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Preface
The study of chaos, fractals, cellular automata, neural networks, genetic algorithms 
and fuzzy logic is one of the most fascinating subjects in science. Most of these fields 
are interrelated. Chaotic attractors are used in neural networks. Genetic algorithms 
can be used to train neural networks. Fractals are used in data compression. Neural 
networks and fuzzy logic are often combined when the input values of the system 
are not crisp.

In this book we give all the basic concepts in these fields together with the definitions, 
theorems and algorithms. The algorithms are implemented using C + + , Java and 
SymbolicC++. The level of presentation is such that one can study the subject early 
on in science. There is a balance between practical computation and the underlying 
mathematical theory.

In chapter 1 we consider one and two-dimensional nonlinear maps. All the relevant 
quantities to characterize chaotic systems are introduced. Algorithms are given 
for all the quantities which are used to describe chaos such as invariant density, 
Liapunov exponent, correlation integral, autocorrelation function, capacity, phase 
portrait, Poincare section, Fourier transform, calculations of exact trajectories, fixed 
points and their stability, etc.. Chaotic repellers and encoding using one-dimensional 
chaotic maps are also investigated. Newton’s method in one and two dimensions is 
derived. Periodic orbits and topological degree are introduced.

Quite often a dynamical system cannot be modelled by difference equations or differ
ential equations, but an experiment provides a time series. In chapter 2 we consider 
quantities for the study of chaotic time-series. We also include the Hurst exponent 
which plays an important role in the study of financial markets. The related Higuchi 
algorithm is also provided.

In chapter 3 we describe the classification of fixed points in the plane. Furthermore 
the most important two-dimensional dynamical systems are studied, such as the 
pendulum, limit cycle systems and a Lotka-Volterra model. Homoclinic orbits are 
also introduced.

Chapter 4 reviews integrable and chaotic Hamilton systems. Among other concepts 
we introduce the Lax representation for integrable Hamilton systems, the Poincare 
section and the Floquet theory.

In chapter 5 nonlinear dissipative systems are studied. The most famous dissipative 
system with chaotic behaviour, the Lorenz model, is introduced. We also discuss 
Hopf bifurcation and hyperchaotic systems.
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Nonlinear driven systems play a central role in engineering, in particular in elec
tronics. In most cases the driving force is periodic. Chapter 6 is devoted to these 
systems. As examples we consider among others the driven pendulum and the driven 
van der Pol equation. The concept of torsion number is also discussed.

Controlling of chaotic systems is very important in applications in engineering. In 
chapter 7 we discuss the different concepts of controlling chaos. The Ott-Grebogi- 
Yorke method for controlling chaotic systems is studied in detail.

Synchronization of chaotic systems is described in chapter 8 and a number of appli
cations are given, such as the coupled Rikitake dynamos.

Fractals have become of increasing interest, not only in art, but also in many different 
areas of science such as compression algorithms. In chapter 9 we introduce iterated 
function systems, the Mandelbrot set, the Julia set and the Weierstrass function. 
The famous Cantor set is considered as an example as well as the Koch curve, fern 
and the Sierpinski gasket. We also derive the construction of fractals using the 
Kronecker product of matrices. Grey level maps are also described.

Cellular automata are discrete dynamical systems. We describe in chapter 10 one 
and two-dimensional cellular automata. The famous game of life with a C + +  im
plementation and the button game with a Java implementation are also considered. 
The Sznajd model is studied as an application.

Chapter 11 is about integration of differential equations. We describe the Euler 
method, the Runge-Kutta method, the Lie series technique, symplectic integration, 
Verlet method, etc.. Furthermore we discuss ghost solutions, invisible chaos and 
integration in the complex domain.

Chapter 12 is devoted to neural networks. We introduce the Hopfield algorithm, 
the Kohonen self-organizing map, the back propagation algorithm and radial basis 
function networks. One of the applications is the traveling salesman problem. Neural 
oscillator models are also introduced.

Genetic algorithms are used to solve optimization problems. Chapter 13 is devoted 
to this technique. We discuss optimization problems with and without constraints. 
A detailed discussion of bitwise operations is given. We also study simulated an
nealing.

Gene expression programming is a new genetic algorithm that uses encoded individ
uals. Gene expression programming individuals are encoded in linear chromosomes 
which are expressed or translated into expression trees. The linear chromosome is 
the genetic material that is passed on with modifications to the next generation.



PREFACE vii

Chapter 14 gives an introduction to this technique together with a C + +  program. 
As an alternative to gene expression programming we also describe multi-expression 
programming together with a C + +  program.

In chapter 15 we consider the Lagrange multiplier method for optimization prob
lems and also describe an alternative method using differential forms. For problems 
with inequality constraints the Karush-Kuhn-Tucker condition is provided and the 
support vector machine is studied. The Kernel-Adatron algorithm, a fast and sim
ple learning procedure for support vector machines, is also implemented. As an 
application the kernel Fisher discriminant is studied.

Wavelet theory is a form of mathematical transformation, similar to the Fourier 
transform in that it takes a signal in time domain, and represents it in frequency 
domain. Wavelet functions are distinguished from other transformations in that 
they not only dissect signals into their component frequencies, they also vary the 
scale at which the component frequencies are analyzed. Chapter 16 provides an 
introduction. Filtering is given as an example application. As examples the Haar 
wavelet and Daubechies wavelet are studied. Two-dimensional wavelets are also 
considered.

Discrete Hidden Markov Models are introduced in chapter 17. The forward- 
backward algorithm, Viterbi algorithm, and Baum-Welch algorithm are described. 
The application concentrates on speech recognition.

Since its inception 40 years ago the theory of fuzzy sets has advanced in a variety 
of ways and in many disciplines, not only in science. Chapter 18 is devoted to 
fuzzy logic. Fuzzy numbers and arithmetic are also considered. Furthermore deci
sion making problems and controlling problems using fuzzy logic are also described. 
Fuzzy clustering is also included as well as a definition for the fuzzy XOR.

In each chapter we give C + + , Java and SymbolicC++ implementations of the al
gorithms.

Without doubt, this book can be extended. If you have comments or suggestions, I 
would be pleased to have them. The author can be contacted via e-mail:

steeb_wh@yahoo.com 
steebwilliQgmail.com

The web page of the author is:

http://issc.uj .ac.za

The International School for Scientific Computing (ISSC) provides certificate courses 
for these subjects. Please contact the author if you want to do any of these courses.

mailto:steeb_wh@yahoo.com
http://issc.uj.ac.za
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Com m ents to  the Program s

The C + +  programs comply to the ANSI C + +  standard. Thus they should run 
under all compilers.

SymbolicC++ version 3 is a symbolic manipulation tool (Y. Hardy, W.-H. Steeb, 
Tan Kiat Shi) written completely in ANSI C ++. It includes classes (abstract data 
types) to do symbolic and numeric manipulations. The classes include

Symbolic, Rational, Verylong, Quaternion,
Derive, Vector, Matrix, Array, Polynomial .

The classes from the Standard Template Library are also extensively used and so 
is the string  class from C ++. The symbolic manipulation is done using the class 
Symbolic.

SymbolicC++ version 3 is available at

http://issc.uj.ac.za/symbolic/symbolic.html

We have tested the C + +  programs with GCC 4.1.3 and Microsoft Visual Studio.net 
(VC8).

In C + +  graphics does not belong to the standard. Here we use GnuPlot (GNU- 
PLOT Copyright(c) 1986-1993, 1998, Colin Kelly and Thomas Williams) to draw 
the figures.

The Java programs have been tested with JDK 1.6. The JDK (Java Development 
Kit) is a product of Sun Microsystems, Inc. The JDK allows us to develop applets 
that will run in browsers supporting the Java platform 1.6. The Java tools we using 
are the Java Compiler (javac) which compiles programs written in the Java pro
gramming language into bytecodes and the Java Interpreter (java) that executes 
Java bytecodes. In other words, it runs programs written in the Java programming 
language. Applet Viewer allows us to run one or more Java applets that are called 
references in a web page (HTML file) using the APPLET tag. The AppletViewer 
finds the APPLET tags in the HTML file and runs the applets (in separate win
dows) as specified by the tags.

Most of the programs are written so that they can be understood by beginners. 
Thus some of the programs can be improved and written in a more sophisticated 
manner.

xix
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Chapter 1 

Nonlinear and Chaotic Maps

1.1 One-Dimensional Maps
In this section we consider nonlinear and chaotic one-dimensional maps

f : S - > S ,  S C R .

In most cases the set S will be S =  [0,1] or S =  [—1,1]. The one-dimensional map 
can also be written as a difference equation

xt+i =  f ( x t), t =  0, 1, 2, . . .  x0 e S .

Starting from ал initial value Xo € S we obtain, by iterating the map, the sequence

Xq, Xlt  & 2 i

or
Xo, / Ы ,  Д / Ы ) ,  /(/(/(xo))),... .

For any x0 £ S the sequence of points so, X\t £2, . . .  is called the forward orbit (or 
forward trajectory) generated by xo- The goal of a dynamical system is to under
stand the nature of all orbits, and to identify the set of orbits which are periodic, 
eventually periodic, asymptotic, etc. Thus we want to understand what happens if 
t —» 00. In some cases the long-time behaviour is quite simple.

Exam ple. Consider the map /  : R + —► R + with f (x )  =  y/x. For all xq £ R + the 
forward trajectory tends to 1. ♦

Exam ple. Consider the map /  : [0,1] —♦ [0,1], f ( x )  =  x2. If x0 =  0, then 
f ( x 0) =  0. Analogously, if x0 =  1, then f ( x 0) =  1. The points 0 and 1 we call fixed 
points for this map. For x  G (0,1), the forward trajectory tends to 0. 4

In most cases the behaviour of a map is much more complex.

1



Next we introduce some basic definitions for dynamical systems (Devaney [25], 
Holmgren [53]).

Definition. A point x* € S is called a fixed point of the map /  if f{x * ) =  x *.

Example. Consider the map /  : [0,1] —> [0,1] with f ( x )  =  4x (l — re). Then 
x* =  3/4 and x* =  0 are fixed points. A

Definition. A point x* £ S is called a periodic point of period n if

/<n)(x*) =  x*

where denotes the n-th iterate of / .  The least positive integer n for which 
/ « ( * • )  =  x* is called the prime period of x*. The set of all iterates of a periodic 
point form a periodic orbit.

Example. Consider the map /  : R  —> R  and f ( x )  =  x2 — 1. Then the points 0 and 
—1 he on a periodic orbit of period 2 since / ( 0) =  — 1 and / ( —1) =  0. 4»

Definition. A point x* is eventually periodic of period n  if x* is not periodic but 
there exists m >  0 such that

/(п+<)(г*) =  /«(**) 

for all i >  m. That is, is periodic for i > m .

Exam ple. Consider the map /  : R  —* R  with f ( x )  =  x2 — 1. Then with Xo — y/2 
we have the orbit X\ — 1, x^ — 0, X3 =  —1, x  ̂ =  0, i.e., the orbit is eventually 
periodic.

Definition. Let x* be a periodic point of prime period n. The point x* is hyperbolic 
if

|(/< "> )V )I Ф i
where ' denotes the derivative of with respect to x.

Exam ple. Consider the map f c : R  —► R  with f c(x) =  x2 +  с and с €  R. 
Then the fixed points are =  1/2 ±  ^ /l/4  — c. We have / '  =  dfc/dx =  2x 
and dfc(x*+)/dx =  1 +  V I — 4c. With с =  1/4 we have |/c(x+)| =  1 and the fixed 
point is non-hyperbolic. ♦

Theorem . Let x* be a hyperbolic fixed point with \f'(x*)\ <  1. Then there is an 
open interval U about x* such that if x  €  I/, then

lim /W (® ) =  x* .

2 CHAPTER 1. NONLINEAR AND CHAOTIC MAPS
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In the following sections we also introduce the following concepts important in the 
study of nonlinear and chaotic maps. The concepts are

1) Fixed points
2) Liapunov exponent
3) Invariant density
4) Autocorrelation functions
5) Moments
6) Fourier transform
7) Bifurcation diagrams
8) Feigenbaum number
9) Symbolic dynamics
10) Chaotic repeller

The one-dimensionial maps we study in our examples are the logistic map, the tent 
map, the Bernoulli map, the Gauss map, a bungalow-tent map and the circle map

1.1.1 Exact and Numerical Trajectories
In this section we calculate trajectories for one-dimensional maps. In our first ex
ample we consider the map /  : N —> N  defined by

v __j  x / 2  ifzis  even
^  •“  1 3a: +  1 ifx is odd

where N denotes the natural numbers. For this map it is conjectured that for all
initial values the trajectory finally tends to the period orbit . . .  4 2  1 4 2  1 -----
The data type unsigned long (4 bytes) in C + +  is restricted to the range

0...4294967295

and the data type long (4 bytes) in C + +  is restricted to the range 

-2147483648...+2147483647

To check the conjecture for larger initial values we use the abstract data type 
Verylong in SymbolicC++. In this class all arithmetic operators are overloaded. 
The overloaded operators are

+ , *, /, */., +=, -=, *=, /=

For the initial value 28 we find the sequence

14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8 , 4, 2, 1, . . .

Thus the orbit is eventually periodic. Two different initial values axe considered in 
the program tra je c l.cp p , namely 28 and 998123456789.
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// trajectoryl.cpp

#include <iostream> 11 for cout
«include "verylong.h" 11 for data type Verylong of SymbolicC++ 
using namespace std;

int main(void)

unsigned long у = 28; // initial value 
unsigned long T = 20; // number of iterations 
unsigned long t; 
f or(t=0;t<T;t++)
{
if ((y*/,2)==0) у = y/2; 
else у = 3*y+l; 
cout «  у «  endl;
>
Verylong x("998123456789"); // initial value 
Verylong zero("0"), one("l"), two("2"), three(*'3");
T = 350;
for(t=0;t<T;t++)
{
if ((x*/.two)==zero) x = x/two; 
else x = three*x + one; 
cout «  x «  endl;
>
return 0;

>

Java provides a class Biglnteger. Since operators such as +, * , / ,  */. cannot 
be overloaded in Java, Java uses methods to do the arithmetic operations. The 
methods are

addO, su btractO , m ultip lyO , d iv id e O , mod() .

The constructor Biglnteger (String val) translates the decimal String represen
tation of a Biglnteger into a Biglnteger. The class Biglnteger also provides the 
data fields Biglnteger. ONE and Biglnteger. ZERO.

// Trajectoryl. java 

import java.math.*; 

public class Trajectoryl

public static void main(String[] args)
{
Biglnteger X = new Biglnteger("9981234567891');
Biglnteger TWO = new Biglnteger("2");
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Biglnteger THREE = new Biglnteger("3"); 
int T = 350; 
for(int t=0;t<T;t++)
<
if((X.mod(TWO)).equals(Biglnteger.ZERO))
X = X.divide(TWO);
else { X = X .multiply (THREE) ; X = X. add (Biglnteger. ONE) ; }
System.out.println("X = 11 + X) ;
>
>

>

In our second example we consider the trajectories for the logistic map. The logistic 
map f  : [0,1] —+ [0,1] is given by f (x )  =  4z(l — x). The logistic map can also be 
written as the difference equation

x t+i =  4xt(l -  x t)

where t =  0 ,1 ,2 ,... and ж0 €  [0,1]. It follows that xt E [0,1] for all £ E N. Let 
£o =  1/3 be the initial value. Then we find that

8 32 6272 7250432
xi -  9> x2 -  gl> x3 -  6561> x4 -  43046721>

The exact solution of the logistic map is given by

xt =  ~ ^ cos(2‘ arccos(l — 2x0)).

In the C + +  program tra je cto ry 2 . cpp we evaluate the exact trajectory up to 
t =  10 using the abstract data type Verylong of SymbolicC++. For t =  7 we find

3383826162019367796397224108032 
X7 ~  3433683820292512484657849089281'

// trajectory2.cpp 

#include <iostream>
#include "verylong.h" // for data type Verylong 
#include "rational.h" // for data type Rational 
using namespace std;

inline void map(Rational<Verylong>& x)

Rational<Verylong> one("l"); // number 1
Rational<Verylong> four("4"); // number 4 
Rational<Verylong> xl = four*x*(one-x); 
x = xl;
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int main(void)

Rational<Verylong> x0("l/3,f); // initial value 1/3 
unsigned long T = 10; 11 number of iterations
Rational<Verylong> x = xO; 
cout «  "x[0] = " «  x << endl; 
for(unsigned long t=0;t<T;t++)
{
map(x);
cout «  "x[" «  t+1 «  "] = " «  x «  endl;
>
return 0;

>

In the C ++  program trajectory3 .cpp  we evaluate the numerical trajectory using 
the basic data type double. We find that the difference between the exact value 
and the numerical value for t =  40 is

£40exact — X40approx =  0.055008 — 0.055015 =  —0.000007.

// trajectory3.cpp

#include <iostream> 
using namespace std;

inline void map(doublet x)
•C
double xl = 4.0*x*(1.0-x); 
x = xl;

>

int main(void)

double xO = 1.0/3.0; // initial value 
unsigned long T = 10; // number of iterations 
double x = xO;
cout «  "x[0] = " «  x «  endl; 
for(unsigned long t=0;t<T;t++)

map (x);
cout «  "x[" «  t+1 «  "] = " «  x «  endl;
>
return 0;

>

As a third example we consider the Bernoulli map. Let /  : [0,1) —* [0,1). It is 
defined by

/ ( x) :=  2x mod 1 =  frac(2x).
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The map can be written as the difference equation

_  j  2xt for 0 < xt <  1/2 
It+1 _  { ( 211- 1) for 1/2 <  xt < 1

where t =  0 ,1 ,2 ,. .. and Xo € [0,1)- The map admits only one fixed point x * =  0. 
The fixed point is unstable. Let я0 =  1/17. Then we find the periodic orbit

17’ 17’ 17’ 17’ 17’ 17’ 17’ 17’ 17’ ” '

If Xo is a rational number in the interval [0,1), then Xt is either periodic or tends to 
the fixed point x* =  0. The solution of the Bernoulli map is given by

x t =  2 lxo mod 1

where Xq is the initial value. For almost all initial values the Liapunov exponent is 
given by In 2. Every Xo G [0,1) can be written (uniquely) in the binary representation

oo
Xo =  ^ 2  ak2 ~k> ak € { 0, 1} . 

k=1
One now defines oo

(ai,a2,a3, . . . )  :=  ]T a fc2~fc 
*=i

and considers the infinite sequence (01, 02, 03, . . . ) .  For example, xq =  3/8 can be 
represented by the sequence (0 ,1 ,1 ,0 ,0 ,...). Instead of investigating the Bernoulli 
map we can use the map r  defined by

t ( o i ,02, 03, . . . )  :=  (02, 03, 04, . . . ) .

This map is called the Bernoulli shift. In the C + +  program tra j ectory4. cpp we 
find the trajectory of the Bernoulli map using the data type Rational and Verylong 
of SymbolicC++. The initial value is 1/17.

// trajectory4.cpp 

#include <iostream>
#include "verylong.h" // for data type Verylong 
#include "rational.h" // for data type Rational 
using namespace std;

inline void map(Rational<Verylong>& x)
{
Rational<Verylong> oneC'l"); // number 1 
Rational<Verylong> tvo("2"); // number 2 
Rational<Verylong> half("1/2"); // number 1/2 
Rational<Verylong> xl; 
if(x < half) xl = two*x;
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else xl = tvo*x-one; 
x = xl;

>

int main(void)

Rational<Verylong> x0("l/17"); // initial value 1/17 
unsigned long T = 10; // number of iterations
Rational<Verylong> x = xO; 
cout «  "x[0] = " «  x «  endl; 
for(unsigned long t=0;t<T;t++)
{
map(x);
cout «  "x[" «  t+1 «  "] = " «  x «  endl;
>
return 0;

>
As a fourth example we consider the tent map. The tent map /  : [0,1] —> [0,1] is 
defined as

2x  if i €  [0, 1/ 2) 
n  >- \ 2( l - i ) i f  x e  [1/ 2, 1] '

The map can also be written as the difference equation

_  j  2xt if s t G [0, 1/ 2)
Xi+1 \ 2( l - i t) if ж, 6 [1/ 2, 1]

where t =  0 ,1 ,2 ,. .. and xq G [0,1]. Let Xo =  1/17 be the initial value. Then the 
exact orbit is given by

1 2 4 8 16 2
X° ~  17’ X l~ 1 7 '  l 2 - 17' Хз ~  17’ 14 “ 17’

This is an example of an eventually periodic orbit. If the initial value is a rational 
number then the orbit is eventually periodic, periodic or tends to a fixed point. For 
example the initial value 1/16 tends to the fixed point 1. To find chaotic orbits the 
initial value must be an irrational number, for example xo =  l /тг- The fixed points 
of the map are given by x* =  0, x* =  2/3. These fixed points are unstable. The map 
shows fully developed chaotic behaviour. The invariant density is given by p(y) =  1- 
For almost all initial values the Liapunov exponent is given by A =  In 2. For the 
autocorrelation function we find

C W  =  / T2 for T =  0 
Uxx[-T> \ 0 for r  >  1 ■

The tent map /  : [0,1] -+ [0,1] given above and the logistic map g : [0,1] —► [0,1], 
g(x) =  4z(l — x) are topologically conjugate , i.e. /  =  h о g о ft-1 , where the 
homeomorphism h : [0, 1] —> [0, 1] is given by

2
h(x) =  — arcsin(-v/x).7Г
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In the C + +  program tra jectory5 .cpp  we find the trajectory of the tent map with 
the inital value 1/17.

// trajectory5.cpp

#include <iostream>
#include "verylong.h"
#include "rational.h" 
using namespace std;

inline void map(Rational<Verylong>& x)

Rational<Verylong> oneC'l"), tvo("2");
Rational<Verylong> half("1/2"); // number 1/2 
Rational<Verylong> xl; 
if(x < half) xl = two*x; 
else xl = two*(one-x); 
x = xl;

>

int main(void)
<
Rational<Verylong> x0("l/17"); // initial value 1/17 
unsigned long T = 10; // number of iterations
Rational<Verylong> x = xO; 
cout «  "x[0j = " «  x «  endl; 
for(unsigned long t=0;t<T;t++)

map(x);
cout «  "x[" «  t+1 «  "] = " «  x «  endl;
>
return 0;

>
As a fifth example we consider a bungalow-tent map. Our bungalow-tent map f r : 
[0, 1] —> [0, 1] is defined by

1 — r

/ r W  :=

-x for X € [0, r) 

2r ■* +  T-- 7Г for x  € [л 1/2)1 -  2r 1 -  2r
2r (1 -  s) +  ^  fo r i 6 [1/ 2 ,1 -  r)

1 — 2r y 1 — 2r
- — ^ ( l -ж )  for 2 б [ 1 - г ,  1]

where r  € (0 ,1/2) is the control parameter. The map is continuous, but not differ
entiable at the points r, 1 — г (г Ф 1/3) and x =  1/2. The map is piecewise linear. 
The fixed points are 0 and 1 — r. For r =  1/3 we obtain the tent map. The map f r
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is a special bungalow-tent map. The intersection point P  of the line in the interval 
[1/2,1 -  r) and the line in the interval [1 -  r, 1] lies on the diagonal у  =  x. The 
invariant density is given by

рЛх) =  + ; i S ) X(i- r'i l ( l)

where x  is the indicator function, i.e. Xa {x) =  1 if x  €  A and Xa (x) =  0 if x £ A. 
Thus the invariant density is constant in the interval [0,1 — r). At 1 — r the invariant 
density jumps to another constant value. The Liapunov exponent is given by

1 — r  / 1 r\ 1 - 2  r  /  2r \
=  2"— "Зг \ r / 2-^3r \ l"—"2rv ■

For r =  1/3 we obviously obtain A (l/3) =  In 2. This is the Liapunov exponent for 
the tent map. For r —> 0 we obtain A(r —> 0) =  J In 2. For г —► 1/2 we obtain 
A(r —> 1/2) =  0. A(r) has a maximum for r =  1/3 (tent map). Furthermore A(r) is 
a convex function in the interval (0 ,1/2). Thus we have

A (r) <  In 2.

The C ++  program tra jectory 6 . cpp finds the trajectory of the bungalow-tent map 
for the control parameter r =  1/7 and the initial value x0 — 1/17. We find rci =  6/17, 
X2 =  16/17, £3 =  6/17. Thus the orbit is eventually periodic.

// trajectory6.cpp

#include <iostream>
♦include "verylong.h"
♦include "rational.h" 
using namespace std;

inline void map(Rational<Verylong>& x,Rational<Verylong>& r)

Rational<Verylong> one("l"), two("2"), three("3");
Rational<Verylong> half("1/2"); // number 1/2 
Rational<Verylong> xl; 
if(x < r) xl = (one-r)*x/r; 
else if((x >= r) && (x < half))
xl = two*r*x/(one-two*r) + (one-three*r)/(one-tvo*r); 
else if((x >= half) && (x < one-r))
xl = two*r*(one-x)/(one-tvo*r)+(one-three*r)/(one-two*r); 
else if((x <= one) && (x > one-r)) 
xl = (one-r)*(one-x)/r; 
x = xl;

>

int main(void)
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Rational<Verylong> x0("l/17"); // initial value 1/17 
Rational<Verylong> r("l/7"); // control parameter 1/7 
unsigned long T = 10; // number of iterations
Rational<Verylong> x = xO; 
cout «  "x[0] = " «  x «  endl; 
for(unsigned long t=0;t<T;t++)

map(x,r);
cout «  "x[" «  t+1 «  "] = " «  x «  endl;
>
return 0;

>

As another example we consider the Gauss map. The Gauss map /  : [0,1] —> [0,1] 
is defined as

._  /  0 ifs  =  0 
'  * | [l/я] if ж Ф 0

where [yj denotes the fractional part of y. For example 

[3.2J =  0.2, L17/3J =  |

Owing to the definition x* =  0 is a fixed point. Let xo =  23/101 be the initial value. 
Then the orbit is given by

9 5 4 1 n
Xl ~  23’ X2 =  9' *3 =  5' 14 ~  4 ’ l5 =  °

where X5 =  0 is a fixed point. The Gauss map possesses an infinite number of 
discontinuities and is not injective since each xo € [0, 1] has countable infinite images. 
The map admits an infinite number of unstable fixed points and shows chaotic 
behaviour. For example x* =  (\/5 — l) /2  is a fixed point, since x* =  f{x* ). The 
Gauss map preserves the Gauss measure on [0,1] which is given by

rn(A) :=  f  j -  -d x .
In 2 J a 1 +  x

The periodic points of the Gauss map are the reciprocal of the reduced quadratic 
irrationals. These numbers are dense in [0,1).

// trajectory7.cpp

#include <iostream>
#include "verylong.h"
#include "rational.h" 
using namespace std;

inline void map(Rational<Verylong>& x)
•c
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Rational<Verylong> zero CO"), one("l">;
Rational<Verylong> xl; 
if(x==zero) return; 
xl = one/x;
while(xl >= one) xl = xl-one; 
x = xl;

>

int main(void)
{
Rational<Verylong> x0("23/101"); // initial value 
unsigned long T = 10; // number of iterations
Rational<Verylong> x = xO; 
cout «  "x[0] = " «  x «  endl; 
for(unsigned long t=0;t<T;t++)

map(x);
cout «  "x[" «  t+1 «  "] = " «  x «  endl;
>
return 0;

>
The next program datagnu.cpp shows how to write the output data from an itera
tion to a file. We consider the logistic map as an example. The output is stored in 
a file called timeev.dat. We use the C + +  style for the file manipulation.
// datagnu.cpp

#include <fstream> // for ofstream, close 
using namespace std;

int main(void)
•c
ofstream dataC'timeev.dat");
unsigned long T = 100; // number of iterations 
double xO = 0.618; // initial value
double xl;
for(unsigned long t=0;t<T;t++)
{
xl = 4.0*x0*(l.0-x0);
data «  t «  " " «  xO «  "\n";
xO = xl;
>
data.close(); 
return 0;

>
The data files can now be used to draw a graph of the time evolution using GNU- 
plot. After we entered GNU-plot using the command gnuplot the plot command is 
as follows:
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p lo t [0 : 10] 'tim eev .dat’

This command plots the first eleven points of the time evolution. Furthermore we 
can create a postscript file using the commands:

set term postscript default 
set output "timeev.ps" 
plot ’timeev.dat’

The next program shows how to write data to a file and read data from a file using 
JAVA. As an example we consider the logistic map. The data are stored in a file 
called "tim eev.dat". In the second part of the program we read the data back. In 
JAVA the filename and the class name which includes the

public static void main(String args[])

method must coincide (case sensitive). We output data using a DataOutputStream 
that is connected to a FileOutputStream via a technique called chaining of stream 
objects. When the DataOutputStream object output is created, its constructor 
is supplied a FileOutputStream object as an argument. The statement creates 
a DataOutputStream object named output associated with the file timeev.dat. 
The argument "tim eev.dat" is passed to the FileOutputStream constructor which 
opens the file.

Class DataOutputStream. A data output stream lets an application write primi
tive (basic) Java data types to an output stream in a portable way.

Class FileOutputStream. A file output stream is an output stream for writing 
data to File or a FileDescriptor.

The method void vriteDouble (double v) converts the double argument to a long 
using the doubleToLongBits method in class Double, and then writes that long 
value to the underlying output stream as an 8-byte quantity, high byte first.

The method double readDoubleO reads eight input bytes and returns a double 
value.

// FileManipulation.java

import java.io.*;
import java.lang.Exception;

public class FileManipulation 
{
public static void main(String args[])
■c
DataOutputStream output;
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try
{
output = new DataOutputStream (new FileOutputStream ( "t imeev. dat")); 
int T = 10;
double xO = 0.618; double xl; 
output.writeDouble(xO);
System.out.printIn("The output is " + xO) ; 
for(int t=0;t<T;t++)
{
xl = 4.0*x0*(1.0-x0);
System.out.printIn("The output is " + xl) ; 
output.writeDouble(xl); 
xO = xl;
>
try { output.flush(); output.close() ; > 
catch(IOException e)
{
System.err.println("File not closed properly\n" + e.toStringO) ; 
System.exit(1);
>
>
catch(IOException e)
{
System.err.println("File not opened properly\n" + e.toStringO); 
System.exit(1);
>
System.out.printIn("\nReading file:"); 
try

FilelnputStream fin = new FileInputStreamCtimeev.dat");
DatalnputStrearn in = new DatalnputStrearn(fin); 
while(true) System.out .print (in.readDoubleO + " ");
>
catch(Exception e) { >
>

>

1.1.2 Fixed Points and Stability
Consider a map /  : [0,1] —> [0,1]. The fixed points are defined as the solutions of 
the equation

f(x* ) =  x *.

Let us assume that the map /  is differentiable. Then the variational equation of 
xt+i =  f { x t) is defined as

d  с I
2/1+1 =  ~dJ'X +  ey ' =  % { x =  x t)Vt-

t = 0 ,x = x t,y=yt
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A fixed point is called stable if

df
dx{x =  x ,) < 1.

When we consider the logistic map /  : [0,1] -> [0,1], f ( x )  =  4x(l -  x) we have to 
solve the quadratic equation

4x*(l -  x*) =  x*
to find the fixed points. Therefore the fixed points are given by x\ =  0, x\ =  3/ 4. In 
the C + +  program we consider the stability of the fixed points for the logistic map 
Xt+\ =  4ж*(1 — x t). We evaluate the variational equation of the logistic equation 
and determine the stability of the fixed points. For the logistic map we find

df
- f  =  4 - 8 z .  
ах

and therefore the fixed points x\ =  0 and x\ =  3/4 are unstable.

In the C + +  program fixpo in tlog .cp p  we test whether the fixed points of the 
logistic map f (x )  =  4z(l — x) are unstable. We use the header file derive.h  from 
SymbolicC++ to do the differentiation.
// fixpointlog.cpp

#include <iostream>
#include <cmath> // for fabs
#include 11 verylong. h"
#include "rational.h"
#include "derive.h" 
using namespace std;

int main(void)
•C
double xl = 0.0; 
double x2 = 3.0/4.0;
Derive<double> Cl(1.0); // constant 1.0 
Derive<double> C4(4.0); // constant 4.0 
Derive<double> XI, X2;
XI.set(xl);
Derive<double> R1 = С4*Х1*(С1-Х1);
double resultl = df(Rl);
cout «  "resultl = " «  resultl «  endl;
if(fabs(resultl) > 1) cout «  "fixpoint xl unstable " «  endl;
X2.set(x2);
Derive<double> R2 = C4*X2*(C1-X2);
double result2 = df(R2);
cout «  "result2 = 11 «  result2 «  endl;
if(fabs(result2) > 1) cout «  "fixpoint x2 unstable ";
return 0;
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1.1.3 Invariant Density
Consider a one-hump fully developed chaotic map /  : [0,1] —» [0,1]

xt+i =  f ( x t)

where t =  0 ,1 ,2 ,__ We define the invariant density (also called probability density)
of the iterates, starting from an initial point rr0, by

p(z) :=  lim i  £  6(x  -  / (t)(x0))
1  t=0

where p°'(x\o) =  xo and

/ (1)Ы  =  f ( x o) о) =  =  / ( / И Ы )  =

with t >  1. Here <5 denotes the delta function. Not all starting points жо € [0,1] are 
allowed in the definition. Those belonging to an unstable cycle must be excluded 
since we are only interested in the stable chaotic trajectory. For any arbitrary (but 
integrable in the Lebesgue sense) function g on the unit interval [0,1] the mean value 
of that function along the chaotic trajectory is

1 T_1 r1
(flW> :=  ^  9(?t) =  /  p{x)g{x)dx.

1 t—0 ®

Choosing g(x) — 1 we obtain the normalization condition

f  p(x)dx =  1 .
Jo

Since the probability density is independent of the starting point Xo, the expression 
for p can also be written as

1 T_1
p{x) =  lim -  5(x  ~  x t+k), к =  0, 1,2.......

1 1 t=o

An integral equation for p can be derived as follows: Let a  be defined as

a {y ) :=  [  6{ y -  f ( k\x))p{x)dx.
Jo

Let g be an arbitrary (but integrable in the sense of Lebesgue) function on [0,1]. 
Then ^

/  v{y)9 (y )d y=  f  I  6{ y - f {k\x))p{x)g(y)dydx.
Jo Jo Jo

Therefore we obtain

JQ o{y)9{y)dy =  J^JQ 5(x  “  f {t)(xo))9 { f {k\ x ))d x .
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Using the properties of the delta function we arrive at

Jo a{y)9 (y)dy =  Urn i  J2 f f ( /(t+*)(*io)) ■

Hence

JQ °(v)9(y)dy  =  ^  JQ 6(y ~  f it+k){x0))g(y)dy =  j f  p(y)p(y)dy.

Since the function g is arbitrarily chosen, we have to set <r(y) =  p(y). Thus the 
probability density p obeys the integral equation

P(y) =  J  dx6(y -  f (x ) )p {x ) .

This equation is called the Frobenius-Perron integral equation. This equation has 
many solutions (Kluiving et al [60]). Among these are the solutions associated with 
the unstable periodic orbits. If these unstable solutions are left out of considera
tion and the map is one-hump fully developed chaotic, then there is only one stable 
chaotic trajectory exploring the unit interval [0,1] and the Frobenius-Perron equa
tion has a unique solution associated with the chaotic orbit.

In the C + +  program we determine numerically the invariant density for the logistic 
map x t+1 =  Axt{\ — x t). For the stable chaotic trajectory exploring the unit interval 
[0,1] the Frobenius-Perron integral equation has the unique solution

p(x) = ----- ,
27t /̂x (1 —  x)

where
/  p(x) dx =  1 
Jo

and p{x) > 0 for x  € [0,1]. We see that p(x) —* oo for x  —♦ 0 and sc —► 1, respectively. 
The solution can be found by iteration of

Pt+\(y) =  f  dx6(y -  f{x ))p t(x)
Jo

with the initial density po(x) =  1.

In the C + +  program invdensity.cpp we find the histogram for the logistic map. 
We divide the unit interval [0,1] into 20 bins with bin size 0.05 each. We calculate 
how many points exist in the intervals [0.05 • i, 0.05 • (г + 1)), where i =  0 ,1 ,2 ,. . . ,  19. 
This gives an approximation for the invariant density defined above. For example, 
the number of points in the intervals [0,0.05) and [0.95,1.0] is much higher than in 
the other intervals (bins).
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// invdensity.cpp 

#include <iostream>
#include <cmath> // for floor, sqrt 
using namespace std;

void histogram (double* x,int* hist, double T, double xmax, 
double xmin.int n_bins)

{
double grad = n_bins/(xmax-xmin) ;
for(int t=0;t<T;t++) ++hist [((int) floor (grad* (x [t] -xmin) ))] ;

>

int main(void)
{
int T = 10000; // number of iterations
double xmax = 1.0; // length of interval xmax-xmin
double xmin = 0.0;
double bin_width = 0.05;
double* x = new double[T];
int n_bins = (int)(xmax-xmin)/bin_width;
cout «  "number of bins = " «  n_bins «  endl;

// generating the data for the histogram
x[0] = (sqrt(5.0)-1.0)/2.0; // initial value
for (int t=0;t<(T-l) ;t++) x[t+l] = 4.0*x[t]*(1.0-x[t]) ;

int* hist = new int [n_bins];
// setting hist[i] to zero
for(int i=0;i<n_bins;i++) histCi] = 0;
histogram(x,hist,T,xmax,xmin,n_bins);

for(int i=0;i<n_bins;i++)
cout «  "hist[" «  i «  "] = " «  histCi] «  endl; 
delete[] x; deleted hist; 
return 0;

>

As a second example we consider the sine map. The sine map /  : [0,1] —► [0,1] is 
defined by

f ( x )  :=  sin(7rx).
The map can also be written as a difference equation

xt+i =  sin(7ra;t)

where a:0 e  [0,1]. The fixed points are determined by the solution of the equation

x * =  sin(7ra:*).
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The map admits two fixed points. One fixed point is given by x\ =  0. The other
fixed point is determined from x*2 =  sin(7rx$) and x2 >  0. We find x2 =  0.73648__
The variational equation of the sine map takes the form

Vt+i =  7TCOS(7TXt)yt .

Both fixed points are unstable. This can be seen by inserting xj and x 2 into the 
variational equation.

To find the invariant density for the sine-map we replace in program invdensity. cpp 
the line

x [t+1] = 4. 0*x [t] * ( 1 .0- x [ t ] ) ;  

with

x [t+ l] = s in (p i* x [t ] ) ;

and add const double p i = 3.14159; in front of this statement. The numerical 
result suggests that the density for the sine map is quite similar to that of the lo
gistic map.

Next we find the invariant density for the bungalow-tent map f r : [0,1] —* [0,1]

/  ̂— f
■x for x  e  [0, r)

fr(x) :=

r
2 r 1 - 3  r  r 1 /r*\-x +  -— —  for x  G [r, 1/ 2)

1 -  2r 1 -  2r
2r (1 x) +  ~ f o r  x G [1/ 2 ,1 — r)

1 — 2r 1 — 2r
- — -(1  — x) for x  G [1 — r, 1]

where r  G (0,1/2). To find the invariant density exactly we solve the Frobenius- 
Perron integral equation. The Frobenius-Perron integral equation is given by

pr(x ) =  [  Р г(у Щ х  -  f r(y))dy. 
Jo

We apply the identities for the delta function

where the sum runs over all zeros with multiplicity land <7r(2/n) denotes the derivative 
of g taken at yn. Taking these identities into account and differentiating in the sense 
of generalized functions we obtain the invariant density

fr(x) =  + w
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where x  is the indicator function, i.e.,

, ч f 1 if x  €  A 
Xa{-x) :=  |o if x i A

* M  =  /  Pr(x) In Jo
dx

Thus the invariant density is constant in the interval [0,1 — r). At 1 — г the invariant 
density jumps to another constant value. In the calculations we have to consider 
two domains for ж, [0,1 — r) and [1 — r, 1]. The Liapunov exponent is calculated 
using

jo dx
where we differentiated in the sense of generalized functions. Thus we find that the 
Liapunov exponent as a smooth function of the control parameter r is given by

w . 1 - 7 * ,  / 1 — r\ l - 2r ,  f  2r \
A(r) =  2^ ln ( — )  +  2^ ln ( 1 = 2?) '

For r =  1/3 we obviously obtain A (l/3) =  In 2. This is the Liapunov exponent for 
the tent map. For r —* 0 we obtain

A(r —* 0) =  ^ In 2 .

For r —► 1/2 we obtain A(r —» 1/2) =  0. The Liapunov exponent A(r) has a 
maximum for r =  1/3 (tent map). Furthermore A(r) is a convex function in the 
interval (0 ,1/2). We have A(r) <  In 2. The numerical simulation confirms the result 
for the invariant density, i.e. constant in the interval [0,1 — r) and another constant 
in the interval [1 — r, 1]. In our numerical simulation we have to set one of the bins 
boundary points to 1 — r.

1.1.4 Liapunov Exponent
Here we calculate the Liapunov exponent A for one-dimensional chaotic maps. Con
sider the one-dimensional map

xt+i =  f ( x t)
where t =  0 ,1 ,2 ,. .. and x0 G [0,1]. The variational equation (also called the 
linearized equation) of this map takes the form

df  f \ yt+1 =  ~ ( x t)yt

with y0 ф 0. We assumed that /  is differentiable. The Liapunov exponent A is 
defined as

X УтA(x0, уо) :=  lim -  In —T - oo l  yQ

Here we calculate the Liapunov exponent for the logistic map i t+1 =  Axt{l  — x t). 
Thus f (x )  =  4x(l — x) and
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Consequently we obtain the variational equation

Уt+i =  (4 -  8x t)yt 

with y0 ф 0. The exact solution of the logistic map is given by

Xt==\ ~ \  cos(2* arccos(l — 2z0))-

For almost all initial values we find that the Liapunov exponent is given by Л =  In 2. 
In the C + +  program we evaluate the Liapunov exponent by using the variational 
equation. Overflow occurs if T  is made too large. In an alternative method we use 
nearby trajectories and reset the distance between the two trajectories after each 
time step. Thus we avoid overflow for large T.

// liapunovl.cpp 

♦include <iostream>
♦include <cmath> // for fabs, log
using namespace std;

int main(void)
{
unsigned long T = 200; // number of iterations 
double x = 0.3; // initial value for logistic map
double у = 1.0; // initial value for variational map
double xl, yl;
for(unsigned long t=0;t<T;t++)
<
xl = x; yl = y;
x = 4.0*xl*(1.0-xl); // logistic map 
у = (4.0-8.0*xl)*yl; // variational map
>
// notice that у becomes large very quickly
double lambda = log(fabs(y))/((double) T); // Liapunov exponent 
cout «  "lambda = " «  lambda «  endl;

// alternative method 
double eps = 0.001; 
double xeps, xepsl; 
x = 0.3; xeps = x-eps;
// x and xeps are nearby points 
double sum = 0.0;
T = 1000;
double distance;
for(unsigned long t=0;t<T;t++)
{
xl = x; xepsl = xeps; 
x = 4.0*xl*(1.0-xl);
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xeps = 4.0*xepsl*(1.0-xepsl); 
double distance = fabs(x-xeps); 
sum += log(distance/eps); 
xeps = x-eps;
>
lambda = sum/((double) T);
cout «  "lambda = " «  lambda «  endl;
return 0;

>
In the following program we use the Rational, Verylong and Derive class of 
SymbolicC++ to find an approximation of the Liapunov exponent. The Derive 
class provides the derivative. Thus the variational equation is obtained via exact 
differentiation

// Liapunov2.cpp
// Iteration of logistic equation and variational equation 

#include <iostream>
#include <cmath> // for fabs, log
#include "verylong.h"
#include "rational.h"
#include "derive.h" 
using namespace std;

int main(void)

int T = 100; 
double x = 1.0/3.0; 
double xl; 
double у = 1.0;
Derive<double> Cl(1.0);
Derive<double> C4(4.0);
Derive<double> X;
cout «  "t = 0 x = " «  x «  " " «  "y = " «  у «  endl; 
for(int t=l;t<=T;t++)
■C
xl = x; x = 4.0*xl*(1.0-xl);
X. set(xl);
Derive<double> Y = C4*X*(C1-X); 
у = df(Y)*y;
cout «  "t = " «  t «  " " «  "x * " «  x «  " "

«  *»y = " «  у «  endl;
>
double lambda = log(fabs(y))/((double) T);
cout «  "approximate value for lambda = " «  lambda «  endl; 
cout «  endl; 
int M = 9;
Rational<Verylong> ul;

// number of iterations 
// initial value

// constant 1.0 
// constant 4.0
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Rational<Verylong> u("l/3"), v("l");
Rational<Verylong> Kl("l"), K2("4");
Derive<Rational<Verylong> > D1(K1); // constant 1 
Derive<Rational<Verylong> > D4(K2); // constant 4 
Derive<Rational<Verylong> > U;
cout «  "j * 0 u = " «  u «  " " «  "v = " «  v «  endl; 
for(int j=l;j<=M;j++)
{
ul = u; u = K2*ul*(Kl-ul);
U.set(Rational<Verylong>(ul));
Derive<Rational<Verylong> > V = D4*U*(D1-U); 
v = df(V)*v;
cout «  "j = " «  j «  " "

«  "u = " «  u «  " " «  "v = " «  v «  endl;
>
lambda = log(fabs(double(v)))/((double) M);
cout «  "approximate value for lambda = " «  lambda «  endl;
return 0;

>

As a second example we consider the sine map. The sine map f  : [0,1] —» [0,1] is 
defined by

f (x )  sin(7rx).

The map can be written as the difference equation

xt+i =  sin(nxt)

where t =  0 ,1 ,2 ,. .. and x0 6 [0,1]. The variational equation of the sine equation is 
given by

yt+1 =  ^ ( x  =  Xt)yt =  7Г COs(7TXt)yt .

To find the Liapunov exponent for the sine-map we replace in program liap .cpp  
the fine

x = 4.0*xl*(1.0-xl); xeps = 4.0*xepsl*(1.0-xepsl);

by

x = sin(pi*xl); xeps = sin(pi*xepsl);

and add const double p i = 3.14159; in front of this statement. For T  =  5000 we 
find Л =  0.689. Thus there is numerical evidence that the sine-map shows chaotic 
behaviour.

1.1.5 Autocorrelation Function
Consider a one-dimensional difference equation /  : [0,1] —> [0,1]

xt+i =  f ( x t)
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where t =  0 ,1 ,2 ,.... The time average is defined as

Obviously, (xt) depends on the initial value Xo- The autocorrelation function is 
defined as ^

Cxx(r) := lim ^  (®t))(®t+r -  Ы )
T-*°° 1 t=o

where r  =  0 ,1 ,2 ,.... The autocorrelation function depends on the initial value xq.

For the logistic map /  : [0,1] —♦ [0,1], f ( x )  =  4x(l — x) we find that the time 
average for almost all initial conditions is given by

The autocorrelation function is given by

Г  ( \ -  / 8 f°r T =  0 
ii\TJ otherwise

for almost all initial conditions. The C + +  program autocorre la tion .cpp  calcu
lates the time average and autocorrelation function for the logistic map.

// autocorrelation.cpp

#include <iostream> 
using namespace std;

double average(double* x,int T)
{
double sum = 0.0;
for(int t=0;t<T;t++) { sum += x[t]; > 
double av = sum/((double) T); 
return av;

>

void autocorr(double* x,double* CXX,int T,int length,double av) 

for(int tau=0;tau<length;tau++)
{
double С = 0.0;
double diff = (double) (T-length);
for(int t=0;t<diff ;t++) { С += (x[t]-av)*(x[t+tau]-av); >
CXX[tau] = С/(diff+1.0) ;
> // end for loop tau

>
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int main(void)
<
const int T = 4096;
double* x = new double[T];
x[0] = 1.0/3.0; // initial value
for (int t=0; t< (T-l) ; t++) { x[t+l] = 4.0*x[t] *(1.0-x [t]) ; >
double av = average(x,T);
cout «  "average value = " «  av «  endl;
int length = 11;
double* CXX = new double[length]; 
autocorr(x,CXX,T,length,av); 
delete[] x;
for(int tau=0;tau<length;tau++)
cout «  "CXX[" «  tau «  "] = " «  CXX[tau] «  endl; 
delete[] CXX; 
return 0;

>

The output is (exact solution is 0.5, CXX[0] =1/8, CXX[1]=0, CXX[2]=0 etc.)

average value = 0.497383 
CXX[0] = 0.125707 
CXX[1] = 0.00134996 
CXX [2] = -0.000105384 
CXX[3] = -0.000289099 
CXX[4] = 0.00477107 
CXX [5] = -0.00186259 
CXX [6] = 0.00383531 
CXX[7] = -0.00425356 
CXX [8] = -0.00288615 
CXX [9] = -0.00110183 
CXX [10] = -0.00148765

1.1.G Discrete Fourier Transform

The discrete Fourier transform is an approximation of the continuous Fourier trans
form. The discrete transform is used when a set of function sample values, ж(£), are 
available at equally spaced time intervals numbered t =  0 ,1 , . . . ,T  — 1. The dis
crete Fourier transform maps the given set of function values into a set of uniformly 
spaced sine waves whose frequencies are numbered fc =  0 , l , . . . ,T  — 1, and whose 
amplitudes are given by
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This equation can be written as 

r-i
*(*) = f  T ,  * (* )cos (2nkf )  ~ ^  ^  x® sin {2nkf )  ■

The inverse discrete Fourier transformation is given by

T-l
=  Z ) * ( fc) exP ( i2?rt f  )  •

To find the inverse Fourier transformation we use the fact that
T -l  /
^2  exp I i2nk 
k=0 \

(n — m) =  T<5„

where 6nm denotes the Kronecker symbol.

In our first C ++  program (Fourier. cpp) we consider the time series

x(t) =  cos(27rt/T)

where T  =  8 and t =  0 ,1 ,2 ,... ,T  — 1. We find the discrete Fourier transform x(k) 
(A: =  0 ,1 ,2 ,... ,T  — 1). We have

Using the identity

we find

Consequently,

т = \ Ъ  o s ( ^ ) e - i2*“ /s .

gt2Trt/8 _j_ g-t2Trt/8
cos(27rt/8) =

x (k )  =  —  £ ( e ‘2»i(l-l:)/8 +  e-i2rt(l+fc)/8) 
t=0

\ for к =  1 
x(fc) =  {  5 for к =  7 .

0 otherwise
In our second program (fourierlog .cpp ) we consider the logistic map x t+i =  
4xt(l -  xt), where t =  0 ,1 ,2 ,. .. and x0 G [0,1]. We assume that we have a set 
of T  samples from the logistic map, i.e., x0, X\> x2, • • *r- i -

// fourier.cpp

#include <io8tream>
#include <cmath> // for cos, sin 
using namespace std;
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int main(void)
{
const double pi = 3.14159; 
int T = 8;
double* x = new double[T];
for(int t=0;t<T;t++) x[t] = cos(2.0*pi*t/((double) T)); 
double* rex = new double[T]; double* imx = new double[T] 
for(int k=0;k<T;k++)
<
double cossum = 0.0, sinsum = 0.0; 
for(int t=0;t<T;t++)
{
cossum += x[t]*cos(2.0*pi*k*t/((double) T)); 
sinsum += x[t]*sin(2.0*pi*k*t/((double) T));
>
rex[k] = cossum/((double) T); 
imx[k] = -sinsum/((double) T);
>
// display the output 
for(int k=0;k<T;k++)
{
cout «  "rex[" «  к «  "] = " «  rex [к] «  " 
cout «  "imx[" «  к «  "] = " «  imx [к] «  endl;
>
delete[] x; delete[] rex; deleted imx; 
return 0;

>

// fourierlog.cpp

♦include <iostream>
♦include <cmath> // for cos, sin 
using namespace std;

int main(void)
■C
const double pi = 3.14159; 
int T = 256;
double* x = new double[T]; 
x [0] = 0.5;
for (int t=0;t<(T-l) ;t++) x[t+l] = 4.0*x[t]*(1.0-x[t]) ; 
double* rex = new double[T]; double* imx = new double [T];

for(int k=0;k<T;k++)
■c
double cossum = 0.0, sinsum = 0.0; 
for(int t=0;t<T;t++)
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cossum += x[t]*cos(2.0*pi*k*t/((double) T)); 
sinsum += x[t]*sin(2.0*pi*k*t/((double) T));
>
rex[k] = cossum/((double) T) ; imx[k] = -sinsum/((double) T) ;
>

// display the output 
for(int k=0;k<T;k++)
{
cout «  "rex[" «  к «  "] = " «  rex [к] «  11 "; 
cout «  "imx[" «  к «  "] = " «  imx [к] «  endl;
>
delete[] x; delete[] rex; deleted imx; 
return 0;

1.1.7 Fast Fourier Transform

Let n >  1. The discrete Fourier transform transforms an n-vector with real compo
nents into a complex n-vector. Methods that compute the discrete Fourier trans
form in 0 (N  log N) complex floating-point operations are referred to as fast Fourier 
transforms, FFT for short. Based on the odd-even decomposition of a trigonomet
ric polynomial, a problem of size n — 2fc is reduced to two problems of size 2fc-1. 
Subsequently, two problems of size 2fc_1 are reduced to two problems of size 2k~ ■ 
Ultimately, n =  2k problems of size 1 are obtained, each of which is solved trivially. 
Let (j be a primitive nth root of 1, i.e.

и  =  ехр(2тгi/n) .

The matrix Fn denotes the n x n matrix with entries

f jk :=  uPk =  e2nijk/n

where 0 <  j ,  к <  n — 1. The discrete Fourier transform of the n-vector

PT =  (po,P i,...,Pn—l) 

is the product FnP. The components of FnP  are

{EnP)o =  u)°p0 +  U)°P\ H------- f  ш°рп- 2  +  ^°Pn-i
(F n P ) i =  w°p0 +  wpi +  • • • +  cjn_2pn_2 +  (Jn_1pn-i 

{FnP )i  -  u°Po +  w'pi +  • • • +  w<(n"2)pn_ 2 +  u/(n -1)pn_ i

(^n-P)n-l =W°p0 +  Un XPi + ----- h W(n 1)(n 2)pn_2 +  CJ(n 1)(П l)pn- 1.
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Rewritten in a slightly different form, the ith component is

P n - l ( u T  1 +  pn—2(k/)n 2 H---- f PlW* +  Po ■

Thus if we interpret the components of P  as coefficients of the polynomial 

p(x) =  pn- i x n~l +  pn- 2Xn~ 2 +  - ’ +  piX +  p0

then the ith component is p(u x) and computing the discrete Fourier transform of 
P  means evaluating the polynomial p(x) at u°,cj,lj2, . . .  i.e., at each of the
nth roots of 1. We describe a Divide and Conquer algorithm first and then examine 
it closely to remove the recursion. We assume that n — 2k for some к >  0. The 
strategy of Divide and Conquer is to divide the problem into smaller instances, 
solve those, and use the solutions to get the solution for the current instance. Here, 
to evaluate p at n points, we evaluate two smaller polynomials at a subset of the 
points and then combine the results appropriately. Since cW 2 =  — 1 we have for
0 <  j  <  n / 2  -  1,

w(n/2)+i =  #

We group the terms of p(x) with even powers and the terms with odd powers as 
follows

Ti—1 n/2-1 n/2—1
=  V2iX2i +  X Y .  P2i+\X2i .

t=0 t=0 *=0
We define

n/2—1 n/2—1
Pcven(%) ’=  53 Pl\X ■> Vodd{x) P2i+\X ■

t=0 t=0
Then

P(x) =  peven(X 2)  +  X  • р Ш { х 2), p (~x) =  Peven(x2) ~  X  • Р о м ( х 2)  .

To evaluate p at

-1, -a,, ....

it suffices to evaluate peven and Podd at

1, ....... M ^ - 1)2

and then do n /2  multiphcations (for x • Podd(x2)) and n additions and subtractions. 
The polynomials p^m. and Podd can be evaluated recursively by the same scheme. 
That is, they are polynomials of degree n /2  -  1 and will be evaluated at the n/2th 
roots of unity

1, о Л  ...,

/ /  ff t l .cp p

#include <iostream>
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♦include <cmath> // for cos, sin 
using namespace std;

void p(double vre,double wim,double *re,double *im,
double ftfftre,double fcfftim,const int M,int step,int init)

double pre, pim, v2re, w2im; 
if(step==(l «  M))
{
fftre = re[init]*vre-im[init]*wim; 
fftim = im[init]*wre+re[init]*wim; 
return;
>
w2re = wre*wre-wim*wim; v2im = 2.0*wre*wim; 
p(w2re,w2im,re,im,pre,pim,M,step«l,init); // peven
fftre = pre; fftim = pim;
p(w2re,w2im,re,im,pre,pim,M,step«l,init+step); // podd 
fftre += wre*pre-wim*pim; 
fftim += wre*pim+wim*pre;

>

void fft(double *re,double *im,double *ftre,double *ftim,const int M)

const double pi = 3.1415927; 
int N = 1 «  M;
double fftre, fftim, wre, wim, v2re, w2im; 
for (int i=0;i<(N»l) ;i++)
■C
wre = cos(i*2.0*pi/N); wim = sin(i*2.0*pi/N); 
w2re = wre*wre-wim*wim; w2im = 2.0*wre*wim; 
p(w2re,w2im,re,im,fftre,fftim,M,2,0); // peven 
ftre[i] = ftre[i+(N»l)] = fftre; 
ftim[i] = ftim[i+(N»l)] = fftim; 
p(w2re,w2im,re,im,fftre,fftim,M,2,1); // podd 
ftre[i] += wre*fftre-wim*fftim; 
ftre[i+(N»l)] -= wre*fftre-wim*fftim; 
ftim[i] += wre*fftim+wim*fftre; 
ftim[i+(N»l)] -= wre*fftim+wim*fftre;
>

>

int main(void)

const double pi = 3.1415927;
const int M = 3;
int T = 1 «  M;
double* re = new double[T];
double* im = new double[T];
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double* fftre = new double[T]; 
double* fftim = new double[T];
for(int i=0;i<T;i++) { re[i] = cos(2.0*i*pi/T); > 
for(int k=0;k<T;k++) { im[k] =0.0; > 
fft(re,im,fftre,fftim,M); 
for(int k=0;k<T;k++)
cout «  "fftre[" «  к «  "]=" «  fftre[к]/Т «  endl;
cout «  endl;
for(int k=0;k<T;k++)
cout «  "fftim["<<k«"]=" «  fftim[k]/T «  endl; 
delete[] re; delete[] im; 
delete[] fftre; delete[] fftim; 
return 0;

>
A nonrecursive version is given below. We use in place substitution. 

// FFT2. cpp

♦include <iostream>
♦include <cmath> // for sqrt, cos 
using namespace std;

// dir - 1 gives the FFT tranform 
// dir = -1 gives the inverse FFT transform 
// n = 2“m is the length of the time series 
// x[] is the real part of the signal 
// y[] is the imaginary part of the signal

void FFT(int dir,unsigned long m,double* x,double* y)

unsigned long n, i, il, j, k, i2, 1, 11, 12; 
double cl, c2, tx, ty, tl, t2, ul, u2, z;
// number of points n = 2~m 
n = 1;
for(i=0;i<m;i++) n *= 2;
// bit reversal 
i2 = n »  1; 
j = 0;
for(i=0;i<n-l;i++) 

if(i < j)

tx = x[i] ; ty = у [i] ;
x[i] = x[j]; y[i] = у [j]; x[j] = tx; y[j] = ty;
>
к = i2;
while(k <= j) { j —  к; к » =  1; > 
j += k;
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У // end for loop

// compute the FFT 
cl = -1.0; c2 = 0.0;
12 = 1 ;
for(1=0;l<m;1++)
{
11 = 12;
12 « =  1;
ul = 1.0; u2 = 0.0; 
for(j=0;j<ll;j++)
{
for(i=j;i<n;i+=12)
{
il = i + 11;
tl - ul*x[il]-u2*y [il] ; t2 = ul*y[il]+u2*x[il] ; 
x[il] = x[i] -tl; у [il] - y[i]-t2; 
x[i] += tl; y[i] +* t2;
>
z = ul*cl-u2*c2; 
u2 = ul*c2+u2*cl; 
ul = z;
>
c2 = sqrt((1.0-cl)/2.0); 
if(dir == 1) c2 = -c2; 
cl = sqrt((1.0+cl)/2.0);
>
if (dir=l)
{
for(i=0;i<n;i++) { x[i] /= n; y[i] /- n; >
>

> // end function FFT

unsigned long power(unsigned long m)

unsigned long r = 1;
for (unsigned long i=*0;i<m;i++) r *= 2;
return r;

>

int main(void)
{
unsigned long m = 3; 
const double pi « 3.14159; 
unsigned long n =» power(m);
double* x = new double[n]; double* у = new double[n];

unsigned long k;
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for(k=0;k<n;k++) { x[k] = cos(2.0*pi*k/n); y[k] = 0.0; >
// call FFT 
FFT(l,m,x,y);
for(k=0;k<n;k++) { cout «  x[k] «  " " «  y[k] «  endl; >

cout «  "calling inverse FFT" «  endl;
// call inverse FFT 
FFT(-1,m,x,y);
for(k=0;k<n;k++) { cout «  x[k] «  " " «  y[k] «  endl; > 
return 0;

1.1.8 Logistic Map and Liapunov Exponent for r  E [3,4]
We consider the logistic map

x t+1 =  rxt( 1 -  xt)

where t =  0 , 1 , 2 , . . x0 € [0,1] and r G [3,4]. Here r is the bifurcation parameter. 
Thus the Liapunov exponent depends on r. We evaluate the Liapunov exponent for 
r G [3,4]. The variational equation is given by

Уt+i =  r(l “  2xt)Vt- 

The Liapunov exponent is defined as

A(zo,yo) := lim ^ln1 —>oo J

The point r =  3 is a bifurcation point. The Liapunov exponent is given by A =  0.
In the range 3 < r <  3.5699.... we find periodic solutions. The Liapunov exponent
is negative. We also find period doubling. In the region

3.5699... <  r  <  4

we find chaotic behaviour (positive Liapunov exponent) but also periodic windows. 
For example in the region

3.828... <  r <  3.842...
we have a trajectory with period 3. The Liapunov exponent can be evaluated exactly 
only for r =  4. One finds A(r =  4) =  In 2 for almost all initial values. In the program 
lambdaf. cpp the Liapunov exponent is evaluated for the interval r € [3.0,4.0] with 
step size 0.001.

// lambdaf.cpp 

♦include <fstream>
♦include <cmath> // for fabs, log 
using namespace std;
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int main(void)
{
ofstream dataO'lambda.dat") ; 
int T = 10000; // number of iterations
double x = 0.618; // initial value 
double xl;
double eps = 0.0005; 
double xeps = x-eps; 
double xepsl; 
double r = 3.0; 
double sum = 0.0; 
while(r <= 4.0) 
i
for(int t=0;t<T;t++)

xl = x; x = r*xl*(l.0-xl);
xepsl = xeps; xeps = r*xepsl*(l.0-xepsl);
double distance = fabs(x-xeps);
sum += log(distance/eps);
xeps = x-eps;
>
double lambda = sum/((double) T); 
data «  r «  " " «  lambda «  "\n"; 
sum = 0.0; 
r += 0.001;
> // end while 
data.close() ; 
return 0;

>

1.1.9 Logistic Map and Bifurcation Diagram

We consider the logistic map

xt+1 =  rxt( 1 -  xt)

where r € [2,4] and xq e  [0,1]. Here r is a bifurcation parameter. We now study 
the bifurcation diagram. For r €  [2,3) the fixed point x* =  1 — 1 /r is stable. The 
fixed point x* — 0 is unstable in the range (2,4]. For r =  3 (bifurcation point) the 
stable fixed point x* =  1 — 1 /r becomes unstable. We find a stable orbit of period 
2. With increasing r we find a period doubling process with repeated bifurcation 
from

2, 4, 8, . . . ,  2n, . . .  .

There is a threshold value
Too =  3.5699...
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for the parameter r where the limit 2n, n —► сю of the periodicity is reached. For 
r — 4 the logistic map and all its iterates are ergodic and mixing. Within the in
terval (foo, 4) period triplings p3n and quadruplings p4n etc. also occur (so-called 
periodic windows)

In the Java program B ifurcation lo . java we display the bifurcation diagram for 
the interval r € [2.0,4.0].

// Bifurcationlo.java

import j ava.awt.*; 
import java.awt.Frame; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Bifurcationlo extends Frame 

public Bifurcationlo()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit(0) ; » ) ; >

public void paint(Graphics g)
{
int xmax = 600; int ymax = 400;
int j, k, m, n;
double x, xplot, yplot;
double r = 2.0; // bifurcation parameter 
while(r <= 4.0)
•C
xplot = xmax*(r-2.0)/2.0; 
x = 0.5;
for(j=0;j<400;j++) { x = r*x*(1.0-x); > 
for(k=0;k<400;k++)
<
x = r*x*(1.0-x);
yplot = ymax*(l.0-x);
m = (int) Math.round(xplot);
n = 50 + (int) Math.round(yplot);
g.drawLine(m,n,m,n);
>
r += 0.0005;
> // end while
>

public static void main (String [] args)
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{
Frame f = new BifurcationloO ; f .setVisible(true) ;
>

1.1.10 Random Number Map and Invariant Density
We consider methods for generating a sequence of random fractions, i.e., random 
real numbers ut, uniformly distributed between zero and one. Since a computer can 
represent a real number with only finite accuracy, we shall actually be generating 
integers xt between zero and some number m. The fraction

щ =  xt/m, t — 0,1,2,...

will then lie between zero and one. Usually m is the word size of the computer, so 
xt may be regarded as the integer contents of a computer word with the radix point 
assumed at the extreme right, and ut may be regarded as the contents of the same 
word with the radix point assumed at the extreme left. The most popular random 
number generators are special cases of the following scheme. We select four numbers

m, the modulus; m >  0 
a, the multiplier; 0 < a < m  
c, the increment; 0 <  с <  m  
Xo, the initial value; 0 <  Xo <  rn.

The desired sequence of pseudo-random numbers a>o,®i,®2> • ■ • is then obtained by 
the one-dimensional difference equation

i t+i =  +  c) mod m, t =  0, 1, 2, . . .  .

This is also called a linear congruential sequence. Taking the remainder mod m  is 
somewhat like determining where a ball will land in a spinning roulette wheel.

Example. The sequence obtained when m =  10 and Xq =  a =  с =  7 is

7, 6, 9, 0, 7, 6, 9, 0 , . . . .

This example shows that the sequence is not always “random” for all choices of rrc, 
a, c, and Xq. ♦

The example also illustrates the fact that congruential sequences always “get into a 
loop” ; i.e., there is ultimately a cycle of numbers which is repeated endlessly. The 
repeating cycle is called the period. The sequence given above has a period of length 
4. A useful sequence will of course have a relatively long period. In our first C + +  
program we implement a Unear congruential sequence. In our second C + +  program 
we consider the sequence

i t+i =  (7Г +  x t)5 mod 1 =  frac(7T +  xt)5 

and ask whether the sequence is uniformly distributed.
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// modulus.cpp

#include <iostream> 
using namespace std;

int main(void)

unsigned long a = 7, с = 7;
unsigned long m = 10; // modulus
unsigned long xO = 7; // initial value
int T = 10; // number of iterations
unsigned long xl;
for(int t=0;t<T;t++)
{
xl = a*x0 + c;
while(xl >= m) xl = xl-m;
xO = xl;
cout «  "x[" «  t «  "] = " «  xO «  endl;
>
a = 3125; с = 47;
m = 2048; // modulus
xO = 3; // initial value
T = 12; // number of iterations
for(int t=0;t<T;t++)
{
xl = a*x0 + c;
while(xl >= m) xl ■ xl-m;
xO = xl;
cout «  "x[" «  t «  "] = " «  x0 «  endl;
>
return 0;

>

// randoml.cpp 

#include <iostream>
#include <cmath> // for sqrt, fmod
using namespace std;

int main(void)

const double pi = 3.14159;
int T = 6000; // number of iterations
double* x = new double[T];
x[0] = (sqrt(5.0)-1.0)/2.0; // initial value 
for(int t=0;t<(T-l);t++)
•( double r = x [t] +pi; x[t+l] = fmod(r*r*r+r*r, 1) ; > 
const int N = 10;
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double hist[N];
for(int j=0;j<N;j++) hist[j] = 0.0; 

for(int k=0;k<T;k++)
hist[(int) floor(N*x[k])] = hist[(int) floor(N*x[k] )]+l; 
for(int 1=0;1<N;1++)
cout «  "hist[" «  1 «  "] = " «  hist[l] «  endl; 
return 0;

1.1.11 Random Number Map and Random Integration

We describe the Monte Carlo method for the calculation of integrals. We demon
strate the technique on one-dimensional integrals. Let f  : [0,1] —► [0,1] be a con
tinuous function. Consider the integral

I  =  f  f ( x )d x .
Jo

We choose N  number pairs (xj>yj) with uniform distribution and define Zi by

.=  1 0 if?/j >  f ( xi )
\ l i f  y j < f { x j ) .

Putting

n =  j 2 zi
j

we have n/N ~  / .  More precisely, we find

I  =  n/N +  0 (N ~ 1/2).

The accuracy here is not very good. The traditional formulas, such as Simpson’s 
formula, are much better. However, in higher dimensions the Monte Carlo technique 
is extremely favourable, at least if the number of dimensions is >  6. We consider 
the integral as the mean value of /(£ ) where £ is uniform. An estimate of the mean 
value is

iV 3=1
This formula can easily be generalized to higher dimensions. In the C + +  program 
we use the map

f (x )  =  (ж +  7г)5 mod 1 

as random number generator and evaluate

sin(x)dx =  0.459697694132.
Jo
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// randint.cpp

#include <iostream>
#include <cmath> 
using namespace std;

void randval(double* x,double pi)
{ *x = fmod((*x+pi)*(*x+pi)*(*x+pi)*(*x+pi)*(*x+pi),1); > 

int main(void)

const double pi = 3.14159^
unsigned long T = 20000; // number of iterations 
double x = 0.5; // initial value
double sum = 0.0;
for(int t=0;t<T;t++) { randval(k x ,pi); sum += sin(x); > 
cout «  "The integral is = " «  sum/((double) T); 
return 0;

>
In the Java program we use the same map as in the C + +  progam for the 
number generator.

// Randoml.java

class WrappedDouble

WrappedDouble(final double value) { this.value = value; > 
public double value() { return value; >
public void value(final double newValue) { value = newValue; } 
private double value;

>

class MathUtils

public static void randval(WrappedDouble x)
{
double у = Math.pow(x.value()+Math.PI,5); 
x .value(y-Math.floor(y));
>

class Randoml 
i
public static void main(String[] args)
<
int n = 20000; 
double sum = 0.0;
WrappedDouble x = new WrappedDouble(0.5);
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for(int i=0;i<n;++i)
{ MathUtils.randval(x) ; sum += Math.sin(x. v a l u e ()) ; }
System.out .println("The integral is " + sum/n) ;
>

>

1.1.12 Circle Map and Rotation Number
The circle map is given by

T
X t + i  =  f { x t) =  x t +  П -  —  sin(27rxt)27Г

which may be regarded as a transformation of the phase of one oscillator through 
a period of the second one. The map depends on two bifurcation parameters: ft 
describes the ratio of undisturbed frequencies while the bifurcation parameter r  
governs the strength of the nonlinear interaction. The subcritical (r <  1) mappings 
are diffeomorphisms (and thus invertible) whereas the supercritical ones (r >  1) are 
non-invertible and may exhibit chaotic behaviour. The borderline between these two 
cases consists of the critical circle mappings - homeomorphisms with one (usually 
cubic) inflection point. This corresponds to r =  1 in the family of this map. The 
dynamics of the map may be characterized by the rotation number (also called 
winding number)

Р := Й 2о ^ ^ <Т>̂ )  ~ X)-
When /  is invertible, the rotation number is well defined and independent of x. f~ l 
does not exist for r >  1. For subcritical and critical maps this number does not 
depend on the initial point x. The dependence p(ft) is the so-called devil’s staircase} 
in which each rational p =  p/q is represented by an interval of П values (which is 
named the p/q-locking interval). The set of all these intervals has a full measure in 
the critical case. The locked motion in subcritical and critical cases is represented 
by a stable periodic orbit of period q. The rotation number is the mean number of 
rotations per iteration, i.e., the frequency of the underlying dynamical system. If 
r =  0 we obviously find p =  fi. Under iteration the variable x* may converge to a 
series which is either periodic,

X i + Q  =  X i  +  P

with rational rotation number p =  P/Q\ quasiperiodic, with irrational rotation 
number p =  q\ or chaotic where the sequence behaves irregularly.

// circle.cpp

#include <fstream>
tinclude <cmath> // for sin
using namespace std;

int main(void)
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{
of stream dataCcircle.dat");
const double pi - 3.14159;
int T = 8000; // number of iterations
double r = 1.0; // parameter of map
double Omega ■ 0.0;

while(Omega <= 1.0)
{
double x ■ 0.3; // inital value 
double xO = x; 
double xl;
for(int t=0;t<T;t++)
{
xl = x;
x = xl+0mega-r*sin(2.0*pi*xl)/(2.0*pi); // circle map
>
double rho = (x-x0)/((double) T); 
data «  Omega «  " " «  rho «  "\n";
Omega += 0.005;
> // end while 
data.close(); 
return 0;

1.1.13 Newton Method
Consider the equation f (x )  =  0 where it is assumed that /  : R  — » R  is at least 
twice differentiable. Let /  be some interval containing a root of / .  A root is a point 
x  such that f ( x )  =  0. We assume that the root is simple (also called multiplicity 
one). The Newton method can be derived by taking the tangent line to the curve 
■y =  f ( x )  at the point (xt, f ( x t)) corresponding to the current estimate, x t of the 
root. The intersection of this line with the rr-axis gives the next estimate to the 
root, rrt+i. The gradient of the curve у =  f ( x )  at the point (xt, f { x t)) is f '{x t). The 
tangent line at this point has the form у =  f '{x )x  +  b. Since this passes through 
(xt, f { x t)) we see that b =  f { x t) -  z t / '( z t). Therefore the tangent line is

у =  f ' (x t)x  +  f ( x t) -  x tf ( x t) .

To determine where this line cuts the x-axis we set у =  0. Taking this point of 
intersection as the next estimate, £t+i, to the root we have

0 =  f ' ( x t)xt+i +  f ( x t) -  xtf ' {x t) .

We obtain the first order difference equation

^ Zfe) 1 9
Xt+1 — Xt ) ’ —  •
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This is the Newton-Raphson method. This scheme has the form ’next estimate = 
current estimate +  correction term’ . The correction term is -  f  (xt) / f  (xt) and this 
must be small when xt is close to the root if convergence is to be achieved. This will 
depend on the behaviour of f ' (x ) near the root and, in particular, difficulty will be 
encountered when f'(x )  and f (x )  have roots close together. The Newton-Raphson 
method is of the form x t+\ =  g(xt) with

9{X> ' X f '[x )  ■

The order of the method can be examined. Differentiating this equation leads to

/(z)/"(z)
9 {x )~ i m r •

For convergence we require that

/(*)/"(*)
( m y

< i

for all x in some interval I  containing the root. Since f ( x )  =  0, the above condition 
is satisfied at the root x =  x  provided that f '(x )  ф 0. Then provided that g(x) 
is continuous, an interval I  must exist in the neighbourhood of the root and over 
which the condition above is satisfied. Difficulty is sometimes encountered when the 
interval I  is small, because the initial guess must be taken from this interval. This 
usually arises when f ( x )  and f '(x )  have roots close together, since the correction 
term is inversely proportional to /'(ж ).

In the C + +  program Newton.cpp we consider the function

f ( x )  — x -  sin(7ri) 

in the interval [0.5,1]. This means we find the fixed point of the sine-map

xt+i =  sin(7rxt)

in the interval [0.5,1]. We have

f'(x )  =  1 -  7Гcos(7rx), f" (x ) =  7Г2 sin(7Tx).

Thus the condition for convergence is satisfied.

// Newton.cpp

#include <iostream>
#include <cmath> // for sin, cos, fabs 
using namespace std;

double f(double x)
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{ const double pi = 3.14159; return x-sin(pi*x); }

double fder(double x) // derivative of f 
{ const double pi = 3.14159; return 1.0-pi*cos(pi*x); >

double newtonmeth(double initial,double eps)
i
double xO, xl; 
xl = initial; 
do
{ xO = xl; xl = xO-f(xO)/fder(xO); > 
while(fabs(xl-xO) > eps); 
return xO;

>

int main(void)

double initial = 0.5; 
double eps = 0.0001;
double result = newtonmeth(initial,eps); 
cout «  "result = " «  result «  endl; 
return 0;

>

1.1.14 Feigenbaum’s Constant
In a number of mappings which depend on a bifurcation parameter r we find a pe
riod doubling cascade. We consider the bifurcation parameter values where period- 
doubling events occur. The limit of the ratio of distances between consecutive 
doubling values is Feigenbaum’s constant. It has the value

4.669201609102990671853...

Mappings which show this transition are

x t+i =  rrrt(l -  £t), xt+i =  1 - r x 2, z t+i =  x2 +  r .

The C + +  program f  eigenbauml. cpp finds the Feigenbaum constant using the equa
tion x t+i =  xf +  r. The program shows the constant computed for two doubling 
cascades. The first one starts with the period 1 cardioid and the second starts with 
the period 3 cardioid. Newton’s method is used to find the root of x  =  x2 +  r 
iterated n times.

// feigenbauml.cpp

♦include <stdio.h>
♦include <stdlib.h>
♦include <math.h> // for fabs
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double newton(long n,double c)

double x, xl; 
double nc = c; 
double absx = 1.0; 
long i, j; 
j = 0;
while((j < 7) && (absx > IE-13))
<
++j;
X = 0.0; xl = 0.0;
for(i=0;i<n;i++) { xl = 2.0*xl*x+l.0; x = x*x+nc; > 
nc -= x/xl; absx = fabs(x);
>
return nc;

>

void go(long nO,double a,double b)

double f = 4.0;
double tmp = a;
double newc = a+(a-b)/f;
double oldc = b;
long n = 2*n0;
for(int i=0;i<10;++i)
{
newc = newton(n,newc); 
f = (tmp-oldc)/(newc-tmp);
printf ("'/,. 161f '/,.161f '/,.161f 7,.161f\n" ,oldc,tmp,newc,f) ; 
oldc = tmp; tmp = newc; 
newc += (newc-oldc)/f; 
n *= 2;
>

>

int main(void)

double a, b; 
long n;
printf("cl c2 c3");
printf(" f: (c2-cl)/(c3-c2)");
printf("\n");
b = 0.0; a = -1.0; n = 2;
go(n,a,b);
printf("\n");
a = -1.7728929033816238; b = -1.75487766624669276; 
n * 6;
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go(n,a,b); 
return 0;

>

1.1.15 Symbolic Dynamics

Consider a one-dimensional nonlinear map / ( x , r ), which maps points from an in
terval I  into the same interval

x t+i =  f ( x t}r) } xt e l

where r is a control parameter. The function /  may have several monotone branches, 
divided by turning points, denoted symbolically by C{ (called also critical points). 
For smooth maps the derivative df/dx vanishes at x  =  C*. The turning points C{ 
and the end points of the interval I  divide I  into subintervals /*. We label each of
Ii by a symbol S{. By iterating the map, we obtain a numerical sequence

Xq, Xl =  / ( x 0), Xl =  /(x i ) ,  . . . , Xt—l =  f [ x t -2)» Xt — f[x t— 1)........

We juxtapose the numerical sequence with a symbolic sequence and call it by the 
number Xo which has originated the numerical sequence

Xo =  <Jq<J\<J2 . . . On-i<7n . . .

where cr* stands for one of the symbols Sj or Cj, depending on whether x t belongs 
to the corresponding subinterval or coincides with a turning point. If we want to 
reverse the numerical sequence, expressing x0 through xt, we must indicate which 
of the monotone branches of /  has been used at each iteration. To do so, we attach 
a subscript a to f .  The symbol a is chosen by the argument of /

Xo, Xi =  /<jr0(Xo), X2 — fa\{X\)t •••» xt =  (x^-i), . . . .

Now we are in a position to reverse this sequence. We obtain

*o =  / - 1 о / - 1 о . . .  о f - l_x (xt).

To simplify the notation, we denote each inverse monotone branch f~ l by its sub
script, i.e. we define

°{y) = f c \ y )
where a is one of the symbols 5». For example, the logistic map 

xt+i =  1 -  rx\, xt e  [ - 1, 1], r e  (0, 2) 

has two inverse branches

m  = Ш  =  - \ / ( i  -y) / r -
Now we find

Xq =  CT0 О <7i O . • • O crt_i(Xf).



46 CHAPTER 1. NONLINEAR AND CHAOTIC MAPS

Thus we found the number-symbol-inverse function correspondence.

The logistic map f ( x , r) =  1 — rx2 is a unimodal map. Since df/dx =  —2rx  we find 
that С  =  0 is the only critical point. The iterate of the critical point С  =  0 leads 
to the rightmost point f (C )  on the interval that one can ever reach by iterating 
the map from any point on the interval. The point f ( C ) thus starts a special 
symbolic sequence, called the kneading sequence The kneading sequence is named 
f (C )  and sometimes denoted by К  (for kneading). For instance, at the parameter 
value r =  1.85 the logistic map has a kneading sequence

К  ее f (C )  =  RLLRLRLRRL  • • •

The second iterate of С  i.e. /® (C ) ,  gives the leftmost point that one can ever 
reach by iterating the map twice starting from any point on the interval. All the 
interesting dynamics takes place on the subinterval

[/<2>(C),/(C)1

of I. Once a point is in this subinterval, its iterates can never get out. Therefore, 
this subinterval defines an invariant dynamical range. In principle, one can choose 
an initial point outside this subinterval, but after a trivial transient (in fact, a few 
iterations), it will fall into the invariant dynamical range. For maps with multiple 
critical points each C* leads to a kneading sequence; one collects the dynamical 
range of all turning points and finds the overall range of interest dynamics. In 
general one concentrates on the invariant dynamical range only, neglecting trivial 
transients. Each kneading sequence is represented by a number. This number may 
be taken as the parameter for the map. This happens to be very convenient for 
maps with multiple critical points. In other words, one can parameterize a map by 
its independently changing kneading sequences. In the C + +  program we find the 
kneading sequence for the logistic map with r =  37/20.

// kneading.cpp

♦include <iostream>
♦include <string>
♦include "rational.h"
♦include "verylong.h" 
using namespace std;

int main(void)
i

int n = 12; 
string s =
Rational<Verylong> one("l"), zeroO'O");
Rational<Verylong> r("37/20"); // control parameter 
Rational<Verylong> x = zero; // initial value 0

if(x < zero) s = s + "L";



1.1. ONE-DIMENSIONAL MAPS 47

if(x =  zero) s = s + "C"; 
if(x > zero) s = s + "R"; 
for(int i-l;i<(n-l);i++)
{
x = one-r*x*x; 
if(x < zero) s += "L"; 
if(x == zero) 8 += "C"; 
if(x > zero) s += "R";
>
cout «  "symbolic sequence = " «  s; 
return 0;

>

The output is given by symbolic sequence = CRLLRLRLRRL.

1.1.16 Chaotic Repeller
Consider the logistic map

xt+l =  f(xt) = rxt(l -  xt)

where r > 4.0, for example r =  4.1. Thus, for example, if x0 =  0.5, then f ( x o) =  
1.025 > 1.0 and f( f (x o ) )  =  —0.1050625. We find that f ^ ( x 0) tends to — oo if 
n —> oo. Letting s =  г/4 — 1 the map has a gap of size \Js/( 1 +  s). In this gap 
f ( x )  >  1.0. Initial conditions chosen from this gap maps out of the unit interval 
[0,1] in one iteration and goes to —oo. Almost all initial conditions in the unit 
interval eventually escape from it except for a set of Lebesgue measure zero. This 
set, by construction, is a fractal Cantor set. A chaotic repeller is a set of points on 
the attractor that never visit the gap. The chaotic repeller can be used for encoding 
digital information (Lai [64]).

// Repeller.cpp

♦include <iostream> 
using namespace std;

int main(void)

int count = 0; 
double xO = 1.0/3.0; 
double xl; 
do 
{
xl = 4.1*х0*(1.0-x0);
count++;
xO = xl;
> while(xO <= 1.0);
cout «  "x0 = " «  xO «  endl;
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cout «  "count = " «  count «  endl; 
return 0;

>

1.1.17 Chaos and Encoding

One-dimensional chaotic maps can be used for the communication of information. 
We consider two techniques of encoding bit strings using chaos: reverse interval 
mapping and variable bit length encoding (Hardy and Sabatta [47]).

We consider iteration of one-dimensional maps /  : [0,1] —> [0,1] of the form,

x t+ i = r f ( x t), t =  0 , 1, . . .

where r >  1 and /  is 1 to 1 and monotone on [0,0.5] and has the properties

/(0 ) =  0, /(0 .5 ) =  1, / (1 )  =  0, f ( x )  =  /(1  -  x).

Examples include the

Bell map: f b{x) =  ^  -  e-°-25) / ( l  -  e" 0 25)
Entropy map: f e(x) =  — x  log2 ж — (1 — ж) log2(l  — x)
Logistic map: fi(x) — 4x(l — x)
Tent map: ft(x ) =  1 — 2\x — 0.5|
Sine map: /«0е) =  sin(7rx)

The maps fi and f s are good candidates for encoding information. Let f~ l denote 
the inverse of /  on [0,0.5]. If we consider the map r f  with r >  1, there exists two 
intervals

[o . r 'U / r ) ] ,  [ i - r l ( i / 0 . i ] .
where 0 <  r f (x )  <  1. If we now consider points which remain on the unit interval 
under two iterations of the map, the two intervals are divided into four sub-intervals 
that remain on the unit interval after two successive maps under the map r f .  As we 
continue in this manner, we construct a Cantor set. Any point on this Cantor set 
remains on the unit interval under successive iterations of the map, and thus any 
point not on this set will eventually leave the unit interval. We use orbits that are 
confined to these intervals to encode messages.

With reverse interval mapping one considers a method which encodes messages of 
the form

ТП =  т*\ТП% • • • 771n G ^̂ 2

where E2 :=  {0 ,1 } and

E; :— S 2 U (E2 x E2) U (E2 x E2 x S 2) U •
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Values on the interval [0,1] are associated with E2 by the map d : [0,1] —» S2

Initially we begin with any value x0 outside the interval [0,1]. For example (l +  r)/2  
is a convenient choice. This value marks the beginning of the message and the end 
of the decoding process. This point has two pre-images under the map r/

*i,o =  / - 1(*о/г), xiti =  1 -  f~ l {x0/r).

Each of these values lie on either side of x  =  1/2. Thus we select the value of X\ from 
{xifl, Xi,i} that satisfies the requirement d(xi) =  тп\. We proceed in this manner 
until the maximum precision of the register storing the value X{ has been reached, 
or when all of the message has been encoded (i.e. after determining z„). Thus

1 +  r

/  4 *0A ) rn 1 =  0
( l 0/r )  Г71! =  1

, f~ l{xi/r) m2 =  0
2‘ ^ 1 - / _1( * i /r) rn2 =  l

A naive approach is to assume that the register always has adequate precision (i.e. 
the message must be short enough). This value is then stored and the procedure 
is repeated. The following C ++  function encodes a string of Os and Is as a value 
of type double. The function f i  denotes the inverse f~ l of the map /  used in the 
map r f .

double encode(string m,double r,double (*fi)(double))
{
unsigned int i;
// initial value: 0.5+0.5r > 1, since r > 1 
// consequently m does not lie in [0,1] 
double x » (1.0+r)/2;

// for each bit 0/1 in the string m="01001..." from left to right 
for(i=0;i<m.length();i++)
{
// for a "0" bit choose the pre-image on the left half 
if (m[i]==,0>) x = f i(x/r) ;
// for a "1" bit choose the pre-image on the right half 
elsex = 1.0-fi(x/r);
>
// this is the final pre-image f'(-n)(0.5+0.5r)=fi~(n)(0.5+0.5r)
// for the sequence of pre-image choices given in m 
return x;

>
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To decode the message stream we iterate the stored point under the map, at each 
iteration calculating =  d(xi) to resolve the bit value. This is repeated until the 
desired number of bits have been retrieved. The message is reconstructed in reverse. 
The C ++  function to decode a value of type double to a string of Os and Is follows.

string decode(double x,double r,double (*f)(double))

// in decoding we work from right to left (opposite to encoding)
// i.e. every "0" or "1" must be appended on the left: m = "0" + m 
string m;

// once we leave [0,1] there is no more message to decode 
while((0.0 <= x) && (x <= 1.0))
{
// the left pre-image corresponded to "0" 
if(x < 0.5) m = "0" + m;
// the right pre-image corresponded to "1" 
else m = "1" + m;
// iterate the map 
x = r*f (x);
>
return m;

>

Consider the logistic map fi{x). The arguments below can be extended to any of 
the other maps listed above. Assume we wish to encode a 16-bit data stream in a 
single orbit under the logistic map with parameter r =  1.025. There are 216 =  65536 
disjoint intervals which remain a subset of [0,1] under the map [rfi)(l6\ x). These 
can be found by applying (rfi)~l (x) to [0 , 1], which yields two disjoint intervals. 
We apply (rfi)~l (x) to each of the resulting 2 disjoint intervals to obtain 4 disjoint 
intervals and so on. We apply the inverse (rfi)~l (x) 16 times. The intervals are 
numbered from 0 to 65535 according to their relative positions in [0,1].

In variable bit length encoding instead of iterating a single number we iterate an 
interval

[а ,Ъ ] с (Г 'Ш ,0 .Ь )

or
M c (0 .ь ,1 - г ' ( 1 / г ) ) .

Thus we begin with an interval [a, b] which will iterate out of [0,1] under r f .  A 
convenient choice in this case is

>fJJ J _ Щ
w :=  0.1, x0 :=  / - 1( l /r ) ,  a =  (1 -  w)x0 +  —, b =  wx0 +  — —

where 0 < w <  0.5 is a weight for the weighted average of xq — f~ l(l/r) and 0.5 
used to determine a and 6. Smaller w is preferred, since it yields a larger initial 
interval, which will subsequently shrink. In the implementation below we chose
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w =  0.1. One applies the reverse interval mapping for a and 6 up to a precision 
limit, given by the interval length \a — 6|, by determining when the intervals found

only used to determine whether we are still outside of the precision limit. If more 
bits need to be encoded we begin reverse interval mapping with a new initial interval 
for the remainder of the bits. Repeating this process until all bits are encoded we 
obtain a sequence of real numbers. Each number should be decoded with reverse 
interval mapping to obtain that part of the original bit sequence. Note that the 
number of bits decoded for each real value need not be the same over the sequence, 
hence the name of the technique. We find successive intervals [aj,bj] as follows

and continue until bn — an <  e. Note that rrij =  1 causes a swap in the roles of % 
and bj so that the absolute value is always given by b j-a j ,  and so that the resulting 
interval lies in [0.5,1]. Once the criteria bn — On <  e is met, we store On at the end of 
the sequence of numbers representing the data and begin once again by redefining 
cin and bn

_ /  / - ‘ (an+i/r) mn+2 =  0 /- '(b n + i/r ) m„+2 =  0
a"+2_ l l - r ' t W r )  Wln+2 = 1 ’ t l - r ' K + i / r )  mn+2 = 1

until 6n+fc — On+k <  e and then continue the process until all the m.j values have 
been used. Thus the encoding now yields multiple real numbers each representing a 
portion of the message string, where each real number does not necessarily encode 
the same number of symbols. A C + +  function for the encoding is given below.

vector<double> vl_encode(string m,double r,double (*fi)(double), 
double eps)

double xO, a = 0.0, b = 0.0, w = 0.1; 
vector<double> vd; 
xO = fi(l.0/r);
// for each bit 0/1 in the string m="01001. . .11 from left to right 
for(unsigned int i=0;i<m.length();i++)
-C
// the interval has become too small we start from 
// the initial values again to encode the remaining bits 
if((b-a) < eps)

at each step become smaller in length than e >  0. We need only store a, since 6 is

n _  I  f  l (ao/r) m i =  0 A _  f /  libo/r) mi =  0 
1 1 1 -  / _1(W r) mi =  1 * 1 1 1 -  f  (oo/r) mi =  1

n _  j  f  4 a i/r ) m2 =  0 j  f  \bi/r) m2 =  0
2 \ l  -  f  (bl/r) 7712 =  1 ’ 2 \ l - / _1(a i/r ) 77l2 =  1
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{
11 create the interval [a,b] as a subset of (f'‘(-1) (1/r) ,0.5) 
a = (1.0-w)*x0+w*0.5; 
b = w*x0+(l.0-w)*0.5;
// push back initializes the next number (appends on the right)
// in the sequence to a, i.e. we add a number onto the end 
// of the sequence 
vd.push_back(a);
>
// vd.backO is the last number in the sequence 
// (which we are still computing)
// for a "0" bit choose the pre-image on the left half 
if(m[i]==,0>) vd.backO = a;
// for a "1" bit choose the pre-image on the right half
else
{
vd.backO = 1.0-a; // since a < 0.5,1-a >0.5 
// after the following two statements we have 
// [a,b] -> [1.0-b,1.0-a]
// i.e. we change halves around 0.5:
// left — > right or right — > left 
a = 1.0-b; 
b = vd.backO;
>
// find the pre-image of [a,b] 
a = fi(a/r); b = fi(b/r);
>
return vd;
>
To decode we simply apply the decoding technique of reverse interval mapping to 
each real number found in the encoding process as demonstrated in the following 
C + +  function.

string vl_decode(vector<double> vd,double r,double (*f)(double))

// in decoding we work from right to left (opposite to encoding)
// i.e. every "0" or "1" must be appended on the left: m = "0" + m 
string m;

// vd.sizeO is the number of elements in the sequence 
// that we have not yet decoded 
while(vd.size() != 0)
■c
// once we leave [0,1] there is no more message to decode 
while((0.0 <= vd.backO) && (vd.backO <= 1.0))
{
// the left pre-image corresponded to "0" 
if (vd.backO < 0.5) m = "0" + m;
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// the right pre-image corresponded to "1" 
else m = "1" + m; 
vd.backO = r*f (vd.backO) ;
>
// remove the right most number of the sequence 
// still decoding right to left 
vd.pop_back();
>
return m;
>
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1.2 Two-Dimensional Maps

1.2.1 Introduction
Most of the two-dimensional maps (Arrowsmith [2], Steeb [100], [101]) we consider 
in this section are diffeomorphisms.

Let U be an open subset of R n. Then a function g : U —* R  is said to be of class 
Cr if it is r-fold continuously differentiable, 1 <  r <  oo. Let V  be an open subset 
of R m and g : U —> V. Given coordinates ( * i , . . . ,  xn) in U and (y i,. . . ,  ym) in V } 
g may be expressed of component functions Qj ’• U —* R , where

Vj =  9j{x l, •••,*„), j  =

The map g is called a C r map if gj is C r for each j  =  1....... m. The map g is
said to be a diffeomorphism if it is a bijection and both g  and g " 1 are differentiable 
mappings. The map g is called a C fc-diffeomorphism if both g  and g -1 are C  -maps.

Note that the bijection g : U —► V  is a diffeomorphism if and only if m  =  n and the 
functional matrix (also called Jacobian matrix) of partial derivatives

For n =  m =  2 we have the functional matrix

(d fi/dxi dfi/dx2\
\ d f2/dXl d f2/dx2)  '

If g satisfies the definition above with g and g _1 continuous rather than differen
tiable, then g is called a homeomorphism.

Exam ple. The map /  : R  —► R, f ( x )  =  sinh(x) is a diffeomorphism. ♦

Exam ple. The map /  : R  —» R , f ( x )  =  x3 is not a diffeomorphism since its 
derivative vanishes at 0 . ♦

Let U be ал open subset of R n and f  : U —» R n be a nonlinear diffeomorphism with 
an isolated fixed point at x* €  U. The linearization of f  at x* is given by the n x n  
matrix

" а дD f(x ’ ) :=

where X\,. . . ,  xn are coordinates on U.

dxj u
»j =

Definition. A fixed point x* of a diffeomorphism f  is said to be hyperbolic if the 
map D f(x ’ ) is a hyperbolic, linear diffeomorphism.
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Definition. A linear diffeomorphism A : R n —► R n is said to be hyperbolic if it has 
no eigenvalues with modulus equal to unity.

The following theorems allow us to obtain valuable information from Df(x*).

Theorem . (H artm an-G robm an) Let x* be a hyperbolic fixed point of the dif
feomorphism f  : U —► R n. Then there is a neighbourhood N  С U of x* and a 
neighbourhood N1 С R n containing the origin such that f|7V is topologically conju
gate to D f(x m)\N>.

It follows that there are 4n topological types of hyperbolic fixed point for diffeomor- 
phisms f  : U —> R n.

Theorem . (Invariant M anifold) Let f  : U —* R n be a diffeomorphism with 
a hyperbolic fixed point at x* € U. Then on a sufficiently small neighbourhood 
N  С U of x*, there exist local stable and unstable manifolds,

Wtoe(x*) -  { X € U | f (0 (x) - »  X* 35 t -> oo }

WSe(x*) :=  {  X € U | f (0 (x) -  x* as t -  - o o  } 
of the same dimensions as E s and Eu for Df(x*) and tangent to them at x*.

This theorem allows us to define global stable and unstable manifolds at x* by 

W ‘ (x * ):=  (J f f - ” ) ( ^ ( x * ) )
m6Z+

Ж“ (х * ):=  [J ^ ’ ( ^ ( x * ) ) .
m€ Z+

The behaviour of the stable and unstable manifold W s(x*) and И/’и(х*) reflects in 
the complexity of the dynamics of the map f. In particular, if W a(x*) and Wu(x*) 
meet transversely at one point, they must do so infinitely many times and a homo
clinic tangle results. The theorems given above have an extension to the periodic 
point of f . Let x* belong to a <?-cycle of f  then it is said to be a hyperbolic periodic 
point of f  if it is a hyperbolic fixed point of the g-th iterated map f ^ . The orbit 
of x* under f  is referred to as a hyperbolic periodic orbit and its topological type is 
determined by that of the corresponding fixed point of f^ .  Moreover, information 
about stable and unstable manifolds at each point of the <?-cycle can be obtained by 
applying the theorem to f^ .

The Hopf bifurcation theorem for maps in the plane fr : R 2 —► R 2, where r is the 
bifurcation parameter, is as follows.

Theorem . (H op f bifurcation theorem ) Let f(r ,x ) be a one-parameter family 
of maps in the plane satisfying:
a) An isolated fixed point x*(r) exists.
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b) The map fr is Ck (к >  3) in the neighbourhood of (x*(ro);r0).
c) The Jacobian matrix Dxf(x*(r);r) posseses a pair of complex, simple eigenvalues

A(r) =  eo(r)+iw(r) 

and A(r), such that the critical value r =  ro

|АЫ| =  1, (^(г„))3 ф 1, ( A ( r „ ) ) V l ,  ^ ^ ( r  =  ro) > 0 .

(Existence) Then there exists a real number 6o >  0 and a C k~l function such that

r(e) =  r0 +  ri6 +  r3e3 +  0 (e4)

such that for each e G (0, eo] the map fr has an invariant manifold H (r), i.e. 
f (# (r ) ;r )  =  H(r). The manifold H(r) is C r diffeomorphic to a circle and con
sists of points at a distance 0 (|г|1у/2) of x*(r), for r =  r(e).

(Uniqueness) Each compact invariant manifold close to x*(r) for r =  r(e) is con
tained in H [r) U {0 }.

(Stability) If r3 <  0 (respectively r3 >  0) then for r  >  0 (respectively r >  0), 
the fixed point x*(r(e)) is stable (respectively unstable) and for r >  0 (respectively 
r <  0) the fixed point x*(r(e) is unstable (respectively stable) and the surroundng 
manifold H (r(e)) is attracting (respectively repelling). When < 0 (respectively 
гз >  0) the bifurcation at r =  r(e) is said to be supercritical (respectively subcriticat).

Exam ple. Consider the two-dimensional map

/l(®li*2) =  rxi(3l2 +  1)(1 -  Zi), / 2(3 1 1 *2) =  rx2{3zi +  1)(1 -  x2) 

and r G R . There are fixed points on the diagonal, namely x j =  (0,0) and for г Ф 0 

A  =  (ir  ~  l ) /r ,  0). x j  =  (0 , (r -  l ) /r ,  0) 

and on the diagonal (r >  3/4)

x; = (1/3 -  \J i -  з/г/з, 1/3 -  -  з/г)
xj =  (1/3 +  yfi -  3 /r /3 ,1/3 +  \fi -  3 /r ) .

To study Hopf bifurcation we consider the fixed points on the diagonal. Notice that 
these fixed points exists only for r  >  3/4. For r >  3/4 a stable period-2 orbit exists. 
This period-2 orbit looses stability via a Hopf bifurcation which occurs at r =  ro, 
where r0 =  0.957 and gives rise to a stable limit cycle for r G [ro,ro +  6) for some 
<5 >  0. *

We consider the Henon map, the Lozi map, standard map, the Ikeda laser map and 
a coupled logistic map.
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1.2.2 Phase Portrait
For a two-dimensional map

Хц+i = /i(sit,£2t)j £2*+i = /г(яш X2t)

where t =  0 , 1, 2 , . . .  we can plot the points (iu , x21) for t — 0 , 1, 2, . . .  in the (xi, £2) 
plane R 2. This is called a phase portrait. We also use the notation x =  X\ and 
у =  x 2. As our first example we consider the Henon map f  : R 2 —► R 2 which is 
given by

f{x ,y ) :=  (y +  l -  ax2, bx)

where a and b are bifurcation parameters with 6 ^ 0 . The Henon map is the most 
studied two-dimensional map with chaotic behaviour. The map can also be written 
as a system of difference equations

x t+i =  1 + y t -  ax2t, yt+1 =  bxt

where t =  0 ,1 ,2 ,__ The map is invertible if b Ф 0. The inverse map is given by

xt =  2̂/i+i, Vt =  xt+i -  1 +  ^ yt+i -
In order to visualize the action of the map, note that vertical lines are mapped to 
horizontal lines, while for a >  0 horizontal lines map to parabolas opening to the left.

In the C + +  program henon. cpp we evaluate the phase portrait (ж*,уг) for a =  1.4 
and b =  0.3. The data are written to a file named henon.dat. Then we use GNU 
plot to display the phase portrait. In the Java program Henon. java the graphics is 
included and the phase portrait is displayed.

// henon.cpp

#include <fstream> 
using namespace std;

int main(void)

ofstream dataChenon.dat");
const int T = 2000; // number of iterations
double xO = 0.1, yO = 0.3; // initial values 
double xl, yl; 
for(int t=0;t<T;t++)
•C
xl = 1.0+y0-l.4*x0*x0; yl = 0.3*x0; 
data «  xl «  " " «  yl «  "\n"; 
xO = xl; y0 = yl;
>
data.close(); 
return 0;

>
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The data in the file "henon.dat" can now be used to display the phase portrait 
using GNU-plot. The command is p lo t  ’ henon.dat* with dots.

// Henon.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Henon extends Frame 

public Henon()
{
setSize(600,500);
addWindowListener(new WindowAdapter ()
{ public void windowClosing(WindowEvent event) 
i  System.exit(0) ; » )  ; >

public void paint(Graphics g)
<
double xl, yl;
double x = 0.0, у = 0.0; 11 initial values 
int T = 4000; 11 number of iterations
for(int t=0;t<T;t++)
{
xl = x; yl = y;
x = 1.0+y1-1.4*xl*xl; у = 0.3*xl; 
int mx = (int) Math.floor(200*x+250+0.5); 
int ny = (int) Math.floor(200*y+150+0.5); 
g.drawLine(mx,ny,mx,ny);
>
>

public static void main (String [] args) 
i
Frame f = new Henon(); f.setVisible(true);
>

>

The Lozi map f  : R 2 —► R 2 is a piecewise linear map which has been introduced to 
simplify the Henon map. It is given by

f(x, y) =  (1 +  у  -  о|ж|, bx)

where b >  0. It can be shown that if

c? 1Ьб (0, 1), a >  0 , 2a +  6 < 4 , a\/2 > 6  +  2
2a + 1
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then there is a hyperbolic fixed point H  of saddle type given by

x* =  — T— I ’ У* =  bx* a. +  1 — b

such that the strange attractor is the closure of their unstable manifold.

In the Java program for the Henon model Henon. java we replace the line 

x = 1 .0 + y l- l .4 * x l* x l; у = 0 .3*x l; 

by

x = 1 .0+yl-a*M ath .fabs(x l); у = b*xl;

The parameter values for the Lozi map are a =  1.7, 6 =  0.4. For these parameter 
values the system shows a strange attractor. For these values the conditions given 
above are satisfied.

The following C + +  program finds the largest and smallest values in the x  and у 
direction of the Henon attractor for the parameter values a =  1.4 and b =  0.3.

