“4 
1.82 x 10~4 
1.8375 x 10~4 
1.8374 x 10“4

-4.978  
-4.986 8 
-4.986 8 
-4 .93  
-4.985  
-4.986 5

-3.982  
-3.990 0 
-3.990 0 
-3.93  
-3.987  
-3.989 2

-3.076  
-3.082 3 
-3.082 3 
-3 .02  
-3.077  
-3.080 8

-2.257  
-2.262 9 
-2.262 9 
-2 .19  
-2.254  
-2.262 5

-1.518  
-1.523 2 
-1.523 2 
-1 .43  
-1.515  
-1.54

-0.823  
-0.828 55 
-0.82852

0.125 50 
0.125 639 90 
0.125 639 953 
0.125 55 
0.125 6415 
0.125 6403

0.24726 
0.247397 55 
0.247397 591 
0.24737 
0.247404 
0.247399 2

0.364 42 
0.364 549 98 
0.364 550 003 
0.364 60 
0.364 567 
0.364 555

0.476 17 
0.476301221 
0.476 301211 
0.47646 
0.476 34 
0.476 303

0.58165 
0.581 792 18 
0.581 792 109 
0.582 1 
0.581 84 
0.581 72

0.680 0 
0.680 2070
0.680 206 80

( Continued)



Numerical Results

Table 8.10(j). (Continued) 

ni n2 —E  x 103 Г К  Z\

4.92 1.68 x 10-4 -0.73 0.6806
4.901 1.72 x 10 '4 -0.85 0.6801
4.891 1.57 x 10"4 -0.93 0.6796

4.254 6.3 x 10“5
4.253 4 6.71 x 10"5 -0.092 0.7708
4.254395 6.7888 x 10~5 -0.09998 0.770952 7
4.254 384 6 6.7879 x 10“5 -0.099 893 0.770952 14
4.257 4.6 x 10"5 -0.07 0.770 957
4.23 4.4 x 10"5 -0 .3 0.769
4.20 3.6 x 10-5 -0 .5 0.768

3.585 1 1.56 x 10 '5
3.583 9 1.53 x 10"5 0.84 0.8538
3.58517 1.566 5 x 10"5 0.824 0 0.853 969
3.585 143 1.5654 x 10"5 0.82442 0.853 967 8
3.571 1.9 x 10“5 0.73 0.852 9
3.5860 1.4 x 10"5 0.831 0.854 02
3.594 1.1 x 10“5 0.90 0.854 5

2.91382 1.154 x 10~6
2.912 1.06 x 10'6 2.32 0.9298
2.913 91 1.17 x 10~6 2.269 0.930 062

2.913 780 1.144 x 10”6 2.2794 0.9300518

2.905 1.24 x 10“6 2.252 0.9293

2.9128 1.20 x 10-6 2.259 0.92998

2.913 62 1.146 x 10-6 2.2780 0.930040



140 Stark Effect in a Hydrogenic Atom or Ion

T ab le  8 .10(k). F  =  2.0 x 10-5 au, \m\ =  l , n  =  9.

T i l n2 —E  x 103 Г К

0 7 8.385 4 3.72 x 10"5
8.385 72 3.75 x 10~5 0.368 0.13111
8.385 631 7 3.769 7 x 10~5 0.364 17 0.131242 25
8.385 63062 3.769 7 x 10“5 0.364 18 0.131242 286
8.37 3.85 x 10“5 0.28 0.1310
8.398 2.2 x 10~5 0.45 0.13133
8.42 1.1 x 10"5 0.6 0.1315

1 6 7.830 3 1.63 x 10~5
7.83041 1.66 x 10"5 0.872 0.257 40
7.830 359 5 1.675 9 x 10-5 0.868 04 0.257 536 50
7.830 35818 1.675 9 x 10"5 0.868 05 0.257536523
7.816 2.1 x 10“5 0.76 0.257 2
7.8312 1.5 x 10"5 0.874 0.257549
7.840 1.2 x 10"5 0.94 0.257 7