// maxmin.cpp

♦include <iostream> 
using namespace std;

void maxminxy(double* x.double* y,doublet xmax,doublet xmin, 
doublet ymax,doublet ymin,int T)

•C
xmax = x[0]; xmin = x [0]; ymax = y[0]; ymin = у CO]; 
for(int t=l;t<T;t++)
{
if(x[t] < xmin) xmin = x[t] 
if (x [t] > xmax) xmax = x [t] 
if(y[t] < ymin) ymin = у [t] 
if(y[t] > ymax) ymax = y[t]
>

>

int main(void)
•c
unsigned long T = 10000; // number of iterations
double* x = new doubled]; double* у = new double[T]; 
x[0] = 1.161094; у[0] = -0.09541356; // initial values 
for(int t=0;t<(T-l);t++)
{
x[t+l] = 1.0+y [t] -1. 4*x [t] *x [t] ; у [t+1] = 0.3*x[t] ;
>
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double xmax, xmin, ymax, ymin; 
maxminxy(x,y,xmax,xmin,ymax,ymin,T);
cout «  "xmax= " «  xmax «  endl; cout «  "xmin= " «  xmin «  endl; 
cout «  "ymax= " «  ymax «  endl; cout «  "ymin= " «  ymin «  endl; 
delete[] x; delete[] y; 
return 0;

>

The standard map is defined as

/ t+i =  Jt +  fc sin(0t)
$ t+ i =6t -\- It + к s in (0 t) =  Ot Л + i

where 0 <  9 <  2n. The quantities / ,  9 are the action-angle variables. It can be 
derived from the Hamilton function

Н{рву 0) =  Щ +  к cos 9 6(t — n)
2 n

of a one-dimensional periodically kicked rotor. The standard map can be considered 
as a discrete Hamilton system. We have

det

(d f i  d fi\
d l дв
d h  d h

\ d l дв j

=  1 .

This map displays all three types of orbits: periodic cycles, KAM tori and chaotic 
orbits. The first two types of orbits (the regular ones) dominate the ( / ,  в) phase 
space for small к (к <£. 1). KAM tori extending over the entire в interval (0 < 
в <  27t) divide the ( / ,  9) phase plane into disconnected regions: orbits in one region 
cannot cross the bounding KAM tori into the other regions, so that the variations 
in /  are bounded. For

к >  kc »  0.9716

the bounding KAM tori break, making it possible for chaotic orbits to be unbounded 
in the I  direction. At kc the last, most robust KAM torus with the winding number

w =  2tt(VE -  l ) /2

(and the other equivalent KAM tori of the standard map with winding numbers

±w  +  27ГП

(n integer)) disintegrates. It corresponds to a nonanalytic continuous curve, ex
hibiting fractal self-similar structure. The Java program Standard, java displays 
the phase portrait for к =  0 .8 .
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// Standard.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Standard extends Frame 

public Standard()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit(0) ; » )  ; >

public void paint(Graphics g)
{
int T = 10000; // number of iterations
double I = 0.5, theta =0.8; // initial values 
double II, thetal; 
for(int t=0;t<T;t++)
{
II = I; thetal = theta;
I = Il+0.8*Math.sin(thetal);
theta = thetal+11+0.8*Math.sin(thetal);
if(theta > 2*Math.PI) theta = theta-2.0*Math.PI;
if(theta < 0.0) theta = theta+2.0*Math.PI;
int m = (int) Math.floor(90*1+200+0.5);
int n = (int) Math.floor(90*theta+10+0.5);
g.drawLine(n,m,n,m);
>
>

public static void main(String[] args)
{
Frame f = new Standard(); f.setVisible(true);
>

>

Optical bistability only represents the simplest amongst the large variety of dynam
ical behaviours which can occur in passive nonlinear optical cavities. In particular, 
temporal instabilities leading to various forms of self-oscillations and chaos have 
been identified. Ikeda predicted the occurrence of period doubling cascades and 
chaos treating the cavity dynamics by means of a nonlinear mapping of the complex 
field amplitude. Let z be a complex number. The Ikeda laser map f  : С —► С is 
given by

f (z )  =  p +  c2z exp ^i(ci -  -  •
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The real bifurcation parameters are p, C\, c2 and C3. With z =  x  +  iy  and i , y 6 R  
we can write the map as a system of difference equations

xt+i =  p +  c2(xt cos(n) -  yt sin(rt)), yt+l =  c2(x t sin(rt) +  yt cos(rt))

where
C3П :=  Ci

1 +  x f +  yt

and t — 0 ,1 ,2 ,... .I n  the Java program Ikeda. j  ava we evaluate the phase portrait 
(xt,yt)- The parameter values are Ci =  0.4, c2 — 0.9, C3 =  9.0, p =  0.85.

// Ikeda.java

import j ava.awt.*; 
import j ava.awt.event.*; 
import j ava.awt.Graphics;

public class Ikeda extends Frame 

public Ikeda()
•c
setSize(400,300);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit (0) ; » )  ; >

public void paint(Graphics g)

int T = 20000; // number of iterations
double x * 0.5, у =0.5; // initial values 
double xl, yl;
double cl = 0.4, c2 = 0.9, c3 = 9.0; 
double rho = 0.85; 
for(int t=0;t<T;t++)
-C
xl = x; yl = y;
double taut = cl-c3/(l.0+xl*xl+yl*yl); 
x = rho+c2*xl*Math.cos(taut)-yl*Math.sin(taut); 
у = c2*(xl*Math.sin(taut)+yl*Math.cos(taut)); 
int m = (int) Math.floor(90*x+200+0.5); 
int n = (int) Math.floor(90*y+200+0.5); 
g.drawLine(m,n,m,n);
>
>

public static void main(String[] args)
{
Frame f = new IkedaQ ; f .setVisible(true) ;
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>
>

The coupled logistic map is given by

*t+i =  rx t{l  -  xt) +  e(yt -  x t), yt+1 =  ryt( 1 -  yt) +  e(xt -  yt)

where t =  0 ,1 ,2 ,... and r and e are bifurcation parameters with 1 <  r <  4. For 
e =  0 we have two uncoupled logistic equations. The four fixed points are given by

(*•,»•) =  (0,0), ( * • ,✓ ) -

{x\y*) =  (a+,a_), (ж*, у*) =  (a_, a+)

1
where

a ±  =  2 r
(г -  1 -  2e) ± <J{r- 1 -  2e)(r -  1 + 2e)

Depending on the initial conditions and the parameter values one can find the fol
lowing behaviour: (i) orbits tend to a fixed point, (ii) periodic behaviour, (iii) 
quasiperiodic behaviour, (iv) chaotic behaviour, (v) hyperchaotic behaviour and 
(vi) x t and yt explode, i.e. for a finite time the state variables xt and (or) yt tend 
to infinity. There is numerical evidence of hyperchaos for г =  3.70, e =  0.06. In 
the Java program Couplog. java we calculate the phase portrait (xt}yt) for these 
parameter values.

// Couplog.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Couplog extends Frame
■c
public Couplog()
{
setSize(400,300);
addWindowListener(new WindowAdapter0  
■{ public void windowClosing(WindowEvent event)
{ System.exit(0 ); > }); }

public void paint(Graphics g)
{
int T = 60000; // number of iterations
double r = 3.7, e = 0.06; // control parameters 
double x -  0.1, у -0.2; // initial values 
double xl, yl; 
for(int t=0;t<T;t++)
{
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xl = x; yl = y;
x = r*xl*(1.0-xl)+e*(yl-xl);
у = r*yl*(1.0-yl)+e*(xl-yl);
int m = (int) Math.floor(400*x+150+0.5);
int n = (int) Math.floor(400*y+150+0.5);
g.drawLine(m,n,m,n);
>
>

public static void main(String[] args)

Frame f = new CouplogO; f.setVisible(true);
>

>

1.2.3 Fixed Points and Stability 
Given a two-dimensional map

£lt+l =  fl(X iU X2t)j X2t+l =  fiix it , X2t) •

The fixed points ( x j ,^ )  are defined as the solution of the equations 

f\{X\i x2) =  Xi, / 2(^1, x2) =  x2 .

As an example we consider the Henon map

x t+i =  1 +  yt -a x ? ,  yt+1 =  bxt

where a and b aie bifurcation parameters and t =  0 ,1 ,2 ,__ For a >  0 and 1 >  b >  0
the map has two fixed points

. (6 —1 )± V (1  —b)2 +  4a , , . x = --------------JL_--------------- , y' =  bx'.

These fixed points are real for

(1 -  6)2 
a >  a0 =  -—

4
The map has been studied in detail for a =  1.4 and b =  0.3. For these values the 
fixed points are unstable. There is numerical evidence that the map shows chaos 
for these parameter values. In the C + +  program we determine the stability of the 
fixed points for a =  1.4 and b =  0.3. Since

dA - - 0ar ^ ± -  1 % - П
dx ’ dy ’ dx * dy

we obtain the characteristic equation

Ai 2 =  —ax* ±  л/б +  a2x*2.
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// henonstability.cpp

♦include <iostream>
♦include <cmath> // for sqrt 
using namespace std;

int main(void)

double a = 1.4, b = 0.3; // parameter values

// first fixed point
double xfl = ((b-1.0)+sqrt( (1.0-b)*(1.0-b)+4.0*a))/(2.0*a); 
double yfl = b*xfl;

double lambdal = -a*xf1+sqrt(b+a*a*xfl*xf1);
double lambda2 = -a*xf1-sqrt(b+a*a*xfl*xf1);
cout «  "lambdal for fixpoint 1 = " «  lambdal «  endl;
cout «  "lambda2 for fixpoint 1 = " «  lambda2 «  endl;

// second fixed point
double xf2 = ((b-1.0)-sqrt((1.0-b)*(1.0-b)+4.0*a))/(2.0*a); 
double yf2 = b*xf2;

double lambda3 = -a*xf2+sqrt(b+a*a*xf2*xf2);
double lambda4 = -a*xf2-sqrt(b+a*a*xf2*xf2);
cout «  "lambda3 for fixpoint 2 = " «  lambda3 «  endl;
cout «  "lambda4 for fixpoint 2 = " «  lambda4 «  endl;
return 0;

>

1.2.4 Liapunov Exponents
Consider a system of difference equations

xt+i =  f i  (xt, Vt) > У t+i =  h  f a , yt)

where we assume that f\ and /2  are smooth functions. Then the variational equation 
is given by

ut+i =  ^ ( x  =  x t,V =  Vt)ut +  Щ ( х  =  xu У =  yt)vt 

vt+i =  x  =  xt,y  =  yt)ut +  ~ { x  =  xtly =  yt)vt •

The maximal one-dimensional Liapunov exponent is given by
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As an example consider the Henon map described by

z t+i =  1 +  yt -  ax2, yt+1 =  bxt

where a and b are bifurcation parameters and t =  0,1,2, —  Since

f i {x ,y )  =  1 +  y -  ax2, f 2{x>y) =  bx

we obtain the variational equation

ut+\ =  -2axtut +  vt, vt+i =  but .

For the parameter value a =  1.4 and b =  0.3 we find from the numerical analysis 
that the (maximal) one-dimensional Liapunov exponent is given by Л «  0.42. There 
is numerical evidence that the map shows chaos for these parameter values.

// henonliapunov.cpp

#include <iostream>
#include <cmath> // for fabs, log 
using namespace std;

double fl(double x,double y)
{ double a = 1.4; return 1.0+y-a*x*x; >

double f2(double x,double y)
{ double b = 0.3; return b*x; >

double vfl(double x,double y,double u,double v)
{ double a = 1.4; return -2.0*a*x*u+v; >

double vf2(double x,double y,double u,double v)
{ double b = 0.3; return b*u; >

int main(void)
■C

int T = 1000; // number of iterations
double x = 0.1, у = 0.2; // initial values 
double u = 0.5, v = 0.5; // initial values 
double xl, yl, ul, vl; 
for(int t=0;t<T;t++)
{
xl = x; yl = y; ul = u; vl = v;
x = fl(xl,yl); у = f2(xl,yl);
u = vfl(xl,yl,ul,vl); v = vf2(xl,yl,ul,vl);
>
double lambda = log(fabs(u) + fabs(v))/((double) T); 
cout «  "lambda = " «  lambda «  endl; 
return 0;

>
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1.2.5 Correlation Integral
Dissipative dynamical systems (for example the Henon map) which exhibit chaotic 
behaviour often have an attractor in phase space which is strange. Strange attrac
tors are typically characterized by a fractal dimension D  which is smaller than the 
number of degrees of freedom F, D <  F. Among the fractal dimensions we have 
the capacity and the Hausdorff dimension. These fractal dimensions have been the 
most commonly used measure of the strangeness of attractors. Another measure 
is obtained by considering correlations between points of a long-time series on the 
attractor. Denote the T  points of such a long-time series by

{Xi}f=1 =  {x(« + ir)}f=1

where r  is an arbitrary but fixed time increment. The definition of the correlation 
integral is

C (r ) := Urn E  я (г “ IIх* “  X J'ID 
”* i,j=1

where H (x) is the Heaviside function, i.e.

rj( ч _  f 1 for x >  0 
1 0 otherwise

and ||.. .  || denotes the Euclidean norm, i The function C(r) behaves as a power of r 
for small r

C(r) oc rv .

The exponent v  is called the correlation dimension. Moreover, the exponent v is 
closely related to the capacity D.

In the C + +  program henoncorrelation.cpp we evaluate the C(r) for the Henon 
map

xt+i =  1 +  Vt -  a*?, Vt+i =  bxt 
with parameter values a =  1.4 and 6 =  0.3 and t =  0 ,1 ,2 ,.... From C(r) we find 
that v «s 1.2.

11 henoncorrelation.cpp

♦include <iostream>
♦include <cmath> 11 for sqrt
using namespace std;

unsigned long H(double* x,double* y,double r,unsigned long T)

double norm;
unsigned long sum = 0;
for(unsigned long i=0;i<T;i++)
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for(unsigned long j=0;j<T;j++)
•C
if(i '•= j)
{
norm = sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])) ; 
if(r >= norm) sum++;
>
>
return sum;

>

int main(void)
■C
unsigned long T = 20000; // number of iterations
double* x = new double[T]; double* у = new double [T] ; 
x[0] = 1.161094; y[0] = -0.09541356; // initial values 
for(unsigned long j=0;j<T-l;j++)

x[j+l] = 1.0+y[j]-1.4*x[j]*x[j] ; y[j+l] = 0.3*x[j] ;
>
double r = 0.001; 
while(r <= 0.008)
{
double Cr = H(x,y,r,T);
cout «  "r= " «  r «  " " «  "Cr= " «  Cr/((double) (T*T)) «  endl; 
r += 0.001;
>
delete [] x; delete [] y; 
return 0;

>

1.2.6 Capacity

Let M  be a subset of R n. We assume that the set M  is contained in an invariant 
manifold of some dynamical system (in our case the strange attractor of the Henon 
model). If N€ is the minimum number of boxes of side e in R n needed to cover the 
set M, the capacity (also called box-counting dimension) is defined as

C  :=  lim lnJV'♦о 1п(1/б ) ’

If a set has volume V, the number of boxes of side e needed to cover the set is 
roughly

Ne и  V r ° .

This equation may be rewritten as

]nN€ ^C\n(l/e) +  \nV
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which provides a more practical method of computing the capacity С  than the def
inition, since the latter has a slowly vanishing correction to the capacity V / ln(l/e). 
By plotting

log-ZVe versus log(l/e)

for decreasing values of 6, the formula for С  gives the capacity as the asymptotic 
slope. Let Dh be the Hausdorff dimension. Then we have D # < C .

In the C + +  program capacity . cpp we find the capacity for the Henon map, where 
a =  1.4 and b =  0.3. The numerical simulation yields the value С  ~  1.26.

11 capacity.cpp

♦include <iostream>
♦include <cmath> // for floor, log 
using namespace std;

unsigned long Neps_func(double* x,double* y,unsigned T,double eps)

unsigned i, j, k, Nx, Ny, Neps = 0;
double mx, my, xmin, ymin, xmax, ymax;
xmin = x[0]; xmax = x[0]; ymin = y[0]; ymax - у [0];
for(i=l;i<T;i++)

if(x[i] < xmin) xmin = x[i] ; if(x[i] > xmax) xmax = x[i] ; 
if(y[i] < ymin) ymin = y[i] ; if(y[i] > ymax) ymax = y[i] ;
>
Nx = (unsigned)((xmax-xmin)/eps+l.0);
Ny = (unsigned)((ymax-ymin)/eps+1.0); 
mx = ((double)Nx-1.0)/(xmax-xmin); 
my = ((double)Ny-1.0)/(ymax-ymin);
unsigned long** box = NULL; box = new unsigned long*[Ny]; 
for(j=0;j<Ny;j++) box[j] = new unsigned long[Nx] ;

for(i=0;i<Ny;i++) 
for(j=0;j<Nx;j++) box[i] [j] = 0;

for(i=0;i<T;i++)

к = (unsigned long) floor(mx*(x[i]-xmin)+0.5); 
j = (unsigned long) floor(my*(y[i]-ymin)+0.5); 
box[j][k] = 1;
>
for(i=0;i<Ny;i++) 
for(j=0;j<Nx;j++) Neps += box[i][j];

for(i=0;i<Ny;i++) delete [] box[i]; 
delete[] box;
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return Neps;

int main(void)

unsigned long T = 200000;
double* x = new double [T] ; double* у = new double [T] ; 
x[0] = 1.161094; у[0] = -0.09541356; 
for(int j=0;j<T—1;j++)
{ xCj+1] = 1.0+y[j]-1.4*x[j]*x[j] ; y[j+l] = 0.3*x[j] ; > 

double eps = 0.01;
unsigned Neps = Neps_func(x,y,T,eps);
cout «  "Neps = " «  Neps «  " " «  "eps = " «  eps «  endl; 
cout «  "log(Neps) = " «  log((double) Neps) «  " "

«  "log(1.0/eps) = " «  log(1.0/eps) «  endl; 
eps = 0.005;
Neps = Neps_func(x,y,T,eps);
cout «  "Neps = " «  Neps «  " " «  "eps = " «  eps «  endl; 
cout «  "log(Neps) = " «  log((double) Neps) «  " "

«  "log(1.0/eps) = " «  log(1.0/eps) «  endl; 
eps = 0.002;
Neps = Neps_func(x,y,T,eps);
cout «  "Neps = " «  Neps «  " " «  "eps = " «  eps «  endl; 
cout «  "log(Neps) = " «  log((double) Neps) «  " "

«  "log(1.0/eps) = " «  log(1.0/eps) «  endl; 
eps = 0.001;
Neps = Neps_func(x,y,T,eps);
cout «  "Neps = " «  Neps «  " " «  "eps = " «  eps «  endl; 
cout «  "log(Neps) = " «  log((double) Neps) «  " "

«  "log(l.0/eps) = " «  log(1.0/eps) «  endl; 
delete [] x; delete [] y; 
return 0;

>

1.2.7 Hyperchaos

We consider a system of first order autonomous ordinary difference equations 

3 lt+ l =  fl{X\t}X2t)} X2t+l =  f 2{X\t}X2t) •

We assume that f\ and / 2 are smooth functions. We also assume that the solu
tion (xu ,X2t) is bounded. For certain systems we can find so-called hyperchaos. 
This means the system admits two one-dimensional Liapunov exponents (A{, A2) 
and one two-dimensional Liapunov exponent. Next we derive an equation for the 
two-dimensional Liapunov exponent X11.



The variational equation is given by

2/u+i = “ 4 x  = xt)yu + ^ ( x  = xt)y2t
or QX

2/21+1 =  g ^ (x  =  x t)ylt +  ^ ( X  =  x*)z/2t •

Let (vu, v2t) satisfy the variational equation, i.e.

d /i , . d f i ,  4 Vlt+l = —  (x = xt)vu + —  (x = x*)u2t0X1 C/X2

2̂1+1 =  | ^ (X  =  X .K  T  ^ ( x =  Xt)v2£.

Let {e ! ,e 2}  be the standard basis in R 2, i.e.,

MS)- *-(!)}•
We can write

yt =  Vue i +  2/2te2, vt =  uuei +  v2te2.
Next we calculate y t A vt, where Л denotes the Grafimann product (also called 
exterior product or wedge product). We find

Yt A v t =  (yltei +  y2te2) A (vitei +  v2te2)
= y\tv2t î A e2 +  y2tvite2 A ei 
=  (yitV2t -  J/2t^it)e i A e2

where we have used the distributive law

(ae* +  fee,) A (cek +  det) =  (ac)ei A efc +  (ad)ei A e* +  (bc)ej Лек +  (bd)ej A ej

and that e» A ej =  - e 7- A e*. It follows that e7 A ej — 0. The Grafimann product is 
also assiocative. We define

wt :=  yittbt -  y2<̂ u 
and evaluate the time evolution of wt. Since

Щ+1 =  2/it+iy2t+i — 2/2t+iVit+i

we find

=(S(xi)yu+£ (x,)№i) (й(х,)ии+й (х,)и2<) 
-(£ (xi)yu+£ (xibt) ( й (х ,к + й (х,к) •

Consequently

/а д , ,а д , а д . .а д . л
“ ‘+i = f e (XiW Xi) -  ^ (X,W X1)J Wi
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where the initial value wo is given by Wo :=  умодо — 2/20̂ 10• The two-dimensional 
Liapunov exponent is given by

X11 :=  lim i  In |wr |i —‘OO i

where Ая  depends on хю, x2o, 2/io> У20, «ioi ^20- Let A7 be the maximal one
dimensional Liapunov exponent and let X11 be the maximal two-dimensional Lia
punov exponent. If X1 >  0 and Xй  >  0 we say that the system shows hyperchaotic 
behaviour. We have

A/J =  A{ +  A'

where A{ and A2 are the two one-dimensional Liapunov exponents.

As an example consider the coupled logistic equation. It is given by

Sit+i =  rsit(l ~  Xit) +  e(x2t -  Sit), ^2i+i =  rx2t(l  -  x 2t) +  е(хц  -  x2t)

where t =  0 ,1 ,2 ,... and r and e are bifurcation parameters with 1 <  r <  4. For 
e =  0 we have two uncoupled logistic equations. Depending on the initial conditions 
and the parameter values one can find the following behaviour: (i) orbits tend 
to a fixed point, (ii) periodic behaviour, (iii) quasiperiodic behaviour, (iv) chaotic 
behaviour, (v) hyperchaotic behaviour and (vi) Sit and x21 explode, i.e. for a finite 
time the state variables x u and (or) x2t tend to infinity. Let

/ i ( * i ,* 2) =  74Ei(l — Xi) +  e(x2 — X\)} / 2(хь х2) =  rx2( l  -  x2) +  e(xi -  x2).

Thus we find for the variational equation

2/it+i =  (^(1 -  2x u) -  e)yu +  ey2t, y2t+i =  eyu +  (r ( l -  2x2t) -  e)y2l.

Furthermore we find

Щ+1 =  (r2( 1 -  2x u)( l  -  2x2t) -  2re (l -  x u -  x 2t))wt.

In the C + +  program hyperchaos. cpp we evaluate the one-dimensional and two- 
dimensional Liapunov exponent for e =  0.06 and r in the range r G [3.2...3.7]. For 
example, for e =  0.06 and r  =  3.7 there is numerical evidence that the system shows 
hyperchaotic behaviour.

// hyperchaos.cpp

#include <fstream> // for ofstream, close 
tinclude <cmath> // for fabs, log 
using namespace std;

double fl(double xl,double x2,double r,double e)
{ return r*xl*(1.0-xl)+e*(x2-xl); >
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double f2(double xi,double x2,double r,double e)
{ return r*x2*(l.0-x2)+e*(xl-x2); >

double vl(double xl,double x2,double yl,double y2,double r,double e) 
{ return (r-2.0*r*xl-e)*yl+e*y2; >

double v2(double xl,double x2,double у1,double y2,double r,double e) 
{ return e*yl+(r-2.0*r*x2-e)*y2; >

double varext(double xl,double x2,double w,double r,double e)
{ return (r *r*(1.0-2.0*xl)*(1.0-2.0*x2)-2.0*e*r*(1.0-xl-x2))*w; >

int main(void)

int T = 700; // number of iterations 
double r, e; // bifurcation parameters 
double rmin = 3.2, rmax = 3.7; 
r = rmin; e = 0.06; 
ofstream data("lambda.dat"); 
while(r <= rmax)
{
double xll = 0.7, x22 = 0.3; // initial values 
double xl, x2;
// remove the transients 
for(int t=0;t<10;t++)
{ xl = xll; x2 = x22; xll = fl(xl,x2,r,e); x22 = f2(xl,x2,r,e); >

double yll = 0.5, y22 = 0.5; 
double w; 
double wl = 0.5; 
double yl, y2;

for(int t=0;t<T;t++)
{
xl = xll; x2 = x22; yl = yll; y2 = y22; w - wl;
xll = f1(xl,x2,r,e); x22 = f2(xl,x2,r,e);
yll = vl(xl,x2,yl,y2,r,e); y22 = v2(xl,x2,yl,y2,r,e);
wl = varext(xl,x2,w,r,e);
>
double lambdal = log(fabs(yll) + fabs(y22))/((double) T); 
double lambdall = log(fabs(wl))/((double) T); 
data «  r «  " " «  lambdal «  " " «  lambdall «  "\n"; 
r += 0.005;
>
data.closeO; 
return 0;
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1.2.8 Domain of Attraction

Consider a system of nonlinear first order autonomous difference equations

xi+i =  f(x t,r ), £ =  0 , 1, 2 , . . .

where r =  (r1}r2, . . . , r p) are bifurcation parameters. Let us assume that the ini
tial values xo are given. The behaviour for t —> oo depends on the bifurcation 
parameters. In particular one is interested in finding the domain for the bifurcation 
parameter values r where the solution escapes to infinity, i.e.,

||xt|| —> oo for t —> oo .

The domain of attraction can have a fractal structure. Obviously, the domain also 
depends on the initial values. Thus one keeps the initial values fixed.

As an example consider the coupled logistic equation

*u+i =  rzu ( l  -  xit) +  e(x2t -  x u), x2t+i =  rx2t(l -  x 2t) +  e(xu -  x2l)

where t =  0 ,1 ,2 ,. .. and r and e are bifurcation parameters with 1 <  r  <  4. For 
e =  0 we have two uncoupled logistic equations. Depending on the initial condi
tions and the parameter values one can find the following behaviour for t —* oo: (i) 
orbits tend to a fixed point, (ii) periodic behaviour, (iii) quasiperiodic behaviour, 
(iv) chaotic behaviour, (v) hyperchaotic behaviour and (vi) X\t and (or) x 2t tend to 
infinity.

In the C + +  program domain.cpp we find the escape domain, for the parameter 
regions

e <= [0.04,0.09] and r € [3.5,4.0].
The initial values are fixed to хю =  0.7 and x2o =  0.3. Obviously, the initial values 
must be chosen so that хю ф x2o otherwise the coupling term will cancel out and 
we have two uncoupled logistic maps.

// domain.cpp

♦include <fstream> // for ofstream, close 
♦include <cmath> // for fabs, log 
using namespace std;

double fl(double xl,double x2,double r,double e)
{ return r*xl*(1.0-xl)+e*(x2-xl); >

double f2(double xl,double x2,double r,double e)
{ return r*x2*(1.0-x2)+e*(xl-x2); >

int main(void) 
{
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int T = 800; // number of iterations 
double r, e; // bifurcation parameters 
double rmin =3.6, rmax =4.0; 
double emin = 0.04, emax = 0.08; 
r = rmin; e = emin; 
ofstream data("domain.dat"); 
while(e <= emax)
{
while(r <= rmax)
{
double xll = 0.7, x22 = 0.3;
double xl, x2;
for(int t=0;t<=T;t++)
{
xl = xll; x2 = x22; xll = f1(xl,x2,r,e); x22 = f2(xl,x2,r,e);
>
if((fabs(xll) >20) || (fabs(x22) > 20))
<
data «  r «  " " «  e «  "\n";
>
r += 0.0005;
>
e += 0.00005; 
r = rmin;
>
data.close(); 
return 0;

>

1.2.9 Newton Method in the Complex Domain
In connection with chaotic behaviour and fractals the Newton method is considered 
in the complex domain C. Let /  be a differentiable complex valued function. Given 
an approximate value of zq to the solution of f ( z ) =  0 the Newton method finds the 
next approximation by calculating

where t =  0 ,1 ,2 ,... and f '(z t) ^  0 is the derivative of /  at z =  zt. One calls

the Newton transformation associated with the function / .  The general expectation 
is that a typical orbit { / ^ ( zq) }  which starts from an initial guess zq £ C, will 
converge to one of the roots.

Zl+1 f U )
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Example. Consider the polynomial

p{z) =  *4 -  1

for 2 б С .  There are four distinct complex numbers, a.j (j  =  1,2 ,3 ,4) such that

p ( d j )  =  0 .

These are called the roots, or the zeros, the polynomial p(z). The roots are given by 

a\ =  1, 0,2 — —1, 0.3 =  i, a4 =  —i.

The Newton method tells us to consider the dynamical system

P{z ) 1С  : / ( * )  z  —

with p' =  dp/dz =  4z3. We call f  the Newton transformation associated with the 
function p. The general expectation is that a typical orbit

{ / (‘)Ы }  =  { г о , / Ы , Л / Ы ) , . . . }

which starts from an initial ” guess” z0 € C, will converge to one of the roots of p. 
For the present case we find that the Newton transformation is given by

( s 3z4 +  1 
/(Z ) =  - 4 ? “ -

We expect the orbit of zq to converge to one of the numbers ах,а2,аз or а4- К we 
choose z0 close enough to dj then it is readily proved that

nhmo/ (t)(-го) =  a,, for j  =  1, 2 ,3 ,4 .

If, on the other hand, zq is far away from all of the а/s ,  then what happens? Perhaps 
the orbit of zq converges to the root of p(z) closest to .zo? Or perhaps the orbit does 
not settle down, but wanders, hopelessly, forever? ^

In the C + +  program complexnewton.cpp we use the complex class of C + + .

// complexnewton.cpp

♦include <iostream>
♦include <complex> 
using namespace std;

int main(void)
{
int T = 1000; // number of iterations 
complex<double> zO(0.4,0.2);
complex<double> zl = (3.0*z0*z0*z0*z0+l.0)/(4.0*z0*z0*z0);
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double eps = 0.0001; 
while(abs(zl-zO) > eps)
{
zO = zl; zl = (3.0*z0*z0*z0*z0+1.0)/(4.0*z0*z0*z0);
>
cout «  "root = " «  zl «  endl; 
return 0;

The iteration provides the root complex(0 ,-1 ) , i.e. — i.

1.2.10 Newton Method in Higher Dimensions
We consider the system

We denote by x  the vector with components (x i ,x2) ■ • •, xn) and by f  the vector with 
components ( / i ,  f 2, . . . ,  f n). Then the system can be written as one vector equation, 
f(x ) =  0. If we take the gradients of the components, we obtain a function matrix 
called the Jacobian matrix J. It is defined as follows

The problem is now to solve the equation f(x ) =  0. We suppose that the vector 
у  is the exact solution and that our present approximation x  can be written as 
x  =  у  +  h. We compute /»(жi , . . . ,  zn) and call these known values Hence

The first term is zero by definition, and neglecting higher order terms we obtain 
with Jik =  ( d f i / d x k ) x = y :

Jh =  g  and h =  J_1g .

We suppose that the matrix J is nonsingular. The vector h found in this way in 
general does not give us an exact solution. We arrive at the iteration formula

>

f\{X\ > X2, • • • > 2?n) — 0, . .. , f n{x  1, £2, • ■ • > Xn) — 0 .

( d h  d h  . . .
dxi dx2 dxn

dfn dfn . . .  dfn
V dxi dx2 dxn '

fi{y  1 +  hit y2 +  h2t • • •, yn +  hn) =  9i ■

X'

In one dimension this formula becomes the usual Newton formula. The matrix J 
must be nonsingular. The matrix J changes from step to step. This suggests a
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simplification to reduce computational efforts: replace J (x ^ )  by J(x^0̂ ). In the 
C + +  program we consider the case n =  2 with

/ i ( * b * 2) =  ж2 +  x2 -  1, / 2(^1 > * 2) =  xi -  x2 •

This system admits two solutions, namely (x i,x 2) =  (1 /\/2 ,1 /\/2) and (x i,x2) =  
( - l A /2 , - l / v /2 ) .

// twonewton.cpp

♦include <iostream>
♦include <cmath> // for fabs
using namespace std;

double gl(double x,double y)
{ return (x-(x*x-y*y+2.0*x*y-1.0)/(2.0*(x+y))); > 

double g2(double x,double y)
{ return (y-(-x*x+y*y+2.0*x*y-l.0)/(2.0*(x+y))); > 

int main(void)
-C
double xO, yO, xl, yl, eps; 
int t = 0;
xl = 3.5, yl = 20.3; // initial values 
eps = 0.0005; 
do 
{
xO = xl; y0 = yl;
xl = gl(x0,y0); yl = g2(x0,y0);
t++;
> while((fabs(xO-xl) > eps) && (fabs(yO-yl) > eps));

cout «  "t = " «  t «  endl; 
cout «  "xl = " «  xl «  endl; 
cout «  "yl = " «  yl «  endl; 
return 0;

>

1.2.11 Ruelle-Takens-Newhouse Scenario
In this route to chaos we have the following sequence when the bifurcation param
eter r is changed. A stationary point (fixed point) bifurcates to a periodic orbit, 
which then bifurcates to a doubly periodic orbit formed by the surface of a torus, 
which then bifurcates to a system with chaotic behaviour. Newhouse, Ruelle and 
Takens [81] conjectured that small nonlinearities would destroy triply periodic mo
tion. They proved the following.
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Theorem . Let К be a constant vector field on the torus T ”  =  R n/Z n. If n >  3 
every C2 neighbourhood of V  conatins a vector field VT with a strange Axiom A 
attractor. If n >  4, we may take C°° instead of C2.

A dynamical system is (or satisfies) Axiom A if its nonwandering set
(i) has a hyperbolic structure, and
(ii) is the closure of the set of closed orbits of the system.

We define a point p to be non-wandering if, for all neighbourhoods U of p, f(U ) \ U 
is nonempty for arbitrary large t G R  or t G N. The term non-wandering point is an 
unhappy one, since not only may the point wander away from its original position 
but it may never come back again. The set of all non-wandering points of the map 
/  are called non-wandering set of / .

We consider the map (Lopez-Ruiz and Perez-Garica [69], [70])

x t+1 =  r(3yt +  l)x t(l  -  xt), yt+i =  r(3xt +  l)y t(l -  yt)

which shows the Ruelle-Takens-Newhouse transition to chaos. The control parame
ter is r. We calculate the variational equation symbolically

ut+1 = r(3 y t +  1)(1 -  2xt)ut +  3rx*(l -  xt)vt 
vt+1 =  3n/t( l  -  yt)ut -1- r (3xt +  1)(1 -  2yt)vt

and then iterate these four equations using the data type double. The largest 
one-dimensional Liapunov exponent is calculated approximately

А «^ 1п (| и г | +  Ы )

where r =  1.0834 and T  is large. The fixed points of the map are given by the 
solution of the system

r(3y' +  l)x*(l -  x*) = x’ , r(3x* + l)y'(l -  у•) = у*.

We find five fixed points

x\ =  ^  ( —\/4r2 -  3r +  Г) , y\ =  ^  ( - V 4r2 -  3r +  rj

x2 =  l r ( V 4 ^ T r  +  r ) ,  yi =  -^ (V 4 r 2 - 3 r  +  r) 

x *3 =  ( r -  1 )/r , yl =  0 

=  0, y\ =  0 

s? =  0, y*5 =  ( r - l ) / r -  
The fixed points (x j,y j) and (x^yZ) exist only for r > 3 /4 .
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// ruelle.cpp

♦include <iostream>
♦include <cmath>
♦include "symbolicc++.h" 
using namespace std;

template <class T> T f(T x,T y,T r)
{ return r*(T(3)*y+T(l))*x*(T(l)-x); >

template <class T> T g(T x,T y,T r)
{ return r*(T(3)*x+T(l))*y*(T(l)-y); >

int main(void)
{
int T = 500; // number of iterations 
double x2, y2, u2, v2;
Symbolic x("x"), xl("xl"), y("y"), yl("yl"), r("r"), 

u("u"), ul("ul"), v("v"), vl("vl"); 
xl = f(x,y,r); yl = g(x,y,r); 
cout «  "xl = " «  xl «  endl; 
cout «  "yl = " «  yl «  endl;
ul = df(xl,x)*u+df(xl,y)*v; // variational equation 
vl = df(yl,y)*v+df(yl,x)*u; // variational equation 
cout «  "ul = " «  ul «  endl; 
cout «  "vl = " «  vl «  endl; cout «  endl;
// initial values
Equations values = (x==0.3,y==0.4,r==1.0834,u==0.5,v==0.6); 
for(int t=l;t<T;t++)
{
x2 = xl [values] ; y2 = yl [values] ;
u2 = ul [values] ; v2 = vl [values] ;
values = (r==1.0834,x==x2,y==y2,u==u2,v==v2);
cout «  "The Liapunov exponent for t = " «  t «  " is "

«  log(fabs(double(rhs(values,u)))+fabs(double(rhs(values,v))))/t 
«  endl;

>
return 0;

>

1.2.12 Periodic Orbits and Topological Degree

We consider the problem of finding the solutions of a system of nonlinear equations 
of the form
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where fn =  ( / 1, / 2» • • • > /n) •' Dn С R n —► R n is a function from a domain Dn into 
R n, 0n =  (0 ,0 ,. . . ,  0) and x  =  (*i, x2, • •., я„). The above system can be written as

/1 (*1 > x2l • • •, Xn) =  0 
/ 2(2:1, rc2, . . . , x n) =  0

/n (*b*2>.- . ,* n )= 0 .

Topological degree theory gives us information on the existence of solutions of the 
above system, their number and their nature. Kronecker introduced the concept of 
topological degree in 1869, while Picard in 1892 provided a theorem for computing 
the exact number of solutions of the system. Numerical methods based on topolog
ical degree theory have been applied to numerous dynamical systems.

In order to define the concept of the topological degree we consider the function 
fn to be continuous on the closure Dn of Dn, satisfying also fn(x) Ф 0n for x 
on the boundary b(Dn) of Dn. We also consider the solutions to be simple, i.e. 
the determinant of the corresponding Jacobian matrix (Jfn) at the solution, to be 
different from zero. Then the topological degree of fn at 0n relative to Dn is defined 
as

deg[f„, £>„, 0n] :=  J2 sgn(det Jfn(x)) =  N+ -  AL
X€fn‘ (0a)

where det Jfn is the determinant of the Jacobian matrix of fn, sgn is the sign func
tion, N+ the number of roots with det Jfn > 0 and N - the number of roots with 
det Jfn < 0 . It is evident that if a nonzero value of det[fn, Dn, 0n] is obtained then 
there exists at least one solution of system fn(x) =  0n within Dn.

A practical way to find the topological degree is the computation of the Kronecker 
integral. In particular, under the assumption of the definition given above of the 
topological degree the deg[fn, Dn, 0„] can be computed as

Г(п/2) г г  г ISj-i Ajdxj • • • dXj—\dXj+\ • • • dxn

where

j rr n f  [  f  ^з=\л зах] ‘ ’ ’ axj - iaxj+i
nl _  2ir” /2 J JD ) " J  ( / 12 +  Й  +  • • • +  /„2)n/2

( h  d h /д x x ■■■ dfx/dXj-x dfx/д xi+x d fx /d x „ \

Aj :=  ( - 1 ) " 0 " 1) det
/2  df2/dx 1 ••• df2/dxj- 1 df2/dxj+i ••• df2/dxn

Vfn dfn/dxi ••• dfn/dxj- 1 dfn/dxj+i ••• dfn/dxnJ 
and Г(х) is the gamma function. In order to find the number N  of solutions of 
fn =  0n we consider the function

f„+1 = (/1, h ,  • ■ •, fn, Ati)r : Д,+. c R"+1 -* Rn+l
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where
fn+i :=  у  det Jfn

R n+1 : x\yx 2 f - tX m U  and Dn+1 is the product of Dn with a real interval on the 
y-axis containing у =  0. Then the exact number N  of the solutions of the equation 
f„(x) =  0n is given by

N  =  deg[fn+i, Dn+i, 0n+i].

Example. Consider the case of a set of two equations

/l (S l,® 2) = 0 ,  /2(*1,®2) =  0.

We find that the number N  of roots in the domain D2 =  [a, 6] x  [c, d] is given by

N = h J D) + ^ ( * i .  **)«*»*)+« /  /

where e is an arbitrary positive value,

P -ta  * ,)  =  i  =  12
(Л2 +  Л )(Л 2 +  Л  +  ^ ) 1/2’

and
/ Л  5 /i/^ X i dfi/dx2 

Q{x  i ,x 2) =  det / 2 df2/dxi d f2/dx2 
 ̂ J dJ/dx 1 dJ/dx2

with J denoting the determinant of the Jacobian matrix of f2 =  ( / 1, / 2)- ^

1.2.13 JPEG file
JPEG, unlike other formats like PPM, PGM, and GIF, is a lossy compression tech
nique; this means visual information is lost permanently. The key to making JPEG 
work is choosing what data to throw away. JPEG is the image compression stan
dard developed by the Joint Photographic Experts Group. It works best on natural 
images (scenes). We describe general JPEG compression for greyscale images; how
ever, JPEG compresses color images just as easily. For instance, it compresses the 
red-green-blue parts of a color image as three separate greyscale images - each com
pressed to a different extent, if desired. JPEG divides up the image into 8 by 8 pixel 
blocks, and then calculates the two-dimensional discrete cosine transform (DCT) of 
each block. The two-dimensional discrete cosine transform is given by

ffi 1 \ a t \ f  {2щ +  1)к\тг\ f  (2n2 •¥ 1)к2тг̂
/(fcl’ = 4 £  Х(П1’" 2) cos [ m — ) cos I а д — ]

where х (щ ,п 2) is an input image with ni =  0 ,1 , . . . ,  — 1 and n2 — 0 , 1 , ,  N2 — 1. 
The k\, k2 are the coordinates in the transform domain, where k\ =  0 ,1 , . . . ,  N\ and 
k2 =  0 ,1 , . . . ,  N2. A quantizer rounds off the DCT coefficients according to the
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quantization matrix. This step produces the ” lossy” nature of JPEG, but allows for 
large compression ratios. JPEG’s compression technique uses a variable length code 
on these coefficients, and then writes the compressed data stream to an output file 
(*• jPg)- F°r decompression, JPEG recovers the quantized DCT coefficients from 
the compressed data stream, takes the inverse transforms and displays the image. 
Instead of the discrete cosine transform in newer versions discrete wavelets are used.

In the Java program JPEG 1. java we convert the phase-portrait for the Ikeda-Laser 
map into a JPEG file (output.jpg).

// JPEG1.java

import com.sun.image.codec.j peg.*; 
import java.awt.*; 
import java.awt.geom.Line2D; 
import j ava.awt.image.Bufferedlmage; 
import java.io.FileOutputStream;

public class JPEG1 extends Frame

Bufferedlmage bi;
Graphics2D g2;

public JPEG 10
<
bi = new Bufferedlmage(400,400,Bufferedlmage.TYPE_INT_RGB);
g2 = bi. createGraphicsO ;
double x = 0.5, у = 0.5; // initial values
double xl, yl;
double cl = 0.4, c2 = 0.9, c3 = 9.0, rho = 0.85; 
int T = 20000; // number of iterations 
for(int t=0;t<T;t++)

xl = x; yl = y;
double taut = cl-c3/(l.0+xl*xl+yl*yl); 
x = rho+c2*xl*Math.cos(taut)-yl*Math.sin(taut); 
у = c2*(xl*Math.sin(taut)+yl*Math.cos(taut)); 
double m = 90*x+200; double n = 90*y+200; 
g2.draw(new Line2D.Double(m,n,m,n));
>
try i
FileOutputStream jpegOut = new FileOutputStream("output.jpg")> 
JPEGImageEncoder jie = JPEGCodec.createJPEGEncoder(jpegOut); 
jie.encode(bi); 
jpegOut.close 0;
System.exit(0);
>
catch(Exception e) ■{ }



} // end constructor JPEG1() 

public static void main(String args[])
{
JPEG1 jp = new JPEGlO;
>
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Chapter 2 

Time Series Analysis

2.1 Introduction
Detecting the existence of deterministic chaos and its characteristics is one of the 
important studies from the viewpoint of time series analysis on chaos. For quan
titative characterization of deterministic chaos, we have several quantities such as 
the

1) autocorrelation function
2) correlation dimension (Grassberger-Procaccia algorithm)
3) capacity of the attractor
4) Liapunov exponents
5) Hurst exponent
6) complexity

The autocorrelation function, correlation dimension and the capacity (fractal di
mension) has been already introduced in chapter 1.

In this chapter we consider the correlation coefficient, Liapunov exponents, the Hurst 
exponent, and a complexity measure. As for estimating the fractal dimensions, the 
Grassberger-Procacia algorithm (Grassberger and Procacia [40]) has been widely 
applied to real time series data. The Liapunov exponents and its spectrum are also 
important statistics to quantify deterministic chaos. Several methods of estimating 
Liapunov spectra have been proposed (Sano and Sawada [96], Eckmann et al. [28], 
Wolf et al., [119]). Even if the observable is only a single-variable time series in case 
of observing with enough number of data points, the Liapunov exponent and its 
spectrum of the original dynamical systems can be estimated with high accuracy. 
The Hurst exponent plays a central role in characterizing Brownian motion, pink 
noise and black noise. The Hurst exponent can also be calculated for chaotic time 
series.

85
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2.2 Correlation Coefficient
Consider two T-dimensional data vectors

x  =  У =  {У0,У и-'-,У т -1)-

The linear correlation coefficient r  of the two vectors is defined by

T- 1 T - l  T - l

E  ** E  ю 
t=0 t=0 i=0r :■

T -l T -l T -l T -l

(T  E  xt -  ( E  xt)2)(T  E  vt -  ( E  yt)2) 
t=0 t= 0 i=0 t=0

and measures the strength of the linear relationship between x  and y. If the x  and 
у  values are related by

у  =  cx

where с is any positive constant we find г =  1. If the x  and у  values are related by

У =  - c x

where с is any positive constant we find r — — 1. Completely uncorrelated data will 
give r  =  0.

The following C + +  program corre la tion , cpp calculates the correlation coefficient 
r for a number of data points given by the user. The program first asks the user to 
enter the number of data. Then the data are entered by the user. Thus the memory 
for the vectors has to be dynamically allocated.

// correlation.cpp

♦include <iostream>
♦include <cmath> // for sqrt
using namespace std;

void sums(double* x,double* y,int T,double* a,double* b, 
double* c,double* d,double* e);

int main(void)

unsigned long T;
cout «  "number of data points: cin »  T; 
double* x = new double[T]; double* у = new double[T];

for(unsigned long t=0;t<T;t++)
{
cout «  "x[" «  t «  "] = cin »  x[t];
cout «  "y[" «  t «  "] = cin »  y[t] ;
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>
double a, b, c, d, e;
a = 0.0; b = 0.0; с = 0.0; d = 0.0; e = 0.0;
sums(x,y,T,&a,&b,&c,fed,&e);
double r = (T*c-a*b)/sqrt((T*d-a*a)*(T*e-b*b));
delete[] x; deleted y;
cout «  " r = " «  г «  "\n";
return 0;

> // end main

void sums(double* x,double* y,int T,double* a,double* b, 
double* c,double* d,double* e)

double sum_x =0.0, sum_y = 0.0;
double sum_xy = 0.0, sum_x2 = 0.0, sum_y2 = 0.0;
for(unsigned long t=0;t<T;t++) {
sum_x += x[t]; sum_y += у[t];
sum_xy += x[t]*y[t]; sum_x2 += x[t]*x[t]; sum_y2 += y[t]*y[t];
>
*a = sum_x; *b = sum_y;
*c = sum_xy; *d = sum_x2; *e = sum_y2;

>

2.3 Liapunov Exponent from Time Series

For a dynamical system, sensitivity to initial conditions is quantified by the Liapunov 
exponents. For example, consider two trajectories with nearby initial conditions on 
an attracting manifold. When the attractor is chaotic, the trajectories diverge, on 
average, at an exponential rate characterized by the largest one-dimensional Lia
punov exponent (Eckmann and Ruelle [27]). This concept is also generalized for 
the spectrum of one-dimensional Liapunov exponents, Xj (j  =  1 ,2 ,... ,n), by con
sidering a small n-dimensional sphere of initial conditions, where n is the number 
of first order ordinary differential equations used to describe the dynamical system. 
As time t evolves, the sphere evolves into an ellipsoid whose principal axes expand 
(or contract) at rates given by the one-dimensional Liapunov exponents. The pres
ence of a positive exponent is sufficient for diagnosing chaos and represents local 
instability in a particular direction. Note that for the existence of an attractor, 
the overall dynamics must be dissipative, i.e. globally stable, and the total rate 
of contraction must outweigh the total rate of expansion. Thus, even when there 
are several positive one-dimensional Liapunov exponents, the sum across the entire 
spectrum is negative. In most case a differential equation or difference equation is 
not given only a data set from an experiment, i.e., a time series.

A large number of authors have discussed the calculation of the spectrum of the 
one-dimensional Liapunov exponents from time series (Wolf [119], Sano [96], Eck-



88 CHAPTER 2. TIME SERIES ANALYSIS

mann et al [28], Sato [97], Rosenstein et al [92], Kantz [59]).

There are two types of methods to find Liapunov exponents. One is the Jaco- 
bian matrix estimation algorithm (Sano and Sawada [96], Eckmann et al. [28]). 
The Jacobian matrix estimation algorithm can find the whole spectrum of the one
dimensional Liapunov exponents. It involves the least-square-error algorithm and 
the Gram-Schmidt procedure. Since this algorithm does not have built-in checks 
against noise, except the fact that the Liapunov spectrum must not depend on the 
number of near neighbours and the dimension of the reconstructed state space, it 
would be better to use other methods which have a built-in-check. The method 
is called the direct method for finding the largest Liapunov exponent. As for esti
mating largest Liapunov exponents, several algorithms have been already proposed, 
for example, an algorithm by Wolf et al. [119], and its modifications by Sato et 
al. [97], Rosenstein et al. [92] and Kantz [59]. These algorithms can be called a 
direct method, since they calculate the divergence rates of nearby trajectories and 
can evaluate whether the orbital instabilities are exponential on t or a power of t.

2.3.1 Jacobian Matrix Estimation Algorithm
We follow in our presentation the work of Eckmann et al [28] and Sano and Sawada 
[96]. Let

X o , X \ , . . . ,  X t —1

denote a scalar time series, where the number of data is T. We choose an embedding 
dimension ds and construct a ds dimensional orbit representing the time evolution 
of the system by the time-delay method. Thus

x t :=  (Xt, Xt+i,. . .»Xt+dE—i)

for t =  0 ,1 ,.. . ,T  — ds- Next we have to find the the neighbours of x t, i.e. the 
points Xt of the orbit which are contained in an e-neighbourhood centered at x f

Цхт-XtH <  €.

Thus we have to introduce a norm ||.||. In most cases the Euclidean norm is used. 
However, using the max-norm

M l  :*  max

is much more useful in numerical implementations. We now set

у i :=  x ki -  x j for ||xfc. -Xj\\ < e .

Thus yi is the displacement vector between the vectors x^ and Xj. After the evolu
tion of a time interval m, the orbital point Xj will proceed to xJ+m and neighbouring 
points {х*.} to {x^+jn}. The displacement vector у< is thereby mapped to

z{ :=  Xfc.+m -  x j+m for Их*, -  Xj || <  e.
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If the radius e is small enough for the displacement vectors {у*} and {z ,} to be 
regarded as good approximations of tangent vectors in the tangent space, evolution 
of yi to zi can be represented by some matrix Aj, as

z i =  А& { .

The matrix Aj is an approximation of the flow map at Xj. Next we have to find 
the optimal estimation of the linearized flow map Aj from the data sets {у*} and 
{z J . An optimal estimation is the least-square-error algorithm, which minimizes 
the average of the squared error norm between z* and Ajyi with respect to all 
components of the matrix Aj as follows

1 N
min S =  min — \\zi -  А,у*||2.

Denoting the (k ,l) component of matrix Aj by Aki(j) and applying this condition, 
one obtains d x  d equations to solve,

- ^ -  =  0. 
dAkl(j)

We obtain the following expression for Aj, namely AjV  =  C, where the matrices V  
and С  are given by

1 n  ̂ N
(Ю м  =  T7 £  VikVili (C)kl ~  T7 E  ^кУИ • 

t=l iV t=l

The d x  d matrices V  and С  are called covariance matrices, and yt* and 2̂  are 
the к components of vectors y* and Zj, respectively. If N  >  d and there is no 
degeneracy, the equation A jV  =  С  has a solution for aki{j). Since we found the 
variational equation in the tangent space along the experimentally obtained orbit, 
the one-dimensional Liapunov exponents can be computed as

=  I™, ^ E ln WAM\\n-»oo ПТ

for i =  1 ,2 , . . . ,  rf, where Aj is the solution of A jC  =  V and {  ej }  (i =  1 ,2 ,. . . ,  d) 
is a set of basis vectors of the tangent space at Xj. In the numerical procedure, 
choose an arbitrary set {e£}. Operate with the matrix Aj on {  ej }  and renormalize 
A jej to have length 1. Using the Gram-Schmidt procedure, we maintain mutual 
orthogonality of the basis. We repeat this procedure for n iterations.

2.3.2 Direct Method
The simplest implementation of the direct method in the one-dimensional case is as 
follows. For our illustration we assume that the scalar time series is generated by the 
logistic map f  : [0,1] —► [0,1], f { x )  =  4 x ( l -x )  with the initial value ж[0] =  0.333333. 
We assume that we have 20 data points. Thus the time series given is
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x[0] = 0.333333 x[l] = 0.888888 
x[2] = 0.395063 x[3] = 0.955953 
x[4] = 0.168427 x[5] = 0.560239 
x[6] = 0.985485 x[7] = 0.0572163 
x[8] = 0.21577 x[9] = 0.676854 
x[10] = 0.874891 x[ll] = 0.437828 
x[12] = 0.984539 x[13] = 0.0608888 
x[14] = 0.228725 x[15] = 0.70564 
x[16] = 0.830848 x[17] = 0.562158 
x[18] = 0.984545 x[19] = 0.060863
We start at t =  0 with x[0] = 0.333333. Next we search for the point in the 
time series which is closest to x [0]. This is obviously x [2] = 0.395063. Now we 
calculate the absolute value of the difference of these two points

d[0] = IxCO] - x[2] I = 0.061730 .
Next we calculate the absolute value difference of the two consecutive points of x [0] 
and x [2], namely x [1] and x [3]. Thus

dl[03 = |x[l] - x[3] | = 0.067065 .
Now we repeat this procedure for the point at t  =  1, x [ l ] . The closest point in the 
time series to x [ l ]  is x[10]. Thus

d[l] = |x[l] - x[10] | = 0.013997 .
For the consecutive points x[2] and x [ l l ]  we obtain

dl[1] = |x[2] - x[ll]| = 0.042765 .
We repeat the procedure up to t  =  18. The last point is not- taken into account 
since it has no succeeding point. Thus we obtain the following pairs of distances

d[0] = 0.0617301 dl[0] = 0.0670646 
d[l] = 0.0139979 dl[13 = 0.0427652 
d[2] = 0.0427652 dl[2] = 0.0285858 
d [3] = 0.0285858 dl[3] = 0.107539 
d[4] = 0.0473429 dl[4] = 0.116615 
d[5] = 0.00191966 dl[5] = 0.00093984 
d[6] = 0.00093984 dl[6] = 0.00364669 
d[7] = 0.0036725 dl[7] = 0.0129551 
d[8] = 0.0129551 dl[8] = 0.0287863 
d[9] = 0.0287863 dl[9] = 0.0440425 
d[10] = 0.0139979 dl[10] = 0.0427652 
d[ll] = 0.0427652 dl[ll] = 0.0285858 
d[12] = 6.6586e-006 dl[12] = 2.5811e-005 
d[13] = 0.0036725 dl[13] = 0.0129551 
d[14] = 0.0129551 dl[14] = 0.0287863 
d[15] = 0.0287863 dl[15] = 0.0440425 
d[16] = 0.0440425 dl[16] = 0.12433 
d[17] = 0.00191966 dl[17] = 0.00093984 
d[18] = 6.6586e-006 dl[18] = 2.5811e-005
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Now the approximative one-dimensional Liapunov exponent is evaluated as

We find A 0.651626 which is quite a good agreement with the exact value A =  ln(2) 
if we take into account that we only had 20 data points. Furthermore we did not 
introduce an epsilon neighbourhood for each point of the reference trajectory.

// Liapunovserl.cpp

♦include <iostream>
♦include <cmath> // for fabs
using namespace std;

void find(double* a,int length,int point,doublet min,int& position)
{
int i = 0;
if(point==0) { min = fabs(a[i]-a[l]); >
if(point!=0) { min = fabs(a[i]-a[point]); >
position = i;
double distance;
for(i=l;i<(length-1);i++)
{
if(i != point)
■C
distance = fabs(a[i]-a[point]);
if(distance < min) { min = distance; position = i; > // end if 
}• // end if 
)■ // end for

>

int main(void)
{
// generate time series
int T = 20; // length of time series
double* x = new double [T]; // memory allocation
x[0] = 0.333333; // initial value of time series
for (int t=0;t<(T-l) ;t++) { x[t+l] = 4.0*x[t]*(1.0-x[t]) ; >
double* d = new double[T-l]; // memory allocation
double* dl = new double[T-l]; // memory allocation
int point = 1;
int position;
double min;
for(int t=0;t<(T-l);t++)
{
find(x,T,t,min,position); 
d[t] = fabs (x[t]-x [position]) ;
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dl[t] = fabs(x[t+l]-x[position+l]);
>

for(int t=0;t<(T-l);t++)

cout «  "d[" «  t «  "] = " «  d[t] «  " "
«  "dl[" «  t «  "] = " «  dl[t] «  endl;

>
double sum - 0.0;
for(int t=0;t<(T-l);t++) { sum += log(dl[t]/d[t]); >
double lambda = sum/((double)(T-l)) ;
cout «  "lambda = " «  lambda «  endl;
deleted x; deleted d; deleted dl;
return 0;

>

The evaluation of the Liapunov exponent can be improved by considering a small 
e-neighbourhood of each point of the reference trajectory. Then for each point which 
falls in the e-neighbourhood we calculate the expansion to the next point.

// Liapunovser2.cpp

#include <iostream>
#include <cmath> // for fabs 
using namespace std;

int find(double* array,int length,int t,double x,int*& positions, 
int& n_positions,double eps)

for(int s=0;s<length;s++)
{
if((fabs(array[s]-x) < eps) && (s != t))
{ positions[n_positions] = s; n_positions++; >
>
if(n_positions > 0)
•C
cout «  "n_positions = " «  n_positions «  endl; 
return 1;
>
return 0;

>

int main(void)

// generate time series
int T = 2000; // length of time series
double* x = new double [T]; // memory allocation 
x[0] = 0.333333; // initial value of time series
for (int t=0;t<(T-l) ;t++) { x[t+l] = 4.0*x[t]*(1.0-x[t] ) ; >
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double eps = 0.005;
int n_positions = 0;
int* positions = new int[T-l];
double sumt = 0.0;
for(int t=0;t<(T-l);t++)
{
cout «  "t = " «  t «  endl; 
n_positions = 0;
int result = find(x,T,t,x[t].positions,n.positions,eps);
double aiimn = 0.0;
for(int n=0;n<n_positions;n++)
{
if((result == 1) && (positions[n] != t))
{
int tl = positions[n];
double d = fabs(x[t]-x[tl] ) ; double dl = fabs (x [t+1] -x[t 1+1] ) ; 
sumn += log(dl/d);
>
>
sumt += sumn/((double) n_positions);
>
double lambda = sumt/((double) T); 
cout «  "lambda = " «  lambda «  endl; 
delete[] x; delete[] positions; 
return 0;

>

The direct method of Wolf et al [119] is a follows. Let

x0, xb  x2, . . .  ,xt- i 

be a scalar time series. In the fixed evolution time program the time step

A := £*+i “  tk

between replacements is held constant and normalized to 1. A d^-dimensional phase 
portrait (d.E embedding dimension) is reconstructed with delay coordinates, i.e., a 
point on the attractor is given by

Xt =  (х*, Xt+1, . . . , X t+ d g -i)  .

Let ||.|| denote a norm, for example the Euclidian norm, the max norm or sum norm. 
Using the selected norm we find the nearest neighbour vector to the initial point 
vector

Xo — (xo, • • • , Xo+dE- l )  •

We denote the distance between these two points by d(0). At a later time 1, the ini
tial length d(0) will have evolved to length d'( 1). The length element is propagated 
through the attractor for a time short enough so that only small scale attractor
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structure is likely to be examined. If the evolution time is too large we may see d! 
shrink as the two trajectories which define it pass through a folding region of the 
attractor. This would lead to an underestimation of the largest one-dimensional 
Liapunov exponent A. We now look for a new data point that satisfies the following 
two criteria:
(i) its separation, d( 1), from the evolved reference point is small,
(ii) and the angular separation between the evolved and replacement elements is 
small.

If an adequate replacement point cannot be found, we retain the points that were 
being used. This procedure is repeated until the reference trajectory has traversed 
the entire data file, at which point we estimate the largest one-dimensional Liapunov 
exponent as

x i  f  ln m
1)

where M  is the total number of replacement steps. In the limit of an infinite amount 
of noise-free data our procedure always provides replacement vectors of infinitesimal 
magnitude with no orientation error, and A is obtained by definition.

The algorithm proposed by Kantz [59] evaluates the following quantity

T-l (  м

s (r ) =  r  £ ln I £  d(x ‘ > x,=<;r )
1 t=0 \ki=l

where T  is the number of data points from the scalar time series, x t is a reference 
point, Xki is an e-near neighbour of x (. M  is the number of nearest neighbours and 
т  is the relative time and d(xt,Xki\T) is the distance between x t+T and Xfci+T. If the 
analyzed time series is produced from nonlinear dynamical systems with a positive 
largest one-dimensional Liapunov exponent, there is a positive constant slope of the 
function S (t) which corresponds to the largest one-dimensional Liapunov exponent.

In the C + +  program Kantz. cpp we evaluate the largest Liapunov exponent for data 
generated from the logistic map. Thus the Euclidean distance is calculated in one 
dimension. The embedding dimension is set to 1.

// Kantz.cpp 

#include <iostream>
#include <cmath> // for sqrt, fabs, log 
using namespace std;

int neighbourhood(double* al,double* a2,int length,double eps) 

double d = 0.0; // distance
for (int i=0;i<length;i++) { d += (al[i]-a2[i])*(al[i]-a2[i]); > 
d = sqrt(d);
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if(d < eps) return 1; 
else return 0;

>

int main(void)

// generate time series
int T = 2048; // length of time series
double* x = new doubled]; // memory allocation 
x[0] = 0.618; // initial value of time series
for(int i=0;i<(T-l) ;i++) { x[i+l] = 4.0*x[i] *(1.0-x[i] ) ; >

int m = 1;
double** W = NULL; W = new double*[T-m+1];
for (int j=0; j<(T-m+l); j++) { W[j] = new double [m]; >

int count = 0;
for(int j=0;j<(T-m+l);j++)
<
for(int i=0;i<m;i++) { W[j] [i] = x[i+count] ; > 
if(m==l) count++; 
else count += m-1;
>
double eps = 0.01;
int taurange = 6;
double* S = new double[taurange];
for(int tau=0;tau<taurange;tau++) { S[tau] = 0.0; } 
for(int tau=0;tau<taurange;tau++) 
i
double sumT = 0.0;
for(int t=0;t<(T-m+l-tau);t++)
<
double sumN = 0.0;
int numbert = 0;
for(int s=0;s<(T-m+l-tau);s++)
■c
if(s != t)
{
int result = neighbourhood(W[t],W[s],m,eps); 
if (result==l) ■{ numbert++; sumN += fabs(x[t+tau]-x[s+tau] ) ;
>
> // end s
if(numbert > 0) { sumT += log(sumN); >
> // end t
S[tau] = 1.0/((double)T)*sumT;
> // end tau

for(int tau=0;tau<taurange;tau++)
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{ cout «  "SC" «  tau «  "] = " «  SCtau] «  endl; > 
return 0;

>

2.4 Hurst Exponent

2.4.1 Introduction

Working extensively on the Nile River Dam Project, Hurst (Hurst [57], Peters [89]) 
encountered the 847-year record that the Egyptians had kept of the Nile River. 
Most hydrologists assumed that the inflow into a reservoir was a completely random 
process. However, in his examination of the Nile’s records, Hurst felt that the data 
did not represent a random structure, though standard statistical methods did not 
show any correlation between the observations. Thus, Hurst developed a new set of 
statistical tools to examine data that may not have an underlying Gaussian distri
bution.

Einstein had done an extensive study on Brownian motion. This study became the 
main model for random walks in the study of statistics. Einstein discovered that the 
distance covered by a random particle undergoing random collisions from all sides 
is directly related to the square root of time. Thus

R  =  kT l/2

where R is the distance covered, к is some constant and T  is the time index. Using 
rescaled range analysis (Hurst [57], Peters [89]), Hurst proposed a generalization of 
Brownian motion that could apply to a broader class of time-series. His generalized 
equation is

R/S =  kTH

where R/S =  rescaled range (range/standard deviation), T  =  index for number/time 
of observations, К  =  some constant for the time-series, H  — Hurst exponent.

Thus, Hurst generalized the T 1/2 law to a TH law. Analogously, Brownian motion 
can be generalized to fractal Brownian motion. Fractal Brownian motion exists 
whenever the Hurst exponent is well-defined.

The Я / S value is called the rescaled range and is a dimensionless ratio formed by 
dividing the range by the standard deviation of the observations. It scales as one 
increases the time increment by a power law value equal to # .  This is the key point 
in Hurst’s analysis: by rescaling, Hurst could compare divers data points, includ
ing periods of time that may be separated by many years. In addition, this type 
of analysis can be used to describe time series that possess no characteristic scale. 
This equation has a characteristic of fractal geometry: it scales according to a power 
law. In the lung, for instance, the size of each branch decreases in scale according 
to an inverse-power law. Likewise, the R/S function increases as a power of H . If
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the data of the system being measured were independently distributed, or followed 
a random walk, the equation would fit with Einstein’s ”T  to the one-half’ rule, and 
the value of the Hurst exponent would be 1/2. When Hurst investigated the Nile 
River he found H  =  0.91. Thus, the rescaled range was increasing at a faster rate 
than the square root of time and the system (measured by the changes in water) 
was covering more ’’ distance” than a purely random process. Thus, the values of 
the Nile River overflow had to be influencing one another. The river had a memory 
of past floods.

There are three possibilities for values of H (Peters [89]). If H =  0.5 the system 
follows a random walk. We recover the original scenario of Brownian motion. If 
not, the observations are not independent; each carries a memory of events which 
precede it.

• Я  =  0.5
Independent series. (Brown noise, or Brownian motion) The series is a 
random walk.

• 0 <  Я  < 0.5
Antipersistent series. (Pink noise) The system is covering less distance than 
a random walk. Thus, it has a tendency to reverse itself often. If increasing, it 
is more likely to be decreasing the next period; if decreasing, it is more likely 
to be increasing.

• 0.5 < Я  <  1
Persistent series. (Black noise) This series covers more distance than a 
random walk. Thus, if the system increases in one period, it is more likely to 
keep increasing in the immediately following period. This is commonly called 
the Joseph effect, in that it tends to lead to ’’ seven years” of fortune followed 
by ’’ seven years” of famine. Such a series also has the potential of sudden 
catastrophes, the so-called Noah Effect.

Thus the Hurst exponent is a useful measure for fractal distributions. There is no 
characteristic time scale in such a distribution. Hence an exponential, or relative, 
relation dominates over a polynomial, or absolute, characterization.

The following statements are believed equivalent for a time-series:

1. The Hurst exponent is well-defined for the time-series.
2. The time-series exhibits fractional Brownian motion.
3. The probability distribution is stable (Paretian or Levy).
4. The slope of the log-log R/S graph is constant.

The value I/Я  is the fractal dimension of the probability space (Mandelbrot [74]). 
The random walk has a fractal dimension (capacity) of 1/0.5 =  2. Thus it completely
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fills the phase space. The value 2 -  H  is the fractal dimension of the time-series. 
The value 2H +  1 is the rate of decay of the Fourier series. This means the Fourier 
coefficients decrease in proportion to 1 / / ( 2Я+1). Estimations of H  can be found by 
taking the slope of the log/log graph of R/S versus T , where

log (R/S) =  \og(kTH) =  log(fc) +  H  log (T ) .

If there is no long term memory present, scrambling the data should have no effect 
on this estimate of H. If, however, we destroy the structure by randomizing the data 
points, the estimate of H should be much lower. Therefore, the Hurst exponent is 
a meaningful measure of the memory of a system. The R/S statistics for a discrete 
time series ut is defined as follows

(u)r)
i=0

R[t) :=  max X ( t , r ) — min X (t tr)v ' 0<t<r—1 4 ’ '  0<t<r—l 4 '
1/2/1  T- i  у

5 (T) := E K  -  (“ W 2J

R/S{t) := R (t)/S{ t).

Regarding the sequence of random numbers ut as spatial increments in a one
dimensional random walk, then

T - l

J2 ut
t=о

is the position of the walker after a time r. In the quantity X (t ,r )  the mean over 
the time lag r

(“ )t := ; ;X > t  
T 1=0

is subtracted to remove a trend when the expectation value of ut is not zero. Я(г) 
is the self-adjusted range and R/S(t) is the self-rescaled self-adjusted range.

2.4.2 Implementation for the Hurst Exponent
In the following we use the notation as in our C + +  program. Let

uQ) u\t . . .  , ut- i

be a given time series of length T. We divide this time period into a contiguous 
subperiods of length n, such that an =  T. We label each subperiod with j  =
0 ,1 ,2 ,. . . ,  a —1. Each element in Ij is labeled N[ji][fc] such that к =  0 ,1 ,2 , . . . ,  n — 1. 
Thus N  is an a x n matrix. For each Ij of length n, the average value is defined as
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where Ej is the average value of the ut contained in subperiod Ij of length n. 
The time series of accumulated departures X\j\ [A:] from the mean value for each 
subperiod Ij ( j  — 0 ,1 , . . . ,  a — 1) is defined as

X\j)[k\ :=  £ (tf[T ]M  -  * =  0 ,1 ,2 ,. .. ,n  -  1.
i=0

Thus X  is also an a x  n matrix. The range is defined as the maximum minus the 
minimum value of X [j] [fc] within each subperiod Ij

Rj max (X\j][k]) — min (X\j][k]).
h 0<k<n-V un  J/ о<л<п—l UJL J/

The sample standard deviation calculated for each subperiod Ij (j  =  0 ,1 , . . . ,  a — 1) 
is

/1 n-i x 1/2
S i , ~  { - z m m - E j ) 2 ) ■

\n  k= 0 /

Each range, RIjf is now normalized by dividing by the S /;. corresponding to it.
Therefore, the rescaled range for each Ij subperiod is equal to RiJSir  We had a
contiguous subperiods of length n. Therefore, the average R/S value for a fixed
length n is defined as

a ;Ь  s h '
The length n is increased to the next higher value, and (T — 1 ) /n  is an integer value. 
We use values of n that include the beginning and ending points of the time series, 
and steps described above are repeated until n =  (T — l) /2 . We can now apply

(.R/S)n =  cnH

or
log((-ft/S)„) =  log(c) +  H log(n)

by performing an ordinary least squares regression on log(n) as the independent 
variable and log (^ /5 )n as the dependent variable. The intercept is the estimate for 
log(c), the constant. The slope of the equation is the estimate of the Hurst expo
nent, H. In general, one runs the regression over values of n >  10. Small values of 
n produce unstable estimates when sample sizes are small.

In the C + +  program Hurstl.cpp we generate a time series from the logistic map. 
The length of the time series is 4096. The smallest length of contiguous subperiods 
is n =  16. Thus a =  256 for this case.

// Hurstl.cpp

#include <iostream>
#include <cmath> // for log 
using namespace std;
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double sumCdouble* array,int length)
{
double result = 0.0;
for(int i=0;i<length;i++) { result += array[i]; > 
return result;

>

double max(double* array,int length)
■c
double max_value = array[0]; 
for(int i=l;i<length;i++)
{ if(max_value < array[i]) max_value = array[i]; > 
return max_value;

>

double min(double* array,int length)

double min_value = array[0]; 
for(int i=l;i<length;i++)
{ if(min_value > array [i]) min_value = array [i] ; > 
return min_value;

>

int main(void)
{
// generate time series
int T = 4096; // length of time series
double* u = new double[T]; // memory allocation 
u[0] = 0.618; // initial value of time series
for (int i=0; i< (T-l) ; i++) { u[i+l] = 4.0*u[i]*(1.0-u[i] ) ; > 
int n = 16; // smallest length of contiguous subperiods 
int n_numbers = 0;
while(n <= T/2) {  n_numbers++; n += n; > 
cout «  "n_numbers = " «  n_numbers «  endl;

n = 16;
int* n_values = NULL; n_values = new int[n_numbers]; 
for(int i=0;i<n_numbers;i++) { n_values[i] = n; n += n; У

double* RDS = new double[n_numbers]; 
n = 16;
for(int 1=0;l<n_numbers;1++)
{
int a = T/n;
double** N = NULL; N = new double*[a];
for (int j=0;j<a;j++) { N[j] = new double[n]; >
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int count = 0; 
forCint j=0;j<a;j++)

for(int i=0;i<n;i++) { N[j][i] = u[i+count] ; > 
count += n;
>
double* E = new double[a];
forCint j=0;j<a;j++) { E[j] = 1.0/((double) n)*sum(N[j] ,n); >

double** X = NULL; X = new double*[a]; 
for(int j=0;j<a;j++) { X[j] = new double[n]; } 
forCint j=0;j<a;j++)
<
forCint k=0;k<n;k++)
{
double temp = 0.0;
forCint i=0;i<=k;i++) { temp += N[j] [i]-E[j]; >
XCj] [k] = temp;
>
>

double* R = new double[a];
forCint j=0; j<a; j++) { R[j] = maxCXCj] ,n)-minCX[j] ,n); > 

forCint j=0;j<a;j++)
<
forCint k=0;k<n;k++) { N[j][k] = CN[j] [k]-E[j])*CN[j] [k]-E[j]); >
>

double* S = new double[a];
forCint j=0;j<a;j++) { S[j] = sqrtCl.O/CCdouble) n)*sumCN[j] ,n)); >

double* D = NULL; D = new double[a]; 
forCint j=0;j<a;j++) { D[j] = R[j]/S[j]; >

delete[] E; delete[] R; deleted S;
forCint j=0; j<a; j++) { delete[] N[j]; > deleted N;
forCint j=0;j<a;j++) {  deleted X [j]; > deleted X;

RDSC1] = 1.0/CCdouble) a)*sumCD,a); 
delete [] D; 
n += n;
> // end for loop for 1 
deleted u;

forCint i=0;i<n_numbers;i++)
cout «  "RDS [" «  i «  "] = " «  RDS[i] «  " " «

"n = " «  n_vaLIues[i] «  endl;
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cout «  endl;
for(int i=0;i<n_numbers;i++)
cout «  "logRDS [" «  i «  "] = " «  log(RDS[i3) «  " " «  

"log(n) = " «  log((double) n_values[i]) «  endl; 
delete[] RDS; 
return 0;

2.4.3 Random Walk
The random walk plays a central role in calculating the Hurst exponent. Hurst ran
dom walks are discrete random walks which reverse directions with probability h. 
Given an undirected, connected graph G(V, E) [V  denotes the vertices, E  denotes 
the edges) with |V| =  n, \E\ =  m  (n number of vertices, m  number of edges) a 
random step in G  is a move from some node и to a randomly selected neighbour v. 
A random walk is a sequence of these random steps starting from some initial node.

The C + +  program RandomWalk. cpp implements a random walk on a two-dimensional 
square lattice. No boundary conditions are implemented.

// randomwalk.cpp

♦include <iostream>
♦include <cstdlib> 
using namespace std;

const int n = 24;

void init (char s[n] [n])

for(int i=0;i<n;i++)
for (int j=0;j<n;j++) s[i][j] = *

>

void display (char s[n][n]) 

for(int i=0;i<n;i++)
{ for (int j=0;j<n;j++) cout «  s[i][j]; cout «  endl; >

>

int main(void)

char s [n] [n] ; 
int x = 12, у = 12; 
init(s);
s[x][y] = >0>; // start cell 
cout «  "enter a seed: "; 
unsigned int seed;
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cin »  seed; 
srand(seed);
int east = 0; int west = 0; int north = 0; int south = 0; 

for(int i=l;i<=n/2;i++)
{
switch (rand () */,4)
{
case 0: x += 1; west++; break; 
case 1: у += 1; north++; break; 
case 2: x -= 1; east++; break; 
case 3: у -= 1; south++;
>
S [x] [y] = > $ ';
> // end for loop 
s[x] [у] = ’E’; 
display(s);
cout «  "north = " «  north «  "\t" «  "south = " «  south «  "\t"

«  "west = " «  west «  "\t" «  "east = " «  east; 
return 0;

>

The Java program RandomWalk. j ava also implements a random walk on a two- 
dimensional square lattice. Cyclic boundary conditions are implemented. The red 
dot is the initial position. The Java program is an application and an Applet.

// RandomWalk.java

import javax.swing.*; 
import java.awt.*; 
import java.util.Random;

public class RandomWalk extends JApplet

Random r; 
int xO, yO, x, y; 
boolean firstTime; 
int size = 370;

public void initО
<
r = new Random();
xO = 150; yO = 150; x = xO; у = yO; 
firstTime = true;
>

public void paint(Graphics g)
{
super.paint(g);
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// draw a grid 18 x 18 with each square 20 pixels wide 
forCint i=10;i<size;i+=20)
forCint j=10;j<size;j+=20) g.drawRectCi,j,20,20); 

g.setColorCColor.RED);
g.fill0valCx0-3,y0-3,6,6); // initial position 
// draw a blue dot that represents an ant 
g.setColor CColor.BLUE); 
g.fill0valCx-3,y-3,6,6); 
ifCfirstTime) walkC);
>

private void walkС)

firstTime = false; 
new ThreadCnew Runnable0  
{
int count = 0; 
public void runО  
{
whileCcount++ < 400)
{
int d = r.nextIntC4); 
switchCd)
{
case 0: у += -20; ifCy==-10) у = 350; break; 
case 1: x += +20; ifCx==370) x = 10; break; 
case 2: у += +20; if(y==370) у = 10; break; 
case 3: x += -20; ifCx==-10) x = 350;
>
repaintC);
try { Thread.sleepC200); > 
catchClnterruptedException ie)
{
System.err .printlnС11 interrupt " + ie.getMessageO) ; 
break;
>
>
showResultsO;
>
» .startC);
>

private void showResultsO

double distance = CMath.absCx-x0)+Math.absCy-y0))/20.0; 
JOptionPane.showMessageDialogCnull,"effective distance moved = " + 

distance + "blocks!","results",JOptionPane.INF0RMATI0N_MESSAGE);
>
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public static void main(String[] args)
{
JApplet applet = new RandomWalkO;
JFrame f = new JFrameO;
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPaneO.add(applet);
f.setSize(400,400);
f.setLocation(200,200);
applet.init();
f.setVisible(true);
} // end main

>

Brownian motion (in one dimension) is a random walk on the line where the step 
length is given by a zero mean Gaussian (normal) probability distribution. Since 
the steps are independent the cumulative position X  is known to satisfy

(X (t) -  X (0)) =  0, ([X(t) -  X(O)]2)1/2 oc \t\W

so that the standard deviation from the origin grows as tl 2̂. Mandelbrot and Wallis 
[72] and Mandelbrot and Van Ness [73] introduced fractional Brownian motion as a 
generalization to processes which grow at different rates tH

( lxH( t ) - x Hm Y 2 «\t\H

where 0 < H  <  1 is called the Hurst exponent. Successive increments of a 
fractional Brownian motion are called fractional Gaussian noise

& f(0 =  X li(t +  4) “  Xfi(t)

where 6 can always be rescaled to one. The autocorrelation funcion which measures 
the covariance of a data series with itself at some time lag r  is formally defined as

r , % (Кя(0 ~  (£яМ)][£я(* ~ T) -  ы г  -  т))])
«[& w - ( M t w m u t - r ) - - т ) ш '* *

For a fractional Gaussian noise process the definition yields

C (r) =  i(| r+ l| 2" -2 | r | 2"  +  | r - i n

which is zero for H  =  1/2 (except for r  =  0 where the autocorrelation is always 
one) while for H ф 1/2 and large r  we have

lim С(т) ос. t 2H~2 .r-*oo 4

Thus the autocorrelations decay slowly and the resulting fractional Browian motion 
exhibits long memory effects. Correlations are positive for H >  1/2 (persistence)
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and negative for H <  1/2 (antipersistence). As for standard Brownian motion, all 
fractional Brownian motion are self-affine

X H(at) :=  aHX H(t)

meaning that the series appears statistically indentical under scaling at the time axis 
by some factor a and the displacement X h by aH. Thus, fractional Brownian motion 
lacks any characteristic time scale and when generating or sampling a fractional 
Brownian motion series, an arbitrary step length of one unit may be used without 
loss of generality. Self-affine signals can be described by a fractional dimension 
D (capacity) which is related to the Hurst exponent by D  =  2 — H  for fractional 
Brownian motion. The fractal dimension D  can be loosely interpreted as the number 
of dimensions the signal fills up. The power spectrum (defined as the amplitude- 
squared contributions from the frequencies ± / ,

S (f)  =  \FH(f)\2 +  \ F „(-f)\ 2

where Fh is the Fourier transform of X h) of fractional Brownian motion also demon
strates scaling behaviour. For low frequencies it can be approximated by a power 
law

S U )  ~  i / / 2H+1 •

2.5 Higuchi’s Algorithm
Higuchi [56] proposed a method for calculating the fractal dimension from a one
dimensional time series. Consider the time series of length N  taken at recular 
intervals

U l )  U 2, U z,  . . .  •

Higuchi’s algorithm is based on the measure of the mean length of the curve L{k) 
by using a segment of fc-samples as a unit of measure. Let m, к be positive integers 
with m =  1 ,2 , . . . ,  k. Then from the time series we form к new time series as follows

Ufc • m̂i tim+2fcj • • • î m+L(N-m)/fcJfc
where [J is the Gauss notation (i.e. [rcj represents an integer not exceeding ж). 
Here 77i indicates the initial time and к indicates the interval time. Thus for a time 
interval equal to к we obtain к sets of new time series. For example, in the case of 
N =  100 and к =  3 we find

« Е Й ?  '• t i l ,  UA) « 7,...,«100 
«Е* : «2, ti5, U8}  . . . , Ug8
« К ?  : « 3, t i e ,  U g , • • • , Ugg

One defines the length of the set of the time series {  u™ }  as

1 N _1 l(w_m)/fcJ
LmW ;= k (l(N -m )/ k \ )k  §  \Um+ik ~
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The term (N  -  1)/(([(N  — m)/k\)k) is a normalization factor for the time series 
length of subset time series. Thus Lm(k) represents the normalized sum of the 
segment length. The length of Lm(k) for the time interval k, L(k), is calculated 
as the arithmetic mean of the к values Lm(k) for m  =  1 ,2 , .. . ,  k. If the value is 
proportional to k~D, i.e.

L(k) oc k~D

the time series is fractal-like with the fractal dimension D. If L{k) (k >  1) is plotted 
against к for к ranging from к =  1 , . . . ,  k ^  (kmax <& N) on a doubly logarithmic 
scale, the data should fall on a straight line with slope —D.

2.6 Complexity
Many different definitions of complexity have been proposed in the literature. Among 
them are: algorithmic complexity (Kolmogorov-Chaitin), the Lempel-Ziv complex
ity, the logical depth of Bennet, the effective measure complexity of Grassberger, 
the complexity of a system based on its diversity, the thermodynamic depth, and a 
statistical measure of complexity (see Steeb [104] and references therein).

In the following we consider the Lempel-Ziv complexity [65]. A definition of com
plexity (Kolmogorov-Chaitin [13]) of a string (a string of zeros and ones) is given by 
the number of the bits of the shortest computer program which can generate this 
string. A general algorithm which determines such a program cannot be given.

Lempel and Ziv [65] have chosen from all possible programs one class that allows 
only two operations: copying and inserting. For the reconstruction of the given 
string of length n over a finite alphabet, using these two operations, they have 
introduced a complexity measure c(n). Here an algorithm can be given. First we 
give some definitions. A finite nonempty set is called an alphabet, and the elements 
of the set are called symbols or letters. A word (or string) over an alphabet A is any 
finite, possibly empty, sequence of symbols from A, written without punctuation. 
For example, if

Л : = { 0 , 1 }  

then the following are words over A

11, 0001, 101010, 0 .

The empty word is the empty sequence of symbols, and is denoted by A. The length 
of a word S (written |S|) is the number of symbols in 5, including repetition. Thus 
the words 11, 0001, 10101, 0, A have length 2, 4, 5, 1, 0, respectively. The set of all 
words over A  is denoted by A*. If A =  { 0 ,1 }, then

A* =  {  A, 0, 1, 00, 01, 10, 11, 000, 001,... }  .

The quantity S (i,j)  denotes the substring

S(i> j )  — SjSj-fi * * * Sj.
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Definition. A vocabulary of a string 5 , denoted by v(S ), is the subset of A* formed 
by all the substrings, or words, S(i, j )  of S.

Definition, If 5  =  SiS2 . . .  sm and R  =  r ir2 .. . rn are words over A t and each s* 
and rj in A , then the catenation of S and R  is the word

Sis2---smr1r2---rn

denoted by SR.

Obviously we have

(i) S(RQ) =  (SR)Q
(ii) SX =  XS
(iii) \SR\ =  |5| +  \R\
(iv) SR Ф RS in general

Let us now describe how the Lempel and Ziv complexity is evaluated (Steeb [104]). 
Given a string of finite length

S =  sis2 • • • sn .

The complexity in the sense of Lempel and Ziv of a finite string is evaluated from 
the point of view of a simple self-delimiting learning machine which, as it scans a 
given n digit string S =  S\S2 - ■ -sn from left to right, adds a new word to its memory 
every time it discovers a substring of consecutive digits not previously encountered. 
Thus the calculation of the complexity c(n) proceeds as follows. Let us assume that 
a given string sis2 • • • sn has been reconstructed by the program up to the digit sr 
and that sr has been newly inserted, i.e. it was not obtained by simply copying it 
from sis2 • • • зг_!. The string up to sr will be denoted by

R  :=  sis2 • • • sro

where the о indicates that sr is newly inserted. In order to check whether the rest 
of R , i.e., sr+isr+2 • ■ • sn can be reconstructed by simple copying or whether one 
has to insert new digits, we proceed as follows: first, one takes Q =  sr+i and asks 
whether this term is contained in the vocabulary of the string R so that Q  can 
simply be obtained by copying a word of R. This is equivalent to the question of 
whether Q is contained in the vocabulary v^RQ-k) of RQn where RQiг denotes the 
string which is composed of R and Q (concatenation) and n means that the last 
digit has to be deleted. This can be generalized to situations where Q also contains 
two (i.e., Q =  sr+1sr+2) or more elements. Let us assume that sr+i can be copied 
from the vocabulary of R. Then we next ask whether Q =  sr+iSr+2 is contained in 
the vocabulary of RQtt and so on until Q becomes so large that it can no longer 
be obtained by copying a word from v(RQtt) and one has to insert a new digit. 
The number с of production steps to create the string S} i.e., the number of newly
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inserted digits (plus one if the last copy step is not followed by inserting a digit), is 
used as a measure of the complexity of a given string.

Exam ple. A binary string consisting only of 0’s (or l ’s) must have the lowest 
complexity, namely 2, since 0 о 000. . .  . A  string consisting of a sequence of Ol’s
i.e. ” 010101- • -01” has complexity 3, since 0 о 1 о 0101 • • - 01. For the binary string 
0001101001000101 we find 0 о 001 о 10 о 100 о 1000 о 101. *

In order to obtain a complexity measure which is independent of the string length 
we use a normalized complexity measure. For very large strings it makes sense to 
normalize them. To normalize them we consider the interval [0,1]. The rational 
numbers in this interval are of Lebesgue measure zero. For almost all numbers in 
the interval [0, 1] (the irrational numbers) the string of zeros and ones which repre
sents their binary decomposition is not periodic. Therefore almost all strings which 
correspond to a binary representation of a number x  € [0, 1] should be random and 
have maximal complexity. The complexity tends to the same value for n —► oo, 
namely n / log2 n for a binary alphabet. For a string with a ternary alphabet we 
have n / log3 n. We use this quantity to normalize the complexity c(n). Thus the 
largest value the normalized complexity can take is equal to 1.

A comment is in order in calculating the Lempel and Ziv complexity. We assume 
that the information needed in Lempel and Ziv coding is one unit for each new 
word. Only then we obtain complexity 3 for an alternating string ” 0101010- • •” , and 
only then a random string would have complexity n/ log2 n. One is of course free 
to count complexity in any units one wants. The usual units axe bits. In this case 
the information needed to specify one among n words is «  log2n instead of 1. Thus 
the Lempel and Ziv complexity of a fully random binary string is 1 bit/symbol and 
not n / log2 n units. The average Lempel and Ziv complexity per symbol for random 
strings coincides with the Shannon entropy, and hence the Lempel and Ziv complex
ity per symbol for the logistic map at fully developed chaos is equal to 1 bit/symbol. 
This assumes already the limit n —► oo. For finite n there are several sources for log
arithmic corrections, one of them being that the Lempel and Ziv complexity is only 
defined for finite strings in this picture, whence one has to specify also the string 
length. Thus the Lempel and Ziv complexity for the alternating string ” 0101010- • •” 
of length n is >  log2 n in this picture, and not finite.

Next we have to find a string from the one-dimensional map. This is done using 
symbolic dynamics. To construct the symbolic dynamics of a dynamical system, the 
determination of the partition and the ordering rules for the underlying symbolic 
sequences is of a crucial importance. In the case of one-dimensional maps, the 
partition is composed of all the critical points.

// Lempelziv.cpp

♦include <iostream>
♦include <cmath> // for log
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using namespace std;

unsigned int complexity(const unsigned int* S,unsigned int T) 
{
unsigned int с = 1, 1 = 1; 
do

unsigned int kmax = 1;
for(unsigned int i=0;i<l;i++)
■C
unsigned int к = 0; 
while (S[i+k] == S[l+k])
{ ++k; if(l+k >= T-l) return (++c); > 
if(k >= kmax) kmax = k+1;
>
++c;
1 += kmax;
> while(l < T); 
return c;

>

int main(void)

unsigned int T = 4000; // length of string 
unsigned int* S = new unsigned int[T];

// time series from logistic map -> symbolic dynamics 
double x = 0.618; // initial value 
SCO] =1; // since x > 0.5

for(unsigned int t=l;t<T;t++)
{
double xl = x; 
x = 4.0*xl*(l.0-xl); 
if (x >= 0.5) S[t] = 1; 
else S[t] =0;
>

unsigned int sumc = complexity(S,T); 
cout «  "sumc = " «  sumc «  endl; 
double cnorm;
cnorm = sumc*log((double)T)/(log(2.0)*((double)T)); 
cout «  "cnorm = " «  cnorm; 
delete [] S; 
return 0;

>



Chapter 3 

Autonomous Systems in the Plane

3.1 Classification of Fixed Points
In this chapter we consider autonomous systems of ordinary differential equations 
in the plane (Hirsch and Smale [51])

^  =  fi(u u u 2), ^  =  /2{щ ,и2)

where f i , f 2 € C2. The fixed points (u*,u2) (also called equilibrium points, time- 
independent solutions) are given as the solution of the equation

/lfai.uj) =  0, / 2(1*1 . «5) = 0.
Exam ple. The system ( Van der Pol equation)

du\ du2 /. 2\ -  T)- j j-  =  u2, =  -U l +  fi[l -  ul)u2t ц е  R

has only the fixed point (u^uj) =  (0,0). ♦

Exam ple. The system

has the manifold (circle) 1 — u{2 — u*2 — 0 and the point (kJ, u 2) =  (0,0) as its fixed 
points. ♦

Approximation to a nonlinear system by linearizing it at a fixed point is a most 
important and generally used technique. The linearized equation (also called varia
tional equation) is given by

dv 1 a /i(u (t)) 0 / i  (u(0 )
- M = - ^ T Vl +  - ^ r v*
dv2 d f2(u(t)) , df2{u(t))

111
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If we assume that the only fixed point is at the origin (0,0), then the linearized 
equation simplifies to

dv i 
dt =  av i +  bv 2,

where

dv2
—  =  cvi +  dv2

■'-S'0-01
We expect the solutions of this linearized equation will be geometrically similar to 
those of the original system near the origin (0, 0), an expectation fulfilled in most 
cases. Non-trivial solutions exist if and only if

det ( “ ; A Л ) - °
It follows that

A2 — (a +  d) A +  (ad — be) — 0
which is called the characteristic equation. When this equation has two different 
roots, Ai, A2, two linearly independent families of solutions are generated. We 
define p :=  a +  d, q :=  ad — be. The characteristic equation becomes

A2 — pA -b^ =  0.

Let Д :=  p2 +  4q be the discriminant. Then the roots Ai, A2 are given by

Ai 2 (P +  ^ 1/2), Д1/2) .

The following table lists the possible cases.

(i) Ai, A2 real, unequal, same sign д  > 0,9 > 0
(ii) Ai =  A2 (real) b Ф 0, с Ф 0 Д =  0,p 7^0
(iii) Ai, A2 complex, non-zero real part Д < 0 ,p Ф 0
(iv) Xi Ф 0, a2 = 0 q =  0
(v) Ai, A2 real, different sign q <  0
(vi) Ai, A2 pure imaginary q >  0,p  == 0

Node
Inflected Node 
Spiral
Parallel Lines 
Saddle Point 
Centre

In classifying the fixed points as in the preceding examples we have taken for granted 
an unproved assumption, that the phase paths of the original equation and those of 
the linearized equation near the fixed point are of the same character. This is true 
in general for spirals, nodes, and saddle points, but not for a centre. For example, 
the linear approximation may predict a centre where the original equation had a 
spiral. Conversely, the system of differential equations

du\ du2 4
1 T  =  U>’ ~ d t= ~ u'

has a centre at the origin, but the linearized system of equations
dv 1 
dt

=  v2,
dv 2 
dt

=  0

has not.
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3.2 Homoclinic Orbit
Anharmonic systems with a homoclinic orbit play a special role in the study of 
chaotic systems. By definition, these orbits tend to the same fixed point for both 
t —* oo and t —► — oo. As an example we consider the anharmonic system

d2u и о о _ 0.

Introducing ui :=  и and v.2 :=  du/dt we obtain the autonomous system in the plane 

dui dv.2 U\ 2 о
^  =  U2' l x = ^ - u' - u-

The three fixed points of this system are given by

(«1,1*5) =  (0, 0), ( « > ; )  =  (—(%/3 +  i ) /2,0), K , u;)  =  ( b / 3 - i ) / 2 , 0 ) .

The half plane щ  >  0 contains a unique homoclinic orbit Г(£) =  (ui(£),u2(£)) given 
explicitly by

2 gt/N/2
-  “ *w  =  (e^  +  a)2 +  1 -

The fixed point (0,0) is a hyperbolic fixed point and the other two fixed points are 
elliptic. For the fixed point (0,0) the eigenvalues of the functional matrix are real 
and for the two other fixed points the eigenvalues are purely imaginary.

In the program Homoclinic .java we apply the Lie series technique to calculate the 
homoclinic orbit of the differential equation given above.

// Homoclinic.java

import j ava.awt.*; 
import java.awt.event.*; 
import java.awt.Graphics;

public class Homoclinic extends Frame 
{
public Homoclinic0
<
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
< System.exit(0) ; ») ; >

public void paint(Graphics g)
{
double t = 0.0001, count =0.0;
double ul1 = -0.001, u22 =0.001; // initial values
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double ul, u2; 
double V2;
g.dravRect(40,40,500-40,400-40);
g. drawLine (40,220,500,220) ; g. drawLine (400,40,400,400) ; 
while(count < 42.5)
•C
ul = ull; u2 = u22;
V2 = ul*(0.5-ul-ul*ul);
ull = ul+t*u2+t*t*V2/2.0;
u22 = u2+t*(ul/2.0-ul*ul-ul*ul*ul)+

t*t*u2*(0.5-2.0*ul-3.0*ul*ul)/2.0; 
int ml = (int) Math.floor(150*ul+400); 
int nl = (int) Math.floor(150*u2+220); 
int m2 = (int) Math.floor(150*ul1+400); 
int n2 = (int) Math.floor(150*u22+220); 
g.drawLine(ml,nl,m2,n2); 
count += t;
)■ // end while
> // end paint

public static void main(String[] args)
{
Frame f = new Homoclinic(); f.setVisible(true);
>

>

3.3 Pendulum
The equation for the pendulum, is given by

d?u ,  . . 4 « g
-ijjp +  w sin(u) =  0, ы

where L is the length of the pendulum, g the acceleration due to gravity, и is the 
angular displacement of the pendulum from its position of equilibrium and u> is the 
frequency. Introducing the quantities u(t(t)) =  u(£), t(t) =  сot we can write the 
pendulum equation in dimensionless form

d2u . .
+  sin(u) =  0 .

We omit the tilde in the following. Introducing the quantity щ =  и and — 
du/dt =  dui/dt we obtain the autonomous first order system

du\ du2 . , ч

Thus we obtain the fixed points (птг,0), n € Z. The variational equation is given 
by

dvi dv2 , .
i-
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Inserting the fixed points (п7г, 0) into these equations we find

dv2 _  j  —v\ ifn even 
dt \ V\ if n odd

In the first case the eigenvalues are г, —г. Thus we have a centre. In the second case 
the eigenvalues are 1, —1. Thus we have an unstable node. In the Java program 
Pendulum. j ava we integrate the dynamical system using a symplectic integrator.

// Pendulum.java

import j ava.awt.*; 
import java.awt.e v e n t ; 
import j ava.awt.Graphi cs;

public class Pendulum extends Frame 

public PendulumO
<
setSize(400,300);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System, exit (0) ; » ) ; >

public void paint(Graphics g)
{
double t = 0.001; 
int steps = 20000; 
double ql, pi;
double q = 1.0, p a 1.75; // initial values 
double mu = 5.0; // parameter value

for(int i=0;i<steps;i++)
<
ql = q; pi = p;
q = ql+t*pl; p = pl-t*Math.sin(q); 
int mxl = (int) Math.floor(40*ql+250+0.5); 
int nyl = (int) Math.floor(40*pl+350+0.5); 
int mx = (int) Math.floor(40*q+250+0.5); 
int ny = (int) Math.floor(40*p+350+0.5); 
g.drawLine(mxl,nyl,mx,ny);
>
>

public static void main(String[] args)

Frame f = new PendulumO; f .setVisible(true);
>

>
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3.4 Limit Cycle Systems
Consider the autonomous system of first order differential equations in the plane

d?u .du  . .
^  +  / ( u ) -  +  S(U) =  0 .

Let ,«
F {u )=  /  f {s )d s .

Jo

Assume that /  is an even and g an odd function, both are continuous for all и and 
g satisfies the Lipschitz condition. Assume further that

/ ( 0) <  0, ug(u) > 0  for и Ф 0, F(u) —* ± oo  if и —> oo

and that /  has a single zero at и =  b (u >  0) and is monotonically increasing for 
и >  b. Then the system

l i t =U2} ~Ж =  ~ ^ U^ U2 ~  9^

has a stable limit cycle. As our first example we consider the Van der Pol equation

du i du 2 , /1 2\
1 t = U 2 ' * -  =  - “ 1 +  ^ ( 1 - “ l b -

It admits only one fixed point at the origin, namely (0,0). The variational equation 
is given by

dl) i dl) 2 _ ч i- 9\
— V2, -jj~ =  “ (I +  2fJtUiU2)Vi +  1 -  Щ)У2 ■

Inserting the fixed point (0,0) yields

dv i dv 2
- t i =V2' ^  =  - U i + № - 

The eigenvalues of the matrix

Ч Д  l )
for the variational equation are given by

л(м) =  \  +  yj~ l  +  M2/4 , A(fi) =  | -  \/-l +  H2/4 •

Thus for ii >  0 the eigenvalues have a positive real part. Hence the fixed point 
(0,0) is unstable for /x > 0. For ц <  0 the fixed point (0,0) is stable. We have 
iftA(O)) =  0 and $R(A'(0)) Ф 0, where 1 indicates differentiation with respect to /x. 
Thus (xi,X 2) =  (0,0) undergoes a Hopf bifurcation for /i =  0 (see section 5.7).

In the C + +  program vdpol.cpp we find the phase portrait of the Van der Pol 
equation using the Runge-Kutta technique. The parameter value is /i =  5.0.
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// vdpol.cpp

♦include <fstream> 
using namespace std;

const int N = 2;

void fsystem(double h,double t,double u[N] .double hf[N])
<
double mu = 5.0;
hf [0] = h*u[l]; hf[l] = h*(-u[0]+mu*(1.0-u[0]*u[0])*u[l]);

>

void map(double u[N],int steps,double h,double t)
{
double uk[N] ; 
double tk;
double a[6] = { 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double с[6] = {  16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >;
double b[6] [5] ;
bCO] [0] = b[0] [1]= b [0] [2] = bCO] [3] = b[0] [4] = 0.0; 
b[l][0] = 1.0/4.0; b[l][l] = 0.0; b[l][2] = 0.0; b[l] [3] = 0.0; 
b[l] [4] = 0.0;
b [2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0;
b[2] [2] = 0.0; b[2][3] = 0.0; b[2] [4] = 0.0;
b[3][0] = 1932.0/2197.0; b[3] [1] = -7200.0/2197.0;
b[3] [2] = 7296.0/2197.0; b[3] [3] = b[3][4] = 0.0;
b[4] [0] = 439.0/216.0; b[4] [1] = -8.0;
b[4] [2] = 3680.0/513.0; b[4] [3] = -845.0/4104.0;
b[4] [4] = 0.0;
b[5] [0] = -8.0/27.0; b[5] [1] = 2.0;
b[5] [2] = -3544.0/2565.0; b[5] [3] = 1859.0/4104.0;
b[5] [4] = -11.0/4.0;
double f [6] [N] ;
int i, j, 1, к;

for(i=0;i<steps;i++)
■C
fsystem(h,t,u,f[0]); 
f or(k=1;k<=5;k++)
<
tk = t + a[k]*h; 
f o r (1=0 ;1<N;1++)
•C
uk[l] = u[l] ;
for(j=0; j<=k— 1; j++) uk[l] += b[k] [j]*f [j] Cl];
>
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fsystem(h,tk,uk,f[k]);
>
fo r (1=0;1<N;1++) 
for(k=0;k<6;k++) u[l] += с [k] *f [k] [1] ;

>
>

int main(void) 

ofstream data;
data.open("phase_data.dat"); 
int steps = 1;
double h = 0.005; // step size
double u[N] = { 0.1, 0.2 >; // initial conditions 
double t = 0.0; 
int i;
// wait for transients to decay
for(i=0;i<1000;i++) { t += h; map(u,steps,h,t); > 
t = 0.0;
for(i=0;i<40000;i++)
<
t += h; map(u,steps,h,t);
data «  u[0] «  " " «  u[l] «  "\n";
>
data.close 0; 
return 0;

>

As our second example we consider the system

dtti du% , t v
~ d t=U2’ ~dt =  ~ Ul ~  Д Sin^ 2'  ’

The system shows infinitely many limit cycles. We assume that fj, >  0. Then (0,0) 
is an unstable fixed point.

In the Java program LimitCycles .java we calculate the phase portrait for different 
initial values. We consider two different initial conditions. One is close to the origin 
and the other one is between the first and second limit cycle. We apply symplectic 
integration.

// LimitCycles.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class LimitCycles extends Frame 
■C
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public LimitCyclesO
<
setSize(400,300);
addWindovListener(new WindowAdapterO 
{ public void windowClosing(WindowEvent event)
{ System.exit(0); }}); >

public void paint(Graphics g)
{
double t = 0.005; 
double xl, yl;
double x = 0.05, у = 0.01; // initial values 
double mu = 5.0; // parameter value
int T = 10000; // number of iterations

for(int i=0;i<T;i++)
•c
xl = x; yl = y; 
x = xl+t*yl;
у = yl*Math.exp(-t*mu*(x*x-l.0))-t*x; 
int mxl = (int) Math.floor(40*xl+250+0.5); 
int nyl = (int) Math.floor(40*y1+350+0.5); 
int mx = (int) Math.floor(40*x+250+0.5); 
int ny = (int) Math.floor(40*y+350+0.5); 
g.drawLine(mxl,nyl,mx,ny);
> // end for loop
> // end paint

public static void main(String[] args)
-C
Frame f = new LimitCyclesO; f. setVisible(true);
>

3.5 Lotka-Volterra Systems
Lotka- Volterra systems describe the interaction of two (or more) competing species. 
The simplest model is given by

dui , du2 . ,—— =  ащ — ЬихЩ-, -гг- =  —cu2 +  bu\u2 
dt dt

where a, b, с are positive constants. Owing to the term ащ the species 1 would 
grow exponentialy. However, owing to the term —bu\u2 the species 1 will decrease. 
Similarly, for species 2 the term - c u 2 will decrease exponentially but the term buiu2 
gives a growing contribution. Thus we expect that the solution is periodic around 
the fixed point «J =  c /6, u\ =  a /6. As an example we consider the special case
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(a — b =  c =  1)
du\ du2 
—г- = щ -  uiu2, —j r  — u “2 +dt at

where Ui(t =  0) >  0 and u2(t =  0) >  0. Since we assume that Ui(t) >  0 and
u2(t) >  0 we find that the system has one fixed point at (u*,u2) =  (1,1). The fixed
point is a centre. Thus in a neighbourhood of this fixed point the solutions are
approximatively circles. Integrating the equation

du\ du2
U\ — U\U2 —u 2 +  U\U2

yields the constant of motion

ln(ui) +  1п(иг) — щ — u2 =  С

or
UiU2e~ul e-U2 =  C\.

This constant of motion can be used to check how accurate the integration procedure 
is.

// Lotka.cpp

♦include <fstream> 
using namespace std;

const int N = 2;

void fsystem(double h,double t,double u[N].double hf[N])
{ hf[0] = h*(u[0]-u[0]*u[l]) ; hf [1] = h*(-u[l]+u[0] *u[l]) ; >

void map(double u[N],int steps,double h,double t) 
i
double uk[N] ; 
double tk;
double a[6] = {  0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 }; 
double с[6] = { 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >;
double b [6] [5] ;
b[0][0] = b[0][l]= b [0] [2] = b[0][3] = b[0] [4] = 0.0;
b[l] [0] = 1.0/4.0; b[l] [1] = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0;
b[l] [4] = 0.0;
b [2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0;
b[2] [2] = 0.0; b [23 [31 = 0.0; b[2] [4] = 0.0;
b[3] [0] = 1932.0/2197.0; b [33 Cl] = -7200.0/2197.0;
b[33 [23 = 7296.0/2197.0; b[33 [33 = b[33 [43 =0.0;
b [43 [03 = 439.0/216.0; b[4] [13 = -8.0;
b[43[23 = 3680.0/513.0; b[43 [33 = -845.0/4104.0;
b[43 [43 = 0.0;
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b [5] [0] = -8.0/27.0; b[5][l] = 2.0;
b[5] [2] = -3544.0/2565.0; b[5][3] = 1859.0/4104.0;
b[5] [4] = -11.0/4.0;
double f[6] [N];
int i, j, 1, k;
for(i=0;i<steps;i++)
{
fsystem(h,t,u,f[0]); 
f or(k=1;k<=5;k++)
{ tk = t + a [k] *h; 
fo r (1=0 ;1<N;1++)
{
uk [1] = uCl] ;
for(j=0; j<=k-l; j++) uk[l] += b[k] [j] *f [j] [1] ;
>
fsystem(h,tk,uk,f[k]);
>
for (1=0; K M ; 1++) 
for (k=0;k<6;k++) u[l] += с [k] *f [k] [1];

>

int main(void) 

ofstream data;
data.open("phase_data.dat"); 
int steps = 1;
double h = 0.001; // step length
double u[N] = { 2.0, 1.5 >; // initial conditions 
double t = 0.0; 
for(int i=0;i<20000;i++)
{
t += h; map(u,steps,h,t);
data «  u[0] «  " " «  u[l] «  ''\n";
>
data.close(); 
return 0;

>

In the following program we show that

ln(ui) +  ln(u2) — Щ — U2 =  С  

is a constant of motion of the Lotka-Volterra system using SymbolicC++. 

// firstintegral.cpp

#include <iostream> 
#include "symbolicc++.h"
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using namespace std;

int main(void)

Symbolic ulO'ul"), u2("u2"), t("t");
Symbolic f, r;
f = In(ul[t])+ln(u2[t])-ul[t]-u2[t] ; 
r = df (f ,t) ;
cout «  "r * " «  r «  endl; 
г = r.subst(df (ul[t] ,t) ,ul[t]-ul[t]*u2[t]) ; 
r = r.subst(df (u2[t] ,t) ,-u2[t]+ul[t]*u2[t]) ; 
cout «  "r = " «  r «  endl; 
return 0;

>



Chapter 4 

Nonlinear Hamilton Systems

4.1 Hamilton Equations of Motion
Let us consider a closed classical system with 3N  degrees of freedom (for example, 
N  particles in a three-dimensional box). The state of such a system is completely 
specified in terms of a set of 6N  independent real variables (p ^ q ^ X p ^  and qN 
denote the set of vectors p N =  (pi, Рг> • • • > Pw) and q^ =  (qi, Чг> • • • > Qw)> respec
tively; pj and qj are the momentum and position of the ith particle). If the state 
vector X.N =  X ^ fp^ , qw) is known at one time, then it is completely determined for 
any other time from Newton’s laws. If we can define a Hamilton function, # (X , £), 
for the system, then the time evolution of the quantities Pj and q, is given by 
Hamilton’s equations o f motion

dp1 =  _dH_ d^_= dH_ - =  1 N  
dt dqj ’ dt d p j*

If the Hamilton function does not depend explicitly on time, then it is a constant 
of motion

H (X N) =  E
where E  is the total energy of the system. In this case the system is called conser
vative. Let us now associate to the system a 6./V-dimensional phase space, Г. The 
state vector X N(pN,q N) then specifies a point in the phase space. As the system 
evolves in time and its state changes, the system point X ^  traces out a trajectory in 
Г-space. Since the subsequent motion of a classical system is uniquely determined 
from the initial conditions, it follows that no two trajectories in phase space can 
cross. If they did, one could not uniquely determine the subsequent motion of the 
trajectory. Let us consider the Hamilton system given above and write Hamilton’s 
equations in the form

dqn dql2 _  dqn _  dq2\ _  _  dpn _  _  dpN3 
dH ~  dH ~  dH ~  Щ . _дН _  * "  - d R -
dpn dpi2 дРхз &P21 oqn

123
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This equation provides us with 6N  — 1 equations between phase space coordinates 
which, when solved, give us 6N  — 1 constraints or integrals of the motion

Л (Х " )  =  Cj

where Cj is a constant. However, these integrals of the motion can be divided into 
two kinds, isolating and nonisolating. Isolating integrals define a whole surface in 
the phase space and are important in ergodic theory, while nonisolating integrals 
do not define a surface and are unimportant. One of the main problems of ergodic 
theory is to determine how many isolating integrals a given system has. An example 
of an isolating integral is the total energy. For N  particles in a box it is probably 
the only isolating integral.

Let us consider a system for which the only isolating integral of the motion is the 
total energy and assume that the system has total energy E. Then trajectories in 
Г-space (the N-dimensional phase space) which have energy E  will be restricted to 
the energy surface S e• The energy surface Se is a (6N  — l)-dimensional “surface” in 
phase space. The flow of state points on the energy surface is defined to be ergodic 
if almost all points X Ar(pAr,q N) on the surface move in such a way that they pass 
through every small finite neighbourhood R e  on the energy surface. Or, in other 
words, each point samples small neighbourhoods over the entire surface during the 
course of its motion (a given point X ^ (p N, qN) cannot pass through every point on 
the surface, because a line which cannot intersect itself cannot fill a surface of two 
or more dimensions). Note that not all points need sample the surface, only “almost 
all” . We can exclude a set of measure zero from this requirement.

Exam ple. For a system of N  particles with central two-body interaction described 
by the Hamilton function

E  E ’M l q k - q i l )
k,l=1 j=l 
kjl

where
I Ok “  Oil :=  V {Qki — Qn)2 +  (<&2 — Qn)2 +  (Яы — Qiz) 2 

the first integrals are given by

N
P jin =  £  Pkj Momentum

k=l 
N

4 m =  £ {QkiPkj ~  QkjPki) Angular momentum
fc=1

H  =  J 2 Y ,  1“ - +  \ Y l X)Vfciflqk — qil) Hamilton function 
k=ij=i*mk z j=i 

kjti

Gj =  tP jXn — MRj centre of gravity

N 3 n2Pkj
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where j  =  1,2,3 and
1 N

Ri :=  77 X ) 
iia *=i

with

M  :=  Y ^mk- *
*=i

We consider now the special case of a Hamilton function (Я  : R4 —► R ) with two 
degrees of freedom

H (p ,q ) :=  ^(p2i+ p l )  +  V{qi,Q2)-

The Hamilton equations of motion are given by

dfy _dH_ _dV_ 
dt dpj Pj’ dt dqj dqj

where j  =  1,2. In the C + +  program using SymbolicC++ we evaluate the Hamilton 
equations of motion for the Henon-Heiles model

#(P> q) := 2 Й + 9i + <&) + 9i?2 “ ^2 •
We find

dqi dq2 dpi dp2 2 , л
• *=Pi- ^ =P2' n  = - qi~ 2qiq2' i r  = - 42- 4i+q>-

// hamiltoneq.cpp

#include <iostream>
#include "symbolicc++.h" 
using namespace std;

int main(void)
{
Symbolic h("h"), qlC'ql"), q2("q2M), pi ("pi"), p2("p2"), 

ptl, pt2, qtl, qt2;
// Hamilton function
h = (pl*pl+p2*p2+ql*ql+q2*q2)/2+ql*ql*q2-q2*q2*q2/3;
// Hamilton equations of motion 
ptl = -df(h,ql); pt2 = -df(h,q2); 
qtl = df(h,pl); qt2 = df(h,p2); 
cout «  "dpl/dt = " «  ptl «endl; 
cout «  "dp2/dt = " «  pt2 «endl; 
cout «  "dql/dt = " «  qtl «endl; 
cout «  "dq2/dt = " «  qt2 <<endl; 
return 0;

>
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4.1.1 Hamilton System and Variational Equation
Consider the phase space

M : =  R 2"  =  { (p ,q )}  

where p  =  (pi,p2, • • • ,Pn ) &nd q  =  (q\, q2> • • • > Qn )- From the Ham ilton function

N

#(p,q) = nEPj + K((l) 
j=i

we obtain the Hamilton equation of motion
dqi _ d H _ =  dpj =  _dH_ =  _ d V
dt dpj dt dqj dqj

where j  =  1 ,2 , . . . ,  TV. The variational equation is defined as

dyj _  dyj+N _  Л  d2V
dt Vi+N' dt "  dqidqjУг

where j  =  1 ,2 , . . . ,  N. In the C + +  program using SymbolicC++ we evaluate the 
variational equation for the Henon-Heiles model.
// hamiltonvar.cpp

♦include <iostream>
♦include "symbolicc++.h" 
using namespace std;

int main(void)

Symbolic h("h"), q("q",2), p("p",2), u("u",2), v("v",2), 
qt("",2), ptC"",2), ut("",2), vt("",2);

// Hamilton function
h = (p(0)*p(0)+p(l)*p(l)+q(0)*q(0)+q(l)*q(l))/2 

+q(0)*q(0)*q(l)-q(l)*q(l)*q(l)/3; 
for(int j=0;j<2;j++)

pt(j) = -df (h,q(j)) ; qt(j) = df(h,p(j)); 
cout «  "dp" «  j «  "/dt = " «  pt(j) «endl; 
cout «  "dq" «  j «  "/dt = " «  qt(j) «endl;

>
forCint j=0;j<2;j++)
{
ut(j) = v(j); vt(j) = 0;
forCint 1=0;1<2;1++) { vt(j) += -df(df(h,q(j)),q(l))*u(l); > 
cout «  "du" «  j «  "/dt = " «  ut(j) «  endl; 
cout «  "dv" «  j «  "/dt = " «  vt(j) «  endl;

>

>
return 0;
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4.2.1 Hamilton Systems and First Integrals
Consider a Hamilton system

dqj _  dH dpj _  dH 
dt dpj * dt dqj

where j  =  1 ,2 , . . . ,  N. A  smooth function / ( p, q) is called a first integral of the 
Hamilton system if

| / ( P , 4 )  =  0.

This equation can also be written as

А Л 9 Я  dl_ _d_H_ dl_\ =Q 
P l \dqj dpj dp j dqj)

In the C + +  program we consider the three body periodic Toda lattice

H (P, q) =  ^(P? +  vl +  Рз) +  exp(gi -  q2) +  exp(g2 -  Чз) +  exp(g3 -  ft).

For the first integrals we make the ansatz

/i (p ,q ) =  P i+P 2+P3

and

/г(р> q) =  P1P2P3 -  Pi exp(9 2  -  9з) -  P2 expfe -  Qi) -  Рз exp(ft -  g2)- 

We find that these functions are first integrals.

// hamiltonin.cpp

#include <iostream>
#include "symbolicc++.h" 
using namespace std;

int main(void)
-C
Symbolic h("h"), q("q",3), p("p",3), pt("pt",3), qt("qt",3),

II, Rl, 12, R2;
int j;

// Hamilton function 
h = (p(0)*p(0)+p(l)*p(l)+p(2)*p(2))/2

+exp(q(0)-q(l))+exp(q(l)-q(2))+exp(q(2)-q(0));

for(j=0;j<3;j++)
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{
pt(j) = -df (h,q(j)) ; qt(j) = df(h,p(j)); 
cout «  "dp" «  j «  "/dt = " «  pt(j) «  endl; 
cout «  "dq" «  j «  "/dt = " «  qt(j) «  endl;

>
11 = p(0)+p(l)+p(2);
R1 = 0;
for(j=0;j<3;j++) R1 += pt(j)*df(II,p(j))+qt(j)*df(Il,q(j)); 
if(Rl==0) cout «  "II is a first integral." «  endl; 
else cout «  "II is not a first integral." «  endl;

12 = p(0)*p(l)*p(2)-p(0)*exp(q(l)-q(2))-p(l)*exp(q(2)-q(0))
-p(2)*exp(q(0)-q(l));

R2 = 0;
for(j=0;j<3;j++) R2 += pt(j)*df(I2,p(j))+qt(j)*df(I2,q(j)); 
if(R2==0) cout «  "12 is a first integral." «  endl; 
else cout «  "12 is not a first integral." «  endl; 
return 0;

>

4 .2 .2  L a x  P a ir  a n d  H a m il t o n  S y s t e m s

A number of Hamilton systems can be written in the form

f  =  [ A 4 W

where L and A  are time-dependent n x n matrices. This is called the Lax repre
sentation of the Hamilton system. As an example consider the Hamilton function 
( Toda lattice)

H {p, q) =  -{p\ +  p\ +  pi) +  exp(<?i -  q2) +  exp(<?2 -  Яг) +  exp(g3 -  <?i)-

Introducing the quantities

1a, :=  -  exp ( j t o - e + i ) ) .  * r -= \ Vj

and cyclic boundary conditions (i.e., q4 =  qx) we find that the Hamilton equations 
of motion take the form (with 63 =  0)

daj
aj(Pj bj+1), db

Г =
db2

dt dt " i ’ dt 

where j  =  1,2. Introducing the matrices {Lax pair)

=  2(a? -  a22), ^  =  2al 
dt 2

(b i ai 0 ^ ( °
-a i ° \ai b2 a2 A := \ a 1 0 ~a2

\o a2 bs \o a2 0 )
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the equations of motion can be written as Lax representation. From L we find the 
first integral as tr(Ln), where n =  1 , 2 , . . where tr denotes the trace. We obtain

trL =  &i +  &2 “I" 63, tr(L2) =  62 +  b\ +■ 63 +  2a2 4- 2a2 •
// lax.cpp

#include <iostream>
#include "symbolicc++.h" 
using namespace std;

int main(void)

Symbolic L("L",3,3), A("A",3,3), Lt("Lt",3,3); // Lt=dL/dt 
Symbolic alC'al"), a2("a2"), blO'bl"), Ь2("Ь2"), ЬЗО'ЬЗ"), 

alt, a2t, bit, b2t, b3t;
L(0,0) = bl; L(0,1) = al; L(0,2) = 0;
L(1,0) = al; L(1,1) = b2; L(l,2) = a2;
L(2,0) = 0; L(2,1) = a2; L(2,2) = b3;
A(0,0) = 0; A(0,1) = -al; A(0,2) = 0;
A(1,0) = al; A(1,1) = 0; A(l,2) = -a2;
A(2,0) = 0; A(2,1) = a2; A(2,2) = 0;
Lt = A*L - L*A;
cout << "Lt = " «  Lt << endl; 
bit = Lt(0,0); b2t = Lt(1,1); b3t = Lt(2,2); 
alt = Lt(0,1); a2t = Lt(l,2); 
cout «  "bit - " «  bit «  ", b2t = " «  b2t 

«  ", b3t = " «  b3t «  endl; 
cout «  "alt = " «  alt «  ", a2t = " «  a2t «  endl; 
cout «  endl;

// Show that 1(0),1(1),1(2) are first integrals 
int n = 3;
Symbolic result;
Symbolic I("I",n);
1(0) = L.trace(); cout « "1(0) = " « 0M « endl
1(1) = (L*L) .traceO ; cout « " K D  = и « 1(1) « endl
1(2) = L.determinant(); cout « "1(2) - " « 1(2) « endl
cout «  endl;
for(int i=0;i<n;i++)
{
result = blt*df(I(i),bl)+b2t*df(I(i),b2) + b3t*df(I(i),b3) 

+alt*df(I(i),al)+a2t*df(I(i),a2); 
cout «  "result" «  i+1 «  " * " «  result «  endl;

>
return 0;

The output is
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Lt = C-2*al“(2) -al*b2+bl*al 0]
[al*bl-b2*al 2*al~(2)-2*a2~(2) -a2*b3+b2*a2]
[0 a2*b2-b3*a2 2*a2~(2)]
bit = -2*al~(2) , b2t = 2*al~(2)-2*a2~(2), b3t = 2*a2~(2) 
alt = -al*b2+bl*al, a2t = -a2*b3+b2*a2 
ICO] = bl+b2+b3
I Cl] = bl~ (2)+2*al~ (2)+b2~ (2)+2*a2~ (2)+b3“ (2)
IC2] = bl*b2*b3-bl*a2~(2)-al“(2)*b3 
resultl = 0 
result2 = 0 
result3 - 0

4.2.3 Floquet Theory

The Floquet theory has been developed to treat systems of linear differential equa
tions with periodic coefficients. Consider the system of differential equations

^  =  A {t)u {t)} u =  (u i,u2) . . . , u n)T

where A(t) =  A{t +  T ) for some T  >  0 and all t. The transition matrix Ф(Мо) *s 
defined by

Иф

where Ф(£,4) =  I  for all t and I denotes the n x n  unit matrix. We find that

Ф(£ +  T, to) =  Ф(£, to)C

where С is a constant matrix. Then there exists a constant matrix R T  such that 
С — exp {RT), where T  is the period. We can prove that

Ф(£о +  T, to) =  exp {R T ).

Consequently, the state-transition matrix, and the solution to du/dt =  A {t)u, con
sists of a periodically modulated exponential matrix function. Therefore the system 
of differential equations du/dt =  A {t)u is asymptoticaly stable if the eigenvalues of 
R  all have negative real parts or that

det(/A — ехр(ЯТ)) =  0

implies that |Aj| <  1 for all j  =  1 , 2 , The eigenvalues of R  are the charac
teristic exponents of A{t), and Aj  are called that characteristic multipliers of A {t). 
The eigenvalues of R are related to the eigenvalues of exp{RT) by

In А,- 
Pi ~ ~~T~"

As a special case consider the Hill equation
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where a(t +  T ) =  a(t), T  > 0 for all t. Then with щ  =  и, u2 =  du/dt we have 
du/rfi =  Л(£)и, where

We find that

AiA2 =  exp tr(/l(s))<£sj =  1 .

The characteristic equation of A is given by

A2 — tr(C)A +  1 =  0.

Thus if |trC| >  2 we find that A /s are real and the system is stable. If |trC| < 2 we 
find that the A /s are complex conjugate with |А7-| =  1. The system is stable, but 
not asymptotically stable. If |trC| =  2 we have Ai =  \ 2 =  ±1.

As an example consider a Mathieu’s equation with coefficients having period T  =  7Г

—  +  (6 + 2e cos(2£))u =  0

where <5 and e are constants. Since this is a linear second-order homogeneous differ
ential equation there exists two linear independent solutions ui(t), u2(t) which are 
called a fundamental set of solutions. Any other solution is a linear combination of 
Ui and u2

U\(t +  T) =  fln«i(£) +  a,i2u2(t), u2(t +  T) =  a2\U\{t) +  a22u2( t ) .

The theorem of Floquet states that

U\(t +  T ) =  Ai?xi(£), u2{t +  T) =  X2u2(t).

Consequently
Uj(t +  nT) =  A1-Uj(t) for all integers n.

Therefore as t —* 00 we find

If A =  + 1, then и has period T, if A =  —1, then и has period 2T.

The Java program Floquet. java first computes a fundamental set of solutions of 
the Mathieu equation by numerical integration for two independent initial conditions 
over one period T  — тт. Then it determines the matrix A =  (a^) and calculates the 
eigenvalues Ai, X2. The parameters are set to S =  1, and e =  0.5. We can find the 
regions in the (<5, €)-plane which correspond to bounded solutions (Strutt diagram). 
As described above we have A1A2 =  1.
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// Floquet.java 

public class Floquet 
{
public static void main(String[] args)
{
double delta = 1.0;
double eps = 0.5;
double dt = Math.PI/100.0;
double dt2 = dt*dt;
double [] du = new double [2] ;
double □  [] u = new double [2] [3] ;
double [] [] A = new double [2] [2] ;
double [] [] В = new double [2] [2] ;

u[0] [1] = 1.0; u[0] [2] = 1.0; // initial value=l, slope=0.0; 
u[l] [1] = 0.0; u[l] [2] = dt; // initial value=0, slope=dt

double [] [] uu = new double [2] [2] ; 
uu [0] [0] = u[0] [1] ; uu[0] [1] = u[l][l];
uu[l][0] = (u[0][2]-u[0][l])/dt; uu[l] [1] = (u[l] [2]-u[l] [1] )/dt;

for(int i=0;i<=l;i++)

double t = dt; 
do

u [i] [0] = u [i] [1] ; u [i] [1] = u [i] [2] ; 
u [i] [2] = 2.0*u[i] [l]~ u [i] [0]

-dt2*(delta+2.0*eps*Math.cos(2.0*t))*u[i] [1];
t += dt;
>
while(t <= Math.PI);
du [i] = (u [i] [2] -u [i] [0]) / (2. 0*dt) ;
> // end for loop

В[03 [03 = u[0] [1]; B[03 [13 = U[13 [13;
B[13[03 = du[03; В [13 [13 = du[l] ; 
double [] [] uui = new double [2] [23 ; // inverse of uu 
double detuu = uu[03 [03*uu[l3 [l3~uu[0] [I3*uu[l3 [03 ; 
uui[03[03 * uu[13 [13/detuu; uui[03[l3 = -uu[03 [13/detuu; 
uui[13 [03 = -uu[13 [03/detuu; uui [1] [13 = uu[03 [03 /detuu;
A [03 [03 = В [03 [03 *uui [03 [03+B[03 [I3*uui[l3 [03;
A [03 [13 = В [03 [03 *uui [03 [13+B [03 [l]*uui[l3 [13;
A [13 [03 = В [13 [03 *uui [03 [03 +B[13 [I3*uui[l3 [03;
A[13 [1] = В[13 [03*uui[03 [13+B[13 [I3*uui[l3 [13;

double D = A [03 [13*A[13 [03-A [03 [03*A[13 [1]
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+ (A[0] C0]+A[1] Cl])*(A[0] СО] +ACl] Cl])/4.0; 
double lambdal, lambda2;

if(D >= 0.0)
{
lambdal = (A[0]СО]+A Cl][1])/2.0+Math.sqrt(D); 
lambda2 = (AСО]СО]+ACl]Cl])/2.0-Math.sqrt(D) ;
System.out.printin("lambdal = " + lambdal);
System.out.println("lambda2 = " + lambda2);
>
if(D < 0.0)
{
double real = (AСО] СО] +ACl] Cl])/2.0; 
double imag = Math.sqrt(-D);
System.out.println("real part lambdal = " + real); 
System.out.println("imaginary part lambdal = " + imag); 
System.out.println("real part lambdal = " + real); 
System.out.printlnCimaginary part lambdal » " + -imag);
>
} // end main

4.3 Chaotic Hamilton Systems

4.3.1 Henon-Heiles Hamilton Function and Trajectories
We consider the Henon-Heiles Hamilton function

н  (p, q) =  \ip\ +  v\ +  <il +  <&) +  я\чг - \ я 1 - 

The Hamilton equations of motion are given by

dqi dq2
d T = P l '

=  —Q\ ~  2<Мг> - ^  =  “ 92 -  9? +  •

Henon and Heiles studied the bounded motion of orbits for this system. The 
trajectories move in a four-dimensional phase space but are restricted to a three- 
dimensional surface because the energy is a constant of motion

H{ p ,q ) =  E.

It is possible to study a two-dimensional cross-section of the three-dimensional en
ergy surface (see next section). With growing energy the system becomes more and 
more chaotic. At an energy of E — 0.16667 almost no stable motion remains. In the 
Java program we evaluate the time evolution of q\ with the initial values <?i(0) =  0.5, 
92(0) =  0.1, p i(0) =  0.1, and p2(0) =  0.1.
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// Heilestime.java

import java.awt.*; 
import j ava.awt.event.*; 
import j ava.awt.Graphics;

public class Heilestime extends Frame 
{
public Heilestime()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit(0) ; » )  ; >

public void paint(Graphics g)
{
g.drawLine(10,10,10,400); g.drawLine(10,200,630,200);
g.drawRect(10,10,630,400);
double t = 0.005; double t2 = t*t;
double count = 0.0;
double xll = 0.5, x22 = 0.1; // initial values 
double x33 =0.1, x44 = 0.1; // initial values 
double xl, x2, x3, x4; 
do
•C
xl = xll; x2 = x22; хЗ = x33; x4 = x44; 
xll = xl+t*x3+t2*(-xl-2.0*xl*x2)/2.0; 
x22 = x2+t*x4+t2*(-x2-xl*xl+x2*x2)/2.0;
x33 = x3+t*(-xl-2.0*xl*x2)+t2*(-x3-2.0*x3*x2-2.0*x4*xl)/2.0;
x44 = x4+t*(-x2-xl*xl+x2*x2)+t2*(-x4-2.0*xl*x3+2.0*x2*x4)/2.0;
int m = (int)(5.0*count+10.0+0.5);
int n = (int)(200.0-200*xl+0.5);
int p = (int)(5.0*(count+t)+10.0+0.5);
int q = (int)(200-200*xl1+0.5);
g.drawLine(m,n ,p,q);
count = count + t;
> while(count < 124.0);
> // end paint

public static void main(String[] args)
{
Frame f = new Heilestime(); f.setVisible(true);
>

>
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4.3.2 Henon Heiles and Surface of Section Method
The surface-of-section method (also called Poincare section method) is particularly 
suited for Hamilton systems with two degrees of freedom. In this technique one 
follows the successive crossings of a trajectory through a surface intersecting the 
energy shell, for example the (p2) q2) plane at the point

qi =  0 .

The position of the system, at a given energy, on such a surface completely specifies 
its state to within a sign. This is, of course, only true for Hamilton systems with two 
degrees of freedom which are also quadratic in the momenta. After a large number of 
crossings a pattern emerges. In the case of quasiperiodic motion the crossing points 
appear to lie on a smooth curve. This curve is often called an invariant curve. It 
corresponds to the intersection of the torus, on which the trajectory lies, with the 
surface of section. Should the trajectory under consideration be one that does not 
close upon itself (irrational winding number), then the successive points eventually 
fill up the curve densely. Such orbits are ergodic on the torus. On the other hand, 
in the case of an orbit being closed, that is, a torus of commensurable frequencies, 
one only sees a finite number of fixed points. If the trajectory is irregular, no such 
pattern emerges. One sees a “random splatter” of points that fill up some area. 
In the Java program we consider the Henon Heiles model. We evaluate the surface 
of section for the energy E =  1/12 for two different initial conditions. The initial 
conditions are

9l(t =  0) =  l / A  qi{t =  0) =  0, p,(t =  0) =  0, p2(t =  0) =  1Д/24

and

9l(t =  0) =  0, qi{t =  0) =  0, Pl{t =  0) =  l /v /6, p2(t =  0) =  0 .

We find two invariant curves.

// HeilesPoincare.java

import j ava.awt.*; 
import java.awt.e v e n t ; 
import java.awt.Graphics;

public class HeilesPoincare extends Frame
-C
public HeilesPoincare()
{
setSize(640,480);
addWindowListener(new WindowAdapterО  
■( public void windowClosing(WindowEvent event)
{  System, exit (0) ; » )  ; >



136 CHAPTER 4. NONLINEAR HAMILTON SYSTEMS

public void paint(Graphics g)
{
g.drawRect(20,20,600,400); g.drawRect(310,20,310,400); 
g.drawLine(20,210,600,210);
// we identify ql -> xl, q2 -> x2, pi -> x3, p2 -> x4 
double t = 0.005;
double xl [] = new double [3] ; double x2 [] = new double [3] ; 
double x3 [] = new double [3] ; double x4 [] = new double [3]; 
xl[l] = Math.sqrt(1.0/8.0); x2[l] =0.0; // initial condition I 
x3[l] = 0.0; x4[l] = Math.sqrt(1.0/24.0); // initial condition I 
xl[2] = 0.0; x2[2] = 0.0; // initial condition II
x3[2] = Math.sqrt(1.0/6.0); x4[2] = 0.0; // initial condition II

for (int j=0; j<2; j++) •{ double count = 0.0; 
do 
{
xl [0] = xl Cj+13 ; x2[0] = x2[j+l] ;
x3 [0] = x3[j+l] ; x4 [0] = x4[j+l] ;
xl[j+l] = xl [0]+t*x3[0] ; x2 [j+1] = x2[0]+t*x4[0] ;
x3 [j+1] = x3 [0] -t* (xl [j+1] +2. 0*xl [j+1] *x2 [j+1] ) ;
x4 [j+1] = x4 [0] -t* (x2 [j+1] +xl [j+1] *xl [j+1] -x2 [j+1] *x2 [j+1] ) ;
if((xl[0]*xl[j+1] <0.0) &fc (xl[0] > 0.0))
•C
double scale = 400.0; 
int m = (int)(scale*x2[j+l]+310+0.5); 
int n = (int) (-scale*x4[j+l]+210+0.5) ; 
g.drawLine(m,n,m,n) ;
>
count = count+t;
> while(count < 4000.0);
>
>

public static void main(String[] args)
{  Frame f = new HeilesPoincareO; f .setVisible(true); >

>

4.3.3 Quartic Potential and Surface of Section Technique
We consider the quartic Hamilton function

Я  ( p ,  q )  =  +  p i )  +  +  92) +  \ q i<&

where r €  [0,1]. For r =  0 the system is completely integrable with all motion lying 
on invariant tori. The second first integral besides the Hamilton function is

/ ( p, q) = 3pip2 + gi<?2te  + <?2) •
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With increasing r the system becomes more and more chaotic. For the Hamilton 
equations of motion we find

dqi dqi

ed e* 
1 II

dt V2

dpi _ 1 T о о dp2
dt 2 Яl Яi<?2> dt

For r =  1 the system is almost completely chaotic, although there is a very small 
region with regular behaviour. In this case, i.e. r =  1, the system can be derived 
from Yang-Mills theory (Steeb [103]). In the Java program we evaluate the surface 
of section for r =  0.15 and the initial values pi(0) =  1.5, p2(0) =  1.0, <7i(0) =  1.0, 
92(0) =  1.0.

// QuarticPotential.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class QuarticPotential extends Frame 

public QuarticPotential()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System, exit (0) ; »); >

public void func_system(double h,double t,double u[].double hf[]) 

double r = 0.15;
hf [0] = h* (- (1.0-r) *u [2] *u [2] *u [2] /3.0-u [2] *u [3] *u [3]) ; 
hf [ 1] = h* (- (1.0-r) *u [3] *u [3] *u [3] /3.0-u [2] *u [2] *u [3]) ; 
hf[2] = h*u[0]; hf[3] = h*u[l];
>

public void map(double u[],int steps,double h,double t,int N)
{
double uk[] = new double [N]; 
double tk;
double a[] = {  0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double c[] = < 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b[] [] = new double [6] [5] ;
b[0] [0] = b[0] [1]= bCO] [2] = b[0] [3] = b[0] [4] = 0.0;
b[l] [0] = 1.0/4.0; b[l][l] = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0;
b[l] [4] = 0.0;
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b[2] [0] = 3.0/32.0; b[2][l] = 9.0/32.0; 
b[2][2] = 0.0; b [2] [3] = 0.0; b[2][4] = 0.0; 
b[3] [0] = 1932.0/2197.0; b[3] [1] = -7200.0/2197.0; 
b[3] [2] = 7296.0/2197.0; b[3] [3] = b [33 [4] = 0.0; 
b[4] [0] = 439.0/216.0; b [43 [1] = -8.0;
b[4] [23 = 3680.0/513.0; b[43 [33 = -845.0/4104.0; b[43[43 =0.0;
b[53 [03 = -8.0/27.0; b[53 [13 = 2.0; b [53 [2] = -3544.0/2565.0;
b [53 [33 = 1859.0/4104.0; b [53 [43 = -11.0/40.0;
double f [3 [] = new double [63 [N3 ;
int i, j, 1, k;
for(i=0;i<steps;i++)
{ func_system(h,t,u,f[03); 
for(k=l;k<=5;k++) { tk = t+a[k3*h; 
for(l=0;l<N;l++) { uk[l3 = u[l] ; 
for(j=0;j<=k-l; j++) uk[l3 += b[k] [j3*f [j] [13;

>
func_system(h,tk,uk,f[k3);
>
for(1=0;1<N;1++)
for(k=0;k<6;k++) u[l3 += с [k3 *f [k3 [13 ;

>
>

public void paint(Graphics g) 
i
g.drawRect(30,30,570,400);
int steps = 1; int N = 4;
double h = 0.005; double t = 0.0;
double u[3 = { 1.5, 1.0, 1.0, 1.0 >; // initial values 
for(int i=0;i<20000000;i++)
{
t += h;
double temp = u[23 ; 
map(u,steps,h,t,N) ;
if(((temp*u[23) < 0.0) && (temp > 0.0))
{
int m = ((int)(200.0*u[33)+300); int n = ((int) (250.0*u[13 )+600) ; 
g.drawLine(m,n,m,n);
>
>
>

public static void main(String[3 args)
{ Frame f = new QuarticPotentialO; f. setVisible(true); >

>



Chapter 5 

Nonlinear Dissipative Systems

5.1 Fixed Points and Stability
We suppose that the dynamical behaviour of the system is modeled by the solution 
curves of a system of differential equations (or dynamical system)

J  =  f(u), f  :U  -> R n

where U is an open subset of R n. We suppose f  is C 1. A point u* € U is called a 
fixed point (also called equilibrium point от stationary point) of the dynamical system 
if

f(u*) =  0 .

By uniqueness of solutions, no other solution curve can pass through u*. Let

Ф* : U -> R n

be the flow associated with the dynamical system. The set U С R n is an open set, 
and for each u G U the map t —► Ф(£, u) =  Ф((и) is the solution passing through u 
when t =  0; it is defined for t in some open interval. If u* is a fixed point, then

Ф£(и*) =  u*

for all t € R . Another name for u* is a singular point of the vector field f. Suppose 
f  is linear. We write f(u ) =  Ли, where A is a linear operator (matrix) on R n. Then 
the origin 0 G R n is a fixed point. When A < 0 is greater than the real parts of the 
eigenvalues of A , then solutions Ф<(и) approach 0 exponentially

|*.(U)| <  CeM

for some С  >  0. Now suppose f  is a C 1 vector field with fixed point 0 6  R n. We 
think of the derivative

D f(0) =  (0 f/0u )(u  =  0) =  A

139
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of f  at 0 as a linear vector field which approximates f  near 0. We call it the linear 
part of f  at 0. If all eigenvalues of D f (0) have negative real parts, we call 0 a sink. 
More generally, a fixed point u* is a sink if all eigenvalues of Df(u*) have negative 
real parts. We also say the linear flow etA is a contraction. It can be shown that 0 is 
a sink if and only if every trajectory tends to 0 as t —► oo. This is called asymptotic 
stability. It follows that the trajectories approach a sink exponentially.

The following theorem (Hirsch [51], Arrowsmith [2]) says that a nonlinear sink u* 
behaves locally like a linear sink: nearby solutions approach u* exponentially.

Theorem . Let u* € U be a sink of the dynamical system. Suppose every eigenvalue 
of Df(u*) has real part less than —c ,c  >  0. Then there is a neighbourhood N  С U 
of u* such that

(a) $ t(u) is defined and in N  for all u € N, t >  0.

(b) There is a Euclidean norm on R n such that

|4?t(u) -u*|  <  e-ct|u — u*|

for all u G N, t >  0.

(c) For any norm on R n, there is a constant В >  0 such that

|Ф4(и) — u*| <  £ e -ct|u — u*|

for all u € N, t >  0.
In particular, <$t(u) —> u* as t -*  oo for all и € N.

A fixed point is stable if nearby solutions stay nearby for all future time. Since 
in applications of dynamical systems one cannot pinpoint a state exactly, but only 
approximately, a fixed point must be stable to be physically meaningful. The math
ematical definition is

Definition. Suppose u* € U is a fixed point of the dynamical system, where 
f  : U —► R n is a C l map from an open set U of the vector space R n into R  ■ 
Then u* is a stable fixed point if for every neighbourhood N  of u* in U there is a 
neighborhood N\ of u* in N  such that every solution u(£) with u(0) in N\ is defined 
and in N  for all t >  0.

D efinition. If N\ can be chosen so that in addition to the properties described in 
the definition given above, lim(_ 00u(£) =  u*, then u* is asymptotically stable.

Definition. A fixed point u* that is not stable is called unstable. This means there 
is a neighbourhood N  of u* such that for every neighbourhood N\ of u* in N, there 
is at least one solution u (t) starting at u(0) € Ni, which does not lie entirely in N.
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A sink is asymptotically stable and therefore stable. An example of a fixed point 
that is stable but not asymptotically stable is the origin in R n for a linear equation 
du/dt =  Au, where A  has pure imaginary eigenvalues. The orbits are all ellipses.

Theorem . Let U С R n be open and f  : U —* R n continuously differentiable. Sup
pose f(u*) =  0 and u* is a stable fixed point of the equation du/dt =  f(u). Then 
no eigenvalue of Df(u*) has a positive real part.

We say that a fixed point u* is hyperbolic if the derivative Df(u*) has no eigenvalue 
with real part zero.

Corollary. A hyperbolic fixed point is either unstable or asymptotically stable. 

Let
g = f ( u ) ,  U  e U

be such that f(u*) =  0, u* 6  U, where U is an open subset of R n. Then the 
linearization of du/dt =  f(u ) at u* is the linear system of differential equations

% - щ  u >

where

[Л
and v  =  vn)T are local coordinates at u*.

Iu=u*
i j = 1

Definition. A singular point u* of a vector field f  is said to be hyperbolic if no 
eigenvalue of Df(u*) has a zero real part.

If u* is a singular point of f, then it is a fixed point of the flow of du/dt =  f(u). 
Thus u* is a hyperbolic singular point of f  if the flow, exp(.Df(u*)£)u, of the lineari
sation of du/dt =  f(u ) is hyperbolic. It is sometimes convenient to distinguish those 
non-hyperbolic singular points for which £)f(u*) has at least one zero eigenvalue. 
Such points are said to be non-simple.

Theorem . (H artm an-G robm an) Let u* be a hyperbolic fixed point of du/dt =  
f(u ) with flow Ф* : U С R n - »  R n. Then there is a neighbourhood N of u* on 
which Ф( is topologically conjugate to the linear flow exp(.Df(u*)£)u.

The Invariant Manifold Theorem is also valid for flows. We have

Wloc : =  { u €  и  I Фг(и) u* }

as t —* oo and
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as t ->  -o o . Global stable and unstable manifolds, W a and W u, are defined by 
taking a union over real t >  0 of Ф_4(1У|аос) and Ф{(1У ^ ), respectively.

The following classifies hyperbolic fixed points.

Theorem . Let u* be a hyperbolic fixed point of du/dt =  f(u ) with flow Ф t :U  С 
R-n R-n- Then there is a neighbourhood N  of u* on which Ф* is topologically 
equivalent to the flow of the linear system of differential equations

where 7iu =  n—ns. Here ns is the dimension of the stable eigenspace of exp(Df(u*)£)-

Exam ple. Consider the stability of the fixed points of the Lorenz model. The 
Lorenz model is obtained as an approximation to partial differential equations de
scribing convection in a fluid layer heated below (Benard problem). The Lorenz 
model is given by

where a, r and 6 are positive constants. The fixed points are determined by the 
system of algebraic equations

We find that itj =  u2 =  u\ =  0 is a fixed point for all a, r  and b. This fixed point 
exits for all parameter values of cr, r  and b. If г <  1 this fixed point is attracting (a 
sink). If r becomes larger than 1, this fixed point loses its attracting character (one 
eigenvalue becomes positive) and two new fixed points appear. For r >  1 we find 
the fixed points

The C + +  program loren z fix.cpp using SymbolicC++ finds the characteristic 
equation for the eigenvalues from the variational equations and then determine the 
stability of the fixed point (0,0,0). The parameter values are r =  40, о  — 16 
and 6 =  4. For r > 1 the origin (0,0,0) becomes unstable, i.e. one of the three 
eigenvalues becomes positive (while the other two remain negative).

du9
u3 e  R ni

uu e  R nu

du\

du 2
=  -ЩЩ  +  ГЩ -  u2

dU3 L—  =  щ и2 -  bu3

U2 ~  U1 =  0 
—ujuj +  ru\ — u j =  0 

Û U2 6tig =  0 .
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// lorenzfix.cpp

#include <iostream> 
#include <cmath>
#include "symbolicc++.h" 
using namespace std;

int main(void)

V(l) = -u(0)*u(2)+r*u(0)-u(l); // Lorenz model

for(int i=0;i<3;i++) 
for(int j=0;j<3;j++) A(i,j) = df(V(i),u(j));

Symbolic lambda("lambda");
Symbolic chareq;

// characteristic equation
chareq = det(lambda*A.identity()-A);

// coefficients
Symbolic cO = chareq.coeff(lambda,0);
Symbolic cl = chareq.coeff(lambda,1);
Symbolic c2 = chareq.coeff(lambda,2);
Symbolic Q = (3*cl-c2*c2)/9;
Symbolic R = (9*c2*cl-27*c0-2*c2*c2*c2)/54;
Symbolic D = Q*Q*Q+R*R;

// parameter values
Equations values = (s==16.0,b==4.0,r==40.0);

// fixed point (0,0,0)
values = (values,u(0)==0.0,u(l)==0.0,u(2)==0.0);

double q = Q[values]; 
double rR = R[values]; 
double d = D[values]; 
double nc2 = c2[values];

if(rR != 0 kk q < 0 kk d <= 0.0)
•c
double theta = acos(rR/sqrt(-q*q*q)); 
double PI = 3.14159;
double Iambi = 2.0*sqrt(-q)*cos(theta/3.0)-nc2/3.0; 
double lamb2 = 2.0*sqrt(-q)*cos((theta+2.0*PI)/3.0)-nc2/3.0;

Symbolic u("u",3), V("V",3), A("A
V(0) = s*(u(l)-u(0));

V(2) = u(0)*u(l)-b*u(2); // Lorenz model
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double lamb3 = 2.0*sqrt(-q)*cos((theta+4.0+PI)/3.0)-nc2/3.0; 
cout «  "Iambi = " «  Iambi «  endl; 
cout «  "lamb2 = " «  lamb2 «  endl; 
cout «  "lamb3 = " «  lamb3 «  endl;

>
return 0 ;

5.2 Trajectories
We evaluate the Ui(t) component of the trajectory for the Lorenz model with the 
initial values

u i(0) =  0.8, u2(0) =  0.8, u3(0) =  0.8.

The parameter values are r =  40, о  =  16 and 6 =  4. For these parameter values 
there is numerical evidence that the system shows chaotic behaviour.

Lorenz [68] showed that there is an ellipsoid E  in R 3 such that every trajectory would 
eventually cross into the ellipsoid and, once inside, would remain inside. That is, the 
ellipsoid is positively invariant under the system of differential equation. We write 
Ф(ио,£) 6 R 3 for the position in R 3 of the solution of the Lorenz model at time £, 
starting from u0 € R 3. For a set S С R 3 we write Ф(5,£) for { Ф(ио,£) : Uo €. S. 
Denote the three-dimensional volume of S by vol(S). Now the divergence of the 
right-hand side of the Lorenz model is constant and negative, namely — (a  +  6 +  1)- 
Thus

vol($(S ,t)) =  exp{—t(a  +  6 +  1 ))vol(S ) .

Let E  be the positively invariant ellipsoid described above. Since Ф(E, t) С E  for t 
positive, it follows that

Ф(E }t\) С Ф{E ,t2) if t\ >  t2 >  0.

Every trajectory tends asymptotically to the limiting set

E0о =  Г\>оФ(.Е, t)

as t tends to infinity. It follows that that this set has volume zero. The shape of 
Eqo is extremely complex depending on the parameters.

In our first C + +  program L ie . cpp we use SymbolicC++ to evaluate symbolically 
the expansion of the Lie series up to second order with the vector field

V =  a(u2 -  u i +  (-ЩЩ  +  гщ  -  u2)-^~  +  (uiu2 -  buz . 
OUl ou2 uu$

Then we iterate numerically the resulting map. In Lorenztim e.java we use a 
Runge-Kutta-Fehlberg method to solve the Lorenz system numerically.
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// lie.cpp

#include <iostream>
#include "symbolicc++.h" 
using namespace std;

const int N = 3;

Symbolic u("u",N), ut("ut",N);

// The vector field V
template <class T> T V(const T& ss)
{
T sum(O);
for(int i=0;i<N;i++) sum += ut(i)*df(ss,u(i)); 
return sum;

>

int main(void) 

int i,j;
Symbolic t("t"), s("s"), b("b"), r("r");
Symbolic us('"',N);
Equations values;

// Lorenz model
ut(0) = s*(u(l)-u(0));
ut(l) = -u(l)-u(0)*u(2)+r*u(0);
ut(2) = u(0)*u(l)-b*u(2);

// Taylor series expansion up to order 2 
for(i=0;i<N;i++) us(i) = u(i)+t*V(u(i))+0.5*t*t*V(V(u(i))); 
cout «  "us =\n" «  us «  endl;

// Evolution of the approximate solution 
values = (t==0.01>r==40.0,s==16.0,b==4.0,u(0)==0.8, 

u(l)==0.8,u(2)==0.8);

for(j=0;j<50;j++)
<
Equations newvalues = (t==0.01,r==40.0,s==16.0,b==4.0); 
for(i=0;i<N;i++)
<
newvalues = (newvalues,u(i)=us(i) [values]) ; 
cout «  newvalues.backO «  endl;

>
values = newvalues;

>



146 CHAPTER 5. NONLINEAR DISSIPATIVE SYSTEMS

return 0;
>
The Runge-Kutta-Fehlberg method is used to solve the Lorenz model numerically. 
The state variable u [0] is displayed as a function of time.

// Lorenztime.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Lorenztime extends Frame 
{
public Lorenztime()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System, exit (0) ; » )  ; >

public void func_system(double h,double t,double u[].double hf[])
{
double sigma = 16.0, r = 40.0, b = 4.0; 
hf [0] = h*sigma*(u[l]-u[0] ) ; 
hf[l] = h*(-u[0]*u[2]+r*u[0]-u[l]); 
hf[2] = h*(u[0]*u[l]-b*u[2]);
>

public void map(double u[],int steps,double h,double t,int N)
-C
double uk[] = new double [N] ; 
double tk;
double a[] = {  0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double c[] = { 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b [] [] = new double [6] [5] ;
Ъ [03 [03 = b[03 [13= b [03 [23 = b[03[33 = b [03 [43 = 0.0;
b[l3 [03 = 1.0/4.0; b[13 [13 = 0.0; b [13 [23 = 0.0; b[l3 [33 = 0.0;
b[l3[43 = 0.0;
b[23 [03 = 3.0/32.0; b[23 [13 = 9.0/32.0; 
b[23[23 = 0.0; b[23[33 = 0.0; b[23 [43 = 0.0; 
b[33[03 = 1932.0/2197.0; b [33 [13 = -7200.0/2197.0; 
b[33 [23 = 7296.0/2197.0; b[33 [33 = b[33 [43 = 0.0; 
b[43 [0] = 439.0/216.0; b [43 [13 = -8.0;
b[43 [23 = 3680.0/513.0; b[4] [33 = -845.0/4104.0; b[43[43 =0 . 0 ;  
b[53[03 = -8 .0 /27 .0 ; b [53 [13 = 2.0; 
b [53 [23 = -3544.0/2565.0; b [5 ][33 = 1859.0/4104.0; 
b [53 [43 = -11.0/40.0;
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double f [] [] = new double [6] [N] ; 
int i, j, 1, k; 
for(i=0;i<steps;i++) 
i
func_system(h,t,u,f[0]); 
for(k=l;k<=5;k++)
{ tk = t + a[k3*h; 
for(1=0;1<N;1++)
{
uk [1] = u[l] ;
for(j=0; j<=k-l; j++) uk[l] += b[k] [j]*f [j] [1] ;
>
func_system(h,tk,uk,f[k]);
>
for(1=0;1<N;1++) 
f or (k=0; k<6; k++) u[l] += с [k] *f [k] [1];

>
>

public void paint(Graphics g)
{
g. drawLine(10,10,10,400); g.drawLine(10,200,630,200);
g.drawRect(10,10,630,400);
int steps = 1; int N = 3;
double h = 0.005;
double t = 0.0;
double u[] = { 0.8, 0.8, 0.8 >; // initial conditions 

// wait for transients to decay
for(int i=0;i<1000;i++) < t += h; map(u,steps,h,t,N); > 
t = 0.0;
for(int i=0;i<4800;i++)
{
t += h;
int m = (int)(25.0*t+10.0+0.5); 
int n = (int)(200.0-6.0*u[0]+0.5); 
map(u,steps,h,t,N); 
int p = (int)(25.0*(t+h)+10.0+0.5); 
int q = (int)(200.0-6.0*u[0]+0.5); 
g.drawLine(m,n,p,q);
>
>

public static void main(String[3 args)

Frame f = new Lorenztime 0; f.setVisible(true);
>
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5.3 Phase Portrait
In the program Lorenzphase. java we evaluate the phase portrait (ui(t),ti2(t)) 
the Lorenz model for the initial value ui(0) =  0.8, г*г(0) =  0.8, u3(0) =  0.8 and the 
parameter values a =  16, r  =  40 and 6 =  4.

11 Lorenzphase.java

import java.awt.*; 
import j ava.awt.event.*; 
import j ava.awt.Graphics;

public class Lorenzphase extends Frame 
{
public Lorenzphase()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit (0) ; » )  ; >

public void func_system(double h,double t,double u[],double hf[])

double sigma = 16.0, r = 40.0, b = 4.0; 
hf [0] = h*sigma*(u[l]-u[0]); 
hf[l] = h*(-u[0]*u[2]+r*u[0]-u[l]) ; 
hf [2] = h* (u [0] *u[l] -b*u [2] ) ;
>

public void map(double u[],int steps,double h,double t,int N)
{
double uk [] = new double [N] ; 
double tk;
double a[] = {  0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double c[] = i  16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b[][] = new double [6] [5];
b[0][0] = b[0][l]= b[0] [2] = bC03 [3] = b[0][4] = 0.0; 
b[l][0] = 1.0/4.0; b[l][l] = 0.0; b[l][2] = 0.0; b[l] [3] = 0.0; 
b[l] [4] = 0.0;
b[2][0] = 3.0/32.0; b[2] [1] = 9.0/32.0;
b[2] [2] = 0.0; b[2] [3] = 0.0; b[2] [4] = 0.0;
b[3][0] = 1932.0/2197.0; b[3][1] = -7200.0/2197.0;
b[3] [2] = 7296.0/2197.0; b[3] [3] = b[3] [4] = 0.0;
b[4] [0] = 439.0/216.0; b[4] [1] = -8.0;
b[4] [2] = 3680.0/513.0; b[4] [3] = -845.0/4104.0;
b [4] [4] = 0.0;
b[5] [0] = -8.0/27.0; b[5] [1] = 2.0;
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b[5][2] = -3544.0/2565.0; b[5] [3] = 1859.0/4104.0;
b[5] [4] » -11.0/40.0;
double f [] [] = new double [6] [N] ;
int i, j, 1, к;
for(i=0;i<steps;i++)
{
func_system(h,t,u,f[0] ) ; 
for(k=l;k<=5;k++)
{ tk = t + a[k]*h; 
for(1=0;1<N;1++)
{ uk[l] = u[l] ;
for(j=0; j<=k-l; j++) uk[l] += b[k] [j]*f [j] [1] ;
>
func_system(h, tk, uk, f [k]) ;
>
for(l=0;l<N;1++) 
for(k=0;k<6;k++) u[l] += с [k] *f [k] [1] ;

>
>

public void paint(Graphics g)
{
g. drawLine(10,10,10,400); g.drawLine(10,200,630,200);
g.drawRect(10,10,630,400);
int steps = 1;
int N = 3;
double h = 0.005;
double t = 0.0;
double u[] * { 0.8, 0.8, 0.8 >; // initial conditions 

// wait for transients to decay
for(int i=0;i<1000;i++) { t += h; map(u,steps,h,t,N); > 
t = 0.0;
for(int i=0;i<4800;i++)
{
t += h;
map(u,steps,h,t,N);
int m = (int)(5.0*u[0]+300); int n = (int)(5.0*u[l]+200); 
g.drawLine(m,n,m,n);
>
>

public static void main (String [] args)

Frame f = new LorenzphaseO ; f. setVisible(true) ;
>

>
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With an appropriate choice of origin the Lorenz model may be rewritten as 
dui
—  = а { и 2 - щ )  

du2—  =  - а щ  - u 2 -  ЩЩ 
at

du$
—  =  щи2 -  b u z -  b{r 4- a ) .

Here U\(t) is the rate of rotation of the cylinder, u2(t) is the temperature difference 
between opposite sides of the cylinder, u3(£) measures the deviation from a linear 
vertical temperature gradient: The positive constants cr, 6, r represent respectively 
the Prandtl number of the fluid (which depends on the viscosity and thermal conduc
tivity), the width to height ratio of the layer, and the fixed temperature difference 
between the bottom and top of the system. Assume that a > b +  1. Let

u2(t) u\(t) +  ul(t) +  ul(t) .

Then we find for the time-evolution of u2
1 d 2 dv,\ du2 du  ̂ 2 2 l 2 l ( i \и =  U l —  -b u2—  +  u3—  =  - a i q  - u l ~ b u 3 -  6u3(r +  a ) .

Thus we have the estimate

“ U2 <  - ( u j  +  u\ +  ul) -  (b -  l)u^ -  feu3(r +  a)

< _ u2 +  b ^ _ ± * l  
4(6 -  1)

using that cr >  1 and the usual estimate for the maximum of a quadratic expression. 
Then

and integrating

U2(t) <  <i2(0)e -“  +  -  e -* )  •

It follows that
lim sup \u(t)\ <  2p0

l—»oo

where po •= b(r +  a)/(4(b— l ) 1/2). Thus u(t) is close to, or inside the ball B (0 ,2po) 
when t is large. This implies that there is a (maximal) compact set E  С B(Q, 2po) 
that is invariant under the solution trajectories.

5.4 Liapunov Exponents
Liapunov exponents provide a meaningful way to characterize the asymptotic be
haviour of a nonlinear dynamical system

^  =  f(u), u(0) = u o, u e R n
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where f  is continuously differentiable. They provide a generalization of the linear 
stability analysis of fixed points. For ergodic dynamical systems, the Liapunov 
exponents are the same for almost all initial conditions uo with respect to any 
invariant measure for the flow. This means their values do not depend on a particular 
trajectory. For a given solution trajectory u(£), one considers the linear variational 
equation

J  =  D f (u )y  =  A(t)Y, Y( 0) =  I

where A(t) =  (df/du) is the Jacobian matrix at u (£), Y  is an n x n time-dependent 
matrix and I  is the identity matrix. Then, for an n x n  fundamental solution matrix
Y (t) the symmetric positive definite matrix

л  :=  ton Лm(t) :=  Urn (Кт («Щ 4 ))1/(21)

is well-defined, where T denotes transpose. If

{P j, Mi : j  =  1,2
denote the eigenvectors and associated eigenvalues of the n x n  matrix Л such that 

Ap j  =  PjMj or p j  Лрj =  \ij

then the one-dimensional Liapunov exponents with respect to the trajectory u(£) 
are given by

Xj =  logGuj) =  Km j  log ||y(£)Pj||

where j  =  1, 2, . . . ,  n.

As an example we consider the Lorenz model to find the largest one-dimensional 
Liapunov exponent. The variational equation of the Lorenz model

<̂ = a {u2 -U x)

du2—  =  -ЩЩ  +  ГЩ -  u2 
at

du3
—  =u iu 2 -  bu3 
at

is given by

dV2 , . \—  =  (-w 3 +  r)v 1 - V 2 -  U1V3 
at

dvs , .—— =  U2Vi -I- U\V2 -  bv3. 
at

The largest one-dimensional Liapunov exponent is then given by

A (n i(0 ),U2(0 ),U3(0),u1(0 ),«2(0),V 3(0))=  Urn. iln||v(T)||
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where ||. || denotes any norm in R 3. We choose the norm

IMI =  Ы  +  Н  +  Ы -

In the C + +  program we evaluate the Liapunov exponent for the parameter values 
r =  40, a =  16 and 6 =  4. We find Л «  1.37. It is conjectured that the method 
yields the maximal one-dimensional Liapunov exponent. The accuracy of the one
dimensional Liapunov exponent could be improved when the transients have been 
decayed.

// lorenzliapunov.cpp 

#include <iostream>
#include <cmath> // for log, fabs
#include "symbolicc++.h" 
using namespace std;

const int N = 3;
Symbolic u("u",N), ut("ut",N), y("y",N), yt("yt",N);

// The vector field V 
template<class T> T V(const Tfc ss)
•c
T sum(O);
for(int i=0;i<N;i++) sum += ut(i)*df(ss,u(i)); 
return sum;

>

template<class T> T W(const Tfe ss)
■C
T sum(O);
for(int i=0;i<N;i++) sum += yt(i)*df(ss,y(i)); 
return sum;

>

int main(void)
■C

int i, j;
Symbolic u("u",N), y("y",N), us("",N), ys("",N), 

t("t"), s(V), b("b"), r("r");
Equations v;

// Lorenz model
ut(0) = s*(u(l)-u(0));
ut(l) = -u(l)-u(0)*u(2)+r*u(0);
ut(2) = u(0)*u(l)-b*u(2);
// variational equations
yt(0) = s*(y(l)-y(0));
yt(l) = (-u(2)+r)*y(0)-y(l)-u(0)*y(2);
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yt(2) = (u(l)*y(0)+u(0)*y(l)-b*y(2));
11 Taylor series expansion up to order 2 
for(i=0;i<N;i++) us(i) = u(i)+t*V(u(i))+t*t*V(V(u(i)))/2;

for(i=0;i<N;i++)
ys(i) = у(i)+t*W(y(i))+t*t*W(W(y(i)))/2;

// Evolution of the approximate solution 
v = (t==0.01,r==40.0,s==16.0,b==4.0, 

u (0) ==0.8, u (1) ==0.8, u (2) ==0.8, 
y(0)==0.8>y(l)==0.8,y(2)==0.8); 

int iter = 10000; 
for(j=0;j<iter;j++)
{
Equations newv = (t==0.01,r-=40.0,s==16.0,b==4.0); 
for(i=0;i<N;i++) 
newv = (newv,u(i)==us(i) [v],y(i)==ys(i)[v]);

v = newv;
> // end for loop j

double T = 0.01*iter;
double lambda = log(fabs(double(rhs(v,у(0))))

+fabs(double(rhs(v, у (1) ) ) )
+f abs (double (rhs (v, у (2) ) ) ) ) /Т; 

cout «  "lambda = ” «  lambda «  endl; 
return 0;

5.5 Generalized Lotka-Volterra Model
The original Lotka- Volterra model can be generalized to higher dimensions n >  3. 
A three-dimensional generalization of the Lotka-Volterra model is given by

Ui — U1U2 +  cuj -  au3uj 

- u 2 +  UiU2 

—buz +  auiu^

where the relations between Ui and U2 form the Lotka-Volterra expressions, while 
the relations between Ui and u3 generalize the latter in three dimensions, and where 
a, 6, с  >  0. The parameters a, b and с are bifurcation parameters. In the Java 
program Lotkaphase. java we evaluate the phase portrait (ui(t),u2(0)-

dui
dt

dui
dt

du3
dt

II  Lotkaphase.java
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import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Lotkaphase extends Frame

public Lotkaphase()
■c
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System, exit(0) ; » )  ; }

public void func_system(double h.double t,double u[].double hf[])
<
double a = 2.9851; double b = 3.0; double с = 7.0; 
hf [0] = h*(u[0]-u[0] *u[l]+c*u[0] *u[0] -a*u[2] *u[0] *u[0] ) ; 
hf [1] = h*(-u[l]+u[0] *u[l]) ; 
hf [2] = h*(-b*u[2]+a*u[0]*u[0]*u[2]) ;
>

public void map(double u[],int steps,double h.double t.int N)
{
double uk[] = new double [N] ; 
double tk;
double a[] = { 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double c[] = { 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b CD G  = new double [6] [5] ;
b[0][0] = b[0][l]= b[0] [2] = b[0][3] = b[0] [4] = 0.0;
b[l] [0] = 1.0/4.0; b[l3 [1] = 0.0; b[l] [2] = 0.0; b[l][3] = 0.0;
b[l] [4] = 0.0;
b[2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0;
b[2] [2] = 0.0; b[2] [3] = 0.0; b[2] [4] = 0.0;
b[3] [0] = 1932.0/2197.0; b [33 [1] = -7200.0/2197.0;
b[33 [23 = 7296.0/2197.0; b [3] [3] = b[3] [4] = 0.0;
b[43 [03 = 439.0/216.0; b [43 [13 = -8.0; b[43 [23 = 3680.0/513.0;
b[4][33 = -845.0/4104.0; b[43 [43 = 0.0;
b[53 [03 = -8.0/27.0; b[53 [13 = 2.0; b [53 [23 = -3544.0/2565.0;
b[53[33 = 1859.0/4104.0; b[53 [43 = -11.0/40.0;
double f [3 П  = new double [63 [N3;
int i, j, 1, к;
for(i=0;i<steps;i++)
{
func_system(h,t,u,f[03); 
for(k=l;k<=5;k++)
{ tk = t+a [k3 *h; 
f o r (1=0 ;1<N;1++)
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{ uk[l] = u[l];
for(j =0; j<=k-1;j ++) uk[l] += b[k] [j]*f [j] [1] ;
>
func_system(h,tk,uk,f[k]);
>
fo r (1=0 ;1<N;1++) 
for(k=0; k<6;k++) u[l] += c[k] *f [k] [1] ;

>
>

public void paint(Graphics g)
{
g.drawRect(10,10,630,400); 
int steps = 1; 
int N = 3; 
double h = 0.005; 
double t = 0.0;
double u[] = { 1.0, 1.5, 2.5 >; // initial conditions 

// wait for transients to decay
for(int i=0;i<1000;i++) { t += h; map(u,steps,h,t,N); > 
t = 0.0;
for(int i=0;i<100000;i++)
{
t += h; map(u,steps,h,t,N);
int m = (int)(300.0*u[0]-20.0); int n * (int)(280.0*u[l]-60.0); 
g.drawLine(m,n,m,n);
>
>

public static void main(String[] args)
{
Frame f = new Lotkaphase0; f.setVisible(true);
>

>

5.6 Hyper chaotic Systems
For autonomous systems of first-order ordinary differential equations with n >  4 hy
perchaos can appear, i.e. the first two largest one-dimensional Liapunov exponents 
can be positive. We consider the autonomous system of differential equations

5  = ^ u)
where j  =  1,2,3,4. The variational equation is given by 

dyt Л  dVi . , л л ,
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Assume that v(£) also satisfies the variational equation. Let { e b e2,e 3, e4} be the 
standard basis in R 4 and

4 4

y  =  E % ej. v  =  E  v3ej ■
3=1 j = 1

Then we obtain

у  Л и -  ^  j  Л ukek j  =  Y  Y l Узиь*з л  е*

where Л denotes the exterior product. Using the property of the exterior product 
that

е* Л e j =  -e *  A e,- 
(and therefore ej A ej =  0) we obtain

у  A v  =  (угу2 -  y2V\) ei A e2 +  (j/iv3 — y& i) ei A e3 +  (yxv4 — y4Vi) ei A e4
+  (У2Щ -  У3У2) e2 A e3 +  (y2v4 -  y4v2) e2 A e4 +  (y3v4 — y4v3) e3 A e4 .

We consider now the time evolution of

aij :=  2hVj -  yjVi, i <  j.

Consequently, using the product rule, we find

dojj dy{ dvj dyj dvi
dt d tVj+Vi dt ~ ~ d tVi~ Vi~di-

Therefore we obtain

da 
dt
■12 _ (d V i  , dVj\ dvx dv2 dVi ev2
it ^  +  d n j  012 a ^ “ 23 +  a ^ “ 13 “  д ^ а ы  +  a ^ a“

dan _  (dVi dV3\ dVY dVl 
dt - \ д ^  +  д ^ ) а'3 +  д ^ а а - д ^ ам

d a u _ fd V 1 . dV4\ dVi dVl
dt yduj д щ )  14 ди2а24 **" дщ

dan (дУ 2 ' dV3\ dV2 dV2 dV3 dV3
dt \ди2 + ди3) аа + д ^ а13~ д ^ аы- д ^ ап + д ^ аи 

_  ( дУг dVA  ,d V 2 dv2 dV4 dv,
dt [d u 2 +  d u j au +  d ^ au +  d ^ aM~ d ^ au +  a i l 023

^  dV3 dV3
+  a^ ai4 +  a^ ai2

dV4 dV4
a 34 +  « — 0, 12 +  ^— a  13 

OU2 OU3

d ? u _ ( d V 3 dVA dV3 dv3 
dt \du3 +  д и , ) ам +  д ^ а1< +  д ^

The two-dimensional Liapunov exponent is given by

dV4 dV4
“  a^7“ 13"  a^ “23
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where
||a(T)|| =  |a12(T)| +  |a13(T)| +  • • ■ +  M T ) | .

As hyperchaotic system for the C + +  program we consider the consider the Rossler 
model [94]

du\—  =  - и 2 - щ

^ ■ = U i +  r lU2 +  U4 

du з
—  = r 2 +  WlU3

du4—  =  - r 3u3 +  r4u4

where ri =  0.25, r2 =  2.2, r3 =  0.5, r4 =  0.05. Then the two-dimensional Liapunov 
exponent is calculated.

// hyperliapunov.cpp

#include <iostream>
#include <cmath>
#include "symbolicc++.h" 
using namespace std;

const int N = 10;
Symbolic u("u",N), ut("ut",N);

// The vector field V
template <class T> T V(const Tit ss)
{
T sum(O);
forCint i=0;i<N;i++) sim += ut(i)*df(ss,u(i)); 
return sum;

>

int main(void) 
i
int i, j;
Symbolic t("t"), usC'^N);
Equations v;
double rl = 1.0/4.0, r2 = 11.0/5.0, r3 * 1.0/20.0, r4 = 3.0/10.0;

// hyperchaotic model 
ut(0) = -u(l)-u(2); 
ut(l) = u(0)+rl*u(l)+u(3); 
ut(2) = r2+u(0)*u(2); 
ut(3) = r3*u(3)-0.5*u(2);
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ut(4) = rl*u(4)+u(6)+u(7);
ut(5) = u(0)*u(5)-u(7);
ut(6) = r3*u(6)-0.5*u(5)-u(8)-u(9);
ut(7) = (rl+u(0))*u(7)-u(2)*u(4)+u(5)-u(9);
ut(8) = r4*u(8)+u(6)-0.5*u(7);
ut(9) = (u(0)+r3)*u(9)+u(2)*u(6);

// Taylor series expansion up to order 2
for(i=0;i<N;i++) us(i) = u(i)+t*V(u(i))+0.5*t*t*V(V(u(i)));

// Evolution of the approximate solution 
// initial values
v = (u(0)==-19.0,u(l)==0.0,u(2)==0.0,u(3)==15.0,u(4)==l.0,

u(5)==l.0,u(6)==l.0,u(7)==l.0,u(8)==l.0,u(9)==l.0,t==0.01); 
int iter = 10000; 
for(j=0;j<iter;j++)
{
Equations newv; 
newv = (newv,t==0.01);
for(i=0;i<N;i++) newv = (newv,u(i)==us(i)[v]); 
v = newv;
> // end for loop j

double T = double(rhs(v,t))*iter; 
double lambda = 
log(fabs(double(rhs(v,u(4))))+fabs(double(rhs(v,u(5))))

+f abs(double(rhs(v,u(6))))+f abs(double(rhs(v,u(7))))
+f abs (double (rhs (v ,u (8)) ) ) +f abs (double (rhs (v, u (9) ) ) ) ) /Т; 

cout «  "lambda = " «  lambda «  endl; 
return 0;

>

Another hyperchaotic system is given the extended Chen’s chaotic system [37] 

dv.2
-Г - =  — 16ui — U\U3 +  28U2 — U\ at
du3—  = UlU2 -  3U3 
duA
-Ж  =  щ + к

where к is the bifurcation parameter. For к =  0.2 one has a hyperchaotic attractor.

5.7 Hopf Bifurcation
In the study of nonlinear dynamical systems the Hopf bifurcation plays a central role.
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Theorem. Let U be an open connected domain in R n, с >  0, and let f  be a real analytic 
function defined on U x [—с, с]. Consider the autonomous system of first-order ordinary 
differential equations

^ = f ( u , r ) ,  where u e U, |r|<c. at

Suppose there is ал analytic, real, vector function g defined on [—c, c] such that

f(gM»r) = °-
Thus one can expand f(u,r) about g(r) in the form

f(u, r) =  Lru* +  f * (u*, r), u* := u -  g(r)

where LT is an n x n real matrix which depends only on r, and f*(u*,r) is the nonlinear 
part of f. Suppose there exist exactly two complex conjugate eigenvalues A(r), A(r) of Lr 
with the properties

ft(A(0)) =  0 and й(А '(0))^0 ( =  d/dr).

Then there exists a periodic solution P(i, e) with period T(e) with r =  r(e), such that 
r(0) =  0, P(t,0) =  g(0) and P(i,c) ф g(r(6)) for all sufficiently small с Ф 0. Moreover 
r(e), P(t, e), and T(e) are analytic at e =  0, and

т( o)= 2?r
|9to(0)|'

These “small” periodic solutions exist for exactly one of three cases: either only for r > 0, 
or only for r < 0, or only for r =  0.

We apply the Hopf bifurcation to a model for the Belousov-Zhabotinskii reaction.

// hopf.cpp

#include <iostream>
#include <cmath> // for sqrt 
#include "symbolicc++.h" 
using namespace std;

int main(void)
<

int i, j;
Symbolic u("u",3), V("V\3), b("b"), r("r"), s("s"), A("A",3,3);
V(0) = s*(u(l)-u(0)*u(l)+u(0)-u(0)*u(l));
V(l) = u(2)-u(l)-u(0)*u(l);
V(2) = u(0)-u(2);

for(i=0;i<3;i++) 
for(j =0;j<3;j ++) A(i,j) = df(V(i),u(j));



160 CHAPTER 5. NONLINEAR DISSIPATIVE SYSTEMS

Symbolic lambda("lambda");
Symbolic chareq;

// characteristic equation
chareq = det(lambda*A.identity()-A);

Symbolic cO = chareq.coeff(lambda,0);
Symbolic cl = chareq.coeff(lambda,1);
Symbolic c2 = chareq.coeff(lambda,2);
Symbolic Q = (3*cl-c2*c2)/9;
Symbolic R = (9*c2*cl-27*c0-2*c2*c2*c2)/54;
Symbolic D = Q*Q*Q+R*R;

// parameter values s == 2.0
// fixed point (ul,u2,u3) == (0,0,0)
double q = Q[s==2.0,u(0)==0.0,u(l)==0.0,u(2)==0.0];
double rR = R[s==2.0,u(0)==0.0,u(l)==0.0,u(2)==0.0];
doubled = D[s==2.0,u(0)==0.0,u(l)==0.0,u(2)==0.0];
double nc2 = c2[s==2.0,u(0)==0.0,u(l)==0.0,u(2)==0.0];

if(rR != 0 && q < 0 && d <= 0.0)
■c
double theta = acos(rR/sqrt(-q*q*q)); 
double PI = 3.14159;
double Iambi = 2.0*sqrt(-q)*cos(theta/3.0)-nc2/3.0;
double lamb2 = 2.0*sqrt(-q)*cos((theta+2.0*PI)/3.0)-nc2/3.0;
double lamb3 = 2.0*sqrt(-q)*cos((theta+4.0+PI)/3.0)-nc2/3.0;
cout «  "Iambi = " «  Iambi «  endl;
cout «  "lamb2 = " «  lamb2 «  endl;
cout «  "lamb3 = " «  lamb3 «  endl;

>
if (d > 0)
-C
double SQRT, T, S;
SQRT = sqrt(d);
if(fabs(rR + SQRT) >=0.0) S = pov(rR+SQRT,l.0/3.0); 
else S = -pov(-rR-SQRT,l.0/3.0);

if(fabs(rR-SQRT) >= 0.0) T = pow(rR-SQRT,1.0/3.0); 
else T = -pov(-rR+SQRT,l.0/3.0);

double Iambi = S+T-nc2/3.0; 
double realpart = -(S+T)/2-nc2/3.0; 
double imagpart = sqrt(3.0)*(S-T)/2.0; 
cout «  "Iambi = " «  Iambi «  endl;
cout «  "lamb2 = " «  realpart «  " + i*" «  imagpart «  endl; 
cout «  nlamb3 = " «  realpart «  " - i*" «  imagpaart «  endl;

>
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return 0;
>

Exercise. An autonomous electronic system is given by

C0 =  -G iV i +  a w  -  a3v3 +  6i(t* “  vi) +  b3(v2 -  vi)3 

C~JT =  ~ ib ~  g 2V2 ~ bi(v2 -  vi) -  b3(v2 -  vi)3

where &i > 0, 63 >  0 and G i, G2 are conductances. One sets fi =  (?i +  61 — ai, 
S =  G2 +  bi, which could be considered as bifurcation parameter. Show that the 
system can show Hopf bifurcation.

5.8 Time-Dependent First Integrals
A number of dissipative dynamical systems admit time-dependent first integrals for 
a certain choice of the control parameter. As an example we consider the Lorenz 
model

^■=CT(U2 -U l)

du2—  =  -UiU3 +  rui -  U2 
at

du3 ,
—  -UiU2 -  bu3 
at

where a, r and b are positive constants. For example, for r =  0, 6 =  2 and a 
arbitrary the Lorenz model admits the time-dependent first integral

I(u (t)) =  (u\ +  ul) exp(21) .

In our program f  i r s t2 . cpp we use SymbolicC-f-l- to find the conditions on r, b and 
a when we insert the time-dependent first integral into the Lorenz model. We find

-2 6  +  2 =  0, 2r =  0 .

Thus a is arbitrary, r =  0 and 6 = 1 .

// first2.cpp

#include <iostream>
#include "symbolicc++.h" 
using namespace std;

int main(void)
{
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Symbolic u("u",3), v("v",4);
Symbolic term, sum, I, Rl, R2;
Symbolic s("s"), b("b"), rC'r");

// Lorenz Model
v(0) = s*u(l)-s*u(0);
v(l) = -u(l)-u(0)*u(2)+r*u(0);
v(2) = u(0)*u(l)-b*u(2);
v(3) = 1;

// The ansatz
I = (u(l)*u(l)+u(2)*u(2))*exp(2*t); 
sum = 0;

for(int i=0;i<3;i++) sum += v(i)*df(I,u(i));

sum += v(3)*df(I,t); .
cout «  "sum = " «  sum «  endl;
Rl = sum.coeff(u(2),2);
Rl = Rl/(exp(2*t));
cout «  "Rl = 11 «  Rl «  endl;
R2 = sum.coeff(u(0),1); R2 = R2.coeff(u(l),1);
R2 = R2/(exp(2*t));
cout «  "R2 = " «  R2 «  endl;
return 0;

>

The output is

sum = 2*r*ul*u2*exp(2*t)-2*b*u3'4(2)*exp(2*t)+2*u3'4 (2)*exp(2*t)
Rl = -2*b+2 
R2 = 2*r
Exercise. Find other explicitly time-dependent first integrals for the Lorenz model 
using the ansatz

where p is a polynomial in щ , щ , u$.

Exercise. The Riki-two-disc dynamo can be written as

=  +  Y\X2

^  =  - ^ X 2 +  (Y1 - A ) X 1 
dY\

with the bifurcation parameters fj, >  0 and A. Find the condition on /x and A  for 
explicitly time dependent first integrals.



Chapter 6 

Nonlinear Driven Systems

6.1 Introduction
We consider a dynamical nonlinear system described by a system of first order 
ordinary differential equations

di = {^
where t €  R , u € R n, and r G R  denote the time, an n-dimensional state and a 
system parameter, respectively. We assume

f  : R  x R n x R  —► R n, (*, u, r) »-► f(t, u, r)

is a C°° mapping and is periodic in t with period 27r:

f(£ +  27t, u, r) =  f(£, u, r).

We also assume that the dynamical system has a solution u(£) =  Ф(£, v ,r ) de
fined on — oo <  t <  oo with every initial condition v  E R n and every r G R: 
u(0) =  Ф(0, v, г) =  v. By the periodic hypothesis given above, we can define a C°° 
diffeomorphism Tr from the state space R n into itself:

Tr : R n R n, v h  Tr(v) =  Ф(2тг, v ,r )

The mapping Tr is often called the Poincare mapping and is used for investigating 
qualitative properties of the dynamical system given above. If a solution u(£) =  
Ф(£| Pq) t) is periodic with period 27t, then the point Pq is a fixed point of Tr, i.e.

Tr(Po) — Pq .

If u(t) is a subharmononic solution of order 1/k (к =  2,3, •••), i.e., a periodic 
solution with least period 2kn1 then Pq is a point with period к such that

163
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Trk(P0) =  Po

and
Р о ф Т Р , j  =  —

Hence there are always к points P0, Pi =  Tr(P0), . . . ,  Pk- i  =  T^k~l\Po) which are 
all fixed points of Trfc. An invariant closed curve С  such that Tr(C) =  С  corresponds 
to quasi-periodic solutions of the dynamical system. Thus in order to study the be
haviour of the solutions of the dynamical system, we have only to study the iterates 
of the Poincare mapping Tr.

Next we introduce a hyperbolic fixed point and give its classification. Let P  € R n 
be a fixed point of Tr, then in the neighbourhood of P , the mapping Tr may be 
approximated by its derivative DTr(P ). This is indeed possible if the fixed point is 
hyperbolic. We call P  a hyperbolic fixed point of Tr, if DTr(P ) is hyperbolic, i.e., 
all the absolute values of the eigenvalues of DTr(P ) are different from unity. We 
give a topological classification of a hyperbolic fixed point. Let P  be a hyperbolic 
fixed point of Tr and Eu be the intersection of R n and the direct sum of the gener
alized eigenspaces of DTr(P ) corresponding to the eigenvalues /x such that |/x| >  1. 
Similarly, let E s be the intersection of Rn and the direct sum of the generalized 
eigenspaces of DTr(P ) corresponding to the eigenvalues such that \p\ <  1. E u (or 
Ea) is called the unstable (or stable) subspace of DTr(P ). Then it is known that 
E* and E3 have the following properties Rn =  E “ ® Ea and

DTr(E u) =  E*, DTr(E a) =  E a

dim E? =  #{/*i| |/Xt| > 1 } ,  dimE a =  #{/x»| \fM\ <  1 }
where щ is the eigenvalue of DTr(P) and # {  }  indicates the number of elements 
contained in the set {  }. Let

L * := D T r(P)|EU) La :=  DTr(P)\E, .

Then the topological type of a hyperboUc fixed point is determined by the dim E u 
(or dim Ea) and the orientation preserving or reversing property of Lu (or Ls). The 
latter condition is equivalent to the positive or negative sign of det Lu (or det Ls). 
We define two types of hyperboUc fixed points.

Definition. A hyperbolic fixed point P  is called

(i) a direct type (abbrev. D-type), if detLu > 0.

(ii) an inversely type (abbrev. /-type), if detLu < 0.

From this definition, at a D-type of fixed point P, Lu is an orientation preserving 
mapping, whereas at an /-type of fixed point P, Lu is an orientation reversing map
ping. If E “ is the empty set, we identify P  as a D-type. Secondly, a hyperbolic 
fixed point is called a positive type (P-type) or a negative type (TV-type) according
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to the evenness or oddness of dim E", respectively. The name comes from the index 
property of a fixed point. Combining these definitions, we can discuss the following 
four types of hyperbolic fixed points.

Definition. A hyperbolic fixed point P  is called a

(i) PD -type if dim Eu is even and det Lu >  0

(ii) N D -type if dim E? is odd and det Lu >  0

(iii) P I -type if dim Eu is even and det Lu <  0

(iv) N I- type if dim Eu is odd and det Lu <  0.

Assigning dim 27й to the above classification, we obtain all the topologically different 
types of hyperbolic fixed points:

Proposition. Let Tr : R n —► R n be the Poincare mapping defined above, then 
there exist 2n topologically different types of hyperbolic fixed points. These types 
are:

(i) for even-dimensional case: n =  2m,

2kPD (A =  0,1, • • • ,m ), 2 kPI (A? =  — 1)

2k+iND (fc =  0,1,2, • • • ,m) 2k+iNI (k =  0 ,1 ,... ,m)

(ii) for odd-dimensional case: n =  2m +  1,

2kPD (к =  0,1, •••,m), 2 kPI (A: =  1, - • • ,m)

2k+\ND (k =  0,1, • • • ,m  +  1) 2k+iNI (k =  0,1, •••,m)

One also uses the notation { P m denoting a hyperbolic fixed point such that P  de
notes the type: PD , ND, P I, and N I , m indicates an m-periodic point of Tr, 
j  indicates the number of a set of Pm when there are several sets of P m, and 
к — dim Eu. If m  =  1 or j  =  1, they will be omitted.

For the two-dimensional case: n =  2, we have four types of hyperbolic fixed points:
0 PD , j ND , iN I, and 2PD. These points are called a completely stable, directly 
unstable, inversely unstable and completely unstable fixed point, respectively. For 
n =  3, we have six types of hyperbolic fixed points: qP D , iND, \NI, 2PD, 
2P I, and 3ND.

A completely stable fixed point, i.e., dimJ?“ =  0 is often called a sink,, whereas a 
completely unstable fixed point, i.e., dim EP1 =  n is called a source. Other cases,
1 <  dim E 4 < 7 i — l, are simply called saddles.
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6.2 Driven Anharmonic Systems

6.2.1 Phase Portrait

We consider the driven anharmonic system

d2u du , о , .
—г г  +  a—  +  bu +  cu =  k\ +  «2 cos (Sit). 
at£ dt

Let Ui :=  и and u2 :=  du/dt. Then the equation can be written as first order system

dul dU2 , 4 » i—  =  U2, —— =  —au2 — bu\ — cu? +  k\ +  «2 cos(i«) 
at at

or using из(£) =  ОД
rfui du2 , о , . / % du3 0

=  U2’ ~di~ =  ~ aU2 ~~ ~~ ^  +  +  cos^ 3 ’̂ =

In the Java program Anharmonicph .java  we use the values a =  1, 6 =  —10, с =  100, 
k\ =  0, fc2 =  1.2, Г2 =  3.5 and find the phase portrait (ui(t), иг(£)) using the Lie 
series technique.

// Anharmonicph.java

import j ava.awt. *; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Anharmonicph extends Frame 
{
public Anharmonicph()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System, exit(0) ; » )  ; >

public void paint(Graphics g)
{
g.drawRect(40,50,500,440); 
double a, b, c, kl, k2, Omega; 
double ul, u2, u3, ull, u22, u33; 
double tau, count;

// parameter values
a = 1.0; b = -10.0; с = 100.0; Omega = 3.5; kl = 0.0; k2 = 1.2; 
tau = 0.005; count = 0.0;
// initial values
ull = 1.0; u22 = 0.0; u33 = 0.0;
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while(count < 1200.0)
{
ul = ull; u2 = u22; u3 = u33;
double vu2 = -a*u2-b*ul-c*ul*ul*ul+kl+k2*Math.cos(u3); 
ull = ul+tau*u2+tau*tau*vu2/2.0;
u22 = u2+tau*vu2+tau*tau*(-b*u2-3.0*c*ul*ul*u2-a*vu2 

-0mega*k2*Math.sin(u3))/2.0; 
u33 = 0mega*tau+u3;

if(count > 1000.0) // transients have decayed
<
int m = (int)(250.0*ul+250.0); int n = (int)(200.0*u2+240.0); 
int ml = (int)(250.0*ull+250.0); int nl = (int)(200.0*u22+240.0); 
g.drawLine(m,n,m,n);
>
count += tau;
>
>

public static void main(String[] args)

Frame f = new AnharmonicphO ; f . setVisible(true) ;
>

6.2.2 Poincare Section
The driven anharmonic system is given by the system

=  U2, —— =  —dU2 — bu\ — cuf +  hi +  fc2 cos(Qi) 
dt dt

where a, 6, c, ki, k2 and Г2 are bifurcation parameters. This system is invariant 
under the transformation t •—> t +  27гп/П, where n G Z. Thus we can introduce a 
diffeomorphism on the (tij, щ )  plane into itself, which can serve to decide numerically 
whether or not there is chaotic behaviour. Assume that

(t, ui (0), u2(0)) *->ui(t} ui (0), u2(0))
(£, u i (0 ) ,  u2( 0 ) ) »-+ u 2(£, Ui (0 ), u2(0 ))

is a solution of the driven anharmonic system starting from a point

Po =  (tti(0),u2(0))

Pi =  (ui(2n/Q),U2(2n/{l)).
at t =  0. Let



168 CHAPTER 6. NONLINEAR DRIVEN SYSTEMS

Thus we have defined a diffeomorphism

Tr \ R 2 i—* R 2) Po 1—* Pi 

where r  is a bifurcation parameter.

// Anharmonicpo.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Anharmonicpo extends Frame 

public Anharmonicpo()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{  public void windowClosing(WindowEvent event)
-( System, exit(0) ; >}) ; >

public void paint(Graphics g) 
i
g.drawRect(40,50,500,440); 
double a, b, c, kl, k2, Omega;
a = 1.0; b = -10.0; с = 100.0; Omega = 3.5; kl = 0.0; k2 = 1.2; 
double ul, u2, u3, ull, u22, u33, t, count; 
t = 0.005; count = 0.0;
ull = 1.0; u22 = 0.0; u33 = 0.0; // initial values
int iter = 1;
while(count < 6200.0)
{
ul = ull; u2 = u22; u3 = u33;
double vu2 = -a*u2-b*ul-c*ul*ul*ul+kl+k2*Math.cos(u3); 
ull = ul+t*u2+t*t*vu2/2.0;
u22 = u2+t*vu2+t*t*(-b*u2-3.0*c*ul*ul*u2-a*vu2 

-0mega*k2*Math.sin(u3))/2.0; 
u33 = 0mega*t+u3;
if((iter > 10) && (Math.abs(count-2.0*Math.PI*iter/0mega) < 0.02))

int m = (int)(200.0*ull+300.0); 
int n = (int)(200.0*u22+200.0); 
g.drawLine(m,n,m,n);
> // end if 
count += t;
if(count > 2.0*Math.PI*iter/0mega) iter++;
> // end while
> // end paint
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public static void main (String [] args)
{
Frame f = new AnharmonicpoO; f.setVisible(true);
>

>

6.2.3 Liapunov Exponent
The driven anharmonic system is given by

d*u du , о ч•^2 +  а~£ +  OU +  CU =  k cos(fi£)

where a >  0. This equation can be written as an autonomous system 

du\

=  — au2 - b u \ -  cu\ +  &cos(u3)

dt

with u3(t =  0) =  0. Thus the variational equation

is given by

dv i

— —av 2 — bv\ — 3cu\v\ — ks\n{u3)v3
at

^ = o .
dt

Without loss of generality we can set v3 (t) — 0. Then the variational system sim
plifies to

dvi dv2 l о 2—  =  v2) —  =  -a v 2 — bv\— 3cuxv i . 
at at

The one-dimensional Liapunov exponent follows from

A :=  lim ^ln||v(T)||1 —'OO j[
where

||v(r)||-MT)l + MT)l-
In the Java program Anharmonicliap. java we calculate the one-dimensional Lia
punov exponent A for the paramater values к =  1.2, a =  1.0, b =  —10.0, с =  100.0, 

=  3.5. We apply the Lie series technique. We find for the one-dimensional 
Liapunov exponent A «  0.34.
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// Anharmonicliap.java 

public class Anharmonicliap

public static void main (String [] args)
{
double a, b, c, k, Omega; 
double ul, u2, u3, ull, u22, u33; 
double vl, v2, v3, vll, v22, v33; 
double t, count;
a = 1.0; b = -10.0; с = 100.0; Omega = 3.5; к = 1.2; 
t = 0.005; count = 0.0; 
double abl, ab2;

// initial values
ull = 1.0; u22 = 0.0; u33 = 0.0; vll = 0.5; v22 = 0.5; 

while(count < 1500.0)

ul = ull; u2 = u22; u3 = u33; vl = vll; v2 = v22; 
abl = -a*u2-b*ul-c*ul*ul*ul+k*Math.cos(u3); 
ab2 = (-b-3.0*c*ul*ul)*vl-a*v2; 
ull = ul+t*u2+t*t*abl/2.0; 
u22 = u2+t*abl+t*t*(-b*u2-3.0*c*ul*ul*u2 

-a*abl-0mega*k*Math.sin(u3))/2.0; 
u33 = 0mega*t+u3; 
vll = vl+t*v2+t*t*ab2/2.0;
v22 = v2+t*ab2+t*t*(-6.0*c*ul*u2*vl-(b+3.0*c*ul*ul)*v2 

-a*ab2/2.0); 
count += t;
}• // end while

double liap = 1.0/count*Math.log(Math.abs(vll)+Math.abs(v22)) ; 
System.out.println(11 Liapunov exponent = " + liap);
>

Let u\ :=  и and u2 du/dt. Then the system can be written as

>

6.2.4 Autocorrelation Function

We consider the driven anharmonic system

d?u du . о . /rvi4 
-т-r- +  a—  +  DU +  CU =  к cos(S2£).

dt

dui
=  — au2 — bui — cu\ +  k cos(Ш ) .

dt
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The time average of u(£) is defined as

1 fT
(u) :=  lim — / u(t)d t. 
'  '  Г -  oo T  Jo w

The autocorrelation function of u (i) is defined by

/ (u (t )  -  (u ( t ) ) ) (u (t  +  t )  -  (u (t +  T )))d t
JO________________________________________

lim ^  f  (u(i) -  (u (t ) ) )2dt
T —oo 1 Jo

The autocorrelation function measures the correlation between subsequent signals. 
It remains constant or oscillates for regular motion and decays rapidly (mostly with 
an exponential tail) if the signals become uncorrelated in the chaotic regime. First 
we generate a time series from integrating the differential equation. The time series 
is used for calculating the autocorrelation function.

// Timeseries.cpp

#include <fstream>
#include <cmath> // for cos 
using namespace std;

void fsystem(double h,double t.double u[],double hf[])

double a = 1.0; double b = -10.0; double с = 100.0; 
double к = 1.2; double Omega = 3.5; 
hf [0] = h*u[l] ;
hf[l] = h*(-a*u[l]-b*u[0]-c*u[0]*u[0]*u[0]+k*cos(0mega*t));

>

void map(double u[],int steps,double h,double t)

const int N = 2; 
double uk[N]; 
double tk;
double a [6] = { 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double с[6] = < 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >;
double b [63 [5] ;
b[0][0] = b[03 [13= b[03 [2] = b[03 [33 = b[03 [43 = 0.0; 
b[l3[03 = 1.0/4.0; b[l3 [13 = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0; 
b[l3 [4] = 0.0;
b[23 [0] = 3.0/32.0; b [23 [13 = 9.0/32.0;
b[23 [23 = 0.0; b[23 [3] = 0.0; b[23 [43 = 0.0;
b[33[03 = 1932.0/2197.0; b [33 [1] = -7200.0/2197.0;
b[3] [2] = 7296.0/2197.0; b[33 [33 = b [33 [43 = 0.0;
b[4] [0] = 439.0/216.0; b[4] [13 = “8.0; b[4] [23 = 3680.0/513.0;



172 CHAPTER 6. NONLINEAR DRIVEN SYSTEMS

b[4] [3] = -845.0/4104.0; b[4] [4] = 0.0;
b[5] [0] = -8.0/27.0; b [53 [1] = 2.0;
b [5][2] - -3544.0/2565.0; b [53[3] = 1859.0/4104.0;
b [53 [43 = -11.0/40.0;
double f[63[N3;
int i, j, 1, k;
for(i=0;i<steps;i++)
{
fsystem(h,t,u,f[03); 
for(k=l;k<=5;k++)
{  tk = t+a[k3*h; 
fo r ( 1=0 ;1<N;1++)
{ uk [13 = u [13 ;
for(j=0; j<=k-l; j++) uk[l3 += b[k3 [j3 *f [j3 [1] ;
>
fsystem(h,tk.uk,f[k3);
>
fo r ( 1=0 ;1<N;1++)
for(k=0;k<6;k++) u[l3 += с [k3 *f [k3 [13 ;

>
>

int main(void)

ofstream data;
data.open("time_ser.dat");
int steps = 1;
double h = 0.005; double t = 0.0;
double u[2] = {  1.0, 0.0 >; // initial conditions

int i; 11 wait for transients to decay 
for(i=0;i<1000;i++) { t += h; map(u,steps,h,t); > 
t = 0.0;
for(i=0;i<9192;i++)
{ t += h; map(u,steps,h,t); data «  u[03 «  endl; > 
data.close (); 
return 0;

>

In the C + +  program correlations. cpp we find the autocorrelation functions using 
the data generated from the program Timeseries. cpp.
// correlation3.cpp

#include <iostream>
♦include <fstream> 
using namespace std;

double average(double* series,int T)
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{
double sum = 0.0;
forCint t=0;t<T;t++) {  sum += series[ t ] ;  > 
double av = sum/С Cdouble)T) ; 
return av;

>

void autocorrelation(double* series,double* CXX,int T, 
int length,double av)

forCint tau=0;tau<length;tau++)
{
double С = 0.0; 
double diff = T-length;
forCint t=0;t<diff;t++) { С += Cseries [t]-av)*Cseries[t+tau]-av); > 
CXXCtau] = С/CCdouble) diff+1);
>

int mainCvoid)
{
int T = 8192;
double* series = new double[T];
ifstream data;
data, open С11 time_ser.dat") ;
forCint t=0;t<T;t++) { data »  series[t]; >
double av = averageCseries,T);
cout «  "average value = " «  av «  endl;
int length = 200;
double* CXX = new double[length];
autocorrelationCseries,CXX,T,length,av);
deleted series;

forCint tau=0;tau<length;tau++)
cout «  "CXX[" «  tau «  "] = " «  CXX [tau] «  endl;

delete[] CXX; 
data.close 0; 
return 0;

6.2.5 Power Spectral Density

The autocorrelation function of the real scalar signal u (t) is defined by
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with /ОО r OO
/ Pu(t+T)Mt)(x >y)xy dxdy

-00 J—00

where pu(t+T),u(t)(x,y) represents the joint probability density function of u (t  +  r )  
and u(£). If u (t) is ergodic then the autocorrelation function o f u{t) may be equated

t0 т
ЯииМ =  И т —  f u (t +  r )u (i )  d t .

T —*oo Z l  J - T

The power spectral density Suu(u ) is now defined as

Svu(u>) :=  Г  RuU(T )e -™ d r .
J —00

It follows that

5ии(Ш) := \imE (ф ;  | J \ ( t ) e - ^ d t

if u{t) is ergodic. The power spectral density can indicate whether the dynamical 
system is periodic or quasiperiodic. The power spectral density of a periodic sys
tem with frequency и  has delta functions at ы and its harmonics 2cj, За», —  A 
quasiperiodic system with basic frequencies has delta functions at these
positions and also at all linear combinations with integer coefficients.

6.3 Driven Pendulum

6.3.1 Phase Portrait

The equation for the damped and driven pendulum is given by

d?u du , . .
-p r +  a—  +  bsmu =  /ccos(s It), 
at* dt

Introducing U\ :=  и and u2 :=  du/dt we obtain the system

du\ du2 . _ N
—r-  =  u2, —r~ =  —0.U2 — bsinUi +  к cos(S2£ ). 
at dt

For the C + +  program we evaluate the phase portrait {u i ( i ) }u2{ t ) ) for a =  0.2, 
b =  1, к =  1.1 and П =  0.8. We generate u [0] and u [ l ]  and write it into the file 
phase_data.dat. Then we can use GNUPLOT to display the data.

// Pendulumphase.cpp

#include <fstream>
#include <cmath> // for sin, cos 
using namespace std;

void f system (double h.double t,double u[] ,double hf[])
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double a = 0.2; double b = 1.0; 
double к = 1.1; double Omega = 0.8;
hf[0] = h*u[l]; hf[l] = h*(-a*u[l]-b*sin(u[0])+k*cos(0mega*t));

>

void map(double u[],int steps,double h,double t)
{
const int N = 2; 
double uk[N] ; 
double tk;
double a[6] = { 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 > 
double с[6] = < 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0 

-9.0/50.0, 2.0/55.0 >;
double b [6] [5] ;
b[0][0] = b[0][l]= b[0] [2] = b[0][3] = b[0] [4] = 0.0;
b[l] [0] = 1.0/4.0; b[l] [1] = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0;
b[l] [4] = 0.0;
b[2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0;
b [2] [2] = 0.0; b [2] [3] = 0.0; b[2][4] = 0.0;
b[3][0] = 1932.0/2197.0; b[33 [1] = -7200.0/2197.0;
b[3] [23 = 7296.0/2197.0; b[33 [33 = b[33 [4] = 0.0;
b[43[03 = 439.0/216.0; b [4] [13 = “8.0;
b[43 [2] = 3680.0/513.0; b[43 [33 = -845.0/4104.0;
b[43 [4] = 0.0;
b[53 [0] = -8.0/27.0; b[53 [13 = 2.0;
b [53 [23 = -3544.0/2565.0; b [53 [33 = 1859.0/4104.0;
b[53 [43 = -11.0/40.0;
double f [63 [N3 ;
int i, j, 1, k;

for(i=0;i<steps;i++)

fsystem(h,t,u,f[03); 
for(k=l;k<=5;k++)
{ tk = t+a[k3*h; 
f o r ( 1=0 ;1<N;1++)
{ uk[l3 = u[l];
for(j=0; j<=k-1; j ++) uk[l3 += b[k3 [j]*f [j] [1];
>
fsystem(h,tk,uk,f[k3);
>
f or(1=0;1<N;1++) 
f or (k=0; k<6; k++) u[l3 += с [k] *f [k] [13;

>

int main(void)
•c
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ofstream data;
data.open("phase_data.dat") ; 
int steps = 1; 
double h = 0.005; 
double t = 0.0;
double u[2] = { 0.8, 0.6 >; // initial conditions 
int i;
// wait for transients to decay
for(i=0;i< 1000;i++) { t += h; map(u,steps,h,t) ; > 

t = 0.0;
for(i=0;i<20000;i++)
{ t += h; map(u,steps,h,t); data «  u[0] «  " " «  u[l] «  "\n"; > 
data.close(); 
return 0;

>

6.3.2 Poincare Section

The equation for the damped and driven pendulum is given by

d?u du .
-r-г- +  a—  +  b sin и =  fccos(S2£). 
dt1 dt

Introducing ui :=  u and u2 :=  du/dt we obtain the system

=  u2> =  —au2 — b sin ui +  fc cos (Sit) .
at dt

This system is invariant under the translation t »-> t +  where n G Z. Thus we 
can study the Poincare map.

In the Java program PendulumPoincare.java we evaluate the Poincare section 
(u i(t),u 2(t )) for a =  0.2, b =  1, fc =  1.1 and =  0.8.

// PendulumPoincare.java

import java.awt.*; 
import j  ava.awt.event.*; 
import j  ava.awt.Graphics;

public class PendulumPoincare extends Frame 

public PendulumPoincare()
{
setSize(600,500);
addWindowListener (new WindowAdapter ()
{ public void windowClosing(WindowEvent event)
< System.exit (0) ; ») ; >
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public void f system (double h,double t,double u[] .double hf[])
{
double a = 0.2, b = 1.0;
double к = 1.09; double Omega = 0.8;
hf [0] = h*u[l] ;
hf[1] = h*(-a*u[l]~b*Math.sin(u[0])+k*Math.cos(0mega*t));
>

public void map(double u[],int steps,double h.double t,int N) 
i
double uk[] = new double [N]; 
double tk;
double a[] = < 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double c[] = { 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b [] [] = new double [6] [5] ;
b[0] [0] = b[0] [1]= b[0] [2] = b[0] [3] = b[0] [4] = 0.0; 
b[l][0] = 1.0/4.0; b[l][l] = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0; 
b[l] [4] = 0.0;
b[2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0; 
b[2][2] = 0.0; b[2] [3] = 0.0; b[2] [4] = 0.0; 
b[3] [0] = 1932.0/2197.0; b[3][1] = -7200.0/2197.0; 
b[3] [2] = 7296.0/2197.0; b[3] [3] = b[3] [4] = 0.0; 
b[4] [0] = 439.0/216.0; b[4] [1] = -8.0;
b[4] [2] = 3680.0/513.0; b[4] [3] = -845.0/4104.0; b[4] [4] = 0.0; 
b[5] [0] = -8.0/27.0; b[5] [1] = 2.0; b[5] [2] = -3544.0/2565.0; 
b [5][3] = 1859.0/4104.0; b[5][4] = -11.0/40.0; 
double f [] [] = new double [6] [N] ; 
for(int i=0;i<steps;i++)
<
fsystem(h,t,u,f[0]); 
for(int k=l;k<=5;k++)
{ tk = t+a[k]*h; 
for(int 1=0;1<N;1++)
{ uk[l] = u[l] ;
for(int j=0;j<=k— 1;j++) uk[l] += b[k] [j]*f [j] [1];
>
fsystem(h.tk.uk,f[k]);
>
for(int 1=0;1<N;1++) 
for(int k=0;k<6;k++) u[l] += с[k]*f [k] [1];

>
>

public void paint(Graphics g)
{
g.drawRect(40,40.500.450);
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int steps = 1; int N * 2; int counter = 0; 
double h = 0.005; double Omega = 0.8; double t = 0.0; 
double u[] = { 0 . 8 ,  0.6 >; // initial conditions 
forCint i=0;i<800000;i++)
{
t += h; mapCu,steps,h,t,N);
if С Ccoimter>10) && (Math, abs (t-2.0*Math.PI*counter/0mega) <0.02)) 
{
int m = ((int)(10.0*u[0])+350); int n = ((int) C40.0*u[l])+200) ; 
g .drawLine(m,n,m,n);
>
if(t > 2.0*Math.PI*counter/0mega) { counter++; >
>
>

public static void main(String[] args)

Frame f = new PendulumPoincare(); f.setVisible(true) ;
>

>

6.4 Parametrically Driven Pendulum

6.4.1 Phase Portrait

We consider the damped parametrically driven pendulum 

d?u du
-^2 +  а~^ +  (1 +  fc cos(Ш )) sin и =  0.

This equation can be written as a system of first order differential equations

~^t ~  U2> ~  ~~aU2 ~  ^  ^ cos( ^ ^  s*n U l’

We evaluate the phase portrait (щ (t),u2(t)). We take into account that

—7Г <  U i <  7Г.