2 5 7.2714 5.759 x 10-6
7.27142 5.73 x 10~6 1.494 0.378 67
7.271400 5.788 3 x lO"6 1.488 5 0.378 803 008
7.2713980 5.788 3 x 10~6 1.488 5 0.378803 010
7.259 7.1 x 10"6 1.40 0.378 4
7.269 9 5.90 x 10“6 1.477 0.378 77
7.2725 5.5 x 10~6 1.497 0.37883

3 4 6.71094 1.410 x 10“6
6.710934 1.395 x 10-6 2.273 0.494 90
6.710940 1.413 2 x 10"6 2.266 0 0.495 030 28
6.710937 6 1.4131 x 10-6 2.266 0 0.495 030251
6.702 1.63 x 10”6 2.21 0.494 6
6.709 9 1.45 x 10"6 2.258 0.495 00
6.710 75 1.415 x lO"6 2.264 6 0.495 025

4 3 6.149670 2.257 x 10“7
6.149 62 2.22 x 10"7 3.249 0.606 09
6.149673 2.256 1 x 10“7 3.239 9 0.606 219 37
6.1496704 2.2560 x 10"7 3.239 9 0.606 219 300
6.143 2.5 x 10~7 3.20 0.605 8
6.1492 2.28 x 10~7 3.236 0.606 201
6.149 55 2.262 x 10"7 3.239 0 0.606 215

5 2 5.587 228 4 2.1560 x 10~8
5.58711 2.10 x 10“8 4.47 0.712 22
5.587 232 2.155 6 x 10~8 4.460 0 0.712 346 51
5.5872283 2.155 2 x 10“8 4.460 1 0.712 346 355.582 2.3 x 10"8 4.43 0.7120

( Continued)
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T ab le  8 .10(k). (Continued)
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ni П2 - E  x 103 Г К Zi

5.5870 2.164 x 10-8 4.458 5 0.712338
5.58719 2.157 x lO-8 4.4598 0.712 344 8

6 1 5.023 144 12 1.043 6 x 10"9
5.022 9 1.00 x 10 '9 6.03 0.813 2
5.023 152 1.044 3 x 10"9 6.013 5 0.813373 6
5.023 143 8 1.0434 x 10"9 6.013 9 0.813 37317
5.019 1.07 x 10"9 6.002 0.8130
5.023 06 1.046 x 10“9 6.012 8 0.813369
5.023 136 1.043 6 x lO-9 6.013 9 0.813 3728

7 0 4.457 214621 1.7208 x 10-11
4.456 8 1.56 x 10-11 8.15 0.909 1
4.457 24 1.742 x 10“ 11 8.096 2 0.909 267
4.457 206 1.705 4 x КГ11 8.1066 0.909 265 1
4.454 1.65 x 10~n 8.12 0.908 9
4.45718 1.744 x 10-11 8.095 6 0.909 263
4.457 213 1.705 3 x 10-11 8.106 7 0.909 265 5



Table 8.10(1). F  =  2 .0 x  10~5au, |m| =  l ,n  =  8.