// ParametricPhase.java

import java.awt.*; 
import j ava.awt.event.*; 
import j ava.awt.Graphi cs;

public class ParametricPhase extends Frame 
i

public ParametricPhase()
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{
setSize(600,500);
addWindowListener(new WindowAdapterO 
{ public void windowClosingCWindowEvent event)
{ System.exit(0); »); >

public void paint(Graphics g)
{
g.drawRect(50,30,500,400);
double a = 0.15, к = 0.94, Omega = 1.56;
double ul, u2, u3, ull, u22, u33;
double tau = 0.005; double count = 0.0;
ull = 0.1; u22 =0.2; u33 = 0.0; // initial conditions

while(count < 1200.0)

ul = ull; u2 = u22; u3 = u33;
double v2 = -a*u2-(1.0+k*Math.cos(u3))*Math.sin(ul); 
ull = ul+tau*u2+tau*tau*v2/2.0;
u22 = u2+tau*v2+tau*tau*(-u2*(1.0-k*Math.cos(u3))*Math.cos(ul)

-a*v2+0mega*k*Math. sin (u3) *Math. sin(ul) ) /2.0; 
u33 = 0mega*tau+u3;

if(count > 1000.0) // transients have decayed 
{
if(ull > Math.PI) { ull = ull-2.0*Math.PI; > 
if (ull < -Math.PI) { ull = ul 1+2. 0*Math.PI; > 
int m = (int)(80.0*ull+300.0); 
int n = (int)(60.0*u22+200.0); 
g.drawLine(m,n,m,n);
>
count += tau;
У // end while
> // end paint

public static void main(String[] args)
■C
Frame f = new ParametricPhaseO; f .setVisible(true);
>

6.4.2 Poincare Section

We consider the parametrically driven pendulum

+  a—  +  ( i  +  к cos(П£)) sinu =  0. 
dt2 dt
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This equation can be written as a system of first order differential equations

—  =  u2, ^  =  -a u 2 -  (1 +  к cos(nt)) sin щ . 
dt dt

This system is invariant under £»—►£ +  2nn/Cl, n G Z. Thus we can study the 
Poincare map of the dynamical system. We take into account that —7r <  и <  7г. 
In the Java program ParametricPoincare. java  we use the Lie series technique to 
integrate the differential equations.

// ParametricPoincare.j ava

import java.awt.*; 
import java.awt.event.*; 
import java.awt.Graphics;

public class ParametricPoincare extends Frame 
{

public ParametricPoincare()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit(0) ; » )  ; >

public void paint(Graphics g)
{
g .drawRect(50,30,500,400);
double a = 0.15, к = 0.94, Omega = 1.56;
double ul, u2, u3, ull, u22, u33;
double tau = 0.005; double count = 0.0;
ull « 0.1; u22 = 0.2; u33 = 0.0; // initial conditions
int z = 0;
while(count < 10000.0)
{
ul = ull; u2 = u22; u3 = u33;
double v2 = -a*u2-(1.0+k*Math.cos(u3))*Math.sin(ul); 
ull = ul+tau*u2+tau*tau*v2/2.0;
u22 = u2+tau*v2+tau*tau*(-u2*(1.0-k*Math.cos(u3))*Math.cos(ul) 

-a*v2+0mega*k*Math.sin(u3)*Math.sin(ul))/2.0; 
u33 = 0mega*tau+u3;

if(count > 1000.0) // transients have decayed 
{
if(ull > Math.PI) < ull = ul1-2.0*Math.PI; > 
if(ull < -Math.PI) { ull = ull+2.0*Math.PI; > 
if (Math, abs (count-2.0*Math.PI*z/0mega) < 0.02)
■C
int m = (int)(80.0*ull+300.0); int n = (int)(60.0*u22+200.0);
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g.drawLine(m,n,m.n);
>
>
count += tau;
if(count > 2.0*Math.PI*z/0mega) { z++; }
} // end while 
} // end paint

public static void main(String[] args)
{
Frame f = new ParametricPoincareO; f .setVisible(true);
>

>

6.5 Driven Van der Pol Equation

6.5.1 Phase Portrait

Consider the driven van der Pol equation

d2u , n , sdu , /л,ч
— г  +  a(u2 -  1) —  +  и =  к cos(nt) 
at1 at

or equivalently written as first order system

dui du2 , 2 л\ . ; du3 о—  =  u2i =  -a {u {  -  l)u 2 -  ui +  fccosu3, —— =  u  
at at oz

where u$(t =  0) =  0. We evaluate the phase portrait (u i ( t ) }u2( t ) )  for the parameter 
values a =  5.0, к =  5.0, ft =  2.466. For these parameter values it is conjectured 
that the system shows chaotic behaviour. We apply the Runge-Kutta technique to 
integrate the differential equations.

// VdpPhase.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class VdpPhase extends Frame 

public VdpPhase()
{
setSize(600,500);
addWindowListener(new WindowAdapterO 
{ public void windowClosing(WindowEvent event)
•( System, exit (0) ; })•) ; }

public void fsystem(double h.double t.double u[].double hf CD)
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{
double a = 5.0; double к = 5.0; double Omega = 2.466; 
hf [0] = h*u[l] ;
hf [1] = h*(a*(1.0-u[0]*u[0] )*u[l] -u[0] +k*Math.cos(0mega*t)) ;
>

public void map(double u[],int steps,double h,double t,int N)
<
double uk[] = new double [N] ; 
double tk;
double a[] = { 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double c[] = { 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b[] [] = new double [6] [5] ;
b[0][0] = b[0][l]= b[0] [2] = b[0][3] = b[0] [4] = 0.0;
b[l][0] = 1.0/4.0; b[l][l] = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0;
b[l][4] = 0.0;
b[2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0; 
b[2] [2] = 0.0; b[2] [3] = 0.0; b[2] [4] = 0.0; 
b[3] [0] = 1932.0/2197.0; b[3] [1] = -7200.0/2197.0; 
b[3] [2] = 7296.0/2197.0; b[3] [3] = b[3][4] = 0.0; 
b[4] [0] = 439.0/216.0; b[4] [1] = -8.0;
b[4] [2] = 3680.0/513.0; b[4] [3] = -845.0/4104.0; b[4] [4] =0.0;
b[5] [0] = -8.0/27.0; b[5] [1] = 2.0;
b[5] [2] = -3544.0/2565.0; b[5] [3] = 1859.0/4104.0;
b[5] [4] = -11.0/40.0;
double f [] [] = new double [6] [N] ;
int i, j, 1, k;
for(i=0;i<steps;i++)
{
fsystem(h,t,u,f[0]); 
for(k=l;k<=5;k++)
{ tk = t+a[k]*h; 
fo r ( 1=0 ;1<N;1++)
{ uk[l] = u[l];
for(j=0; j<=k-l; j++) uk[l] += b[k] [j] *f [j] [1];
>
fsystem(h,tk,uk,f[k]);
>
fo r ( 1=0 ;1<N;1++) 
for(k=0;k<6;k++) u[l] += с[k]*f [k] [1] ;

>
>

public void paint(Graphics g)

g.drawRect(20,40,550,400); 
int steps = 1; int N = 2;
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double h ■ 0.005; double t = 0.0;
double u[] = { 0.8, 0.6 >; // initial conditions
// wait for transients to decay
for(int i=0;i<1000;i++) { t += h; map(u,steps,h,t,N); > 
t = 0.0;
for(int i=0;i<100000;i++)
{
t += h;
map(u,steps,h,t,N);
int m = (int)(100.0*u[0]+350); int n = (int)(15.0*u[l]+220.0); 
g.drawLine(m,n,m,n);
>

public static void main(String[] args)
<
Frame f = new VdpPhaseO; f. setVisible(true);
>

6.5.2 Liapunov Exponent

We consider the driven van der Pol equation described in section 6.5.1. To find 
the largest one-dimensional Liapunov exponent we calculate the variational system. 
The variational system of the driven van der Pol equation is given by

=  V2' I t  =  ” (2aUlU2 +  l ) Vl ~  "  1)щ ~  ks[nM v*> ^  =  0 '

Without loss of generality we can set v3 =  0. Then we arrive at

=  v2, =  - (2 а щ и 2 +  I M  -  a(u\ -  l )v 2.
at at

The one-dimensional Liapunov exponent A follows from 

A :=  lim i  ln(|tfi(T)| +  |va(T)|).
1 —‘OO ±

In the C + +  program vdpliapunov. cpp we evaluate the one-dimensional Liapunov 
exponent for the parameter values a =  5.0, к =  5.0, П =  2.466.

// vdpliapunov.cpp

♦include <iostream>
♦include <cmath>
♦include "symbolicc++.h" 
using namespace std;

const int N = 3;
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Symbolic u ( V  ,N) , ut("ut",N), y("y",N-l), yt ("yt" ,N-1) ;

// The vector field V
template <class T> T V(const T& ss)
{
T sum(O);
for(int i=0;i<N;i++) sum += ut(i)*df(ss,u(i)); 
return sum;

>

template <class T> T W(const T& ss)

T sum(O);
for(int i=0;i<(N-l);i++) sum += yt(i)*df(ss,y(i)) ; 
return sum;

int main(void) 

int i, j;
Symbolic t("t"), a("a"), k("k"), om("om"), y("y",2), 

usC'us" ,N) , ysC'ys" ,N-1) ;
Equations v;

// Driven van der Pol 
ut(0) = u(l);
ut(l) = a*(l.0-u(0)*u(0))*u(l)-u(0)+k*cos(u(2)); 
ut(2) = om;
// variational equations 
yt(0) = y(l);
yt(l) = -(2.0*u(0)*u(l)+1.0)*y(0)-a*(u(0)*u(0)-l.0)*y(l);

// Taylor series expansion up to order 2 
for(i=0;i<N;i++) us(i) = u(i)+t*V(u(i))+t*t*V(V(u(i)))/2; 
for(i=0;i<(N-l);i++) ys(i) = y(i)+t*W(y(i))+t*t*W(W(y(i)))/2;

// Evolution of the approximate solution 
v = (t==0.01,a==5.0,k==5.0,om==2.466,

u(0)==l.5504,u(l)==-0.71214,u(2)==0.0,у(0)==0.5,y(l)==0.5) ;

int iter = 10000; 
for(j=0;j<iter;j++)

Equations new = (t==0.01, a==5.0 ,k==5.0, om==2.466) ; 
for(i=0;i<H;i++) new = (new,u(i)==us(i) [v] ) ; 
for(i=0;i<N-l;i++) new = (new,y(i)==ys(i) [v]); 
v = new;
> // end for loop j
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double T = 0.01*iter;
double lambda = log(fabs(double(rhs(v,y(0))))

+fabs(double(rhs(v,y(l)))))/T; 
cout «  "lambda = " «  lambda «  endl; 
return 0;

6.6 Parametrically and Externally Driven Pendu
lum

The parametrically and externally driven pendulum is given by 

cPu du
+  a—  +  (1 +  k2 cos(Cl2t ) ) sin u =  ki cos(Qit).

We set

u i ( t )  :=  u (t ), u2(t) := ^ 7 , u3( t ) u A(t)  := Q2t . 
at

Thus the second order differential equation can be written as the autonomous system 
of first order ordinary differential equations

dui du2 /- , \ • ,1— i. =  u2} —  =  —au2 -  (1 +  k2 cos u4) sin Ui +  ki cos u3 
dt dt

du3 duA __
-d f  =  n i ' 2 

where u3(t =  0) =  0 and u4(t =  0) =  0. In the program we evaluate the phase 
portrait (ui(£),u2(£)).

// ParametricExtPhase.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class ParametricExtPhase extends Frame
<
public ParametricExtPhase()
{
setSize(600,500);
addWindowListener(new WindowAdapterO 
■( public void windowClosing(WindowEvent event)
{ System.exit (0) ; ») ; }

public void fsystem(double h.double t.double u[].double hf[])
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{
double a = 0.1; double kl = 0.3; double k2 = 0.3; 
double Omegal = 0.618034; double 0mega2 = 1.618034; 
hf[0] = h*u[l];
hf[l] = h*(-a*u[l]-(1.0+k2*Math.cos(0mega2*t))*Math.sin(u[03) 

+kl*Math.cos(0megal*t));
>

public void map(double u[],int steps.double h,double t.int N)
{
double uk[] = new double [N]; 
double tk;
double a[] = { 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double c[] = { 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b [] [] = new double [6] [5] ;
b [03 CO] = b[0] [13= b[03 [23 = b[03[33 = b[03 [43 = 0.0;
b[l3 [03 = 1.0/4.0; b[l3 [13 = 0.0; b[l3 [23 = 0.0; b [13 [3] = 0.0;
b[l3 [43 =0.0;
b[23 [03 = 3.0/32.0; b[23 [13 = 9.0/32.0; 
b[23[23 = 0.0; b[23 [33 = 0.0; b[23 [43 = 0.0; 
b[33[03 = 1932.0/2197 . 0; b [33 [1] = -7200.0/2197.0; 
b[33 [23 = 7296.0/2197.0; b[33 [3] = b[33 [43 = 0.0; 
b[43 [03 = 439.0/216.0; b [43 [13 = "8.0;
b[43[23 = 3680.0/513.0; b[43[33 = -845.0/4104.0; b [4][43 =0.0;
b[53 [03 = -8.0/27.0; b[53 [13 = 2.0;
b[53[2] = -3544.0/2565.0; b[53 [33 = 1859.0/4104.0;
b[53 [43 = -11.0/40.0;
double f □ [3 = new double [63 [N3 ;
int i, j, 1, k;
for(i=0;i<steps;i++)
{
fsystem(h,t,u,f [0]) ; 
f or(k=l;k<=5;k++)
{ tk = t+a[k3*h; 
fo r ( 1=0 ;1<N;1++)
{ uk[l3 = u[13;
for(j=0; j<=k-l; j++) uk[l3 += b[k3 [j3*f [j3 [13 ;
>
fsystem(h,tk,uk,f[k3);
>
fo r (1=0 ;1<N;1++) 
f or (k=0; k<6; k++) u[l] += с [k3 *f [k3 [1] ;

>
>

public void paint(Graphics g)
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g.drawLine(20,200,620,200); g.drawRect(20,40,600,360);
int steps = 1;
int N = 2;
double h = 0.005;
double t = 0.0;
double u[] = { 1.0, 0.0 }; // initial conditions 

// wait for transients to decay
for(int i=0;i<2000;i++) { t += h; map(u,steps,h,t,N); } 
t = 0.0;
for(int i=0;i<50000;i++)
{
t += h;
map(u,steps,h,t,N);
int mx = (int)(150.0*u[0]+250.0); int my = (int)(150.0*u[l]+200.0); 
t += h;
map(u,steps,h,t,N);
int nx = (int)(150.0*u[0]+250.0); int ny = (int)(150.0*u[l]+200.0); 
g.drawLine(mx,my,nx,ny);
>
>

public static void main(String[] args)
{ Frame f = new ParametricExtPhase0; f.setVisible(true); >

>

6.7 Torsion Numbers

For a driven oscillator such as the driven Duffing equation

d?u du з . , ,,
—  +  a—  + u *  =  kcos{ut) 
at1 at

one finds that for a given periodic orbit nearby starting trajectories are more or 
less twisted around it. The twisting behaviour determines which bifurcations are 
possible. A  torsion by 27t, for example, excludes periodic doubling, because the 
eigenvalues of the linearization of the Poincare map are positive. The torsion number 
o f a periodic orbit is a quantity that counts the (average) number of twists of nearby 
trajectories around the closed orbit. We have the following definition for torsion 
numbers. Consider the second order differential equation

^ + g ( u , d u / d t )  =  h ( t )

where h(t +  T )  =  h (t) and T  is the period. Using щ  =  и, u2 =  du/dt, u3 =  t/T  we 
can cast it into a first order system of differential equations

^ i  =  U2, ^  =  - g ( U l , u 2-) +  h ( T u  3), £ Й - 1 / Г - ы / ( й г ) .
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This system generates a flow {Ф *} on the phase space R 2 x  S 1. The Poincare map 
P  ~  Фг |е is defined on the cross section

£  :=  {(u i, u2iu3) 6  R 2 x S l : щ  =  c =  const}  =  R 2

Let 7  be a period-m orbit through

U* =  ( U l f , U 2f , U z f  =  c )  6  R 2 x  S1

described by the solution u(£) of the system. Let u/ =  (u i f tu2f )  € R 2 be a fixed 
point of associated with the period-m orbit of 7  we are considering. The 
variational equation of the system is given by

where the 3 x 3  matrix A  is given by

0 1 0 \
-дд/дщ -dg/du2 Tdh/du3 

0 0 0

Since the third component has a trivial solution v$ =  const we can reduce the 
variational system to a two-dimensional system of differential equations. If uo is 
restricted to

E := { u G R 2 x  S1 : u3 =  0 }

(i.e. Vq =  (i>i0)V20, i>3o)) this reduced variational equation is given by

dv\ dv2 dg dg 
~dt ~ V2' ~dt =  ~ д й Щ “  дй”2 '

Any solution v(£) =  (u i(t),v2(t )) of this reduced variational equation describes a 
spiral-like curve in the phase space (i>,t>). The number of torsions can be counted 
by
1) considering v(£) =  (ui(£), V2( i ) )  in polar coordinates (r(t),<fi(t))

COS ф ( $  =  - А 2 1 sin ф ( ^  =  ^ Й 1 r ( t ) =  j v \ { t ) + v l ( t )

2) computing the angular velocity

d<f) _  vidv2/dt — v2dvi/dt 
d t ~  v\ +  v l

3) calculating the average angular velocity
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4) counting the number of torsions during one perdiod Tm — '<rn T  2тгтп/и of the 

oscillation _  л/ ч ч

■ Q h )  =  — =—  =  r n -  
2?r Um V

where

а д  : = H m i fJo

viduj/dt — ifydui/dt^  

v\ +  v%

Q(7) is independent of the initial condition v ( 0) for the solution v(£) of the vari 
ational equation and may be viewed as the orbit dependent eigenfrequency о t e 
oscillator. If A1i2 =  reilfi, r  >  0 are complex eigenvalues of the derivative D P  ot 
the iterated Poincare map p (m) (or the Floquet multiplier) then the phase actor <p 
is given by ip =  Tm^ { l )  mod 2тг. The torsion number is measued in 2тг.

Example. Consider the driven linear harmonic oscillator

f ^  +  a^ + w Ju =  fccos(art) 
dt2 dt

where a >  0. For t -> oo the solutions converge to the periodic solution

к
u(t) =  r ■ — C0SH  -  9)

where
q :=  arccot((a;o ~  w2)/(aa>)).

Thus the Poincare map of this system has a single stable fixed point u/. ^
evolution of a perturbation (initial value in the Poincare cross sec 1
„3 ,  о =  t : V =  u/ +  (v\ ^  describing the behaviour of a rajectory m the

neighbourhood of the closed orbit is given by the variation equa ю

d?v dv 2 n_  + 0__ + Wo„  = o.

For a <  2cjq the solution of this linear equation is

where П -----ТГлw :=  \jul -  a / 4

The frequency w of the osciUations of the angle of the
citation frequency u) and the excitation ampi • frequency
neighbourhood trajectory around the closed orbit epen s _  For a >  2u0
relation ш/ш. For a <  2u0 the torsion number is given by n  / ^  

the torsion number is always 0.
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For a nonlinear driven oscillator the torsion number must be found numerically. For 
example Parlitz and Lauterborn [84] studied the driven Toda oscillator

d?u du . .
+  a-— +  eu -  1 =  a cos(art) 

dt* at

with the corresponding variational equation

d?v dv 
dt2 "*"a dt

The torsion number can also be introduced (Uezu [113]) for an autonomous first 
order system

d u  C( \
* = f (u )

where u =  (ui,u2,u3). A periodic solution Up(£) of this autonomous system is 
characterized topologically by its knot type, torsion numbers n, and relative tor
sion number r*. A  solution v (t )  of the linearized differential equation (variational 
equation) around up(t) is given by

v(£) =  exp (/ol ^ ^ ds) Vo =  S(t)vo

where exp(...) is an ordered exponential. Let Л» be a real eigenvalue of S (T )  (T  
is the period of U p(£ )) and e* be the eigenvectors belonging to A* with |Ai| >  |A2|, 
Aq =  1. Then у<(£) =  S(£)ei with i  =  1,2. The link number between two loops C\ 
and C2 in R 3 is given by the Gauss integral

L{C x,C i) ~ j ~ f  Г
47TJC1 JC2 ||ri — r 2||3

where || || denotes the Euclidean norm, ( ,  ) the inner product (scalar product in R 3) 
and x denotes the vector product in R 3. Using this notation, щ and are defined 
as follows

l_  ГТ OCi2{t)cXi3{t) -  Cti2(t)ai3(t )

/0 a?2( i )  +  a & (t )

2щ :=  L([up(£);0 <  t <  T],Up(t) +  xv*(t)/||v<(t)||;0  <  t <  2T\)

and

where dots denote the time derivative and

a n (t) :=  (v i ( i ) ,g , (t ) )

with
=  Up(t) =  up{t) X u p(t )  _

IK W II ' g2 IK W  x Up(t)H’ 83 1 2-
Thus describes the torsion of the tangent space around the periodic orbit Up(0 
and Г{ is the rotation number around the direction of the velocity vector dup(t)/dt 
in the moving coordinate system.



Chapter 7 

Controlling of Chaos

7.1 Introduction
In this chapter we discuss different strategies for controlling classical chaos. Con
trolling chaos plays a central role in engineering in particular in electronics and 
mechanical systems. Roughly speaking, there are two kinds of ways to control 
chaos: feedback control and non-feed back control.

The frame of a chaotic attractor is given by infinitely many unstable periodic orbits. 
The task is to use the unstable periodic orbits to control chaos. We describe the 
Ott-Grebogi-Yorke method which uses this fact. By applying small, judiciously 
chosen temporal perturbations to an accessible control parameter of the dissipative 
system, they demonstrated that an original chaotic trajectory can be converted to 
a desired fixed point or periodic orbit. The Ott-Grebogi-Yorke method [83] belongs 
to feedback control. We apply this method to one and two-dimensional maps. The 
maps under consideration are the logistic map and the Henon map. Controlling can 
also be achieved by coupling periodic modulations to the control parameter. We 
study the Lorenz model with this technique in section 7.3. This is a non-feedback 
control. Resonant perturbation and control is considered in section 7.4 and applied 
to a driven anharmonic oscillator.

7.2 Ott-Yorke-Grebogi Method

7.2.1 One-Dimensional Maps
The basic idea of the Ott-Yorke-Grebogi method [83] for stabilizing unstable periodic 
orbits embedded in a chaotic attractor can be understood by considering a simple 
model system. We consider the logistic map

x t+i =  f ( x t} r )  =  rx t( l ~  x t) r  e  [3,4]

191
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where Xo € [0,1] and thus x t € [0,1]. The logistic map develops chaos via the 
period-doubling bifurcation route. The period-doubling cascade accumulates at r  =  
г,» «  3.57..., after which chaos can arise. Consider the case r  — 3.8. The system 
is apparently chaotic for this value of r and the chaotic attractor is contained in 
the interval [0,1]. The chaotic attractor contains an infinite number of unstable 
periodic orbits embedded within it and they are dense in it. For example, a fixed 
point (r  =  3.8)

x* =  1 -  -  -  0.7368... 
r

and a period-2 orbit,

z ( l )  «  0.3737..., x{2) «  0.8894...

where

* ( 1) -  / [* (2)1. i ( 2) =  / [* (!) ]•

We find x ( l )  and x(2) by solving the quartic equation

X* =  r2x * (l — x * ) ( l  — r z * ( l  — X*)) .

Besides the solutions x* =  0, x* =  1 — 1/r we obtain я(1) and x{2) as fixed points 
of the second iterate of the map.

Now suppose we want to avoid chaos at r  =  3.8. In particular, we want trajectories 
resulting from a randomly chosen initial condition Xo to be as close as possible to the 
period-2 orbit assuming that this period-2 orbit gives the best system performance. 
We can choose the desired asymptotic state of the map to be any of the infinite 
number of unstable periodic orbits, if that periodic orbits gives the best system 
performance. To achieve this goal, we suppose that the parameter r  can be finely 
tuned in a very small range around the value ro =  3.8, namely, we allow r to vary in 
the range [r0 — <5,ro+<5], where <5 1. Due to the ergodicity of the chaotic attractor, 
the trajectory that begins from an arbitrary value of xo will fall, with probability 
one, into the neighbourhood of the desired period-2 orbit at some later time. The 
trajectory would diverge quickly from the period-2 orbit if we do not intervene. We 
program the parameter perturbations in such a way that the trajectory stays in 
the neighbourhood of the period-2 orbit for as long as the control is present. The 
small parameter perturbations will be time-dependent in general. The logistic map 
in the neighbourhood of a periodic orbit can be approximated by a linear equation 
expanded around the periodic orbit. Let the target period-m orbit to be controlled 
be х(г), i =  l , . . . ,m ,  where x (i  +  1) =  f [x { i ) ]  and x (m  +  1) =  s ( l ) .  Assume 
that at time t, the trajectory falls into the neighbourhood of the ith component of 
the period-m orbit. The linearized dynamics in the neighbourhood of the (i +  l)th  
component is then

x t+1 -  x (i +  1) -  r^
dx

( /w d/(s>r ) {xt -  х (г )) +
*=l(t),r=ro

Д г4
X=s(t),r=ro
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where the partial derivatives are evaluated at x  =  x (i )  and r  =  ro. Thus we obtain 

x t+i -  x (i  +  1) =  r0( l  -  2 x (i) ) (x t -  x ( i ) )  +  я(г)(1 — ж(г)) A r t .

We require a:t+i to stay in the neighbourhood of x (i +  1). Hence, we set

\xt+i - х ( г +  1)| =  0 .

From this equation it follows that

(2x (i )  -  l ) { x t - x ( i ) )
A  rt =  r0-

х ( г ) ( 1 - х ( г ) )

This equation holds only when the trajectory xt enters a small neighbourhood of the 
period-m orbit, i.e., when \xt — х(г)| —» 0. Hence, the required parameter pertur
bation A r t is small. Let the length of a small interval defining the neighbourhood 
around each component of the period-m orbit be 2e. In general, the required max
imum parameter perturbation 6 is proportional to €. Since e can be chosen to be 
arbitrarily small, 6 also can be made arbitrarily small. However, the average tran
sient time before a trajectory enters the neighbourhood of the target periodic orbit 
depends on e (or <5). A  larger 6 will mean a shorter average time for the trajectory 
to be controlled. Of course, if <5 is too large, nonlinear effects become important 
and the linear control strategy might not work. When the trajectory is outside the 
neighbourhood of the target periodic orbit, we do not apply any parameter pertur
bation and the system evolves at its nominal parameter value ro- We usually set 
A r t =  0 when A rt >  S. The parameter perturbations A r t depend on xt and are 
therefore time-dependent.

In the following C + +  program control 1 . cpp we control the fixed point z* =  1—1/r, 
where r  =  3.8 for the logistic equation.

// control1.cpp

♦include <iostream>
♦include <cmath> // for fabs 
using namespace std;

int main(void)

double x = 0.28; // initial value
double rO = 3.8; // control parameter
double T = 650; // number of iterations
double eps = 0.001; // neighbourhood 
double xf = 1.0-1.0/r0; // fixed point 
double xl; 
int count = 0; 
double r = rO; 
for(int t=0;t<T;t++)
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i
xl = x; x = r*xl*(l.O-xl); 
count++;
if(fabs(x-xf) < eps)
{
cout «  "in eps neighbourhood" «  endl;
cout «  "count = " «  count «  endl;
double delta = r0*(2.0*xf-1.0)*(x-xf)/(xf*(l.O-xf)) ;
cout «  "delta = " «  delta «  endl;
r = rO+delta; // change to control parameter for controlling 
cout «  "x = " «  x «  endl;
> // end if
> // end for loop 
return 0;

>

In the following C + +  program contro l2 . cpp we control a period two-orbit for the 
logistic map with r  =  3.8.

// control2.cpp 

#include <iostream>
#include <cmath> // for sqrt, fabs 
using namespace std;

int main(void)
{
double x = 0.28; // initial value
double rO = 3.8; // control parameter
double T = 353; // number of iterations
double eps = 0.001; // neighbourhood 
int count = 0; 
double xl;

// periodic points 
double ab = (1.0+1.0/r0); 
double xpl = ab/2.0+sqrt(-ab/r0+ab*ab/4.0); 
double xp2 = ab/2.0-sqrt(-ab/r0+ab*ab/4.0); 
cout «  "xpl = " «  xpl «  endl; // periodic point 0.88942 
cout «  "xp2 = " «  xp2 «  endl; // periodic point 0.373738 
cout «  endl;

double r = rO; 
for(int t=0;t<T;t++)

xl = x; x = r*xl*(l.0-xl); 
count++;
if((fabs(x-xpl) < eps) I I (fabs(x-xp2) < eps))
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cout «  "in eps neighbourhood of xpl or xp2" «  endl; 
cout «  "count = " «  count «  endl; 
if(fabs(x-xpl) < eps)
•C
double deltal;
deltal = r0*(2.0*xpl-l.0)*(x-xpl)/(xpl*(l.0-xpl)); 
cout «  "deltal = " «  deltal «  endl; 
r = rO+deltal;
cout «  "x = " «  x «  endl;
>
else
i
double delta2;
delta2 = r0*(2.0*xp2-l.0)*(x-xp2)/(xp2*(l.0-xp2)) ; 
cout «  "delta2 = " «  delta2 «  endl; 
r = r0+delta2;
cout «  "x = " «  x «  endl;
>
>
> // end for loop 
return 0;

7.2.2 Systems of Difference Equations

Here we consider a system of difference equations

x t+i =  f  (x t,r )

where x t 6  R n, r  € R  and f  is sufficiently smooth in both variables. Here, r is 
considered a real parameter which is available for external adjustment but is re
stricted to lie in some small interval |r — ro| <  6 around a nominal value ro. We 
assume that the nominal system (i.e., for r =  ro) contains a chaotic attractor. We 
vary the control parameter r  with time t  in such a way that for almost all initial 
conditions in the basin of the chaotic attractor, the dynamics of the system converge 
onto a desired time periodic orbit contained in the attractor. The control strategy 
is the following. We find a stabilizing local feedback control law which is defined 
on a neighbourhood of the desired periodic orbit. This is done by considering the 
first order approximation of the system at the chosen unstable periodic orbit. Here 
we assume that this approximation is stabilizable. Since stabilizability is a generic 
property of linear systems, this assumption is quite reasonable. The ergodic nature 
of the chaotic dynamics ensures that the state trajectory eventually enters into the 
neighbourhood. Once inside, we apply the stabilizing feedback control law in order 
to steer the trajectory towards the desired orbit.

Thus the control of unstable periodic orbits xpti e  R n with i  =  1 ,..., P, where P  
denotes the period length, can be achieved by small, exactly determined variations
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of the system parameter during each iteration t given by the control г* 6  R.

Hence we have to consider the parametrised system

x t+i =  f(x * ,r t).

By changing r t slightly the periodic points are also shifted slightly, i.e., хрДтч) for 
t = l

We describe the method as applied to the stabilization of fixed points (i.e., period 
one orbits) of the map f . The consideration of periodic orbits o f period larger than 
one is straightforward. Let x* (r ) denote an unstable fixed point on the attractor. 
For values of r close to r0 and in the neighbourhood of the fixed point x*(ro) the 
map can be approximated by the linear map

xt+i -  x* (r0) =  A [x t -  x * (r0)] +  B (r  -  r0)

where A  is an n x n Jacobian matrix and В  is an n-dimensional column vector

A  :=  Dxf (x ,r ) ,  В  :=  D rf { x , r ) .

The partial derivatives are evaluated at x  =  x*(ro) and r  — Го- We now introduce 
the time-dependence of the parameter r  by assuming that it is a linear function of 
the variable x t of the form

r - r 0 =  —K T (x t -  x*(r0) ) .

The 1 x n matrix К T is to be determined so that the fixed point x*(ro) becomes 
stable. We obtain

x t+1 -  x * (го) =  (Л  -  B K T) (x t -  x *(r0))  

which shows that the fixed point will be stable provided the n x n  matrix

A  — B K T

is asymptotically stable: that is, all its eigenvalues have modulus smaller than unity. 
The solution to the problem of the determination of K T, such that the eigenvalues 
of the matrix A  — В К T have specified values, is well known from control systems 
theory and is called the pole placement technique.

As an example we consider the Henon map in the form

iit+ i =  a +  bx2t ~  x\t1 ^2t+l =  3*11 •

For b =  0.3 and a =  a =  1.4 there is an unstable saddle point contained in the 
chaotic attractor. This fixed point is given by

x{ =  —c +  y/c2 +  a, x*2 =  xj
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where с =  (1 — 6)/2 and a >  —c2. We obtain

^  =  Dxf (x )  =  ( - 21Xl J ) ,  B  =  Dr f ( x ) = ( j ) .

The eigenvalues and eigenvectors of >1 are given by

A* =  -X i +  \/b +  x?, Au = - x i  -  у Г + z f ,

The 2 x 2  matrix Л  — is given by

А - В К Т = ( - 2х\ - к'  b ~ k> ) .

// Controlhenon.cpp

#include <iostream>
#include <cmath> // for sqrt
using namespace std;

int main(void)
•C
double T = 3380; // number of iterations
double x = -0.760343, у = 1.40007; // initial values 
double a = 1 . 4 , b = 0 . 3 ;  // parameter values
double xl, yl; 
double aO = a;

// fixed point (fixed point is unstable) 
double с = (1.0-b)/2.0; 
double xf = -c+sqrt(c*c+a); 
double yf = xf;
cout «  "xf = " «  xf «  endl; // 0.883896 
cout «  "yf = " «  yf «  endl; // 0.883896 
double kl = -0.1, k2 = 1.3; 
int counter = 0;
double eps = 0.005; // eps neighbourhood 
for(int t=0;t<T;t++)
■C
xl = x; yl = y;
x = a0-xl*xl+b*yl; у = xl;
counter++;
if((fabs(x-xf) < eps) && (fabs(y-yf) < eps))
{
cout «  "in eps neighbourhood" «  endl; 
cout «  "counter = " «  counter «  endl; 
aO = a-kl*(x-xf)-k2*(y-yf);
cout «  "x = " «  x «  endl; cout «  "y = " «  у «  endl;
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У 
У
cout «  "x = " «  x «  endl; cout «  "y = " «  у «  endl; 
return 0;

>

In the following C + +  program we stabilize a fixed point o f the Henon model using 
the OGY-method.

// henonogy.cpp

♦include <iostream>
♦include <cmath> // for sqrt 
using namespace std;

double f(double p,double x,double y,double b)
{ return (p-x*x+b*y); >

double fp(double a,double b) // fixed point 
{ return ((b-1.0)/2.0 + sqrt((1.0-b)*(1.0-b)/4.0+a)); >

double Es(double x,double b) // stable eigenvalue 
{ return (-x+sqrt(x*x+b)); }

double Eu(double x,double b) // unstable eigenvalue 
■{ return (-x-sqrt (x*x+b)) ; }

int main(void)

double aO = 1.4, b = 0.3; // parameters
double xinit = 0.6, yinit = 0.7; // initial values
const double delta =0.01; // maximum allowed perturbation

double xi - xinit; double yi = yinit; 
int i = 0; // indentation 
double x_ = xinit; int к = 0; 
double at; // control parameter
double xf = fp(a0,b); double yf = xf; // fixed point 
double lambdas = Es(xf,b); // eigenvalue stable 
double lambdau = Eu(xf,b); // eigenvalue unstable 
double fu = sqrt(lambdau*lambdau+1.0)/(lambdau-lambdas); 
double ful = fu;
double fu2 = -lambdas*fu; // eigenvectors

cout «  "fixed point x,y: " «  xf ; 
cout «  " , " «  yf «  endl; 
cout «  "eigenvalues: " «  lambdas; 
cout «  " , " «  lambdau «  endl; 
do
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double deltap = -lambdau*(ful*(xi-xf)+fu2*(yi-yf))/ful; 
if(fabs(deltap) < delta)
{
at = aO+deltap;
x_ = xi; xi = f(at,xi,yi,b); yi = x_; 
cout «  "x" «  i; cout «  " : " «  xi; 
cout «  " y" << i; cout «  " : " «  yi; 
cout «  " p «  at-aO «  endl; 
i++; k++;
>
else
•c
i++; к = 0; x_ = xi; xi = f(a0,xi,yi,b); yi = x_;
>
>
while(k<=15); 
return 0;

7.3 Small Periodic Perturbation
Control of chaos of dissipative systems with a control parameter can be realized 
by coupling weak periodic oscillations to the control parameter. We consider the 
Lorenz equations

^  =  <r(u2 - u i )  

du2
— - = r t i! -  UiU2 -  u2 
at

duз k,—  =  щ и2 -  bu3. 
at

We have chosen parameters of Lorenz equations where the system has a strange 
attractor, i.e. cr =  10, b =  0.4 and r  =  80. To couple the periodic oscillations to the 
control parameter, we replace the parameter r  in the Lorenz system with

r —> r +  к соs(ft£)

where ft is the modulation frequency and к is the modulation amplitude. Thus we 
consider the time-dependent system
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After controlling with the frequency П =  6.28318, we obtained period one, period 
two and period four orbits for the values fc =  2.11,fc =  3 and к =  36.8, respectively.

// ControlLorenz.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class ControlLorenz extends Frame 

public ControlLorenz()
{
setSize(600,500);
addWindowListener(new WindowAdapter ()
{ public void windowClosing(WindowEvent event)
{ System.exit(0); >}); >

public void f system (double h, double t,double u[] .double hf[])
{
double sigma = 10.0, r = 80.0, b = 0.4; 
double Omega = 6.28318; double к = 2.0; 
hf [0] = h*sigma*(u[l]-u[0]) ;
hf[1] = h*(-u[0]*u[2] + (r+k*Math.cos(0mega*t))*u[0]-u [1]); 
hf[2] = h*(u[0]*u[l]-b*u[2]) ;
>

public void map(double u[],int steps,double h,double t,int N) 
i
double uk[] = new double [N]; 
double tk;
double a[] = { 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 }; 
double c[] = { 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b[][] = new double[6] [5] ;
b[0][0] = b[0][l]= b[0] [2] = b[0][3] = b[0] [4] = 0.0;
b[l] [0] = 1.0/4.0; b[l] [1] = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0;
b[l] [4] = 0.0;
b[2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0; 
b[2][2] = 0.0; b[2] [3] = 0.0; b[2] [4] = 0.0; 
b[3] [0] = 1932.0/2197.0; b[3] [1] = -7200.0/2197.0; 
b[3][2] = 7296.0/2197.0; b[3][3] = b[3] [4] = 0.0; 
b[4] [0] = 439.0/216.0; b[4][l] = -8.0;
b[4] [2] = 3680.0/513.0; b[4] [3] = -845.0/4104.0; b[4] [4] = 0.0; 
b[5] [0] = -8.0/27.0; b[5] [1] = 2.0; b[5] [2] = -3544.0/2565.0; 
b[5] [3] = 1859.0/4104.0; b[5] [4] = -11.0/40.0; 
double f [] [] = new double [6] [N] ; 
for(int i=0;i<steps;i++)
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<
fsystemCh,t,u,f[0]); 
for(int k=l;k<=5;k++)
{ tk = t + a[k]*h; 
forCint 1=0;1<N;1++)
{ uk [1] = u [1] ;
forCint j=0; j<=k-l; j++) uk[l] += b [k] [j] *f [j] [1] ;
>
fsystemCh,tk,uk,f[k]);
>
forCint 1=0;1<N;1++) 
forCint k=0;k<6;k++) u[l] += с[k] *f [k] [1] ;

>
>

public void paintCGraphics g)
{
g .drawRect C40,40,600,400);
int steps = 1; int N = 3;
double h = 0.005; double t = 0.0;
double u[] = { 0.8, 0.8, 0.8 >; // initial conditions 
// wait for transients to decay
forCint i=0;i<4000;i++) { t += h; mapCu,steps,h,t,N); > 
t = 0.0;
forCint i=0;i<20000;i++)
{
t += h;
mapCu,steps,h,t,N);
int m = Cint)(10.0*u[2]-400); int n = Cint)Cl0.0*u[0]+200); 
g.drawLine Cm,n,m,n);
>

public static void mainCString[] args) 
i
Frame f = new ControlLorenzO; f .setVisibleCtrue);
>

7.4 Resonant Perturbation and Control

Another method to control a nonlinear dynamical system is to follow a prescribed 
goal dynamics (Htibler [55]). If the experimental dynamics is described by
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where both the set of parameters p and the driving force F  depend only on time 
t , then the limiting behaviour of u(t ) can be made equal to a given goal dynamics 
у (t), i.e.,

|u(t) -  y(<)| —> 0 as t —> oo

where

%  =  g(y(i),t)
by an appropiate choice of F. Complete entrainment occurs if both sets o f flows are 
made equal, i.e.,

f(y,p(i) + F(t)) =  g(y(*),t)
and if the special solution u (t) =  y (t ) is stable. Whether convergence occurs, i.e. 
IUW  — y(t)\ -+  0 as t - *  oo, depends on the particular choice o f F  and the initial 
conditions, i.e., u(0). The regions of the u state space such that convergence occur 
axe called entrainment regions. The applied controls are not typically small and 
convergence to the goal is not assured.



Chapter 8 

Synchronization of Chaos

8.1 Introduction

It is possible to synchronize two chaotic systems by coupling them. Different types 
of synchronization have been considered. Many types of synchronization have been 
studied: chaotic synchronization (Pecora and Carroll [85)), adaptive synchroniza
tion (Wang and Ge [117]), phase synchronization (van Wyk and Steeb [114]), and 
generalized synchronization (Brown and Kocarev [12]). One, called master-slave, or 
unidirectional coupling, is made up of an element, called drive system, one or several 
components of its state vector are transmitted to a second part, called the response 
system. The other type of synchronization is the mutual coupling. Synchronization 
is studied in section 8.2. Phase coupled chaotic systems are studied in section 8.3. 
We also consider synchronization of coupled Rikitake two-disc dynamos.

8.2 Synchronization of Chaos

8.2.1 Synchronization Using Control

To synchronize two chaotic systems that we call A and B, we imagine that some 
parameter of one system (assume B ) is externally adjustable. We assume that some 
state variables of both systems A  and В  can be measured. Some dynamical variables 
of two systems are measured, based on which temporal-parameter perturbations are 
calculated and applied to the system B. We assume that before the synchronization, 
some information about the geometrical structure of the chaotic attractor (e.g., the 
Jacobian matrices along a long chaotic trajectory that practically covers the whole 
attractor) has been obtained. Based on this measurement and our knowledge about 
the system (we can, for example, observe and learn the system first), when it is 
determined that the state variables of A and В  are close, we calculate a small 
parameter perturbation based on the Ott-Grebogi-Yorke algorithm and apply it to 
system B.

203
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Two systems can then be synchronized, although their trajectories are still chaotic. 
Under the influence of external noise, there is a finite probability that two already 
synchronized trajectories may lose synchronization. However, with probability one 
(due to the ergodicity of chaotic trajectories), after a finite amount of transient time, 
the trajectories of A  and В  will get close and can then be synchronized again. In 
this sense, the synchronization method is robust against small external noise.

We consider two almost identical chaotic systems that can be described by two- 
dimensional maps on the Poincare surface of section

X(+i =  f (x tl r0) [A ], y t+1 =  f ( y t) r ) [B ]

where x t,y t G R 2, f  is a smooth function in its variables, ro for system A  is a fixed 
parameter value, and r for system В is an external controllable parameter. For the 
purpose of synchronization, we require that the dynamics should not be substantially 
different for system A  and B. In other words, any parameter perturbations should 
be small. Thus, we require

|r — r0| <  <5

where 5 is a small number defining the range of parameter variation. Suppose that 
two systems start with different initial conditions. In general, the resulting chaotic 
trajectories are completely uncorrelated. However, due to ergodicity, with probabil
ity one two trajectories can get arbitrarily close to each other at some later time nc. 
Without control, two trajectories will separate from each other exponentially again. 
The objective is to program the parameter r  in such a way that |y* — x t| —► 0 for 
n > n C) which means that A  and В  are synchronized for t > t c.

The linearized dynamics in the neighbourhood of the “target” trajectory { x t}  is 

Уt+i -  x t+i(r0) =  J{yt -  x t(r0) )  +  V (A r ) t

where r t :=  ro +  (A r )t, (A r )t <  <5, J  is the 2 x 2  Jacobian matrix, and V  is a 
two-dimensional column vector

j  :=  ^ y f (y »7')|y=x,r=ro> V  :=  Drf(y ,  r)|y=x,r=ro •

A  property of a chaotic trajectory is the existence of both stable and unstable di
rections at almost each trajectory point.

Let es(t) and e^t) be the stable and unstable unit vectors at x t and fs(t) and fu(t) be 
two unit vectors that satisfy

fu(t) • &u(t) =  f«(t) • ea(t) =  1, fu(t) • es(t) =  f5(t) • eu(t) =  0 .

To stabilize {  y t }  around {  x t } ,  we require the next iteration of x t after falling into 
a small neighbourhood around x t to lie on the stable direction at X(t+i)(ro), i-e.,

[yt+i -  X(t+i)(r0)] • fu(t+i) =  0.
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We obtain the following expression for the parameter perturbations

(д г ) 4 =  (ЛУ< ~  x t fa )] )  • fu(l+1)
- V '

If (A r)t >  6, we set (Д r ) t =  0. Note that fu(t) can be calculated in terms of J.

We illustrate our synchronization algorithm by using the standard Henon map 

Xit+i =  a — x\t +  0 .3*», X2t+i =  x u 

where a is our control parameter. Consider two such Henon systems 

Xit+i =  a — x\t -f 0.3x2t> X2t+\ — Xit

2/it+i =  a — Уи +  0.3j/2t, V2t+\ =  Ун • 

where t =  0,1 ,2 ,___We obtain

Ч Т ' S). Ч У -
The eigenvalues and eigenvectors of J  are given by

=  - X i  +  \Jb +  x ?, Au =  - x i  -  yjb +  x$} •

One has a fixed parameter value (a =  ao =  1.4) which serves the target and in the 
other system we adjust a in a small range (1.39,1.41). At time t =  0, we start two 
systems with different initial conditions. The two systems then move on completely 
uncorrelated chaotic trajectories. At a certain time step, the trajectory points of the 
uncoupled two systems come close to each other within an epsilon neighbourhood. 
When this occurs, we turn on the parameter perturbations.

// SynchronHenon.java 

import java.awt.*; 

public class SynchronHenon 
{
public static void main(String[] args)
{
double xl, xll, x2, x22, yl, yll, y2, y22; 
xl = 0.5; x2 = -0.8; // initial values 
yl = 0.001; y2 = 0.001; // initial values 
int T = 2140; // number of iterations
double b = 0.3, a = 1.4, aO = 1.4;

for(int t=0;t<T;t++)
{
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xll = xl; x22 = x2; yll = yl; y22 = y2; 
xl = a0-xll*xll+b*x22; x2 = xll; 
yl = a-yll*yll+b*y22; y2 = yll;
double distance = Math.abs(xl-yl)+Math.abs(x2-y2); 
double epsilon = 0.01; 
double range = 0.01; 
if(distance < epsilon)
{
System.out.println("");
System.out.println("inside epsilon neighbourhood: t = " + t) ; 
double tl = a0-xl*xl+b*x2; 
double t2 = xl;
double lams = -tl+Math.sqrt(tl*tl+b);
double lamu = -tl-Math.sqrt(tl*tl+b);
double fl = Math.sqrt(lamu*lamu+l.0)/(lamu-lams);
double f2 = -fl*lams;
double deltaa = -((-2.0*xl*(yl-xl)+b*(y2-x2))*fl+(yl-xl)*f2)/f1;
System, out .printlnC'deltaa = " + deltaa); 
if(Math.abs(deltaa) < range) a = aO+deltaa;
System.out .printlnCa = " + a) ;
System.out.print("xl = " + xl);
System.out .printlnC' x2 = " + x2) ;
System.out.print("yl = " + yl);
System, out .printlnC' y2 = " + y2);
>
>
>

>

8.2.2 Synchronizing Subsystems

Pecora and Carroll [85] showed that certain subsystems of chaotic systems can be 
made to synchronize by linking them with common signals. The criterion for this 
is the sign of the one-dimensional sub-Liapunov exponents. The method is as fol
lows. Consider a chaotic system described by the autonomous system of first-order 
differential equations with n  state vectors as

d u  * t  \

* = f ( u ) -

We divide the dynamical system into two subsystems

uT =  (v, w )T 

dy ( \T t =  g (v ,w ), —  =  h(v, w)

where

V =  (Ui,U2, . . . ,U m), g =  (/l,/2,...,/m)> W =  (um+bum+2,...,u „)
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and

h  =  (/ m + lj /m+2> • • • j /n) •

Now we create a new subsystem w ' identical to the w  system by replacing the set 
of variables w  for the corresponding w ' in the function h. This yields the system

i \ w  \ dv/
* = g ( v ’ w ) ’ dT =  h (v ' w ) ’ i r  =  h (v ’ w ) -

Let
A w  :=  w ' — w .

The subsystem components w  and w ' will synchronize only if A w  —> 0 as £ —► oo. 
In the infinitesimal limit this leads to the variational equation for the subsystem

^  =  D wh (v (t ),w (t ))y

where Dwh is the Jacobian matrix of the w  subsystem vector field with respect to 
w  only. The behaviour of the variational system depends on the one-dimensional 
Liapunov exponents of the w  subsystem.

We have the following theorem (Pecora and Carroll [85])

Theorem . The subsystems w  and w ' will synchronize only if the one-dimensional 
Liapunov exponents of the w  subsystem are all negative.

The above theorem is a necessary, but not sufficient, condition for synchronization. 
It says nothing about the set of initial conditions in which w ' will synchronize with 
w.

A  chaotic system, for example, has at least one positive one-dimensional Liapunov 
exponent. For the response system of the subsystem to synchronize with the drive 
system, all of its one-dimensional Liapunov exponents must be less than zero.

As an example we consider the Rossler model

du\ du.2 duz , x
—  =  u2 - u 3, —  =  m  +  au2, - £  =  о +  u3[m  -  c)

where a, b and с are positive constants. The slave system is

du-i i du3 , i i i  \—  =  - u2- u 3, —  =  b +  u3(u1- c ) .

Thus in the Rossler system it is possible to use the u2 component to drive a (u [,u '3) 
response system and attain synchronization with the {и\,из) components of the 
driving system.

In the Java program we integrate all five equations as an autonomous system of 
differential equations using a Runge-Kutta-Fehlberg method. We display the phase- 
portrait for (u i,u 3) and (limits).
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// Rossler.java

import java.awt.*; 
import j ava.awt.event.*; 
import j ava.awt.Graphics;

public class Rossler extends Frame 

public Rossler()
{
setSize(600,500);
addWindowListener(new WindowAdapterO 
{ public void windowClosing(WindowEvent event)
{ System.exit(0); ») ; >

public void fsystem(double h.double t,double u[].double hf[])
{
double a = 0.2, b = 0.2, с = 9.0; 
hf[0] = h*(-u[l]-u[2]) ; hf[l] = h*(u[0]+a*u[l]); 
hf[2] = h*(b+u[2]*(u[0]-c)) ; hf[3] = h*(-u[l]-u[4]) ; 
hf[4] = h*(b+u[4]*(u[3]-c));
>

public void map(double u[],int steps,double h.double t,int N)
{
double uk [] = new double [N]; 
double tk;
double a[] = {  0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 }; 
double c[] = {  16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b [] [] = new double [6] [5] ;
b[0] [0] = b[0] [1]= b[0] [2] = b[0] [3] = bCO] [4] = 0.0;
b[l] CO] = 1.0/4.0; b[l][l] = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0;
b[l] [4] = 0.0;
b[2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0; 
b[2] [2] = 0.0; b[2] [3] = 0.0; b[2] [4] = 0.0; 
b[3] CO] = 1932.0/2197.0; b[3] [1] = -7200.0/2197.0; 
b[3] [2] = 7296.0/2197.0; b[3] [3] = b[3] [4] = 0.0; 
b[4] [0] = 439.0/216.0; b[4] [1] » -8.0;
b[4] [2] = 3680.0/513.0; b[4] [3] - -845.0/4104.0; b[4] [4] =0.0; 
bC5] CO] = -8.0/27.0; b[5] [1] = 2.0; b[5] [2] = -3544.0/2565.0; 
b[5] [3] = 1859.0/4104.0; b[5] [4] = -11.0/40.0; 
double f [] [] = new double [6] [N] ; 
for(int i=0;i<steps;i++)
{
fsystem(h,t,u,f[0]); 
for(int k=l;k<=5;k++)
•( tk = t+a[k]*h;
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forCint 1=0;1<N;1++)
{ uk[l] = u[l];
forCint j=0; j<=k-l; j++) uk[l] += b[k] [j]*f [j] [1] ;
>
fsystemCh,tk,uk,f[k]);
>
forCint 1=0;1<N;1++) 
forCint k=0;k<6;k++) u[l] += с[k]*f [k] [1];

>
>

public void paintCGraphics g)
{
g.drawRect C20,40,560,480); 
int steps = 1; int N = 5; 
double h = 0.002; double t = 0.0;
double u[] = { 0.8, 0.4, 0.8, 1.1, 2.3 >; // initial conditions 
// wait for transients to decay
forCint i=0;i<4000;i++) {  t += h; mapCu,steps,h,t,N); > 
t = 0.0;
forCint i=0;i<40000;i++)
{
t += h;
mapCu,steps,h,t,N);
int ml = Сint)C5.0*u[0]+100); int nl = Cint)C5.0*u[2]+200); 
g.drawLineCml,nl,ml,nl);
int m2 = Cint)C5.0*u[3]+300); int n2 = Cint)C5.0*u[4]+200); 
g.drawLineCm2,n2,m2,n2);
>
>

public static void mainCString[] args)

Frame f = new RosslerC); f.setVisibleCtrue);
>

8.3 Synchronization of Coupled Dynamos

We describe the synchronization of two identical coupled Rikitake two-disc dynamo. 
The two coupled Rikitake two-disc dynamos are given by

=  -p m  +  u2(uz +  a )
at
du2 / \
—  =  - ци2 +  Щ [u3 -  a ) 
at 

du3
— = i - UlUJ
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and

dv i 
dt 

dv 2

=  -/xui +  v2(v z +  a ) +  wi

=  -\ ie  i +  ae2 +  u2e3 +  v3e2 +  wi 
at

—  =  -a e i  -  де2 +  u3ex +  vie3 +  uj2

=  ~ fiv2 +  V i(vz -  a) +  w 2 

—  =  1 -  v iv2 +  w3

where fi, a  are positive constants and Wi, w2, w$ are three control inputs. The con
trol functions Wi, w2, W3 are determined so that the two identical Rikitake dynamos 
(with the same parameters /z and a ) are synchronized where the initial conditions 
for the two dynamical systems can be different. We define the state error as

ei :=  Vi -  ui, e2 :=  v2 -  u2, e3 :=  v3 -  u3 .

Subtracting the two dynamical systems we obtain

de i 
dt 
de2 
dt 
de3
—  =  - u 2ei -  vxe2 +  w3.

For unkown positive parameters p and a we consider the Liapunov function 

y (e i ,e 2,e3) =  ^(е? +  е̂  +  е|).

Now we choose the active control functions wi, w2, w$ as

Щ  =  —u3e2, w2 =  —u3eb w3 =  - e 3 ■

Thus the controller is independent of the positive parameters /i and a. Calculating 
the time derivative of V  we obtain

^  =  — (/xe? +  де2 +  e\).

It follows that dV/dt is negative definite. Since V  is a positive definite function, we 
find from the Liapunov direct method that the fixed point (equilibrium point)

(e ;,e ;,e j) =  (0,0,0)

for the dynamical system for e;- is asymptotically stable. This implies that

iei ( i )^ 2 (t ),e z (t ) ) —* (0,0,0)

as t —► oo. Thus synchronization is achieved under the given controller.
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8.4 Phase Coupled Systems

In this section the stability of a class of coupled identical autonomous systems of 
first order nonlinear ordinary differential equations is investigated. These couplings 
play a central role in synchronization of chaotic systems and can be applied in elec
tronic circuits. As applications we consider two coupled Van der Pol equations and 
two coupled logistic maps. When the uncoupled system admits a first integral we 
study whether a first integral exists for the coupled system. Finally the relation of 
the Liapunov exponents of the uncoupled and coupled system are discussed.

Consider the autonomous system of first order ordinary differential equations

du . . ,r
—  =  f(ll), u =  {ui1u2i. . . , u n) .

We assume that the functions f j  : R n —> R  are analytic. Assume that u* is a fixed 
point of this system. The variational equation of the dynamical system is given by

dy df
T t =  ^ (u (i))y

where di/du is the Jacobian matrix. Inserting the fixed point u* into the Jacobian 
matrix results in an n x n matrix

Л:- | м
with constant coefficients. The eigenvalues A i,. . . ,  An of this matrix determine the 
stability o f the fixed point u*. Furthermore the eigenvalues provide information as 
to whether Hopf bifurcations can occur. In this case we assume that f  depends 
on a (bifurcation) parameter. Moreover, the variational system is used to find the 
one-dimensional Liapunov exponents.

In controlling the chaos of the autonomous sytem the coupling of two identical 
systems according to

^  =  f(u ) +  c(v -  u), ^  =  f (v )  +  c (u - v )

plays a central role. Here n >  3 and с € R. First we realize that (u *,v*) with 
v* =  u* is a fixed point of the coupled system if u* is a fixed point of the system 
du/dt =  f(u ). Inserting the fixed point (u*,u*) into the Jacobian matrix yields 
a 2n x  2n matrix. We now show that the eigenvalues of this 2n x 2n matrix can 
be found from the eigenvalues of the n x n  matrix given by A. Then from the 2n 
eigenvalues of the uncoupled system we can determine the stability of the fixed point 
(u*, u*) for the phase coupled system.

To find these eigenvalues we prove the following theorem.
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Theorem . Let A be ал n x  n matrix over the real numbers. Let A i, . . . ,  An be the 
eigenvalues of A. Define the 2n x  2n matrix M  as

( A - c l  c l  \
M : = {  c l  A  —c l )

Then the eigenvalues of M  are given by

Ai, A2, • • • > An, Ai 2c, A2 2c, . . . ,  An 2c.

Proof. There exists an n x n  orthogonal matrix Q such that

QTAQ =  D  +  U

where D  :=  diag(Ai, A2>. . . ,  An) and U is a strictly upper-triangular n x n  matrix. 
Let

where 0 is the n x n  zero matrix. It follows that the inverse is given by

р - i  _  (  QT o \  
F  ~ \ - Q T QT )

giving

P ~ l M P = ( ^  +  ^  °^ ^
r  м г  \ о ( D - 2 c I )  +  U ) '

Now P -1 M P  is an upper-triangular matrix of which the entries on the diagonal are 

A i, . . . ,  An, Ai 2c,. . . ,  A„ 2c 

the eigenvalues of M . This proves the theorem.

Example. Consider the Van der Pol equation

du\ du2 (л 2\
l X = U "  I t  - r ( l  - “ ! ) « * - “ I-

Then u* =  (0,0) is a fixed point. The eigenvalues of the functional matrix for this 
fixed point are given by

Au  =  r/ 2 ±  ^ / 4 - 1 .

The uncoupled system shows a Hopf bifurcation. We find a Hopf bifurcation when 
the characteristic exponents cross the imaginary axis. A  stable limit cycle is born. 
If we consider the coupling we find that the eigenvalues of the coupled system are 
given by

Mi =  Ai, f/,2 — A2, дз =  Ai — 2c, AM =  A2 — 2c. A

The theorem stated above also applies to coupled maps. For example it can be 
applied to

x t+ 1 =  f (x t) +  c(yt -  x t), Уt+i =  f(y t) +  c(xt -  yt).
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Example. Consider the logistic map / : [0,1] - »  [0,1] with f ( x )  =  r x ( 1 -  x ). The 
map / admits the fixed points x* =  0 and x\ -  (r  -  1 )/r. We consider the fixed 
point x\. Then we find that the Jacobian matrix (which is a 1 x 1 matrix) at this 
fixed point is given by

A =  X =  2 -  r .

Consequently the eigenvalues for the coupled system are 2 — r and 2 — r  — 2c. 4

Consider now the Liapunov exponents of the coupled system. To find a relation 
between the Liapunov exponents of the coupled system and uncoupled system we 
consider the time-evolution of

0 ( 0  :=  u(£) -  v { t ) .

We call ©  the phase difference. For the time evolution of ©  it follows that 

dS  du dv л _

dT =  ^ - ^  =  f ( u ) - f ( v ) - 2 c 0 -

Using a Taylor expansion for f(u ) and f (v )  and the fact that

fs (u M )-£ (u M )

we obtain

~  =  №  -  2c l ) e  +  O (0 2), A (t) :=  £ ( u ( 0 )

where 0 (© 2) indicates higher order terms in 0 . Integrating this equation while 
neglecting the higher order terms yields

0 (t) =  ( e - 2c‘Texp ( ! ‘ A(s)ds) )  0 (0)

where T  is the time ordering operator. The eigenvalues fij ( j  =  1 ,2 ,..., n) of

.^(Texp ( t A{s]ds)) 
are related to the Liapunov exponents Xj ( j  =  1 ,2 ,.. . ,n) via Xj — ln \fjj\. We find

(|©(0 I) oc

where the average is taken over all initial conditions u(0) and all directions of 0 (0) 
and Ai is the largest one-dimensional Liapunov exponent. The equation tells us that 
for

2c >  Ai

both systems stay in phase. Consequently, they have the Ai of the uncoupled sys
tem. The two systems get out of phase at the value c* =  Ai/2. Thus c* provides 
the largest one-dimensional Liapunov exponent.



214 CHAPTER 8. SYNCHRONIZATION OF CHAOS

In the Java program we consider two phase-coupled Lorenz models. The parameter 
values for the Lorenz model are о  =  16, г =  40 and 6 =  4. For these values we 
have numerical evidence that the system shows chaotic behaviour. The largest one
dimensional Liapunov exponent is given by A =  1.37. Thus for с =  0.75 we find 
that the systems stay in phase, since 2c >  A. Thus the phase portrait (t ii,v i) is a 
straight line. For с =  0.45 we have 2c <  A and the systems are out o f phase. Thus 
the phase portrait is no longer a straight line. We display the phase portrait for 
different values of c.

// Phasecoupling.java

import java.awt.*; 
import j ava.awt.event.*; 
import j ava.awt.Graphics;

public class Phasecoupling extends Frame 

public Phasecoupling()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit(0); }}); >

public void fsystem(double h.double t,double u[].double hf[])
{
double sigma = 16.0, r = 40.0, b = 4.0;
double с = 0.65; // coupling constant change to с = 0.70
hf [0] = h* (sigma* (u[l]-u[0])+c*(u[3]-u[0])) ;
hf Cl] = h*(-u[0]*u[2]+r*u[0]-u[l]+c*(u[4]-u[l])) ;
hf[2] = h*(u[0]*u[l]-b*u[2]+c*(u[5]-u[2]));
hf [3] = h*(sigma*(u[4]-u[3])+c*(u[0]-u[3])) ;
hf [4] = h* (-u [3] *u [5] +r*u [3] -u [4] +c* (u [ 1] -u [4])) ;
hf[5] = h*(u[3]*u[4]-b*u[5]+c*(u[2]-u[5]));
>

public void map(double u[],int steps,double h.double t.int N)
{
double uk[] = new double [N] ; 
double tk;
double a[] = { 0.0, 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 >; 
double c[] = { 16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, 

-9.0/50.0, 2.0/55.0 >; 
double b [] П  = new double [6] [5] ;
b[0][0] = b[0][l]= b[0][2] = b[0][3] = b[0] [4] = 0.0;
b[l] [0] = 1.0/4.0; b[l][l] = 0.0; b[l] [2] = 0.0; b[l] [3] = 0.0;
b[l] [4] = 0.0;
b[2] [0] = 3.0/32.0; b[2] [1] = 9.0/32.0;
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b[2] [2] = 0.0; b[2] [3] = 0.0; b [2] [4] = 0.0; 
b[3] [0] = 1932.0/2197.0; b[3][1] = -7200.0/2197.0; 
b[3] [2] = 7296.0/2197.0; b [3] [3] = b[3] [4] = 0.0; 
b[4] [0] = 439.0/216.0; b [43 [13 = -8.0;
b[4][23 = 3680.0/513.0; b[4][3] = -845.0/4104.0; b[43 [4] =0.0; 
b[5] [0] = -8.0/27.0; b[5] [1] = 2.0; b[5] [2] = -3544.0/2565.0; 
b [5] [3] = 1859.0/4104.0; b[53 [4] = -11.0/40.0; 
double f [] [] = new double [6] [N] ; 
forCint i=0;i<steps;i++)
{
fsystemCh.t,u,f[0]); 
forCint k=l;k<=5;k++)
{ tk = t+a [k] *h; 
forCint 1=0;1<N;1++)
{ uk[l] = u[l];
forCint j=0; j<=k-l;j++) uk[l] += b[k] [j]*f [j3 [1];
>
fsystemCh,tk.uk,f[k]);
>
forCint 1=0;1<N;1++) 
forCint k=0;k<6;k++) u[l] += с [k] *f [k] [1] ;

>
>

public void paintCGraphics g)
{
g.drawRect C20,30,500,400); 
int steps = 1; int N = 6; 
double h = 0.005; double t = 0.0;
// initial conditions
double u[3 = { 0.8, 0.8, 0.8, 1.0, 0.4, 0.3 >;
// wait for transients to decay
forCint i=0;i<2000;i++) { t += h; mapCu,steps,h,t,N); > 
t = 0.0;
forCint i=0;i<6800;i++)
{
t += h;
map Cu,steps,h,t,N);
int m = Cint)C5.0*u[03+300); int n = Cint)C5.0*u[33 +200); 
g.drawLineCm,n,m,n);
>
>

public static void mainCString[] args)
{
Frame f = new PhasecouplingC); f.setVisible(true);
>



Exercise. The differential equation
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has attractors at и =  ±1  and a repeller at и =  0. Study the phase-coupled system



Chapter 9 

Fractals

9.1 Introduction

Mandelbrot [74] introduced the term ‘fractal’ (from the latin fractus, meaning ‘bro
ken’) to characterize spatial or temporal phenomena that are continuous but not 
differentiable. Unlike more familiar Euclidean constructs, every attempt to split a 
fractal into smaller pieces results in the resolution of more structure. Fractal objects 
and processes are therefore said to display ’self-invariant’ (self-similar or self-affine) 
properties. Self-similar objects are isotropic upon rescaling, whereas rescaling of 
self-affine objects is directing-dependent (anisotropic). Thus the trace of particu
late Brownian motion in two-dimensional space is self-similar, whereas a plot of the 
^-coordinate of the particle as a function of time is self-affine.

Fractal properties include scale independence, self-similarity, complexity, and infi
nite length or detail (Peitgen and Richter [87]). Fractal structures do not have a 
single length scale, while fractal processes (time series) cannot be characterized by a 
single time scale. Nonetheless, the necessary and sufficient conditions for an object 
(or process) to possess fractal properties have not been formally defined. Indeed, 
fractal geometry has been described as a collection of examples, linked by a common 
point of view, not an organized theory. Fractal theory offers methods for describing 
the inherent irregularity of natural objects. In fractal analysis, the Euclidean con
cept of ‘length’ is viewed as a process. This process is characterized by a constant 
parameter D  known as the fractal (or fractional) dimension.

Fractals are all around us, in the shape of a mountain range or in the windings of a 
coast line. Perhaps the most convincing arguments in favour of the study of fractals 
is their sheer beauty. Furthermore the domain of attraction in chaotic systems has 
in many cases a fractal structure.

217
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There are several fractal dimensions described in the literature. The two most used 
are the Hausdorff dimension and capacity. The definition of the Hausdorff dimension 
is as follows. Let X  be a subset of R n. A  cover of X  is a (possibly infinite) collection 
of balls, the union of which contains X .  The diameter of a cover A  is the maximum 
diameter of the balls in A. For d, €, we define

This do is defined to be the Hausdorff dimension of X , written H D (X ).

The capacity С  is a special case of the Hausdorff dimension. In this case the covers 
consist of balls of uniform size e. We put a grid on R n and count the number of boxes 
that intersect the set X . Suppose we have such an e-grid. Let N (e ) =  the number of 
boxes that intersect the set X .  Then N (e ) • ed would seem to be a simplified version 
of a(d, e) and the desired d can sometimes be computed as

This number С  is called capacity. We have the inequality C (X )  <  H D (X ).

The fractal dimension can be viewed as a relative measure of complexity, or as an 
index of the scale-dependency of a pattern. The fractal dimension is a summary

d <  do —► a (d ) =  oo 

d >  do —♦ a (d ) — 0 .

statistic measuring overall ‘complexity’ . Like many summary statistics (e.g. mean), 
it is obtained by ‘averaging’ variation in data structure. In doing so, information is 
necessarily lost. Excellent summaries of basic concepts of fractal geometry can be 
found in the books (Mandelbrot [74], Barnsley [6], Edgar [29]).

D efin ition . A  fractal is by definition a set for which the Hausdorff dimension 
strictly exceeds the topological dimension.
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9.2 Iterated Function System

9.2.1 Introduction

To define an iterated function system we need the definition of a complete metric 
space. Let X  be a non-empty set. A  real-valued function d defined on X  x X , i.e. 
ordered pairs of elements in X , is called a metric or a distance function in X, iff it 
satisfies, for every a, 6, с e  X , the following axioms

(i) d(a, 6) >  0 and d(a , a) =  0
(ii) d(a, b) =  d(b, a) symmetry
(iii) d(a, c) <  d(a, b) +  d(b, с)
(iv ) If а Ф b, then d(a , 6) >  0.

The nonnegative real number d(a, b) is called the distance from a to b.

Exam ple. Let X  =  R, then d(a, b) :=  |a — 6| is a metric. ♦

Let d be a metric on a non-empty set X . The topology T  on X  generated by the 
class of open spheres in X  is called the metric topology. The set X  together with the 
topology T  induced by the metric d is called a metric space and is denoted by (X , d).

A  hyperbolic iterated function system consists of a complete metric space (X , d) 
together with a finite set of contraction mappings

wn : X - * X ,  n =  1,2} . . . , N

with respective contractivity factors sn, for n =  1,2, . . . ,  N.

The notation for the iterated function system i s { X  : wn, n = l , 2, . . . , i V }  and its 
contractivity factor is s :=  max{ sn : n =  l,2 , . . . }N } .  Let (X , d) be a complete 
metric space and let (W (X ), h(d )) denote the corresponding space of nonempty 
compact subsets, with the Hausdorff metric h(d). The Hausdorff metric is defined 
by as follows. Let A, В  G H (X ). We define

d (A , B ) :=  max{ d(x, B ) : x e A }

where
d(x , В ) :=  min{ d(x ,у) : у € В }  . 

d (A , В ) is called the distance from the set A  € H (X ) to the set В  G W (X ). If 
A ,B ,C  € f t (X ) ,  then

d (A U B tC ) =  d (A ,C )V d (B t C )

where we used the notation x  V у to mean the maximum of the two real numbers x 
and y.
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Definition. Let (X , d) be a complete metric space. Then the Hausdorff distance 
between points A  and В  in 'H (X ) is defined as

h (A ,B ) =  d (A ,B )V d (B 1A ).

The following theorem summarizes the main facts about a hyperbolic iterated func
tion system.

Theorem. Let { X  : wn, n =  1 ,2 ,..., N }  be a hyperbolic iterated function system 
with contractivity factor s. Then the transformation W  : "H (X ) —► 7i(X .) defined

ЬУ N
W (B ) IJ  Wn(B)

n =1

for all В  G 'H (X ), is a contraction mapping on the complete metric space ("H(X), h(d)) 
with contractivity factor s. That is

h {W {B )tW (C ) )< 8 - h (B , C )

for all B yC  G W (X ). Its unique fixed point, A  G 'H (X ), obeys

A  =  W (A ) =  IJ wn(A )
n= l

and is given by
A  =  lim W M ( B)n-*oo 4 '

for any В  G W (X ).

Definition. The fixed point A  G W (X ) is called the attractor of the iterated 
function system.

9.2.2 Cantor Set

The standard Cantor set is described by the following iterated function system

{ R  : till, tu2}

where
1 f \ 1 2 w i(x ) :=  - x ,  w2[,x) =  -£  +  - .

This is an iterated function system. Starting from the unit interval [0,1] we have

^([0 ,1]) =  [0,1/3], w2([0,l]) =  [2/3,1] 

u i([0 ,1/3]) =  [0,1/9], « * ( [0,1/3]) =  [2/3,7/9] 

^ ([2 / 3 ,1]) =  [2/9,1/3], w2([2/3, 1]) =  [8/9,1]
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etc.. Thus the Cantor set is an example of a fractal. The construction of the 
standard Cantor set (also called Cantor middle third set or ternary Cantor set) is 
as follows. We denote the open interval

((3г -  2)/3n, (3r -  l)/3n)

by /П(Г, where г  =  1,2, . . . ,  3n_1. We set

3n_1 oo

G„ :=  U  G  :=  U  Gn-
Г=1 n= l

The set С  =  [0,1]\G is called the standard Cantor set.

In other words: let / =  [0,1] be the unit interval. We construct the standard Cantor 
set in the following way. We set

So =  [0, 1]

£ i = wi и и
e 2 = mi и

■2 1 
.9’ 3

и
2 Т  

.3’ 9.
и [И

etc.. This means we remove the open middle third, i.e. the interval (|, §). In the 
second step we remove the pair of intervals (|, §) and (|, §). Then we continue 
removing middle thirds in this fashion. Then Ek is the union of 2k disjoint compact 
intervals and

C :=  f U -  
k=0

The standard Cantor set has cardinal c, is perfect, nowhere dense and has Lebesgue 
measure zero. Every x  € С  can be written as

x  =  ai3_1 +  a23“ 2 +  a33-3 +  • • • where aj € {0 ,2 } .

The corresponding Cantor function ip is also called the Devil’s staircase. It satisfies 
the functional equations

ф(l - x / 3 )  =  l - ^ M ,  (0 <  rr <  1)

V>( ( l -x )/3 +  2z/3) =  ^

and is a continuous nondecreasing function with -^(0) =  0, ip (l) =  1.

In the C + +  program we generate the first few steps in the construction of the Cantor 
set.
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// cantor.cpp

♦include <iostream>
♦include "rational.h"
♦include "verylong.h"
♦include "vector.h" 
using namespace std;

const Rational<Verylong> a = Rational<Verylong>("0") ; // lower limit 
const Rational<Verylong> b = Rational<Verylong>("l"); // upper limit

class Cantor

private:
Vector<Rational<Verylong> > CS; 
int currentSize; 

public:
Cantor(int); // constructor
Cantor(const Cantorfc); // copy constructor 
int stepO; 
void run();
friend ostreamfc operator «  (ostreamfe,const Cantorft);

>;

Cantor::Cantor(int nStep) : CS((int)pow(2.0,nStep+l)),currentSize(2) 
{ CS[0] = a; CS[1] = b; >

Cantor:: Cantor (const Cantorfc s)
: CS(s.CS).currentSize(s.currentSize) { >

int Cantor::stepO

int i, newSize;
static Rational<Verylong> three(3), tt(2,3); 
static int maxSize = CS.sizeO; 
if(currentSize < maxSize)
{
for(i=0;i<currentSize;i++) CS[i] /= three; 
newSize = currentSize+currentSize;
for(i=currentSize;i<newSize;i++) CS[i] = CS[i-currentSize]+tt; 
currentSize = newSize; 
return 1;
>
return 0;

>

void Cantor::run() { while(step() != 0); >
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ostreamft operator «  (ostreamfc s,const Cantorfc c)
<
for(int i=0;i<c.currentSize;i+=2)
{
S «  «  C.CS[i] «  " s «  c.CS[i+l] «  "]
>
return s;

>

int main(void)
{
const int nStep =6; // number of steps in construction 
Cantor С(nStep); 
cout «  С «  endl;
for (int i=0; i<nStep; i++) { C.stepO; cout «  С «  endl; > 
return 0;

>

9.2.3 Heighway’s Dragon

The Heighway dragon is a set in the plane. It is the attractor of an iterated function 
system. The iterated function system is given by

»■<»>-0/2 - $ h  : $ ) » G )
where x  6  R 2, i.e. x  =  (х 1,хг)т - We have a hyperbolic IFS with each map being 
a similitude of ratio r  <  1. Therefore the similarity dimension, d, of the unique 
invariant set of the IFS is the solution to

Y r d =  l  = »  rf =  — =  ln(2L = 2
к  1п(1/л/2) ln(\/2)

where r  =  l/y/2.

The Heighway’s dragon can also be constructed as follows. The first approximation 
Po is a line segment of length 1. The next approximation is P\. It results from Pq 
by replacing the line segment by a polygon with two segments, each of length l/\/2, 
joined at a right angle. The two ends are the same as before. There are two choices 
of how this can be done. Let us choose the left side. For P2> each line segment in 
P i is replaced by a polygon with two segments, each having length l/y/2 times the 
length of the segment that is replaced. The choices alternate between left and right, 
starting with left, counting from the endpoint of the bottom. The dragon is the 
limit P  of this sequence, Pn, of polygons. Closely related to the Heighway dragon 
is the Levy dragon.

The Java program asks the user to enter the n-th step in the construction of the 
dragon.
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// Dragon.java

import java.awt.*; 
import j ava.awt.event.*;

public class Dragon extends Frame implements ActionListener 

public Dragon()
•C
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit (0) ; ») ;

drawButton.addActionListener(this); 
setTitle("Dragon");

Panel parameterPanel = new Panel 0;
parameterPanel.setLayout(new GridLayout(2,1));
Panel nStepsPanel = new Panel(); 
nStepsPanel.add(new Label("no of steps = ")); 
nStepsPanel.add(nStepsField);
Panel buttonPanel = new Panel(); 
buttonPanel.add(drawButton); 
parameterPanel.add(nStepsPanel); 
parameterPanel.add(buttonPanel); 
add("North".parameterPanel); 
addC'Center" .dragonAttractor); 
setSize(400,400); 
setVisible(true);
>

public static void main(String[] args) {  new DragonО ; } 

public void actionPerformed(ActionEvent action) 

if (action. getSourceO == drawButton)
dragonAttractor.setSteps(Integer.parselnt(nStepsField.getText 0)) ; 
System.out.println(Integer.parselnt(nStepsField.getText()));
>
TextField nStepsField = new TextField("6",6);
Button drawButton = new Button("Draw");
DragonAttractor dragonAttractor = new DragonAttractor();

>

class DragonAttractor extends Canvas

private int n, scaling;
public DragonAttractor() { n - 6; >
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public void dragonr(int xl,int yl,int x2,int y2,int x3,int y3,int n) 
{
if(n==l)
{
Graphics g = getGraphicsO;
g. drawLine (xl+scaling,yl+scaling,x2+scaling,y2+scaling) ; 
g. drawLine (x2+scaling,y2+scaling,x3+scaling, y3+scaling) ;
>
else
{
int x4 = (xl+x3)/2; int y4 = (yl+y3)/2; 
int x5 = x3+x2-x4; int y5 = y3+y2-y4; 
dragonr(x2,y2,x4,y4,xl,yl,n-l); 
dragonr(x2,y2,x5,y5,x3,y3,n-l);
>
>

public void paint(Graphics g)
{
Dimension size = getSizeO;
scaling = Math.min(size.width,size.height)/4; 
int xorig = scaling; int yorig = scaling; 
int xl = xorig+scaling; int yl = yorig; 
int x2 = xorig; int y2 = yorig-scaling; 
int x3 = xorig-scaling; int y3 = yorig; 
dragonr(xl,у1,х2,у2,хЗ,уЗ,п);
>

public void setSteps(int nSteps) 
i
n = nSteps; repaint();
>

9.2.4 Sierpinski Gasket
The Sierpinski gasket is the attractor of an iterated function system with X  =  R 2 
and

Thus N  =  3. One of the ways to construct the Sierpinski gasket is by starting with 
a triangle. Then splitting the triangle into four triangles and removing the open
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middle one. The same procedure then applies to the remaining three triangles. The 
term trema refers to the removed pieces.

In the Java program we display the p-th step in the construction of the Sierpinski 
gasket. We set p =  4.

// Sierpinski.java

import java.awt.*; 
import j ava.awt.event.*; 
import java.awt.Graphics;

public class Sierpinski extends Frame 

public Sierpinski()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit(0) ; » )  ; >

public void paint(Graphics g)
<
g.drawRect(40,40,600,400);
int p, n, nl, 1, k, m, ull, u21, vll, v21, xl; 
double ul, u2, vl, v2, a, h, s, x, y; 
p = 4; // step in the construction 
double T [] = new double [p] ; 
a = Math.sqrt(3.0); 
f or(m=0;m<=p;m++)
{
for(n=0;n<=((int) Math.exp(m*Math.log(3.0)));n++)
{
nl = n;
for(l=0;l<=(m-l);1++) { T[l] = nl%3; nl = nl/3; > 
x = 0.0; у = 0.0; 
for(k=0;k<=(m-l);k++)
{
double temp = Math.exp(k*Math.log(2.0)); 
x +■ Math.cos((4.0*T[k]+1.0)*Math.PI/6.0)/temp; 
у += Math.sin((4.0*T[к]+1.0)*Math.PI/6.0)/temp;
>
ul * x+а/(Math.exp((m+1.0)*Math.log(2.0))); 
u2 = x-а/(Math.exp((m+1.0)*Math.log(2.0))); 
vl ■ y-1.0/(Math.exp((m+1.0)*Math.log(2.0))); 
v2 = y+1.0/(Math.exp(m*Math.log(2.0))); 
xl = (int)(100*x+300+0.5);
ull = (int)(100*ul+300+0.5); u21 = (int)(100*u2+300+0.5);
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vll = (int)(100*vl+300+0.5); v21 = (int)(100*v2+300+0.5); 
g.drawLine(ull,vll,xl,v21); 
g.drawLine(xl,v21,u21,vll); 
g.drawLine(u21,vll,ull,vll);
>
>
>

public static void main(String[] args)

Frame f = new SierpinskiO ; f. setVisible(true) ;
>

>

9.2.5 Koch Curve

The Koch curve is a so-called monster curve. While it is of infinite length, it encloses 
a simply connected region of finite area in the xy plane. The method of constructing 
the Koch curve is as follows. Take an equilateral triangle and trisect each of it sides; 
then, on the middle segment of each side, construct equilateral triangles whose 
interiors lie external to the region enclosed by the base triangle and delete the 
middle segments of the base triangle. This basic construction is then repeated on 
all of the sides of the resulting curve, and so on ad nauseam. The curve is defined 
so that the areas of all triangles lie inside it and it should contain nothing else. The 
perimeter is the length of this curve. If r =  0 denotes the stage of evolution when 
only the base triangle of unit side is there, r  — 1 denotes the stage when three 
triangles of side | have been added, etc.. Then it can be seen that the perimeter PT 
of the Koch curve at the r-th stage is

Pr =  (4/3)rP0-

The perimeter grows unboundedly as r increases, but the area Ar included by the 
curve at the r-th stage is

Ar =  A0 (1  +  -  Y l  413 2‘ )  ■

As r  —► 00 we find that

Ar - > - A 0.

The number of the straight line segments making up the curve at the r-th stage is 
four times that of the line segments making up the curve at the (r — l)-th  stage, 
but the segments become three times smaller in size. The similarity dimension, the 
capacity and the Hausdorff dimension of the Koch curve turns out to be

ln(3)
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The topological dimension is equal to one.

The iterated function system for the Koch curve is given by X  =  R 2 and 

" « " ( ' о 3 1/3) x

• * - (# .  - # V (V )
f / e V ®

£)«+ (?) •
The fixed invariant set of this IFS is the Koch curve. We have a hyperbolic IFS with 
each map being a similitude of ration r <  1. Therefore the similarity dimension, d} 
of the unique invariant set of the IFS is the solution to

4 ln(l/4) ln(4)

k=l ln(r) ln(3)

where r  =  1/3. Koch constructed his curve in 1904 as an example of a non- 
differentiable curve, that is, a continuous curve that does not have a tangent at 
any of its points. Karl Weierstrass had first demonstrated the existence of such a 
curve in 1872. The length of the intermediate curve at the n-th iteration of the con
struction is (4/3)n, where n =  0 denotes the original straight fine segment. Therefore 
the length of the Koch curve is infinite. Moreover, the length of the curve between 
any two points on the curve is also infinite since there is a copy of the Koch curve 
between any two points.

Instead of starting from an equilateral triangle, one can also start from the unit 
interval. This is done in the Java program Koch. java.

// Koch.java

import java.awt.*; 
import j ava.awt.event.*; 
import j ava.awt.Graphi cs;

public class Koch extends Frame 
•C
public Koch()
{
setSize(600,500);
addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent event)
{ System.exit(0) ; ») ; >
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public int power(int a,int n)
{
int t = 1;
for(int i=l;i<=n;i++) { t = t*a; > 
return t;
>

public void paint(Graphics g)
{
g.drawRect(20,40,500,400);
int p, m, u, v, ul, vl, a, b;
double h, s, x, y, xl, yl;
p = 3; // step in the construction
int kmax = 100;
int T [] = new int [kmax] ;
m = 0; h = 1.0/((double) power(3,p));
x = 0.0; у = 0.0;

for(int n=l;n<=(power(4,p)-l);n++)
{
m = n;
{
for(int l=0;l<=(p-l) ;1++) { T[l] = m'/,4; m = m/4; > 
s = 0.0;
for(int k=0;k<=(p-l) ;k++) { s += ((double) ((T[k]+l)*/.3-l)); > 
xl = x; yl = y;
x += Math.cos(Math.PI*s/3.0)*h; у += Math.sin(Math.PI*s/3.0)*h; 
u = (int)(300*x+100+0.5); v = (int)(300*y+150+0.5); 
ul - (int)(300*xl+100+0.5); vl = (int)(300*y1+150+0.5); 
g.drawLine(u,v,ul,vl);
>
>
>

public static void main(String[] args)
{ Frame f = new Koch(); f.setVisible(true); >

>

9.2.6 Fern

Iterated functions systems can also be used to create fern like patterns. The Fern 
iterated function system, orginally found by M. Barnsley, is a well known and gen
erates a Black Spleenwort fern. The fern is created using the following four affine 
transformations

=  ( r ’ C 0 S - s ; s i n ( / m  / х Л  ( a x j \
\ T js in (a j )  SjCOs(Pj) / 4 * 2 /  402j )
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for j  =  1,2,3,4. For the four transformations we have

- « - ( !  ..°«)(SMS) 
■*>-(£, S S )(;M i)
“ <*>-(o0h

t N _ / —ОЛб 0.284 f x i \  f  0 \W4̂  { 0.26 0.24 J  UJ +  40-44J  '

The matrix norms of the matrices are smaller than 1. Thus the maps w\,w2, и)з and 
W4 are all contractions. What is the meaning of the maps? Wi maps the entire fern 
onto the fern with the two lowest branches and the lowest part of the stem removed. 
The fixed point of wi is the tip of the fern. w2 transforms the entire fern to the 
branch on the lower right; it shrinks, narrows, and flips. Similarly, transforms 
the entire fern to the branch on the lower left. Finally, maps the entire fern into 
a line segment on the x2 axis; its fixed point is the origin, and it is used to generate 
the stem.

In our Java program (Applet) we modify the coefficients of the four maps for a 
better graphical display.

// Fern.java

import java.awt.*; 
import java.applet.*; 
import java.awt.Graphics;

public class Fern extends Applet 

double mxx, myy, bxx, byy; 

public void plot(Graphics g)
{
double x, y, xn, yn, r; 
int pex, pey;
int max = 15000; // number of iterations 
x=0.5; y=0.0; // starting point
convert(0.0,1 .0 ,1 .0 ,-0.5); 
setBackground(Color.white); 
g.setColor(Color.black); 
for(int i=0;i<=max;i++)
{
r = Math.random(); // generate a random number 

<= 0.02) { xn = 0.5; yn = 0.27*y; У // map 1 
else if((r>0.02) (r<=0.17))
{
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xn = - 0 .139*x+0.263*y+0.57; // map 2 
yn = 0 .246*x+0.224*y-0.036;
>
e lse  i f ( (r > 0 .17) kk (r<=0 .3 ))
{
xn = 0 .17*x-0.215*y+0.408; // map 3 
yn = 0 .222*x+0. 176*y+0.0893;
>
else
{
xn = 0.781*x+0.034*y+0.1075; // map 4 
yn = -0 .032*x+0.739*y+0.27;
>
x = xn; у = yn;
pex = ( in t )  (mxx*x+bxx) ; pey = ( in t )  (myy*y+byy); 
g .d raw L in e(pex.pey,pex,pey); // output to  screen
>
>

void  convert(double xiz,doub le ysu,double xde,double y in f )
{
double maxx, maxy, x x fin , xxcom, yyin , yysu;
maxx = 600; maxy = 450;
xxcom = 0.15*maxx; xx fin  = 0.75*maxx;
yyin  = 0.8*maxy; yysu = 0.2*maxy;
mxx = (x x fin -xxcom )/ (xd e -x iz );
bxx = 0 .5 * (xxcom+xxf in-m xx*(xiz+xde) ) ;
myy = (y y in -yy su )/ (y in f-y su );
byy = 0 .5*(yysu+yyin -m yy*(y in f+ysu ));
>

pub lic  vo id  paint(Graphics g)
{  p lo t ( g ) ;  showStatusC'Done"); }

>

9.2.7 Grey Level Maps

An n-map iterated function system with grey level maps is defined as

1. The iterated function system w  =  {w i,w 2, . . . ,  гуп}  where each : X  —* X  is a 
contraction and

2. The grey level component Ф =  {<£i, 02» • • • > Фп) where each f a :  R  —► R  is Lips- 
chitz.

Here (X , d) is a complete metric space, the pixel space. In many cases we have 
X  =  [0,1] x  [0,1] (unit square) with the Euclidean metric. Associated with an
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iterated function system with grey level maps is an operator T , the fractal transform, 
whose action on a suitable space of function T { X )  is given by

г ( / ) ( * ) - £ > ( / ( « г ч * ) ) ) ,  т п х ) .
»=i

It is often assumed that both W{ and ф{ are affine. Thus

Wi{x) =  SiX +  О», fa(t) =  Qit +  Д  .

Another special case of an iterated function system with grey level maps operator 
is the following

T ( f ) ( x) =  0 ( z )  +  J2 очЯщ Ч* ) )  •
»=i

Here, the 0(x) acts as a condensation function for the iterated function system with 
grey level maps.

Under suitable conditions on the Wi and the the operator T  is contractive in 
T (X ) .  For example in the Banach space LP(X ) it suffices that (£ *  l5»**?\У̂ Р <  * 
and so it has a unique fixed point u* =  Tu*.

Let {<7j ( x ) }  be an orthonormal basis of the Hilbert space of the square integrable 
functions L 2{X ). Given an iterated function system with grey level maps operator 
T  there exists a corresponding operator M  on the sequence Hilbert space ^ (N )  
viewed as sequences of coefficients in expansions of functions with respect to the 
functions of the orthonormal basis. If the iterated function system with grey level 
maps operator T  is affine or linear, then the operator M  will also be affine or linear. 
If T  is contractive in the Hilbert space L2(X ), then M  is contractive in the Hilbert 
space ^ (N ) .  When the orthonormal basis is the Haar wavelet basis Tpjk, then the 
operator M  becomes a mapping of wavelet coefficients subtrees to lower subtrees.

9.3 Mandelbrot Set

Let С  be the complex plane. Let с € С. The Mandelbrot set M  is defined as follows 

M  :=  {  с € С  : с, с2 +  с, (с2 +  с) 2 +  с, . . .  оо }.

То find the Mandelbrot set we study the recursion relation

zt+1 =  z\ +  с

where t — 0 ,1 ,2 ,... and the initial value is given by z$ =  0. This is obvious since

z\ = c ,  z2 =  c2 +  c, z3 =  (c2 +  c) 2 +  c,...

etc.. Since z =  x  +  iy  and с =  c\ +  ic2 with x,y,Ci,  c2 6  R  we can rewrite the 
recursion relation as

x t+i =  x f  -  yf +  a ,  yt+1 =  2x tyt +  c2
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with the initial value (xo, 2/o) =  (0,0). For a given с 6  С  (or (с^сз) € R 2) we can 
now study whether or not с belongs to M . For example, (сх.сг) =  (0,0) and

(C!,c2) =  (1/4,1/4)

belong to M . The point (с^Сг) =  (1/2,0) does not belong to M . We find that

1 3 17 
%o — 0 » %i 2 * ^  4* ^  i 6 ’ ’ ’ "

Thus the set M  can be defined using nothing more than complex arithmetic. The 
polynomial f c{z) =  z2 +  с has a unique critical point uj =  0 , i.e., a point oj where 
the derivative Гс{и>) equals 0. The parameter value с is called the critical value 
c =  /c(0). Since both the variable z and the parameter с fill out a plane, it can 
cause some confusion; in particular because we jump back and forth between these 
planes. For fixed с we refer to the z-plane as the dynamical plane for /c, while we 
refer to the с-plane as the parameter plane.

// Mandelbrot.java

import java.awt.*; 

import java.awt.event.*; 

import java.awt.Graphics; 

import j ava.awt.image.*;

public class Mandelbrot extends Frame

public Mandelbrot()

•C
setSize(600,500);
addWindowListener(new WindowAdapter()
{  public void windowClosing(WindowEvent event)

{ System.exit (0) ; » )  ; }

public void paint(Graphics g)

{
Image img;

int w = 256, h = 256; 

int [] pix = new int [w*h]; 

int index = 0; 
int iter;
double a, b, p, q, psq, qsq, pnew, qnew; 

for(int y=0;y<h;y++)

•C
b = ((double)(y-128))/64; 

for(int x=0;x<w;x++)

-C
a =  ((double)(x-128))/64;

p = q = 0.0;
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iter = 0; 

while(iter < 32)

{
psq = p*p; qsq = q*q;
if(psq+qsq >= 4.0) break;

pnew = psq-qsq+a; qnew = 2.0*p*q+b;

p = pnew; q = qnew;

iter++;

>
if (iter==32)

pix [index] = 255 «  24 | 255; // 255 «  24 I 256 => black

>
index++;

>
>
img = createlmage(new MemoryImageSource(w,h,pix,0,w)) ; 

g.drawlmage(img,0,0,null);

>

public static void main(String [] args)

{ Frame f = new MandelbrotO; f .setVisible(true); }

>

9.4 Julia Set

Let f\ be a mapping in the complex plane, where Л is a complex parameter. The 
Julia set of fx  can be defined in two different ways.

Dynam ical Definition. J (fx ) is the closure of the set of repelling periodic points. 
A  point го G С  is periodic if

й п)ы  =  *0

for some n, where f ^  denotes the n-fold composition of fx  with itself. This periodic 
point is repelling if

|(Лп)) 'ы |  >  i

where '  denotes the derivative.

Com plex A nalytic  Definition. J (fx ) is the set of points z such that the family 
of functions

{ / П

fails to be a normal family of functions in every neighbourhood of z.

We also find the definition in the form:
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z is a stable point of the (rational) map fx  if there is a neighbourhood U  of z on 
which the iterates

Л">
form a normal family. Let Cl be the stable set of /. The Julia set is the complement 
of П. It is named after the mathematician Julia who, along with Fatou, originated 
this subject in the 1920’s. The set П is open by definition. It must either be empty 
or dense in С  and is often not connected.

Definition. A  family of complex analytic maps { fx } , defined on a domain D  is 
called a normal family if it satisfies the following conditions: every infinite subset of 
{ fx }  contains a subsequence which converges uniformly on every compact subset of 
D.

The Julia set has mainly been studied for the map

f c(z ) =  z2 +  с

where с € С. In the program Ju lia , java we consider the Julia set for this map, 
where c =  p +  iq and z2 =  x2 — y2 +  i'lxy  with x , y, p, q are real.

// Julia.java

import java.awt.*; 

import j ava.awt.event.*; 
import java.awt.Graphics;

public class Julia extends Frame 

public JuliaO 

{
setSize(600,500);
addWindowListener(new WindowAdapterO 
{ public void windowClosing(WindowEvent event)

{ System.exit (0); » )  ; }

public void paint(Graphics g)

{
int a = 400, b = 400, kmax = 200, m = 100;

double xO, yO, dx, dy, x, y, r;
double p = -0.12256117, q = 0.74486177;
double xmin = -1.5, xmax = 1.5, ymin = -1.5, ymax = 1.5;
dx = (xmax-xmin)/((double)a-1); dy = (ymax-ymin)/((double)b-1);

for(int nx=0;nx<=a;nx++)

for(int ny=0;ny<=b;ny++)

int к = 0;
xO = xmin+nx*dx; yO = ymin+ny*dy; r = 0;



236 CHAPTER 9. FRACTALS

while((k++ <= kmax) && (r < m))

{
x = xO; у = yO;
xO = x*x-y*y+p; yO = 2*x*y+q; r * xO*xO+yO*yO; 

if(r > m) { >

>
if(r <= m) { g.drawLine(nx,ny,nx,ny); >

>
>

public static void main(String[] args)
{ Frame f = new JuliaO; f.setVisible(true) ; >

>

9.5 Fractals and Kronecker Product
The Kronecker product of matrices (also known as the tensor product or direct ma
trix product) has been used in a variety of fields (Steeb [105], [107]). The Kronecker 
product can also be used in image processing and related fields. Here we describe 
how the Kronecker product can be used in the construction of fractals.

Let A  be an m x  n matrix and В be an r x s matrix. The Kronecker product of A 
and В is defined as the (m • r ) x (n • s) matrix

A ®  В  :=

аи В  
021В

0-12 В  
a22B

OmiB 0 ^ 2  £

ainB  \ 
a2nB

атпВ /

Exam ple. Let

Then
(i !)■

A ®  A

/ 1

0

0

VO

1 \
1

1

1

The Kronecker product is associative

(A  <8> B ) <g>С  =  A ®  (B  (8 )C ).

The Kronecker product is also distributive

(A  +  B )® C  =  A ® C  +  B ® C  

for A  and В  both m x  n  matrices and С  a p x q matrix. Let с G C. Then

((c.A) <8 » B ) =  c(A  <8) B ) =  (A ®  (cB )).
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Let A  be an m x n  matrix, В  be a p x q matrix, С  be an n x r  matrix and D  be a 
q x  s matrix then

(A  0  B )(C  <8)D )  =  (A C ) 0  (B D ) 

where A C , B D  denote matrix multiplication.

The multiple Kronecker product is defined in a recursive fashion as

0 ?=1 А { :=  ( Ф ^ А )  0  Ak =  A i 0  A 2 0  • • ■ 0

where 0 j=1A t- =  A i. We can represent or approximate a given matrix A  by the sum 
of several Kronecker products

p
A  =  ^2 An ®  ^ »2  0  ■ ■ • ® 

i= l

This is called the multiple Kronecker product sum approximation of the matrix A. 
Images and fractals can thus be represented by this multiple Kronecker product.

Many fractals have a self-similar nature, and so can be constructed from a union of 
self-similar sets. A  closed, bounded self-similar set of the Euclidean plane R 2 is a 
set o f the form A  =  A\ \JA2 U • • ■ U A* with each of the sets A{ non-overlapping with 
A  and congruent to A.

The simplest example o f such a set, is the middle-third Cantor set. The Cantor 
set is obtained by starting with a line segment, and removing the middle third. 
The middle third of each of the remaining two segments is then also removed, and 
the process is continued ad infinitum. It is clear that the two remaining segments 
are self-similar to the original segment, scaled by a factor of We can express 
the middle-third Cantor set using the Kronecker product. Let x  =  (1, 0, 1) which 
represents the fact that the middle third is removed. The operation can be applied 
again to the remaining two segments by applying the Kronecker product

x  0  x  =  ( 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1).

Thus each 1 has been replaced by a copy of the original vector. The middle-third 
Cantor set is thus given by

oo

® x .
1=1

An approximation is given by ®Г=1 x. This set can be visualized if each entry 0 is 
identified with a black pixel and an entry 1 with a white pixel.

Other self-similar fractals can be produced in the same way. For any matrix pro
duced in this fashion, each 0 entry is identified by a black pixel and each 1 entry is 
identified by a white pixel.
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Example. The Sierpinski carpet is obtained by taking a square, and dividing the 
square into 9 equal squares. The middle square is removed, and the process is 
repeated on the 8  remaining squares. The Sierpinski carpet can thus be generated 
from the defining matrix

( i  i  i\
X =  1 0  1

V i i  i )

Now the Kronecker product is used to create the Sierpinski carpet through iteration. 

*

Exanple. The Sierpinski triangle can be generated in the same way with the matrix

*-(; о-
Gray scale fractal images can be produced if the elements of the matrix are allowed 
to take on values between 0 and 1. An example would be the matrix

/1.0 0.5 1.0\
X  =  0.5 1.0 0.5 .

\1.0 0.5 1.0 /

Obviously nonfractal images can also be generated. For example the Kronecker 
product sum

with matrices

X  =  ( \  J )  and B = ( l  I )  

generates a checkerboard.

In the following we give a Metapost program that generates the Sierpinski triangle 
up to level 5 and the checkerboard pattern up to level 4.

7. Kronecker product fracta ls  in metapost
7. Only 2x2 matrices are supported since reckronecker (below)
'/, hardcodes the interpretation of the matrix 
7. r is  the matrix that stores the matrix that is  repeatedly 
*/, applied (using the kronecker product) on the le f t  

The format is 
7. [ ro r l  ]
V. [ r2 r3 ] 
numeric r [ ]  ;
7. p is  the base matrix (applied on the righ t) 
numeric p [] ;

def reckronecker(expr d,x,A)=
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if(d=0):

'/.fill unitsquare transformed A withcolor white; 

if(x*r0=0): fill unitsquare scaled 0.5 shifted(0.0,0.0) 

transformed A; fi; 

if(x*rl=0): fill unitsquare scaled 0.5 shifted(0.5,0.0) 

transformed A; fi; 

if(x*r2=0): fill unitsquare scaled 0.5 shifted(0.0,-0.5) 

transformed A; fi; 

if(x*r3=0): fill unitsquare scaled 0.5 shifted(0.5,-0.5) 
transformed A; fi; 

if(x*r0=l): draw unitsquare scaled 0.5 shifted(0.0,0.0) 

transformed A; fi; 

if(x*rl=l): draw unitsquare scaled 0.5 shifted(0.5,0.0) 

transformed A; fi; 

if(x*r2=l): draw unitsquare scaled 0.5 shifted(0.0,-0.5) 

transformed A; fi; 

if(x*r3=l): draw unitsquare scaled 0.5 shifted(0.5,-0.5) 

transformed A; fi;
else:

reckronecker(d-1,x*p0,identity scaled 0.5 shifted(0.0,0.0) 

transformed A); 

reckronecker(d-l,x*pl,identity scaled 0.5 shifted(0.5,0.0) 

transformed A); 

reckronecker(d-1,x*p2,identity scaled 0.5 shifted(0.0,-0.5) 

transformed A); 
reckronecker(d-1,x*p3,identity scaled 0.5 shifted(0.5,-0.5) 

transformed A);

fi 
enddef;

def kronecker(expr d)= 
transform A;

pickup pencircle scaled 0.5pt;
A=identity scaled 4cm shifted(0,4cm*(l.0-1.0/(2.0**(d+l)))); 

reckronecker(d,l,A);
enddef;

‘/.sierpinski triangle to level 5 

beginfig(l);

r0:=l; rl:=1; r2:=0; r3:=l; p0:=l; pi:=1; p2:=0; p3:=l; 

kronecker(5); 
endfig;

'/.checkerboard to level 4 

beginfig(2);
r0:=0; rl:=1; r2:=l; r3:=0; p0:=l; pi:—1; p2:-l; p3:=l; 

kronecker(4); 
endfig; 

end;
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9.6 Lindenmayer Systems and Fractals

A Lindenmayer system (.A , Я, s) is defined as follows. Consider a finite set A  of 
characters (the alphabet), a map R  : A —* A* and a non-empty starting word s 
(initial string, axiom), an element of A*. A* are the words with characters from A. 
For each a € A  the pair (a, R (a )) is called a rule and is written as

a —► 6162 • • • bn

where R(a ) =  6162 • • • bn £ A*, a is the left hand side and 6162 • ■ • bn the right hand 
side of the rule. A  Lindenmayer system describes a language L, a subset of A*. The 
language is defined as follows:

• s is an element of L.

• Let w be an element of L  and let ~  w be the word where each character a of 
w has been replaced by R (a). Then ~  w is in L.

From the starting word s =  so the word s* is created by replacing all characters by 
their rule image (the right hand side of the corresponding rule). From Si the word S2 

is created, from that S3 and so on. Call S{ the г-th generation of the starting word s. 
The interpretation of the words s* of the language L  can be done using a turtle. It 
visualizes the words of the language. A turtle is a drawing device which understands 
a few simple commands. Given a word of the language L  each character of the word 
is interpreted as a command for the turtle. The word turns into a picture with the 
help of the turtle. A  turtle has a position in the plane, a forward direction and a 
colour. It understands the following commands: Move forward a given number of 
units and draw a line, move forward a given number of units without drawing, turn 
left a given number of degrees, turn right a given number of degrees and change 
our colour to a given colour. Furthermore, a turtle may remember its current state 
(position, direction and colour) by pushing it onto a stack and by changing its state 
to a former one by popping it off from the stack. For each character of the alphabet 
A , one of these turtle commands may be defined. A character may also correspond 
to no command at all, causing the turtle to do nothing. A  turtle command may 
be one of the identifiers Move, Line, L e ft, Right, Push or Pop. These commands 
cause the turtle to move without drawing, to draw a line, to turn left or right and 
to push or pop its current state. A  colour value must be a list of three numbers 
[r,g,b] defining new red-, green- and blue colour values for the turtle. The following 
default rules for the turtle commands exist:

"F" = Line = move forward one unit and draw a line 

"f" = Move = move forward one unit

"+" = Left = change forward direction by a left rotation 
of deg degrees 

= Right = change forward direction by a right rotation 
of deg degrees 

"[" = Push = push current state to stack 

"3" = Pop = pop current state from stack
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These rules are used if no other rules for the turtle commands are defined. It is also 
necessary to specify which generation of the starting word of the system is to be 
plotted. We write a Java applet that implements the turtle.

We restrict the stack to one position. We use the start F and the rule 

F -> FOF]F[-F]F 

The angle is 30° =  7r/6 .

// Lindenmayer.java

import java.awt.*; 

import java.applet.*;

public class Lindenmayer extends Applet 

{
Point a, b;

int lengthF = 3 ;  // step length

double rotation =30.0; // rotation in deg 

double direction;

Graphics g;

Graphics2D g2;

public void initО

{ setBackground(new Color(255,255,255)); } 

public void paint(Graphics g)

{
g2 = (Graphics2D) g; // Anti-Aliasing
g2. setRender ingHint (RenderingHints. KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON); 

g2.setColor(new Color(110,170,60)); // Color 

a = new Point(115,495); // starting point 

direction = -80; // starting direction

turtle(g2,"F",6);

>

public void turtle(Graphics g2,String instruc.int depth)

{
if(depth==0) return; 
depth -= 1;

Point aMark = new Point(0,0); 

double directionMark = 0; 

chax c;
for(int i=0;i<instruc.length();i++)

•C
с = instruc.charAt(i); // step forward 

if(c==,F >)
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i
I I  iteration
turtleCg2,"F[+F]F[-F]F".depth);
// draw 

if(depth==0)

{
double rad = 2.0*Math.PI*direction/360.0; // deg -> rad 
int p = Cint)(lengthF*Math.cos(rad)); 
in t q = Cint)ClengthF*Math.sinCrad)); 
b = new PointCa.x+p,a.y+q); 
g2.drawLineCa.x,a.y,b.x,b.y); 
a = b; // new starting point
>
>
// rotation left

else ifCc==,+’) direction += rotation;
// rotation right

else ifCc325’-’) direction -= rotation;

// store position and direction

else if(c= = ’ [’) {  aMark = a; directionMark = direction; > 

else if Cc==’]’) { a = aMark; direction = directionMark; }
>
>

>

The Hilbert curve is a fractal that can be produced by the L-system productions

L  —► + R F  — L F L  -  F R  +  

R  —► - L F  +  R F R  +  F L -

The symbol +  indicates a clockwise rotation of 90 degrees and — indicates an an
ticlockwise rotation of 90 degrees. F  indicates that a line must be drawn in the 
current direction, 1 unit in length. Я and L  are ignored when drawing the Hilbert 
curve and are only used in productions. The initial string used to produce the curve 
is simply L.

The Koch snowflake can also be produced by an L-System. The productions are 
given by

F  ->  F  +  F ---- F  +  F

The initial string describing the snowflake is given by F ---- F -----F . Once again F
indicates that a line should be drawn in the current direction, +  indicates a clockwise 
rotation of 60 degrees and — indicates an anticlockwise rotation of 60 degrees.
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9.7 Weierstrass Function

One way to obtain a function whose graph has a fine structure (fractal structure) is 
to add together a sequence of functions which oscillate increasingly rapidly. Thus if

oo

5 3  Ы  <  OO 
fc=l

and A* —» oo if к —> oo, the function defined by the trigonometric series

oo
f ( x )  =  J 2 ajS in (X jx)

3=1

might be expected to have a graph of dimension greater than 1 if a* and A* are 
chosen suitably. The best-known example of this type is the function

f ( x )  =  д(5_2Ь' sin(AJz ) 
j= i

where 1 <  s <  2 and A >  1, constructed by Weierstrass to be continuous but 
nowhere differentiable. It is conjectured that the Weierstrass function has a graph of 
dimension s, but this does not appear to have been proven rigorously. The dimension 
cannot exceed s. There are a number of variants of the Weierstrass function. There 
is a close connection between the Weierstrass function and a Levy-fiight random 
walk. We start with the discrete jump probability distribution

p(z) =  ^  +6*) +  «(* , - bk))
ZA k=0

where b >  A >  1 are parameters that characterize the distribution, and 6(x,y ) is 
the Kronecker delta, which is equal to 1 when x  =  у and zero otherwise. This 
distribution function allows jumps of length 1,6,62, 63 —  However, whenever the 
length of the jump increases by an order of magnitude (in base 6), its probability of 
occurring decreases by an order of magnitude (in base A). Typically one gets a cluster 
o f A jumps roughly of length 1 before there is a jump of length b. Approximately A 
such clusters, separated by lengths of order 6, are formed before one sees a jump of 
order b2. This goes on, forming a hierarchy of clusters within clusters. The Fourier 
transform of p (x ) is

\ _  i 00

p W  = £  A 3 cos(b’*:) j=0

which is the self-similar Weierstrass function. The self-similarity of the Weierstrass 
function appears explicitly through the equation

P{k) =  jP (b k ) +  ^ j^ c o s (k )

which has a small-A; solution
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with P  =  log(A)/log(6). For our Java-Applet program we select s =  3/2 and A =  4. 
Then we draw the function

f n (x ) =  Л  h  sin(4Jx ) 
j= 1 ^

which is an approximation of the Weierstrass function with N  =  3. The second and 
third pieces of the applet tag indicate the width and the height of the applet in pixel. 
The upper left corner of the applet is always at x-coordinate 0 and y-coordinate 0.

// Weierstrass.java 

import java.awt.Graphics;

public class Weierstrass extends java.applet.Applet 

{
double f(double x)

{
double expr = 1.0/2.0*Math.sin(4.0*x)+1.0/4.0*Math.sin(16.0*x) 

+1.0/8.0*Math.sin(64.0*x); 

return expr*getSize().height/4.0+150.0;

>

public void paint(Graphics g)

{
for(int n=0;n<getSize().width;n++)

{ g.drawLine(n,(int)f(n),n+l,(int)f(n+1)); >

>
>

The HTM L file Weierstrass.htm l is as follows:

<HTML>

<TITLE> Approximation of Weierstrass Function </TITLE>

<APPLET code="Weierstrass.class" width=200 height=250>
</APPLET>

</HTHL>

The Weierstrass-Takagi function is an extension of the Weierstrass function and is 
defined by

W ( x ) ^ f , a - kG (f^ \ x ) )  
k=0

where / is a one-dimensional (chaotic) map / : [0,1] —» [0,1] and G  is an arbitrary 
periodic function, and /W denotes the k-th iterate of the function /. For example, 
if we use f ( x )  =  2x (mod) 1 and

G (x) =  cos(27rx)

we obtain the Weierstrass function. The function W  satisfies the functional equation

W {f{x ) )  =  a W {x ) -a G (x ) .



Chapter 10 

Cellular Automata

10.1 Introduction

Cellular automata (Wolfram [120]) may be considered as discrete dynamical sys
tems. They are discrete in several aspects. Firstly, they consist of a discrete spatial 
lattice of sites. Secondly they evolve in discrete time steps, i.e. t =  0 ,1 ,2 ,... . 
Thirdly each lattice site (or box, or cell) has only a finite discrete set of possible 
values. The simplest case is that the dependent variable takes two values, 0 and 
1. The simplest case of a lattice is a linear chain with N  lattice sites (or boxes). 
Periodic boundary conditions (also called cyclic boundary conditions) or open end 
boundary conditions can be imposed. In two dimensions we can consider different 
lattices (grids), for example rectangular, triangular or hexagonal lattices.

Any cellular automata rule in one dimension can be described by an evolution equa
tion of the form

O i(t+  1 ) =  / [a {i}(0 L t =  0 , 1, 2 , . . .

where a,(t) is the state of the site i  at time t and /[a{i}(t)] is a function of the states 
o f sites in a neighbourhood of lattice site i at time t with the initial states given by 
di(t =  0). In the one-dimensional case (i.e., one has a linear chain) the equation can 
also be written as

а*(£ +  1) =  /[oi_r(t), Oj_r+i(£ ),. . . ,  а*+г(£)].

The local rule / has the range of r  sites. In most cases, one considers the case г =  1. 
Thus a 1-dimensional cellular automaton consists of a line of sites with values a, 
between 0 and к — 1. These values are updated in parallel (synchronously) in discrete 
time steps. Much of the section is concerned with the study of a particular к =  2, 
r =  1 cellular automaton.

245



246 CHAPTER 10. CELLULAR AUTOMATA

For example, the rule for evolution could take the value of a site at a particular 
time step to be the sum modulo two of the values o f its two nearest neighbours on 
the previous time step. The pattern is found to be self-similar, and is characterized 
by a fractal dimension log23. Even with an initial state consisting of a random 
sequence of 0 and 1 sites, say each with probability |, the evolution of such a cel
lular automaton leads to correlations between separated sites and the appearance 
of structure. This behaviour contradicts the second law o f thermodynamics for sys
tems with reversible dynamics, and is made possible by the irreversible nature of the 
cellular automaton evolution. Starting from a maximum entropy ensemble in which 
all possible configurations appear with equal probability, the evolution increases the 
probabilities of some configurations at the expense of others.

Despite the simplicity of their construction, cellular automata are found to be capa
ble of diverse and complex behaviour. Numerical studies suggests that the pattern 
generated in the time evolution of cellular automata from disordered initial states 
can be classified as follows:

(i) Evolves to homogeneous state

(ii) Evolves to simple separated periodic structures

(iii) Evolves to chaotic aperiodic patterns

(iv) Evolves to complex pattern of localized structures.

Constants of motion, if any exist, in classical mechanics and conservation laws, if 
any exist, in field theory play an important role in studying the behaviour of the 
dynamical system. If invariants exist for a cellular automaton, then one has a parti
tion of its state space. Both irreversible and reversible cellular automata can exist. 
A  rule of cellular automata is said to be reversible if it is backwards deterministic.

For mathematical purposes, it is often convenient to consider cellular automata 
with an infinite number of sites. But practical implementations must contain a fi
nite number of sites N. These are typically arranged in a circular register to obtain 
periodic boundary conditions. It is also possible to arrange the sites in a feedback 
shift register.

Cellular automata can be considered as discrete approximations to partial differen
tial equations, and can be used as direct models for a variety of natural systems. 
They can also be considered as discrete dynamical systems corresponding to con
tinuous mappings on the Cantor set. Finally they can be viewed as computational 
systems whose evolution processes information contained in their initial configura
tions.

For one-dimensional cellular automata with r  =  2 and к =  1 we can define rule 
numbers as follows. Let j  be a fixed lattice point (cell). Then consider its two



neighbours j  — 1 and j  +  1. For these three lattice sites we can have the following
8 =  23 configurations at time t

111 110  101 100  O il 0 1 0  001  0 0 0 .

Consider as an example the cellular automata

a j(t +  1 ) =  (ty_ i(t) +  ty+i(0 ) mod 2 .

Then the eight configurations given above are mapped into a j(t +  1) as follows

111  —» 0 , 110 — 1. 101 — 0 , 100 — 1 ,

O il —♦ 1 , 0 1 0  — 0 , 001 — 1 , 0 0 0 - 0  

where we used the mod 2 addition (XOR), i.e.

0 + 0 = 0, 0 + 1  = 1, 1 + 0 = 1, 1 + 1 = 0 .

Thus the map provides the binary string

0 1 0 1 1 0 1 0 .

Since

0 • 27 +  1 • 26 +  1 • 24 +  1 • 23 +  1 • 21 =  90 

we associate the map given above with the rule 90.

Vice versa, from the rule number we can derive the map. For example consider the 
rule 56. Since

56 =  0 • 27 +  0 • 26 +  1 • 25 +  1 • 24 +  1 • 23 +  0 • 22 +  0 • 21 +  0 • 2° 

we obtain the binary string 00111000. Thus we have the maps 

111 — 0 , 1 1 0 - 0 , 1 0 1 - 1, 1 0 0 - 1

011  — 1 , 010  — 0 , 001  — 0 , 000  — 0 .

Exercise. Show that for rule 62 we obtain the bitstring 0 0 1 1 1 1 1 0  and the map
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o o i i i i i o

Show that starting from the bitstring 0 0 0 1 0 0 0  we obtain for the next two steps of 
the map 0 0 1 1 1 0 0  and 0 1 1 0 0 1 0 .
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10.2 One-Dimensional Cellular Automata

As an example we consider a one-dimensional ring of N  sites labelled sequentially 
by the index i starting from zero, i.e. i  =  0 ,1 ,..., N  — 1. We impose periodic 
boundary conditions, i.e. N  =  0. Each site i  can take the values a* =  0 or a* =  1. 
Let a* evolve as a function a*(t) of discrete time steps t =  0 ,1 ,2 ,... according to 
the map

Oi(t +  1) =  (o i_ i(t) +  Oi+i ( t ) )  mod 2 .

Since the map involves the sum (a*_i +  а̂ +х) mod 2, it is a nonlinear map. The 
map can also be expressed using spin variables Sj € { + 1 , - 1 } ,  where 5* =  -1  
corresponds to a* =  0 and Si =  +1 corresponds to a* =  1. Then the map can be 
written as

S i(t +  1) =  — S i-\ (t)S i+ i(t).

This map has the following properties

for t =  1 , 2 . . .  and
S i(t +  2n) =  —Si-2* {t)Si+2n (t )  

for t — 0 , 1 , . . .  and n =  0 , 1 ,....

For N  =  2fc, к =  1 ,2,..., one has all S i(t) =  —1 for all times t >  2fc_1, irrespective 
of the initial spin configuration of the ring.

In the program spin.cpp we set N  =  5, i.e. we have five cells (or sites). We apply 
periodic boundary conditions. The number of time steps is T  =  7. As expected we 
find an eventually periodic pattern, i.e., S (6 ) =  S (l).

// spin.cpp

♦include <iostream> 

using namespace std;

int main(void) 

i
I I  number of cells 
int N = 5;

I / allocation of memory
int* S = new int[N]; int* W = new int[N];
// initial values

S[0] = -1; S[l] = -1; SC2] = 1; S[3] = -1; S[4] = -1; 
int T = 7; // number of time steps

// iterations 

forCint t=l;t<T;t++)
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forCint j=0;j<N;j++) { W[j] = S[j] ; >

for(j=0; j<N; j++) { S[j] = -W[CCj-l)+N)*/.N]*W[Cj+l)7.N] ; >

// display the result for each time step 
cout «  "t = " «  t «  " ";

forCj=0;j<N;j++) {  cout «  "S[" «  j «  "] * " «  S[j] «  " > 
cout «  endl;

>
// end iteration

delete [] S; delete [] W; 
return 0;

>

Another example is given by

Uj(t +  1) =  Sgn(l -  \Uj-i(t) -  Uj(t) +  uj+ i( t )  -  1|) 

where Uj(t) € { —! , + ! } .  Here we have

U j - l ( t ) U j ( t ) uj + i { t ) Uj(t +  1)

-1 - 1 -1 -1

-1 - 1 1 1

-1 1 -1 -1

-1 1 1 -1

1 - 1 -1 1

1 -1 1 -1

1 1 -1 -1

1 1 1 1

10.3 Sznajd Model
Snajd-Weron and Sznajd [109] introduced a one-dimensional Ising spin model with 
periodic boundary conditions where each spin (or lattice site) j  =  0 ,1 ,..., N  — 1 
can be found in one of the two states Uj 6  { —1, + 1 }  or { —, + }  for short, which 
in the context of opinion formation, shall refer to two opposite opinions. Owing 
to the periodic boundary condition we have и^  =  Uq. For the spin interaction of 
neighbouring spins, the following two rules are proposed:

Rule 1. I f  two consecutive lattice sites j  and j  +  1 have the same opinion (either 
+ 1  or —1), i.e. UjUj+i =  1 , then the two neighbouring sites j  — 1 and j  +  2 will 
adopt the opinion of the pair { j ,  j  +  1}, i.e. U j-i =  Uj+2 — Uj =  Uj+i. This rule 
refers to ferromagnetism.

Rule 2. If two consecutive lattice sites have a different opinion (either -f or — 1) 
i.e., UjUj+i =  — 1 , then the two neighbouring sites j  — I  and j  +  2 will adopt their
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opinion from the second nearest neighbours as follows: U j- \  =  Uj+1, Uj+2 =  Uj. This 
rule refers to anti-ferromagnetism.

Thus we have a one-dimensional cellular automata. We consider determininstic 
dynamics, i.e. the rules apply with probability one - which is similar to an Ising 
system at temperature T  =  0. However, there is still randomness in the system 
in the sense that (i) there is an initial random distribution of the opinions with 
the mean value of the frequencies f+\ =  /_ 1 =  0.5, and (ii) during the computer 
simulations, the site j  for the next step is randomly chosen, i.e., the dynamics is 
governed by a random sequential update as asynchronous update. Two spins are 
flipped at a time. With the rules above, we find the following possible transitions 
in a neighbourhood of N  =  4.

U j - 1 Uj U j +1 Uj+2 —► U j - 1 ui Щ+i Uj+2 rule
? + + ? + + + + ( i )
? — — ? — — — — ( 1)
? + — ? — + — + (2 )
? - + ? + - + - (2 )

Through simulations one finds that the one-dimensional Sznajd model for any ran
dom initial configuration asymptotically reaches one of the three possible attractors, 
two of which refer to ferromagnetism and one to anti-ferromagnetism. These possi
ble attractors are reached with different probability:

attractor fe rro+ : { +  +  +  +  +  +  +  +  + - f  }  with probability p =  0.25
attractor fe r ro +: { ---------------------- }  with probability p =  0.25
attractor anti-ferro : { — 1----- 1----- 1----- 1-----h} with probability p =  0.5

In order to verify these probabilities, consider a lattice of size N  with periodic 
boundary conditions and an initial random distribution of +  and —. Then the 
number of consecutive pairs is also N. The initial probability of finding either a 
ferromagnetic or anti-ferromagnetic pair adds up to 0.5, i.e.

Pf =  P++ +  P—  =  0.5, paf =  p_+ +  p+_ =  0.5, P f  +  paf  — 1 •

During the first q steps we may assume that the initial distribution is not changed 
much by the dynamics, i.e. the equation given above remains valid and the proba
bilities are given by the bionomial distribution

If  during the first q steps more than q/2 anti-ferromagnetic pairs are selected, then 
paf  increases since each selection will lead to two new antiferromagnetic pairs. The 
case of ferromagnetic pair selection can be treated similarly. For q being ал even 
number, the probability is then given by

J L 0 * ^ + s W ’tw - “ -
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The first term denotes the probability of selecting more than q/2 anti-ferromagnetic 
pairs (favouring anti-ferromagnetism) and the second term denotes the probability of 
selecting exactly q/2 pairs (favouring both ferromagnetism and anti-ferromagnetism 
with probability 0.5). Thus we can conclude that the probability for the system to 
reach the antiferromagnetic attractor is given by 0.5. This equation is valid as long 
as Р/ =  paj  =  0.5, i.e., for t <  q. After the initial time lag, the symmetry is broken 
and the system dynamics goes towards one of the possible anti-ferromagnetic or 
ferromagnetic attractors with probability one.

For the implementation of the Sznajd model we use the b its e t class of the Standard 
Template Library of C + + .

// sznajd.cpp

#include <bitset>

#include <cstdlib>

#include <iostream> 

using namespace std;

template<const size_t n> bitset<n> random_bitstring()

<
int i, ones, zeros; 

bitset<n> b; 

ones = zeros = n/2; 

for(i=0;i<int(n);i++)

{
if (double (rand ())/RAND_MAX < double (zeros)/(ones+zeros))

{ b[i] = 0; zeros— ; > 

else < b Ci] = 1; ones— ; >

>
return b;

template<const size_t n>
bitset<n> sznajd (const bitset<n> Jtb.int steps) 

in t j ;
bitset<n> u = b; 

while(steps > 0)

•C
j = randOXn;
if (u[j]==u[(j+l)%n]) // rule 1

u[(j+n-l)%n]=u[(j+2)'/n]=u[j]; 
else // rule 2

u[(j+n-l)*/,n] = u[(j+l)'/#n]; u[(j+2)'/,n] = uCj];

>
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steps— ;

>
return u;

>

int main(void) 

srand(time(NULL));

bitset<8> b = random_bitstring<8>(); 

cout «  b «  endl; 

cout «  sznajd(b,1000) «  endl; 

return 0;

>

10.4 Conservation Laws
A  large class of cellular automata is provided by discretization (o f space and time co
ordinates) of partial differential equations. A  simple example is the one-dimensional 
linear diffusion equation

du _  d2u 

dt dx2
with the conserved quantity

f u(x, t)dx  =  С  
J R

where С  is the total amount of the diffusing substance. Here it is assumed that и and 
its derivative with respect to x go to zero as |x| —► oo. The simplest discretization 
of the one-dimensional diffusion equation is given by

Uj(t + 1 )  -  Uj{t) =  uj+1(t ) -  2Uj(t ) +  U j- i { t )

with unit discretization steps. In modulo 2 integer arithmetic the term 2Uj vanishes. 
Therefore

Uj(t +  1) =  uj+ i ( t )  +  U j(t) +  U j- i ( t )  mod 2.

This equation corresponds to rule 150. Again we impose periodic boundary condi
tions. As a conservation law we find

N-l
E iijW - c
j=0

where the constant С  is given by

N -l
C = S « i (  0 ).

i=o

Note that С  can only take the values 0 or 1. The proof is straightforward. We 
take the sum over j  of the left and right hand side of equation for U j ( t  +  1)
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and bear in mind that we have modulo 2  integer arithmetic and cyclic bound
ary conditions. Let N  =  25 =  32 with the initial configuration Mj(0) =  0 for 
j  — 0 ,1 ,. . . ,  14,16,..., 31 and 1*15(0 ) =  1. The number of time steps is 40. The sys
tem evolves to a periodic structure. Let N  =  31 with initial configuration U j(0) =  0 
for j  =  0 ,1 ,..., 14,16,... 30 and ui5 (0) =  1. Again the system evolves to a periodic 
structure.

Consider Burgers equation
du _  d2u du 

dt dx2 U d x '

The equation can be written as a conservation law

du __ d / и2 du\ 
dt dx \ 2 *  d x )

with the conserved quantity

/ u (x , t )dx  =  C.
J R

Here we have assumed that и  and its derivate with respect to x  go to zero as 
|x| —» 00. The simplest discretization yields

U j(t  +  1) -  u j ( t )  =  uj+2( t )  -  2uj+ i { t )  +  U j( t )  -  u j{ t ) [u j + i ( t )  -  U j ( t ) ]

with unit discretization steps. In modulo 2 integer arithmetic we have UjUj+ 1 =  
—UjUj+i and Uj =  u2 for all t. Therefore this equation simplifies to

U j(t +  1) =  Uj+2(t )  +  u j(t)u j+ i ( t )  +  U j(t) mod 2.

We see that U j ( t )  =  0 for all i  =  0 ,1 ,..., N — 1 and U j ( t )  =  1 for all j  =  0 ,1 ,..., N — 1 
are invariant states. We see that E j^ o l U j ( t )  — С  is no longer a conservation law. 
Let N  =  32 and the initial configuration Uj(0) =  0 for j  =  0 ,1 ,..., 14,16,..., 31 
and ui5(0) =  1 . The number of time steps is 20. The cellular automaton tends to 
the fixed point Uq =  u\ =  • • • =  u^O. Let N  =  31 and the initial configuration 
Uj(0) =  0 for j  — 0 ,1 ,..., 14,16,..., 30 and Uis(0) =  1. The pattern reached has a 
simple periodic structure.

10.5 Two-Dimensional Cellular Automata

The extension to two dimensions is significant for comparisons with many exper
imental results on pattern formation in physical systems. Immediate applications 
include dendritic crystal growth, reaction-diffusion systems and turbulent flow pat
terns. The Navier-Stokes equations for fluid flow appear to admit turbulent solutions 
only in two or more dimensions. A cellular automaton consists of a regular lattice 
o f sites. Each site takes on к possible values, and is updated in discrete time steps 
according to a rule / that depends on the value of sites in some neighbourhood
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around it. There are several possible lattices and neighbourhood structures for two- 
dimensional cellular automata. In literature mainly square lattices with nearest 
neighbour interaction are studied. Triangular and hexagonal lattices are also possi
ble, but are not used in the examples given here.

Neighbourhood structures considered for two-dimensional cellular automata. In the 
cellular automaton evolution, the value of the centre cell is updated according to a 
rule that depends on the values of the neighbouring cells.

Let [i)\j] be a lattice site. Then we can consider a four neighbours square cellular 
automaton, where the neighbours are

i < + i m  м ь -  ii. [< -  m -

Thus the time evolution is given by

dij(t +  1) =  /(ttjj(t), Otj+i(£),Oi+ij(t), i(i), fli-ij(O) •

Cellular automata with this neighbourhood are termed “five-neighbour square” . 
Here we often consider the special class of totalistic rules, in which the value of a 
site depends only on the sum of the values in the neighbourhood

®ij(t +  1) =  / [ву(0  +  <4;+l№ +  +  fli- lj (01 •

We also can consider the case with eight neighbours given by

[* +  !][?]) [* +  1]Ь' +  Ч» ИЬ’ +  Ч» [i -  Ш  + i]
[< -Ч Ы . [ i - Ш - Ц ,  И У - 1], [i +  Ш - Ц -

This neighbourhood is termed “nine-neighbour square.” These neighbourhoods are 
sometimes referred to as the von Neumann and Moore neighbourhoods, respectively.

Totalistic cellular automaton rules assumes the value of the centre site depends only 
on the sum of the values of the sites in the neighbourhood. W ith outer totalistic 
rules, sites are updated according to their previous values and the sum of the values 
of the other sites in the neighbourhood. The five-neighbour square, triangular, and 
hexagonal cellular automaton rules may all be considered as special cases of general 
nine-neighbour square rules.

The map
+ 1) = f[ai-itj(t) +  a,itj-i(t) + Oi+ij(t) +  aij+i(£)] 

can be specified by a code

c - E / W * * '
n

One can also consider outer totalistic rules, in which the value of a site depends 
separately on the sum of the values of sites in a neighbourhood, and on the value of 
the site itself
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Such rules are specified by a code

C =  '£g{a ,n ]kkn+‘ .
П

We consider two-dimensional cellular automata with values 0 or 1 at each site, cor
responding to A: =  2.

An example of an outer totalistic nine-neighbour square cellular automaton is the 
Game o f Life, with a rule specified by code С  =  224. This cellular automata was 
introduced by a Cambridge mathematician named John Horton Conway. Game of 
Life is played by populating a rectangular, two-dimensional grid of cells with critters. 
Each cell can take the value 0 (dead) or 1 (alive). Then we observe the behaviour of 
the population over succeeding generations. Each cell [z][?] has eight neighbouring 
cells at

[* + 1][?1, [* + i]b ’ + 1l> Mb’ + Ч) Р -Д О  + Ч 
[ < - Д О - Ч .  Р +  Ш - Ч -

For our implementation we consider N  x N  cells, where N  =  16 and impose a pe
riodic boundary condition in the i  and j  directions, i.e. N  =  0. Both i and j  start 
counting from zero. The rules for Conway’s Game of Life are

a) A  new cell is born (set to 1) when there are 3 live neighbours
b) A  cell stays alive when surrounded by 2 or 3 live cells.
c) Each cell with four or more neighbours dies of overpopulation and each cell 
surrounded by one or no live cell dies of solitude.

// twocellular.cpp

#include <iostream> 

using namespace std;

int neighb(int a,int b,int c,int d,int e,int f,int g.int h)

{
int result = a+b+c+d+e+f+g+h; 

return result;

>

int main(void)

{
int i, j;

int N = 8; // size of the grid
int** A = new int* [N]; // allocation memory

for(i=0;i<N;i++) A[i] = new int[N];
int** В = new int* [N]; // allocation memory

for(i=0;i<N;i++) B[i] = new intCN];

// initial configuration 

for(i=0;i<N;i++)
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fo r(j=0 ; j<N; j++) A [i] [ j ]  = 0;
11 set the follow ing grid points a live  
A[5] [5] = 1; A[5] [6] = 1; A [6 ][5 ] = 1; A[6] [6] = 1;

int T = 10; // number of iterations 
forCint t=0;t<T;t++)
{
forCi=0;i<N;i++)
{  forCj=0; j<N; j++) {  B [ i ] [ j ]  = A [i ]  Cj] ; > > 
forCi=0;i<N;i++)
{
forCj=0;j<N;j++)
{
int temp =
neighbCB[CCi+l)7.N)] [ j ]  ,B[CCi+l)'/#N)] CCCj+l)%N)] ,B [i] C«j+1)7.N)] , 

BCCCi-1+ЮУ.Ю] [CCj+l)V.N)] ,B[(Ci-l+N)7.N)] C j], 
BCC(i-l+N)7.N)] CC(j-l+N)7.N)] ,BCi] CCCj-l+N)7,N)] , 
B [((i+ l)7 .N )][((j- l+ N )7 .N )]);

// rule 1
i f  CCBCi] Cj]==0) && Ctemp==3)) {  A [ i ] [ j ]  -  1; >
// rule 2
i f  CCBCi] Cj]==l) && CCtemp==2) || (temp==3)>) {  A [ i ]  [ j ]  = 1; У 
11 rule 3
i f  CCBCi] Cj]==l) && CCtemp>=4) I I Ctemp<=l))) {  ACilCj] = 0; >
>
>
cout «  endl «  " t  = " «  t  «  endl;
// output fo r  each time step 
forCi=0;i<N;i++)

forCj=0;j<N;j++)

cout «  "B [” «  i  «  " ] "  «  "C" «  j «  "] = " «  BCi] Cj] «  "
>
>
cout «  endl «  endl;
> // end fo r  loop t  
// free  the memory
forCi=0;i<N;i++) deleted  ACi] ; d e le teП A; 
fo r  Ci=0; i<N; i++) d eleted  BCi]; delete С] B; 
return 0;

>

The output is t=9 and

BCO] [0] = 0 B[0] [1] = 0 B[0] [2] = 0 BCO] C3] = О B[0] C4] = 0 
BCO] [5] = 0 BCO] [6] = О В CO] C7] = 0 BCI] CO] = 0 В Cl] Cl] = 0 
В[1] C2] = О BC1K3] = 0 BC1K4] = 0 BC1]C5] = 0 B [l ]  C6] = 0
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B [ l ]  [7 ] = 0 В [2 ]  СО] = 0 В [2 ]  С1] = 0 ВС2] С2] = 0 ВС2] СЗ] = 0
В [2 ]  [4 ] = 0 ВС2] С5] = 0 В [2 ]  С6] = 0 ВС2] С7] = 0 ВСЗ] СО] = 0
ВСЗ] [1 ] = 0 ВСЗ] С2] = 0 ВСЗ] СЗ] = 0 ВСЗ] [4 ] = 0 ВСЗ] [5 ] = 0
ВСЗ] C6] = 0 ВСЗ] С7] = 0 ВС4] СО] = 0 В С4] С1] = 0 ВС4] С2] = 0
ВС4] СЗ] = 0 ВС4] С4] = 0 ВС4] [5] = 0 ВС4] Сб] = 0 ВС4] С7] = 0
В [5 ]  СО] = 0 ВС5] С1] = 0 В [5 ]  С2] = 0 ВС5] СЗ] = 0 ВС5] [4] = 0
в [5 ]  С5] = 1 ВС5] [ 6 ] = 1 ВС5] С7] = 0 В Сб] СО] = 0 в Сб] [ 1] = 0

ВС6] С2] = 0 в Сб] [3 ] = 0 В [6 ]  С4] = 0 в с е ]  С5] = 1 в Сб] Сб] = 1
В [6 ]  С7] = 0 ВС7] СО] = 0 ВС7] С1] = 0 ВС7] С2] = 0 В [7 ]  СЗ] = 0

ВС7] [4] = 0 ВС7] [5] = 0 ВС7] Сб] = 0 ВС7] С7] = 0

10.6 Button Game

The button game described below is closely related to two-dimensional cellular au
tomata. It is also worth inclusion since the Java program JButtonGame. java shows 
how two-dimensional cellular automata can be implemented using the GUI capa
bility (JPanel class, JTextField  class, JButton class, etc.) of Java. Given a grid 
with 4 x 4  boxes, where one of the boxes is empty. The other 15 boxes contain the 
numbers 1,2, . . . ,  15 so that each number occupies one box. For example

8 4 15 5 
2 1 10
7 6  9 12 
3 11 13 14

Clicking on one of the nearest neighbours of the empty box moves the number of the 
box into the empty box and the clicked box with the number becomes the empty 
box. For example, clicking on the box with the number 10 we obtain the pattern

8  4 15 5 
2 1 10
7 6  9 12 
3 11 13 14

Note that there are no cyclic boundary conditions imposed. Nearest neighbours 
are only on the vertical and horizontal line. Neighbours on the diagonal are not 
considered as nearest neighbours. The task is now to obtain the pattern

1 2  3 4 
5 6  7 8

9 10 11 12 
13 14 15

The class JPanel is a container class in which components can be placed. JPanel 
is derived from class Container. Components are placed on containers with con
tainer method add. In Java we can divide a top-level window into panels. Pan
els act as (smaller) containers for interface elements and can themselves be ar
ranged inside the window. For example we can have one panel for the buttons
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and another for the text fields. Push buttons are created with the JButton class. 
JTex tfie ld (S tr in g  te x t , in t c o ls ) constructs a new J T ex tfie ld , where text 
is the text to be displayed and co ls  the number of columns. G ridlayout arranges 
the components into rows and columns.

// JButtonGame.java

import java.awt.*; 

import j ava.awt.event.*; 

import javax.swing.*;

class JButtonGame extends JFrame implements ActionListener 

{
private int nRows, nCols, nButtons;

private int blankCol, blankRow, clickedRow, clickedCol; 

private JButton[] [] buttons; 

private JTextField textField;

public JButtonGame()

•C
setSize (200,200);

addWindowListener(new WindowAdapter ()

{ public void windowClosing(WindowEvent event)

■{ System. exit (0) ; )•}) ;

nRows = 4; nCols = 4; nButtons = nRows*nCols;

JPanel panel = new JPanel();

panel.setLayout(new GridLayout(nRows,nCols));

buttons = new JButton [nRows][nCols];

for(int nRow=0;nRow<nRows;nRow++)

for(int nCol=0;nCol<nCols;nCol++)

-c
buttons[nRow][nCol] = new JButton(""); 

buttons[nRow][nCol].addActionListener(this); 

panel.add(buttons[nRow][nCol]);

>
>

getContentPane().add("Center".panel); 

textField = new JTextFieldC" ,80) ; 

textField.setEditable(false) ; 

getContentPane().add("South".textField); 

int labelsUsed[] = new int [nButtons] ; 

for(int i=0;i<nButtons;i++)

{ boolean labelUsed; int label; 
do
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{ label = randomCnButtons)+l; labelUsed = false; 

forCint j=0;j<i;j++) 

labelUsed = CClabelUsed) I I Clabel==labelsUsed[j]));
> while ClabelUsed);

labelsUsed[i] = label; 

int nRow = i/nCols; 

int nCol = i-nRow*nCols;

buttons [nRow] [nCol] .setText С Cnew Integer Clabel)) .toStringO) ;

>
getButtonPositionCCnew Integer CnButtons)) .toStringO) ; 

blankRow = clickedRow; blankCol = dickedCol;

JButton blank = buttons[clickedRow][clickedCol] ;

blank.setText С"");

blank.setBackground CColor.green);

> // end constructor JButtonGameO

private int randomCint k)
{ return Cint)Ck*Math.random()-0.1); > // end method randomCint) 

private void getButtonPositionCString label)

{
forCint nr=0;nr<nRows;nr++)

forCint nc=0;nc<nCols;nc++) 

i
if(buttons[nr][nc].getText0 . equalsClabel)) 

i
clickedRow = nr; clickedCol = nc;

textField.setTextС"[” + nr + *,* + nc + "]" + label);

>

>
} // end method getButtonPositionCString)

public void actionPerformedCActionEvent e)

getButtonPosition Ce.getActionCommand C)); 

textField.setTextC"[" + blankRow + + blankCol
+ "] = > [«• + clickedRow + + clickedCol + "]"); 

ifCclickedRow == blankRow)

if CMath.abs CclickedCol-blankCol)==l)
moveBlankCblankRow,blankCol, clickedRow, clickedCol) ;

>
else ifCclickedCol==blankCol) 

i
if CMath.abs CclickedRow-blankRow)==l)
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moveBlank(blankRow,blankCol, clickedRow, clickedCol);

>
> // end method actionPerformed

public void moveBlank(int oldRow.int oldCol.int newRow,int newCol)

JButton oldBlank = buttons[oldRow][oldCol];

JButton newBlank = buttons[newRow][newCol];

String label = newBlank.getText();

newBlank.setText ("");

newBlank.setBackground(Color.green);

oldBlank.setText(label);

oldBlank.setBackground(Color.lightGray);

blankRow = newRow; blankCol = newCol;

> // end method moveBlank

public static void main(String [] args)

new JButtonGame().setVisible(true);

> // end method main

>



Chapter 11 

Solving Differential Equations

11.1 Introduction

In this chapter we consider numerical methods of integration for nonlinear ordi
nary differential equations. Almost all nonlinear differential equations can not be 
solved in closed form. Numerical methods must be applied. A  number of problems 
arise when we solve differential equations numerically. For example, if the differen
tial equations are derived from a conservative Hamilton system then the numerical 
scheme should preserve the total energy which is a constant of motion. For a non
linear differential equation it also can happen that the discretization scheme leads 
to a chaotic map even though the original nonlinear differential equation did not 
show chaotic behaviour. Stable fixed points of nonlinear differential equations can 
become unstable under the discretization scheme. We also find so-called spurious 
solutions (also called ghost solutions).

We consider autonomous
du <*/ \
* = f (u )

and nonautonomous systems of ordinary differential equations

We assume that we have an initial value problem u (i =  0) =  u0 and that the 
functions f and g are analytic. We discuss the Euler method, the Lie series technique 
(which is closely related to the Taylor series technique), the Runge-Kutta-Fehlberg 
fifth order method and symplectic integration. The Verlet method important in 
molecular dynamics is also introduced. We also investigate spurious solutions and 
invisible chaos. Finally numerical integration of systems of ordinary differential 
equations which admit first integrals is discussed.

261
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Theorem . (Existence and Uniqueness) Consider the first order ordinary differential 
equation df/dt =  f(u ), where both f  and its first partial derivatives with respect to 
Uj are continuous on an open set of U  С R n. Then for any real number to and real 
vector u0 there is an open interval containing t0, on which there exists a solution 
satisfying the initial condition u(to ) =  Uo, and this solution is unique.

Definition. Let U  be an open set in R n. A  function f  is said to be Lipshitz on U 
if there exists a constant L  such that

|f(u) f ( v )  1 <  L\u — v| 

for all u, v  in U . The constant L  is called a Lipshitz constant for f .

Two neighbouring solutions to the same system of of first order differential equation 
can separate from each other at a rate no greater than eLi, where L  is the Lipshitz 
constant of the system of differential equations. The Gronwall inequality is the basis 
of continuity of the flow as a function of the initial condition.

Theorem . (Continuous dependence on initial conditions) Let f  be defined on the 
open set U  in R n. Assume that f  has the Lipshitz constant L  in the variable u. Let 
v (t )  and w (t )  be solutions of du/dt =  f(u ), and let [to> î] be a subset of a domain 
of both solutions. Then

|v(£) -  w(£)| <  |v (t0) -  w(£0)|eL(t-to)

for all t in [toiti]*

This means nearby solutions can diverge no faster than an exponential state deter
mined by the Lipshitz constant of the differential equation.

11.2 Euler Method

The Euler method for solving numerically systems of first order ordinary differential 
equations

involves computing a discrete set of u* values, for arguments tk, using the difference 
equation

ut+i =  U* +  hg(tk} ил), h := tk + 1  -  tk.

Here h is the step length. By expanding u(£ +  h) in a Taylor series with remainder 
about t, it can be seen that

U(t  +  h ) -  U(t) _  u (t ) +  hu '(t) +  I  f c V ( 0  -  u (t) |/л . 1,h -----------------h-------------- = u (£) + 2 Ю
— € — t +  h) so that the left-hand side of the Euler method is an 0 (h )  approxima

tion to the derivative it replaced, provided the second derivative of the solution u is
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bounded in the time interval of interest. As h goes to zero, the Euler approximation 
better and better represents the original differential equation; that is, it is consistent 
with the differential equation. For more details of the error estimates we refer to 
Hairer et al [42].

As an example consider the nonlinear differential equation

d u  (Л  \-  =  u ( l - u)

with the initial condition u (t =  0) =  щ  >  0. This nonlinear differential equation 
admits the fixed points u\ =  0, u\ =  1. The fixed point u\ =  0 is unstable, whereas 
the fixed point u2 =  1 is stable. The Euler method leads to the difference equation

Щ+i =  uk +  h f (u k) =  uk +  huk( 1 -  ufc), A: =  0,1,2, —

where h is the step length. In the Java program Euler, java we set h =  0.005. The 
initial value is u0 =  0.1. We find that uk tends to the stable fixed point u*2 =  1 as 
к —> oo.

// Euler.java

import java.awt.*; 

import j ava.awt.event.*; 

import java.awt.Graphics;

public class Euler extends Frame 

public Euler()

{
setSize(600,500);

addWindowListener(new WindowAdapter()
{  public void windowClosing(WindowEvent event)
{ System, exit (0) ; » )  ; >

public double f(double u) {  return u*(1.0-u); У 

public void paint(Graphics g)

{
g .drawLine(10,200,410,200); g .drawRect(10,40,400,400);

double h = 0.005; // step length

double u = 0.1; // initial value

double ul;

double t = 0.0;

for(int i=0;i<2000;i++)

■C
ul = u;
int m = (int)(40.0*t+10.5); int n = (int)(200.0-50.0*ul+0.5); 

u = ul+h*f(ul);
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int p = (int)(40.0*(t+h)+10.5); int q = (int) (200.0-50.0*u+0.5) ; 

g.drawLine(m,n,p,q); 

t += h;

>
>

public static void main(String[] args)

{
Frame f = new Euler(); f . setVisible(true) ;

>
>

11.3 Lie Series Technique

Let V  be the linear differential operator

where the V**s are functions of the complex variables Z\, z2, . • •, zn, which are all 
assumed to be holomorphic in the neighbourhood of one and the same point. If / 
is a function which is holomorphic in the neighbourhood of the same point, we can 
apply the operator V  to /

V f  ~  V ,{z )? L  +  v2(z )% L  +  ■■■ +  .
OZ! dz2 dzn

Since the derivatives of a holomorphic function are holomorphic, we again obtain 
a function which is holomorphic at the same point. This holds for all iterated 
operations. This means that all functions

V 2f ~ V ( V f ) ,  . . . .  V nf  ■.= V (V n- ' f ) ,  . . .

are holomorphic at the point under investigation and can be expanded in regular 
convergent power series.

Definition. The series

exp(tV )/ (z) =  j r  =  / (z ) +  tV f {  z ) +  ~ V * f ( z )  +  ■■■
fc= 0 K‘

is called a Lie series.

It is formally explained by the symbols for the series written down, for each term is 
composed of a factor tn, n! and a holomorphic function V nf  of the complex variables 
z\, ■ ■ ■, Zn- We consider t to be a new complex variable, which is independent of the 
variables Z\t . .. tzn. This series is not merely of formal significance, it also converges
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as a power series in t , and is therefore a holomorphic function of the n +  1 complex 
variables z i , . . . , z n,t. The convergence of the Lie series is proved by the method of 
Cauchy’s majorants.

Theorem . If С  is a finite, closed domain of the z-space, in which the differential 
operator V  and the function / are holomorphic, a positive number T  exists such 
that the Lie series converges absolutely and uniformly for \t\ <  T  throughout the 
entire domain G, where it represents a holomorphic function of the n +  1 complex 
variables z i , . . . , z n}t.

The Lie series may be differentiated according to these variables term by term and 
any number of times in the interior of G  and |£| <  T

Q / OO \ OO fk

К
a (  oo fk \  oo fk ft

Theorem . For sums and products of Lie series we have

J v (c i f i (z )  +  c2/2(z )) =  cietv7 i ( z )  +  c2etvf 2(  z )
etv ( f i ( z ) f 2(z ) )  =  (etvM z ) ) (e tvM z ) ) .

Corollary. If P (Z \ } Z 2)  denotes a polynomial in Z\, Z 2) it holds that 

etvP (h (z ) ,M z ) )  = P(e‘vMz ) ,e tvM z ) ) .

Theorem . (Com m utation  Theorem ) If F (z) denotes any function which is 
holomorphic in a neighbourhood of {zi,<>>>2n}> the corresponding power series 
expansion o f which still converges at the point { Z i , . . . ,  Z nj  (which is certainly the 
case for sufficiently small values of £), it is true that

m  =  e  £ ^ f ( z )  
fc=0

or, written in a different manner

F (e tv z) =  etvF (  z ) .

Another important result is obtained by the differentiation of the function Z j with 
respect to t. Let

Z j :=  exp (tV )zj, j  =  l ,2 , . . . ,n .

Differentiating the Lie series term by term gives
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Since Vzj =  Vj(z) we find
e‘VV j(z ) =  V j ( Z ) .

Together, this results in

=  V j(Z ), j  =  1,2.......n.

Theorem. If { z i , . . .  , 2* }  is a point of the holomorphic domain of V , the func
tions exp(tV )z j in a sufficiently small environment of t =  0 satisfy the system of 
differential equations

¥ = w
with the initial conditions Z j ( t  =  0) =  Zj. Thus exp(tV )z j are the solutions of 
the system of differential equations which are uniquely determined by these initial 
conditions.

The uniqueness of the solution can, if uniqueness is to be determined within the 
domain of all continuous and continuously differentiable functions, be proved by the 
known methods of real analysis.

The Lie series discussed above can be restricted to the real domain. For our numer
ical studies we consider the autonomous system of ordinary differential equations

du ff  \ 
d t = f (u )

where u =  (щ , . . . ,  un)T . Let Vj be analytic functions defined on R n. Consider the 
vector field

Then the solution of the initial value problem of the autonomous system for a 
sufficiently small t can be given as a Lie series

U j{t) =  exp(tV)uj|u=u(0)

where j  =  1 , 2 , . . .  ,n. Expanding the exponential function yields

“ iW  =  4>(0) +  tV (Uj)|u=u(0, +  ^ V (V (Uj) )  |u=u(0) +  ■ ■ •

where j  — 1,2,...,n . In most practical cases only a finite number of terms in 
this expansion can be taken for the numerical integration of the differential equa
tion. This approach has been used in chapter 3 for dissipative systems. Another 
approximation is to consider

exp(t(Vi +  V2) )  -  П  exp(cjtVi) exp(d jtV i) +  0(£n+1)
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if the vector field V  can be written as V  =  V\ +  V2. Up to second order we have 

exp(*(Vi +  V2) )  =  exp(tVi) exp (tV2) +  0 ( t2) 

where к =  I  with C\ =  d\ =  1. Up to third order we have

exp(£(Vi +  V2) )  =  e xp (^ V i) exp(tV2) exp (^V i) +  0 {t3) .

These are symplectic integrators (Yoshida [122]).

The study of the singularity structure in the complex time-plane of a dynamical 
system is of interest for systems with chaotic behaviour. SymbolicC++ with their 
Complex class allows the handling of complex numbers. Thus the Lie series technique 
can easily be implemented in SymbolicC++.

// complexlie.cpp

♦include <iostream>

♦include <complex> 

using namespace std;

int main(void)

complex<double> r (40.0,0.0), s(16.0,0), b(4.0,0.0); 

complex<double> count(0.0,0.0); 

complex<double> eps(0.0,0.01); 

complex<double> half(0.5,0);

complex<double> usl(0.8,0.0), us2(0.8,0.0), us3(0.8,0.0); 

complex<double> ul, u2, u3; 

complex<double> VI, V2, V3, Wl, W2, W3;

while(abs(count) < 2.0)

ul - usl; u2 = us2; u3 = us3;

VI = s*(u2-ul);
V2 = -u2-ul*u3+r*ul;

V3 = ul*u2-b*u3;
Wl = s*s*(ul-u2) + s*(-u2-ul*u3+r*ul);
W2 = u2+ul*u3-r*ul-s*(u2-ul)*u3-(ul*u2-b*u3)*ul+r*s*(u2-ul);

W3 = s*u2*(u2-ul)+(-u2-ul*u3+r*ul)*ul-b*(ul*u2-b*u3);

usl = ul+eps*Vl+half*eps*eps*Wl;

us2 = u2+eps*V2+half*eps*eps*W2;

us3 = u3+eps*V3+half*eps*eps*W3;

co\int += eps;

>
cout «  "usl = 11 «  usl «  endl; 
cout «  "us2 = " «  us2 «  endl; 

cout «  "us3 = " «  us3 «  endl; 

return 0;
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11.4 Runge-Kutta-Fehlberg Technique

Runge-Kutta methods were developed to avoid the computation o f high order deriva
tives which the Taylor method may involve. In place of these derivatives extra 
values of the given function g(u, t ) are used in a way which essentially duplicates 
the accuracy of a Taylor polynomial. We present the formulas on which a Runge- 
Kutta-Fehlberg method of order five is based (Hairer et. a i [42]). Suppose that the 
initial-value problem

—  =  g (u ,i), u(£ =  0) =  u0

for an autonomous system of ordinary differential equations of first order is to be 
integrated, where u(£o) =  u0. A  typical integration step approximates u at t =  to+h, 
where h is the step length. The formulas are

5
u(£) =  u0 +  / i^C fcg(fc), t =  t0 +  h 

k= 0

with

g (0) =  g(uo), g (fc) =  g (u 0 +  h 53
i=o

Thus u(£) approximates the exact solution. The coefficients ck (k  =  0 ,1 ,.. . ,  5) are 

гл1 16 ..I roi 6656
°  ~  135’ C [! ’ 12825’ 

1̂ 1 28561  ui 9 fcl 2 
Cl3l= 56430' C =  _ 50’ C[51 =  M '

The coefficients for bjk { j  =  0 ,1 ,..., 5, к  -  0 ,1 ,..., 4) are

b[ 0][0] =  6[0][1] =  6[0][2] =  6[0][3] =  b[ 0][4] =  0

b[i][0] =  6[1][1] =  6[1][2] =  ь т  =  6[1][4] =  0 

42][0] =  | ,  b[2][l] =  | ,  b[2][2] =  b[2][3] =  b[2][4] =  0 

bm o } =  ~  Ш - ™ .  b[3][2] =  | | ,  b[3][3] =  43][4] =  0 

44][0] =  g ,  6(4111] =  - 8 ,  b[4][2] =  f f ,  i»[4][3] =  - | ^ ,  i>[4][4] =  0 

44101 = - J ,  b[5][l] =  2 , 6[5][2] =  -| | | | , 6[5][3] =  g | ,  4  m  =  J To-

For the error estimation we refer to Hairer et al [42]. The method has been used 
extensively in chapters 3 to 8 .
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11.5 Ghost Solutions
When we discretize differential equations it can happen that the resulting difference 
equation shows chaotic behaviour even if the original differential equations tends to 
a fixed point. Consider the ordinary differential equation

J - u a - u )

with initial condition
w(0 ) =  uo >  0 .

The fixed points are given by

u* =  0 , w* =  1 .

The fixed point w* =  1 is asymptotically stable. The exact solution of the differential 
equation is given by the formula

/*\ u ° e t u{t) =
1 -  wo +  ще,1

The exact solution starting from initial value wo =  0.5 is monotonically increasing 
and it converges to 1 as t tends to oo. For t =  ln 9999 «  9.21024 we find that

pl 9999 
u (t) =  - Z — - =  =  0.9999 

Ki 1 +  e* 10000

so that u (t ) is already quite near the asymptotically stable fixed point u* =  1.

In order to integrate this equation by a finite difference scheme, we apply the central 
difference scheme

du Un+1 -  un—i 
d t~ *  2h

Thus the differential equation takes the form

Un+12h"~1  =  Un{-l ~ Un)

with initial conditions

wo =  ^0 ) tii =  uo +  huo(l — w0).

We obtain
Wn+i =  wn_ i  +  2/iw „(l -  w „ ) .

Introducing vn =  iin -i we obtain a system of first order difference equations

un+1 =  vn +  2hun( l  -  wn), w„+ i =  Un.

In the Java program we compute a numerical solution by the difference equation 
starting from initial value wo =  0.5 and using time-mesh length h =  0.05. The
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difference equation is not stable at the fixed point u* =  1 and we find oscillating 
behaviour. Such a phenomenon is called a ghost solution or a spurious solution.

For 0 <  t <  8.5 the numerical solution gives a good approximation of the true solu
tion. The solution un increases monotonically and approaches 1.000. After t =  8 .6 , 
the numerical solution is not monotone any more. At t =  9.7, the value un takes a 
value slightly greater than 1 for the first time and the solution begins to oscillate. 
The amplitude of the oscillation grows larger and larger. The growth of this am
plitude is geometric and the rate of growth is such that the amplitude is multiplied 
by about e =  2.71... while t is increased by one, until about t =  17.0, when the 
oscillation loses its symmetry with respect to u* =  1. The repetition of such cycles 
seems to be nearly periodic. The ghost solutions also appear even if h is quite small. 
One of the reasons for this phenomenon is that the central difference scheme is a 
second order difference scheme and that the instability enters at the fixed points 
и* =  I  and u* =  0 .

The global behaviour of numerical solutions computed by the difference equation 
is very sensitive to the initial condition, the time-mesh length and the precision 
of computation employed. The global behaviour of the numerical solutions also 
depends on the calculators drastically. This phenomenon is caused by roundoff 
errors. The exact solution un of the central difference scheme takes values quite 
near 1 , but the numerical solution computed by a digital computer can take only 
values with finite digits so that almost all effective digits are lost in the computation 
while un is staying in the vicinity of 1. If we choose a time step sufficiently small so 
that the exact solution of the difference scheme approximates the true solution of 
the given time interval 0 <  t <  T  within the prescribed error, the numerical solution 
obtained by a computer may not approximate the true solution on the given time 
interval because of roundoff errors if the precision employed is not sufficiently large. 
The oscillating behaviour is not caused by finite precision or rounding errors.

// Ghost.java

import java.awt.*; 

import j ava.awt.event.*; 

import java.awt.Graphics;

public class Ghost extends Frame

•c
public Ghost()

{
setSize(600,500);

addWindowListener(new WindowAdapterO 

■C public void windowClosing(WindowEvent event)
{ System.exit(0) ; » )  ; >

public void paint(Graphics g)
■c
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double h = 0.05; //

double u = 0.5; //

double v = u+h*u*(1.0-u); // 

double ul, vl; 

double tO = 0.0;

while(tO <= 30.5)

{
ul = u; vl = v; 

u = vl+2.0*h*ul*(l.0-ul); 
v = ul;

int tb = (int) Math.floor(20*t0+10); 

int m = (int) Math.floor(300-150*ul); 

int te = (int) Math.floor(20*(t0+h)+10); 

int n = (int) Math.floor(300-150*u); 

g.drawLine(tb,m,te,n); 
tO += h;

>
>

public static void main(String[] args)

{
Frame f = new Ghost(); f.setVisible(true);

>
>

The Lie series technique (C + +  program given below) leads to the exact result, i.e., 
we do not find oscillating behaviour as in the case of the central difference scheme. 
Thus with the Lie series technique we find и —» 1 as t —► oo.

// GhostLie.cpp

♦include <iostream> 

using namespace std;

int main(void)

<
double h = 0.001; // step length 

double u = 0.5; // initial value 

double t ■ 0.0; 
double ul; 

while(t <= 5.0)

{
t += h;

ul = u+h*u*(1.0-u)+h*h*u*(1.0-u)*(1.0-2.0*u) /2.0; 

cout «  "t = " «  t «  " " «  "u = " «  ul «  endl; 

u = ul;

>
return 0;

step length 

initial value 

initial value
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У

In the C + +  program ghost.cpp we use the Rational and Verylong classes of 
SymboiicC++ to do the iteration of the difference scheme. The result is stored in 
the file ghost.dat. It shows that the oscillating behaviour is not caused by finite 
precision and rounding errors.

// ghost.cpp

#include <fstream>

#include "rational.h"

#include "verylong.h" 

using namespace std;

const Rational<Verylong> h("l/10"); // time step 

const Rational<Verylong> x0("99/100");

int main(void)

Rational<Verylong> u, v, ul, twoh, t;

Rational<Verylong> zeroC'O"), one("l"), tvo("2"), five("5");

ofstream sout("ghost.dat");

u = xO; // initial value

v = u+h*u*(one-u); // initial value

t = zero;

twoh = two*h;

while(t <= five)

{
ul = u; u = v; 

v = ul+two*u*(one-u); 

t += h;

sout «  t «  " " «  v «  endl;

>
sout.close(); 

return 0;

>

11.6 Symplectic Integration

The Hamilton’s equations of motion in standard or canonical form are given by

dqj__dH_ dpl _  dH_ 
dt dP j’ d t ~  V  •

In the Hamiltonian description of mechanics, the evolution of a system is described in 
terms of 2N  first order differential equations. The 2n variables <71, . . . ,  <7N)Pi> • • • > Vn  
are often referred to as the canonical variables. They define a 2 ,/V-dimensional phase
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space. The solution to Hamilton’s equations

Qj(t) =  9j(qo,Po,0> P jW  =  Pi(qo,Po , 0

where q0 =  {qi(0)t . . .  ,qN{0)) and p0 =  (p i(0 ) , . . .  ,рдг(0 ) )  are the set of initial 
conditions, define the state of the system at time t. In its time-evolution, (q(£), p(£)) 
map out a trajectory exploring different regions in the phase-space. Due to the 
symmetry of Hamilton’s equations, it is natural to consider the qj and pj variables 
on very much of an equal footing. The N  coordinates and n momenta can thus be 
considered as a single set o f 2N  coordinates, Zj where

Using this notation, Hamilton’s equations can be written in concise form as

where V  :=  (d/dzi, . . . ,  d/dz2n)- The 2n  x 2n matrix J2n  is called the symplectic 
matrix,

where I#  is the N  x  N  unit matrix. They satisfy the incompressibility condition

This means that the divergence of the Hamilton system is zero. Thus a volume ele
ment in phase-space is preserved under the Hamilton flow. This result is known as 
Liouville’s theorem, and is one of the fundamental properties of Hamilton dynamical 
systems.

I f  a dynamical system evolves under a Hamilton flow, a number of important quan
tities are left invariant. The most fundamental of these is a geometric entity the 
differential two-form

i= i
This means that if we denote the Hamilton phase flow by Ф{, where Ф* maps the

z =  (qu . . .  ,<7лг,Рь.. ■ ,Pn ) •

f t =  J2N ■ V H (z )

initial conditions to the solution at time £, we have

(Ф{)*Ы2 — w2 •

Thus we have the definition:

D efin ition . A  transformation (q, p) —> (Q, P )  is called symplectic if it preserves 
the 2-form lj2.
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Any transformation preserving cj2 also preserves the form of Hamilton’s equations. 
The converse is not true. A  flow having this property is termed symplectic. In 
the case of one degree of freedom (N  =  1), this simply means preservation of the 
(oriented) phase-area.

This preservation of the 2-form is a fundamental property of Hamilton systems. In 
fact, a Hamilton flow can be characterized solely in terms of the 2-form. I f  a domain 
D  in R 2N is simply connected (i.e., it has no holes), and

J = f ( q , p ) ,  §  =  g ( q , p )

is a smooth differential system whose flow preserves the 2-form, then this system of 
differential equations is a Hamilton system for some Hamilton function H.

The preservation of the 2-form uj2 is one of a whole hierarchy of quantities preserved 
by the Hamiltonian flow first studied by Poincare, which he termed the integral 
invariants.

L iouville ’s Theorem . The Hamilton flow preserves the volume element in phase 
space

Л N N
[ [  dpj Л dqj =  /  П  dPj Л dQj 

j= i J j= l

in which the integral sign represents a 2 ,/V-dimensional integration over a prescribed 
volume in phase-space.

Another property of conservative Hamilton systems is that jF/ is a constant of mo
tion, i.e., dH/dt =  O.We are particularly interested in numerical discretizations of 
Hamilton systems, and intuitively it appears to be a good idea to let the discretiza
tion capture as much as possible of the original Hamilton structure. This motivates 
a study of transformations preserving the differential two-form. Since a numerical 
discretization of a continuous system cannot be expected to be exact, we cannot 
preserve all of the properties of the original flow. For instance, we cannot preserve 
the original form of the Hamilton function and the area-preserving properties of the 
original flow -  preservation of both these quantities amounts to the exact solution 
of the system. Now since preservation of the differential two-form (symplecticity) is 
such a fundamental property of Hamilton systems, it seems natural to attempt to 
preserve this property in the discretized system.

When a continuous flow is discretized, the discrete flow basically becomes a succes
sion of transformations from one time-step to another. Therefore preservation o f the 
2-form can be retained by ensuring that the transformations in the discrete system 
are symplectic. Another reason why symplectic transformations are useful, is that 
it is often possible to simplify the integration of the equations of motion of a system 
у transforming to a different set of coordinates. In the Hamiltonian description of
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mechanics, we have two sets of independent variables p and q, which are very much 
on an equal footing. Therefore we can transform from one set of phase-space vari
ables (q, p ) to a new set (Q ,P ).  This transformation can be symbolically written 
as

Pi =  Ж01|...,0ЛГ,Р1»**чРлО, Qi -

There are various ways of constructing symplectic transformations. The easiest of 
these is the method of generating functions. Consider the one degree of freedom 
system

dq _  dH (p , q) dp _  dH{p, q) 
dt dp ’ dt dq

This system can be discretized with Euler’s method, yielding

g  =  , + r ^ ,  р  =  р - т Щ еА .
dp Oq

The discrete system defines a map from (q, p) (the approximate solution at time t) 
to (Q, P )  (the approximate solution at t +  т). The Jacobian for this transformation 
can be verified to be

d(q,p)
Thus this transformation does not preserve area. Euler’s method is therefore not 
symplectic. Let us modify the method slightly

In this case the Jacobian satisfies

d (Q ,P ) _ h
d(q,p)

The modified method is therefore symplectic.

For a higher dimensional system to be symplectic, the preservation of volume is a 
necessary but not sufficient property.

Exam ple. Assume a separable planar (n =  1) Hamilton system

H {q,p ) =  \p2 +  V (q ).

Choosing a generating function of the second kind

F 2(q, P, t ) =  q P  +  tH (q, P )  =  qP  +  | tP 2 +  tV {q ) 

the symplectic map Sl : (q,p) —* (Q> P )  is obtained as

ЯГ2

p = 2 L .  =  P  +  tV '(q ), Q =  - g p = Q  +  tP -



Thus the symplectic scheme is

Pm+1 Pm 1~V (Qtti) j Qm+1 =  Чт "b 7’Pm+l •

Consequently

Pm+1 =  Pm ~  TV '(qm), qm+l = q m +  r (p m -  TV '(qm) ) . 4

Higher order symplectic methods (Yoshida [122]) are constructed as follows. We 
assume that the vector field V  can be written as V  =  V\ +  Vi. If

[V i.vy  =  0

then for t sufficiently small we have

exp(£V) =  exp(£Vi +  tV2) =  exp(tVi) exp(tV^) 

where [, ] denotes the commutator. In general, we have

[V i ,V y ^ 0 .

The problem is as follows. Let V\ and V2 be two non-commutative vector fields and 
£ be a sufficiently small real number. For a given positive integer n which is called 
the order o f integrator, find a set of real numbers cb c2, . . . ,  c* and di, d2}. . . ,  dk such 
that the difference of the exponential function exp(£(Vj +  V2) )  and the product of 
the exponential functions

exp(citVi) exp(ditV2) exp(c2iV i) exp(d2tV2) • • • exp(c**Vi) exp (dktV2) 

is of the order tn+1, i.e., the following equality holds

к
exp(£(Vi +  V2) )  =  Y l exp(cjlVi) exp(djtV2) +  0 { tn+1) .  

j = 1

If n — 1 , a trivial solution is C\ =  d\ =  1 (fc =  1), and we have 

exp(£(Vi +  V2) )  =  exp(£Vi) exp(tV2)  +  0 ( t 2) .

When n =  2, we find that cx =  C2 =  J, dx =  1, d2 =  0 (A: =  2). Thus

exp(t(Vi +  V2) )  =  exp(^tVi) ехр(£У2) exp (ifV i) +  0 (£3) .

For the construction of higher order symplectic integrators we refer to Yoshida [122]. 
The construction is based on the Baker-Campbell-Hausdorff formula.

The formula is as follows. For any non-commutative operators X  and Y , the product 
of the two exponential functions, exp(X ) exp(Y), can be expressed in the form of a 
single exponential function as

exp (X )exp (Y ) =  exp(Z)
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where

Z = X + Y +  \[X,Y]  +  ± ( [X ,X ,Y }  +  [Y,Y,X]) +  ■■■ .

Here [, ] denotes the commutator, and higher order commutators like

{X ,X ,Y ] := [X \ [X yY ]].

The feature of the Baker-Campbell-Hausdorff formula is that only commutators of 
X  and Y  appear except for the linear terms in the series. Symplectic integrators 
have been applied in chapter 8 .

Another technique which can be used for integration is the Trotter formula. Let A 
be the generator of a contractive Co - semigroup exp(M)*>o on a Banach space E } 
and let В € C (E ) be a linear dissipative operator, where C (E ) denotes the vector 
space of all linear bounded maps E  —> E. Then A  +  В  generates a Co - semigroup 
which is given by the Trotter’s formula

exp( t (A  +  B )) =  Jim (exp (£ > l )  exp

where the limit is taken in the strong operator topology. Thus the formula in 
particular applies for A  and В  n x n  matrices.

11.7 Verlet Method
The Verlet algorithm (Verlet [116]) is a method for integrating second order ordinary 
differential equations

The Verlet algorithm is used in molecular dynamics simulations. It has a fixed time 
discretization interval h and it needs only one evaluation of the force F  per step. 
The algorithm is derived by adding the Taylor expansions for the coordinates x  at 
t =  ± h  about 0

x(A) = x(0) + f t +  yF (x (0 ), 0) + 

x (—ft) =  x(0) -  f t ^  + y F (x (0 ),0) -  +  0(ft4)

leading to
x (h ) =  2x(0) -  x ( - h )  +  /i2F (x (0 ), 0) +  0(/i4) .

Knowing the values of x  at time 0 and — ht this algorithm predicts the value of x (h ). 
Thus we need the last two values of x  to produce the next one. If we only have the 
initial position x (0 ) and initial velocity v (0 ) at our disposal, we approximate x (h )

b y  2
x № ) * x ( 0 ) +  M 0 ) +  V F W 0) ’ ° )
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i.e., we set

v (0 )= * ( ° )  z j E t m .

Example. Consider the one-dimensional harmonic oscillator

d2x  „ 2  л 
i ^ + n x  =  0

where Q is a constant frequency. We find the approximation 

x (t  +  h) =  2x (t ) — x (t  — h) — h2Q2x {t ) .

The analytic solution to this difference equation can be written in the form

x (t ) =  exp ( iu t )

with cj satisfying the condition

2  — 2  cos(ojh) — h2d 2 .

If h2Cl2 =  (Ш ) 2 >  4, the frequency и  becomes imaginary, and the analytical solution 
becomes unstable. Thus it is useful to introduce a dimensionless time r  via

®(r W ) =  r W  =  ^  •

Then the linear differential equation for the harmonic oscillator takes the form

d?x _  1

^ + I  =  0 -

In the C + +  program we give ал implementation of the Verlet method for the one
dimensional pendulum (PO/dt2 =  — (g/L) sin(0 ).

// Verlet.cpp

tinclude <iostream>

#include <cmath> 

using namespace std;

int main(void)

{
const double pi = 3.141592654;

double theta =1 . 4 ;  // initial angle (in radians) 

double omega =0 .0; // initial velocity 

double g_over_L = 1.0; // the constant g/L 

double time =0.0;  // initial time 

double time_old; // time of previous reversal

double tau = 0.005; // time step size

// take one backward step to start Verlet
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double accel = -g_over_L*sin(theta); // gravitational acceleration 

double theta_old = theta-omega*tau+0.5*tau*tau*accel;

int nStep = 2000; // number of steps

forCint i=l;i<=nStep;i++)

time += tau;

accel = - g_over_L*sin(theta);

double theta_new = 2.0*theta - theta_old + tau*tau*accel; 

cout «  "time = " «  time «  " " «  "theta = " «  theta_new «  " " 

«  "accel = " «  accel; 
cout «  endl;

theta_old = theta; theta = theta_nev;

>
return 0;

11.8 Stormer Method
We consider the system of second-order ordinary differential equations

where x  is the collective position vector, m  is a diagonal matrix of masses, and F 
is the collective force vector. The discretization known as the second-order Stormer 
method is given by

- L m (X n+1 -  2Xn +  X " " 1) =  F (X " )

where A t is the timestep, and X n denotes the difference approximation to x  at time 
nA t. This method can be used as an integrator for molecular dynamics together 
with the formula

V n =  ^ - ( X n+1 -  X я- 1)
2Д Г  '

for calculating the velocity v  =  dx./dt. This combination is equivalent to the leapfrog 
method, defined as

v n+i/2 =  y n —1/2 +  A * m - i F ( X n)

X n+1 =  X n +  A£Vn+1/2.

The implicit discretization scheme with a different right-hand side

д ^ т ( Х п+1 -  2X" +  X " - 1) =  ^ F (X " - > )  +  | F (X " )  +  ^ F ( X " +1)

is often called Cowell’s method. Another method which can be used for integrating 
the differential equation is

■ ^ m (X n+1 -  2Xn +  X " - 1) =  F +  X n+1) )  .
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11.9 Invisible Chaos
Discretization of nonlinear differential equations can lead to maps which show chaotic 
behaviour. We consider the anharmonic system

Using a finite difference scheme this differential equation can be written as

^n+l 2 Un +  Un—1 з

(A t ) 2 - _ U n

to obtain approximate solutions of the differential equation. For a fixed time step 
At, A t >  0, this scheme is equivalent to the scheme

UnJrl- 2 U n +  Un- X =  - U zn

by the replacement щ, =  Un/At. We define Vn :=  Un-\. Consequently we obtain 
the map

Un+i =  —Vn +  2Un — U *t Vn+i =  £/„.

This map is invertible and area-preserving. Numerical solutions of the difference 
scheme for small A t correspond to orbits near the origin (0,0) o f the map via the 
transformation un =  C/n/At. Numerical experiments show that there are invariant 
circles of the map around the origin (0 , 0 ).

// Invisible.java

import java.awt.*; 

import j ava.awt.event.*; 

import java.awt.Graphics;

public class Invisible extends Frame

public Invisible()

-С
setSize(600,500);

addWindowListener (new WindowAdapter ()

{ public void windowClo8ing(WindowEvent event)

{ System, exit(0) ; » )  ; >

public void paint(Graphics g)

{
double u = 0.9, v = 0.75; // initial values 

int T = 3000; // number of iterations
double ul, vl; 

for(int t=0;t<T;t++) { 
ul B u; vl = v;

u = -vl+2.0*ul-ul*ul*ul; v = ul;
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int mx = (int) Math.floor(100*u+300+0.5); 

int ny = (int) Math.floor(100*v+220+0.5); 

g .drawLine(mx,ny,mx,ny);

>
>

public static void main(String[] args) 

i
Frame f = new Invisible(); f .setVisible(true);

>

11.10 First Integrals and Numerical Integration
Consider the autonomous system of first order ordinary differential equations

A  =  f(u )

where the vector field f  : R n —> R n is analytic. Some of these systems admit a first 
integral, i.e., there exists a scalar function / such that

d l(  u) =  Q 
dt

Thus
* d l  dUj _  A  <9/ . .  , .  

^  дщ dt

Preserving first integrals in numerical integration is important because of their phys
ical relevance, e.g. in mechanics and astronomy, but also because they can ensure 
long-term stabilising effects. Thus we want to find a discrete approximation to the 
system of differential equations

ll' -  II , , X
------- =  g (u,u,r )

r

(u =  u (nr), u' =  u ( (n +  l ) r ) )  such that the first integral is preserved exactly, i.e. 
I (u ')  =  I ( u). For example the imphcit midpoint rule

preserves quadratic integrals.

McLaren and Quispel [77] provide a more general case. The system of ordinary 
differential equations can be written in the form
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where S is a skew-symmetric n x n  matrix over R , i.e. S^ =  —S  and V  denotes the 
gradient. An integral-preserving discrete version o f this is

- ~ - U- =  S (  u, u', r )V / (u , u')

where u, u' denote un respectively un+i, and where S  is a skew symmetric matrix 
satisfying (for consistency)

S (u, u', r )  =  S (u) +  O ( r ) .

The general discrete gradient V/ is defined as

(u' -  u) • V7(u ', u) :=  I {u ')  -  / (u)

and may be expanded in the form

V/(u,u') =  V/ +  B(u)(u' -  u) +  (u' -  u)r M(u)(u' -  u) +  0(||u' -  u||3) .

This leads to the conditions

d2I  1 d *I

Bij +  Bji =  d ^ j  ’ Miik +  Mjki +  Mkii =  2  duidujduk ‘

The order of accuracy of an integral-preserving integrator based on the discretization 
given above is determined by S and by the choice of the discrete gradient V/(u, u ),
i.e. by S and the matrix Б, the tensor M , and the higher order parts of V/.



Chapter 12 

Neural Networks

12.1 Introduction

Neural networks are models of the brain’s cognitive process. The brain has a mul
tiprocessor architecture that is highly interconnected. Neural networks have an 
incredible potential to advance the types of problems that are being solved by com
puters. The neuron is the basic processor in neural networks. Each neuron has one 
output, which is generally related to the state of the neuron -its activation - and 
which may fan out to several other neurons. Each neuron receives several inputs over 
these connections, called synapses. The inputs are the activations of the incoming 
neurons multiplied by the weights of the synapses. The activation of the neuron is 
computed by applying a threshold function to this product. This threshold function 
is generally some form of nonlinear function.

The basic artificial neuron (Fausett [33], Haykin [50], Cichocki and Unbehauen [18], 
Hassoun [49], Rojas [91]) can be modelled as a multi-input nonlinear device with 
weighted interconnections Wji, also called synaptic weights or strengths. The cell 
body (soma) is represented by a nonlinear limiting or threshold function /. The 
simplest model of an artificial neuron sums the n weighted inputs and passes the 
result through a nonlinearity according to the equation

!/i =  /
\t'=l

where / is a threshold Junction, also called an activation function, 9j (0j € R ) is 
the external threshold, also called an offset or bias, axe the synaptic weights 
or strengths, X{ are the inputs (г =  1 , 2 , . . . ,n ),  n is the number of inputs and yj 
represents the output. The activation function is also called the nonlinear transfer 
characteristic or the squashing function. The activation function / is a monotoni- 
cally increasing function.

283
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A threshold value 9j may be introduced by employing an additional input xo equal 
to +1 and the corresponding weight гuj0 equal to minus the threshold value. Thus 
we can write

уj  =  f
\г=0

where

wjo =  x0 =  1 .

The basic artificial neuron is characterized by its nonlinearity and the threshold 
Oj. The McCulloch-Pitts model of the neuron used only the binary (hard-limiting) 
function (step function or Heaviside function), i.e.,

r jf  ̂ [  1 if x >  0 

Я (1 ) :=  | o i fz  <  0 .

In this model a weighted sum of all inputs is compared with a threshold 9j. I f  this 
sum exceeds the threshold, the neuron output is set to 1, otherwise to 0. For bipolar 
representation we can use the sign function

(  1 if x >  0 

sign (я) :=  < 0  if x  =  0 

(  —l i f x  < 0 .

The threshold (step) function may be replaced by a more general nonlinear function 
and consequently the output of the neuron yj can either assume a value of a discrete 
set (e.g. { —1 , 1 } )  or vary continuously (e.g. between — 1 and 1 or generally between 
J/min and уmax >  s/mm). The activation level or the state of the neuron is measured 
by the output signal yj, e.g. yj =  1 if the neuron is firing (active) and yj =  0  if the 
neuron is quiescent in the unipolar case and yj — — 1 for the bipolar case.

In the basic neural model the output signal is usually determined by a monotonically 
increasing sigmoid function of a weighted sum of the input signals. Such a sigmoid 
function can be described for example as

1 — e~2Xu*
Vj =  ta n h (A u j) =  — _

for a symmetrical (bipolar) representation. For an unsymmetrical unipolar repre
sentation we have

1

Vj ~  1 +  e~XuJ

where A is a positive constant or variable which controls the steepness (slope) of the 
sigmoidal function. The quantity Uj is given by

n
Uj :=  Y ,W jiX i. 

i=0
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The function

satisfies the nonlinear differential equation

This is important for the backpropagation algorithm.

A model of the above sigmoid function can be built using traditional electronic cir
cuit components (Cichocki and Unbehauen [18]). A  voltage amplifier simulates the 
cell body (soma), the wires replace the input structure (dendrites) and output struc
ture (axon) and the variable resistors model the synaptic weights (synapses). The 
amplifier output voltage yj replaces the variable pulse rate of a real neuron. The 
sigmoid activation function is naturally provided by the saturating characteristic of 
the amplifier. The input voltage signals Xj supply current into the wire-dendrites 
in proportion to the sum of the products of the input voltages and the appropri
ate conductances. By applying Kirchhoff’s Current Law at the input node of the 
amplifier we obtain the expression

where х* (t =  0 , 1 , 2 , . . . ,  n) are the input voltages, Uj denotes the input voltage of 
the j -th amplifier, yj means the output voltage of the j -th neuron, / is the sigmoi 
activation function of the amplifier, Gji =  Rji is the conductance of the resistor 
connecting the amplifier i with the j-th amplifier and Iji is the current owing 
through the resistor R j{ (from neuron г to neuron j ) .  The above equation can be

n

written in the form

Wji -  —
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// threshold.cpp

#include <iostream>

«include <cmath> // for exp, tanh 

using namespace std;

int H(double* w,double* x,int n)

double sum = 0.0;

for (int i=0; i<=n; i++) {  sum += w[i]*x[i]; > 
if(sum >= 0.0) return 1; 

else return 0;

>

int sign(double* w,double* x,int n)

•C
double sum = 0.0;

for(int i=0;i<=n;i++) { sum += w[i]*x[i]; > 

if(sum >= 0.0) return 1; 

else return 0;

>

double unipolar(double* w,double* x,int n)

double lambda = 1.0; 

double sum = 0.0;

for(int i=0;i<=n;i++) { sum += w[i]*x[i]; } 

return 1.0/(1.0+exp(-lambda*sum));

>

double bipolar(double* w,double* x,int n)

double lambda = 1.0; 

double sum = 0.0;

for(int i=0;i<=n;i++) { sum += w[i]*x[i]; } 

return tanh(lambda*sum);

>

int main(void)

■C
int n = 5; // length of input vector includes bias

double theta =0.5; // threshold 

// memory allocation for weight vector w 
double* w = new double[n];

w[0] = -theta; w[l] = 0.7; w[2] = -1.1; w[3] = 4.5; w[4] = 1.5;

// memory allocation for input vector x 
double* x = new double[n];
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x[0] = 1.0; // bias

x[l] = 0.7; x[2] = 1.2; x[3] = 1.5; x[4] = -4.5;

int rl = H(w,x,n); cout «  "rl = " «  rl «  endl; 

int r2 = sign(w,x,n); cout «  "r2 = " «  r2 «  endl; 

double r3 = unipolar(w,x,n); cout «  "r3 = " «  r3 «  endl; 

double r4 = bipolar(w,x,n); cout «  "r4 = " «  r4 «  endl; 
delete [] w; delete [] x; 

return 0;

>

12.2 Hopfield Model

12.2.1 Introduction

The problem is formulated as follows. Store a set of p patterns

xfc, к =  0,1 ,2 ,...,? - 1

in such a way that when presented with a new pattern s, the network responds by 
producing whichever one of the stored patterns most closely resembles s. A  binary 
Hopfield net can be used to determine whether an input vector (pattern) is a known 
vector (pattern) (i.e., one that was stored in the net) or an unknown vector (pat
tern). The net recognizes a known vector by producing a pattern of activation on 
the units of the net that is the same as a vector stored in the net. It also can hap
pen that an input vector converges to an activation vector that is none of the stored 
patterns. Such a pattern is called a spurious stable state. The Hopfield network is 
a recurrent network that embodies a profound physical principle, namely, that of 
storing information in a dynamically stable configuration. Hopfield’s idea was of 
locating each pattern to be stored at the bottom of a “valley5’ of an energy land
scape, and then permitting a dynamical procedure to minimize the energy of the 
network in such a way that the valley becomes a basin of attraction. The standard 
discrete-time version of the Hopfield network uses the McCulloch-Pitts model for 
the neurons. Retrieval of information stored in the network is accomplished via a 
dynamical procedure of updating the state of a neuron selected from among those 
that want to change, with that particular neuron being picked randomly and one 
at the time. This asynchronous dynamical procedure is repeated until there are no 
further state changes to report. In a more elaborate version of the Hopfield net
work, the firing mechanism of the neurons (i.e. switching them on or off) follows 
a probabilistic law. In such a situation, we refer to the neurons as stochastic neurons.

For the recurrent network with symmetric coupling we may define an energy func
tion (also called a Liapunov function). When the network is started in any initial 
state, it will move in a downhill direction of the energy function E  until it reaches 
a local minimum; at that point, it stops changing with time. A  recurrent net
work with symmetric coupling cannot oscillate despite the abundant presence of
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feedback. We refer to the space of all possible states o f the network as the phase 
space, a terminology borrowed from physics; it is also referred to as the state space. 
The local minima of the energy function E  represent the stable points of the phase 
space. These points are also referred to as attractors in the sense that each attrac
tor exercises a substantial domain of influence (i.e. basin of attraction) around it. 
Accordingly, symmetric recurrent networks are sometimes referred to as attractor 
neural networks. The Hopfield network may be viewed as a nonlinear associative 
memory or content-addressable memory, the primary function of which is to retrieve 
a pattern (item) stored in memory in response to the presentation of an incomplete 
or noisy version of that pattern. The essence of a content-addressable memory is to 
map a fundamental memory x* onto a stable fixed point of a dynamical system. The 
stable fixed points of the phase space of the network are the fundamental memories 
or prototypes of the network. We may then represent their particular pattern as a 
starting point in the phase space. In principle, provided that the starting point is 
close to the stable point representing the memory being retrieved, the system should 
evolve with time and finally converge onto the memory state itself. We may there
fore describe a Hopfield network as a dynamic system whose phase space contains 
a set of stable fixed points representing the fundamental memories of the system. 
Consequently the Hopfield network has an emergent property which helps it retrieve 
information and cope with errors.

The problem could also be solved by storing the patterns and then calculating the 
Hamming distance between the test pattern s and each of the stored patterns x*. 
The Hamming distance between two sequences of binary numbers of the same length 
is the number of bits that are different in the two numbers.

In the following we have vectors with elements 1 or —1. Then we use the following 
definition for the Hamming distance.

Defin ition. Let x  and у  be two vectors of the same length N  with х», У» € { 1 , - 1 } -  
Then the Hamming distance is defined as

<2(x,y) := 5 Ё  
Z i=0

Exaanple. Consider x  =  (1, -1 ,1 ,1)т , у  =  (-1 ,1 ,1 , —1)T. Then d (x } y )  =  3. ♦

Our configuration space consists of N  cells. Every cell can take two values (in our 
case +1 and —1). Then the number of configurations (or the number of all possible 
states of the network) is

2n .

Within this space the stored pattern x k (к — 0 ,1 ,2 ,... ,p — 1) are attractors. The 
dynamics of the network maps starting points (initial configurations) into one of the 
attractors. The whole configuration space is thus divided up into basins of attraction 
for the different attractors.
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// Hamming.cpp

#include <iostream> 

using namespace std;

int distance(int* x,int* y,int n)

{
int d = 0;

for(int i=0;i<n;i++) { if(x[i] != y[i]) d++; > 
return d;

>

int main(void) 

int n = 4;

int* x = new int[n]; // memory allocation 

x[0] = 1; x[l] = -1; x[2] = 1; x[3] « 1; 

int* у = new int[n]; // memory allocation 

У COD = -1; у Cl] = 1; y[2] = 1; у [3] = -1; 
int result = distance(x,y,n); 

cout << "result = " «  result << endl; 

delete [] x; delete □ y; 
return 0;

>

12.2.2 Synchronous Operations

The binary Hopfield model consists of N  neurons

So, 5 1> ••• }SN-1

where
Si =  ±1, i  =  0 ,1 ,..., N  -  1.

I f  Si =  1 we say that the neuron at the site i  is active (the neuron fires). If Sj =  — 1 
we say that the neuron at site i  is inactive (i.e. the neuron does not fire). The 
neuron at site i is connected with the neuron at site j  with i  =  0 ,1 , . . . } N  — 1 and 
j  =  0 ,1 ,..., N  -  1. In the binary Hopfield model we first impose p patterns, p >  1, 
of neuron states. We denote these patterns by

Xo := (lo.o» *0.1, • • • > £o,/v-i)7\ • • • > xp-i := (̂ p-i.Oi £p-i,i> • • • > x p - i , N - i )  

where
Xk,i =  ±  1, к =  0 ,1 ,... ,p  -  I, i  =  0 ,1 , . . . ,N  — 1.

Next we assign connection weights Wij {W  is an N  x  N  symmetric matrix)

, , ,  i * 3
< k=o

I 0 i  =  j ,  0 <  i , j  <  N  -  1
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where W{j is the connection weight between node i  and node j  and i  =  0 ,1 ,..., N - l ,  
j  =  0 ,1 ,..., N  — 1. Thus the diagonal elements of the matrix W  are equal to zero.

The neurons are updated according to the rule

Si(t  +  1) =  sign(/ij(t)), t =  0 , 1 , 2 , . . . ,

where the sign function is defined by

. /ч f 1 if г  >  0 

SlgnW :=  l i f z  <  0

with the convention that s<(t + 1) =  Si(t )  if hi{t) =  0. The local fields h{ are defined 
as

l 4 ( t ) ~ f , W ijSj{t), t =  0 , 1 , 2 , . . .  
j =0

Thus the dynamics of the neurons s» is governed by 

si (£ +  l )  =  sign (
\ J = 0

where i  =  0 , 1, . . . ,  TV — 1 with the convention described above that 

Si{t +  1 ) =  Si(t )  if WijS j(t )  =  0.
3=0

Consequently the dynamics of the neuron is a system of nonlinear difference equa
tions. Thus all components of the state vector s are updated simultaneously. This 
is the synchronous operation. In compact form the dynamics can be written as

s(t +  1) =  sign(Ws(£))

where the sign function is applied to each component of its argument. This opera
tion mode is thus similar to a Jacobi iteration for the solution of linear equations.

Defin ition . Consider a map f  : S  —* S, where 5  is a non-empty set. A  fixed point 
x9 e  S is defined as a solution of x* =  f (x * ) .

Thus for the given case the fixed points of the system of nonlinear difference equa
tions are the solutions of the nonlinear equation

s* =  sign(Ws*).

They are the time-independent solutions, i.e.,

s * ( * + l )  =  s * (t ).

i  =  0 , 1 , 2 , . . .
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Thus the Hopfield algorithm is as follows.

1) Initialize the input patterns Xp,...  ,Xp_i. This is the teaching stage of the algo
rithm.

2 ) Calculate the connection weights from the input pattern, i.e. the matrix W.

3) Give the start configuration s (t =  0), where

s (t  =  0 ) =  (s0(t =  0 ), s i(t =  0 ) , . . . ,  sN- i ( t  =  0 ) f .

4) Iterate

Si(t +  1) =  sign ( £  W ijSjit)
\ j=о

until convergence. The net is allowed to iterate in discrete time steps, until it reaches 
a stable configuration. This means the output pattern remains unchanged. The net 
thus converges to a solution.

Hopfield found experimentally that the number of binary patterns p that can be 
stored and recalled in a net with reasonable accuracy, is given approximately by

p«0.15JV

where N  is the number of neurons in the net. Another estimate is

N
v ~ ----------.
y 2 log 2N

For N  =  40 Hopfield’s estimation is p =  6 .

12.2.3 Energy Function

Hopfield proved that the discrete Hopfield net will converge to a stable limit point 
(pattern of activation of the units) by considering an energy function for the system. 
The energy function is also called a Liapunov function. An energy function is a 
function that is bounded below and is a nonincreasing function of the state of the 
system. For the Hopfield network the energy function E  is

E (s (t ) ) :=  - 5  E  E  =  - b r (t)fVs(t).
1 1=0 j = 0

Note that Wy =  Wji (i.e. W  is symmetric) and Wu =  0 for i  — 0 ,1 ,..., N  — 1. 
The factor 1/2 is used because the identical terms W ijS i(t)s j(t) and W jiS j(t)s i(t) 
are presented in the double sum. An unknown input pattern represents a particular 
point in the energy landscape. As the network iterates its way to a solution, the point 
moves through the landscape towards one of the hollows. These basins of attraction

* =  0 , 1 , 2 ,.
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represent the stable states of the network. The solution from the net occurs when 
the point moves into the lowest region of the basin; from there, everywhere else in 
the close vicinity is uphill, and so it will stay where it is. This is directly analogous 
to the three-dimensional case where a bail placed on a landscape of valleys and 
hillsides will move down towards the nearest hollow, setting into a stable state that 
does not alter with time when it reaches the bottom. W ith the assumption given 
above we can show that

E{s{t +  1 ) )  -  E {s (t ) )  <  0.

This can be seen as follows. First we note that the energy does not depend upon cell 
numbering, because W{j =  Wp. Now if cell к is chosen to reevaluate its activation, 
it will keep the same value (and therefore leave the energy unchanged) unless

N - l

1. Sk{t) =  — 1 and Y ,  WkjSj(t)  >  0 . ThenSfc(£ -h 1) becomes +  1

j=o

N -1

2. Sk(t) =  +1 and WkjSj(t) <  0. Thenst(t +  1) becomes — 1
j=o

In either case the energy changes by

Д E  :=  E (s (t +  1) )  -  E (s (t ) ) =  - ( Sl(t +  1 ) _  Sk( t ) )  £  Wk,jS j( t ) .
3*k

Consequently

A E  =  -2sfc(i +  1) ^  WkijS j(t ) <  0.
3=0

Notice that we used the fact that the weights are symmetrical [W ij  =  W jti )  and that 
Wk,k ~  0 for к =  0 ,1 ,..., N  — 1. Moreover we used the fact that S j(t +  1) =  S j(t ) 
for j  ф к. Thus energy in a Hopfield model can never increase, and whenever a cell 
changes activation to —1 the energy strictly decreases. We also have the identity

S (s (* +  1) ) - S ( s ( t ) )  =

- ( s T (t +  1) -  sr M )iy s (t) -  i ( s T(t +  1) -  sr (i ) )W (s (t  +  1) -  s (t)) 

where we used

sT (£ +  1)W's(t) =  sT (t )W s (t  +  1) .

Each component in W s(t) has the same sign as the corresponding component in 
л* u- ^ US) + 1) Ф s(0 > ^be first term gives a strictly negative contribution 

and this effect is possibly enhanced by the second term.



12.2. HOPFIELD MODEL 293

12.2.4 Basins and Radii of Attraction

In order to measure the dissimilarity of two vectors x  and у  with

xj i  Vj € { 1, -1}

we introduced the Hamming distance. We define by N r (y ) (Kamp [58]) the neigh
bourhood of у  with radius r as the set of vectors x  located at most at distance r 
from y. Thus

Wr(y) : = { х б { - 1 , 1Г  : d (x , y )< r } .

The basin of direct attraction B i(s*) of a fixed point s* is the largest neighbourhood 
of s* such that any vector in the neighbourhood is attracted by the fixed point in a 
single iteration

# i(s * ) :=  maxr{  N r (s*) : s(0) e Nr (s*) —♦ s ( l )  =  s* }.

One should distinguish between the basin of direct attraction as defined above and 
the domain of direct attraction D i(s*) which is the set of all points in {  — 1 ,1  

which are attracted by s* in a single iteration

D i(s * ) :=  {  s (0 ) € {  —1 ,1  } N : s ( l )  =  s* }  .

The domain of attraction can include points which lie outside the basin Bi(s*) and 
consequently B i(s*) С £>i(s*). The basin of direct attraction is independent of the 
particular operation mode, be it synchronous, asynchronous or block-sequential. We 
are also interested in examining the dynamics by which a vector is attracted after 
several iterations. One defines the basin of attraction of order к, denoted Bk(s*), as 
the largest neighbourhood of s* such that any vector in this neighbourhood converges 
to s* in к iterations at most

Bk(s ')  :=  maxr {  Nr (s*) : s(0) G Nr (s ') -> s(k) =  s* }  .

The basin of long-term attraction B(s*) is defined as the largest neighbourhood of 
a fixed point in which attraction take place in a finite number of iterations

B (s*) :=  max,- {  Nr (s*) : s(0) € N r(s*) —» 3 k such that s(t) =  s* if t >  к }  .

The radius of attraction of order k} Rk(s*) and the radius of long-term attraction, 
R (s*) of a fixed point s* are the radii of the neighbourhood Bk(s*) and B (s*), 
respectively.

12.2.5 Spurious Attractors
When a Hopfield network is used to store p patterns by means of the Hebb pre
scription for the synaptic weights, the network is usually found to have spurious 
attractors, also referred to as spurious states. Spurious states represent stable states 
of the network that are different from the fundamental memories of the network.
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How do spurious states arise?

1) Firstly we note that the energy function

E( s) =  - ^ s Tiys

is symmetric in the sense that its value remains unchanged if the states of the neu
rons are reversed (i.e., the state s* is replaced by — Si for all i) since W  is a symmetric 
matrix and Wa =  0. Accordingly, if the fundamental memory х д corresponds to a 
particular local minimum of the energy landscape, that same local minimum also 
corresponds to —xM. This sign reversal need not pose a problem in the retrieval 
of stored information if it is agreed to reverse all the remaining bits of a retrieval 
pattern should it be found that a particular bit designated as the ’’ sign” bit is —1 
instead of +1.

2) Secondly, there is an attractor for every mixture of the stored patterns. A mix
ture state corresponds to a linear combination of an odd number of patterns.

3) Thirdly, for a large number p of fundamental memories, the energy landscape 
has local minima that are not correlated with any of these memories embedded in 
the network. Such spurious states are sometimes referred to as spin-glass states, by 
analogy with spin-glass models in statistical mechanics. If we were to set Wa Ф 0 
for all i, additional stable spurious states might be produced in the neighbourhood 
of a desired attractor.

12.2.6 Hebb’s Law

Based on Hebb’s law, the most widely accepted hypothesis explaining the learning 
mechanism achieved by associative memories is that some functional modification 
takes place in the synaptic links between the neurons. In particular, it is assumed 
that correlated neuron activities increase the strength of the synaptic link. Usually, 
this hypothesis of synaptic plasticity is quantitatively expressed by stating that 
the synaptic weight Wy should increase whenever neurons i and j  have simulta
neously the same activity level and that it should decrease in the opposite case. 
Consequently, in order to store a prototype x  according to Hebb’s hypothesis, the 
synaptic weight should be modified by an amount

A W ij  =  Д  W ji  =  7jXiXj

where rj is a positive learning factor. For the complete synaptic matrix the modifi
cation will thus be

A W  =  r)xxT .

Notice that x  is a column vector with N  components and therefore xr  is a row 
vector with N  components. Thus W  is an N  x  N  matrix. If p prototype vectors
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xq, Xi , . . .  ,Xp_i have to be stored, one considers that the resulting synaptic matrix 
is given by Hebb’s law

i p-i 
w  =  -  £  x *xI  •

P k=0
Since the sign function applies to the vector W s the factor 1/p can also be omitted. 
Furthermore it is assumed that Wu =  0 for i =  0 , 1 , 1 .  With this assumption 
we have

W  =  53 X*XI  “  Pjn 
k=0

where In  is the N x N unit matrix. When the prototypes (stored pattern) are 
orthogonal, i.e.

x jx / =  0 if кф  I 

then the stored patterns are fixed points of the nonlinear map since

W xk =  ( N - p ) x k, к =  0 , 1 , 2 , . . . , ? -  1.

However, if the prototypes are not orthogonal, the correlations between them may 
prevent exact retrieval and it is to be expected that the number of vectors which can 
be stored will be reduced if the Hamming distance between these vectors becomes 
smaller. The problem of correlated prototypes is unavoidable since, for most appli
cations the selection of these prototypes is not free but imposed by the patterns to 
be stored.

Since Hebb’s rule does not always provide perfect retrieval, a modification has been 
proposed which allows us to give variable weightings to the prototypes in order to 
reinforce those which are more difficult to memorize. The weighted Hebbian rule is 
defined by

W  =  53 Л*Х*ХГ > A* <  1 and 53 A* =  1 . 
k=0 fc=0

The construction of W  is quite similar to the spectral theorem in matrix theory. Let 
A  be an x N symmetric matrix over the real numbers R. Then the eigenvalues 
A0, Ai, . . .  , Ajv-i of A are real. Assume that the eigenvalues are pairwise different. 
Then the corresponding normalized eigenvectors xo, Xi, .. . ,  x^_i are pairwise or
thonormal. We consider the eigenvectors as column vectors. Then the symmetric 
matrix A  can be reconstructed as

N - 1
A  =  53 Aj x j x j . 

i=o

Example. Consider the 2 x 2 matrix
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The eigenvalues are given by A0 =  1, Ai =  - 1  with the corresponding normalized 
eigenvectors

xo
v/2 V!)■

Hence A =  xox j — x ix f . 4»

12.2.7 Hopfield Example

Consider the case with N  =  5 neurons. The input vectors (patterns) to be stored 
are

Xq =

( 1 ^ / - 1 \

1 1

1 X l  = - 1

1 1

\-l) \ 1 /

We note that
Xqx 1 =  -1

i.e., the two input patterns are not orthogonal. Obviously, if the length of the 
vectors is an odd number the vectors cannot be orthogonal. For the entries of the 
connection matrix W  we have

W  =  x0x j  +  x ix f -  p i

where p — 2 (number of pattern stored) and /  is the 5 x 5  unit matrix. The term 
—pi is necessary so that the diagonal elements Wjj cancel out. Thus the symmetric 
connection matrix W  is

W  =

Next we show that the two stored patterns are fixed points, i.e., we have to prove 
that

( 0
0 2 0 —2\

0 0 0 2 0
2 0 0 0 -2
0 2 0 0 0

\—2 0 -2 0 0 )

s* =  sign(Ws*). 

For the first stored pattern xq we have

sign(Wxo) =  sign

4 ^ ( 1 \2 1
4 = 1
2 1

V—4^ 4 —1 /

=  X q
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Analogously we prove that Xi is a fixed point, i.e.

sign(Wxi) =  sign

/ - 4 \ / - 1>
2 1

- 4 = - 1
2 1
4 i  ̂1 )

Xi

Next we find the energy values from the energy function. Prom

E  =  - \ s TWs
2

we obtain for the first stored pattern xo the energy E  =  —8. Analogously, for the 
second stored pattern Xi we find E =  —8. Recall that there are 25 =  32 configura
tions.

Next we look at the time evolution of the initial state

s(0)

n \
1
1
1

V I /

We find
/  0 \ f 1 \2 1

0 s(l) =  sign(Ws(0)) = 1
2 1

\ —4 / V—l /

Ws(0) =

where we used the rule that sign(O) is assigned to the corresponding value in the 
vector s(0). We find that s (l) is the stored pattern xo- This means we have reached 
a stable fixed point. The energy value of the initial state s(0) is E  =  0. E  =  — 8 is 
the lowest energy state the system has.

Problem . Find the energy value for the other configurations. Recall that there are 
25 =  32 configurations. Study what happens if the initial state is given by

s(0) =

f~l \
-1
1
1

V 1 /

Find the energy value.
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12.2.8 Hopfield C + +  Program
In the C ++ program we consider synchronous operations. We consider the three 
patterns given by the numbers 1, 2 and 4 in the figure. A black box indicates +1 
and a white box —1. Thus in our example we have N  =  40 =  8 • 5 neurons, i.e., we 
have 8 rows and 5 columns in our grid.

1

Figure 12.1 Input Patterns for C + +  Program

We consider the three patterns giving the numbers 1, 2 and 4. For the number 1 we 
have the pattern

Xo =  ( - l ,  - 1 , 1 ,  - 1 , - 1 ,  - 1 , 1 , 1 , - 1 , - 1 , - 1 , - 1 , 1 , - 1 , - 1 , - 1 , - 1 , 1 , - 1 ,  - W .

-1 ,  - 1 , 1 , - 1 , - 1 , - 1 , - 1 ,1 , - 1 ,  - 1 , - 1 , - 1 ,1 ,  - 1 , - 1 ,  - 1 , - 1 , - 1 , - 1 , - i f -  

For the number 2 we have the pattern

x, =  (-1 ,1 ,1 ,1 , -1 ,1 , - 1 , - 1 ,  - 1 , 1 , - 1 , - 1 , - 1 , - 1 , 1 , - 1 , - 1 , 1 , 1 , - 1 ,

- 1 , 1 , - 1 , - 1 , - 1 , 1 , - 1 , - 1 , - 1 , - 1 , 1 , 1 , 1 , 1 , 1 , - 1 , - 1 , - 1 , - 1 , - i f  •

For the number 4 we have the pattern

X2 = (1, -1, "I, 1, -1, 1, -1, “ I, 1, -1, 1, -1, -1, 1, “ I, 1, 1, 1-1,1,

-1 ,  - 1 ,  - 1 ,  1, -1 ,  - 1 ,  -1 ,  -1 ,  1, - 1 ,  -1 ,  - 1 ,  - 1 ,  1, -1 ,  - 1 ,  - 1 ,  - 1 ,  - 1 ,  - i f  ■

Problem . Calculate the scalar products x jx i ,  XqX2 and х^хг- Are the patterns 
orthogonal to each other? Are the patterns fixed points of the map W ?

When we consider the initial configuration

s (t =  0) =  (1 ,1 ,-1 ,1 , -1 ,  -1 ,1 , -1 ,1 ,1 ,1 , -1 ,  -1 ,1 , - 1 ,  -1 ,1 ,1 ,1 ,1 ,

- i , - i , - i ,  i , - i , - i , - i , - i , i , - 1 , - 1 , - 1 , - 1 , i , - i , - 1 , - 1 , - i , - i , - i f

the algorithm tends to the pattern of the number 4. The figure shows the input 
pattern.
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Figure 12.2 Input Pattern 

When we consider the initial configuration

s(t =  0) =  ( - 1 ,1 ,1 , -1 ,  - 1 , - 1 ,  —1 , 1 , - 1 , - 1 , - 1 , - 1 , 1 , - 1 , - 1 , - 1 , - 1 , - 1 , 1 , - 1 ,  

- 1 , - 1 , 1 , - 1 , - 1 , - 1 , - 1 , - 1 , 1 , - 1 , - 1 , - 1 , 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - I f
we obtain the pattern of the number 1. The figure shows the input pattern.