- E x  103 Г  к  Zi

Stark Effect in a Hydrogenic Atom or Ion

9.375 532 526 3.235 8 x 10"11
9.3761 3.18 x 10"11
9.375 5335 3.235 9 x 10"11
9.375 532 525 3.235 8 x К Г 11
9.372 3.4 x 10"11
9.375 49 3.238 x 10"11
9.375 530 3.2360 x lO"11
8.895 826102 3.6212 x 10“ 12
8.8964 3.56 x 10~12
8.895 8271 3.6213 x 10"12
8.895 826 100 3.6213 x 10"12
8.893 3.8 x 10"12
8.895 80 3.623 x lO"12
8.895 825 0 3.6213 x 10"12
8.413 807725 3.005 4 x 10"13
8.4143 2.94 x 10"13
8.4138089 3.005 3 x 10"13
8.413807 720 3.005 2 x 10"13
8.411 3.10 x 10"13
8.41379 3.007 x 10"13
8.4138071 3.005 3 x 10“13
7.929 521338 1.664 8 x 10~14
7.9300 1.68 x 10"14
7.929523 1.725 5 x lO"14
7.929521328 1.7254 x 10"14
7.927 1.76 x 10"14
7.929 51 1.7260 x lO “ 14
7.9295210 1.7254 x 10"14
7.443022 725 5.620 x 10"16
7.4434 6.0 x 10“16
7.443025 6.165 x 10"16
7.443022 70 6.1634 x 10"16
7.441 6.24 x 10"16
7.44301 6.166 x 10~16
7.443022 5 6.1634 x 10"16
6.954 379305 1.20 x 10“17
6.9547 1.09 x 10"17
6.954383 1.1415 x 10"17
6.954 379 18 1-1405 x 10~17

7.890 0.138 38
7.8811 0.138 495 94
7.8811 0.138 495 970
7.86 0.138 35
7.8808 0.138 495 7
7.8811 0.138 495 95

9.01 0.273 10
8.9980 0.273 210896
8.998 0 0.273 2109104
8.98 0.273 05
8.9978 0.273 2105
8.998 0 0.273 21089

10.274 0.404 00
10.264 0.404 104 6118
10.264 0.404104 6115
10.249 0.403 93
10.264 0.404 104 1
10.264 0.404 104 599

11.73 0.531 03
11.713 0.531 138 70
11.713 0.531 138 676
11.703 0.530 95
11.713 0.531 138 2
11.713 0.531 138 667

13.42 0.654 18
13.399 0.654 277 04
13.399 0.654 276 985
13.394 0.654 08
13.399 0.654 276 6
13.399 0.654 276 980

15.44 0.773 39
15.413 0.773 486 31
15.413 0.773 486 152

( Continued)
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Tab le  8.10(1). ( Continued)

143

n\  7i2 —E  x  103 Г  К  Z\

6.952 1.133 x 1 0 '17 15.417 0.773 28
6.954 371 1.1418 x 10"17 15.413 0.773 4858
6.954 379 20 1.1405 x 10-17 15.413 0.773 486 154

6.463 670073 < i o - 17
6.463 9 6.6 x 10_2° 18.01 0.888 64
6.463 68 7.369 x 10“20 17.953 0.888 736 7
6.463 666 7.219 7 x Ю"20 17.964 0.888 7358
6.462 6.8 x Ю"20 17.99 0.88853
6.463 664 7.372 x 10_2° 17.953 0.888 735 7
6.463 67002 7.219 2 x Ю-20 17.964 0.888 736 00



*
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related to 77-equation, 82, 86 
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wave function
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This book treats the Stark effect of a hydrogenic atom or ion 
in a homogeneous electric field. It begins with a thorough 
review of previous work in this field since 1926. After the 
Schrodinger equation has been separated with respect 
to time dependence, centre of mass motion and internal 
motion, followed by a discussion of its eigenfunctions, the 
exact development in time of the probability amplitude for a 
decaying state is obtained by means of a formula analogous I 
to the Fock-Krylov theorem. From this formula one obtains 
by means of the phase-integral approximation generated 
from a particular base function non-relativistic formulas for 
profiles, energies and half-widths of the Stark levels. These 
formulas are then transformed into formulas expressed 
in terms of complete elliptic integrals. The formulas thus 
obtained are used for the calculation of energies and half
widths of 198 different Stark states, which are compared 
with the corresponding results obtained by other authors 
with the use of other methods. An analysis of this material 
indicates that the energy values obtained by the phase- 
integral method are at least as accurate as those obtained 
by other methods in more than half of the 198 cases. The 
book presents one of the most comprehensive asymptotic 
treatments of the Stark effect in atomic hydrogen that have 
been published.