Figure 12.3 Input Pattern

// hopfield.cpp

#include <iostream> 

using namespace std;

// initialize the weight matrix W with the patterns 

void weights(int** W,int* xO.int* xl.int* x2,int N)

for(int i=0;i<N;i++) 

for(int j=0;j<N;j++)
{ W[i][j] = xO[i] *x0 [j]+xl [i] *xl [j]+x2[i] *x2[j] ; > 

for(int k=0;k<N;k++) W[k][k] =0;

>

// calculation of sum over j of W[i][j]*s[j] 

void mul(int** W,int* s,int* h.int N)

•C
for(int i=0;i<N;i++)
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{
int sum = 0;

forCint j=0;j<N ;j++) {  sum += W[i] [ j ] *s[ j ]  ; > 
h [ i ]  = sum;
>

>

int sign(int y)

{
if(y > 0) return i; 

else return -1;

>

int checkCint* vl.int* v2,int N)

forCint i=0;i<N;i++) {  ifCvl[i] 
return 1;

>

int energyCint** W,int* s.int N) // energy of the configuration 

{ // Ising model
int E = 0;

forCint i=0;i<N;i++) 

forCint j=0; j<N; j++) E += W[i] [j]*s[i]*s[j] ; 

return -E;

int mainCvoid)

•c
int N = 40;

int* xO = new int[N]; int* xl = new int[N]; int* x2 - new int[N]; 

// pattern 0

x0[0] = -1; x0[l] = -1; x0[2] = 1; x0[3] = -1; x0[4] = -1; 

x0[5] = -1; xO[6] = 1; x0[7] = 1; x0[8] = -1; x0[9] = -1; 

x0[10] = -1; x0[ll] = -1; x0[12] = 1; x0[13] = -1; x0[14] = -1; 

x0[15] = -1; x0[16] = -1; x0[17] = 1; x0[18] * -1; x0[19] = -1; 

xO [20] = -1; xO [21] = -1; x0[22] = 1; x0[23] = -1; x0[24] = -1; 

x0 [25] = -1; xO [26] = -1; x0[27] = 1; x0[28] = -1; x0[29] = -1; 

xO [30] = -1; xO [31] = -1; x0[32] = 1; x0[33] = -1; x0[34] = -1; 

xO [35] = -1; xO [36] = -1; x0[37] = -1; x0[38] = -1; x0[39] * "1;

// pattern 1

xl [0] = -1; xl[l] = 1; xl [2] = 1; xl [3] = 1; xl [4] = -1; 

xl [5] = 1; xl[6] = -1; xl [7] = -1; xl [8] = -1; xl [9] = 1; 
xl [10] = -1; xl[ll] = -1; xl [12] = -1; xl [13] = -1; xl[14] = 1; 

xl [15] = -1; xl[16] = -1; xl[17] = 1; xl[18] = 1; xl[19] = -1; 
xl [20] = -1; xl [21] = 1; xl[22] = -1; xl[23] = -1; xl [24] = -1;

// checks whether two vectors 

// are the same 

!= v2[i]) return 0; >
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xl[25] = 1; xl [26] = -1; xl[27] = -1; xl[28] = -1; xl [29] 

xl[30] = 1; xl [31] = 1; xl[32] = 1; xl[33] = 1; xl[34] = 1 

xl[35] = -1; xl [36] = -1; xl [37] = -1; xl[38] = -1; xl[39]

/ /  pattern 2
x2[0] = 1; x 2 [l]  = -1 ; x2[2] = -1 ; x2[3] = 1; x2[4] = -1 ; 
x2[5] = 1; x2 [6] = -1 ;  x2[7] = -1 ; x2[8] = 1; x2[9] = -1 ; 
x2[10] = 1; x2 [11] = -1 ; x2[12] = -1 ; x2[13] = 1; x2[14] = 
x2[15] = 1; x2[16] = 1; x2[17] = 1; x2[18] = 1; x2[19] = 1 
x2 [20] = -1 ; x2 [21] = -1 ; x2[22] = -1 ; x2[23] = 1; x2[24] * 
x2[25] = -1 ; x2[26] = -1 ; x2[27] = -1 ; x2[28] = 1; x2[29] = 
x2[30] = -1 ; x2 [31] = -1 ; x2[32] = -1 ; x2[33] = 1; x2[34] = 
x2 [35] = -1 ;  x2 [36] = -1 ; x2[37] = -1 ; x2[38] = -1 ; x2[39]

int** W = NULL; // allocating memory for У

W = new int * [N]; 

for(int i=0;i<N;i++) { W[i] = new int [N]; >

forCint i=0;i<N;i++) 

forCint j=0;j<N;j++) W[i] [j] = 0;

weightsCW,xO,xl,x2,N); // weight function to obtain weight 

int* s = new int [N] ; // allocation memory for s

// start configuration

s [0] = 1; s [ l ]  = 1; s [2] = -1 ; s[3] = 1; s[4] = -1 ; 
s [5] = -1 ; s [6 ] = 1; s[7] = -1 ; s[8] = 1; s[9] = 1; 
s[10] = 1; s [ l l ]  = -1 ; s [12] = -1 ; s[13] = 1; s[14] = -1 
s [15] = 1; s[16] = -1 ; s[17] = 1; s[18] = 1; s[19] = 1; 
s [20] = -1 ;  s [21] = -1 ; s[22] = -1 ; s[23] = -1 ; s[24] 
s [25] = -1 ; s [26] = -1 ; s[27] = 1; s[28] = 1; s[29] = -1 ; 
s [30] = -1 ; s [31] = -1 ; s[32] = -1 ; s[33] = 1; s[34] = 
s [35] = -1 ; s [36] = -1 ; s [37] = -1 ; s[38] = -1 ; s[39] =

int E = energyCW,s,N);
cout «  "energy o f in i t ia l  configuration: “ «  E «  endl;

in t*  h = new int СШ ; / /  a lloca tin g  memory fo r  h 
forC int p=0;p<N;p++) { h[p] = 0; } // in it ia lis in g  h

int* si = new int[N];

f  or Ci=0 ; i<N; i++) {  s l [ i ]  = s [ i ] ;  > 
in t re su lt , count; 
count = 0 ; 
do

forCint i=0;i<N;i++) {  sl[i] = s[i]; У
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mul(W,s,h,N); 

forCint j=0;j<N;j++)

ifCh[j] != 0) { s[j] = signCh[j]); > 

ifCh[j] —  0) { s[j] = si [j] ; >

>
result = checkCs,s1,N); 
count++;

cout «  "count = " «  count «  endl;

> while С Сcount < 100) && Cresult != 1));

cout «  "number of iterations: " «  count «  endl;

forCint i=0;i<N;i++)

<
cout «  "s[" «  i «  "] * "  «  s [ i ]  «  и  И .  u  end configuration 

ifCCCi+l)%5) =  0) ■( cout «  endl; }
>
E = energyCW,s,N);

cout «  "energy of end configuration: " «  E «  endl;

delete[] xO; delete[] xl; delete[] x2; 

delete[] s; delete[] si; delete[] h; 

for Ci=0; i<N; i++) { delete [] W[i] ; > 
delete [] W; 

return 0;

>

12.2.9 Asynchronous Operation
In the asynchronous operation each element of the state vector is updated separately, 
while taking into account the most recent values for the components which have 
already been updated. Several variants are still possible, but the most usual one 
is sequential updating where the new element values are computed in the order in 
which they appear in the state vector. Thus, when updating element s», use will be 
made of the fact that new elements have already been computed for the elements 
s0 up to according to the formula

This scheme is reminiscent of a Gauss-Seidel iteration in linear algebra. The Gauss- 
Seidel iteration is used to solve linear equations. Starting from the state vector

s(0  =  (soW ,5iW ) - - . , s N_ 1(t))

one complete sequential iteration consists in updating successively each of the N  
components until one obtains the new state vector s(t +  1). Of course the compo
nents of the state vector can be updated in some different order, e.g. according to
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a fixed permutation of the natural order or at random but in such a way that each 
element is at least updated once in a given interval of time.

Thus far we have assumed that the externally applied threshold vector в  is the zero 
vector. If we include this vector then the map, in the synchronous operation, is 
given by

s(£ + 1 ) =  sign(Ws(t) -  в ) .

For the asynchronous operation we have

Si(t +  1) =  sign ( W ^ t  +  1) +  £  WijSj(t) -  6i 
\j=0 j=i

where i =  0 ,1 , . . . ,  N  — 1.

12.2.10 Translation Invariant Pattern Recognition

We would like the process of associative recall to be made robust in the sense that 
those patterns which are nearly similar, except for a translation in the plane, are 
identified as being similar. This can be done using the two-dimensional discrete 
Fourier transform of the scanned images. The figure shows an example of two 
identical patterns positioned with a small displacement from each other.

S

Figure 12.4 Identical Pattern with Displacement

The two-dimensional discrete Fourier transform of a two-dimensional array is com
puted by first performing a one-dimensional Fourier transform of the rows of the 
array and then a one-dimensional Fourier transform of the columns of the result (or 
vice versa).' The absolute value of the Fourier coefficients does not change under 
a translation of the two-dimensional pattern. The Fourier transform also has the 
property that it preserves angles, that is, similar patterns in the original domain are 
also similar in the Fourier domain. This preprocessing can be used to implement 
translation-invariant associative recall. In this case the vectors which are stored in 
the network are the absolute values of the Fourier coefficients for each pattern.
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Definition. Let 2 (711, 712) denote an array of real values, where щ , n2 are integers 
such that 0 < ni <  N1 -  1 and 0 <  n2 <  N2 -  1. The two-dimensional discrete 
Fourier transform x(k\,k2) of 2 (711, 712) is defined by

 ̂  ̂ Ni-l N2 -1  , 27Г 27Г \
x{ku k2) :=  -Г7--ГГ- £  £  « (n i.n a )e x p  ( — rr-tnifci -  д Г ^ г Ы  

N\ N2 ni=0n,=0 \ Wi iv2 /

ЛГг- l  N2-l
E E

щ=0 nj=0

where 0 <  k\ < N\ — 1 and 0 <  k2 <  N2 — 1.

Consider two arrays 1 (711, 712) and у {щ ,п 2) of real values. Assume that 

2/(711, 7l2) =  x(7ii +  di, 712 +  d2)

where d\ and d2 are two given integers. The addition 7ii +  di is performed modulo 
N1 and n2 -I- d2 is performed modulo N2 (torus). We show that

||y(*i>fc2)ll =  P№,fc2)||.
We have

 ̂ N1 -1  N2 -1  /  27Г 27Г \y(fci,fc2) =  —  —  Y ,  E *(n i +  d i,n2 +  < f e ) e x p ( _ _ r .

With the change of indices

7ij =  (711 +  d\) mod N1 , n2 =  (712 +  d2) m°d  ^ 2

we obtain

M  1 1  ,  , ,v /0 . /  n'i*i 7 1 ^ 2  d i k x  ^2^2
y(fcl’ fc2) = s  s  *(» !."*)« ?  (2™ l ■--jvT  ■ Ж  + NT + j  j  •Tl|—U U ' '

This can be written as

y{ki, kb) =  exp ^— idifci^ exp ( ^ < * 2*2)  *2) •

This expression tells us that the Fourier coefficients of the array y{n i,n 2) are the 
same as the coefficients of the array 1 (711, 712) except for a phase factor

6XP 6Xp (” 77“ ^ )  ’
Taking the absolute value results in

MXfcbWH =  Р(*1,*2)||.

Thus the absolute values of the Fourier coefficients for both patterns are identical.
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12.3 Similarity Metrics
A key component of most pattern-comparison algorithms is a prescribed measure
ment of dissimilarity between two feature vectors. Assume we have two feature 
vectors, x  and у defined on a vector space V. We define a metric or distance func
tion d on the vector space V  as a real-valued function on the Cartesian product 
V  x V  such that

0 <  d(x, y) <  oo for x, у  € V  and d(x, y) =  0 iff x  =  у 

d(x, y ) =  d(y , x) for x, у  € V  
d{x, y) <  d(x, z) +  d(y, z), x, y, z € V 

In, addition, a distance funtion is called invariant if

d(x +  z ,y +  z) =  d(x, y ) .

Most distance measures, or metrics, are t? metrics
/  n \ i / p

П * ,У ) :=  '

If p =  2, we have the classical Euclidean distance.

The cosine between two row vectors x, у  in R n defines another metrical similarity 
measure

xyr
d(x,y) = M ¥ I

where T denotes the transpose.The cosine distance is invariant under rotation and 
dilation.

Most current neural networks require two-dimensional input patterns to be con
verted into multi-dimensional vectors before training and recognition can be carried 
out. Learned patterns in these networks are represented as multidimensional vectors 
of training weights, and the measure of similarity between the presented input and 
the learned pattern is based on some similarity metric. Three common similarity 
metrics in use in neural networks today are the Hamming distance, the vector dot 
product, and the Euclidean distance.

In the case of binary {  0 ,1 }  vectors of length n, comparable measures of similarity 
between an input vector x and a weight vector у  based on each of these metrics can 
be defined as

Я  := 1 -  -  Hamming 
n

т
D P  :=  5 У  Dot Product

M

E := l  — \ -  Euclidean
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where d is the number of mismatched elements between x  and y, n is the number 
of total elements in x  (i.e. the length of the vectors x  and y). |x| is the number of 
l ’s in the vector x.

Transforming a two-dimensional input pattern into a multi-dimensional vector and 
then comparing that vector to learned vectors can produce behaviour that is counter
intuitive. Two-dimensional input patterns that appear very similar (to the human 
eye) to a particular learned pattern can generate very poor results when compared 
to that pattern using these metrics.

Another in many cases more useful metric is the Hausdorff distance which we intro
duce now. The Hausdorff distance measures the extent to which each point of an 
input set lies near some point of a model set. Given two finite sets of vectors in the 
Euclidean space R n

A { Xo, x i, . . . , Xp_i }, В  :=  {  уо, y i, . . . ,  y^-i }

the (undirected) Hausdorff distance is defined as

H (A , B) :=  max{ h(A , B ) , h(B y A) }

where the function h(A, В ) defines the directed Hausdorff distance from A  to В

h(A, B) ■- max {nun {||x -  y||}| .

Thus
h(B, A) :=  max {min {||y -  x||}|

where ||x—y|| is a norm in R n, for example the Euclidean norm. The directed Haus
dorff distance identifies that point in A that is furthest from any point in В  and 
measures the distance from that point to its nearest neighbour in B. If h(A , B ) =  d} 
all points in A are within distance d of some point in B. The (undirected) Hausdorff 
distance, then, is the maximum of the two directed distances between two point sets 
A  and В  so that if the Hausdorff distance is d, then all points of set A  are within 
distance d of some point in set В and vice versa.

The pointwise Hausdorff distance for a vector x  6 A is defined as

h(x,B ) :=  min{||x — у ||} .

The (undirected) Hausdorff distance has the following properties. It is a metric over 
the set of all closed, bounded sets. It is everywhere non-negative and it obeys the 
properties of identity, symmetry, and triangle inequality. In the context of pattern 
recognition this means that a shape is identical only to itself, that the order of com
parison does not matter, and that if two shapes are highly dissimilar they cannot 
both be similar to some third shape. This final property (triangle inequality) is
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particularly important for reliable pattern classification.

In the C + +  program Hausdorff. cpp we calculate the Hausdorff distance for the 
two sets

X  =  {  (0.0,0.2), (0.5,0.8), (0.3,0.7) }, Y  =  {  (1.5,2.1), (0.8,1.5) }

in R 2.

// Hausdorff.cpp

«include <iostream>

«include <cmath> // for sqrt

using namespace std;

// Euclidean distance between to n-dimensional vectors 

double distance(double* x,double* y,int n)

double result = 0.0;

for(int j=0;j<n;j++) { result += (x[j]-y [j] )*(x [j] -y [j]) ; > 

return sqrt(result);

>

double dhausdorff(double** x,double** y,int p,int q,int n)

<
double max = 0.0; 

double min, temp; 

for(int i=0;i<p;i++)

min = distance (x [i] ,у [0] ,n) ; 

for(int j=0;j<q;j++)

temp = distance(x[i] ,y [j] ,n); 

if(temp < min) min = temp;

>
if(max < min) max = min;

>
return max;

>

int main(void)

■c
int n = 2; // dimension of Euclidean space 

int p = 3; // number of vectors in set A 

int q = 2; // number of vectors in set В 

double** x = NULL; x = new double*[p]; 

for(int j=0;j<p;j++) x[j] = new doublefn]; 

x[0][0] = 0.0; x[0] [1] = 0.2;
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x[l][0] = 0.5; x[l][l] = 0.8; 

x[2][0] = 0.3; x[2] [1] = 0.7; 

double** у = NULL; у = new double*[q]; 

forCint j=0;j<q;j++) y[j] = new double[n];

У[03 CO] = 1.5; у[0] [1] = 2.1;

y [l][0 ] = 0.8; y [l] Cl] = 1.5;
double dhd = dhausdorffCx,y,p,q,n);

cout «  "Hausdorff distance = " «  dhd «  endl;
forCint j=0;j<p;j++) { delete[] x[j] ; >

deleted x;

forCint j=0;j<q;j++) { deleteC] y[j] ; } 
delete [] y; 

return 0;

>

As described above, the directed Hausdorff distance h(A, В ) identifies the point 
a € A that is farthest from any point of 5 , and measures the distance from a to its 
nearest neighbour in B. Thus the Hausdorff distance H (A ,B )  measures the degree of 
mismatch between to sets, as it reflects the distance of the point of A  that is farthest 
from any point of В  and vice versa. The Hausdorff distance is very sensitive to even 
a single “outlying” point of A  and B. For example, consider В =  A  U { x  } , where 
the point x  is some large distance D from any point of A. In this case H (A } B) =  D. 
This means it is determined solely by the point x. Thus sometimes rather then using 
H (A ,B ) we use a generalization of the Hausdorff distance which does not obey the 
metric properties on A and В , but does obey them on specfic subsets of A  and 
B. This generalized Hausdorff measure is given by taking the k-th ranked distance 
rather than the maximum, or largest ranked one,

hk{A, B) =  kth min \\a -  fell в€Л6бВ
where fcth denotes the k-th ranked value (or equivalently the quantile of m  values). 
For example, when к =  m  then kth is max, and thus this measure is the same 
as /i(>, •). When к =  m /2 then the median of the m individual point distances 
determines the overall distance. Therefore this measure generalizes the directed 
Hausdorff measure, by replacing the maximum with a quantile.

Another useful metric for two-dimensional patterns is as follows. Let A, В  be two 
rn x  n matrices over R. We can introduce a scalar product

(A, B) :=  tr(ABT)

where T denotes the transpose. Note that ABT is an m x m matrix. The scalar 
product induces the norm

1И112 =  {A, A) — tr(AAT) .

Thus we have the metric

1И -  ВЦ2 =  (A -  В, A -  В) =  (Л, A) -  {A, В ) -  (В , A) +  (В, В ) .
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Thus
||A -  B||2 =  tr(AAT -  ABT -  BAT +  B B T) .

Since the trace is linear we have

\\A -  B \\2 =  tx(AAT) -  2tr(ABT) +  tr(BBT) 

where we used that ti(A B T) =  tr(BAT). Finally

m n m n m n

И  -  fill2 =  E  E  4  - 2 E  E  «чА» +  E  E  ■ 
t= l j=l t= l j = 1 i= l  j=l

12.4 Kohonen Network

12.4.1 Introduction

An interesting feature of neural systems is the ability to produce self-organizing, 
topology preserving mappings of any given feature space, e.g., the surface of a body. 
Self-organization means that mapping onto a cortex of neurons is originated only 
by stochastically presenting the neurons with input features. The mapping is called 
topology preserving when neighbouring neurons represent neighbouring regions in 
the feature space. In order to profit best from the given number of neurons, impor
tant regions of the feature space (high density of presentation) are represented by 
more neurons, i.e., the resolution of the mapping is optimized.

The self-organizing neural network (also called Kohonen’s feature map or topology- 
preserving map) assumes a topological structure among the cluster units. This 
property is observed in the brain, but it is not found in other artificial networks. 
There are p cluster units, arranged in a one-or two-dimensional array. The input 
signals are vectors. The weight vector w for a cluster unit serves as an exem
plar of the input patterns associated with that cluster. During the self-organizing 
process the cluster unit whose weight vector matches the input pattern most closely 
(typically the square of the minimum Euclidean distance) is chosen as the winner. 
The winning unit and its neighbour units (in terms of the topology of the cluster 
units) update their weights. The weight vectors w,- of neighbouring units are not, in 
general, close to the input pattern. For example, for a linear array of cluster units, 
the neighbourhood of radius r around cluster unit j*  consists of all

max(l, j* — r ) < j <  min (j* +  r}p ) .

Where inputs match the node vectors, that area of the map is selectively optimized 
to represent an average of the training data for that class. FYom a randomly orga
nized set of nodes the grid settles into a feature map that has local representation 
and is self-organised. The purpose of the self-organizing feature map is to capture 
the topology and probability distribution of input data. Mappings from higher to 
lower dimensions are also possible with a self-organizing feature map and are in
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general useful for dimensionality of input data.

The topology-preserving maps can be used, for example, for pattern recognition and 
for finding solutions to the traveling salesman problem.

The Kohonen’s feature map allows us to define a criterion function. The Kohonen’s 
rule is a stochastic gradient-descent search that leads, on average and for small 
learning rates 77, to a local minimum of the criterion function.

12.4.2 Kohonen Algorithm

T. Kohonen [62] proposed an algorithm producing the desired mapping. A neuron 
is identified with a prototype w* (г =  0 ,1 ,.. . ,n  — 1) in the feature space. When 
all neurons are presented with an input feature, x, a winner neuron is determined. 
To this end, a metric in feature space has to be defined. Taking this metric, the 
prototype Wj. of the winner neuron j* has the smallest distance in the feature space 
compared to the other neurons i

llwi* -  x|| <  ||wi -  x|| for all i .

Thus it represents best the input feature x. The main item of Kohonen’s algorithm 
is the learning step, which improves the mapping of the feature space onto the 
cortex of neurons. The neurons in the cortical neighbourhood of the winner neuron 
j * adapt their prototypes in the direction of the input feature x

wi{t +  1) =  wi(t) +  7i(t)h(dij.(t))(x -  wi(t)), t =  0 ,1 ,2 ,...

where dij-(t) denotes the cortical distance of neuron i to the winner neuron j*. The 
function h(dij-(t)) describes the lateral interaction of neurons. Often a Gaussian 
function

h(x) =  e x p (-z 2/cr2) 

is used. One also often assumes that

h{0) =  1 and h{d < dmfsx(t)) =  0

where h(dij• (£)) is monotonous in between. With increasing distance from the win
ner neuron, the relative amount of the learning step decreases. dmax is the maximum 
distance of interaction. Thus h(dij*(t)) is the neighbourhood function. This func
tion is 1 for г =  j* and falls off with distance |r — r̂ |. Thus units close to the winner, 
as well as the winner j* itself, have their weights changed appreciably, while those 
further away, where dy. is small, experience little effect.

The time-dependent parameter 77,

0 <  rj{t) <  1
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controls the absolute amount of a learning step (learning rate). The learning rate 
decreases with t —* oo. The time-dependent parameters r)(t) and dmax(t) denote the 
plasticity of the neural network. By repeating the whole algorithm (iterating w*(£)), 
a mapping with the desired properties will result if the time-dependent parameters 
T)(t) and dmax(t) are successively decreasing as t —► oo. Thus the term r}(t) is a gain 
term (0 < 7)(t) <  1) that decreases in time, thus slowing the weight adaption. Notice 
that the neighbourhood Nj-(t) decreases in size as time goes on, thus localising the 
area of maximum activity. Different neighbourhoods can be chosen, for example a 
rectangular grid or a hexagonal grid.

If we have more than one input pattern

Xq, X i , . . .  , Хщ— 1

we proceed as follows. We can write the set of weights w* ( i * 0 , l .......n - l )  as an
n x  N  matrix

W  =  (w0,w i , . . . ,w n_i) 

where N  is the length of the vectors х* and wf.

1. Initialise, network. Define w i(t =  0) (0 < i <  n — 1) to be the weights. Initialise 
weights to small random values. Set the initial radius of the neighbourhood around 
node i, Ni(0), to be large.

2. Present input. Present input patterns Xo, Xi, . . . ,  Xm_i to the network.

3. Calculate distances. For i =  0 ,1 , . . . ,  n — 1 calculate

||wi -  Xo||.

4. Find the winning neuron j*, i.e.

||wj. x01| <  ||wj Xo||» i =  0, l , . . . , n — 1

5. Update weights. Update the weight according to

Wi(t =  1,0) =  Wi(t =  0,0) +  r)(t =  0)h(dij.(t =  0))(xo -  w {(t =  0,0))

for i =  0 ,1 ,.. . ,n  -  1. Thus the biggest change is at the winning neuron (i =  j*) 
since the function h has the largest value at i — j*. The quantity r)(t =  0) is the 
learning rate at t =  0.

6. Goto step 3 and repeat the procedure for the input pattern Xi, x 2, .. •, x m_i. For 
each input pattern the matrix W  is updated according to the formula given above. 
This is one epoch. Goto step 3 again and repeat for the next time step, where the 
learning rate r)(t) is decreased.
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A stopping condition is that no noticeable changes in the feature map are observed.

Let m  be the number of input vectors and n be the number of neurons. One can 
define a criterion function

i m—1 n—1

W - . E E  Mri -  ri-)l|xfc -  W if  
* fc=0 i=0

where j * is the label of the winner unit upon presentation of the input vector x*, 
and h(Ti —Tj-) is the neighbourhood function. The criterion function is an extension 
of the competitive learning criterion function. Performing gradient descent for the 
criterion function J

A w i :=  —rjVJ

yields
m-l

Aw« = vYl Мг» -  rj*)(xfc -  Wi) 
fc=0

which is the batch-mode version of Kohonen’s self-organizing rule. The Kohonen’s 
rule is a stochastic gradient-descent search that leads, on average and for small 
learning rate 77, to a local minimum of J. These minima are given as solutions to 
the system of nonlinear equations

m—1
Awi = £  Mr* -  iy )(x fc -  Wi) = 0. 

fc=0
The solution depends on the choice of the neighbourhood function h. What is 
desired is the global minimum of the criterion function J. Local minima of J are 
topological defects like kinks in one-dimensional maps and twists in two-dimensional 
maps.

12.4.3 Kohonen Example
In the example we follow Fausett [33]. We have four input vectors and two weight 
vectors each of length 4. In the C + +  program we can select different numbers of 
weight vectors. The counting for all the vectors and matrices and their elements 
starts from zero. The four input vectors (input patterns) are given by

/LON ( 0 . 0 \ ( 1 . 0\ (  °.°\

1.0 0.0 0.0 0.0

0.0
, Xl =

0.0
X 2 =

0.0
X 3 =

1.0

vo .o ) \ l . o ) \o.o) U -0 /

The initial weight matrix at time t =  0 W {t =  0) is given by

/ 0.2 0.8 \

0.5 0.7
\0.9 0 .3 /
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Thus the initial weight matrix consists of two column vectors (two neurons)

/  0.2 \ /  0.8 \

3 0 II 0 II 0.6
0.5 , wi(£ =  0) = 0.4

0.7
\0.9/ 10.3 /

The initial value of the learning rate is r](t =  0) =  0.6. The time evolution of the 
learning rate is

’?(t+1) = i k 7?w-
With only two clusters (neurons) available only one cluster updates its weights at 
each step. First we calculate the square of the distance between the first input vector 
x0 and w0(£ =  0) and the square of the distance between the first input vector xc 
and Wi(i =  0). We find

||w0(t =  0) -  xo||2 =  (0.2 -  l )2 +  (0.6 -  l ) 2 +  (0.5 -  0)2 +  (0.9 -  0)2 =  1.86 
llwjft =  0) -  x0||2 =  (0.8 -  l )2 +  (0.4 -  l ) 2 +  (0.7 -  0)2 +  (0.3 -  0)2 =  0.98.

Thus the vector w i(t =  0) is closest to the input vector Xo, i.e. j* =  1 (winning 
neuron). Consequently, we update the column wi(£ =  0) in the weight matrix 
W (t =  0) and leave the column w0(t =  0) unchanged. Thus we find (77 =  0.6)

W01(t =  1,0) =  W01(t =  0) +  n(t =  0)(z0lo -  W01(t =  0)) =  0.92 
Wn (t =  1,0) =  W uit =  0) +  7]{t =  0)(*o,i -  Wn (t =  0)) =  0.76 
W2l{t =  1,0) =  W2l(t =  0) +  =  0)(xO|2 “  W2i(t =  0)) =  0.28 
W3l{t =  1,0) =  W3l{t =  0) +  rj(t =  0)(2O,3 -  W31(t =  0)) =  0.12.

Thus the updated weight matrix W (t =  1,0) after taking into account the input 
vector Xq is given by

W (t =  1,0) =

( 0.2 
0.6 
0.5 

V0.9

0.92 \ 
0.76 
0.28 
0.12У

Thus

For the second input vector Xi we find

/0.2\ /0.92Х

w  0(t =  1,0) = 0.6
0.5

, wi(* =  1,0) = 0.76
0.28

\0.9J \0.l2j

||w0(* =  1 ,0 ) -  X! ||2 =  (0.2)2 +  (0.6) +  (0.5) +  (0.9 -  1.0)" =  0.66 
||wi(t =  1,0) -  X! ||2 =  (0.92)2 +  (0.76)2 +  (0.28)2 +  (0.12 -  1.0)2 =  2.2768.

Thus the vector w 0(i =  1,0) is closest to the input vector x b  i.e., j* — 0 (winning 
neuron). Consequently, we update the column wq(2 =  1,0) in the weight matrix
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W (t =  1,0) and leave the column wi(£ =  1,0) unchanged. Thus we find

Woo{t =  1 ,1 ) =  Woo(t =  1 ,0 ) +  r){t =  0 )(x 1|0 -  Woo{t =  1 ,0 ))  =  0.08 

Wl0(t =  1 ,1 ) =  W10(t =  1 ,0 ) +  7]{t =  0)(® ltl -  Wl0{t = 1 , 0 ) )  =  0.24 

W20{t = 1 , 1 )  =  W20(t =  1 ,0 ) +  r}{t =  0){x lt2 -  W20{t =  1 ,0 ))  =  0.20 

W30{t =  1 ,1 ) =  W30{t =  1 ,0 ) +  7){t =  0 ) (x i i3 -  W30{t =  1 ,0 ))  =  0.96

where r)(t =  0) =  0.6. Thus the updated weight matrix after taking into account 
the first input vector x i is given by

W (t =  1,1) =

w 0(£ = 1 ,1 )  =

Thus
/  0.08 \ 

0.24 
0.20 

\0.96/
For the third input vector x2 we find 

||w0(£ =  1,1) -  x 2||2 =  1.8656,

(  0.08 0.92 >
0.24 0.76
0.20 0.28

V0.96 0.12/

w x(t =  1,1) =

(  0.92 \ 
0.76 
0.28 

V 0-12 У

||w1(£ =  l , l ) - x 2||2 =  0.6768

Thus the vector wi(£ =  1,1) is closest to the input vector x 2, i.e. j * =  1 (winning 
neuron). Consequently, we update the column w x(t =  1,1) in the weight matrix 
W (t =  1,1) and leave the column w0(£ =  1,1) unchanged. It follows that

/0 .08 0.968 \
0.24 0.304
0.20 0.112

\0.96 0.048/

W (t =  1,2)

w 0(£ =  1,2) = Wx(i =  1,2) =

/  0.968 \ 
0.304 
0.112 

V 0.048/

Hence
/0.08\

0.24 
0.20 

\0.96/
For the fourth input vector x 3 we find

||w0(£ =  1,2) - x 3||2 =  0.7056,

The vector Wo(£ =  1,2) is closest to the input vector x 3, i.e. j*  =  0 (winning 
neuron). Consequently, we update the column w o(t =  1,2) in the weight matrix W  
and leave the column wj (t =  1,2) unchanged. All four input vectors have now been 
taken into account. We find

||wi(£ = 1 ,2 )  — x 3||2 =  2.724.

W (t =  1) =

f  0.032 0.968 N
0.096 0.304
0.680 0.112

V 0.984 0.048/
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with
/  0.032 \ (  0.968 \

14 0.096 
Wo(t =  1 )=  0.680

\ 0.984/

и  i \ 0-304 
w l(< =  1) =  П 119

This was an epoch (one iteration, one time step). Now reduce the learning to

We repeat the steps again for each of the input vectors xo, x i, x2 and x 3. After the 
second epoch (second iteration) the weight matrix is

Iterating over 100 epochs we find that the weight matrix converges to the matrix

The zeroth column is the arithmetic average of the two vectors Xi and x 3 and the 
first column is the arithmetic average of the vectors xo and x 2.

In the C + +  program we can select different numbers of weight vectors. We consider 
the case 1, 2, 3, 4 and 5. The weight vectors at £ =  0 are selected at random using a 
random number generators. The number of input vectors can also be easily changed. 
In the program const in t m = 4 is the number of input vectors.

// Fausett.cpp

«include <iostream>

«include <cstdlib>

«include <ctime> 

using namespace std;

double euclidean(double *vecl,double *vec2,int n)

{
double dist = 0.0;
for(int i=0;i<n;i++) dist += (veclCi]-vec2[i])*(vecl[i]-vec2[i] ); 

return dist;

=  1) =  =  0) •

/0.016 0.980 \

s, 0.999 0.024/

/ 0.0 1.0 \

\  i -о o.o/

>

double distance(int i,int jstar)

•C
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return double(i!=j star);

// returns 1.0 if i!=jstar, returns 0.0 if i==jstar

>

double h(double d) { return 1.0-d; >

void train(double **W,int n,int cols,double *vec,double rate) 

i

int i,j ; 

int win = 0;

double windist = euclidean(W[0],vec,n),edist; 

for(i=0;i<cols;i++)

if((edist=euclidean(W[i],vec,n)) < windist)

{ win = i; windist = edist; } 

for(i=0;i<cols;i++) 

for(j=0;j<n;j++)

W[i] [j] += rate*h(distance(i,win))*(vec[j]-W[i] [j]) ;

>

int main(void) 

int i, j;

int T = 10000; // number of iterations 

double eta = 0.6; // learning rate 

const int m = 4; 

int cols;

// training vectors 

double xO[m] = { 1.0,1.0,0.0,0.0 >; 

double xl[m] = { 0.0,0.0,0.0,1.0 >; 

double x2[m] = { 1.0,0.0,0.0,0.0 >; 

double x3[m] = { 0.0,0.0,1.0,1.0 >;

cout «  "Enter number of columns for weight matrix: "; 
cin »  cols;

double** W = NULL; W = new double*[cols]; 

for(i=0;i<cols;i++) W[i] = new double[m];

srand(time(NULL)); 

for(i=0;i<cols;i++) 

for(j=0; j<m; j++) W[i] [j] = rand()/double(RAND_MAX) ;

for(i=0;i<T;i++)

•C
train(W,m,cols,xO,eta); train(W,m,cols,xl,eta); 

train(W,m,cols,x2,eta); train(W,m,cols,x3,eta); 
eta /=1.05; // learning rate decreased

>
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for(i=0;i<cols;i++)

{
cout «  "WC" «  i «  "]= ["; 

for(j=0;j<m;j++) cout «  W[i] [j] «  " 
cout «  "]" «  endl;

>
for(i=0;i<cols;i++) deleted WCi] ; 
deleted W; 

return 0;

>

For the output of the program we must keep in mind that it is sensitive to the 
initial conditions for the weight vectors which we selected with a random number 
generator. Furthermore the result is sensitive to the initial value and decrement of 
the learning rate 77. A typical output is

Enter number of columns for weight matrix : 1 

W[0]= [0.496931 0.245436 0.25464 0.503069]

// average of x0,xl,x2,x3

Enter number of columns for weight matrix: 2 

W[0]= [1 0.493825 4.36192e-12 1.17225e-ll]

// average of x0,x2

W[l]= [5.91835e-12 7.1785e-15 0.506175 1]

// average of xl,x3

Enter number of columns for weight matrix: 3 

W[0]= [7.88199e-12 1.60492e-ll 0.506175 1]

W[l]= [0.999996 1.26278e-06 9.35514e-07 8.32493e-07] 

W[2]= [0.999999 0.999999 3.48972e-06 2.59697e-06]

Enter number of columns for weight matrix: 4 

W[0]= [0.999997 1 5.9738e-07 1.93129e-06]

W[l]= [1.74599e-06 2.94386e-06 4.57243e-07 0.999998] 

W [2] = [3.24247e-06 2.76703e-06 0.999999 0.999999]

W[3]= [0.999999 1.4358e-06 1.08384e-07 4.02981e-06]

Enter number of columns for weight matrix: 5 

W[0]= [1 0.493825 6.02668e-12 1.20011e-12]

// average of x0,x2
W[l]= [0.799493 0.979553 0.88229 0.325358]

W[2]= [2.78495e-06 1.26278e-06 1.37201e-06 1]

/ /  xl
W[3]= [2.09753e-06 1.48308e-06 0.999999 0.999997]

// x3
W[4]= [0.737724 0.589648 0.57268 0.307535]

// x0 

/ /  xl 
// x3 

// x2
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12.4.4 Traveling Salesman Problem
The traveling salesman problem is perhaps the most famous problem in all network 
and combinatorial optimization. The problem is easy to state. Starting from his 
home base, node 1, a salesman wishes to visit each of several cities, represented by 
nodes 2 , . . . ,  n, exactly once and return home, doing so at the lowest possible travel 
cost. We refer to any feasible solution to this problem as a tour (of the cities). There 
are n! possible tours if there are n cities, but some of them are the same.

The traveling salesman problem is a generic core model that captures the combina
torial essence of most routing problems and, indeed, most other routing problems 
are extensions of it. For example, in the classical vehicle routing problem, a set 
of vehicles, each with a fixed capacity, must visit a set of customers (e.g., grocery 
stores) to deliver (or pick up) a set of goods. We wish to determine the best possible 
set of delivery routes. Once we have assigned a set of customers to a vehicle, that 
vehicle should take the minimum cost tour through the set of customers assigned to 
it; that is, it should visit these customers along an optimal traveling salesman tour. 
The traveling salesman problem also arises in problems that on the surface have 
no connection with routing. For example, suppose that we wish to find a sequence 
for loading jobs on a machine (e.g., items to be painted), and that whenever the 
machine processes job i after job j , we must reset the machine (e.g., clear the dies 
of the colours of the previous job), incurring a setup time Cij. Then in order to 
find the processing sequence that minimizes the total setup time, we need to solve 
a traveling salesman problem -  the machine, which functions as the “salesman” , 
needs to “visit” the jobs in the most cost-effective manner.

We present the traveling salesman problem as an embedded (directed) network flow 
structure. Let cy denote the cost of traveling from city г to city j  and let yy be a 
zero-one variable, indicating whether or not the salesman travels from city i to city 
j .  Moreover, let us define flow variables Xij on each arc ( i , j )  and assume that the 
salesman has n — 1 units available at node 1, which we arbitrarily select as a “source 
node” , and that he must deliver 1 unit to each of the other nodes. Then the model 
is

Minimize JZ (a)
(*J)€A

subject to
Y  Vij — 1 for all i =  1 ,2 , . . . ,  n

l<j<n
(4

52 Vij =  1 for all j  =  1 ,2 , . . . ,  n 
l<i<n

M

s II ©* (d)

Zy < (n -  l)s/ij for all (i , j ) e  A (e)

>  0 for all (t, j )  € A ( / )
yij =  0 or 1 for all (i, j )  6 A. (?)
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To interpret this formulation, let

A '  :=  { (m )  : V i j  = 1 }> A " :== { (*>i): * i j  > 0 }•

The constraints (b) and (c) imply that exactly one arc of A' leaves and enters any 
node i\ therefore, A' is the union of node disjoint cycles containing all of the nodes of 
N. In general, any integer solution satisfying (b) and (c) will be the union of disjoint 
cycles; if any such solution contains more than one cycle, we refer to each of the 
cycles as subtours, since they pass through only a subset of the nodes. Constraint
(d) ensures that A" is connected since we need to send 1 unit of flow from node 1 to 
every other node via arcs in A". N  is a node-arc incidence matrix. The “forcing” 
constraints (e) imply that A" is a subset of A'. Since no arc need ever carry more 
than (n — 1) units of flow, the forcing constraint for arc ( i ,j )  is redundant if =  1» 
These conditions imply that the arc set A' is connected and so cannot contain any 
subtours.

We solve the traveling salesman problem using the Kohonen algorithm. The posi
tions of the cities are given by

x[0] =  10.1, y[0] =  20.2, x[l] =  4.0, y[l] =  7.0

*[2] =  0.1, y[2] =  2.0, x[3] =  0.5, y[3] =  10.7

x[4] =  10.5, y[4] =  0.6, *[5] =  8.0, у [5] =  10.0

x[6] =  12.0, y[6] =  16.0, x{7] =  18.0, y[ 7] =  8.0

The distance is given by the Euclidian norm. The output of the program kohonen. cpp 
using the Kohonen algorithm provides the following solution to the traveling sales
man problem

0 —» 3 —* 5 - + l —> 2 —» 4 —» 7 —►6—>0.

The C + +  program for the traveling salesman problem using the Kohonen feature 
map is as follows.

// kohonen.cpp

«include <iostream>

«include <cmath> // for fabs, exp 

«include <cstdlib>

«include <ctime>
«include <iomanip> // for setprecision 

using namespace std;

// find the position in the array d 

// which possesses the smallest number 

int minimum(double* d,int M)

{
int m = 0;
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double r = d[0] ; 

for(int j=l;j<M;j++)

{ if(d[j] < r) { r = d[j]; m = j; > > 

return m;

>

// lateral interaction of neurons

double map(double a,double b,double c,double d,double s)

<
double result;

result = exp(-(fabs(a-c)+fabs(b-d))/(2*s*s)); 

return result;

>

int main(void)

{
int N = 8; // number of cities 

double* x = new double[N]; 

double* у = new double[N];

// coordinates of cities

x[0] = 10.1; x[l] = 4.0; x[2] = 0.1; x[3] = 0.5;

x[4] = 10.5; x[5] = 8.0; x[6] = 12.0; x[7] = 18.0;

yto] = 20.2; y[l] = 7.0; у [2] = 2.0; у [3] = 10.7;

у [4] = 0.6; У [5] = 10.0; у [6] = 16.0; у [7] = 8.0;

int M = 3*N; // M number of neurons

double* u = new double[M]; // memory allocation 

double* v = new double[M]; // memory allocation 

const double PI = 3.14159;

// neuron pattern at t = 0 

for(int j=0;j<M;j++)

double к = j ; double К = M;

u[j] = 10.0+10.0*sin(2.0*PI*k/K); // neuron pattern 

v[j] = 10.0+10.0*cos(2.0*PI*k/K); // neuron pattern

>

double* dist = new double[M];

double* delWl = new double[M];

double* delW2 = new double[M];

double etaO =0.8; // learning rate at t = 0

long T = 15000; // number of iterations

srand((unsigned long) time(NULL)); // seed for random numbers

// iteration starts here 

for(long cnt=0;cnt<T;cnt++)
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int nr and = rand()*/,N; 

for(j= 0;j<M;j++)

{ dist[j] = fabs (u [j]-x [nrand]) + fabs(v[j]-y [nrand]) ; }

int imin = minimum(dist,M); 

double с = cnt; double it = T; 

double s;

s = eta0*(1.0-c/(it+10000.0)); 

f or(j =0;j <M;j ++)

{
delW l[j] = 1 . 0*map(u[j] , v [ j ]  ,u[imin] ,v[im in] ,s )* (x [n ra n d ]-u [j]) ;  
delW2[j] = 1 . 0*map(u[j] , v [ j ]  ,u[imin] ,v[im in] ,s )* (y  [n ra n d ]-v [j]) ;
>

for(j=0;j<M;j++) {  u[j] += delWl[j]; v[j] += delW2[j]; >

У // end iteration

// display of output 

cout «  endl «  endl; 

for(j=0;j<M;j++)

cout «  "u[" «  j «  "] = " «  setprecision(3) «  u[j] «  " "i 

cout «  "v[" «  j «  "] = " «  setprecision(3) «  v[j] «  endl;

>

deleted x; deleted y; deleted u; deleted v; 

deleted delWl; deleted delW2; 
delete[] dist; 

return 0;

>

The output is sensitive to the initial learning rate rj(0) and the decrease of the 
learning rate at each time step. Furthermore the output is sensitive to the location 
of the neurons at time t =  0 and the number of neurons. The number of neurons 
should be chosen between

2N < M  < 4 N .

In the program we selected the neurons lying on a circle with centre (10,10) and 
radius 10. The center с could also be selected using the formula

In chapter 13 we solve the traveling salesman problem using genetic algorithms.
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12.5 Perceptron

12.5.1 Introduction
The perceptron (Fausett [33], Haykin [50], Cichocki and Unbehauen [18], Hassoun 
[49], Rojas [91]) is the simplest form of a neural network used for the classification 
of special types of patterns said to be linearly separable (i.e. patterns that lie on op
posite sides of a hyperplane). It consists of a single neuron with adjustable synaptic 
weights W{ and threshold в.

Definition. A perceptron is a computing unit with threshold в which, when receiv
ing the n real inputs x\, . . . ,  xn through edges with the associated weights Wi, 
W2, . . . ,  wn, outputs 1 if the inequality

£  га д  >  o 
i= 1

holds otherwise it outputs zero.

The origin of the inputs is not important irrespective of whether they come from 
other perceptrons or another class of computing units. The geometric interpretation 
of the processing performed by perceptrons is the same as with McCulloch-Pitts 
elements. A perceptron separates the input space into two half-spaces. For points 
belonging to one half-space the result of the computation is 0, for points belonging 
to the other it is 1. We can also formulate this definition using the Heaviside step 
function

Trt v f l f o r x  >  0 
H {x) — | o forz  < 0 •

Thus

H ( Y w x  - 6) =  lli0T̂ WiXi ~ -  0 
\ h  \0for (£ "=l WiXi -  в) < 0

With wi, W2, . . . ,  wn and в given, the equation

n

J2 wixi =  G 
»=1

defines a hyperplane which divides the Euclidean space R n into two half spaces. 

Exam ple. The plane
x i  +  2 x 2 -  Зхз =  4

which divides R 3 into two half-spaces. ♦

In many cases it is more convenient to deal with perceptrons of threshold zero only. 
This corresponds to linear separations which are forced to go through the origin of 
the input space. The threshold of the perceptron with a threshold has been converted



into the weight —9 of an additional input channel connected to the constant 1. This 
extra weight connected to a constant is called the bias of the element. Thus the 
input vector (x\jX2, •.., £n) must be extended with an additional 1 and the resulting 
(n +  l)-dimensional vector

(l,Xi,X2,...,Zn)

is called the extended input vector, where Xq =  1. The extended weight vector 
associated with this perceptron is

(w0lwi........tBn)

whereby w0 =  -9 .

The threshold computation of a perceptron will be expressed using scalar products. 
The arithmetic test computed by the perceptron is thus

wTx > 9

if w  and x  are the weight and input vectors, and

wTx  > 0

if w  and x  are the extended weight and input vectors.

E xam ple. If we are looking for the weights and threshold needed to implement the 
AND function with a perceptron, the input vectors and their associated outputs are

(0 ,0 )h»0, (0,1) 0, (1,0) *->0, (1,1) *->1.

If a perceptron with threshold zero is used, the input vectors must be extended and 
the desired mappings are

(1,0,0) ~ 0 ,  (1 ,0 ,1 )^ 0 , (1,1.0) •-» 0, ( i , i , i ) ~ i .

A perceptron with three still unknown weights (w0,wu w2) can carry out this task.

E xam ple. The AND gate can be simulated using the perceptron. The AND gate 
is given by
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0 0 0
0 1 0
1 0 0
1 1 1

Thus the input patterns are

» - ( ; ) •  » - ( ! ) ■  » - ( ! ) ■  - - ( i )
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Let

Then w T =  (1,1) and the evaluation of

H ( w TX j -  в)

for j  =  0 ,1 ,2 ,3  yields

H {wTxo -  в) =  H {0 -  3/2) =  # ( —3/2) =  0 
H {wTXl -  0) =  Я ( 1 -  3 /2) =  Я (—1/2) =  0 
# (w Tx2 -  0) =  Я(1 -  3/2) =  Я (—1/2) =  0 
Я (wTx 3 -  0) =  Я (2 -  3/2) =  # (1 /2 )  =  1.

12.5.2 Boolean Functions
We consider the problem of determining which logical functions can be implemented 
with a single perceptron. A perceptron network is capable of computing any logical 
function since perceptrons are even more powerful than unweighted McCulloch-Pitts 
elements. If we reduce the network to a single element, which functions are still com
putable? Taking the boolean functions of two variables as an example we can gain 
some insight into this problem. Let Л be the AND operation, V the OR operation, 
Ф the XOR operation, and - » the NOT operation.

Since we are considering logical functions of two variables, there are four possible 
combinations for the input. The outputs for the four inputs are four bits which 
uniquely distinguish each logical function. We use the number defined by these four 
bits as a subindex for the name of the functions. The function (1 1 , 1 2 ) 0, f°r 
example, is denoted by / 0 (since 0 corresponds to the bit string 0000). The AND 
function is denoted by /g (since 8 corresponds to the bit string 1000), whereby the 
output bits are ordered according to the following ordering of the inputs: (1,1), 
(0,1), (1,0), (0,0).

The sixteen possible functions of two variables are thus

/o(*i,® 2) =  /oooo(®i,®2) =  0 
f i {x i )x2) =  foooi{x1}x2) =  -'{xi V x 2)
/г(®1» x2) =  / 0010(®i, x2) =  Xi A ~̂ x2 
/з(®1,* 2) =  / 0011(^1,^2) =  - ‘Хч 
/ 4 (z i, x2) =  /0100 (ei , x2) =  -irci A x2 
h {xu  x2) =  /0101 (zi> £2) =  ~̂ xi 
/б (*1, x2) =  /опо(®1, X2) =  11012  
/ 7(1 1 , x2) =  /0111 (x i, x2) =  -^(xi Л x2) 
h{X\,X2) =  flQQo(Xi,X2) =  Xl A x2
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/9(21,2:2) =  /1001(31,32) =  “ «(xi 0 ж2)
/ 10(2 1 , 2 2 ) = / 1010(^1, 2 2 ) =  2i 
/ l i f e ,  22) =  /l01l(2l, 22) =  2i V i 2 2 

/ 12(2 1 , 2 2 ) =  /noo(2 l, 22 ) =  22 

Лз(21, 22) =  /llOl(2i, 22) =  ->2i V 22 

/l4(2l, 22) =  /lllo(2l, 22) =  2i V 22

/l5(2i, 22) =  /n il(2 l, 22) =  1.

The function / 0 , for example, is the zero function whereas /1 4  is the inclusive 0R - 
function. Perceptron-computable functions are those for which the points whose 
function value is 0  can be separated from the points whose function value is 1 using 
a line. For the AND function and OR function we can find such a separation.

Two of the functions cannot be computed in this way. They are the function XOR 
(exclusive OR) (function /б) and the function XNOR / 9. It is obvious that no line 
can produce the necessary separation of the input space. This can also be shown 
analytically.

Let Wi and w2 be the weights of a perceptron with two inputs, and 9 its threshold. 
If the perceptron computes the XOR function the following four inequalities must 
be fulfilled

21 =  0  2 2 =  0  W\X\ +  w2x 2 =  0 =>
2! =  1 22 =  O^i 2i +  W2X2 =  wi =>
2i =  0 22  =  1 WiXi +  W2X2 =VJ2 =>
2i =  1 22  =  1 W\X\ +  W2X2 =  Wl + w 2=> Wl

Since the threshold в is positive, according to the first inequality, Wi and w2 are 
positive too, according to the second and third inequalities. Therefore the inequality

W1 +W 2 <  В

cannot be true. This contradiction implies that no perceptron capable of computing 
the XOR function exists. An analogous proof holds for the function / 9 .

12.5.3 Linearly Separable Sets
Many other logical functions of several arguments must exist which cannot be com
puted with a threshold element. This fact has to do with the geometry of the 
n-dimensional hypercube whose vertices represent the combination of logic values 
of the arguments. Each logical function separates the vertices into two classes. If 
the points whose function value is 1 cannot be separated with a linear cut from the 
points whose function value is 0 , the function is not perceptron-computable.

0 < в
W i> 9
W2 >  9 

+  W2 < 9 .
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Definition. Two sets of points A and В in the n-dimensional space Rn are called 
linearly separable if n -I-1 real numbers w0, W i,. . .  ,wn exist, such that every point 
(*i, x2) • • • > 2 n) G A satisfies

n
W jX j >  Wo

j=1
and every point (®i, x 2i. . . ,  xn) G В satisfies <  w q .

Definition. Two sets A and В of points in the n-dimensional space Rn are called 
absolutely linearly separable if n+1 real numbers W o, w i, . . . ,  wn exist such that every 
point (®i, x2, . . . ,  x„) G A satisfies

n
У1 W jX j >  Wo 
i=l

and every point (x1,x 2). . . ,  xn) G В  satisfies Е”=1гугЖ{ < wo.

Definition. The open (closed) positive half-space associated with the n-dimensional 
weight vector w  is the set of all points x  G R n for which w Tx >  0 (wTx  >  0). The 
open (closed) negative half-space associated with w  is the set of all points x  G R n 
for which w Tx  < 0) (wTx  <  0).

We omit the adjectives “closed” or “open” whenever it is clear from the context 
which kind of linear separation is being used.

A perceptron can only compute linearly separable functions. How many linearly 
separable functions of n binary arguments are there? When n =  2, 14 out of the 16 
possible Boolean functions are linearly separable. When n =  3, 104 out of 256 and 
when n =  4, 1882 out of 65536 possible functions are linearly separable. No formula 
for expressing the number of linearly separable functions as a function of n has yet 
been found.

12.5.4 Perceptron Learning
A learning algorithm is an adaptive method by which a network of computing units 
self-organizes to implement the desired behaviour. This is done in some learning 
algorithms by presenting some examples of the desired input-output mapping to the 
network. A correction step is executed iteratively until the network learns to pro
duce the desired response. The learning algorithm is a closed loop of presentation 
of examples and of corrections to the network parameters.

Learning algorithms can be divided into supervised and unsuperuised methods. Su
pervised learning denotes a method in which some input vectors are collected and 
presented to the network. The output computed by the network is observed and 
the deviation from the expected answer is measured. The weights are corrected ac
cording to the magnitude of the error in the way defined by the learning algorithm.
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This kind of learning is also called learning with a teacher, since a control process 
knows the correct answer for the set of selected input vectors.

Unsupervised learning is used when, for a given input, the exact numerical output 
a network should produce is unknown. Assume, for example, that some points in 
two-dimensional space are to be classified into three clusters. For this task we can 
use a classifier network with three output lines, one for each class. Each of the three 
computing units at the output must specialize by firing only for inputs correspond
ing to elements of each cluster. If one unit fires, the others must keep silent. In 
this case we do not know a priori which unit is going to specialize on which cluster. 
Generally we do not even know how many well-defined clusters are present. Since 
no “teacher” is available, the network must organize itself in order to be able to 
associate clusters with units.

Supervised learning is further divided into methods which use reinforcement or error 
correction. Reinforcement learning is used when after each presentation of an input- 
output example we only know whether the network produces the desired result or 
not. The weights are updated based on this information (that is, the Boolean values 
true or false) so that only the input vector can be used for weight correction. In 
learning with error correction, the magnitude of the error, together with the input 
vector, determines the magnitude of the corrections to the weights, and in many 
cases we try to eliminate the error in a single correction step. The perceptron learn
ing algorithm is an example of supervised learning with reinforcement. Some of its 
variants use supervised learning with error correction (corrective learning).

The proof of convergence of the perceptron learning algorithm assumes that each 
perceptron performs the test wTx >  0. So far we have been working with percep- 
trons which perform the test w Tx >  0.

If a perceptron with threshold zero can linearly separate two finite sets of input 
vectors, then only a small adjustment to its weights is needed to obtain an absolute 
linear separation. This is a direct corollary of the following proposition.

P roposition . Two finite sets of points, A and В , in n-dimensional space which are 
linearly separable are also absolutely linearly separable.

A usual approach for starting the learning algorithm is to initialize the network 
weights randomly and to improve these initial parameters, looking at each step to 
see whether a better separation of the training set can be achieved. We identify 
points (a?i, • • • »£n) in n-dimensional space with the vector x  with the same co
ordinates.

Let P  and N  be two finite sets of points in R n which we want to separate linearly. 
A weight vector is sought so that the points in P  belong to its associated positive 
half-space and the points in N  to the negative half-space. The error of a perceptron



328 CHAPTER 12. NEURAL NETWORKS

with weight vector w  is the number of incorrectly classified points. The learning al
gorithm must minimize this error function E (w ). Now we introduce the perceptron 
learning algorithm. The training set consists of two sets, P  and TV, in n-dimensional 
extended input space. We look for a vector w  capable of absolutely separating both 
sets, so that all vectors in P  belong to the open positive half-space and all vectors 
in N  to the open negative half-space of the linear separation.

Algorithm . Perceptron learning 
start: The weight vector w(t =  0) is generated randomly 
test: A vector x G P  U N  is selected randomly, 

if x G P  and w(£)Tx > 0 goto test, 
if x G P  and w(i)rx <  0 goto add, 
if x G N  and w(£)Tx < 0 goto test, 
if x G N  and w(£)Tx >  0 goto subtract, 

add: set w (t +  1) =  w(t) +  x and t :=  t +  1, goto test 
subtract: set w(£ +  1) =  w(t) — x and t : = t  +  1 goto test

This algorithm makes a correction to the weight vector whenever one of the selected 
vectors in P  or N  has not been classified correctly. The perceptron convergence 
theorem guarantees that if the two sets P  and N  are linearly separable the vector 
w  is updated only a finite number of times. The routine can be stopped when all 
vectors are classified correctly.

Exam ple. Consider the sets in the extended space

P =  {(1.0,2.0,2.0), (1.0,1.5,1.5)}

N =  {  (1.0,0.0,1.0), (1.0,1.0,0.0), (1 .0 ,0 .0 ,0 .0)}.

Thus in R 2 we consider the two sets of points

{(2.0,2.0), (1.5,1.5)}, {(0.0,1.0), (1.0,0.0), (0.0,0.0) }  .

These two sets are separable by the line X\ +  x2 — §. Thus w T =  (—|, 1,1). A

The C + +  program c la ss ify , cpp implements the algorithm.

/ /  classify.cpp

#include <iostream>
#include <cstdlib>
#include <ctime> 
using namespace std;

void classify(double **P,double **N,int p ,in t n,double *w,int d) 
i

ia t i ,  j ,  k, classified  = 0; 
double *x, sum;
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srand(time(NULL)) ;
fo r (i= 0 ;i< d ;i+ + ) v [ i ]  = double(rand())/RAND_MAX; 
к = 0 ;
w hile( ! c la s s if ie d )
{
i  = rand()*/,(p+n-l); 
i f ( i< p )  x = P [ i ]  ; e lse  x = N [i-p ]; 
f o r ( j= 0 ,sum=0 ;j< d ;j+ + ) sum += w [ j]* x [ j ] ;  
i f ( ( i< p )  && (sum<=0) )  f o r ( j= 0 ; j<d; j++) w [j] += x [ j ]  ; 
i f ( ( i> = p ) && (sum>=0) )  f o r ( j= 0 ;j< d ;j+ + ) w [j] -=  x [ j ] ;  
k++;
c la s s if ie d  = 1;
/ /  check i f  the vectors are c la s s ifie d  
i f  ( (k*/, ( 2*p+2*n) ) == 0)
{
f o r ( i= 0 ;(i< p ) && c la s s ifie d ;i+ + )
{
sum = 0 . 0 ;
for(j=0,sum =0; j<d; j++) sum += w [j]*P [i] [ j ]  ; 

if(sum <= 0) c la s s if ie d  = 0 ;
>
fo r ( i= 0 ;(i< n ) && c la s s ifie d ;i+ + ) 

sum = 0 . 0 ;
f o r ( j= 0 ,sum=0 ; j<d; j++) sum += w [j]*N [i] [ j ]  ; 
if(sum  >= 0) c la s s if ie d  = 0 ;

>
>
e lse  c la s s if ie d  = 0 ;
>

in t main(void)
•c

double **P = new double*[2 ];
P[0] = new double [3 ]; P [l] = new double [3];
P [0] [0] = 1 . 0 ; PC03 [13 = 2 . 0 ; P[03 [23 = 2 .0 ;
PCI] [03 = 1.0 ; P[13 [13 = 1 .5 ; P[l3 [23 = 1.5; 
double **N = new double*[33;
NC03 = new double C33; N Cl3 = new double C33; NC23 = new double C33; 
NC03C03 = 1 .0 ; NC03C13 = 0 . 0 ; N[03 C2] = 1.0;
N[1] [0] = 1 .0 ; NC13C13 -  1 .0 ; N[13 [23 = 0 . 0 ;
N[23 [03 = 1 . 0 ; N[23 [13 = 0 .0 ; N[23 [23 = 0 .0 ; 
double *w = new double[33; 
c la s s ify (P ,N ,2 ,3 ,w ,3 ); 
cout «  "w = ( " «  w[03 «  " , " «  w[13 

«  " , " «  w[23 «  " ) " «  endl;
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delete [] P [03 ; d e le te d  PCI];
delete C3 N[0] ;  delete [] N[1] ;  d e lete  [] N C2] ;
delete [] P; delete [] N;
delete v;
return 0 ;

>

12.5.5 Perceptron Learning Algorithm
A simple perceptron learning algorithm is

1. Initialize the connection weight w to small random values.

2. Initialize acceptable error tolerance c<)

3. Set 6max =  0

4. For each of the input patterns {  Xj, j  — 0 ,1 ,..., m  — 1 }  do the following

(a) Calculate the output yj via

Vj =  H (  w r X j - 0 )

where H  is the Heaviside function and j  =  0 ,1 , . . . ,  rn — 1.
(b) Calculate the difference between the output yj and the desired output yj 

of the network
dj :=  yj -  Vj ■

(c) Calculate the changes in the connection strengths

Aw j  :=  rjdjXj

where 77 is the learning rate.
(d) Update the connection weight w according to

w <— w •+• Д Wj

(e) Set
€mex * max(emax, IMjII)

5. If emax > «о return to step 3.

Exam ple. Consider the AND gate, where m  =  4. Let

wT =  (0.005,0.006), e =  \ , £o =  0.01, 4  =  0.5 

with the input pattern

» - ( ! ) ■  » - « ) •  - ( ? ) ■  » - © ■



The desired output is

Уо =  0, 2/ i= = 0, y2 =  0, y3 =  1.

The calculations yield

1) (a) y0 =  #  (wr x0 - 9 )  =  0=>do =  y o - y o =  0=> Aw =  0

(b) yi =  # (w Txi -  в) =  0 => di =  yi -  t/i =  0 => A w  =  0

(c) y2 =  Я (w Tx 2 -  0) =  0 => d2 =  2/2 -  2/2 =  0 => A w  =  0

(d ) 2/3 =  # (w Tx 3 -  0) =  0 =* d3 =  Уз -  2/3 =  1 => A w  =  *7^з(1, 1) =  (0.5 ,0 .5)

=> w =  (0.505,0.506), бтох =  1

2) (a) y0 =  Я (wTx0 - 0 )  =  O=>do =  O=>- Aw =  0

(b) yi =  tf(w TXl - # )  =  0=s>di =  0=> Aw =  0

(c) y2 =  # (w Tx 2 — 0) =  O=>d2 =  O=̂ - Aw =  0

(d) y3 =  tf(w Tx3 — ^) =  0=>d3 =  l=^ A w  =  0.5(1,1) =  (0.5,0.5)

=» w  =  (1.05,1.06)

3) (a) y0 =  tf(w Txo - 0 )  =  O=»do =  O=> Aw =  0

(b) yi =  Я (w r xi — 0) =  O=*>di =  O=» Aw =  0

(c) y2 =  Я (w Tx 2 — 0) =  O =»d2 =  O=> Aw =  0

(d) y3 =  H (w Tx 3 — 0) =  1=>-с£з =  О=> Aw =  0

Thus with wT =  (1.05,1.06), в =  f  we can simulate the AND gate. In the extended 
space we have

w r  =  (гу0, wi, 11)2) — (—0 , Wi, ги2), x r  =  (1, xi, X2) .

In the C + +  program perceptronAnd. cpp we use the notation of the extended space. 
Furthermore, the threshold is also initialized to a small random value at t =  0.
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// perceptronAnd.cpp

#include <iostream>

#include <cmath> // for fabs 

using namespace std;

double H(double z)

if(z >= 0.0) return 1.0; 

else return 0.0;

>

double scalar(double* u,double* v,int n)

{
double result = 0.0;

for(int i=0;i<n;i++) result += u[i]*v[i]; 

return result;

>

double distance(double* u,double* v,int n)

•C
double result = 0.0;

for (int i=0;i<n;i++) result += fabs(u[i]-v[i] ) ; 

return result;

>

void change(double** x,double* yt.double* w,double eta,int m,int n)

double* d = new double[m]; 

for(int j=0;j<m;j++)

{
d[j] = yt[j]-H(scalar(w,x[j] ,n)) ;

for(int i=0;i<n;i++) {  w[i] += eta*d[j]*x[j] [i] ; }
>
delete [] d;

>

int main(void)

// number of input vectors (patterns) is m = 4

// length of each input vector n = 3

int m = 4, n = 3;
double** x = new double* [m];

for(int k=0;k<m;k++) x[k] = new double[n];

x[0][0] = 1.0; x[0] [1] = 0.0; x[0] [2] = 0.0;

x[l] [0] = 1.0; x[l][l] = 0.0; x[l][2] = 1.0; 

x[2] [0] = 1.0; x[2] [1] = 1.0; x[2] [2] = 0.0;
x[3] [0] = 1.0; x[3] [1] = 1.0; x[3] [2] = 1.0;
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// desired output 

double* yt = new double[m];

yt[0] = 0.0; yt[13 = 0.0; yt[2] = 0.0; yt[3] = 1.0;

// weight vector

// w[0] = -theta (threshold)

double* w = new double[n];

// initialized to small random numbers 
w CO] = 0.01; w[l] = 0.005; w[2] = 0.006;

// learning rate 

double eta = 0.5;

double* wt = new double[n]; 

for(int i=0;i<n;i++) wt[i] = w[i] ;

for(;;)

{
change(x,yt,w,eta,m,n); 

double dist = distance(w,wt,n); 

if(dist < 0.0001) break; 

for(i=0;i<n;i++) wt[i] = w[i] ;

>

// display the output of the weight vectors

for(i=0;i<n;i++) cout «  "w[" «  i «  "] = " «  w[i] «  " ";

deleted w; deleted wt; deleted yt; 

for(i=0;i<m;i++) { deleted x[i]; > 
delete [] x; 
return 0;

>

The output is given by

v[0] = -1.49 w[l] = 1.005 w[2] - 0.506 

Thus with
Wo =  —в =  —1.49, W\ =  1.005, W2 =  0.506 

we can simulate the AND gate.

12.5.6 One and Two Layered Networks
We now consider feed-forward networks structured in successive layers of computing 
units. The networks we want to consider must be defined in a more precise way in 
terms of their architecture. The atomic elements of any architecture are the comput
ing units and their interconnections. Each computing unit collects the information
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from n input lines with ал integration function

E : R n —* R .

The total excitation computed in this way is then evaluated using an activation 
function

/ :  R - R .

In perceptrons the integration function is the sum of the inputs. The activation, 
also called output function, compares the sum with a threshold. We can generalize 
/  to produce all values between 0 and 1. In the case of £  some functions other 
than addition can also be considered. In this case the networks can compute some 
difficult functions with fewer computing units.

Definition. A network architecture is a tuple ( / ,  N ,0 ,E )  consisting of a set I  of in
put sites, a set N  of computing units, a set О of output sites and a set E  of weighted 
directed edges. A directed edge is a tuple (u, v , w) whereby u € l U N tv € N u O  
and w G R .

The input sites are just entry points for information into the network and do not 
perform any computation. Results are transmitted to the output sites. The set N  
consists of all computing elements in the network. Note that the edges between all 
computing units are weighted, as are the edges between input and output sites and 
computing units.

Layered architectures axe those in which the set of computing units N  is subdivided 
into i  subsets N\, N2, . . . ,  N( in such a way that only connections from units in N\ 
go to units in N2, from units in N2 to units in N3, etc. The input sites are only 
connected to the units in the subset Ni, and the units in the subset Ng axe the only 
ones connected to the output sites. In the usual terminology, the units in Ng are the 
output units of the network. The subsets N{ are called the layers of the network. 
The set of input sites is called the input layer, the set of output units is called the 
output layer. All other layers with no direct connections from or to the outside are 
called hidden layers. Usually the units in a layer are not connected to each other 
(although some neural models make use of this kind of architecture) and the output 
sites are omitted from the graphical representation. A neural network with a layered 
architecture does not contain cycles. The input is processed and relayed from the 
layer to the other, until the final result has been computed.

In layered architectures normally all units from one layer are connected to all other 
units in the following layer. If there are m  units in the first layer and n units in the 
second one, the total number of weights is mn. The total number of connections 
can be rather large.
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12.5.7 X O R  Problem and Two-Layered Networks

The properties of a two-layered network can be discussed using the case of the XOR 
function as an example. A single perceptron cannot compute this function, but a 
two-layered network can. The network in Figure 12.5 is capable of doing this.

Figure 12.5. A three-layered network for the computation of XOR

The network consists of an input layer, a hidden layer and an output layer and 
three computing units. One of the units in the hidden layer computes the function 
X\ Л ->x2, and the other the function ->rci A x2. The third unit computes the OR 
function, so that the result of the complete network computation is

(zi Л ->x2) V (-4 i A x2).

The calculations for the XOR gate are as follows. We work in the extended space. 
The input vectors are

1) input layer — ► hidden layer. The weights are

W qoq =  -0 .5 , W o o l  =  1-0, UIQ02 =  -1 .0

worn =  -0 .5 , won =  -1 .0 , w ou ^ l-O .

The weight has three indexes. The first index indicates the layer, in this case 0 for 
the input layer. The second index indicates to which node in the hidden layer it 
points where the number for the hidden node is incremented by 1 so that we can 
assign the index 0 to the bias in the hidden layer. The third index indicates the 
number of the neurons.

Consider the input vector xo
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a) H((wooo,wooi,W002) —  ̂ (— 0-5) —  0 —  zq

b) #((^010,^011,^012) ^ 0j) =  # ( -0 .5 )  =  0 =  z\ 

Consider the input vector Xi

a) H{(w000,̂ 001,̂ 002) ̂ 0j) =  # ( - 1.5) =  0 =  z0

b) #((^010,^011,^012) ( 0 j) =  # ( + 0.5) =  1 =  zi

Consider the input vector X2 

( l \
a) #((^000,^001,^002) 1

\o
) =  # (+ 0 .5 ) =  1 =  zq

b) # ( ( ^ 010,^ 011,^ 012) ^1 j )  =  # ( -1 .5 )  =  0 =  2:1 

Consider the input vector X3

a) # ( ( ^ 000, 1̂ 001,^ 002) y l  J )  =  # ( -0 .5 )  =  0 =  zo

b) #((^000,^021,^022) ^ 1j) =  # ( - 0.5) =  0 =  zi

2) hidden layer — ► output. From the above calculations for zq and z\ we find that 
the input pairs from the hidden layer are (1 , 0 , 0 ), (1 , 0 , 1 ), (1 , 1 , 0 ) and (1 , 0 , 0 ). 
Thus the first and the last patterns are the same. The weights are

W100 =  -0 .5 , Ю101 =  1.0, W102 =  1.0.

Consider input pattern (1,0,0) from hidden layer

a) #((^100,^101,^102) (° j) =  # (- 0.5) =  0
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Consider input pattern (1,0,1) from hidden layer

b) #((wioo,tUioi,Wio2) ^ 0 ^ ) =  # (+0 .5 ) =  1 

Consider input pattern (1,1,0) from hidden layer

c) # ( ( ^ 00,^ 101, ^ 102) ^1 j )  =  # (+0 .5 ) =  1

Consider input pattern (1,0,0) from hidden layer (already considered above)

d) # ((w ioo,^ 101, ^ 102) ( 0 ) )  =  # ( -0 .5 )  =  0.

Thus we have simulated the XOR gate using a hidden layer.

// XORl.cpp

«include <iostream> 

using namespace std;

double H(double s)

{
if(s >= 0.0) return 1.0; 

else return 0.0;

>

double map(double*** w,double* testpattern.int size3) 

int k;
double* z = new double [size3]; 

z[0] = 1.0; z[l] = 0.0; z[2] = 0.0;

// input layer to hidden layer 

for(k=0;k<size3;k++)

zCl] += w[0] [0] [k] *testpattern [k];

z [2] += w[0] [1] [k] *testpattern [k];

>
z[l] = H(z[l]); z [2] = H(z[2]);

// hidden layer to output layer 

double у = 0.0;
f or(k=0;k<size3;k++) у += w[l] [0] [к] *z[k] ;
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deleted z; 

у = HCy); 
return y;

>

int main(void)

int sizel, size2, size3; 

sizel = 2; size2 = 2; size3 = 3;

double*** v = NULL; 

w = new double** [sizel]; 

for(int i=0;i<sizel;i++)

{
w[i] = new double* [size2] ;

for(int j=0;j<size2;j++) { w[i][j] = new double[size3] ; >

>
v[0][0][0] = -0.5; w[0] [0] [1] = 1.0; w[0] [0] [2] = -1.0; 

w[0][l][0] = -0.5; w[0] [1] [1] = -1.0; w[0][l] [2] = 1.0; 

w[l] [0] [0] = -0.5; w[l] [0] [1] = 1.0; w[l] [0] [2] = 1.0; 

w[l] [1] [0] = 0.0; w[l][l][l] = 0.0; w[l] [1] [2] = 0.0;

// input patterns

int p = 4; // number of input pattern 

int n = 3; // length of each input pattern 

double** x = NULL; 

x = new double* [p];

for(int k=0;k<p;k++) { x[k] = new double [n]; > 

x[0] [0] = 1.0; x[0] [1] = 0.0; x[0] [2] = 0.0; 

x[l] [0] = 1.0; x[l][l] = 0.0; x[l] [2] = 1.0; 

x[2] [0] = 1.0; x[2] [1] = 1.0; x[2] [2] = 0.0; 

x[3] [0] = 1.0; x[3] [1] = 1.0; x[3] [2] = 1.0;

double result = map(w,x[0],size3);

cout « "result = " «  result « endl; // => 0
result = map(w,x[l] ,size3) ;
cout « "result = " «  result « endl; // => 1
result = map(w,x[2] ,size3) ;
cout « "result = " «  result « endl; // => 1
result =: map(w,x[3] ,size3);
cout « "result = " «  result « endl; // => 0

>
return 0;
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12.6 Multilayer Perceptrons

12.6.1 Introduction

In a practical application of the back-propagation algorithm, learning results from 
the many presentations of a prescribed set of training examples to the multilayer 
perceptron. One complete presentation of the entire training set during the learning 
process is called an epoch. The learning process is maintained on an epoch-by-epoch 
basis untilthe synaptic weights and threshold levels of the network stabilize and the 
average squared error over the entire training set converges to some minimum value. 
It is good practice to randomize the order of presentation of training examples from 
one epoch to the next. This randomization tends to make the search in weight space 
stochastic over the learning cycles, thus avoiding the possibility of limit cycles in the 
evolution of the synaptic weight vectors. We follow in our notation closely Hassoun 
[49]. For a given training set, back-propagation learning may thus proceed in one of 
two basic ways.

Let

{ x fc, dfc}

be the training data, where fc =  0 ,1 ,. .. ,m  — 1. Here m is the number of training 
examples (patterns). The sets x* (k =  0 ,1 , . . . ,m — 1) are the input pattern and the 
sets dfc are the corresponding (desired) output pattern. One complete presentation 
of the entire training set during the learning process is called an epoch.

1. Pattern Mode. In the pattern mode of back-propagation learning, weight updat
ing is performed after the presentation of each training example; this is the mode 
of operation for which the derivation of the back-propagation algorithm presented 
here applies. To be specific, consider an epoch consisting of m training examples 
(patterns) arranged in the order

Xo>do, X i,db •••> xm_ i,d m_ i .

The first example x0, d0 in the epoch is presented to the network, and the sequence 
of forward and backward computations described below is performed, resulting in 
certain adjustments to the synaptic weights and threshold levels of the network. 
Then, the second example Xi, di in the epoch is presented, and the sequence of 
forward and backward computations is repeated, resulting in further adjustments 
to the synaptic weights and threshold levels. This process is continued until the last 
training pattern x m_i, dm_i is taken into account.

2. Batch Mode. In the batch mode of back-propagation learning, weight updating 
is performed after the presentation of all the training examples that constitute an 
epoch.
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12.6.2 Cybenko’s Theorem
Single-hidden-layer neural networks are universal approximators. A rigorous math
ematical proof for the universality of feedforward layered neural networks employing 
continuous sigmoid type activation functions, as well as other more general activa
tion units, was given by Cybenko [22]. Cybenko’s proof is based on the Hahn-Banach 
theorem. The following is the statement of Cybenko’s theorem.

Theorem . Let /  be any continuous sigmoid-type function, for example

/( s )  =  1/(1 +  exp(-A s)), A >  1.

Then, given any continuous real-valued function g on [0, l]n (or any other compact 
subset of R n) and e >  0, there exists vectors w i,w 2, . . . ,w ^ ,  a , and в  and a 
parameterized function

G (.,w ,a ,0 )  : [0,1]" ^ R

such that
|G(x, w, а , 0) — g(x)\ < e for all x  G [0, l]n

where
N

G(x, w ,a ,0 )  =  5 3 ai / ( wJx  +  ^ )  
j = l

and
wj e  R n, 6j e  R , w =  (w b w 2, . . . ,  w N) 

a  =  (qi,Q 2» • • ч <*//), в  =  (0i, 02, • • • >0n) •

For the proof we refer to the paper by Cybenko [22].

Thus a one-hidden layer feedforward neural networks is capable of approximating 
uniformly any continuous multivariate function to any desired degree of accuracy. 
This implies that any failure of a function mapping by a multilayer network must 
arise from inadequate choice of parameters, i.e., poor choices for w b w 2, . . . ,  ww, 
and 9 or an insufficient number of hidden nodes.

Hornik et al. [54] employing the Stone-Weierstrass theorem and Funahashi [36] 
proved similar theorems stating that a one-hidden-layer feedforward neural network 
is capable of approximating uniformly any continuous multivariate function to any 
desired degree of accuracy.

12.6.3 Back-Propagation Algorithm
We consider one hidden layer. The notations we use follow closely Hassoun [49] .Thus 
we consider a two-layer feedforward axchitecture. This network receives a set of 
scalar signals

Xq, X2, • . . , £n_i
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where xo is a bias signal set to 1. This set of signals constitutes an input vector 
x* G R n. The layer receiving this input signal is called the hidden layer. The hidden 
layer has J units. The output of the hidden layer is a J dimensional real-valued 
vector z* =  (zo ,z i,. . .  where we set zq =  1 (bias signal). The vector z*
supplies the input for the output layer of L units. The output layer generates an 
L-dimensional vector y* in response to the input vector Xfc which, when the network 
is fully trained, should be identical (or very close) to the desired output vector d* 
associated with x*.

The two activation functions Д  (input layer to hidden layer) and fQ (hidden layer 
to output layer) are assumed to be differentiable functions. We use the logistic 
functions

fh{s) i  +  exp(—A^s) ’ l - fe x p (-A 0s)

where A/i,Ac > 1. The logistic function

^ Ŝ  1 +  exp(-As) 

satisfies the nonlinear differential equation

The components of the desired output vector d* must be chosen within the range 
of f 0. We denote by Wji the weight of the jth  hidden unit associated with the input 
signal Xi. Thus the index i runs from 0 to n  — 1, where x0 =  1 and j  runs from 1 to 
J — I. We set woi =  0. Now we have m input/output pairs of vectors

{ Xfc , dk }

where the index к runs from 0 to m — 1. The aim of the algorithm is to adap
tively adjust the (J — 1 )n +  LJ weights of the network such that the underlying 
function/mapping represented by the training set is approximated or learned. Let 
W\j be the weights from the hidden layer to the output and let w# be the weights 
from the input layer to the hidden layer. We can define an error function since the 
learning is supervised, i.e. the target outputs are available. We denote by tuy the 
weight of the Ith output unit associated with the input signal Zj from the hidden 
layer. We derive a supervised learning rule for adjusting the weights Wji and wij 
such that the error function

£ (w ) =  I
z /=o

is minimized (in a local sense) over the training set. Here w represents the set of 
all weights in the network.
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Since the targets for the output units are given, we can use the delta rule directly 
for updating the wij weights. We define

we find using the chain rule

Дшц =  7)0{di -  yi)fo(neti)zj 

where I =  0 ,1 , . . . ,  L -  1 and j  =  0 ,1 , . . . ,  J — 1. Here

j -1
nett :=  53 wijzj 

j=о

is the weighted sum for the Ith output unit, / '  is the derivative of f 0 with respect to 
net, and w™w and wfj are the updated (new) and current weight values, respectively. 
The Zj values are calculated by propagating the input vector x  through the hidden 
layer according to

where j  =  1 ,2 , . . . ,  J — 1 and zq =  1 (bias signal). For the hidden-layer weights Wji 
we do not have a set of target values (desired outputs) for hidden units. However, we

layer error. This amounts to propagating the output errors (di — yi) back through 
the output layer toward the hidden units in an attempt to estimate dynamic targets 
for these units. Thus a gradient descent is performed on the criterion function

Дwt j :=  -  wfj .

Since

can derive the learning rule for hidden units by attempting to minimize the output-

*  1=0
where w  represents the set of all weights in the network. The gradient is calculated 
with respect to the hidden weights

Awji =  -TfaTr— , j  =  1 ,2 , . . . ,  J -  1, i =  0 ,1 , . . . ,  n -  1
O W ji

d n e tj dzj
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We used the chain rule in this derivation. Since 
BE ь- i
а 7  =  - Е № - y{]f'o(net{)Wij 
UZi 1=0

we obtain

=  r}h (^ J 2 (d i ~  y i ) f o ( n e t i ) w h ^  f h ( n e t j ) x i •

Now we can define an estimated target for the 7 th hidden unit implicitly in terms 
of the backpropagated error signal as follows

L-1

d j -  Zj :=  J 2 ( d i -  y i ) f o ( n e t i )w ij  ■
1=0

The complete approach for updating weights in a feedforward neural net utilizing 
these rules can be summarized as follows. We do a pattern-by-pattern updating of 
the weights.

1. Initialization. Initialize all weights to small random values and refer to them as 
current weights wfj and ги£.

2 . Learning rate. Set the learning rates rj0 and щ  to small positive values.

3. Presentation o f training example. Select an input pattern x* from the training set 
(preferably at random) propagate it through the network, thus generating hidden- 
and output-unit activities based on the current weight settings. Thus find Zj and 
3/1-

4. Forward computation. Use the desired target vector d* associated with x*, and 
employ

A wij =  rj0(di -  y i)f{neti)zj =  7)0{di -  -  f(neti))zj

to compute the output layer weight changes Awy.

5. Backward computation. Use

A w ^  =  щ  y i) f 'o (n e t i ) w ^  f i i (n e i j ) x i

or

=  r)h ( Y , ( d i ~  y i ) X o f o { n e t i ) (  1 -  f 0(n e t i ) )w i j  \ Xhf h ( n e t j ) ( l  -  //»(net,))x,- 
\ i= 0 '

to compute the hidden layer weight changes. The current weights are used in these 
computations. In general, enhanced error correction may be achieved if one employs 
the updated output-layer weights

w™w =  wfj +  A wij.
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However, this comes at the added cost of recomputing yi and f'(neti).

6. Update weights. Update all weights according to

w * r  =  wcji +  Awji

and
< "  =  Ч - +  Д^

for the output and for the hidden layers, respectively.

7. Test for convergence. This is done by checking the output error function to see 
if its magnitude is below some given threshold. Iterate the computation by pre
senting new epochs of training examples to the network until the free parameters of 
the network stabilize their values. The order of presentation of training examples 
should be randomized from epoch to epoch. The learning rate parameter is typi
cally adjusted (and usually decreased) as the number of training iterations increases.

In the C + +  program we apply the back-propagation algorithm to the XOR problem, 
where m =  4 is the number of input vectors each of length 3 (includes the bias input). 
The number of hidden layer units is 3 which includes the bias input z0 =  1. By 
modifying m, n, J and L the program can easily be adapted to other problems.

// backpropagationl.cpp

#include <iostream>

#include <cmath> // for exp 

using namespace std;

// activation function (input layer -> hidden layer) 

double fh(double net)

{ double lambdah = 10.0; return 1.0/(1.0+exp(-lambdah*net)); }

// activation function (hidden layer -> output layer) 

double fо(double net)

{ double lambdao = 10.0; return 1.0/(1.0+exp(-lambdao*net)) ; > 

double scalar(double* al,double* a2,int length) 

double result = 0.0;

for(int i=0;i<length;i++) {  result += al[i]*a2[i]; > 
return result;

>

int main()

int k, i, j, 1; // summation index

// к runs over all input pattern k=0,l,..,m-l
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// 1 runs over all output units 1=0,1,..,L-1

// j runs over all the hidden layer units j=0,l,..,J-l

// i runs over the length of the input vector i=0,l,..,n-l

double etao = 0.05, etah =0.05; // learning rate

double lambdao = 10.0, lambdah ■ 10.0;

// memory allocations 

double** x = NULL;

int m = 4; // number of input vectors for XOR problem 

int n = 3; // length of each input vector for XOR problem 

// input vectors 

x = new double* [m];

for(k=0;k<m;k++) x[k] = new double [n]; 

x[0] [0] = 1.0; x[0] [1] = 0.0; x[0] [2] = 0.0; 
x[l] [0] = 1.0; x[l][l] = 0.0; x[l][2] = 1.0; 

x[2][0] = 1.0; x[2] [1] = 1.0; x[2][2] = 0.0; 

x[3][0] = 1.0; x[3] [1] = 1.0; x[3] [2] = 1.0;

// desired output vectors 

// corresponding to set of input vectors x 

double** d = NULL;

// number of outputs for XOR problem 
int L = 1;

d = new double* [m];

for(k=0;k<m;k++) d[k] = new double [L];
d[0] [0] = 0.0; dCl] [0] = 1.0; d [2] [0] = 1.0; d[3] [0] = 0.

// error function for each input vector 

double* E = new double[m];

double totalE = 0.0; // sum of E[k] к = 0, 1, .. , m

// weight matrix (input layer -> hidden layer);

// number of hidden layers includes 0 

// current 
int J = 3; 

double** Wc = NULL;

Wc = new double* [J];
for(j=0;j<J;j++) Wc[j] = new double[n];

Wc[0] [0] = 0.0; Wc[0] [1] = 0.0; Wc[0] [2] = 0.0;

Wc[1] [0] = -0.2; Wc[1] [1] = 0.5; Wc[l][2] = -0.5;

Wc[2] [0] = -0.3; Wc[2] Cl] = -0.3; WcC2]C2] = 0.7;

// new
double** Wnew = NULL; Wnew = new double*CJ]; 

for(j=0;j<J;j++) WnewCj] = new double[n];
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I I weight matrix (hidden layer -> output layer)
// current
double** Whc = NULL; Whc = new double* [L]; 

for(l=0;l<L;l++) Whc[l] = new double [J];

Whc[0] [0] = -0.2; Whc[0] [1] = 0.3; Whc[0][2] = 0.5;

// new

double** Whnew = NULL; Whnew = new double*[L]; 

for(l=0;l<L;l++) Whnew[l] = new double[J];

// vector in hidden layer 

double* z = new double[J]; 

z[0] = 1.0;

// vector output layer (output layer units)

// for the XOR problem the output layer has only one element 

double* у = new double[L];

// increment matrix (input layer -> hidden layer) 

double** delW = NULL; delW = new double*[J]; 

for(j=0; j<J; j++) delW [j] = new double [n];

// increment matrix (hidden layer -> output layer) 

double** delWh = NULL; delWh = new double*[L]; 

for(l=0;l<L;l++) delWh[l] = new double [J];

// net vector (input layer -> hidden layer) 

double* netj = new double [J]; 

netj[0] = 0.0;

// net vector (hidden layer -> output layer) 

double* netl = new double[L];

// training session

int T = 10000; // number of iterations

for(int t=0;t<T;t++)

•C
// for loop over all input pattern 

f or(k=0;k<m;k++)

{
for(j=l;j<J;j++)

{  net j [j] = scalar (x [k] ,Wc[j] ,n); z[j] = fh(netj[j]); > 
for(l=0;l<L;l++)

i  netl[l] = scalar(z,Whc[1] , J) ; y[l] = fo(netl[l]); >

fo r (1=0;1<L; 1++) 
for(j=0;j<J;j++) 

delWh [1] [j] =
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etao* (d [к] [1] -y [1])*lambdao*fо(netl [1])*(1.0-fо(netl [1] ) )*z

double* temp = new double [J]; 

for(j=0;j<J;j++) temp[j] = 0.0;

for(j=0;j<J;j++) 

fo r (1=0;1<L; 1++) 
temp[j] +=

(d[k] [1] -y [1]) *fo (netl [1])*(1.0-f о (netl [l]))*Whc[l] [j] ;

for(j=0;j<J;j++) 

for(i=0;i<n;i++) 
delW[j] [i] =

etah*temp [j] *lambdah*fh(net j [j]) * (1.0-fh(net j [j] ) ) *x [k] [i] ;

for(i=0;i<n;i++) delW[0][i] = 0.0;

// updating the weight matrices 

for(j=0;j<J;j++) 

for(i=0;i<n;i++) Wnew[j][i] = Wc[j] [i] +delW[j] [i] ;

for(l=0;l<L;l++) 

for(j=0; j<J; j++) Whnew[1] [j] = Whc[l] [j]+delWh[l] [j];

// setting new to current 

for(j=0;j<J;j++) 

for(i=0;i<n;i++) Wc[j] [i] = Wnew[j][i];

fo r (1=0;1<L;1++) 
for(j=0;j<J;j++) Whc[l][j] = Whnew[l][j];

E[k] = 0.0; 

double sum = 0.0;
for(1=0; 1<L; 1++) sum += (d[k] [1 ]-y[1])*(d[k] [l]-y[l]) ;

E[k] - sum/2.0; 

totalE += E[k] ;
)■ // end for loop over a l l input pattern 
if(totalE < 0.0005) goto Label;

else totalE =0.0;

> // end training session

Label:
cout << "number of iterations = " «  t «  endl;

// output after training 

for(j=0;j<J;j++) 
for(i=0;i<n;i++) 

cout «  "WcC" «  j «  "] C" «  i «  "3 e "
«  Wc[j][i] «  endl;
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cout «  endl;

fo r (1=0;1<L;1++) 
for(j=0;j<J;j++)

cout «  "WhcC" «  1 «  "] [" «  j «  "] = "

«  Whc[l][j] «  endl;

// testing the XOR gate 

// input (1,0,0) 
for(j=l;j<J;j++)

{ net j [j] = scalar (x [0] ,Wc[j] ,n) ; z[j] = fh(netj[j]); > 

f o r (1=0;1<L;1++)
{ netl[l] = scalar (z,Whc[l] , J); у Cl] = fo(netl[l]); 

cout «  "y[" «  1 «  «'] = " «  у Cl] «  endl; >

// input (1,0,1) 

for(j=l;j<J;j++)

{ netj[j] = scalar(x[l] ,Wc[j] ,n) ; z[j] = fh(netj[j]); > 

for(1=0;1<L;1++)

{ netlCl] = scalar(z,Whc[l] , J); y[l] = fo(netl[l]); 

cout «  "y[" «  1 «  "] = " «  у Cl] «  endl; >

// input (1,1,0) 

for(j=l;j<J;j++)

{ netjCj] = scalar (x C2] ,Wc С j] ,n); zCj] = fh(netjCjl); > 

for(1=0;1<L;1++)

{ netlCl] = scalar(z,WhcCl] , J); y[l] = fo(netlCl]); 
cout «  "yC" «  1 «  "] = " «  y[l] «  endl; >

// input (1,1,1) 

for(j=l;j<J;j++)

{ net j [j] = scalar (x C3] ,WcCj] ,n); zCj] = fh(netjCjl); > 

f o r (1=0;1<L;1++)
{ netlCl] = scalar (z, WhcCl] , J) ; у CO] = fo(netlCl]); 

cout «  "y[" «  1 «  "] = " «  у Cl] «  endl; >

return 0;

>

12.6.4 Recursive Deterministic Perceptron Neural Networks

The recursive deterministic perceptron feed-forward multilayer neural network is a 
generalization of the single layer perceptron topology (Elizondo et al [30]). This
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model can solve any two-class classification problem as opposed to the single layer 
perceptron topology. The construction of a recursive deterministic perceptron feed
forward multilayer neural network is done automatically and convergence is always 
guaranteed. The basic idea is to map into higher dimensional Euclidean spaces.

We illustrate the approach with the XOR problem. As described above this problem 
consists of classifying the two classes

X -  {(0 ,0 ), (1 ,1 )}, У =  {(0 ,1 ), (1 ,0 )}

which are not linearly separable. We are working in the Euclidean space R 2. To 
perform the non-linearly separable to linearly separable transform, a subset of pat
terns of the same class, which is linearly separable from the rest of the patterns is 
selected. We select the subset

{ ( o , o ) } c x u y .

The sets { (0,0) }  and {  (0,1), (1,0), (1,1) } are linearly separable by the line 

Pi =  { ( x u x 2) e R 2 : 2 * i+  2x2 - 1 =  0 } .

The intermediate neuron INI corresponding to the single layer perceptron topology 
of weight vector w =  (2,2) and threshold 9 =  — 1 associated with the line P\ 
is created. The output of INI is added to the (four) input vectors of X  and Y. 
One column is added by assigning the value —1 to the input pattern (0,0) and the 
value 1 to the remaining three input patterns (0,1), (1,0), (1,1)- This single layer 
perceptron topology provides the following sets of augmented input vectors

X' = { (0,0, -1), (1,1,1)}, Y' = {(0,1,1), (1,0,1)} •

These vectors are in the Euclidean space R 3. In R 3 these vectors can be linearly 
separated by the plane

Pi =  {(*i,® 2,*3) €  R 3 : -2 x i -  2x2 +  4x3 -  1 =  0 }  .

Now a second intermediate neuron IN2 (output neuron) which corresponds to the 
single layer preceptron topology with the weight vector w =  (—2, —2,4) and the 
threshold в =  - 1 ,  associated to the plane, is created. Thus we obtain a two 
layer recursive deterministic perceptron neural networks solving the XOR clas
sification problem since the output value of this neural network is —1 for the 
vectors (0,0), (1,1) and 1 for the vectors (0,1), (1,0). Its formal description is 
[(2 ,2 ),-1 ), ( ( -2 ,- 2 ,4 ) ,  01)].

Algorithms for the general case are described by Elizondo et al [30].
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12.7 Chaotic Neural Networks
In designing a neural network, it is usually of prime importance to guarantee the 
convergence of dynamics for the corresponding system. On the other hand, richer 
dynamics provide wider applications. For example, transient chaotic behaviours 
provide higher searching ability for globally optimal or near optimal solutions, in 
using neural network models as an approximation method for the combinatorial 
optimization problems. A chaotic neural network can be constructed with chaotic 
neurons by considering the spatio-temporal summation of both external inputs and 
feedback inputs from other chaotic neurons (Chen [15]). An example of the dynamics 
of a transient chaotic neural network with N  neurons is given by

xAt) = ----------- ------------
1 +  exp(—Ау»(£))

Vi(t +  1) =  kVi(t) +  a  ( £  WijXj(t) +  Л  -  *(*)(**(*) -  /о)
v=i  J

* ( t + l  ) =  ( l -p )Z i ( t )  
where i =  1 ,2 , . . . ,  N, t =  0 ,1 ,..., and

X {(t)  output of neuron i  (0 <  xt- <  1)
yi(t) internal state of neuron i
Zi(t) self-feedback connection weight (г» >  0)

with

Wij connection weight between neuron i  and j  

A slope parameter of sigmoid function 
к decay parameter of yi (0 <  к <  1) 
a  positive scaling parameter for inputs 
P decay parameter of z* (0 <  P <  1)
Ii external input to neuron г 
/о positive constant

We assume that a neuron does not receive a feedback from itself, i.e. Wjj — 0. The 
transiently chaotic neural network is characterized as follows. At the initial state, 
the variable Zj (0) is so large that a network state is chaotic and the network searches 
a global solution. Then Zj(t) is gradually decreased with time t. The network is also 
gradually changed from a chaotic state to a steady state. An optimization process of 
the transiently chaotic neural network is regarded as a chaotic simulated annealing. 
The network can be used to find solutions of the traveling salesman problem.

Another chaotic neural network considered in the literature (Tan [111], Bauer [7]) 
is given by

5<(‘  +  1) =  / ( Х > ^ м ) ,  i =  1,2........N
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with
f ( x )  :=  tanh (ax) e 0x2

where a  and P are positive constants and t =  0 ,1 ,__  Here the N  neurons are
connected to one another through the synapses Jij (i , j  =  1 , 2 , ,  N). Depending 
on the matrix elements Jy and the parameters a  and p, the system can be chaotic 
or nonchaotic. For example, for TV =  4, a  =  3, (3 =  2, and

the system is hyperchaotic. This hyperchaotic system with N =  4, a  =  3, p — 2 
has infinitely many unstable periodic points embedded in a finite phase space. This 
chaotic neural network can be used for pattern recognition using the fixed points of 
the map as the patterns themselves.

12.8 Neuronal-Oscillator Models
We discuss three different neuronal-oscillator models - the Stein neuronal model, 
Van der Pol oscillator, and the FitzHugh-Nagumo model.

The Stein neuronal model can provide oscillatory output. It is defined by the system 
of first order differential equations

for j  =  1,2,3,4 where Xj(t) represents the membrane potential (or the firing rate) 
of the jth  neuronal oscillator, a is a rate constant affecting the frequency of the 
oscillations, f Cj is the driving signal for the oscillator j ,  b allows the model to adapt 
to a change in stimulus, and p and q control the rate of adaption. Adaption refers to 
the time-dependent decline in the firing rate of the model following the application 
of a step change in the driving stimulus. The driving signal f Cj is assumed to have 
both a steady-state (tonic) component and a periodic component and is given by

where /  is an amplitude parameter, k\ and ш control the amplitude and frequency, 
respectively, of the periodic component of the driving signal, Ajy is the coupling

/0.01 1.50 0.03 0.01
1.60 0.01 0.10 1.00
0.03 0.02 0.01 1.50

\0.00 1.00 1.70 0.01/

dzj
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term that represents the strength o f oscillator fc’s effect on oscillator j , and Xk(t) is 
the membrane potential of oscillator fc. The value o f Ajy is normally set to —0.2 if 
oscillator fc inhibited oscillator j ,  and its value was set to 0.0 if oscillator fc did not 
affect oscillator j .

The driven Van der Pol oscillator as model for a neuronal-oscillator is given by

/ о 0\ dx* о 
+  И xaj -  V )-fo  +  ^  xaj =  g (l +  kl sin (ut))

for j  =  1 ,2 ,3 ,4  where Xj(t) is the output signal from oscillator j ,  xaj is the same 
signal affected by the coupling, /2 controls the degree o f nonlinearity o f the oscilla
tor and therefore affects the shape o f its waveform, p controls the amplitude o f the 
oscillations, П influences the frequency of the oscillations, q is an amplitude param
eter, and ki and u> control the amplitude and frequency, respectively, o f the periodic 
component o f the driving signal. A possible coupling between the oscillators could 
be

4

X a j{ t )  :=  X j ( t )  +  5 3  Ak jX k ( t )  
k=  1

where Akj  is a coupling term that represents the strength o f oscillator fc’s effect on 
oscillator j , and xk(t) is the output signal from oscillator fc. The value o f Ajk  is 
normally set to —0.2 if oscillator fc inhibited oscillator j , and its value is set to 0.0 
if oscillator fc did not affect oscillator j .

The FitzHugh-Nagumo model is the following coupled system o f differential equations

dx, (  x? \ dv- \
~ d t ~ c  +  хз +  y  +  /c iW j » =  - ~ ( x j  ~  a +  byj)

for j  =  1 ,2 ,3 ,4  where Xj(t) is the membrane potential o f the jth  neuronal oscillator, 
f Cj{t) is the driving signal for oscillator j , and a, 6, and с are constants that do not 
correspond to any particular physiological parameters. The driving signal f Cj(t)  is 
assumed to have a tonic component and a periodic component, i.e.

fcj(t) =  fa +  fb [k i  sin (ut) +  5 3  *kjXk(t)
\ k=1

where f a is the steady-state value of the driving signal, /5 is an amplitude parameter 
that affects the magnitude of the variable component o f the driving signal, fci and 
to control the amplitude and frequency, respectively, of the periodic component o f 
the driving signal, Ajy is a coupling term that represents the strength o f oscillator 
fc s effect on oscillator j , and X k (t )  is the membrane potential o f oscillator fc. The 
values o f Akj  are normally set to —0.2 if oscillator fc inhibited oscillator j t and its 
value is set to 0.0 if oscillator fc did not affect oscillator j .
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A system of differential equations to model a generic neuron is given by

Tm d~ -  =  -V m (t) +  { !  +  дкШ У'К -  Vm(t)))R

Te~ d t~  ~  ~  ^  ®rnaxVm(t)

T9K~ 9 “  =  ~ 9 f < ( t )  +  9K ,maxH(Vm(t), в(t))

where

Here Vm(t) is the cellular membrane potential, H(Vm(t),e(t)) the analogous proba
bility of being in the active state, 9(t) a threshold, gk{t) a generic potassium con
ductance, R  the average membrane resistance. The parameters / ,  VeK, во, втах and 
9к,max are described below. The behaviour of this model is as follows: every time the 
neuron fires (i.e. it generates an action potential), an increment of <?*■(£) is released, 
which subsequently decays with an exponential rate. This ensures, via the bounding 
between Vm(t) and the dynamic threshold in the second equation, a mechanism of 
ripolarization, whose temporal modalities are regulated mainly by the parameters 
втах (that is the threshold sensitivity, while дк.тах holds the same significance for 
Pk'(O) and tq. The neuron’s sensitivity to the input current /  is determined by во 
(the baseline threshold potential) and by VeK (the reversal potential of potassium).

is linear in the hidden-to-output weights The characteristic feature of RBF
networks is the radial nature of the hidden unit transfer functions, which
depend only on the distance between the input x  and the centre сj of each hidden 
unit, scaled by a metric Rj (positive definite n x n  matrix),

12.9 Radial Basis Function Networks
Traditionally, radial basis function neural networks which model functions y(x) map
ping x  6 R n to у 6 R  have a single hidden layer so that the model

m
/ М  =  Х > Л ( х )

f y(x)  =  Ф ((x  -  CJ*)r  Rj  1 ( x  -  c ; ) )

where ф is some function which is monotonic for non-negative numbers. Normally 
one restricts attention to diagonal metrics and Gaussian basis functions so that the 
transfer functions can be written
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where Tj is the radius vector of the j -th hidden unit. Sometimes one includes 
low-order polynomial terms. Here the only non-radial basis function regressor we 
consider is a single bias unit where, for some particular index j ,  h j(x) =  1 for all x. 
Each method estimates a model of the target function from a training set containing 
p input-output case {(х*, 2/t)}?=i> i.e. we want to find the weights W{. Prom the y* we 
form the vector у  =  (t/j y2 . . .  yp)T. The response of the m  hidden units of the radial 
basis function network to the p inputs of the training set can be gathered together 
i n a p x m  matrix, # ,  called the design matrix, whose individual components are 
obviously Hij =  hj(xi). If the network weights are w  =  (iui w2 • • • wm)T then the 
outputs of the network in response to the p inputs are given by H w. It follows that 
the sum of the squared errors is

E  =  (y -  # w )T(y -  t f w ) .

This is the quantity which is minimised to find the optimum weights, once the 
centres and radii on which the matrix H depends have been determined. Now E  is 
quadratic in the weight vector and has a unique minimum at

w ' =  {HTH )-'H Ty .

Thus we obtain
E'  =  y T(Ip - H ( H TH ) - 1HT)2y .

The choice of centres is important because it determines the number of free pa
rameters of the model. Too few centres and the network may not be capable of 
generating a good approximation of the target function, too many centres and it 
may fit misleading variations due to imprecise or noisy data. This is a manifesta
tion of the problem of model complexity faced by all methods of non-parametric 
regression, also referred to as the bias-variance dilemma. One can use unsupervised 
clustering techniques on the inputs of the training data

ш и

to generate the centres, but as this ignores the output data

Ы ?=1

it provides no control over model complexity. A direct approach to the model com
plexity issue is to select a subset of centres from a larger set which, if used in its 
entirety, would overfit the data (produce a model which is too complex).

Linear models have been studied in statistics for about 200 years and the theory is 
applicable to radial basis function networks which are just one particular type of 
linear model. However, the fashion for neural networks, which started in the mid- 
80 s, has given rise to new names for concepts already familiar in statistics. The 
table gives some examples. Such terms can be used interchangeably.
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statistics neural networks
model network
estimation learning
regression supervised learning
interpolation generalisation
observations training set
parameters (synaptic) weights
independent variables inputs
dependent variables outputs
ridge regression weight decay

Table: Equivalent terms in statistics and neural networks

12.10 Neural Network, Matrices and Eigenvalues
Let A be an n x  n over R. We can use a neural network to find the eigenvalues 
and eigenvectors of A  if A satisfies certain conditions. Let / „  be the n x  n unit 
matrix and 0n the n x n  zero matrix. The functional neural network is given by the 
nonlinear system of first order ordinary differential equations with 2n components

~  =  (S +  B(t))u  

where u (t) =  (ui(t), u2( t ) , . . . ,  u2n(£))T, & k  2n x 2n matrix

S :- { - A  t)
and

p u \ ._  f - ( e iu ( t ) ) I n (e2u(*))/„ \
'  ' V ~ (e2u(t))In - ( e !u (0 ) /n )

with ei and e2 the row vectors

в! =  (11_ 11I e2 =  ( ( ± ^ 0, 1 ^  •
n n n n

Thus e!u(t), e2u (t) are scalar products. Here u(£) is considered as the states of the 
neurons, (S +  B {t)) is viewed as synaptic connection weights, and the activation 
functions are linear functions. Thus the system of first order differential equations 
describes a continuous time functional neural network.

Exercise. Let Ab  A2, An be the eigenvalues of A. What are the eigenvalues 
of SI Hint. Show that S can be written as a Kronecker product. Is the matrix S 
skew-symmetric over R?
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We set u =  (x i,. . . ,  s„, y\,. . . ,  yn)T. Then the system can be cast into the form

dx 
dt
d x = A y {t)  -  f > j ( t ) x ( i )  +  У(0

j=i j=i

^  =  -A x { t )  -  f 2yj(t)x(t) -  J2 X j(t )y (t ) . 
ai j = l  j=i

Now we define
z(t) := x{t) +  iy { t ) .

Then the system of differential equations can be written as

=  -iAz(t) -  Zj{t)z(t).

This is a projective Riccati system [63]. The fixed points (equilibrium points) of 
this system are the solution of the equations

-iAz* =  j 53 Zj j  z* or Az* =  ( г 53 z] z .

This is the eigenvalue equation for A (under the assumption z* Ф 0) with the 
eigenvalue

n
Л =  Ar +  iXi =  г Y l Zj ■ 

i=i
К the fixed point is stable, there is a neighbourhood of the fixed point such that

lim z (t) =  z* .t—*oo 4 '

Let Ai, Л2, . . . ,  An be the eigenvalues of A and let vi, v 2, . . . ,  v n be the correspond
ing eigenvectors. Note that it can happen that the number of eigenvectors of the 
matrix A  can be less than n with the eigenvalues degenerate.

The solution of the initial value problem of the system is given by

z (t) =  E?=i Zj(°) exp (-i\ jt)v j
1 +  E L i  2fc(0) fi  exp (-iX kr)dr '

Depending on the structure of A the solution tends to an eigenvector with the 
corresponding eigenvalue [67].



Chapter 13 

Genetic Algorithms

13.1 Introduction
Evolutionary methods have gained considerable popularity as general-purpose ro
bust optimization and search techniques. The failure of traditional optimization 
techniques in searching complex, uncharted and vast-payoff landscapes riddled with 
multimodality and complex constraints has generated interest in alternate approaches.

The interest in heuristic search algorithms with underpinnings in natural and phys
ical processes began as early as the 1970s. Simulated annealing is based on thermo
dynamic considerations, with annealing interpreted as an optimization procedure. 
Evolutionary methods draw inspiration from the natural search and selection pro
cesses leading to the survival of the fittest. Simulated annealing and evolutionary 
methods use a probabilistic search mechanism to locate the global optimum solution 
in a multimodal landscape.

Genetic algorithms (Holland [52], Goldberg [38], Michalewicz [78]) are self-adapting 
strategies for searching, based on the random exploration of the solution space cou
pled with a memory component which enables the algorithms to learn the optimal 
search path from experience. They are the most prominent, widely used representa
tives of evolutionary algorithms, a class of probabilistic search algorithms based on 
the model of organic evolution. The starting point of all evolutionary algorithms is 
the population (also called farm) of individuals (also called animals, chromosomes, 
strings). The individuals are composed of genes which may take on a number of 
values (in most cases 0 and 1) called alleles. This means the value of a gene is called 
its allelic value, and it ranges on a set that is usually restricted to {0 ,1 }. Thus these 
individuals are represented as binary strings of fixed length, for example

" 10001011101 "

357
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If the binary string has length N, then 2^ binary strings can be formed. Each of 
the individuals represents a search point in the space of potential solutions to a 
given optimization problem. Then random operators model selection, reproduction, 
crossover and mutation. The optimization problem gives quality information (fitness 
function or short fitness) for the individuals and the selection process favours indi
viduals of higher fitness to transfer their information (string) to the next generation. 
The fitness of each string is the corresponding function value. Genetic algorithms 
are specifically designed to treat problems involving large search spaces containing 
multiple local minima. The algorithms have been applied to a large number of 
optimization problems. Examples are solutions of ordinary differential equations, 
the smooth genetic algorithm, genetic algorithms in coding theory, Markov chain 
analysis, the DNA molecule.

In the fundamental approach to finding an optimal solution, a fitness function (also 
called cost function) is used to represent the quality of the solution. The objective 
function to be optimized can be viewed as a multidimensional surface where the 
height of a point on the surface gives the value of the function at that point. In 
case of a minimization problem, the wells represent high-quality solutions while the 
peaks represent low-quality solutions. In case of a maximization problem, the higher 
the point in the topography, the better is the solution.

The search techniques can be classified into three basic categories.

(1) Classical or calculus-based. This uses a deterministic approach to find the best 
solution. This method requires the knowledge of the gradient or higher-order 
derivatives. The technique can be applied to well-behaved problems.

(2) Enumerative. With these methods, all possible solutions are generated and 
tested to find the optimal solution. This requires excessive computation in 
problems involving a large number of variables.

(3) Random. Guided random search methods are enumerative in nature; how
ever, they use additional information to guide the search process. Simulated 
annealing and evolutionary algorithms are typical examples of this class of 
search methods.

13.2 Sequential Genetic Algorithm
The genetic algorithm evolves a multiset of elements called a population of indi
viduals or farm of animals. Each individual Ai (i =  1 ,. . .  ,n ) of the population A  
represents a trial solution of the optimalization problem to be solved. Individuals 
are usually represented by strings of variables, each element of which is called a 
gene. The value of a gene is called its allelic value, and it ranges on a set that is 
usually restricted to {0 ,1}.
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The population of individuals is also called a farm of animals in the literature. Fur
thermore an individual or animal is also called a chromosome or string.

A genetic algorithm is capable of maximizing a given fitness function /  computed 
on each individual of the population. If the problem is to minimize a given objec
tive function, then it is required to map increasing objective function values into 
decreasing /  values. This can be achieved by a monotonically decreasing function. 
The standard genetic algorithm is the following sequence:

Step 1. Randomly generate an initial population A(0) :=  (Лх(0), • • •, A ,(0))

Step 2. Compute the fitness f(A i(t))  of each individual Ai(t) of the current popu
lation A(£)

Step 3. Generate an intermediate population A r(£) by applying the reproduction 
operator

Step 4. Generate A ft +  1) by applying some other operators to A r(£)

Step 5: t :=  t +  1 if not (end-test) goto Step 2.

The most commonly used operators are the following:

1) Reproduction (selection). This operator produces a new population, A r(£), ex
tracting with repetition individuals from the old population, A(£). The extraction 
can be carried out in several ways. One of the most commonly used method is the 
roulette wheel selection, where the extraction probability pr(Ai(t)) of each individ
ual Лг(£) is proportional to its fitness f{A i(t)).

2) Crossover. This operator is applied in probability, where the crossover probability 
is a system parameter, pc. To apply the standard crossover operator (several vari
ations have been proposed) the individuals of the population are randomly paired. 
Each pair is then recombined, choosing one point in accordance with a uniformly 
distributed probability over the length of the individual strings (parents) and cut
ting them in two parts accordingly. The new individuals (offspring) are formed by 
the juxtaposition of the first part of one parent and the last part of the other parent.

3) Mutation. The standard mutation operator modifies each allele of each individual 
of the population in probability, where the mutation probability is a system param
eter, pm. Usually, the new allelic value is randomly chosen with uniform probability 
distribution.

4) Local search. The necessity of this operator for optimization problems is still un
der debate. Local search is usually a simple gradient-descent heuristic search that 
carries each solution to a local optimum. The idea behind this is that search in the
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“i i e  'e n u i r ^ i  р г е с у н с п *  A  p o p u la t i o n  o r  f a r m  c o u u i  L o o k  ik e

!#г б ж :г ^ с г г : г г :^

<— iarfiTi.'iual <!£&г£асвдв&, an iaal r з-r^ i^ .

ГМЪШКЯЪГ

? v  “ л е  ■‘.y W s S /n , c a e  a u & r j£ ia j &  o f  t h e  р с с и 1а г . х и  a r e  r - ^ n i i c m l j  ;t a ir = c -
v u r  я  - ; i e n  г е с л ш т п е * !  '‘j u t o e i r . s  o n e  p o i n t  i n  ^ c c o r i a a c e  a r x a .  &  т п : :т -Г — _ j  

't i s fr '. i v j t .e ^  у .'х & г л  i i t iv  o »xer  t h e  ien ffr .^  o f  t i e  .u 'jr r / .r j^  i t r l m s  г е г ч п г з  * n d  t n jn b u r  
.'#*rti j i  •»ro  3a r t я  V ffx 'x c j^ j, Т л е  лет*" oc iiitriiL iг  s r e  i t n n e c  b y  1^1=

o?  v i e  oar~ . < r ,o  t h e  и а к  par* ; o f  t i e  o e iie r ..  A i  e c a n s i e  :s

W M V m 'S M te ysz*e&
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tfixthr.u. угхяхл .btr -dib’ ribuiioiL An exaznple is

Ж Ж Ж И Ж  parent
0

« d i d

> i e  t>h улиуон is randomly selected- Whether the child is selected is decided by 
й е  jraew  function.

«fee i#ivt to* map the binary string into a real number x  with a given interval |a. b] 
£ <  vj. The length of the binary string depends on the required precision- The 

vtfaJ ieagtb the interval is 6 — a. The binary string is denoted by

Sn-iSn-2  • • • SiS0

wnere &Г, is где least significant bit (LSB) and s^_i is the most significant bit (MSB). 
ixs the first step we convert from base 2 to base 10

N - l

т = ^  s*2i • 
i—0
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In the second step we calculate the corresponding real number on the interval [a, b]

b — a
x = a + mw ^ \ -

Obviously if the bit string is given by "000.. .00" we obtain x  =  a and if the bit
string is given by "111. . .  11" we obtain x  =  6.

In higher dimensions we proceed as follows. We consider the two-dimensional 
case. The extension to higher dimensions is straightforward. Consider the two- 
dimensional domain

[a,b] x  [c,d], a < 6, c <  d
which is a subset of R 2. The coordinates are x\ and x2l i.e. X\ € [a, 6] and x2 € [c, d\. 
Given a bitstring

SjV-lS7V-2 • • • • • • $ l s 0

of length N  =  Ni +  N2. The block

S7V i-lSN i-2  • • • S1S0

is identified with m b i.e.
N ,-1

roi =  J2  s*2*
»=o

and therefore
b — a

Xi =  a +  mi
2 Nl -  1 

The block
S N -lS N -2  . . . s n i 

is identified with the variable m2, i.e.
n-i

m 2 =  2 2  s ^ l Nl 
i=Ni

and therefore
d -  с 

х2 =  с +  тп22„ 7 —

where N2 =  N — Ni.

Exam ple. In the one-dimensional case consider the binary string 10101101 of 
length 8 and the interval [-1 ,1]. Therefore

m =  1 • 2° +  1 • 22 +  1 • 23 +  1 ■ 25 +  1 • 27 =  173.

Thus 2
z  = -1  +  173—— - =  0.357. *

ÔD 1
Exam ple. In the two-dimensional case consider the binary string 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
with Ni =  N2 =  8 and the domain [-1,1] x [-1 ,1]. Then we find mi =  m2 =  0, 
Xi =  —1 and x2 =  —1. ^
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13.3 Schemata Theorem
A schema (Holland [52],Goldberg [38]) is a similarity template describing a subset of 
strings with similarities at certain string positions. We consider the binary alphabet 
{0 ,1}. We introduce a schema by appending a special symbol to this alphabet. We 
add the * or don’t care symbol which matches either 0 or 1 at a particular position. 
With this extended alphabet we can now create strings (schemata) over the ternary 
alphabet
{  0, 1, * }  .

A schema matches a particular string if at every location in the schema 1 matches 
a 1 in the string, a 0 matches a 0, or a * matches either. As an example, consider 
the strings and schemata of length 5. The schema *101* describes a subset with 
four members

01010, 0 1 0 1 1, 11010, 11011

We consider a population of individuals (strings) A j y j  =  1 ,2 ,. . . , n  contained in 
the population A(£) at time (or generation) t (t =  0 ,1 ,2 ,. .. )  where the boldface 
is used to denote a population. Besides notation to describe populations, strings, 
bit positions, and alleles, we need a convenient notation to describe the schemata 
contained in individual strings and populations. Let us consider a schema H  taken 
from the three-letter alphabet

К :=  { 0 ,1 ,* } .

For alphabets of cardinality к, there are (к +  1)* schemata, where I is the length of 
the string. Furthermore, recall that in a string population with n members there 
are at most n • 2l schemata contained in a population because each string is itself a 
representative of 2l schemata. These counting arguments give us some feel for the 
magnitude of information being processed by genetic algorithms.

All schemata are not created equal. Some are more specific than others. The schema 
011*1** is a more definite statement about important similarity than the schema 
0 ******. Furthermore, certain schemata span more of the total string length than 
others. The schema l****i*  spans a larger portion of the string than the schema 
1*1****. To quantify these ideas, two schema properties are introduced: schema 
order and defining length.

Definition. The order of a schema H } denoted by o(H ), is the number of fixed 
positions (in a binary alphabet, the number of l ’s and 0’s) present in the template.

Example. The order of the schema 011*1** is 4, whereas the order of the schema 
0****** is 1. ф

Definition. The defining length of a schema Я , denoted by 8 ( H ) , is the distance 
between the first and last specific string position.
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Example. The schema 011*1** has defining length 8 =  4 because the last specific 
position is 5 and the first specific position is 1. Thus 8(H) =  5 — 1 =  4. Ф

Schemata provide the basic means for analyzing the net effect of reproduction and 
genetic operators on building blocks contained within the population. Let us con
sider the individual and combined effects of reproduction, crossover, and mutation 
on schemata contained within a population of strings. Suppose at a given time step 
t there are m (H ,t) examples of a particular schema H contained within the popu
lation A (t). During reproduction, a string is copied according to its fitness, or more 
precisely a string At gets selected with probability

E " = l / ; '

After picking a non-overlapping population of size n with replacement from the 
population A (t), we expect to have m(H , t +  1) representatives of the schema H  in 
the population at time t -1-1 as given by

m(H, t)n f(H )
m ( / M + 1 ) =  п и т

where f (H )  is the average fitness of the strings representing schema H  at time t. 
The average fitness o f the entire population is defined as

71 i=i

Thus we can write the reproductive schema growth equation as follows 

т (Я ,  t +  1) =  m(H ,

Assuming that f (H )/ f  remains relatively constant for t =  0 ,1 ,..., the preceding 
equation is a linear difference equation

x(t +  1) =  ax(t)

with constant coefficient which has the solution of the initial value problem

x ( £ )  =  a * x (0) .

A particular schema grows as the ratio of the average fitness of the schema to the 
average fitness of the population. Schemata with fitness values above the population 
average will receive an increasing number of samples in the next generation, while 
schemata with fitness values below the population average will receive a decreasing 
number of samples. This behaviour is carried out with every schema H  contained 
in a particular population A  in parallel. In other words, all the schemata in a 
population grow or decay according to their schema averages under the operation of
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reproduction alone. Above-average schemata grow and below-average schemata die 
off. Suppose we assume that a particular schema H  remains an amount с /  above 
average with с a constant. Under this assumption we find

m(H, t +  1) =  m(H, t)^ -t c / )  =  (1 +  c)m(H, t).

Starting at t =  0 and assuming a stationary value of c, we obtain the equation

m(H, t) =  m (tf, 0)(1 -I- с)l.

This is a geometric progression or the discrete analog of an exponential form. Repro
duction allocates exponentially increasing (decreasing) numbers of trials to above- 
(below-) average schemata. The fundamental theorem of genetic algorithms is as 
follows (Goldberg [38]).

Theorem . By using the selection, crossover, and mutation of the standard genetic 
algorithm, short, low-order, and above average schemata receive exponentially in
creasing trials in subsequent populations.

The short, low-order, and above average schemata are called building blocks, and 
the fundamental theorem indicates that building blocks are expected to dominate 
the population. Is this good or bad in terms of the original goal of function optimiza
tion? The preceding theorem does not answer this question. Rather, the connection 
between the fundamental theorem and the observed optimizing properties of the 
genetic algorithm is provided by the following conjecture.

The Building B lock Hypothesis. The globally optimal strings in Г2

f  : Cl—у R  with Cl =  {0 ,1  } n

may be partitioned into substrings that are given by the bits of the fixed positions 
of building blocks.

13.4 Bitwise Operations

13.4.1 Introduction

In genetic algorithms bitwise operations play the central role. In this section we 
describe these operations. The truth tables for the AND-gate, OR-gate, XOR-gate 
and NOT-gate are

AND
0 0 0
0 1 0
1 0 0
1 1 1

OR
0 0 0
0 1 1
1 0 1
1 1 1

XOR
0 0 0
0 1 1
1 0 1
1 1 0

NOT
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The NAND-gate is an AND-gate followed by a NOT-gate. The NOR-gate is an 
OR-gate followed by a NOT-gate. Both are universal gates, i.e. all other gates can 
be built from these gates.

Exercise. Show that the XOR-gate can be built from 4 NAND gates. Show that 
the AND-gate can be built from 2 NAND gates. Show that the OR-gate can be 
built from 3 NAND-gates. Show that the NOR gate can be built from 4 NAND gates.

Next we consider bitstrings, such as "10010010". In most cases the length of the 
bitstring is 8, 16, 32, 64 owing to the length of the data types char, short, int, 
floa t, double. Then the bitwise operation to two bitstrings of the same length is 
applied to each bit at the same position of the two bitstrings.

Example. Consider the XOR-operation for two bitstrings of length 8. We have

10101100 
XOR 00110101 
Result 10001001

since 000 =  0, 001 =  1, 100 =  1, 101 =  0, where 0  denotes the XOR operation. 6

The bitstrings are counted from right to left starting at 0. In C, C ++, and Java 
the bitwise operators for integer data types are

& bitwise AND
I bitwise OR (inclusive OR) 

bitwise XOR (exclusive OR)
NOT operator (one’s complement)

»  right-shift operator 
«  left-shift operator

The basic bit operations setb it, clearb it, swapbit and te s tb it  for bitstrings can 
be implemented in C + +  as follows. The bit position b runs from 0 to 31 from right 
to left in the bit string since we use the datatype unsigned long.

The operation se tb it  sets a bit at a given position b (i.e. the bit at the position b 
is set to 1)

unsigned long b = 3; 
unsigned long x = 15;
x |= (1 «  b); // shortcut for x = x I (1 «  b);

The operation c lea rb it  clears a bit at a given position b (i.e. the bit at the position 
b is set to 0)

unsigned long b = 3; 
unsigned long x = 15;
x &= ~(1 «  b); // short cut for x = x ft '(1 «  b);
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The operation swapbit swaps the bit at the position b, i.e., if the bit is 0 it is set 
to 1 and if the bit is 1 it is set to 0.

unsigned long b = 3; 
unsigned long x = 15;
x ~= (1 «  b); // short cut for x = x (1 «  b) ;

The operation te s tb it  returns 1 or 0 depending on whether the bit at the position 
b is set or not.

unsigned long b = 3; 
unsigned long x = 15;
unsigned long result * ((x к (1 «  b)) != 0);

The operations setbit, clearbit, swapbit and testbit are written as functions. 
This leads to the following C + +  program. Obviously, for setbit 0, clearbit () 
and swapbit () we pass x by reference.

// mysetbit.cpp

#include <iostream> 
using namespace std;

inline void setbit(unsigned longfc x,unsigned long b)
{ x | = ( l « b ) ;  }

inline void clearbit(unsigned long& x,unsigned long b)
{  x &= "(1 «  b); >

inline void swapbit(unsigned longfc x,unsigned long b)
{ x ~= (1 «  b) ; >

inline unsigned long testbit(unsigned long x.unsigned long b)
{ return ((x & (1 «  b)) != 0); >

int main(void)
•C
unsigned long b = 3;
unsigned long x = 10; // binary 1010
setbit(x,b);
cout «  "x = " «  x «  endl; // 10 => binary 1010 
clearbit(x,b);
cout «  "x = " «  x «  endl; // 2 => binary 10 
swapbit(x,b);
cout «  "x = " «  x «  endl; // 10 => binary 1010 
unsigned long r = testbit(x.b); 
cout «  "r = " «  r «  endl; // 1 
return 0;

>
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13.4.2 Assembly Language
We could also use assembly language to do bitwise operations. In assembly language 
(Intel Pentium) the bitwise commmands are

AND bitwise AND 
OR bitwise inclusive OR 
XOR bitwise exclusive OR

BSF bit scan forward 
BSR bit scan reverse 
BSWAP byte swap 
ВТ bit test
BTC bit test and complement

BTC saves the value of the bit indicated by the
base (first operand) and the bit offset (second operand)
into the carry flag and then complements the bit.

BTR bit test and reset
BTR saves the value of the bit indicated by the
base (first operand) and the bit offset (second operand)
into the carry flag and then stores 0 in the bit.

BTS bit test and set
BTS saves the value of the bit indicated by the
base (first operand) and the bit offset (second operand)
into the carry flag and stores 1 in the bit.

NEG two’s complement negation 
NOT one’s complement negation

RCL rotate through carry left instruction
RCR rotate through carry right instruction
ROL rotate left instruction
ROR rotate right instruction

SAL shift arithmetic left instruction 
SAR shift arithmetic right instruction 
SHL shift left instruction 
SHR shift right instruction

Using inline assembly language in C + +  we can use these operations as follows. We 
want to find the minimum of the function

/(n )  =  3n -  5n2 +  n3 +  10

where n is of data type unsigned long. Then f(n ) is of data type unsigned long 
when n is restricted the proper range. In the example the farm consists of four 
elements, a, 6, с and d.

// assembler.cpp
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#include <iostream>
#include <ctime>
#include <cstdlib> 
using namespace std;

unsigned long f(unsigned long n)
{ return 3*n-5*n*n+n*n*n+10; >

int main(void)

unsigned long a = 1, b =  11, c =  5017, d = 1013;
unsigned long rl, r2, r3, r4;
srand((unsigned long) time(NULL));
int T = 1000;
for(int j=0;j<T;j++)
•C
_asm

MOV EAX, a 
MOV EBX, b 
MOV ECX, с 
MOV EDX, d 
BSWAP EAX 
BSWAP EBX 
MOV rl, EAX 
MOV r2, EBX 
XOR EDX, ECX 
MOV r3, EDX 
AND ECX, EAX 
MOV r4, ECX
>
if(f(rl) < f(a)) a = rl; if(f(r2) < f(b)) b = r2; 
if(f(r3) < f(с)) с = r3; if(f(r4) < f(d)) d = r4; 
unsigned long s = rand()'/,32;

_asm

MOV EAX, a 
MOV ECX, s 
BTS EAX, ECX 
MOV rl, EAX 
MOV EAX, b 
MOV ECX, s 
BTR EAX, ECX 
MOV r2, EAX 
MOV EAX, с 
MOV ECX, s
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BTC EAX, ECX 
MOV r3, EAX 
MOV EAX, d 
MOV ECX, s 
BTS EAX, ECX 
MOV r4, EAX
>
if(f(rl) < f(a)) a = rl;
if (f (r2) < f(b)) b = r2;
if (f (r3) < f(c)) с = r3;
if(f(r4) < f(d)) d = r4;
} // end for loop
cout « "f(" «  a « " «  f(a) « endl;
cout « "f(" «  b « ") = " «  f(b) « endl ;
cout « "f(" «  с « H) = " «  f (c) « endl;
cout « "f(" «  d « И) = " «  f (d) « endl;
return 0;

>

13.4.3 Floating Point Numbers and Bitwise Operations
We can also do bitwise manipulations of floating point numbers, for example on the 
data type double (64 bits) in C ++. The value of double is stored as

sign bit, 11 bit exponent, 52 bit mantissa

This means

byte 1 byte 2 byte 3 byte 4 byte 8
SXXX XXXX XXXX MMMM MMMM MMMM MMMM MMMM ... MMMM MMMM

The C + +  progran shows how to change a bit in double, where I is the bitwise OR 
and «  is the shift operation.

// doublebits.cpp

#include <iostream> 
using namespace std;

double doublebitstring(int bit,double x)

int* p = (int*) &x;
if(bit < 32) *p 1= (1 «  bit);
if(bit >= 32) *(p+l) 1= (1 «  (bit-32));
return x;

>

in t main(void)



double x = 3.14159; 
forCint bit=0;bit<64;bit++)
{
cout.precision(20) ; cout «  doublebitstring(bit,x) «  endl;
>
return 0;

>

13.4.4 Java Bitset Class
Java has a BitSet class. The constructor BitSet () creates a new bit set. The 
constructor B itS et(in t nbits) creates a bit set whose initial size is the specified 
number of bits. The methods are

void and(BitSet set)

performs a logical AND

void andNot(BitSet set)

clears all of the bits in this BitSet whose corresponding bit is set in the specified 
BitSet

void clear(int bitlndex)

the bit with index bitlndex in this BitSet is changed to the clear (false) state

boolean get(int bitlndex)

returns the value of the bit with the specified index

void or(Bitset set)

performs a logical OR of this bit set with the bit set argument 

void xor(B itSet set)

performs a logical XOR of this bit set with the bit set argument.

In the program we find the Hamming distance of two bitstrings of length 8.

// hamming.java

import java.util.*;

public class hamming

public static void main (String [] args)
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{
int length = 8;
BitSet bsl = new BitSet(length); 
bsl.set(O); bsl.set(4); bsl.set(7);
BitSet bs2 = new BitSet(length); 
bs2.set(l); bs2.set(3); bs2.set(7);
System.out.println("bsl = " + bsl);
System.out.println("bs2 = " + bs2);
bsl.xor(bs2); // bsl contains result of xor operation 
System.out.println("bsl = " + bsl);
System.out.println("bs2 = " + bs2); 
int count = 0;
for(int i=0;i<bsl.length();i++)
{
if(bsl.get(i)==true) count++;
>
System.out. printlnC count = " + count);
} // end main

13.4.5 C-f-J- bitset Class
The Standard Template Library in C ++  provides a b itse t class. It includes all the 
necessary bitwise operation, for example se tO , f l ip O  and te s t  О and the bitwise 
operation ft, I, A as well as the shift operations. An example is

/ /  b itset.cpp

#include <iostream>
#include <bitset>
#include <string> 
using namespace std;

int main(void)
<

const unsigned long n = 8; 
bitset<n> s;
cout «  s .s e t0  «  endl; / /  set a ll bits to 1
cout «  s . f l i p (4) «  endl; / /  f l ip  at position 4
cout «  s .t e s t (5) «  endl; / /  test i f  b it position i  is  true
return 0;

>

The next C + +  program shows how to convert unsigned int, f lo a t , double into 
a b its e t  string.

/ /  tobitset.cpp

#include <bitset>
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#include <iostream>
#include <limits> 
using namespace std;

template <class T> class bitsetfor 
{
public: 
static const int size

= sizeof(T)*numeric_limits<unsigned char>::digits; 
bitset<size> bs;

template <class T> bitsetfor<T> convert(const T fet) 

bitsetfor<T> b;
int bitsperuchar = numeric_limits<unsigned char>::digits;
int bitsperT = b.size;
unsigned char* tp = (unsigned char*)&t;

for(int i=0;i<bitsperT;tp++) 
for(int j=0;j<bitsperuchar && i<bitsperT;j++,i++) 
b.bs[i] = ((*tp) »  j) & 1; 

return b;
>

int main(void)

unsigned int i = 133; 
float f = 10.3; 
double d = 10.3;
bitsetfor<unsigned int> bi = convert(i);
cout «  "unsigned int (" «  bi.size «  " bits) "

«  i «  " -> " «  bi.bs «  endl «  endl;

bitsetfor<float> bf = convert(f); 
cout «  "float (" «  bf.size «  "bits) "

«  f «  " -> " «  bf.bs «  endl «  endl;

bitsetfor<double> bd = convert(d); 
cout «  "double (" «  bd.size «  "bits) "

«  d «  " -> " «  bd.bs «  endl «  endl; 
return 0;

>
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13.5 Bit Vector Class
In the following we provide a Bit Vector class which we use for our genetic algorithm 
programs.

// Bitvect.h

#include <cstring> 
using namespace std;

#ifndef _BITVECTOR
#define __BITVECTOR

const unsigned char _BV_BIT[8] = { 1,2,4,8,16,32,64,128 }; 

class BitVector 
{
protected:
unsigned char *bitvec; 
int len; 

public:
BitVector();
BitVector(int nbits); // constructor
BitVector(const BitVectorfc); // copy constructor 
“BitVector(); // destructor
void SetBit(int bit,int val=l); 
int GetBit(int bit) const; 
void ToggleBit(int bit);
BitVector operator fc (const BitVectorfc) const;
BitVectorfc operator k= (const BitVectorfc);
BitVector operator I (const BitVectorfc) const;
BitVectorfc operator |= (const BitVectorfe);
BitVector operator ~ (const BitVectorft) const;
BitVectorft operator (const BitVectorfc); 
friend BitVector operator ~ (const BitVectorfc);
BitVectorfc operator = (const BitVectorfc); 
int operator[](int bit) const; 
void SetLength(int nbits);

>;

BitVector::BitVector() { len = 0; bitvec = NULL; }

BitVector: .‘BitVector(int nbits)
<
len = nbits/8+((nbits'/,8)?l:0); 
bitvec = new unsigned char[len];

>
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BitVector::BitVector(const BitVectorfc b)
<
len = b.len;
bitvec = new unsigned char[len]; 
memcpy(bitvec,b.bitvec,len);

>

BitVector::“BitVector()
{ if(bitvec != NULL) delete[] bitvec; >

void BitVector::SetBit(int bit,int val)
{
if(bit < 8*len)

if (val) bitvec [bit/8] |= _BV_BIT [bit*/,8] ; 
else bitvec [bit/8] &= "_BV_BIT [bit*/,8] ;
>

>

int BitVector::GetBit(int bit) const 
i

if (bit < 8*len) return ((bitvec [bit/8] &_BV_BIT [bit*/,8] )?1:0) ; 
return -1;

>

void BitVector::ToggleBit(int bit)
{ if (bit<8*len) bitvec [bit/8] _BV_BIT [bit*/,8] ; >

BitVector BitVector::operator fc (const BitVectorfc b) const

int mien = (len > b.len)?len:b.len;
BitVector ret(mlen*8);
for(int i=0;i<mlen;i++)
ret.bitvec[i] = bitvec[i] fc b.bitvec[i];
return ret;

>

BitVectorfc BitVector::operator fc= (const BitVectorfc b)

int mien = (len>b.len)?len:b.len;
for(int i=0;i<mlen;i++) bitvec[i] fc= b.bitvec[i];
return *this;

>

BitVector BitVector::operator | (const BitVectorfc b) const

int mien = (len>b.len)?len:b.len;
BitVector ret(mlen*8);
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forCint i=0;i<mlen;i++) ret.bitvec[i] = bitvecCi]lb.bitvec[i]; 
return ret;

>

BitVectorfc BitVector::operator |= Cconst BitVectorfc b)
•C

int mien = Clen>b.len)?len:b.len;
forCint i=0;i<mlen;i++) bitvec[i] |= b.bitvec[i];
return *this;

>

BitVector BitVector::operator ** Cconst BitVectorfc b) const 
{

int mien = Clen>b.len)?len:b.len;
BitVector retCmlen*8);
forCint i=0;i<mlen;i++) ret.bitvecCi] = bitvec[i]“b.bitvec[i]; 
return ret;

>

BitVectorfc BitVector::operator ~= Cconst BitVectorfc b)

int mien = Clen>b.len)?len:b.len;
forCint i=0;i<mlen;i++) bitvec[i] ~= b.bitvecCi];
return *this;

>

BitVector operator ~ Cconst BitVectorfc b)

BitVector retCb.len*8);
forCint i=0;i<b.len;i++) ret.bitvecCi] = ~b.bitvecCi]; 
return ret;

>

BitVectorfc BitVector::operator = Cconst BitVectorfc b)

if(bitvec==b.bitvec) return *this; 
ifCbitvec!=NULL) delete□ bitvec; 
len = b.len;
bitvec = new unsigned charClen]; 
memcpy Cbitvec,b .bitvec,len); 
return *this;

>

int BitVector::operatorC]Cint bit) const 
-( return GetBitCbit); )•

void BitVector::SetLengthСint nbits)
■C
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if (bitvec !=NULL) deleted bitvec; 
len = nbits/8+((nbits'/,8)?l :0) ; 
bitvec = new unsigned char[len];

>
#endif

13.6 Penna Bit-String Model
The Penna bit-string model for biological ageing was introduced by Penna and Penna 
[88) in 1995. In the asexual version of the Penna bit-string model each individual 
(organism genome) is represented by a single bitstring of 32 bits, for example

"00001000 00010100 01000001 01000011"

The number of 32 bits is computationally convenient. In the model one starts with 
an ideal set of zero bits for all individuals, i.e. an initial population of perfect indi
viduals is set up (all bits are 0). For example the initial population could be 1000 
individuals. Each individual can live at most for 32 timesteps ( “years” ). We start 
counting the bitstring from left to right starting from 0. A bit set to 0 in the bitstring 
means health, a bit set to 1 means an inherited disease starts to act from the age 
on which the position of this set bit is in the bitstring. If T  (typically, T  =  3) bits 
are active (i.e. set to 1 in the bitstring), their combined effect kills the individual. 
Thus whenever a bit 1 appears in the bitstring it is counted and the total count of 
l ’s until the current individuals age is compared with the given limit T. There is 
a minimum reproduction age R  (typically R  =  8), from which the individual with 
probabilty p (typically p =  0.05), produces b offsprings every year (typically b =  1 or 
b =  2). One could also take into account a pregnancy period: after giving birth, an 
individual (mother) stays one time steps (year) without reproducing. The offspring 
genome is a copy of the parent’s one, but each 0 in the bitstring can mutate to 1 
with probability m. This means the child inherts the mother’s genome except for 
M  (typically M  — 1) mutations of randomly selected bits where a 0 bit is set to 1. 
The Penna bit-string model does not allow for a positive mutation, i.e. a bit set to
1 cannot mutate into a 0.

For an implementation in C + +  one can use the b its e t  class of the Standard Tem
plate Library.

// penna.cpp

#include <bitset> 
tinclude <cetdlib>
#include <iostream>
#include <list> 
using namespace std;

const size_t n «= 32;
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list<bitset<n> > penna(int size,int steps,int T=3,int R=8, 
double p=0.1,int b=2,double m=0.1)

{
int k, t;
list<bitset<n> > population; 
list<bitset<n> >::iterator i, il; 
list<int> ages; 
list<int>::iterator j, jl;

while(size>0)
•C
population.push_back(bitset<n>(0)) ; 
ages.push_back(-l); 
size— ;

>

while(steps>0)

for(i=population.begin() , j=ages .beginO ;i!population.end() ;) 
{
// age the individual 
(*j)++;
// death due to age 
if(*j >= int(n))
<
il = i; jl = j; i++; j++; 
population.erase(il); 
ages.erase(jl); 
continue;

>

// death due to disease
for(t=k=0;k<=*j;k++) if(i->operator[](k)) t++; 
if (t >= T)

il = i; jl = j; i++; j++; 
population.erase(il); 
ages.erase(jl); 
continue;

>

// reproduction
if(*j >= R && double(rand())/RAND_MAX < p) 
for(k=0;k<b;k++)
{
population.push_back(*i) ; 
ages.push_back(-1);
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// mutation 
for(t=0;t<int(n);t++) 
if(double(rand())/RAND_MAX < m) populat ion. back () .set (t) ;

>
i++; j++;

>
steps— ;

>
return population;

>

int main(void)
{
srand(time(NULL));
list<bitset<n> > population = penna(100, 100); 
list<bitset<n> >::iterator i = population.beginO; 
cout «  "Population size : " «  population.size() «  endl; 
cout «  "Population : " «  endl; 
for(;i!=population.end();i++) cout «  *i «  endl; 
return 0;

>

13.7 Maximum of One-Dimensional Maps
As ал example we consider the fitness function

f (x )  =  cos(x) — sin(2i)

on the interval [0 : 2тг]. In this interval the function /  has three maxima. The global 
maximum is at 5.64891 and the two local maxima are at 0 and 2.13862.

A simple C + +  program would include the following functions

// fitness function of individual 
double f(double)

// fitness function value of individual 
double f_value(double (*func)(double),int* arr.intfc N, 

double a,double b)

// x_value
double x_value(int* arr,int& N,double a,double b)

// setup of farm
void setup(int** farm,int M.int N)

// crossing two individuals
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void crossings(int** farm,int M,int N)

// mutate ал individual
void mutate(int** farm,int M,int N)

Here N  is the length of the binary string and M  is the size of the population, which 
is kept constant at each time step. For the given problem we select N  =  10 and 
M  =  12. The binary string “sw_iSyv-2---5o” is mapped into the integer number m 
and then into the real number x  in the interval [0 : 27r] as described above.

The farm is set up using a random number generator. In our implementation the 
crossing function selects the two fittest strings from the two parents and the two 
children. The parents axe selected by a random number generator. With a popula
tion of 12 strings in the farm we find after 1000 iterations the global maximum at 
5.64891. For 100 iterations we find as a typical output the global maximum and the 
second highest maximum.

// genetic.cpp

#include <iostream>
#include <cstdlib>
#include <ctime> // for srand, rand 
#include <cmath> // for cos, sin, pov 
using namespace std;

// fitness function where maximum to be found 
double f(double x) { return cos(x)-sin(2*x); }

// fitness function value for individual 
double f_value(double (*func)(double),int* arr.intft N, 

double a,double b)
■c
double res; 
double m = 0.0; 
for(int j=0;j<N;j++)
{  double к = j; m += arr[N-j-1]*pow(2.0,k); } 
double x = a+m*(b-a)/(pow(2.0,N)-1.0); 
res = func(x); 
return res;

>

// x_value at global maximum
double x_value(int* arr,int& N.double a,double b)

double m = 0.0; 
for(int j=0;j<N;j++)
■{ double к = j; m += arr [N-j-1] *pow (2.0, k); }■ 
double x = a+m*(b-a)/(pow(2.0,N)-1.0);
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return x;
>

// setup the population (farm) 
void setup(int** farm,int M,int N)
{
srand((unsigned long) time(NULL)); 
for(int j=0;j<M;j++)
for(int k=0;k<N;k++) farm[j] [k] = rand()'/,2;

>

// cross two individuals
void crossings(int** farm,int& M,int& N,double& a,double& b) 
{
int К = 2;
int** temp = new int* [K];
for(int i=0;i<K;i++) temp[i] = new int[N];

double res[4];
int rl = rand()*/,M; int r2 = rand()'/,M;
// random returns a value between 
// 0 and one less than its parameter 
while (r2==rl) r2 = rand()*/,M; 
res[0] = f_value(f ,farm[rl] ,N,a,b) ; 
res[l] = f_value(f ,farm[r2] ,N,a,b) ; 
for(int j=0;j<N;j++)
{ temp[0][j] = farm[rl][j]; temp[l][j] = farm[r2] [j] ; > 
int r3 = rand 0'/,(N-2) + 1;

for(j=r3;j <N;j++) 
i  temp[0][j] = farm[r2][j]; temp[l][j] = farm[rl][j]; > 
res[2] = f_value(f,temp[0],N,a,b); 
res[3] = f_value(f ,temp[l] ,N,a,b) ;

if (res [2] > res[0])

for(j=0; j<N; j++) farm[rl] [j] = temp[0] [j]; 
res [0] = res [2] ;
>

if (res [3] > res[l])

for(j=0; j<N; j++) farm[r2] [j] = temp[l][j]; 
resCl] = res[3];
>
for(j=0;j<K;j++) deleteQ tempCj]; 
delete[] temp;

>
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// mutate an individual
void mutate(int** farm,int& M,int& N,double* a,double* b) 
{
double res[2];
int r4 = rand()7,N; int rl = rand()*/,M; 
res[0] = f.value(f,farm[rl],N,a,b); 
int vl = farm[rl] [r4] ;
if(vl==0) farm[rl][r4] = 1; if(vl==l) farm[rl] [r4] = 0;
double al = f_value(f,farm[rl],N,a,b);
if(al < res[0]) farm[rl] [r4] = vl;
int r5 = rand()*/,N; int r2 = rand()'/.M;
res[l] = f„value(f,farm[r2],N,a,b);
int v2 = farm [r2] [r5] ;
if (v2==0) farm[r2] [r5] = 1; if (v2==l) faLrm[r2] [r5] = 0; 
double a2 = f_value(f,farm[r2],N,a,b); 
if(a2 < res[l]) farm [r2] [r5] = v2;

int main(void)
{
int M = 12; // population (farm) has 12 individuals (animals) 
int N = 10; // length of binary string
int** farm = new int*[M]; // allocate memory for population 
for (int i=0;i<M;i++) {  farm[i] = new int[N]; }

setup(farm,M,N);
double a = 0.0, b = 6.28318; // interval [a,b]

for(int k=0;k<1000;k++)

crossings(farm,M,N,a,b); 
mutate(farm,M,N,a,b);
> // end for loop

for(int j=0;j<N;j++)
cout «  "farm[l][" «  j «  "3 = " «  farm[l] [j] «  endl; 
cout «  endl; 
for(j=0;j<M;j++)
cout «  "fitness f_value[" «  j «  “3 * "

«  f_value(f ,farm[j] ,N,a,b)
«  « « «  "x_value[" «  j «  "3 = "
«  x_value(f2mn[j] ,N,a,b) «  endl; 

for(j=0;j<M;j++) delete[] farm[j]; 
delete [] farm; 
return 0;
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In the program given above we store a bit as int. This wastes a lot of memory 
space. A more optimal use of memory is to use a string, for example "1000111101". 
Then we use 1 byte for 1 or 0. An even more optimal use is to manipulate the bits 
itself. In the following we use the bit Vector class described above to manipulate 
the bits. The bit Vector class is included in the header file b itV ect.h .

// findmax.cpp

#include <iostream>
#include <cmath> // for pow 
#include <cstdlib>
#include <ctime>
#include "bitvect.h" 
using namespace std;

double f(double x) {  return cos(x)-sin(2*x);}

double f„value(double (*func)(double),const BitVector fcarr, 
int &N,double a,double b)

double res, m = 0.0; 
for(int j=0;j<N;j++)
•( double к = j; m += arr[N-j-1]*pow(2.0,k); > 
double x = a+m*(b-a)/(pow(2.0,N)-1.0); 
res = func(x); 
return res;

>

double x_value(const BitVectorfc arr.intfc N,double a,double b)

double m = 0.0; 
for(int j=0;j<N;j++)
{ double к = j; m += arr[N-j-1]*pow(2.0,k); > 
double x = a + m*(b-a)/(pow(2.0,N)-1.0); 
return x;

>

void setup(BitVector *farm,int M,int N)
{
srand((unsigned)time(NULL)); 
for(int j=0;j<M;j++) 
for(int k=0;k<N;k++) farm[j] .SetBit(k,rand()7,2) ;

>

void crossings(BitVector *farm,int &M,int &N,double &a,double &b)
{

int К = 2, j;
BitVector *temp = new BitVector[K] ;
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for(int i=0;i<K;i++) temp[i].SetLength(N); 
double res[4];
int rl = rand()’/,M; int r2 = rand()*/,M; 
while(r2==rl) r2 = rand()*/,M; 
res[0] = f_value(f,farm[rl],N,a,b); 
res[l] = f_value(f,farm[r2],N,a,b); 
for(j=0;j<N;j++)

temp[0] .SetBit (j ,farm[rl] [j] ) ; 
temp[l] . SetBit (j ,farm[r2] [j]) ;
>
int r3 = rand ()'/, (N-2) +1; 
for(j=r3;j<N;j++)
<
temp [0] . SetBit (j , f arm [r2] [j ]) ; 
temp [1] . SetBit (j , f arm [rl] [j ]) ;
>
res[2] = f_value(f ,temp[0] ,N,a,b) ; 
res[3] = f_value(f ,temp[l] ,N,a,b) ;
if (res [2] >res [0]) { farm[rl] = temp[0]; res[0] * res [2]; } 
if (res [3] > res[l])
{
farm[r2] = temp[l]; res[l] = res[3];
>
delete [] temp;

void mutate (BitVector *f arm, int &M,int JtN,double *a,double ЛЬ) 
{
double res[2];
int r4 = rand()7.N; int rl = randO’/.M;
res[0] = f_value(f ,farm[rl] ,N,a,b);
int vl = farm[rl] [r4];
farm[rl] .ToggleBit (r4);
double al = f_value(f,farm[rl],N,a,b);
if(al < res[0]) farm [rl] .ToggleBit (r4);
int r5 = rand()7,N; int r2 = rand()'/.M;
res[l] = f_value(f ,farm[r2] ,N,a,b);
int v2 = faunn[r2] [r5];
farm[r2].ToggleBit(r5);
double a2 = f_value(f ,farm[r2] ,N,a,b) ;
if(a2 < res[l]) f arm[r2] .ToggleBit(r5);

>

int main(void)
<
int M = 12, N = 10; 
int j;
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BitVector* farm = new BitVector [M] ; 
forCint i=0;i<M;i++) farmCi].SetLength(N); 
setupCfarm,M,N);
double a = 0.0, b = 6.28318; // interval 

forCint k=0;k<1000;k++)
{ crossingsCfarm,M,N,a,b); mutateCfarm,M,N,a,b) ; } 
forCj=0;j<N;j++)
cout «  "farm[l] C"«j«"]*" «  farmCi] [j] «  endl; 
cout «  endl; 
forCj=0;j<M;j++) 
cout «  "fitness f_value["«j«"]="

«  f.valueCf ,farm[j] ,N,a,b)
« "  x_value["«j«"]=" «  x_ value Cf arm [ j] ,N,a,b) «  endl; 

delete[] farm;
>
A typical output is

farm[l] CO] =1 
farm[l] Cl] =1 
farmCl] C2]=l 
farm Cl] C3] =0 
farm Cl] C4]=l 
farm Cl] [5]=0 
farm Cl] C6]=0 
farmCi] C7]=0 
farm Cl] C8] =0 
farm Cl] [9]=0

fitness f_valueCO]=1.75411 x_valueCO]=5.6997 
fitness f_valueCl]=1.75411 x.valueCl]=5.6997 
fitness f_valueC2]=l.75411 x.valueC2]=5.6997 
fitness f.valueC3]=1.75411 x.valueC3]=5.6997 
fitness f.valueC4]=1.75411 x.valueC4]=5.6997 
fitness f.valueC5]=1.75411 x.valueC5]=5.6997 
fitness f_value C6] =1 x.value C6]=0 
fitness f.valueC7]=0.59771 x.valueC7]=0.196541 
fitness f.valueC8]=1.75411 x.valueC8]=5.6997 
fitness f.value C9]=1 x.valueC9]=0 
fitness f .value СЮ] =1.75411 x.value CIO] =5.6997 
fitness f.valueCU]=1.75411 x.valueС11]=5.6997

13.8 Maximum of Two-Dimensional Maps
Here we consider the problem how to find the maximum of a two-dimensional 
bounded function /  : [a, b] x [c,d] —> R, where a,b,c,d  e  R , a <  b and с <  d. 
We follow in our presentation closely Michalewicz [78]. Michalewicz also gives a
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detailed example.

We use the following notation. N  is the length of the chromosome (binary string). 
The chromosome includes both the contributions from the x  variable and у variable. 
The size of N  depends on the required precision. M  denotes the size of the farm 
(population) which is kept constant at each time step. First we have to decide about 
the precision. We assume further that the required precision is four decimal places 
for each variable. First we find the domain of the variable x , i.e. b—a. The precision 
requirement implies that the range [a, 6] should be divided into at least (b—a) • 10000 
equal size ranges. Thus we have to find an integer number N\ such that

2 "1" 1 < (6 -  a) ■ 1000 <  2Nl.

The domain of variable у has length d — c. The same precision requirement implies 
that we have to find an integer N2 such that

2n>~1 <  ( d -  c) ■ 1000 <  2n2.

The total length of a chromosome (solution vector) is then N  =  N\ +  N2. The first 
N1 bits code x  and the remaining N2 bits code y.

Next we generate the farm. To optimize the function /  using a genetic algorithm, 
we create a population of s ize  =  M  chromosomes. All N  bits in all chromosomes 
are initialized randomly using a random number generator.

Let us denote the chromosomes by г*о> Vi, • • •> Vm- i- During the evaluation phase 
we decode each chromosome and calculate the fitness function values f (x ,y )  from 
(я, у) values just decoded.

Now the system constructs a roulette wheel for the selection process. First we 
calculate the total fitness F  of the population

M -l
F : = £ / M -

i=0

Next we calculate the probability of a selection pi and the cumulative probability ф 
for each chromosome V{

*-=0 ,1 ....... A f - 1 .
*  k =0

Obviously, qM-i — 1* Now we spin the roulette wheel M  times. First we generate a 
(random) sequence of M  numbers for the range [0..1]. Each time we select a single 
chromosome for a new population as follows. Let Го be the first random number. 
Then qk <  vq <  qk+ 1 for a certain k. We selected chromosome к +  1 for the new 
population. We do the same selection process for all the other M — 1 random num
bers. This leads to a new farm of chromosomes. Some of the chromosomes can now
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occur twice.

We now apply the recombination operator, crossover, to the individuals in the new 
population. For the probability of crossover we choose pc =  0.25. We proceed in 
the following way: for each chromosome in the (new) population we generate a 
random number r from the range [0..1]. Thus we generate again a sequence of M 
random numbers in the interval [0,1]. If r <  0.25, we select a given chromosome for 
crossover. If the number of selected chromosomes is even, so we can pair them. If 
the number of selected chromosomes were odd, we would either add one extra chro
mosome or remove one selected chromosome. Now we mate selected chromosomes 
randomly. For each of these two pairs, we generate a random integer number pos 
from the range [0..N — 2]. The number pos indicates the position of the crossing 
point. We do now the same process for the second pair of chromosomes and so on. 
This leads to a new farm of chromosomes.

The next operator, mutation, is performed on a bit-by-bit basis. The probability 
of mutation pm =  0.01, so we expect that (on average) 1% of bits would undergo 
mutation. There are M  x M  bits in the whole population; we expect (on average)
0.01 -N  -M  mutations per generation. Every bit has an equal chance to be mutated, 
so, for every bit in the population, we generate a random number r  from the range 
[0..1]. If г <  0.01, we mutate the bit. This means that we have to generate N  • M  
random numbers. Then we translates the bit position into chromosome number and 
the bit number within the chromosome. Then we swap the bit. This leads to a new 
population of the same size M.

Thus we have completed one iteration (i.e., one generation) of the while loop in 
the genetic procedure. Next we find the fitness function for the new population and 
the total fitness of the new population, which should be higher compared to the 
old population. The fitness value of the fittest chromosome of the new population 
should also be higher than the fitness value of the fittest chromosome in the old 
population. Now we are ready to run the selection process again and apply the 
genetic operators, evaluate the next generation and so on. A stopping condition 
could be that the total fitness does not change anymore.
// twodimensional.cpp

#include <iostream>
•include <cmath> // for exp, pow 
•include <cstdlib>
•include <ctime> 
using namespace std;

// function to optimize 
double f(double x,double y)
{ return exp(-(x-1.0)*(x-1.0)*y*y/2.0); >

// determines the chromosone length required
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//to obtain the desired precision
int cLength(int precision,double rangeStart.double rangeEnd) 

int length = 0;
double total = (rangeEnd-rangeStart)*pow(10.0,precision); 
while(total > pow(2.0,length)) length++; 
return length;

>

void setup(int** farm,int size,int length)
{
srand((unsigned long) time(NULL)); 
for(int i=0;i<size;i++) 
for(int j=0; j<length; j++) farm[i] [j] = rand()7,2;

>

void printFarm(int** farm,int length,int size) 
i
for(int i=0;i<size;i++) 

cout «  "\n";
for(int j=0;j<length;j++) { cout «  farm[i][j]; >
>

>

double xValue(int* chromosome,int xLength,double* domain)

double m = 0.0;
for(int i=0;i<xLength;i++)
{ m += chromosome[xLength-i-1]*pow(2.0,i); > 

double x =
domain[0] +m*(domain[1] -domain[0] )/(pow(2.0,xLength)-l .0) ; 
return x;

>

double yValue(int* chromosome,int yLength,int length,double* domain)

double m = 0.0;
for(int i=0;i<yLength;i++)
{ m += chromosome[length-i-1]*pow(2.0,i); >

double у =
domain[2]+m*(domain[3]-domain[2])/(pow(2.0,yLength)-l) ; 

return y;
>

double fitnessValue(double (*f)(double,double),int* chromosome, 
int length,double* domain,int xLength,int yLength)
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double x = xValue(chromosome,xLength,domain); 
double у = yValue(chromosome,yLength,length,domain) ; 
double result = f(x,y); 
return result;

>

// New farm is set up by using a roulette wheel parent selection 
void roulette(int** farm,int length,int size,double* domain, 

int xLength,int yLength)
{
int i, j;
// fitness matrix contains the fitness of each
// individual chromosome on farm
double* fitnessVector = new double[size];

for(i=0;i<size;i++)
{
fitnessVector [i] =
fitnessValueCf,farm[i].length,domain,xLength,yLength);
>

// fitness vector contains the fitness of 
// each individual chromosome of the farm 
double totalFitness = 0.0;
for(i=0;i<size;i++) ■( totalFitness += f itnessVector [i] ; }

// calculate probability vector 
double* probabilityVector = NULL; 
probabilityVector = new double[size]; 
for(i=0;i<size;i++)
{ probabilityVector[i] = fitnessVector[i]/totalFitness; }

// calculate cumulative probability vector
double cumulativeProb * 0.0;
double* cum_prob_Vector = new double[size];

for(i=0;i<size;i++)
■c
cumulativeProb += probabilityVector[i]; 
cum_prob_Vector[i] = cumulativeProb;
>

// setup random vector
double* randomVector = new double[size];
srand((unsigned long) time(NULL));

f or(i=0;i<size;i++) 
randomVector [i] = rand()/double(RAND_MAX);
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// create new population 
int count;
int** newFarm = new int* [size]; 
for(i=0;i<size;i++) newFarm[i] = new int[length];

for(i=0;i<size;i++)
■C
count = 0;
while(randomVector [i] > cum_prob_Vector[count]) count++; 
for(j=0; j<length; j++) { newFarm [i] [j] = farm [count] [j] ; >
>

for(i=0;i<size;i++) 
for(j =0; j<length; j ++) farm[i] [j] = newFarm[i] [j] ;

delete[] fitnessVector;
delete [] probabilityVector;
delete[] cum_prob_Vector;
delete[] randomVector;
for(i=0;i<size;i++) delete[] newFarm[i];
delete[] newFarm;

1 // end function roulette

void crossing(int** farm,int size,int length)

int i, j, k, m; 
int count = 0;
int* chosen = new int[size]; 
double* randomVector = new double[size]; 
srandС(unsigned long) time(NULL)); 
for(i=0;i<size;i++)
randomVector [i] = rand()/double(RAND_MAX);

// fill chosen with indexes of all random values <0.25 
for(i=0;i<size;i++) 
i
if (randomVector [i] < 0.25) ■{ chosen [count] = i; count++; }
>

// if chosen contains an odd number of chromosomes 
// one more chromosome is to be selected 
if ((count*/.2 != 0) || (count == 1))
{
int index = 0;
while(randomVector[index] < 0.25) index++; 
count++;
chosen[count-1] = index;
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}

// cross chromosomes with index given in chosen 
int** temp = new int* [2]; 
for(i=0;i<2;i++) temp[i] = new int[length];

for(i=0;i<count;i=i+2)
<
for(j=0;jclength;j++)
{ temp[0][j] = farm [chosen [i] ] [j] ; 
temp[l][j] = farm [chosen [i+1] ] [j] ; > 

int position = randOV.length;

f or(k=position;k<length;k++)
{ temp[0] [k] = farm [chosen [i+1] ] [k] ; 
temp[l][k] = farm [chosen [i] ] [k] ; >

f or(m=0;m<1ength;m++)
{ farm [chosen [i] ] [m] = temp[0] [m] ; 
farm [chosen [i+1] ] [m] = temp[l][m]; }

>
delete[] chosen; 
delete[] randomVector; 
for(i=0;i<2;i++) delete[] temp[i]; 
delete[] temp;

> // end function crossing

void mutate(int** farm,int size,int length)

int totalbits = size*length;
double* randomVector = new double[totalbits];
srand((unsigned long) time(NULL));

for(int i=0;i<totalbits;i++) 
randomVector[i] = rand()/double(RAND_MAX);

int a, b;
for(int i=0;i<totalbits;i++)
{
if(randomVector[i] < 0.01)
{
if(i >= length) i  a = i/length; b = i'/,length; >
else { a = 0 ; b = i ; >
if (farm [a] [b]==0) farm [a] [b] = 1;
else farm [a] [b] = 0;
>
>
delete[] randomVector;
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void printResult(int** farm,int length,int size,double* domain, 

int xLength,int yLength.int iterations)

<
int i;

double* fitnessVector = new double[size];

for(i=0;i<size;i++) 

fitnessVector[i] = 
fitnessValueCf ,farm[i] .length,domain,xLength,yLength) ;

// search for chromosome with maximum fitness 
double x, y; 

int pos = 0;

double max = fitnessVector[0]; 

for(i=l;i<size;i++)

{
if(fitnessVector[i] > max)

{ max = fitnessVector[i]; pos = i; >

>
x = xValue(farm[pos],xLength,domain); 

у = yValue(farm[pos] ,yLength,length,domain) ;

// displaying the result

cout «  "\n\n After " «  iterations

«  " iterations the fitnesses are: \n"; 

for(i=0;i<size;i++)

cout «  "\n fitness of chromosome "
«  i «  " «  fitnessVector[i] ;

>
cout «  "\n\n Maximum fitness: f(" «  x «  и," «  У << ") =

«  max; 
delete[] fitnessVector;

>

int main(void)

int size =32; // population size

int precision = 6 ;  // precision
int iter = 10000; // number of iterations
double domain[4]; // variables specifying domain

double xl, x2, yl, y2;
xl = -2.0; x2 = 2.0; yl = -2.0; y2 = 2.0;

domain[0] = xl; domain[1] = x2;

domain[2] = yl; domain[3] = y2;
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int xLength = cLength(precision,domain[0].domain[1]); 
cout «  "\n\n the xLength is: " «  xLength; 
int yLength = cLength(precision,domain[2].domain[3]); 
cout «  "\n the yLength is: " «  yLength;

// total length
int length = xLength + yLength;
cout «  "\n the chromosone length is: " «  length;

// allocate memory for farm 
int** farm = new int*[size];
for(int i=0;i<size;i++) { farm[i] = new int[length]; У 
setup(farm,size,length);

cout «  "\n\n The inital farm: \n"; 
printFarm(farm,length,size); 
cout «  endl;

// iteration loop
for(int t=0;t<iter;t++)
i
roulette(farm,length,size,domain,xLength,yLength);
crossing(farm,size,length);
roulette(farm,length,size,domain,xLength,yLength); 
mutate(farm,size,length);
>
printResult(farm,length,size,domain,xLength,yLength,iter);

for (int k=0;k<size;k++) { delete[] farm[k]; > 
delete[] farm; 
return 0;

13.9 Finding a Fitness Function
Genetic algorithms can also be applied to some problems where no fitness function 
is given ([106]). This means we first have to construct a fitness function for the 
problem. A number of examples are given below. We discuss finding the (real) 
roots of a polynomial. As a second example we consider finding the solution of the 
boundary value problem of an ordinary differential equation. Then two examples 
study solutions to systems of linear equations. Finally we consider the four-colour 
problem.

Exam ple 1. Consider the polynomial, for example,

p(x) =  i 4 -  7x3 +  8x2 +  2x -  1.
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The zeros are given by the solution of the equation

p(x*) =  0.

As fitness function /  we can use

f { x )  =  -p (x )  • p(x)

which we have to maximize, i.e., the zeros of the polynomial p are found where /  
takes a global maximum. Obviously the global maximum of /  is 0. Another possible 
fitness function would be

f {x )  =  |p(z)|.

This fitness function has to be minimized. For faster calculation of /  we use Homer’s 
scheme. We could use the program in section 12.6. The output provides the four 
zeros 5.47947, 1.65434, 0.271902, -0.405717. *

Exam ple 2. Consider the nonlinear second-order ordinary differential equation

. .d?u . 2/ \ л (u -  +  sin (s) =  0 
ax*

with the boundary values

u(0) =  0, u (l)  =  1 +  sin(l), £ € [ 0, 1].

As an ansatz for the solution we use the polynomial

u(x) =  Co +  C iX  +  c2x2 +  c3x3 +  c4x4 .

Obviously we can set Co =  0. We use the second boundary condition to eliminate 
one more coefficient, for example C\. Then we can define a fitness function as

/ ( c 2, c3, c4) =  -  Y ,  ( M i  h^ Ufa 2 ~  +  sin^ ;  '

where h is the step length (for example h =  0.1). For the implementation of the 
second order derivative we first differentiate и, i.e.,

^  =  2 c2 +  6c3z  +  12 c4z 2 
ax1

and then replace x  by j  • h. Inserting u(j • h) for u(x)t j  • h for x  and d?u/dx2 into 
the differential equation yields the fitness function / .  A
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symmetric 10 x 10 matrix

( 2 1 0 0 0 0 0 0 0 0\
1 2 1 0 0 0 0 0 0 0
0 1 2 1 0 0 0 0 0 0
0 0 1 2 1 0 0 0 0 0
0 0 0 1 2 1 0 0 0 0
0 0 0 0 1 2 1 0 0 0
0 0 0 0 0 1 2 1 0 0
0 0 0 0 0 0 1 2 1 0
0 0 0 0 0 0 0 1 2 1

Vo 0 0 0 0 0 0 0 1 2 )

Лх r

r =  (11 1 1 1 1 1 1 1 1)T

and the linear equation 

where

Here T denotes transpose. A possible fitness function is

/(*) = -  (A e
\ i=0 j=0 J

where aу are the matrix elements of A. This function has to be maximized. ♦

Exam ple 4. Let A  be a given m x m symmetric positive-semidefinite matrix over R. 
Let b € R m, where b  is a given column vector. Consider the quadratic functional

£(x) = V a x  -  xTb
z

where T denotes transpose. The minimum x* of E {x) over R m is unique and occurs 
where the gradient of E(x:) vanishes, i.e.,

V £ (x  =  x*) =  A x -  b  =  0 .

The quadratic minimization problem is thus equivalent to solving the system of 
linear equations A x  =  b. Let

' - ( ! ! ) ■  b- ( ! ) '
We use £  as a fitness function to solve the system of linear equations applying 
genetic algorithms. We have to find the minima of the function

b m =5(*i,*.)(; ! ) й ) -(*!.*.)(!)
=  x[ +  XiX2 +  -x\ - X 1 - X 2
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The solution is ®i =  0, ®2 =  1- ♦

Exam ple 5. A map is called n-colourable if each region of the map can be as
signed a colour from n different colours such that no two adjacent regions have the 
same colour. The four colour conjecture is that every map is 4-colourable. In 1976 
Appel and Haken proved the four colour conjecture with extensive use of computer 
calculations. We can describe the m regions of a map using a m  x  m adjacency 
matrix A  where j4y =  1 if region i is adjacent to region j  and Лу =  0 otherwise. 
We set Ац =  0. For the fitness function we can determine the number of adjacent 
regions which have the same colour. The lower the number, the fitter the individual. 
Individuals are represented as strings of characters, where each character represents 
the colour for the region corresponding to the characters position in the string. We 
write a Java program that uses genetic algorithm to find a solution of the four colour 
problem given the adjacency matrix.

The data member population is the number of individuals in the population, and 
mu is the probability that an individual is mutated. The method f itn e s s () evalu
ates the fitness of a string using the adjacency matrix to determine when adjacent 
regions have the same colour. If the fitness is equal to 0 we have found a solution. 
The adjacency matrix can be modified to solve for any map. The method mutate () 
determines for each individual in the population whether the individual is mutated, 
and mutates a component of the individual by randomly changing the colour. The 
method cross in g () performs the crossing operation. The genetic algorithm is im
plemented in the method GA(). The arguments are an adjacency matrix, a string 
specifying which colours to use and the number of regions on the map. It returns a 
string specifying a solution to the problem. One such solution is YBRBYGYRYB, where 
R stands for red, G for green, В for blue and Y for yellow.

// FourColor.java 

public class FourColor
<
static int population = 1000;
static double mu = 0.01;

public static void main(String[] args)
<
int[][] adjM = {{0,1,0,1,0,0,0,0,0,0},<1,0,1,0,0,1,0,0,0,0},

<0,1,0,0,0,0,1,0,0,0},<1,0,0,0,1,1,0,0,0,0},
<0,0,0,1,0,1,0,1,0,0},<0,1,0,1,1,0,1,0,1,1},
<0,0,1,0,0,1,0,0,0,1},<0,0,0,0,1,0,0,0,1,0},
<0,0,0,0,0,1,0,1,0,1},<0,0,0,0,0,1,1,0,1,0}};

System.out.println(GA(adjM,"RGBY",10)) ;
}

static int fitness(int□  [] adjM,String s,int N)
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{
int count - 0; 
forCint i=0;i<N-l;i++)
{
forCint j=i+l;j<N;j++)
<
if((s.charAt(i)==s.charAt(j)) && CadjM[i] [j]==l)) 
count++;
>
>
return count;
>

static void mutate(String[] p,String colors)
<
int j;
forCint i=0;i<p.length;i++) 

if(Math.random()<mu)
{
int pos = (int) (Math.randomO*(p[i] .length()-l)) ;
int mut = (int) (Math.randomO*(colors.length()-2)) ;
char[] cal = p[i] .toCharArray0  ;
chart] ca2 = colors.toCharArray() ;
for(j=0; cal [pos] !=ca2[j] ;j++) {>;
cal[pos] = ca2[(j+mut)'/.colors.length()] ;
p[i] = new String(cal);
>
>
>

static void crossing (String [] p,int[][] adjM)

int pi = (int)(Math.randomО *(p.length-1)); 
int p2 = pi;
int cl = (int) (Math.randomO*(p[0] .length()-l)) ; 
int c2 = cl;
while(p2==pl) p2 = (int) (Math.randomO*(p.length-1)) ; 
while(c2=cl) c2 » (int) (Math.random()*(p[0] .length()-l)) ; 
if(c2<cl) { int temp = c2; c2 = cl; cl = temp;}
String [] temp = new String [4]; 
temp [0] =p [pi] ; temp [1] =p [p2] ;
temp[2]=p[pl] .substring(0,cl)+p[p2] .substring(cl+l,c2) 

+p[pl] .eubstring(c2+l,p[pi] .length()-l) ; 
temp[3]=p[p2] .substring(0,cl)+p[pl] .substring(cl+l,c2)

+p[p2] .8ubstring(c2+l,p[p2] .length()-l) ; 
int i, f;
for(i=0,f=0;i<4;i++)
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<
if Cf itness(adjM,temp [i] ,temp[i] .lengthO)
>fitness(adjM,temp[f] ,temp[f].length())) 

f = i;
>
{ String tmp=temp[f]; temp[f]=temp[0] ; temp[0]=tmp; > 
for(i=l,f=l;i<4;i++)

if (fitness (adjM, temp [i] ,temp[i] .lengthO)
>fitness(adjM,temp[f] ,temp[f] .lengthO)) 

f = i;
>
{ String tmp=temp[f] ; temp[f]=temp[l] ; temp[l]=tmp; > 
p[pl] = temp [2]; p[p2] = temp[3];
>

static String GA(int[][] adjM,String colors,int N)
<
int maxfitness, mfi = 0;
String [] p = new String [population] ; 
char [] temp = new char [N]; 
for(int i=0;i<population;i++)

for(int j=0;j<N;j++) 
i
tempCj] =

colors. char At ( (int) ((Math. random О  *colors. length 0  ) ) ) ;
>
p[i] = new String (temp);
>
maxfitness=f itness (adjM, p[0] ,p[0] .lengthO) ; 
while(maxf itness!=0)
{
mutate(p,colors); crossing(p,adjM); 
for(int i=0;i<p.length;i++)

if (fitness (adjM,p[i] ,p[i] . length ())<maxf itness)
<
maxf itness=f itness (adjM, p[i] ,p[i] .lengthO) ; 
mfi = i;
>
>
>
return p [mf i] ;
>
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13.10 Problems with Constraints
13.10.1 Introduction

. . s far> we have only discussed genetic algorithms for searching unconstrained 
jec ive unctions. Many practical problems contain one or more constraints that 

nil гмг* S° 6 e*̂ ’ ^  typical examP̂ e *s the traveling salesman problem, where 
trnv î-165 mi|IS 6 v*s^ec* exac%  °nce. In a more mathematical formulation, the 
traveling salesman problem is stated as follows. For a given n x n  distance matrix
function * П a Ĉ C *)ermu*;a^on n ° f  the set {  1,2, . . . ,  n } that minimizes the

n
Ф 0  =  ! > * ( ( ) .  

i -1

The-value е(тг) is usually referred to as the length (or cost or weight) of the per-
i .  01? П'. . e Raveling salesman problem is one of the standard problems in 
.| "a ° Г1а ur r zati0n аПС̂ шапУ iniportant applications like routing or 

i !°П SC. e u Job-dependent set-up times. Another example is the
Knapsack problem, where the weight which can be carried is the constraint. The 
norm of an n x n matrix over the real numbers R  is given by

N l  :=  sup ||Лх||.

^  the constraint N l  =  1, i-e. the length of the vector x 6 R " 
r . ls pro era can  be solved with the Lagrange multiplier method, since

the functions m this problem are differentiable (see chapter 14).

Ĉ cu^ Problem in genetic algorithms is the inclusion of constraints. Con- 
m i S are u û У c ^sified as equality or inequality relations. Equality constraints 
no пягг U 6 u,nt°  ?  system* ^  would appear that inequality constraints pose 

. аГ.?Г0 em' ^  Senetic algorithm generates a sequence of parameters to be 
nm t-Vm l 6 system mo<̂ el, objective function, and the constraints. We simply 
violate if 8 i Uat6 ^tness f^ction, and check to see if any constraints are 
nu- .• * f П0 ’ 6 Parajneter set is assigned the fitness value corresponding to the 
a j  ., л11110 10n ®va ûation. If constraints are violated, the solution is infeasible 
Drohlpm* aVe a ^ ness- This procedure is fine except that талу practical
in? thp К T  л16 У c°nstrained; finding a feasible point is almost as difficult as find- 
sohitinnQ65 a We usua^y want to get some information out of infeasible
constraint v^i t PS p̂Ue6ra^in6 eir ^tness ranking in relation to the degree of 
a constrain*!? & Юул iS Ŵ &t is done in a Penalty method. In a penalty method, 
bv assnriati РГ° еШ m °Ptimization is transformed to an unconstrained problem
in th* nh1 \ °°*  ° Г Репа1^  all constraint violations. This cost is included m the objective function evaluation.

example, the original constrained problem in minimization form



13.10. PROBLEMS WITH CONSTRAINTS 399

minimize p(x) subject to

hi{x) >  0, i — l , 2 , . . . , n  

where x is an m  vector. We transform this to the unconstrained form: 

minimize

р (х )+ г £ Ф [/ц (х ) ]
»=i

where Ф is the penalty function and r is the penalty coefficient. Other approaches 
use decoders or repair algorithms.

A detailed discussion of problems with constraints is given by Michalewicz [78]. He 
proposes that appropriate data structures and specialized genetic operators should 
do the job of taking care of constraints. He then introduces an approach to handle 
problems with linear constraints (domain constraints, equalities, and inequalities). 
We consider here the knapsack problem and traveling salesman problem applying 
genetic algorithms.

13.10.2 Knapsack Problem
Formally, the knapsack problem can be stated as follows.

Problem . Given M, the capacity of the knapsack,

{  Wi | Wi >  0, i =  0 ,1 , . . . ,  n — 1 } 

the weights of the n objects, and

> 0, t =  0 ,1....... n — 1}

their corresponding values,

n - l  n - l
maximize 2 2  ViXi subject to 2 2  WiXi — ^

»=o <=o

where ж* € {0 ,1 }. Here Xi =  0 means that item i should not be included in the 
knapsack, and Xi =  1 means that it should be included.

As an example for the knapsack problem we consider the following problem. A 
hiker planning a backpacking trip feels that he can comfortably carry at most 20 
kilograms. After laying out all the items that he wants to take and discovering that 
their total weight exceeds 20 kilograms, he assigns to each item a “value” rating, as 
shown in the Table. Which items should he take to maximize the value of what he 
can carry without exceeding 20 kilograms?
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Table. An Instance of the Knapsack Problem

Item
Canteen Change of Camp Sleeping Dried 

Tent (filled) clothes stoves bag food
Weight
Value

11 7 5 4 3 3 
20 10 11 5 25 50

Item
First-aid Mosquito Rain Water 

kit repellent Flashlight Novel gear purifier
Weight
Value

3 2 2 2 2 1 
15 12 6 4 5 30

Although we do not know yet how to obtain the solution, the way to fill the knap
sack to carry the most value is to take the

sleeping bag, food, mosquito repellent, first-aid kit, flashlight, water purifier, and 
change of clothes,

for a total value of 149 with a total weight of 19 kilograms. An interesting aspect 
of the solution is that it is not directly limited by the weight restriction. There 
are ways of filling the knapsack with exactly 20 kilograms, such as substituting for 
the change of clothes the camp stove and rain gear, but this decreases the total value.

The following C + +  program uses a genetic algorithm to solve the problem. We use 
the header file b itv e c t . h given above.

// knapsack.cpp

•include <iostream>
•include <fstream>
•include <ctime>
•include <cstdlib>
•include "bitvect.h" 
using namespace std;

struct item { char name[50]; double weight, value; )■; 

void readitems(char *file,item *&list,int &n,double &max)
{

ifstream data(file); 
data»n;
list = new item[n] ; 
for(int i=0;i<n;i++)

data»list[i] .name; data»list[i] .weight; data»list[i] .value; 

data»max;
>
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void destroyitemsCitem *list) { delete[] list; >

double value(const BitVector ftb,int n,double max,item *list)

double tveight =0.0, tvalue =0.0; 
forCint i=0;i<n;i++)
{
ifCb.GetBitCi))
{ tweight += list[i] .weight; tvalue += list[i] .value; > 
ifCtweight > max) { tvalue = -1.0; i = n; >
>
return tvalue;

>

void mutateCBitVector *farm,int m,int n,item *list,double max)

const int tries = 1000; 
int animal = randO'/jn; 
int i = 0, pos, pos2;
BitVector* newanim = new BitVectorCfarm[animal]); 
pos2 = pos = randO'/.n; 
newanim -> ToggleBitCpos);

whileCi<tries)

while Cpos2==pos) pos2 = randOXn; 
newanim -> ToggleBitCpos2); 
ifCvalueC*newanim,n,max,list) > 0) i=tries; 
else { newanim -> ToggleBitCpos2);i++;pos2=pos; >
>
if Cvalue С *newanim, n, max, list) >value Cf arm [animal], n, max, list) ) 
farm[animal] = *newanim; 
delete newanim;

>

void crossingCBitVector *farm,int m.int n,item *list,double max) 

const int tries = 1000;
int animal 1 = randOXm; int animal2 = randC)%m; 
int pos;
whileCanimal2==animall) animal2 = randO*/.m;
BitVector *newaniml = new BitVectorCfarm[animal1]);
BitVector *newanim2 = new BitVectorCfarm[animal2]); 
pos = randO’/n;

forCint i=pos;i<n;i++)

newaniml -> SetBitCi,farm[animal2][i]);
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nevanim2 -> SetBit(i,farm[animall] [i]);
>
if (value(*newaniml,n,max,list) > value (farm [animal 1] ,n,max, list)) 
farm [animal 1] = *newaniml;
if(value(*newanim2,n,max,list) > value(farm[animal2] ,n,max,list)) 
farm[animal2] « *newaniml; 
delete newaniml; delete newanim2;

>

void setupfarm(BitVector *farm,int m,int n,item *list,double max)

const int tries = 2000; 
double temp; 
int i, j, k;
srand((unsigned long) time(NULL)); 
for(i=0;i<m;i++)
{
for(j=0; j<n; j++) f arm[i] .SetBit(j ,0) ;
temp = 0.0; к = 0;
while((temp < max) && (k < tries))
•C
j = rand()'/,n;
if(!farm[i].GetBit(j)) temp+=list[j].weight; 
if (temp < max) farm[i] .SetBit(j) ; 
k++;
>
>

>

int main(void)
{

item* list = NULL;
int n, m = 100, i, iterations = 500, besti = 0; 
double max, bestv = 0.0, bestw = 0.0, temp;
BitVector *farm = new BitVector[m]; 
readitems("knapsack.dat",list,n,max);

for(i=0;i<m;i++) farm[i].SetLength(n); 
setupfarm(farm,m,n,list,max); 
for(i=0;i<iterations;i++)
{ crossing(farm,m,n,list,max); mutate(farm,m,n,list,max) ; > 

for(i=0;i<m;i++)
if((temp=value(farm[i],n,max,list)) > bestv)
{ bestv=temp; besti=i; >

cout «  "Items to take: " «  endl; 
for(i=0;i<n;i++)
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•C
if (farm[besti] .GetBit(i))
<
cout «  list[i].name «  «  endl; 
bestw += list[i].weight;
>
>
cout «  endl;
cout «  "for a weight of " «  bestw

«  "kg and value of " «  bestv «endl; 
delete[] farm; 
destroyitems(list); 
return 0;

>

The input file knapsack. dat is

12
tent 11 20
canteen.(filled) 7 10
change_of_clothes 5 11
camp.stoves 4 5
sleeping_bag 3 25
dried.food 3 50
first-aid_kit 3 15
mosquito.repellent 2 12
flashlight 2 6
novel 2 4
rain_gear 2 5
water_purifier 1 30 
20

The output is

Items to take :

change.of„clothes, 
sleeping_bag, 
dried_food, 
first-aid_kit, 
mosquito_repellent, 
flashlight, 
water_purifier,

for a weight of 19kg and value of 149

The knapsack problem can also be solved using dynamic programming, 
the following problem

Consider
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Item (j) Weight (Wj) Benefit (bj)
1 2 65
2 3 80
3 1 30

and suppose the capacity of the knapsack is 5. Let the stages be indexed by w, the 
weight filled. The decision is to determine the last item added to bring the weight 
to w. There is just one state per stage. Let f(w ) be the maximum benefit that can 
be gained from a w kg knapsack. For item j  the following relates f(w )  to previously 
calculated /  values

f(w )  =  m ax{ bj +  } {w  -  Wj) }  .

To fill a w kg knapsack, we must end off by adding some item. If we add item j ,  we 
end up with a knapsack of size w — Wj to fill. Thus we have

/(0 ) =  0, /(1 )  =  30

add item 3.

/(2 )  =  max{ 65 +  /(0 )  =  65, 30 +  / (1 )  =  60 }  =  65

add item 1.

/(3 ) =  max{ 65 +  /(1 )  =  95, 80 +  /(0 )  =  80, 30 +  Д 2) =  95 } =  95 

add item 1 or 3

/(4 )  =  max{ 65 +  / ( 2) =  130, 80 +  Д 1) =  110, 30 +  /(3 )  =  125 }  =  130 

add item 1

/ ( 5) =  max{ 65 +  /(3 ) =  160, 80 +  /(2 )  =  145, 30 +  /(4 )  =  160 }  =  160 

add item 1 or 3.

This gives a maximum for the benefit of 160, which is gained by adding 2 of the 
item 1 and 1 of the item 3.

13.10.3 Traveling Salesman Problem
The traveling salesman problem is a combinatorial optimization problem. Many 
combinatorial optimization problems like the traveling salesman problem can be 
formulated as follows. Let

{*ll*2|. ••!*»}
be some permutation from the set {1,2, . . . , n } .  The number of permutations is 
n\. Let fi be a space of feasible solutions (states) and f(n )  the optimality function 
(criterion). It is necessary to find 7Г* such that

7Г* =  { г ; , г ; , . . . }  =  arg{ / ( тг) -> min} .
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The structure of Г2 and / ( 7r) depends on the problems considered. A typical prob
lem is the traveling salesman problem. The traveling salesman problem is simple to 
state. Given the distances separating a certain number of towns the aim is to find 
the shortest tour that visits each town once and ends at the town it started from. 
There are several engineering and scientific problems equivalent to a traveling sales
man problem. The problem is of practical importance. The number of all possible 
tours is finite, therefore in principle the problem is solvable. However, the brute 
force strategy is not only impractical but completely useless even for a moderate 
number of towns n, because the number of possible tours grows factorially with 
n. The traveling salesman problem is the best-known example of the whole class 
of problems called NP-complete (or NP-hard), which makes the problem especially 
interesting theoretically. The NP-complete problems are transformable into each 
other, and the computation time required to solve any of them grows faster than 
any power of the size of the problem. There are strong arguments that a polynomial 
time algorithm may not exist at all. Therefore, the aim of the calculations is usually 
to find near-optimum solutions.

The following C + +  program finds all permutations of the numbers 1,2, . . .  ,n. We 
choose n =  3. The array element p [0] takes the value 0 at the beginning of the 
program. The end of the evaluation is indicated by p[0]=l.

// permutation.cpp

•include <iostream> 
using namespace std;

int main(void)

int i, j, k, t; 
unsigned long n = 3; 
int* p = new int[n+1];
// starting permutation identity l,2,...,n -> l,2,...,n 
f o r ( i=0; i<=n; i++)
{ p[i] = i; cout «  "p[" «  i «  "] = " «  PC13 «  " >
cout «  endl;
int test = 1;
do
<
i = n-l;
while (p CiD > pCi+1]) i = i—1; 
if(i > 0) test = 1; else test = 0; 
j = n;
while(p[j] <= p[i] ) j-j-1; 

t = p[i] ; p[i] = pCj] ; pCj3 = t;
i = i+1; j = n; 
while(i < j)
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i  t  = p [i] ; p [i] = p [ j ] ;  pCj] = t ;  i  = i+1; j  = j - 1 ;  >
/ /  display result
forCint tau=0;tau<=n;tau++)
cout «  "p[" «  tau «  "] = " «  p[tau] «  "
cout «  endl;
> while(test==l); 
delete [] p; 
return 0;

>

Goldberg and Lingle [39] suggested a crossover operator, the so-called partially 
mapped crossover. They believe it will lead to an efficient solution of the traveling 
salesman problem. We explain with an example how the partially mapped operator 
works. Assume that we have 12 cities and assume that the parents are

(1 2 3 4 5 6 7 8 9 10 11 12) : al 
(7 3 6 11 4 12 5 2 10 9 1 8) : a2

al and a2 are integer arrays. Positions count from 0 to n — 1, where n =  12. We 
select two random numbers r l  and r2

0 <  r l  <  (n — 1), 0 <  r2 <  (n — 1), r l  <  r2

Let r l  =  3, r2 =  6. Truncate parents using r l  and r2.

(1 2 3 I 4 5 6 7 I 8 9 10 11 12)
(7 3 6 1 11 4 12 5 I 2 10 9 1 8)

We obtain the subarrays s i  = (4 5 6 7) and s2 = (11 4 12 5). Next we do the 
crossing

( 1 2  3 1 11 4 12 5 I 8 9 10 11 12)
(7 3 6 1 4 5 6 7 1 2  10 9 1  8)

Now some cities occur twice while others are missing in the new array. The crossing 
defines the mappings

11 -> 4 4 -> 5 12 -> 6 5 -> 7 (*)
4 -> 11 5 ->  4 6 -> 12 7 -> 5 (**)

Positions which must be fixed are indicated by x

(1 2 31 11 4 12 5 I 8 9 10 x x)
(x 3 xl 4 5 6 7 I 2 10 9 1 8)

We fix the first array using the mapping (*).

a) number 11 at position 10 must be fixed



i) map 11 1—► 4 but 4 is in array s2

ii) map 4 i—► 5 but 5 is in array 52

iii) map 5 7 o.k. 7 is not in array s2

Thus replace number 11 at position 10 by number 7. 

a) number 12 at position 11 must be fixed 

i) map 12 i—► 6 o.k. 6 is not in array s2 

Thus replace number 12 at position 11 by number 6.

a) number 7 at position 0 must be fixed

i) map 7 i—► 5 but 5 is in array si

ii) map 5 •—► 4 but 4 is in array si

iii) map 4 •—► 11 o.k. 11 is not in array si 

Thus replace number 7 at position 0 by number 11

b) number 6 at position 2 must be fixed 

i) map 6 •—► 12 o.k. 12 is not in array si

Thus replace number 6 at position 2 by number 12. Consequently, the children are

(1 2 3 11 4 12 5 8 9 10 7 6)
(11 3 12 4 5 6 7 2 10 9 1 8)

Вас and Perov [3] proposed another operator of crossings using the permutation 
group. We illustrate the operator with an example and a C + +  program. Assume 
that we have ten cities. Let the parents be given by

(0 1 2 3 4 5 6 7 8  9) ->(8 7 3 4 5 6 0 2 1 9 )  parent 1 
(0 1 2 3 4 5 6 7 8  9) -> (7 6 0 1 2 9 8 4 3  5) parent 2

The permutation map yields

0 -> 8 -> 3
1 -> 7 -> 4
2 -> 3 -> 1

etc.. Thus the children are given by

(0 1 2 3 4 5 6 7 8  9) ->(3 4 1 2 9 8 7 0 6  5)
(0 1 2 3 4 5 6 7 8  9) ->(2 0 8 7 3 9 1 5 4  6)

The implementation of this permutation is straightforward.
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// tsppermutation.cpp

•include <iostream> 
using namespace std;

void crossingCint* al,int* a2,int* a3,int* a4,int n)

forCint i=0;i<n;i++) { int p = al[i]; a3[i] = a2[p]; > 
forCint j=0;j<n;j++) { int q = a2[j]; a4[j] = al[q]; >

}

int mainСvoid)

int n = 10;
int* al = new int[n]; int* a2 = new int[n];
int* a3 = new int[n]; int* a4 = new int[n];
al[0] = 8;; al[1] = 7; al[2] = 3;; al[3] = 4; al[4] = 5;
al[5] = 6;; al [6] = 0; al [7] = 2;; al[8] = 1; al[9] - 9;
a2[0] = 7;; a2[l] = 6; a2[2] = 0;i a2[3] = 1; a2 [4] = 2;
a2[5] = 9; a2[6] = 8; a2 [7] = 4;; a2[8] = 3; a2[9] = 5;
crossingCal,a2,a3,a4,n); 
forCint i=0;i<n;i++)
{
cout «  "a3[" «  i «  "] = " «  a3[i] «  " "; 
ifCCCi+l)7.2)==0) { cout «  endl; >
>
forCint j=0;j<n;j++)
<
cout «  "a4[" «  j «  "] = " «  a4[j] «  " "; 
i f C(Cj+l)7,2)==0) { cout «  endl; >
>
delete[] al; delete[] a2; deleted a3; delete[] a4; 
return 0;

>
In the following program tsp.cpp we use these operators to find solutions to the 
traveling salesman problem.

// tsp.cpp

•include <iostream>
•include <fstream>
•include <cstdlib>
•include <ctime>
•include "bitvect.h" 
using namespace std;

void readdistCchar* filename,double**& dist.intfc cities)
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int i, j;
ifstream d(filename); 
d »  cities;
dist = new double*[cities];
for(i=0;i<cities;i++) dist[i] = new double[cities] ; 
for(i=0;i<cities;i++) 
for(j=i+l;j<cities;j++)
< d »  dist [i] [j] ; dist[j][i] = dist Ci] Cj]; > 

for(i=0;i<cities;i++) dist[i][i]=0; 
cout «  "d[0] [0] = " «  dist[0][0] «  endl; 
d.closeO;

void destroydist(double **dist,int cities)
•C
for(int i=0;i<cities;i++) delete[] dist[i]; 
delete[] dist;

>

double distance(int *seq,int cities,double **dist)
{
double sumdist = 0.0;
for(int i*l;i<cities;i++) sumdist += dist[seq[i]][seq[i-l]]; 
sumdist += dist [seq[0]] [seq[cities-l]] ; 
return sumdist;

>

void setupfarm(int **farm,int n,int cities)

BitVector used(cities); 
int city,i,j; 
srand(t ime(NULL)); 
for(i=0;i<n;i++)
{
for(j=0;j<cities;j++) used.SetBit (j ,0) ; 
for(j=0;j<cities;j++)
{
city = rand()y,cities;
if (!used.GetBit(city)) { farm[i] [j]=city;used.SetBit(city); > 
else j — ;
>

>
>

void mutate(int **farm,int n.int cities,double **dist) 

int seq = rand()%n;
int posl = r a n d ( ) * / ,cities; int pos2 * r a n d 0 '/.cities;
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while(pos2==posl) pos2 = randO'/.cities; 
int *mutated = new int[cities] ;
forCint i=0 ;i<cities;i++) mutated[i] = farm[seq] [i] ; 
mutated [posl] ■ farm[seq] [pos2] ; 
mutated[pos2] = farm[seq] [posl];
if CdistanceCfarm[seq] .cities,dist) > distanceCmutated,cities,dist)) 
{ delete farm [seq]; farm[seq] = mutated; > 
else delete mutated;

>

void permutateCint** farm,int n,int cities.double** dist)

int seql = randO*/.n; int seq2 = randC)'/.n; 
int *resultl, *result2, *result3, *result4; 
whileCseq2 == seql) seq2 = randO'/»n;
int *childl = new int[cities]; int *child2 = new int[cities]; 
forCint i=0;i<cities;i++)
{
childl[i] = farm[seq2] [farm[seql] [i]] ; 
child2[i] = farm [seql] [farm[seq2] [i]] ;
>
if CdistanceCf arm [seql] .cities, dist) > distance Cchildl, cities,dist))
resultl = childl;
else resultl = farm[seql];
if CdistanceCf arm [seq2] .cities,dist) > distance Cchild2, cities, dist))
result2 = child2;
else result2 = farm[seq2];
result3 = СCresultl==farm[seql])?childl:farm[seql]); 
result4 = CCresult2==farm[seq2])?child2:farm[seq2]); 
farm[seql] = resultl; farm[seq2] = result2; 
delete [] result3; delete [] result4;

>

int insequenceСint el,int *seq,int pi,int p2)
i

forCint i=pl;i<p2;i++) ifCseq[i]==el) return i; 
return -1;

>

void pmxCint **farm,int n,int cities,double **dist)
{

int i, pos;
int seql = randO’/.n; int seq2 = randC)'/.n;
int *resultl, *result2, *result3, *result4;
whileCseq2==seql) seq2 = randC)%n;
int posl = randC)’/.cities; int pos2 = randO'/.cities;
whileСров2==ров1) pos2=randC)'/lcities;
ifCpos2<posl) { i = pos2 ; pos2 = posl; posl = i; >
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int *childl = new int[cities]; 
int *child2 = new int[cities]; 
for(i=0;i<cities;i++)
{
if((i<pos2) && (i>=posl))
{ childl[i] = farm[seq2] [i]; child2[i] = farm[seql] [i] ; > 
else
{ childl[i] = farm[seql] [i] ; child2[i] = f arm[seq2] [i] ; >

>

for(i=0;i<cities;i++)
{
if((i<posl) || (i>=pos2))
while((pos = insequence(childl[i],childl,posl,pos2)) >= 0) 
childl[i] = child2[pos]; 
if((i<posl) || (i>=pos2))
while((pos = insequence(child2[i],child2,posl,pos2)) >= 0) 
child2[i] = childl [pos];
>

if (distance (f arm [seql] , cities,dist) >distance (childl, cities,dist) )
resultl = childl;
else resultl * farm[seql];
if (distance (farm [seq2] , cities ,dist) >distance (child2, cities, dist) )
result2 = child2;
else result2 = farm[seq2];
result3=( (result l==f arm [seql] )?childl: farm [seql]) ; 
result4=((result2==farm[seq2] )?child2 :farm[seq2]); 
farm[seql] = resultl; farm[seq2] = result2; 
delete[] result3; delete[] result4;

int main(void)
{
int N = 16; // number of animals/chromosomes 
int i, j;
int iterations = 300; 
cout «  N «  endl;
double** dist = NULL; // array of distances 
int cities; // number of cities
readdistO'tsp.dat" ,dist,cities); 
cout «  "Cities: " «  cities «  endl; 
int** farm = new int*[N]; 
for(i=0;i<N;i++) farm[i] = new int [cities]; 
setupfarm(farm,N,cities); 
for(i=0;iciterations;i++)
{
mutate(farm,N,cities,dist);
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permutateCfarm,N,cities,dist); 
pmxCfarm,N,cities,dist);
>
for(i=0;i<N;i++)
{
for(j=0;j<cities;j++) cout «  farm[i] [j] «  "
cout «  " distance:" «  distance (farm [i] , cities, dist) «  endl;
>
destroydist(dist.cities); 
return 0;

>

The input file for the 28 distances of the eight cities t s p . dat is:

8
14.5413 20.7663 13.5059 19.6041 10.4139 4.60977 14.5344
6.34114 5.09313 9.12195 5.0 12.0416 14.0357 8.70919
10.4938 11.2432 18.3742 18.8788 14.213 7.5326 12.6625
17.7071 9.72677 15.4729 10.5361 7.2111 10.198 10.0

A typical output is

Cities: 8
7 4 2 3 1 5 0 6 distance:64.8559
7 4 2 3 1 5 0 6 distance:64.8559
7 4 2 3 1 5 0 6 distance:64.8559
0 6 5 1 3 2 4 7 distance:66.1875
7 4 2 3 1 5 0 6 distance:64.8559
7 4 2 3 1 5 0 6 distance:64.8559
7 4 2 3 1 5 0 6 distance:64.8559
0 6 5 1 3 2 4 7 distance:66.1875
7 4 2 3 1 5 0 6 distance:64.8559
4 2 1 3 0 6 5 7 distance:67.9889
7 4 2 3 1 5 0 6 distance:64.8559
7 4 2 3 1 5 0 6 distance:64.8559
0 6 5 1 3 2 4 7 distance:66.1875
0 6 5 1 3 2 4 7 distance:66.1875
7 4 2 3 1 5 0 6 distance:64.8559
7 4 2 3 1 5 0 6 distance:64.8559

13.11 Simulated Annealing
Annealing is the process of cooling a molten substance with the objective of condens
ing matter into a crystalline solid. Annealing can be regarded as an optimization 
process. The configuration of the system during annealing is defined by the set of 
atomic positions г,. A configuration of the system is weighted by its Boltzmann 
probability factor,

exp {-E {ri)/kT )
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where Е(г{) is the energy of the configuration, к is the Boltzmann constant, and T  
is the temperature. When a substance is subjected to annealing, it is maintained at 
each temperature for a time long enough to reach thermal equilibrium.

The iterative improvement technique for combinatorial optimization has been com
pared to rapid quenching of molten metals. During rapid quenching of a molten 
substance, energy is rapidly extracted from the system by contact with a massive 
cold substrate. Rapid cooling results in metastable system states; in metallurgy, 
a glassy substance rather than a crystalline solid is obtained as a result of rapid 
cooling. The analogy between iterative improvement and rapid cooling of metals 
stems from the fact that iterative improvement and rapid cooling of metals accepts 
only those system configurations which decrease the fitness function. In an anneal
ing (slow cooling) process, a new system configuration that does not improve the 
cost function is accepted based on the Boltzmann probability factor of the config
uration. This criterion for accepting a new system state is called the Metropolis 
criterion. If the initial temperature is too low, the process gets quenched very soon 
and only a local optima is found. If the initial temperature is too high, the process 
is very slow. Only a single solution is used for the search and this increases the 
chance of the solution becoming stuck at a local optimum. The changing of the 
temperature is based on an external procedure which is unrelated to the current 
quality of the solution, that is, the rate of change of temperature is independent of 
the solution quality. These problems can be solved by using a population instead 
of a single solution. The annealing mechanism can also be coupled with the quality 
of the current solution by making the rate of change of temperature sensitive to 
the solution quality. The simulated annealing procedure is given below. Simulated 
annealing consists of repeating the Metropolis procedure for different temperatures. 
The temperature is gradually decreased at each iteration of the simulated annealing 
algorithm.
procedure simulated annealing 
begin 

t <- 0
initialize temperature T
select a current string v_c at random
evaluate the fitness of v_c
repeat
repeat
select a new string v_n 
in the neighbourhood of v_c 
by flipping a single bit of v_c 
if f(v_c) < f(v_n) then v_c <- v_n
else if random[0,1] < exp((f(v_n)-f(v_c))/T) then v_c <- v_n 
until (termination condition)
T <- g(T,t) 
t <- t+1
until (stop-criterion)

end
In the following C + +  program we use simulated annealing to find the minimum of
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the function 
f (x )  =  x2 sin(rc) exp(—ж/15.0) 

in the range [0,100].
// annealing.cpp

#include <iostream>
#include <cmath> // for sin, exp, fmod 
#include <cstdlib> 
using namespace std;

inline double f(doublet x) {  return sin(x)*x*x*exp(-x/15.0); } 

inline void randval (double* s)

static const double pi = 3.14159265;
*s = fmod((*s+pi)*(*s+pi)*(*s+pi)*(*s+pi)*(*s+pi),1.0) ;

>

inline int accept(doublet Ecurrent,doublet Enew,doublet T,doublet s)
{
double dE = Enew-Ecurrent; 
if(dE <0.0) return 1; 
if(s < exp(-dE/T)) return 1; 
else return 0;

>

int main(void)

cout «  "Finding the minimum via simulated annealing:" «  endl;
double xlov =0.0, xhigh = 100.0;
double Tmax = 500.0, Tmin = 1.0;
double Tstep = 0.1;
double s = 0.118; // seed
randval(ts);
double xcurrent = s*(xhigh-xlow); 
double Ecurrent = f(xcurrent); 
for(int T=Tmax;T>Tmin;T=T-Tstep)
{
randval(fcs);
double xnew = s*(xhigh-xlow); 
double Enev = f(xnew);
if (accept (Ecurrent, Enew,T,s) !=0) ■( xcurrent = xnew; Ecurrent = Enew; У
У II  end for loop
cout «  "The minimum found is "

«  Ecurrent «  " at x = " «  xcurrent; 
return 0;

>



Chapter 14 

Gene Expression Programming

14.1 Introduction
Whereas genetic algorithms and genetic programming are well-known in literature, 
gene expression programming (Ferreira [34], Hardy and Steeb [46]) is not yet well- 
known. Gene expression programming is a genome/phenome genetic algorithm 
which combines the simplicity of genetic algorithms and the abilities of genetic pro
gramming. In a sense gene expression programming is a generalization of genetic 
algorithms and genetic programming. Gene expression programming is different 
from genetic programming because the expense of managing a tree structure and 
ensuring correctness of programs is eliminated. We provide an introduction in the 
following.

A gene is a symbolic string with a head and a tail. Each symbol represents an 
operation. The operation + takes two arguments and adds them. For example, +x2 
is the operation + with arguments x and 2 giving x+2. The operation * also takes 
two arguments and multiplies them. The operation x would evaluate to the value of 
the variable x. The tail consists only of operations which take no arguments. The 
string represents expressions in prefix notation, i.e. 5-3 would be stored as -  5 3. 
The reason for the tail is to ensure that the expression is always complete. Suppose 
the string has h symbols in the head which is specified as an input to the algorithm, 
and t symbols in the tail which is determined from h. Thus if n is the maximum 
number of arguments for an operation we must have

A + 1 -  1 =  An.

The left hand side is the total number of symbols except for the very first symbol. 
The right hand side is the total number of arguments required for all operations. We 
assume, of course, that each operation requires the maximum number of arguments 
so that any string of this length is a valid string for the expression. Thus the equation 
states that there must be enough symbols to serve as arguments for all operations. 
Now we can determine the required length for the tail t =  h(n — 1) +  1.

415
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Example 1. Consider the symbols x , у and the operations *, +  which take two 
arguments. Let h =  5. Then t =  6 since n =  2. Thus a gene would be

+*xy2Ixyy32y

The vertical line indicates the beginning of the tail. The expression is (x*y) +2. The 
tree structure would be

Example 2. Suppose we use h =  8, and n =  2 for arithmetic operations. Thus the 
tail length must be t =  9. So the total gene length is 17. We could then represent 
the expression

cos(x2 +  2) -  sin(rr)
with the string 

-c+*xx2sIxlx226x31

The vertical I is used to indicate the beginning of the tail. Here с represents cos 
and s represents sin. We can represent the expressions with trees. For the example 
above, the root of the tree would be with branches for the parameters. Thus we 
could represent the expression as follows

Note that not all of the symbols from the tail are used. Only one symbol from the 
tail is used in the present example.

A chromosome is a collection of genes. The genes combine to form an expression 
using some operation with the same number of arguments as genes in the chromo
some. For example the expressions of genes of a chromosome may be added together. 
For operations applied to chromosomes we often concatenate the genes to obtain a 
single string of symbols. For example, suppose we have the following genes forming 
a chromosome
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-c+*xx2s|xlx226x31 
-c+*xx2s1x1x226x31 
-c++x2*x1x1x226x31

we form the chromosome by concatenation 

-c+*xx2sIxlx226x31I-c+*xx2sIxlx226x31I-c++x2*xIxlx226x31

where I indicates the beginning of the head and tail portions of the genes. We 
apply operations to chromosomes in a collection which is called the population of 
chromosomes.

A number of operations are applied to chromosomes.

• R eplication. The chromosome is unchanged. The roulette wheel selection 
technique can be used to select chromosomes for replication.

• M utation. Randomly change symbols in a chromosome. Symbols in the tail 
of a gene may not operate on any arguments. Typically 2 point mutations per 
chromosome is used. For example, let +*xy21 xyy32y. Then a mutation could 
yield +*yy21 xyy32y or ++xy21 xyy32y or +*xy-1 xyy32y.

• Insertion. A portion of a chromosome is chosen to be inserted in the head of 
a gene. The tail of the gene is unaffected. Thus symbols are removed from the 
end of the head to make room for the inserted string. Typically a probability 
of 0.1 of insertion is used. As an example suppose +x2 is to be inserted into

-c+*xx2sIxlx226x31

at the fourth position in the head. We obtain 

-c++x2*x1x1x226x31

which represents the expression cos((x +  2) +  x2) -  1.

• Gene transposition. One gene in a chromosome is randomly chosen to be 
the first gene. All other genes in the chromosome are shifted downwards in 
the chromosome to make place for the first gene.

• Recom bination. The crossover operation. This can be one point (the chro
mosomes are split in two and corresponding sections are swapped), two point 
(chromosomes are split in three and the middle portion is swapped) or geius 
(one entire gene is swapped between chromosomes) recombination. Typically 
the sum of the probabilities of recombination is 0.7.
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Another operation could be swapping. For example, consider again +*xy21 xyy32y. 
Then swapping the second and seventh position (counting from left and starting 
from zero) we obtain +*yy21 xyx32y.

In the following example we implement these operations. For simplicity we use only 
one gene in a chromosome and only one point recombination.

14.2 Example

In our example we consider smooth one-dimensional maps /  : R  —» R  having the 
properties

/ ( 0) =  0, / (1 )  =  0, / ( i )  =  1

For example the logistic map g(x) :=  4x(l — ж) satisfies this set of properties. We 
use Gene Expression Programming to perform symbolic regression in order to obtain 
maps which satisfy the above properties. We expect that the logistic map should 

e found since we limit the functions in the implementation to polynomials. We 
generalize the set of properties as follows. The points of evaluation are specified by 
a subset of X  x Y  where X  and Y  are given by /  : X  -> Y . Denote by F= С X  x Y  
t e subset of all (х ,у ) e  X  x  Y  such that we require of /  that / ( x) =  у , by

> C x ^  ^ e  subset of all (x ,y ) € X  x  Y  such that we require of /  that 
Д 1) >  У у by F< с  X  x  Y  the subset of all (ж, у) e  X  x  Y  such that we require of 
/  t at / ( x )  <  y. Thus we can define the fitness function of a function g (where a 
smaller value indicates a higher fitness)

fitness(p) :=  £  \g(x)-y\+ £  |g(x) -  y\H(y -  g(x))
(*,W)6F= (*,y)€F>

+ E  \9{x)-y\H(g{x)-y)
(*>v)eF<

where
._ f 1 x >  0

10 otherwise
is the step function.

We apply gene expression programming until we find a function g such that

fitness(<?) <  e 

for given б > 0. A typical value of e is 0.001.

In the C + +  program the function evalrO  takes a character string and evaluates 
(i.e., returns type double) the corresponding function at the given point (the pa
rameter X of type double) using recursion. The function eva lO  uses eva lrO
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for evaluation without modifying the pointer argument. Similarly p rin trO  and 
print ( )  are responsible for output of the symbolic expressions in readable form. A 
character array and an array of type double are passed to the fitness ( )  function. 
The array of double consists of triplets: the point of evaluation, the expected value 
and the comparison type. If the comparison type is zero then the goal is equality (i.e. 
we can use the absolute value of the difference between the expected value and the 
actual value), less than zero then the actual value should be less than the expected 
value, greater than zero then the actual value should be greater than the expected 
value. Finally, the function gepO implements the gene expression programming 
algorithm. As arguments gepO takes the data points (point of evaluation, and 
comparison with a given value), the number of data points N, the size of the pop
ulation P and the desired fitness eps. The function strncpy of the string header 
file cstring is used to copy specific regions of the character strings representing the 
chromosomes. We need to specify the length since the chromosomes are not null 
terminated.

We use 10 symbols (h =  10) for the head portion of the representations, thus 
the total gene length is 21 (we use only addition, subtraction and multiplication). 
Since we only use i  as a terminal symbol we obtain polynomials of order up to 
11, i.e. the highest order polynomial supported by the representation is я11. We 
randomly choose terminals (symbols which do not take arguments, such as x) and 
non-terminals (symbols which do take arguments, for example + ) for the head and 
then terminals for the tail. We use 0.1 for the probability of mutation, 0.4 for 
the probability of insertion and 0.7 for the probability of recombination. At each 
iteration of the algorithm we eliminate the worst half of the population.

// gepchaos.cpp

•include <iostream>
•include <cstdlib>
•include <ctime>
•include <cmath> // for sin, cos 
•include <cstring> 
using namespace std;

const double pi = 3.1415927; 
const int nsymbols = 5;
//2 terminal symbols (no arguments) x and 1 
const int terminals = 2;
// terminal symbols first
const char symbols [nsymbols] = 1*,’x*
const int n = 2; // for +,- and * which take 2 arguments 
int h = 10;

double evalr(char *&e,double x)
•c
switch(*(e++))
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<
case *1»: return 1.0;
case >x’: return x;
case >y>: return pi*x;
case »c»: return cos(evalr(e,x));
case >s> : return sin(evalr(e,x));
case *+*: return evalr(e,x)+evalr(e,x);
case »_>. return evalr(e,x)-evalr(e,x);
case >*>: return evalr(e,x)*evalr(e,x);
default : return 0.0;

>
>

double eval(char *e,double x)
{ char *c = e; return evalr(c,x); }

void printr(char *&e)

switch(*(e++))
s
case *1* : cout « »1’ ; break;
case 'x’: cout « ’x>; break;
C2LS6 ’y* : cout « "pi*x"; break;
case >c>: cout « "cos("; printr(e); cout «  " ) " ; break;
case ’s’: cout « "sin("; printr(e); cout «  " ) " ; break;
case : cout « printr(e); cout «  *+*; printr(e),

cout « break;
case : cout « printr(e); cout « printr(e)

cout « break;
case : cout « printr(e); cout « printr(e)

cout« ' )»; break;
>

>

void print(char *e) { char *c = e; printr(c); >

double fitness(char *c,double *data,int N)

double sum =0.0; 
double d;
for(int j=0;j<N;j++)
<
d = eval(c,data[3*j])-data[3*j+l] ;
if(data[3*j+2]==0) sum += fabs(d);
else if(data[3*j+2] > 0) sum -= (d > 0.0)?0.0:d;
else if(data[3*j+2] < 0) sum += (d < 0.0)?0.0:d;
>
return sum;
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>

// N number of data points, P population size
// eps = accuracy required
void gep(double *data,int N,int P,double eps)
{
int i,j,к,replace,replace2,rlen,rp;
int t = h*(n-l)+l;
int gene_len = h+t;
int pop_len = P*gene_len;
int iterations = 0;
char «population = new char[pop.len]; 
char *elim = new char[P]; 
int toelim = P/2;
double bestf.f; // best fitness, fitness value
double sumf =0.0; // sum of fitness values
double pmutate = 0.1; // probability of mutation
double pinsert = 0.4; // probability of insertion
double precomb =0.7; // probability of recombination
double r.lastf; // random numbers ft roulette wheel selection
char* best = (char*)NULL; // best gene
chair* iter; // iteration variable

// initialize the population 
for(i=0;i<pop_len;i++)
if (i*/,gene_len < h) population[i] = symbols [randO'/jisymbols] ; 
else population [i] = symbols [rand 07,terminals];

// initial calculations
bestf = fitness(population,data,N);
best = population;
f or (i=0, sumf ̂=0.0, iter=populat ion; i<P; i++»iter+=gene_len)
•C
f = fitness(iter,data,N); 
sumf += f;
if(f<bestf) { bestf = f; best = population+i*gene_len; >
>

while(bestf >= eps)
{
// reproduction, roulette wheel selection 
for(i=0;i<P;i++) elim[i] * 0; 
for(i=0;i<toelim;i++) 
i
r = sumf*(double(rand())/RAND_MAX); 
lastf =0.0; 
for(j=0;j<P;j++) 
i
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f = fitness(population+j*gene_len,data,N); 
if((lastf<=r) && (r<f+lastf)) { elim[j] = 1; j = P; > 
lastf += f;
>
>

for(i=0;i<pop_len;)
{
if(population+i == best) 
i += gene_len; // never modify/replace best gene 
else for(j=0;j<gene_len;j ++,i++)
{
// mutation or elimination due to failure in selection 
// for reproduction
if((double(rand())/RAND_MAX < pmutate) I I elim[i/gene_len]) 
if (i*/,gene_len < h)
population[i] = symbols [rand()'/,nsymbols] ; 
else population[i] = symbols [rand()'/.terminals] ;
>

// insertion
if(double(rand())/RAND_MAX < pinsert)
{
// find a position in the head of this gene for insertion 
// -gene_len for the gene since we have already moved 
//to the next gene 
replace = i-gene_len; 
rp = rand()'/,h;
// a random position for insertion source 
replace2 = rand()*/,pop_len;
// a random length for insertion from the gene 
rlen - rand()7,(h-rp);
// create the new gene 
char *c = new char[gene_len];
// copy the shifted portion of the head
strncpy(c+rp+rlen,population+replace+rp,h-rp-rlen);
// copy the tail
strncpy(c+h,population+replace+h,t);
// copy the segment to be inserted 
strncpy(c+rp,population+replace2,rlen);
//if the gene is fitter use it
if(fitness(c,data,N) < fitness(population+replace,data,N)) 
strncpy(population+replace,с,h); 
delete [] c;
>

// recombination
if(double(rand())/RAND_MAX < precomb)
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{
// find a random position in the gene for one point recombination 
replace = i-gene_len; 
rlen = rand()'/,gene_len;
// a random gene for recombination 
replace2 = (rand()'/,P)*gene_len;
// create the new genes 
char *c [5] ;
c[0] = population+replace; 
c[l] = population+replace2; 
с[2] = new char[gene_len]; 
c[3] = new chair [gene_len] ; 
с[4] = new char [gene_len]; 
strncpy(c[2] ,c[0] ,rlen) ;
strncpy(c[2]+rlen,с[1]+rlen,gene_len-rlen); 
strncpy(c[3] ,c[l] ,rlen);
strncpy(c[3]+rlen,с[0]+rlen,gene_len-rlen);
// take the fittest genes 
for(j=0;j<4;j++) 
for(k=j+l;j<4;j++)
if (fitness Cc[k] .data, N) < f itness(c[j] ,data,N)>
{
strncpy (с [4] ,c[j] ,gene_len); 
strncpy (c[j] ,c[k] ,gene_len); 
strncpy(c[k],c[4],gene_len);
>
delete[] с[2]; delete[] с[3] ; deleted с[4];
>
>

// fitness
f or (i=0, sumf=0.0, iter=population; i<P; i++, iter+=gene_len)

f = fitness(iter,data,N); 
sumf += f;
if(f < bestf) { bestf = f; best = population+i*gene_len; >
>
iterations++;
>
print(best); 
cout «  endl;
cout «  "Fitness of " «  bestf «  " after "

«  iterations «  " iterations." «  endl; 
delete [] population; delete[] elim;

>

int main(void) 
{
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srand(time (NULL)) ;  // seed for the random number generator 
double data[] = { 0,0,0,1,0,0,0.5,1,0,0.25,0.5,1,0.75,0.5,1,

0.25,1,-1,0.75,1,-1 >; 
gep(data,7,30,0.001); 
cout «  endl; 
return 0;

>

We list some typical results below, all with fitness 0.

((1 -  x) * ((x +  (((x -  x) +  x) +  x)) +  x)) =  4x(l -  x )
( (x +  ( ( ( ( ( ( ( *  -  x) -  x )  -  x)  * x )  -  x )  * x)  +  x )) +  x )  =  x ( l  -  x)(2x +  3)
{x -  ( ( (x  +  x ) * ((x  -  1) +  x ))  -  x )) =  4x (l -  x)
((((1  -  x) * 1) * ( ( ( i  +  1) +  1) +  l ) )  * x ) =  4x (l -  x )
( ( ( ( !  +  1) -  (((x  +  x) * x) +  x)) * x) +  x) =  x (l  -  x)(2x +  3)
((1 * ((x -  ((((x  +  x) * x) +  x) * x )) +  x )) +  x) =  x (l  -  x)(2x +  3)
((1 -  x) * (( ( ( ( (x  +  x ) * x ) + x ) * l )  +  x) +  x )) =  x (l  -  x)(2x +  3)
( ( ( ( !  “  (1 * {{{x +  x) * x) -  1))) -  x) +  1) * x) =  x (l  -  x)(2x +  3)

We find that most of the time either 4x(l — x) or x (l  — x)(2x +  3) is the fittest map. 
Of course we find the desired functions with less iterations if the poulation size is 
increased. The map

g{x) =  x (l  -  x)(2x +  3) 

satisfies the conditions given above, but g(x)  has values greater than 1 on the interval

Л  Vs _  i\
\2 ’ 2 2 J '

Thus we find that almost all initial values Xo 6  [0,1] escape the interval [0,1] under 
iterations of the map. The set of all points whose iterate stay in [0,1] are of measure 
zero and form a Cantor set. We can also change the symbols array to include the 
symbols с for cosine, s for sine and у for nx. In this case we find the function 
sin(7rx) nearly every time as the fittest map.

Another application of gene expression programming is to find boolean expressions. 
In boolean expressions we have the AND, OR, XOR and NOT operation. The 
NAND-gate is an AND-gate followed by a NOT-gate. The NAND gate is universal 
gate, where all other gates can be built from. As an example consider the truth 
table

a b 0
0 0 1

0 1 1

1 0 0

1 1 1
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where a and b are the inputs and О is the output. Assume that • (in C ++  the 
bitwise ft operator) is the AND-operation, + (in C ++  the bitwise | operator) is the 
OR operation and a (in C ++  the bitwise ~) is the NOT operation. Using gene 
expression programming we can form the expressions

&a|l~b|aablObb 
lb~a|ababa

The first boolean expression would be a • (1 +  b). The second boolean expression 
would be b • a. In the first case the tree structure would be given by

For the fitness function we compare the output for each entry from the given truth 
table with the output from the gene. For example, consider the expression written 
in gene expression programming E(a,b) = “ftalbO. The expression could also be 
written in standard notation

E(a,b) =  a - (6  +  0).

Thus we find £(0,0) =  1, £7(0,1) =  1, £7(1,0) =  1, £(1,1) =  0. Therefore the 
fitness is 2, since at two entries the values differ. Of course the fitness we have to 
achieve is 0 .

// gepbool.cpp

#include <cstdlib>
#include <ctime>
#include <cmath>
#include <iostream>
#include <string> 
using namespace std;

const int nsymbols = 7;
//4 terminal symbols (no arguments) a, b, 0 and 1 
const int terminals = 4;
// terminal symbols first
const char symbols [nsymbols] = ■{,0,f,l,t,a*1,b,,*l,», ,,’ft,)‘; 
const int n = 2; // for +,- and * which take 2 arguments 
int h = 10;
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int evalr(char *&e,int a,int b) 

switch(*(e++))
{
case ’O’: return 0;
case ’1’: return 1;
case ’a’: return a;
case ’b’: return b;
case ’|*: return evalr(e,a,b) I evalr(e a,b);
case *~ *: return ("evalr(e,a,b)) & 1;
case return evalr(e,a,b) к evalr(e a,b) ;
default return 0;

>

int eval(char *e,int a,int b) { char *c = e; return evalr(c,a,b); } 

void printr(char *&e)
{
switch(*(e++))
•C
case ’O’: cout «  ’O’; break; 
case *1»: cout «  ’1’; break; 
case ’a*: cout «  ’a’; break; 
case ’b*: cout «  ’b’; break;
case * I*: cout «  * (*; printr(e); cout «  * | ’; printr(e); cout «  *)*» 

break;
case »'»: cout «  ""("; printr(e); cout «  »)*; break; 
case ’&*: cout «  *(*; printr(e); cout «  printr(e); cout «

break;
>

>

void print(char *e) { char *c = e; printr(c); > 

double fitness(char *c,int *data,int N)
{
int d, sum = 0; 
for(int j=0;j<N;j++)
{ d=eval(c,data[3*j] ,data[3*j+l] )“data[3*j+2] ; sum += d; > 

return sum;
>

// N number of data points, P population size
// eps = accuracy required
void gep(int *data,int N,int P,double eps)
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int i, j , к,replace,replace2,rlen,rp;
int t = h*(n-l)+l;
int gene_len = h+t;
int pop_len = P*gene_len;
int iterations = 0;
char «population = new char[pop_len]; 
char *elim = new char[P]; 
int toelim = P/2;
double bestf,f; // best fitness, fitness value
double sumf =0.0; // sum of fitness values
double pmutate =0.1 
double pinsert =0.4 
double precomb =0.7

// probability of mutation 
// probability of insertion 
// probability of recombination 

double r,lastf; // random numbers and roulette wheel selection
char *best = (char*)NULL; //best gene 
char *iter; // iteration variable

// initialize the population 
for(i=0;i<pop_len;i++) 
if (i'/,gene_len < h) population[i] = symbols [randОУ,nsymbols]; 
else population[i] = symbols [randО 7.terminals];

// initial calculations
bestf = fitness(population,data,N);
best = population;
f or (i=0, sumf=0.0, iter=population; i<P; i++, iter+=gene_len)
{
f = fitness(iter,data,N); 
sumf += f;
if(f<bestf) { bestf = f; best = population+i*gene_len; }

>

while(bestf >= eps)
{
// reproduction, roulette wheel selection 
for(i=0;i<P;i++) elim[i] = 0; 
for(i=0;i<toelim;i++)
{
r = sumf* (double (rand 0  ) /RAND_MAX); 
lastf = 0.0; 
f or(j =0;j <P;j ++)
{
f = f itness(population+j*gene_len,data,N) ;
if((lastf<=r) kk (r<f+lastf)) { elim[j] = 1; j B P; У 
lastf += f;
>
>



428 CHAPTER 14. GENE EXPRESSION PROGRAMMING

for(i=0;i<pop_len;)
{
if(population+i==best) i += gene_len; //never modify/replace best gene 
else for(j=0;j<gene_len;j++,i++)
<
// mutation or elimination due to failure in selection 
// for reproduction
if ((double (rand ())/RAND_MAX < pmutate) I I elim[i/gene_len] ) 
if (i’/,gene_len < h) population[i] = symbols [rand()’/,nsymbols] ; 
else population[i] = symbols [rand()'/,terminals] ;
>

// insertion
if(double(rand())/RAND_MAX < pinsert)
{
// find a position in the head of this gene for insertion 
// -gene_len for the gene since we have already moved 
// to the next gene 
replace = i-gene_len; 
rp = rand()’/,h;
// a random position for insertion source 
replace2 = rand()7,pop_len;
// a random length for insertion from the gene 
rlen = rand()y,(h-rp);
// create the new gene 
char *c = new char[gene_len];
// copy the shifted portion of the head
strncpy(c+rp+rlen,population+replace+rp,h-rp-rlen);
// copy the tail
strncpy(c+h,population+replace+h,t);
// copy the segment to be inserted 
strncpy(c+rp,population+replace2,rlen);
// if the gene is fitter use it
if(fitness(c,data,N) < fitness(population+replace,data,N)) 
strncpy(population+replace,с,h); 
deleted c;
>

// recombination
if(double(rand())/RAND_MAX < precomb)
■C
// find a random position in the gene for one point recombination 
replace = i-gene_len; 
rlen = rand()'/,gene_len;
// a random gene for recombination 
replace2 = (rand()'/,P)*gene_len;
// create the new genes 
char *c [5] ;
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c[0] = population+replace; с[1] = population+replace2; 
с[2] = new char[gene_len]; 
c[3] = new char[gene.len]; 
с[4] = new char[gene_len]; 
strncpy(с[2],c[0],rlen);
strncpy(c[2]+rlen,с[1]+rlen,gene_len-rlen) ; 
strncpy (c[3] ,c[l] ,rlen);
strncpy(c[3]+rlen,с [0]+rlen,gene_len-rlen);
// take the fittest genes 
for(j=0;j<4;j++) 
for(k=j+l;j<4;j++) 
if (fitness (c[k] .data,N) < f itness(c[j] ,data,N))
{
strncpy(c[4] ,c[j] ,gene_len) ; 
strncpy (c[j] ,c[k] ,gene_len) ; 
strncpy (c[k] ,c[4] ,gene_len);
>

delete [] с [2]; delete [] с [3] ; delete [] с [4];
>

>

// fitness
f or (i=0, sumf=0.0, iter=population; i<P; i++, iter+=gene_len) 
i
f = fitness(iter,data,N); 
sumf += f;
if(f < bestf) { bestf = f; best = population+i*gene_len; >
>
iterations++;

>

print(best); 
cout «  endl;
cout «  "Fitness of " «  bestf «  " after "

«  iterations «  " iterations." «  endl; 
delete[] population; 
delete[] elim;

>

int main(void)
{
srand(time(NULL)); // seed for the random number generator
int data[] = {0,0,1, 0,1,1, 1,0,0, 1,1,1};
gep(data,4,30,0.5);
cout «  endl;
return 0;

}
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14.3 Numerical-Symbolic Manipulation

We consider evolving integrals of limited expressions involving polynomials and ex
ponentials. Suppose we wish to determine the integral

J g{x)dx

in terms of elementary functions. The answer should be symbolic. However, we need 
a fitness function which provides a real valued fitness for any symbolic expression 
approximating this integral. We know that

£ J  g (x )dx -  g (x ) =  0.
To evaluate the approximation error amounts to an integration problem again. If 
we select a representative set of points for example

{-1 ,-0 .9 ,-0 .8 , -0 .7 ,..., 0.9,1}

we can estimate the approximation error over [—1 , 1]:

d20

£
j = 0

- J g{x )dx- g
*=—1+0.1 j

Thus a possible fitness function for the integral is given by

20

f itn e s s (f ) = 22
3=0

x  =  - 1  +  O .lj) -  g (x  =  - 1  +  O .lj)
ax

i.e. we combine symbolic and numeric calculations. We search for a symbolic ex
pression for which the derivative nearest approximates the integrand over the given 
set of points. Fitter individuals have a fitness closer to zero.

Another possibility would be to use the length of the simplified expression for

d
t e J g W d x - M

where a length of 0 is the fittest value (i.e. we found the integral). We use the first 
measure of fitness in the following program.

// gepint.cpp

•include <cstdlib>
•include <ctime>
•include <cmath>
•include <iostream>
•include <string>
•include "symbolicc++.h"
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using namespace std; 

const int nsymbols = 8;
// 3 terminal symbols (no arguments) x, 0 and 1 
const int terminals = 3;
// terminal symbols first
const char symbols[nsymbols] = { ’O ' , > V  , ’x ’,* + », , '*»,»/*,’e ’}; 
const int n = 2; // for and / which take 2 arguments
int h = 5;

Symbolic evalr(char *&e)
<
switch(*(e++))

case *0»: return о о

case ’ l 1 : return 1.0;
case * x > : return Symbolic("x");
case > + >: return evadr(e)+evalr(e)
case > _}. return evalr(e)-evalr(e)
case »*»: return evalr(e)*evalr(e)
case V»: return evalr(e)/evalr(e)
case } e } : return exp(evalr(e));
default : return 0;
>

>

Symbolic eval(char *e) {  char *c = e; return evalr(c); > 

void printr(char *&e)
{
switch(*(e++))

case *0 »: cout « 'O’; breadc;
case •1 * : cout « ’ i ’ ; break;
case ’ x ’ : cout « »x ’ ; break;
case *+*: cout «  

break;
• ( ' ; printr(e); cout « *+» ; printr(e); cout «

case * _ ». cout «  
break;

•(*; printr(e); cout « »_ i; printr(e); cout «

case »*»: cout «  

break;
printr(e); cout « »*» ; printr(e); cout «

case */*: cout «  
break;

*(Js printr(e); cout « V» ; printr(e); cout «

case 'e': cout « "exp("; printr(e); cout « *)*; break;
>

>

void print (char *e) ■{ cout «  eval(e) «  endl; )■
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double fitness(char *c,const Symbolic feintegrand)

double j; 
double sum = 0;
Symbolic x("x");
Symbolic f = eval(c);
Symbolic d_f = df(f,x); 
for(j=-l;j<=l;j+=0.1) 
sum +=
fabs (double ((d_f-integrand) [x==j , Symbol icConst ant: :e==exp(1.0)])) ; 

return sum;
>

// P population size 
// eps = accuracy required
void gep(const Symbolic feintegrand,int P,double eps)
{
int i,j,к,replace,replace2,rlen,rp;
int t = h*(n-l)+l;
int gene_len = h+t;
int pop_len = P*gene_len;
int iterations = 0;
char «population = new char[pop_len];
char *elim = new char[P];
int toelim = P/2;
double bestf,f; // best fitness, fitness value
double sumf =0.0; // sum of fitness values
double pmutate =0.1; // probability of mutation
double pinsert =0.4; // probability of insertion
double precomb =0.7; // probability of recombination
double r,lastf; // random numbers & roulette wheel selection
char «best = (char*)NULL; //best gene
char *iter; // iteration variable

// initialize the population 
for(i=0;i<pop_len;i++) 
if (i'/,gene_len < h) population [i] = symbols [rand07,nsymbols] ; 
else population [i] = symbols [rand07»terminals] ;

// initial calculations
bestf = fitness(population,integrand);
best = population;
for(i=0,sumf=0.0,iter=population;i<P;i++,iter+=gene_len)
{
f = fitness(iter.integrand); 
sumf += f;
if(f<bestf) { bestf = f; best = population+i*gene_len; >
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>

while(bestf >= eps)
•c
// reproduction, roulette wheel selection 
for(i=0;i<P;i++) elim[i] = 0; 
for(i=0;i<toelim;i++)
<
r = sumf*(double(rand())/RAND_MAX);
lastf = 0.0;
for(j=0;j<P;j++)
<
f = fitness(population+j*gene_len,integrand) ; 
if((lastf<=r) && (r<f+lastf)) { elim[j] = 1; j = P; } 
lastf += f;
>

>

for(i=0;i<pop_len;) // never modify/replace best gene 
{
if(population+i == best) i += gene_len; 
else for(j =0;j <gene_len;j ++,i++)
{
// mutation or elimination due to failure in selection 
// for reproduction
if((double(rand())/RAND_MAX < pmutate) I I elim[i/gene_len]) 
if (i’/,gene_len < h) population [i] = symbols [rand()*/,nsymbols] 
else population[i] = symbols [rand()7,terminals] ;
>

// insertion
if(double(rand())/RAND_MAX < pinsert)
{
// find a position in the head of this gene for insertion 
// -gene_len for the gene since we have already moved 
//to the next gene 
replace = i-gene_len; 
rp = rand()'/.h;
// a random position for insertion source 
replace2 = rand()'/,pop_len;
// a random length for insertion from the gene 
rlen = rand()*/,(h-rp);
// create the new gene 
char *c = new char[gene_len] ;
// copy the shifted portion of the head
strncpy (c+rp+rlen,population+replace+rp ,h-rp-rlen) ;
// copy the tail
strncpy (c+h,population+replace+h,t) ;
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// copy the segment to be inserted 
strncpy(c+rp,populat ion+replace2,rlen);
// if the gene is fitter use it
if (fitness (c, integrand) < fitness (populat ion+r eplace, integrand)) 
strncpy(population+replace, с,h); 
deleted c;
>

// recombination
if(double(rand())/RAND_MAX < precomb)
{
// find a random position in the gene for one point recombination 
replace = i-gene_len; 
rlen = rand()‘/,gene_len;
// a random gene for recombination 
replace2 = (rand()'/,P)*gene_len;
// create the new genes 
char *c[5] ;
c[0] = population+replace; c[l] = population+replace2; 
с [2] = new char[gene_len]; 
с[3] = new char[gene_len]; 
с[4] = new char[gene_len]; 
strncpy(с[2],c[0],rlen);
strncpy(c[2]+rlen,с[1]+rlen,gene_len-rlen); 
strncpy (c[3] ,c[l] ,rlen) ;
strncpy(c[3]+rlen,с[0]+rlen,gene_len-rlen);
// take the fittest genes 
for(j=0;j<4;j++) 
for(k=j+l;j<4;j++) 
if(fitness(c[k].integrand) < fitness(c[j].integrand))
{
strncpy(с[4] ,c[j] ,gene_len); 
strncpy(c[j] ,c[k] ,gene_len) ; 
strncpy(с[к],с [4],gene_len);
>
delete[] с[2]; deleted с[3] ; deleted с[4];

>
>

// fitness
for(i=0,sumf=0.0,iter=population;i<P;i++,iter+=gene_len)
{
f = fitness(iter,integrand); 
sumf += f;
if(f < bestf) { bestf = f; best = population+i*gene_len; >
>
iterations++; 
print(best);
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>

print(best); 
cout «  endl;
cout «  "Fitness of " «  bestf «  " after "

«  iterations «  " iterations." «  endl; 
delete[] population; 
delete [] elim;

>

int main(void)

Symbolic x("x");
srand(time(NULL)); //set the seed for the random number generator
gep(x,10,0.1);
cout << endl;
gep(x*ln(x),10,0.1);
cout «  endl;
return 0;

>

14.4 Multi Expression Programming
Multi Expression Programming [82] is a genetic programming variant which encodes 
multiple expressions in a single chromosome. The expressions are represented in a 
similar way to gene expression programming, except that expressions may refer to 
(contain) expressions that appear earlier in the chromosome. The fitness of a chro
mosome is the best fitness over each of the expressions encoded in the chromosome. 
Crossing generally occurs at the level of expressions.

Example. The expression

sin b +  a *b  +  c *d  +  a — b 

must be represented as a chromosome in multi expression programming which can 
be constructed as follows

0 a The variable a
1 b The variable b
2 с The variable с
3 d The variable d
4 * ,0 ,1 The expression
5 *» 2 ,3 The expression
6 +,4 ,5 The expression
7 + , 6 ,0 The expression
8 - ,7 ,1 The expression
9 sin, 1 The expression

10 +, 9,8 The expression
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The operation —,x,y  means x—y. The expression must be evaluated for given values 
of a, 6, с and d. The numbers in bold are the expressions which can be referenced 
(backwards) from within other expressions. A number in bold appearing in an 
expression must be less than the number of the current expression. The following 
program constructs this chromosome and evaluates the expression for a =  3, 6 =  4, 
с =  5 and d =  6 .

// mep.cpp

•include <cctype>
•include <cstdlib>
•include <iostream>
•include <map>
•include <sstream>
•include <string>
•include <vector>
•include <cmath> 
using namespace std;

typedef double (*op)(vector<double>);

// assume appropriate number of arguments 
double add(vector<double> v) { return v[0]+v[l]; > 
double sub(vector<double> v) {  return v[0]-v[l]; > 
double mul(vector<double> v) { return v[0]*v[l]; > 
double sine(vector<double> v) { return sin(v[0]); }

string shov(vector<string> e,string s = "")
■C
size_t i = 0, j = 0; 
string r;
vector<string> operands; 

if(s=="") return show(e,e.back()); 

while(i < s.size() && j != string::npos)
<
j = s.findC’,*,i);
operands.push_back(s.substr(i,j-i)); 
if(j != string::npos) i = j + 1;
>

if(operands.size()==!) 
if(isdigit(operands[0][0]))
{
int in;
istringstream is(operands[0]); 
is »  in;
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return show(e,e[in]);
>
else return operands[0];

r = show(e,operands [0]); r += 
for(i=l;i<operands.size О -1;i++)
{ r += show(e,operands[i]); r += }
r += show(e,operands[i]); r +* 
return r;

>

double evaluate(vector<string> e,map<string,double> values, 
map<string,op> ops,string s="")

size_t i = 0, j = 0; 
string r;
vector<string> operands; 
vector<double> operand_values;

if(s=="") return evaluateCe,values,ops,e.backO); 

while(i < s.size() && j != string::npos)
{
j = s.findO , * ,i) ;
operands.push_back(s.substr(i,j-i) ) ; 
if(j != string::npos) i = j+1;
>

if(operands.size()==1) 
if(isdigit(operands[0][0]))
{
int i;
istringstream is(operands[0]); 
is »  i;
return evaluate(e,values,ops,e[i]);
>
else return vailues [operands [0] ];

r = show(e,operands[0]); 
for(i=l;i<operands.size();i++)
{
operand_vailues. push_back(evaluate (e, values, ops, operands [i] ) ) ;
>
return ops[operands[0]](operand_values);

>

in t main(void)
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map<string,op> ops; 
map<string,double> values; 
vector<string> expression(ll);

// operators used and corresponding arity
ops["+"] * add;
ops["-"] = sub;
ops["*"] = mul;
ops["s"] * sine;

// values for evaluation 
values["a"] = 3.0; values["b"] = 4.0; 
values["c"] = 5.0; values["d"] = 6.0;

// (a*b)+(c*d)+a-b+sin(b)
expression[0] = "a"; expression[l] = "b";
expression[2] = "c"; expression[3] = "d";
expression[4] = "*,0,1";
expression[5] = "*,2,3";
expression[6] = "+,4,5";
expression[7] = "+,6,0";
expression[8] = "-,7,1";
expression[9] = "s,l";
expression[10] = "+,9,8";
cout «  show(expression,"") «  endl;
cout «  evaluate(expression, values, ops) «  endl;
return 0;

>

Consider the chromosome for the expression

sin b +  a *b  +  c * d  +  a — b

from above

0 a
1 b
2 с
3 d
4 * ,0 ,1

5 *,2,3
6 +,4,5
7 + , 6 ,0

8 - ,7 ,1
9 sin, 1

10 +,9,8

Mutation randomly changes a subexpression in the chromosome, for example mu
tating the first chromosome at position 6 might yield
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0 a
1 b
2 с
3 d
4 * ,0 ,1

5 *,2,3
6 sin 4
7 + , 6 ,0

8 -,7 ,1
9 sin, 1

10 +,9,8

In other words the entire subexpression +, 4,5 is replaced by the new subexpression 
sin 4.

Crossing is implemented at the subexpression level in the same way as for genetic 
algorithms and gene expression programming. Consider for example the one point 
crossing, at position 4, between the two chromosomes

0 a 0 a
1 b 1 b
2 с 2 * ,1 ,0

3 d 3 cos, 0
4 * ,0 ,1 4 + , 0 , 3

5 * , 2 , 3 5 *, з, 3
6 + , 4 , 5 6 + , 5 , 2

7 + , 6 ,0 7 sin, 2
8 - 7 , 1 8 - , 7 , 1

9 sin, 1 9 * ,1 ,1

10 + , 9 , 8 10 +, 9 ,8

which yields the two children

0 a 0 a
1 b 1 b
2 с 2 * ,1 ,0

3 d 3 cos, 0
4 +,0,3 4 * ,0 ,1

5 *,3,3 5 *,2,3
6 +, 5,2 6 +,4,5
7 sin, 2 7 +, 6 ,0

8 -,7 ,1 8 -,7 ,1
9 * ,1 ,1 9 sin, 1

10 +,9,8 10 +,9,8

and the two point crossing between position 3 and 6 which yields the children
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0 a 0 a
1 b 1 b
2 с 2 * , 1 ,0

3 cos,0 3 d
4 +,0 ,3 4 * ,0 ,1

5 *,3,3 5 *,2,3
6 +,5,2 6 +,4 ,5
7 + , 6 ,0 7 sin, 2
8 - 7 , 1 8 - ,7 ,1
9 sin, 1 9 * , 1 ,1

10 +,9 ,8 10 + ,9 ,8

Mutation and crossing could be refined to change the subexpressions, although this 
would be a little more involved.

Multiexpression programming can also be applied to boolean expressions. Consider 
for example the full adder

a b Qn s Cout
0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Using the NAND-gate the expression in multiexpression programming is

0 a
1 b
2 с
3 N, 0,1
4 N, 0,3
5 N } 1,3
6 N t 4,5
7 Ny 2 ,6

8 Ny 6,7
9 Ny 2,7

10 Ny 8,9
11 Ny 3,7

where 10 : provides the sum and 11 : provides the carry out. Thus using nine 
NAND-gates we can build the full adder.



Chapter 15 

Optimization

15.1 Lagrange Multiplier Method

In mathematical optimization problems, Lagrange multipliers are a method for deal
ing with equality constraints. The Lagrange multiplier method is as follows. Let M  
be a manifold and / be a real valued function of class С®  on some open set con
taining M . We consider the problem of finding the extrema of the function f\M. 
This is called a problem of constrained extrema. Assume that / has a constrained 
extremum at x* =  (xj, x$,. .. ,  x*). Let

g 1( x )  =  Q , . . . , g m( x )  =  0

be the constraints (manifolds) with m < n. We assume that / and gj ( j  =  1,..., m) 
are continuously differentiable in a neighbourhood of x*. Then there exist real num
bers Ai, ... ,Am such that x* is a critical point of the function (called the Lagrange 
function)

L ( x )  : =  / ( x )  +  Aj<7i ( x )  +  • • • +  Amgm{ x )  •

The numbers Ab ..., Am are called Lagrange multipliers. Thus we have to solve

VL(x*) =  0 
<7j (x ')  =  0 , j  =  1, 2 , ...,m

with respect to xj, ... , x*, AJ, ... , A^. Here V denotes the gradient and we have 
to assume that the rank of the matrix Vg(x*) is m and we assume that m  <  n.

We have the following theorem.

Theorem. Let / : R n - » R b e a  twice continuously differentiable function in an 
open set Cl С R n. Let S be an open set S С R n. Let g =  (pi,g2, • • •,дт ) : S —* R m 
be twice continuously differentiable, and assume that m  <  n. Let Xq be the subset 
of S  where g  vanishes, that is

X0 : = { x e S  : g (x ) =  0 }  .

441
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Suppose that x *  E Xq and assume that there is a neighbourhood N  of x *  such 
that /  achieves maximum or minimum at x *  in N  П  X q. Also assume that the 
determinant of the m x m matrix (dgi(x*)/dxj) does not vanish. Then there exist 
m real numbers A i ,  . . . ,  Am such that the following n equations are satisfied

Я m c)

s / M + £ V M =0, r=1.... 71'

The Hessian matrix of the Lagrange function L =  / +  ^j9j is given by

(  Lx2 1
^*2*1

Lxix2
LX7 . 

2

^ H n

Lx2Xn
Lxi\i
^zaAi

y-"1 
i

 
4

4

LxnXi
L \lXi

"*n *S

^A iia

LxnXn 
• AAlXn

AtnAi 

A x i Ai

■^InAn 

• -^AiAm

V -^Anii A xnxa ■ LXnXn ■^AnAi • L \n\ m /

where LXiXj d2b/dxidxj etc.. Obviously we have L\.\. — 0. This Hessian matrix 
is also called bordered Hessian matrix. It is used to determine whether the critical 
points are local maxima or minima. If for every nonzero (column) vector v  € R n sat
isfying v TV<7j(x *) =  0 ( j  =  1,2 ,..., m) it follows that v r V jL (x *, A*)v >  0, then the 
function / has a strict local minimum at x* subject to p; (x ) =  0  ( j  =  1, 2 , . . . ,  m).

Example 1. The norm of an n x n matrix over the real numbers R  is given by

1ИН :=  sup ||i4x||.
IM I=i

This is a problem with the constraint ||x|| =  1 i.e., the length of the vector x  € R n 
must be 1. It can be solved with the Lagrange multiplier method. To find the norm 
of an n x n matrix one considers the Lagrange functions

L (x ) := ||Ax||2 +  A||x||2

where A is the Lagrange multiplier. Consider the 2 x 2  matrix

- G  » ■
Then we have

||Лх||2 =  (A x )TAx  =  xTATAx  =  bx\ +  \$X\X2 +  5x1.

From the constraint ||x||2 =  1 we obtain x2 +  x\ =  1. Differentiation the function 

L(x ) =  bx\ +  10iix2 +  5z2 +  A(s2 +  x2)



and setting the derivative equal to zero yields 

dL dL
-x—  =  lOxi +  Юяг +  2Axi =  0, -— =  10xi +  10x2 +  2Ax2 =  0 . 
ox i ox2

Thus we find that xx =  x2 and

( x i , x 2) =  (1 / ^ 2 , l/v/2), (xu x2) =  ( - 1 / ^ 2 , - l /y /2 ) .

It follows that \\A\\2 =  10. 4

Note that the constraint

||x||2 =  1 ^  +  s22 +  ... +  *2  =  1

can be eliminated using n-dimensional spherical coordinates

X\ =  r cos 0i 

x2 =  r  sin 0i cos 02 

x$ =  r  sin 0 i sin 02 cos 03 

X4= r  sin 01 sin 02 sin 03 COS 04

zn_i =  r sin 0 i sin 02 sin 03 • • • sin 0 „ _ 2 cos 0n_i 
xn =  r sin 0i sin 02 sin 03 • • • sin 0„_ 2 sin 0n_i

or

*-i
Xk =  rcosвк sin0*, for к — l , 2 , . . . , тг — l 

*=i
n—1

Sn =  r П sin 0^
/=1

with r  =  l ,  - 7Г <  01 <  7Г, and 0 <  0j <  ж, 2 <  j  <  n -  1. The inverse transform is 

0* =  arccos [ , Xk -  I , for к  =  1,2 , . . . ,  n — 2
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0„_i =  arctan *

The Jacobian У of this transform is
n - l

у  =  ^ - ' 1 1  (s in  а д " - ” - 1
P=1

Example 2. We calculate the shortest Euclidean distance between the curves 

x5*2 +  (У “  5)2 =  1, У =  x2
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in R 2 applying the Lagrange multiplier method. The square of the distance between 
two points (xi,y\) and (x2,y2) on the curves is given by

d2 := (xi -  x2)2 +  (2/1 -  У2)2 •

We have two constraints. This means we have two Lagrange multipliers. Thus we 
define

L (x i,y u x2iy2)  ••= (xi -  x2)2 +  (yi -  y2)2 +  Ai(x? +  (yi -  5) 2 -  1) +  A2{y2 -  x\). 

Hence we obtain the equations 

dL 
—  =  2{xi -  x2) +  2AjXi =  0
OX 1
dL
- — =  — 2 (xi -  x2) -  2X2x 2 =  0 
0x2

| ^  =  2(!/,-J/2) +  2A1(y1-5) =  0
oyi

^  =  -2(ш -У2) +  А2 =  0.

Adding the first two equations and the last two equations yields 

A1Z1 =  A2x2> 2Ai(yi -  5) =  —A2.

Of course we still have (1 +  Ai)xi =  x2, (14- Xi)(yi — 5) =  У2 — 5 from the first set of 
equations. If Ai =  0, we have A2 =  0 so that Xi =  x2 and yi =  y2. Thus we obtain

x\ — 9x2 +  24 =  0 =>• x\ =  ^ ^  ^  ^  .

Thus Ai =  0 does not give a valid solution. Suppose A2 =  0. Once again Xi =  x2 

and yi =  y2, thus A2 =  0 does not give a valid solution. Now suppose Xi =  0, thus 
x2 =  y2 =  0 and yi =  6 or yi =  4. Lastly suppose Xi Ф 0. Thus

? = r  = (1+Ai)Xl A2

^ (y i  - 5) =  (1 +  X i)(y i -  5) =

( l  +  Xi)(yi -Ъ )  =  у2- Ъ
9

У2=г

FVom y2 =  x2 we obtain x2 =  ±Z/y/2. Furthermore we have

1 _  xi _  yi -  5 
1 +  Ai x2 y2 -  5 ’



From xJ +  (z/i — 5) 2 =  1 we obtain

=  4(й - 5) 2

and
6  , / У  c

i i = ± v i ’ v i = ± m + b -
We tabulate the solutions
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Z l У1 X2 y2 Value
0 4 0 0 
0 6 0 0
6 / Т  , с 3 9

V 38 +  0 2 
6 (~2 , с 3 9 

V^8 V 38 +  0 72 2 
6 П Г  1 с 3 9

7̂ 8 V 38 +  0 73 2
6 [~2 1 с ___3 9

T§8 V38 + 0  73 2

4
6

3.179449

1.179449

3.179449

1.179449

The minimum distance is approximately 1.179449. ^

Example 3. A firm uses two inputs to produce one output. Its production function 
is

f ( x  u x2)  =  x\xb2y a,b>  1 .

The price of the output is p, and the prices of the inputs are w\ and w2- The firm 
is constrained by a law that says it must use exactly the same number of units of 
both inputs. We use the Lagrange multiplier method to maximize the function

g(xlt x2) =  p f(x i, x2) -  wixi -  w2x2

subject to x2 — Xi =  0. The Lagrange function is given by

L (x i, хг) =  pxxx2 -  W1X1 -  w2x2 -  \(x2 - x i ) .

Thus from Qr
1 ^  =  0, 1 ^  =  0 
5xi dx2

we find
apxj_1x2 — toi +  A =  0, bpx\x\ 1 — w2 — A =  0.

Furthermore we have the constraint x2 — X\. These three equations have a single 
solution

W i + W 2 \ 1/(в+6-1) л , ^  bw1 -  aw2 
j>{a +  b )j ’ a +  b

Thus
$(*!. x*2) =  р(х\)а+ь -  xl(w i +  w2) .

( --I —  2 1 ̂
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Example 4. Given the Lagrange function

L (x . * )  =  \ Е (± 32 -  W  ^ E  x)  - 1 j  (0

where A is the time-dependent Lagrange multiplier. The system describes ann =  3 
dimensional harmonic oscillator constrainted to a unit n — 1 =  2 sphere, i.e.,

X > ?  =  1 . (2 )
3=1

Find the equations of motion using the Euler-Lagrange equations 

d dL dL
J t d ± j ~ d ^ ~  ’ J - 1 ’ 2' 3 -

From (3) and (1) we find

Xj  +  WjXj +  A (t )x j  =  0, j  =  1 ,2 ,3 . (4 )

To eliminate the Lagrange multiplier A we proceed as follows. From (2) we obtain 
by differentiating with respect to t

з
=  0

j=i

and differentiating twice with respect to t yields

Y № s X j  +  x2j )  =  0. (5)
j =i

From (4) we obtain XjXj +  ш2х2 +  A(t)x 2 =  0. Summation yields 

з з
E  +  E  +  Л W  =  0 
i=i j =l

where we used (2). Thus

4 t )  =  -  £  ад -  E = E Щ ~ E 
i=i i=i j=i j=i

where we used (5). Inserting A(t) into (4) yields the equations of motion

Xj +  u )x j +  Xj -  ш]х)) =  0. *
3=1

Example 5. We want to minimize f (x  1,2:2) =  x2 +  x2 subject to the side condition 
Xi — Xi — 1. Obviously we find x\ =  1/2 and £$ =  —1/2. We can also apply the
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;penalty method to find this solution. The penalty method, which is an approximation 
method where the failure of the minimizer to fulfill the side condition is penalized 
and one seeks the minimum of the function

g (x i, x2) =  x\ +  x\ +  | (x2 -  X! +  l ) 2.

Here 7 , the penalty parameter, is chosen to a fixed large number and not allowed 
to vary. Note that the side condition must be squared, otherwise the sign would 
preclude the existence of a minimum. Minimization of g with respect to Xi and x2 

yields

Xl =  2 ( t + T ) ’ l2 =  _ 2 F T l )

which in the limit 7  —> 00 returns xx =  1/2 , z2 =  —1/2.

Using differential forms (Steeb [108]) to solve constrained max-min problems has 
the advantage over the Lagrange multiplier method that the Lagrange multipliers 
are eliminated. Thus the number of equations to solve are less.

The traditional approach of Lagrange’s condition for maximizing or minimizing /, 
subject to one constraint of the form g =  c, hinges on the observation that at a 
critical point the contours of / and g are tangential. The equation

df\p — Xdg\p

between differential forms is equivalent to the Lagrange condition

V/|p =  AV<?|/>.

However geometrically the differential condition says that the tangent lines to the 
contour and the constraint curves are identical, while the gradient condition says 
that the normal vectors of these lines are parallel.

For the case m =  n — 1 we obtain an additional equation, besides the m conditions 
from the constraint, from the condition

df A dg\ A • • • A dgm =  0

where A denotes the exterior product (wedge product) with dxj A dxk =  ~dxk A dxj 
and d denotes the exterior derivative (Steeb [108]).

Example. We find the optimum values for f (x ,y ) =  2x2 +  у2 subject to the 
contraint g (x , y) =  x +  y — 1 =  0. For the differentials we have

df =  4 xdx +  2 ydyt dg =  dx +  dy.

Thus with dx A dy =  —dy A dx, dx Adx =  dy Ady =  0 we arrive at

df A dg=  (4a? -  2y)dx A dy.
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From the condition df A dg =  0 it follows that 2x — у =  0. This equation together 
with x +  у =  1 has to be solved. We obtain the solution x* =  1/3, y* =  2/3. £

This can be implemented using SymbolicC++ as follows 

11 lagrange.cpp

#include <iostream>
#include "symbolicc++.h" 
using namespace std;

int main(void)

Symbolic x("x"), y("y"), dx("dx"), dyCdy"); 
dx = “dx; dy = ~dy;

Symbolic f = 2*x*x+y*y;
Symbolic g = x+y-1;
cout «  "f = " «  f «  endl;
cout «  "g = " «  g «  endl;
Symbolic d_f = df(f,x)*dx+df(f,y)*dy;
Symbolic d_g = df(g,x)*dx+df(g,y)*dy; 
cout «  "d_f = " «  d_f «  endl; 
cout «  "d_g = " «  d_g «  endl;
Symbolic w = (d_f*d_g).subst_all((dx*dx==0Jdy*dy==0,dy*dx-=-dx*dy));
cout «  (w.coeff(dx*dy) == 0) «  endl; 
return 0;

>

If m <  n — 1 then we apply a coordinate system Si, S2> • • •, 5n adapted to our 
problem so that the first m coordinates are defined by Sj =  9j ( x i , . . . ,£ n) ( j  “  
1 ,2 , . . . ,  77i), while the remaining n — m coordinates are any functions of X\, Ж2, • • •, 
xn as long as the result is indeed a coordinate system. Then the conditions, besides 
the constraints, are

df Л dgi Л dg2 Л • ■ ■ Л dgm Л dsi Л ds2 Л • • • Л dsn- m =  0 

df Л dg\ Л dg2 Л • • • Л dgm Л ds\ Л ds2 Л • • • Л dsn-m — 0

df Л dg\ Л dg2 Л • • • Л dgm Л dsi Л ds2 Л • • • Л dsn-m =  0 • 

and ~ indicates omission.

Example. Consider minimizing the function

f{x\tx2,yu y2) =  (xi -  x2)2 +  (t/i -  y2f  

subject to the constraints

9i i x i,x 2,yi,y2) =  x\ +  (yi — 5) 2 — 1 =  0, g2(x i,x 2}yi,y2) = y 2 - x \  =  0.



15.2. KARUSH-KUHN-TUCKER CONDITIONS 449

Thus n =  4 and m =  2. This example has been studied above using the Lagrange 
multiplier method. Since

df =  2 (xi — x2)dxi -  2 (xi -  x2)dx2 +  2 (j/i -  y2)dy\ -  2 (yi — 

dg\ =  2xic2xi +  2(yi -  5)dyi 
dg2 -  dy2 -  2x2dx2

we obtain

df A cfo A dg2 =  ( - 8x 1 1 2 (2/1 -  У2) +  8 (xi -  x2)x2(y\ -  b))dxx A dx2 A rfj/i 

+ (4 (x i -  x2)x\ +  8 (?/i -  y2)x\x2)dx\ A dx2 A dt/2 

+ 4 ((x i -  x2)(y\ -  5) -  4(j/i -  y2)xi)dxi A A dt/2 

+ ( - 4 ( x x -  x2)(y\ -  5) -  8 (yi -  y2)x2(y\ -  5))rfx2 A dyi A d*/2 •

We now set 5 ! =  ®i, s2 =  x2. Prom the conditions

df A d<7i A dg2 A cfoi =  0, d/ A dg\ A d<?2 A <&Г2 =  0

we obtain the two equations

(xi -  x2){yi -  5) -  (yi -  Уг)^1 =  0 

(xx — x2)(y\ -  5) +  2(y\ -  y2)x2(y\ -  5) =  0

plus two equations for the constraints instead of the six equations we obtain 
the Lagrange multiplier method.

15.2 Karush-Kuhn-Tucker Conditions

Many optimization problems also include inequalities. Karush-Kuhn Tucker ex 
tended the Lagrange multiplier method to include inequality constraints.

Given an optimization problem with convex domain fi С R  ,

minimize /(x )» х б П  
subject to <?j(x) <  0 , j  — 

hj(x) =  0 , j  -

We define the generalized Lagrangian function as

к i
L (x, a , /3) =  / М  +  £  “ i » ( x ) +  £  AA/(X) 

j=i j=i
=  /(x) +  a Tg(x ) +  /3r h (x ).

We assume that the functions /, 9j, hj are continuously differentiable functions. 

Then we have the following
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Theorem. Given the above optimization problem with convex domain ft С R n, 
necessary and sufficient conditions for a normal point x* to be an optimum are the 
existence of a* and (3* such that

ЭДх-.а-,/Г )  0 

dx
dL(x*, a*, (5*) 

dp
a$&(x*) =  0 , j  =  I , . . . , к 

<?i(x*)< 0 , j  =  l , . . . , k  

а *>  0 , j  =  1

The third relation is known as Karush-Kuhn-Tucker complementarity condition. 
That is, either a constraint is active, meaning <ft(x) =  0, or the corresponding mul
tiplier satisfies a* =  0. If in addition /, hj, gj are twice continuously differentiable, 
there holds

yTVxxL(x*,A*,^*)y >  0 

for all column vectors у  G R n such that

V/ii(x*)Ty  =  0, г =  1,... ,m, (V ty(x )*)T)y  =  0

for all j  6  A(x*) where A (x *) is the set of active constraints at x*.

We can also formulate the Karush-Kuhn-Tucker condition as follows. Here we as
sume that the constraints <7*(x ) >  0. Consider the constraint nonlinear program
ming problem with inequality and equality constraints: minimize the scalar function 
/ subject to the inequality constraints <?*(x) > 0 , к =  1, 2 , . . . , K  and the equality 
constraints /im(x) =  0, m  =  1,2, For this problem we can construct the
Lagrange function

к м
L [x , A, /a) =  /(x ) -  22 AfcPfc(x) -  22 MmMx)

*=1 m= 1

where A* and are the Lagrange multipliers. If the problem has a solution

x* =  (®J, a?5,..., ж* )

i.e., minx/(x) =  /(x*) and all constraints are satisfied, then the following Karush- 
Kuhn-Tucker conditions hold

к м
V/(x*) - E W ( x - )  -  £  ^V / im(x-) =  0

Л=1 m =l

and

9k(x*) >  0 k = l , 2 , . . . , K
hm{x*) =  0 77г =  1,2 ,..., M

Л1Р*(Х*) =  0 A: =  1 ,2 ,. . . ,^
AJ>0 k =  1 ,2 ,... , K .
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In convex programming problems, the Karush-Kuhn-Tucker conditions are neces
sary and sufficient for a global minimum.

Example 1 . A  household has the utility function

f ( x i tx2)  =  х^х\ -а

where a >  0 and faces the budget constraint

PiXi +  p2x2 <  m

with m  >  0. We maximize the household’s utility using Karush-Kuhn-Tucker con
ditions for the demand functions Xi (p i ,p2,m ) and x 2{pi,p2)m ). We evaluate the 
demand functions for (j>i,p2,m ) =  (1,0.5,10) and a =  0.5 and also find f ( x i , x 2)  
for these values. The Lagrangian is

L ( x i , x2y A) =  х * x\~a +  A(m -  p\xY -  p2x2)

with the Karush-Kuhn-Tucker conditions

|^- =  - x ? z '- “ - A P l=0  
OX 1 Xl

=  —  x fx '- “ -A p 2 =  0
ox2 x 2

A (m — p\Xi — p2x2) =  0 
A >0

m  — pixi — p2x2 >  0.

If A =  0 the problem has no solution, since

a Q—1-в
Xl

only if x2 =  0 , but then
1 — a

x? x l Q =  oo.' 1 2  X2

Thus A > 0. Therefore we have to solve the system of nonlinear equations

-Xi x2~a — Api =  0 

:-x°x\~a — Ap2 =  0
X2
m -p iX i - p 2x2 =  0

where {m)pi,p2}a ) are given and the unknowns are (xi,£2,A). The solution is
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At the given vector of prices, income, and a, we obtain xx =  5, x2 =  10 and the 
utility is

/ (z! =  5,z2 =  1 0 )= 5 1/2101/2. *

Example 2. Find the minimum of the function

/(x) =  (z i -  2 )2 +  (z2 -  l ) 2

under the constraints

Pi(x) =  z 2 -  x\ >  0 , 02(x) =  2 - ® i  - x 2 >  0 , рз(х) =  Zi >  0 .

The Lagrange function is

L(x, Л) =  (z i -  2) 2 +  (z2 -  l ) 2 -  A i(z2 -  z2) — Лг(2 — Zi — Z2) -  A3Z1 .

Thus we find the Karush-Kuhn-Tucker conditions

2 (z i — 2 ) ■+■ 2AiZi +  A2 ~  A3 =  0 

2(z2 — l )  — Ai +  A2 =  0 

Z 2 — x\ >  0
2 — Z i — Z2 >  0

z i >  0 
A i(z2 -  z2) =  0 

A2(2 -  z i -  z2) =  0

A3Z1 =  0

and Ai >  0, A2 >  0, A3 >  0. These equations and inequalities can be solved starting 
from A3Z1 =  0 with the cases AJ =  0 or z j =  0. We find

z* =  1, x2 =  1, A* =  A2 =  A3 =  0 

for which f { x l }x2) =  1. ^

Example 3. We want to maximize

f (x i ,x 2) =  3.6xi —  0.4z2 +  I . 6Z 2 — 0 .2z 2

subject to
2z i  +  Z 2 <  10, Z i  >  0, Z 2 >  0 .

We need to change the problem to find the minimum of

h(x 1, Z2) =  —3.6zi +  0Ax\ — 1.6z2 +  0.2z2
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and 3 i(s iiZ 2) =  10 — 2x\ — x2, g2{xi,x2) =  xb and дз{х1 ,х 2) =  x2 in order to apply 
the Karush-Kuhn-Tucker conditions as follows

—3.6 +  0 .8z i +  2Ai — A2 =  0

—1.6 +  0.4x2 +  Ai — A3 =  0
10 -  2xi -  x2 >  0 

A i(10 -2x i — x2) =  0 
X2xi =  0 

A3s2 =  0

and xi >  0, x2 >  0, Ai >  0, A2 >  0, A3 >  0. A case study of these system of 
equations and inequalities yields Xi =  3.5, x2 =  3.0, Ai =  0.4, A2 =  0 , A3 =  0. The 
Hessian for h

/ d2h d2h \
 ̂ -  ( 0 S{  Щ dx\di2 j 0 ^d2h d2h 1 v о 0.4 J

\ dx\dx2 Щ  I

is positive definite. Thus, h is convex and the inequality constraints are all linear 
and thus concave. Thus the solution (x i, x2) =  (3.5,3) is optimal. ♦

15.3 Support Vector Machine

15.3.1 Introduction
The support vector machine is an algorithm for learning linear classifiers. It is 
motivated by the idea of maximizing margins. There is an efficient extension 
non-linear support vector machines through use of kernels. We have n vectors Vo, 
v b . .. ,  vn_! from the vector space R m which are from two classes. The training 
data are { ( Vjl Vj) : j  =  0 ,1 ,...,n - 1 }  where Vj € {+1, - ! } •  The goal is to learn a 
classification rule from the data which only makes small classi cation errors on 
n-examples but also has good generalizations.

15.3.2 Linear Decision Boundaries
Let the training set of two separate classes be represented by the set of vec

(v0,2/o)> (v i>2/i)» ••• Луп-ъУп-1)

where v, ( j  =  0 ,1 ,...,n -  1) is a vector in the m-dimensional real Hilbert space 
R m and yj 6  { - 1 , + 1 }  indicates the class label. Given a we.ght vector w w d a 
bias b, it is assumed that these two classes can be separated by two margins parallel 

to the hyperplane
wTVj +  Ь >  1, for Vj =  +1 ы

w TVj +  b <  —1, for Уз — 1 (2)
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for j  =  0 , 1, . . . ,  n—l  and w  =  (гУо, W j,..., wm- i ) T is a column vector of m-e lements. 
Inequalities (1) and (2) can be combinded into a single inequality

Vj (wTyi  +  b )>  1 for j  =  0 ,1 ,.. . , 7i - l .  (3)

There exist a number of separate hyperplanes for an identical group of training 
data. The objective of the support vector machine is to determine the optimal 
weight w* and the optimal bias b* such that the corresponding hyperplane separates 
the positive and negative training data with maximum margin and it produces 
the best generation performance. This hyperplane is called an optimal separating 
hyperplane. The equation for an arbitrary hyperplane is given by

w Tx +  6 =  0 (4)

and the distance between the two corresponding margins is

/ о  wTv wTv «\7 (w, 6) =  mm Tj— гг — max 7:—77 . Wi
{v|y=+i} ||w|| {v|y=-l} ||w||

The optimal separating hyperplane can be obtained by maximizing the above dis
tance or minimizing the norm of ||w|| under the inequality constraint (3), and

Im ax  =  7 (w * ,  6*) =  |j^j| . (6 )

The saddle point of the Lagrange function

L P{w, 6, a )  =  ^wTw -  22 +  6) -  1) (7)
3=0

gives solutions to the minimization problem, where otj >  0 are Lagrange multiplier. 
The solution of this quadratic programming optimization problem requires that the 
gradient of Lp(w, 6, a ) with respect to w and 6 vanishes, i.e.,

d ip
dv/

=  0
db

=  0 .
b = b ‘

We obtain

and
j = 0

n—1
2 2  ajVj =  0 . (9)
i=0

Inserting (8 ) and (9) into (7) yields

n - l  ^ n - l  n - l

M a )  =  E Q< - n E E  aiOLjViyjvlvj 
1=0 Z 1=0 j =0
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under the constraints
n—1

3=0

and
otj >  0 , j  -  0 , 1, — , n — 1 .

The function L o (a ) has be maximized. Note that Lp and Ld arise from the same 
objective function but with different constraints; and the solution is found by mini
mizing Lp or by maximizing L d - The points located on the two optimal margins will 
have nonzero coefficients aj among the solutions of m axLo(a) and the constraints. 
These vectors with nonzero coefficients aj are called support vectors. The bias can 
be calculated as follows

After determination of the support vectors and bias, the decision function that 
separates the two classes can be written as

/(x) =  sgn a jy jv jx  +  b* .

{v,IVj=-l}
max w  *T V j

)■

Apply this classification technique to the data set (AND gate)

j  Training set v; Target yj
0 (0,0) 1
1 (0 ,1) 1 
2 ( 1,0) 1
3 U ,i) - 1

For the present data set we find

LD{a ) =  Y 1ai - \ a'i +  a ia i~ \ <X2 +  C“lC‘3

since for the scalar products we have

The constraints are

a0 >0 , cu > 0, a2 > 0, a3 >  0

and
QO +  OC\ +  OC2 — «з  — 0 .
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To apply the Karush-Kuhn-Tucker conditions (which is formulated for a minimum) 
we have to change L d ( ol)  to —L d ( ol) .  Thus we have the Lagrangian

з
1 о 1

L (a )  =  “  5 Z  +  i a i  -  «1 ^ 3  +  -<*l -  a 2a 3 +  a\ 
j = о z z

о +  <*1 +  0 .2 — с*з) — Ло«о ~ Aiai — A2a 2 ~  Азаз.

Thus we have to solve the sytem of equations 

dl
a—  =  0 - »  -1  - д -  A0 =  0
OCX 0

dl
о—  =  0 -> - 1  +  a i  -  a 3 -  f i  -  Ai =  0 
ctai
dl

-T---— 0 —► —1 +  c*2 —■ 0c3 — f l  — A2 — 0
С/ОГ2
dl
t:—  — 0 —> —1 — a i — 0:2 +  2»з  +  fj, — A3 — 0
o a 3

together with
AoCko — 0, AiOii =  0, Х2&2 —  0, Азаз =  0

Ao > 0 , Ai > 0 , A2 >  0 , A3 > 0 

and the constraints ao +  <*1 +  a2 — a3 =  0. We find the solution

a 0 =  0, Q\ =  2, « 2  =  2, а з  =  4

Ao =  2, Ai =  0, A2 =  0, A3 =  0, =  —3 .

Thus
3

^  =  Е «  =  ( - 2 , - 2 ).
j=o

For b* we obtain b* =  3. The decision function that separates the two classes is 
given by

/ ( x )  =  s g n (a i2/ i v f x  +  a 2y 2v 2 x  +  a 3y 3v  3 x  +  b*)

=  sgn(2s2 +  2xi -  4(zi +  x2) +  b*)
=  sgn(-2zi -  2x2 +  3)

=  sgn ^ -z i -  x2 +  ^  .

Thus
3

Xi +  Х2 =  ~

This solution can also be seen on inspection of the data set.
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15.3.3 Nonlinear Decision Boundaries

In the previous problem we have considered a data set which can be separated by a 
hyperplane. For nonlinear decision boundaries we can extend the method as follows. 
The data points, Vj only appear inside a scalar product. We map the datapoints 
into an alternative higher dimensional space, called feature space, through

V T Vj  - *  (0 (V i ) ,0 (V ; ,■))

where (,  ) denotes the scalar product in the feature space. The map <f>(vi) does not 
need to be known since it is implicitly defined by the choice of the positive definite 
kernel

>yj) =  (0(v<)»0(vi)>*
It is assumed that K (v ifv j) =  K (v j,v i). Examples are the radial base function 
kernel

^ (v t .V j )  =  exp (—||v,- -  Vj||2/(2<72) )  

and the polynomial kernel

K (vi,vj) =  (l + v [v j)“ .

For binary classification with a given choice of kernel the learning task therefore 
involves maximisation of the Lagrangian

n—1 2 n—1n—1

L d ( oc) =  E “ . - s E E  v i )
i=o Z i=0 j = 0

subject to the constraints

n—1
5 3  ОД» =  0 , a, >  0 , i  — 0 , 1, . . . ,  n -  1 .
»=o

After the optimal values a£ have been found the decision function is given by

/(x) =  sign ^  а-у{К (к , +  6^ .

The bias b is found from the primal constraints

/п- l  \  (n - l

b =  - \  J +  \ Z < w h k < * > 4 ) ] ]  ■

For the Karush-Kuhn-Tucker conditions (which are formulated for a minimum) we 
have to change LD to - L D. Thus taking into account the constraints we have the 
Lagrangian

n - l  1 n - l  n - l  n - l  n - l

Z (a ) =  - E ^  +  o E E  O iO jW jK lvt, Vj) - M L  -  Z . Хзаз *
j = о 1 i=0 j=0 3= 0 3=0



From dL/dak =  0 we find

n—1

“ I +  Ук £  ocjVjKivk, V j )  - ц у к -  A* =  0
3=0

for к =  0,1,... ,n — 1. The other Karush-Kuhn-Tucker conditions are

n—1

£ < в д = °
3=0

otj >  0 , j  =  0 , 1, . . . ,  n - l
Ajttj =  0 , j  =  0 , 1 , . . . ,  n — 1

Aj >  0 , j  =  0 , 1, . . . ,  n — 1 .

Note that there is no condition on the Lagrange multiplier /x.

Example. Let v  =  G R 2 and a feature map ф that maps

v  —► ф(\) =  (vj, v \ , V 2V1V2, V 2vi,V 2v2, 1)T €  R 6 .

Now note that

^ r ( V l ) 0 ( v 2)  =  1 +  2t;nV21 +  2^12^22 +  ^11^21 +  V12V22 +  2^11^12^21^22 •

Thus the kernel function for the feature space is

^ ( v t> V j )  =  (vnvji +  vi2vj2 +  l ) 2 =  (1  +  ( v f v j ) ) 2 .

We find the solutions of the Karush-Kuhn-Tucker conditions for this kernel and the 
data set
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j Training set Vj Target yj
0 ( - 1, - 1) - 1

1 ( - 1 . + 1) + 1

2 (+ 1, - 1) + 1

3 (+ 1, + 1) - 1

Inserting the data set into the kernel we obtain a (positive definite) matrix with 
^ ( v t>v ») =  9 a-nd K (v itv j) =  1 for i  ф j  with i , j  =  0,1,2,3. The solution of the 
Karush-Kuhn-Tucker conditions is given by

1
<*o =  <*i =  a 2 =  a3 =  g

and
Ao =  Ai =  Аг =  A3 =  /i =  0 .

Furthermore we have 6 =  0. Thus

/ (x ) =  sgn(—Ж1Ж2) .



We derive a relation between the learning rate 77 and the kernel using

Tl—1 2 n—In —1 n—1

£(<*) =  E aj "n E E  aiOCjViyjKiyi, v ,) -  \1 22 азУз •
j=0 Z i=0 i=0 J=0

and choose the gradient ascent algorithm

dL (  n-1 ^
5ak =  77—  =  77 1 -  yk J2  азУзк (уз> v *) “  m  •
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d a k  x j = 0

We obtain

A L k := L (q0, . .. ,  ak +  6ak, . . . ,  an- i )  -  L{a0,. . . ,  a*, • ■ • > an- i)

1
2=  <5a* [ 1 -  yk 22 tojVjK (vj} vk) -  \jyk) -  ^(Sak) 2K (v*, vk) 

j =0

Given that AZ/fc >  0 we find

0 < 7]K(vk)vk) <  2

and thus
2

0 < 77 <  — 7-------г •K (v ktxk)

When L reaches a maximum value and the we have a stable solution, Sak =  0 
it follows that

1 - yk 22 OijVjK(vj, Vfc) -  \iyk =  7/fc(7/fc - 22 азУзК (уз> yk) -  v )  =  0 
j=o

where we used that =  + 1.

The Kernel-Adatron algorithm is given by

1. Initialize ao =  04 — • • • =  an_i =  1, в =  0.

2 . For i  =  0 ,1 ,..., n — 1 calculate

n—1

ъ =  2 2 азУзк (^ > уз)
3=0

3. Calculate 7 » =  Vifa — 6).

4. Let <5a,- := 77(1 -  7*) be the proposed change to a».

(a) if a* +  6a{ <  0 then a< =  0 .

459
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(b) if +  6 >  0 then ai =  a» +  Sat .

5. Calculate the new threshold

9 := i(m in (z f )  +  maxfor))

where z+ are those patterns i  with class label +1 and z~ those with class label 
- 1.

6. If a maximum number of presentations of the pattern set has been exceeded 
or the margin

m := -(m in (z f )  -  max(zt" ) )

has approached 1 then stop, otherwise return to step 2.

The C ++  program could be improved by calculating the kernel beforehand.

// kerneladatron.cpp

#include <iostream>
#include <cmath> // for fabs
using namespace std;

double К (double vi[2], double vj[2]) // kernel 
{
double kl = 1.0+vi[0]*vj [0]+vi[l]*vj [1] ; 
return kl*kl;

>

int main(void)
■C

const int m = 4;
double v[m][2] = { <-l,-l>, <-l,+l>, {+1,-1>, {+1,+1> >J 
double y[m] = { +1, -1, -1, +1
double alpha[m];
double eta=0.01, eps=0.00001, margin=0.0, theta=0.0;
double min, max;
int i, j, mininit, maxinit;
for(i=0;i<m;i++) alpha[i]=l.0;
while(fabs(margin-1.0) > eps)

mininit=maxinit=l; 
for(i=0;i<m;i++)
{
double z = 0.0;
for(j=0; j<m; j++) z += alpha[j]*y [j] *K(v[i] ,v[j] ) ; 
double delta=eta*(1.0-y[i]*(z-theta)); 
if(alpha[i]+delta<=0.0) alpha[i] =0.0;



15.3. SUPPORT VECTOR MACHINE 461

else alpha[i] +- delta;
if((mininit || z<min) kk y[i]>0) { min=z; mininit=0; } 
if((maxinit I I z>max) && y[i]<0) { max=z; maxinit=0; >
>
margin=(min-max)/2.0; 
theta=(min+max)/2.0;
>
for(i=0;i<m;i++)
cout «  "alpha[" «  i «  "] = " «  alpha[i] «  endl; 
cout «  "theta = " «  theta «  endl; 
return 0;

15.3.4 Kernel Fisher Discriminant

The Linear Fisher discriminant is a well-known two-class discriminative technique. 
It finds the optimal projection direction such that the distance between the two mean 
values of the projected classes is maximized while each class variance is minimized. 
Thus the linear Fisher discriminant is capable of performing feature dimensionality 
reduction for classification, because only one-dimensional features are extracted for 
the two-class problems. The linear Fisher discriminant can be extended to a kernel 
version (i.e., nonlinear Fisher discriminant).

Consider first the linear Fisher discriminant. Let

X :=  {  x i, x2>. . . ,X*}  =  {  Xi , X2 }  С R d

and
v ._ r v(i) v(0 \ v — f x(2) xS2) \Xl i  X1 I ■ • ' J Jt Л2 •— 1 X1 » • • ' ) (2 J

with t - i i  + t 2. Here Xu Xi are the sets of training samples for two different pattern 
classes. Each sample here is a (column) vector in R d. Thus and i 2 are the number 
of training samples corresponding to each class. Let i  =  t\ +  i 2 be the total number 
of training samples of all classes. Fisher’s linear discrimant attempts to find a linear 
combination of input variables, wTx, that maximises the average separation of the 
projections of points belonging to class C\ and C2} whilst minimising the within 
class variance of the projection of those points. The linear Fisher discriminant is 
given by the column vector w which maximizes the following Rayleigh coefficients

Jf ч wTSsw 
J( w) = wTSVw

where

2 tj
Sb := (ni! -  m2)(m 1 -  m2)r , Sw ■- E  ~  mi ) ( ^  ~  т)У

j = i  i= i
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are betvveen-class and within-class scatter matrices, respectively. The column vector 
mj is defined by

1 tj 
m i ~ T  XX

C3 1= 1

The optimal discrimination mask can be computed in a closed form finding

w* =  argmax J(w ) =  S™ (m i -  m2)id

where w* is an optimal linear feature extractor. In this case, the optimal discrimi
native texture features can be directly computed using w* by the projection.

The linear Fisher discrimininant has a very good connection to the optimal linear 
Bayesian classifier in the sense that the optimal projection direction corresponds 
to the optimal Bayesian classifier. However, its optimality heavily depends on the 
assumption that all the classes have equal covariance matrices. It is obvious that 
the real-world data are usually not linearly separable and do not meet such a re
quirement. To overcome this limitation, the kernel Fisher discriminant has been 
introduced to find a nonlinear projection direction for two-class problems (Mika et 
al [79]). Its implementation can be achieved by employing the kernel trick introduced 
by Vapnik [115]. Accordingly, w becomes a nonlinear texture discrimination mask. 
Thus the kernel Fisher discriminant analysis finds the direction in a feature space, 
defined implicitly by a kernel, onto which the projections of positive and negative 
classes are well separated in terms of the Fisher discriminant ratio. Like other kernel- 
based classification methods, its classification performance depends very much on 
the choice of the kernel.

Suppose there is a feature mapping ф which maps the input data into a higher- 
dimensional inner-product vector space F, that is,

Ф -X -*  F .

Consequently, the linear Fisher discriminant can be applied in F  (corresponding 
to a nonlinear operation in the input space x)- It is equivalent to maximizing the 
following criterion

7/ n wTS£w 
wTSjJ,w

where w £ F. Sq and S{y are the corresponding between-class and within-class 
scatter matrices, respectively, formed in F, i.e.,

Sb '■= (m f -  m })(m f -  m f)T

S*w := £  £ 0 MriP) -  rnJ) W xP ) -  mJ)T 
j= l  t= i

with

4  t=i
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From the theory of reproducing kernels, the solution of w  € F  must lie in the span 
of all the training samples in F. Thus, the vector w can be formed by a linear 
combination of the mapped training samples in F  as follows

i
W =  £c*i0 (X i). 

t= l

Using the definition of m* we can compute the projection between the two vectors 
in F  as follows

wTmj = r E E  a'W x0. Ф № ))
4  i=i k=i

where (ф(хк)}ф(х?к) )  is the inner product between ф(ъ) and ф{з4)- By introducing 
a kernel function A;(x, y ) to represent the inner product (x, y) in F, we obtain

wTm| =  j  2 2  2 2  aM * i ,  x j) =  a TfAjt j  =  1,2 
f# *=i fc=i

where

#4 > = г Е ^ | 4 ) '
4  k=1

Thus by using the definition of Sg we have

wr 5gw =  a TMot

where the matrix M  is given by

M  =  — Д2ХМ1 — №2) •

Similarly we obtain
wTSfvw =  aTN a

where the matrix N  is given by

N  =  22 K j{ I  — L j)K j 
i=i

and K j is an i  x i j  kernel matrix of class j  with

(Kj)nm ^(Xni^i) •

Here I  is the identity matrix and L j is the matrix with all entries Ij . Thus, the 
optimization of J{w) is equivalent to finding the optimal value of a  by maximizing

a TM a  
J (“ ) “  aTN a  '
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with respect to a. The optimal vector a* can be computed by finding the leading 
eigenvector of the matrix N~l M . Once a* is obtained, the projection of a test 
pattern X* onto w can be computed by

i
(w, ф(х1))  =  Y l  «tfc(Xi, xt) . 

i=l

Rather than computing the left-hand side of this equation, the right-hand side can 
be much more easily obtained via a linear combination of the inner products which 
is independent of the mapping operator ф. Thus we only need to define a kernel 
form of an inner product instead of computing the explicit form of this mapping. 
Without considering the mapping ф explicitly, the kernel Fisher discrimimant can 
be constructed by selecting the proper kernel. Commonly-used kernel functions are

• Gaussian kernel ( radial basis function):

k{x, y ) =  exp f —

• Polynomial kernel:
fc(x,y) =  ( l  +  xTy )"

• Tangent hyperbolic kernel:

k(x , y ) =  tanh(xTy  +  9)

where a, n, and 9 are the parameters of the three kernels, respectively. The dimen
sionality of F  is usually much higher than the number of training samples which 
could cause the matrix N  to be non-positive definite. Consequently, finding the op
timal value of the vector a  is an ill-posed problem. The commonly-used approach to 
solve this problem is to employ regularization, which adds a multiple of the identity 
matrix or the kernel matrix К  to N  to guarantee that N  is positive definite.

Exercise. Consider the vectors in R 4 (standard basis)

/1\
( ° ) /0\ /04

0 1 0 0
0 » 0 > 1 > 0

\0J \o) и /

which belong to the class +1 and the vectors in R 4 (Bell basis)

/1 \ (  1 ^ ( 0\ (  0 \
0 1 0 1 1 1 1
0 ’ y/2 0 ’ V2 1 ’ V2 -1

\ l ) \ - l ) \0 ) ^ о у
which belong to the class —1. Apply the kernel Fisher discriminant analysis.



Chapter 16 

Discrete Wavelets

16.1 Introduction

In this section we discuss one-dimensional discrete wavelet transform (Erlebacher et 
al [31], Benedetto and Frazier [8]) and continuous wavelet transforms (Daubechies 
[23]). Within the discrete wavelet transform we distinguish between redundant dis
crete systems (frames) and orthonormal, semi-orthogonal, and biorthogonal bases 
of wavelets. In most case the discrete wavelet transform (or DWT) is an orthogonal 
function which can be applied to a finite group of data. Functionally, it is very 
much like the discrete Fourier transform, in that the transforming function is or
thogonal, a signal passed twice (i.e. a forward and a backward transform) through 
the transformation is unchanged, and the input signal is assumed to be a set of 
discrete-time samples. Both transforms are convolutions. Whereas the basis func
tion of the Fourier transform is sinusoidal, the wavelet basis is a set of functions 
which are defined by a recursive difference equation for the scaling function ф (also 
called father wavelet)

M-l
Ф(х) -  скф(2х -  к) 

k=0

where the range of the summation is determined by the specified number of nonzero 
coefficients M. Here к is the translation parameter. The number of the coefficients 
is not arbitrary and is determined by constraints of orthogonality and normalization. 
Owing to the periodic boundary condition we have

Cfc — Ck+nM

where n G N. We notice that periodic wavelets are only one possibility to deal with 
signals defined on an interval. Generally, the area under the scaling function over 
all space should be unity, i.e.

[  ф(х)(1х =  1.
J R

465
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It follows that
M -l
£  cfc =  2. 
fc—о

In the Hilbert space Z/2(R ) with the scalar product

(/,0> := [  f{x )g (x )dx
J R

the function ф is orthogonal to its translations; i.e.,

f ф(х)ф(х -  k)dx =  0, к e  Z \ {0 } .
J R.

What is desired is a function ip which is also orthogonal to its dilations, or scales, 
i.e.,

f  Tp(x)il)(2x — k)dx =  0.
J R

Such a function -0 (called the mother wavelet) does exist and is given by (the so-called 
associated wavelet function)

м
Ф{х) =  £ ( - l ) fcCj-fc0(2x -  k) 

fc=l

which is dependent on the solution of ф. The following equation follows from the 
orthonormality of scaling functions

£  CfcCfc_2m =  2<5om 
fc

which means that the above sum is zero for all m not equal to zero, and that the 
sum of the squares of all coefficients is two. Another equation which can be derived 
from 'ф(х)±ф(х -  m) is

£ ( - l ) fcC i_fcCfc_2m =  0. 
fc

A way to solve for ф is to construct a matrix of coefficient values. This is a square 
M  x M  matrix where M  is the number of nonzero coefficients. The matrix is des
ignated L  with entries Ly =  c2t-j. This matrix has an eigenvalue equal to 1, and 
its corresponding (normalized) eigenvector contains, as its components, the value of 
the function ф at integer values of x. Once these values are known, all other values 
of the function ф can be generated by applying the recursion equation to get values 
at half-integer x , quarter-integer x, and so on down to the desired dilation. This 
determines the accuracy of the function approximation.

Example. The Haar function (ip 6 I/2(R ))

[  1 0 < x <  \
Tp(x) \= < -1  \ <  X <  1 

[ 0 otherwise
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is an example for a mother wavelet. The scaling function (father wavelet) ф G /^(R) 
is given by

л(~\ / 1 0 < х < 1  
|o otherwise

We have ip(x) =  ф(2х) -  ф{2x -  1). The functions

Фm,n(x) :=  ^(2mx - n), m , n e  Z

form a basis in the Hilbert space L2(R). This means that every function / G L 2(R) 
can be expanded with respect to this basis. If we restrict m to m =  0,1,2,... and

71 =  0,1,2,..., 2m — 1

we obtain an orthonormal basis in the Hilbert space L2[0,1]. A

This class of wavelet functions is constrained, by definition, to be zero outside of 
a small interval. This is what makes the wavelet transform able to operate on 
a finite set of data, a property which is formally called compact support. The 
recursion relation ensures that a scaling function ф is non-differentiable everywhere. 
Of course this is not valid for Haar wavelets. The following table lists coefficients 
for two wavelet transforms. The sum of the coefficients is normalized to 2.

Wavelet со Cl c2 Сз
Haar
Daubechies-4

1.0 

i ( i  +  V i)
1.0 

1(3+ V3) 1(3-v/3) 1(1 -  \/3)

Table 16.1: Coefficients for Two Wavelet Functions

More generally we consider the Hilbert space Z^fR) of the square integrable func
tions. Let ip € L2(R ) be the mother wavelet. We define

ipm,n{x) := a -m/2rp(a~mx -  nb)

for m,n G Z and a >  1, b >  0. The constant a~mI2 is a normalization constant so 
that

/ №m,„(z)|2<£r =  [  \i>{x)\*dx.
J R  ^R

If the support of ф is [c, d], then the support of фт>п is [amc+nb, amd+nbJ. However 
whether ip has compact support or not the shape of the graph of фт,п is a scaled di
lated version of the graph of ip and translated by amount nb. This is one of the main 
differences between the discrete windowed Fourier transform functions and wavelets.

An important mother wavelet is the Mexican hat wavelet given by
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It is the normalized second derivative of a Gaussian function exp(—x2/(2a2)). The 
extension to more than one dimension is straightforward. It is also part of the tfer- 
mitian wavelets. The Mexican hat wavelet is a useful tool for point source detection. 
It has an analytical form that is convenient when making calculations and allows to 
implement fast algorithm. It is suited for the detection of Gaussian structures since 
it is obtained by applying the Laplacian

Another mother wavelet with an imaginary part is the Morlet wavelet. It consists 
of a plane wave modulated by a Gaussian function

fa {x ) =  can~1/4e~x7/2(eiSit -  kq)

where k.q =  e-n2y/2 is defined by the admissibility criterion. The normalization 
constant cn is

Cn =  ( l  +  e-na- 2 e - 3fi2/4r 1/2-

Exercise. Show that the Fourier transformation ф(ш) of the Morlet wavelet is given 
by

=  cn? r1/4(e-(n“u')2/2 -  кпе_а;/2) .

Exercise. Can the Gaussian function exp(—x2/2) be considered as a mother 
wavelet?

16.2 Multiresolution Analysis

A multiresolution analysis of a signal / (t) consists of a collection of nested subspaces 
{  Vj }jez of the Hilbert space L2(R ), satisfying the following set of properties:

(i) C\jezVj =  {0 }, UjezVj is dense in L2(R )

(ii) Vj С Vj—\

(iii) f i t )  £ V j <— ► /(2*0 € Vq

(iv) There exists a function <f>o(t) in Vo, called the scaling function, such that the 
collection {  0O(£ — k), к € Z } is an unconditional Riesz basis for the subspace Vq.

Similarly, the scaled and shifted functions {(f>j,k(t) =  2~^2фо(2~Ч — к), к G Z } 
constitute a Riesz basis for the space Vj. Performing a multiresolution analysis 
of the signal / means successively projecting it into each of the approximation 
subspaces Vj

approXj{t) =  (ProjVjf ) ( t )  =  J2 afU , W j,k (t ) .
ke z

Since Vj С V j-1, approx  ̂ is a coarser approximation of / than is approx^..! and 
therefore, the key idea of the multiresolution analysis consists in examining the loss
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of information, that is the detail, when going from one approximation to the next, 
coarser one:

detail; (t) =  approx^ (<) -  approx; (£).

The multiresolution analysis shows that the detail signal detail,- can be directly 
obtained from projections of the signal / onto a collection of subspaces, the Wj, 
called the wavelet subspaces. We have

Vj+i =  Vj(B Wj, W j С  Vj+i

where ® is the orthogonal sum of two linear spaces. Thus we have two mutually 
orthogonal subspaces, Vj and Wj. Since

c1osL2(R) j  (J VJ j =  L2(R )

we obtain the expansion

£2(R ) =  0  Щ -
j =-OO

Any function in the Hilbert space L2(R ) may be expanded in a generalized Fourier 
series

f (x )  =  2 2  wi  with wi  6 Wi  for ^  i  € Z '
J=-oo

There exists a function фо, called the mother wavelet, to be derived from фо, such 
that its templates {ipj>k(t) =  2 ^ 2ф0{2 '4  -  к), к € Z } constitute a Riesz basis for 
the subspace Wj

detailj(i) =  (Proj*y./)(0 =  E  •
kez

Let П  be a separable Hilbert space (in our case L2(R )) and {  К  } „ 6z a countable 
subset of H. We say that {  A„ } is a Riesz basis for H  if {  К  }  is complete and if there 
are constants 0 < Ci <  C2 < oo, for an arbitrary sequence с {Cn}„€z € 
such that

C i M < | | E ^ I I < C 2||c||.
n€Z

Basically, the multiresolution analysis consists in rewriting the information in / as 
a collection of details at different resolutions and a low-resolution approxima ion

j = J

f ( t )  =  approxj(i) +  2 2  detail; (i)
j= i

=  2 2  «/№  +  £  £  df & • 
fc€z i =lk€Z

The approx, essentially being coarser and coarser approximations of / ̂means> that 
Фо needs to be a low-pass function. The details,-, being an information differential,



470 CHAPTER 16. DISCRETE WAVELETS

indicates rather that фо is a bandpass function, and therefore a small wave, a wavelet. 
The multiresolution analysis shows that the mother wavelet фо must satisfy

[  ф0 (t)dt =  0 
J R

and that its Fourier transform obeys

\фо{и)\ ~  и —> 0 

where N  is a positive integer called the number of vanishing moments of the wavelet.

Given a scaling function ф0 and a mother-wavelet *00, the discrete (or non-redundant) 
wavelet transform is a mapping L2(R ) —► ^ (Z ) between the two Hilbert spaces 
I/2 (R ) and £2(Z) given by

f ( t )  -  k ) , k e  z }, { df(j,k ), j  =  l , . . . ,  J, к e  z } } .

These coefficients are defined through the inner products of the signal / with two 
sets of functions

a/(j.*0 =  (*)), df ( j ,k)  =  (f))

о о ° °
where ipjk (respectively ф̂ к) are shifted and dilated templates of фо (respectively фо), 
called the dual mother wavelet (respectively the dual scaling function), and whose 
definition depends on whether one chooses to use an orthogonal, semi-orthogonal 
or bi-orthogonal discrete wavelet transform. They can pratically be computed by a 
fast recursive filter-bank-based pyramidal algorithm whith an extremely low com
putational cost.

16.3 Pyramid Algorithm

For discrete wavelets we have the pyramid algorithm. The pyramid algorithm op
erates on a finite set on N  input data Xo,Xi,... ,хлг-ь where N  is a power of two; 
this value will be referred to as the input block size. These data are passed through 
two convolution functions, each of which creates an output stream that is half the 
length of the original input. These convolution functions are filters, one half of the 
output is produced by the “low-pass filter”

1 N~l N
=  rt £  C2 i- j+ l*Cj> i =  0, 1, . . . , — 1 

L j=0 z

and the other half is produced by the “high-pass filter” function
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where N  is the input block size, Cj are the coefficients,

X =  (&0, x\} • • • >

is the input sequence, and

a  =  ( ao> f lb  • • • > o.n/2- i ) ,  b  =  (6q, b\, . . . ,  bpf/2—l )

are the output sequences. In the case of the lattice filter, the low- and high-pass 
outputs are usually referred to as the odd and even outputs, respectively. In many 
situations, the odd or low-pass output contains most of the information content 
of the original input signal. The even, or high-pass output contains the difference 
between the true input and the value of the reconstructed input if it were to be 
reconstructed from only the information given in the odd output. In general, higher 
order wavelets (i.e. those with more nonzero coefficients) tend to put more informa
tion into the odd output, and less into the even output. If the average amplitude 
of the even output is low enough, then the even half of the signal may be discarded 
without greatly affecting the quality of the reconstructed signal. An important step 
in wavelet-based data compression is finding wavelet functions which cause the even 
terms to be nearly zero. However, note that details can only be neglected for very 
smooth time series and smooth wavelet filters, a situation which is not satisfied for 
chaotic time signals.

The Haar wavelet represents a simple interpolation scheme. After passing these data 
through the filter functions, the output of the low-pass filter consists of the average 
of every two samples, and the output of the high-pass filter consists of the difference 
of every two samples. The high-pass filter contains less information than the low 
pass output. If the signal is reconstructed by an inverse low-pass filter of the form

N/2 - 1

c2i-i+iai, j  =  0 ,1 ,...,N -  1
t=0

then the result is a duplication of each entry from the low-pass filter output. This is 
a wavelet reconstruction with 2x data compression. Since the perfect reconstruction 
is a sum of the inverse low-pass and inverse high-pass filters, the output of the inverse 
high-pass filter can be calculated. This is the result of the inverse high-pass filter 
function

N/2-1
x f  =  £  { ~ l ) j C j - i -2 ib i ,  j  =  0,1,...,AT— 1. 

t=0

The perfectly reconstructed signal is

x  =  x L + x H

where x  is the vector with elements Xj. Using other coefficients and other orders of 
wavelets yields similar results, except that the outputs are not exactly averages and 
differences, as in the case using the Haar coefficients.
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Let us consider an example. Most discrete signals are filtered using linear difference 
equations, for example

y[n] =  ay[n -  1] +  (1 -  a)z[n], n  =  0,1,...

where x[n] is the input signal, т/[п] the output, t/[—1] =  0, z[0] =  0, and a (0 < a <  1) 
is the filter parameter. Notice that y[n] depends upon previously computed values of 
the filter output. Thus the chosen filter is an infinite response filter. It is well-known 
that filtered chaotic signals can exhibit increases in observed fractal dimensions, 
for example the Liapunov dimension. We study the Liapunov exponent of filtered 
chaotic one-dimensional maps using wavelets. Our input signal is given as the 
solution of the logistic map

x[t +  1] =  4z[£](l — x[£])

where x[0] G [0,1] and t — 0,1,__ The properties of the logistic map are well-known
(see chapter 1). For almost all initial values we find that the Liapunov exponent 
of the logistic map is given by ln(2). We apply the Haar wavelet to filter the time 
series (xo>£i> • • • >£n-i) resulting from the logistic map in the chaotic regime. The 
filter decomposes the signal into the moving average coefficients {  a*}  and details 
{&*}  with i  =  0 ,1 ,...,N/2 — 1. Owing to Broomhead et al [11] the complete 
set of coefficients {  a*, b{ }  have the same Liapunov exponent as the original time 
series. The reason is that Haar (and Daubechies) wavelets are finite impulse response 
filters and that the convolution is performed only once. Therefore we deal with a 
non-recursive finite impulse filter. Using the time series given by the logistic map 
we evaluate x f, x f  using equations given above. We have

x1 -  T L j ~  xj +1

for j  even and

xj  ~  xj +1
for j  even. We use the series x!f for the calculation of the Liapunov exponent. No
tice that in the case of the logistic equation the even output resulting from Haar 
wavelets, i.e. the details, contain nearly as much information as the odd output, 
i.e. the averages. We remove the duplication of each entry of x f  and calculate the 
Liapunov exponent of this time series. Thus the size of the time series is N/2. An 
algorithm to find the Liapunov exponent from time series is described in chapter 2. 
The Liapunov exponent is much larger than ln(2) for this time series, i.e. the time 
series becomes more chaotic.

Using the coefficients for the Daubehies-4 wavelet we find similar results, i.e., the Li
apunov exponent is much larger than ln(2). Furthermore, for other one-dimensional 
chaotic maps we also find similar results.

// waveletliapunov.cpp
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•include <iostream>
•include <cmath> // fo r  fabs, log
using namespace std;

vo id  find (doub le* a ,in t  len g th ,in t p o in t,doubled min,int& pos ition ) 

in t i  = 0 ;
if(point==0) { min = fabs(a[i]-a[1]); > 
if(point!=0) { min = fabs(a[i]-a[point]) ; > 
position = i; 
double distance;

f o r ( i —1 ; i< (le n g th -1) ; i+ + )
{
i f ( i != p o in t )
{
distance = fa b s (a [ i ] - a [p o in t ] ) ;
if (d is ta n c e  < min) {  min = distance; position  = i ;  }  // end i f
> // end i f
> // end fo r

>

in t m ain(void)

const double p i = 3.14159;
// generate time series
in t n = 16384; // length o f time series
in t  m = n/2 ;
in t k;
double* x = new doub le[n ]; 
in t  t ;
x [0] = 1 .0/3 .0 ; // in i t ia l  value o f time series 
f o r ( t = 0 ; t < (n - l ) ; t + + )  {  x [ t + l ]  = 4 .0* x [ t ] * ( 1 .0- x [ t ] ) ; >

// Haar wavelet 
double* с = new doub le[n ]; 
fo r (k = 0 ;k<n;k++) c [k ] = 0 .0 ; 
c [0]  = 1 .0 ; c [ l ]  = 1 .0 ;

double* a = new double[m]; 
fo r (k = 0 ;k<m;k++) a[k] = 0 .0 ; 
double* b = new double[m]; 
fo r (k = 0 ;k<m;k++) b[k] = 0 .0 ;

in t  i ,  j ;
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for(i=0;i<m;i++) { 
for(j=0;j<n;j++) { 
if(2*i-j+l < 0) a[i] += c[2*i-j+l+n]*x[j]; 
else a[i] += c[2*i-j+l]*x[j];

>
a [ i ]  = 0 .5 *a [i ]  ;

>

fo r ( i= 0 ;i<m ;i++) {  
fo r ( j= 0 ; j< n ;j+ + ) {  
i f ( j - 2* i  < 0) b [ i ]  += pow(-1 .0 , j ) * c [ j - 2* i + n ] * x [ j ] ; 
e lse  b [ i ]  += p o w (- l.0 , j ) * c [ j - 2* i ] * x [ j ] ;

>
b [ i ]  = 0 .5 * b [ i ] ;

>

// inverse transform 
double* xL = new dou b le [n ]; 
double* xH = new dou b le [n ]; 
fo r (j= 0 ;j< n ;j+ + ) x L [ j ]  = 0.0; 
fo r (j= 0 ;j< n ;j+ + ) xH [j] = 0.0;

f o r ( j= 0 ;j< n ;j+ + ) {  
f o r ( i= 0 ;i<m ;i++) {  

i f ( 2 * i - j + l  < 0) x L [ j ]  += c [2 * i - j+ l+ n ] * a [ i ] ; 
e lse  x L [ j ]  += с [ 2 * i - j + l ] * a [ i ] ;

>
>

for(j=0;j<n;j++) { 
for(i=0;i<m;i++) { 
if(j —2*i < 0) xH[j] += powC-1.0,j)*c[j-2*i+n]*b[i]; 
else xH[j] += pow(-1.0,j)*c[j-2*i]*b[i];

>
>
// input s igna l reconstructed 
double* у = new doub le [n ]; 
fo r (k = 0 ;k<n;k++) y [k ] = xL[k] + xH [k];
// end wavelet block

// tim eseries 
in t count = 0 ; 
t  = 0 ;
double* se ries  = new double[m ]; 
while ( t  < n)
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{
series [cou n t] = x L [t ] ;  
count++; 
t  += 2 ;
>
// Liapunov block
double* d = new double[m-1] ;
double* d l = new double[m-1] ;
in t point = 1 ;
in t p os ition ;
double min;

fo r ( t = 0 ;t< (m - l);t+ + )

fin d (s e r ie s ,m ,t,m in ,p o s it io n );
d [ t ]  = fa b s (s e r ie s  [t ] - s e r ie s [p o s it io n ] ) ;
d l [ t ]  = fa b s (s e r ie s  [t+ 1]-s e r ie s [p o s it io n + 1] ) ;

>

double sum = 0 .0 ;
f o r ( t = 0 ; t < (m - l ) ; t++ ) {  sum += lo g (d l [ t ]/ d [ t ] ) ;  }  
double lambda = sum/((double)(m-1) )  ; 
cout «  "lambda = " «  lambda «  endl; 
d e le te []  x; d e le te [] d; d e le te [] d l; 
return 0 ;

>

16.4 Biorthogonal Wavelets
As described before, dilations and translations of the scaling function ф leading to 
{Фзк} constitute a basis for the subspaces Vj and, similarly {ipjk(t)} for the subspaces 
Wj. We define a dual multiresolution analysis with dual subspaces {Vj} and {Wj}  
generated from a dual scaling function ф and a dual mother wavelet respectively. 
This is done so that instead of

{Фз fc, Фц) =  hi, ('Фзкг Фзч) =  $33'SM> № fc’ ̂ i )  =  0

as in an orthogonal case, where (, ) is the scalar product in the Hilbert space 
we have

f e ,  Ф31) =  *ы, b i )  =  533,5kl,

and
(V'ifc, Фц) — 0» (ФзЬ Vty) =  0

ф]к( 1) := 2>'2ф(2Ч -  к), M t )  ~  * /2№ 4  -  fc) ■
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These sets constitute bases for the dual subspaces {V j}  and {W j} . The conditions 
displayed above are referred to as biorthogonality conditions and ф and ф biorthog- 
onal wavelets. In terms of subspaces, the above biorthogonality conditions can be 
expressed as

Vj 1  Wj, Vj J_ W j, and W j ±  Wj, for j  ф f .

By definition, a scaling function and a mother wavelet satisfy the dilation equation 
and the wavelet equation. Consequently

0 (0  =  V 2 Y ,  M ( 21 -  fc), m  =  V 2 E  дкф{2t -  fc) 
fc€z kez

and
m  =  \/2 £  M (2 {  -  fc), m  =  V 2  £  дкф{21 -  fc).

fee z fce z
The coefficients in the above equations can be obtained by taking the scalar product 
with the appropiate dual function. For example,

hk =  (Ф\,к,Ф) =  V 2 j^ (j)(2t -  к)ф(г)&

9k =  (0i,fc, V>) =  ^  “  k)ip(t)dt.

The roles of the two functions ф and ф or ip and ф can be interchanged. Or if we 
take the dual of the above equations we obtain the following relations

hk =  (Ф1,к>4>) =  V 2 j ^ ( 2t -  k )4>{t)dt

9k =  {Ф\,куФ) =  V2 J ^ (2 t  -  k )$ (t)d t.

The Cohen-Daubechies-Feauveau biorthognal linear spline wavelets ([19], [24]) have 
compact support and are known to have optimal time localization for a given num
ber of null moments (frequency localization). An important property of the spline 
wavelet is that they have zero moments up to order m, i.e.

[  tty(t)dt =  0, for I  — 0 ,1 ,..., m .
J R

Spline wavelets are extremely regular and unlike other wavelets, they are symmetric 
in time. A special case of the Cohen-Daubechies-Feauveau wavelet is implemented 
in the following Java program. The time series is generated from the logistic map.

// CDF1.java

public class CDF1

public static void main(String[] arg) 
i
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doublet] d - new double[65]; // length for data 2~n+l : n integer 

d[0] = 1.0/3.0; // logistic map
forCint k=l;k<d.length;++k) { d[k] = 4.0*d[k-l]*(1.0-d[k-l]); >

CDF1 cdf = new CDF10; 
cdf.transformed);
// print transformed data
System.out.printlnC"transformed data:");
forCint k=0;k<d.length;++k)
{ System.out.printlnC"d["+k+"] = " + d[k]) > 
cdf.invTransformCd);
System.out.println С"reconstructed data:"); 
forCint k=0;k<d.length;++k)
{ System.out.printlnC"d["+k+"] = "+d[k]); >
> // end main

public CDFlO { } // default constructor

final static double [] s =
{ 0.03314563036811941, -0.06629126073623882, -0.17677669529663687, 
0.41984465132951254, 0.9943689110435824, 0.41984465132951254, 
-0.17677669529663687, -0.06629126073623882, 0.03314563036811941 >;

final static doublet] w = { -0.5, 1.0, -0.5 >;

final static doublet] □ sLeft =
{  { 1.0275145414117017, 0.7733980419227863, -0.22097086912079608, 

-0.3314563036811941, 0.16572815184059705 >,
{ -0.22189158107546605, 0.4437831621509321, 0.902297715576584, 

0.5800485314420897, -0.25687863535292543, -0.06629126073623882, 
0.03314563036811941 >,

{ 0.07549838028293866, -0.15099676056587732, -0.0957540432856783, 
0.34250484713723395, 1.0330388131397217, 0.41984465132951254, 
-0.17677669529663687, -0.06629126073623882, 0.03314563036811941 >, 

{ -0.013810679320049755, 0.02762135864009951, 0.011048543456039804, 
-0.04971844555217912, -0.18506310288866673, 0.41984465132951254, 
0.9943689110435824, 0.41984465132951254, -0.17677669529663687, 
-0.06629126073623882, 0.03314563036811941 > };

final static doublet] □ sRight =
{{ 0.03314563036811941, -0.06629126073623882, -0.17677669529663687, 

0.41984465132951254, 0.9943689110435824, 0.41984465132951254,
-0.18506310288866673, -0.04971844555217912, 0.011048543456039804, 
0.02762135864009951, -0.013810679320049755 >,

{ 0.03314563036811941, -0.06629126073623882, -0.17677669529663687, 
0.41984465132951254, 1.0330388131397217, 0.34250484713723395, 
-0.0957540432856783, -0.15099676056587732, 0.07549838028293866 >,
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{ 0.03314563036811941, -0.06629126073623882, -0.25687863535292543, 
0.5800485314420897, 0.902297715576584, 0.4437831621509321, 
-0.22189158107546605 >,

{ 0.16572815184059705, -0.3314563036811941, -0.22097086912079608, 
0.7733980419227863, 1.0275145414117017 > >;

final static doublet] sPrimary =
{ 0.35355339059327373, 0.7071067811865475, 0.35355339059327373 >;

final static doublet] vPrimary =
{ 0.0234375, 0.046875, -0.125, -0.296875,
0.703125, -0.296875, -0.125, 0.046875, 0.0234375 >;

final static doublet] [] sPrimaryLeft =
{ { 0.7071067811865475, 0.35355339059327373 > };

fined static doublet] t] sPrimaryRight =
{ { 0.35355339059327373, 0.7071067811865475 > };

final static doublet] t] wPrimaryLeft =
{ { -0.546875, 0.5696614583333334, -0.3138020833333333,

-0.103515625, 0.10677083333333333, 0.043619791666666664, 
-0.01953125, -0.009765625 >,

{ 0.234375, -0.087890625, -0.41015625, 0.673828125,
-0.2421875, -0.103515625, 0.03515625, 0.017578125 > };

final static doublet] □ vPrimaryRight =
{ { 0.017578125, 0.03515625,

-0.103515625, -0.2421875,
0.673828125, -0.41015625,
-0.087890625, 0.234375 >,

{ -0.009765625, -0.01953125,
0.043619791666666664, 0.10677083333333333,
-0.103515625, -0.3138020833333333,
0.5696614583333334, -0.546875 > >;

public void transform(doublet] v)

for(int last=v.length;last>=15;last=(last+1)/2)
•C transform(v.last) ; >
> // end method transform

public void invTransform(doublet] v)

int last;
for(last=v.length;last>=15;last=last/2+l) { ; > 
for(;2*last-l<=v.length;last=2*last-l)
{ invTran8form(v,last); >
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У // end method invTransform

public static void transform(doublet] v.int last)
{
double [] ans = new double [last] ; 
int half = (last+l)/2; 
if(2*half-l ! = last) {

throw new IllegalArgumentException("Illegal subband : " + last 
+ " within array of length " + v.length);

>
// lowpass
for(int k=0;k<sLeft.length;k++) { 
for(int l=0;l<sLeft[k].length;1++) { 

ans [k] += sLef t [к] [1] *v [1] ;
>
>
for (int k=sLeft. length ;k<half-sRight. length ;k++) { 
for(int 1=0;l<s.length;1++) {
ans[k] += s[l]*v[2*k+l-sLeft.length];

>
>

for (int k=0;k<sRight .length ;k++) { 
for(int 1=0; KsRight [k] . length;1++) { 
ans[k+half-sRight.length] +=
sRight [к] [1] *v [last-sRight [k] . length+1];

>
>
// highpass
for(int k=0;k<half-1;k++) { 
for(int 1=0;l<v.length;1++) { 

ans[k+half] += w[l] *v[2*k+l];
>
>

System.arraycopy(ans,0,v,0,last);
У // end method transform

public static void invTransform(doublet] v.int last)
<
doublet] ans = new double[2*last-l] ;
// scale coefficients
for(int k=0;k<sPrimaryLeft.length;k++) {
for(int 1=0;l<sPrimaryLefttk].length;1++) { 
ans tl] += sPrimaryLeft tk] [1] *v tk];

>
>
for (int k=sPrimaryLef t. length; k<last-sPrimaryRight. length, k++) 
i
for (int 1=0; KsPrimeiry. length; 1++) {
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ans[2*k-l+l] += sPrim ary[l]*v[k ] ;
>
>
fo r (in t  k=0;k<sPrimaryRight.length;k++) {

forCint l=0;l<sPrimaryRight[k].length;1++) {  
ans [1-sPrimaryRight [k] . length+ans. length] += 
sPrimaryRight[k] [l]*v[k+last-sPrim aryR ight.length] ;

>
>
// wavelet coeffic ien ts 
forCint k=0;k<wPrimaryLeft.length;k++) {  

forCint 1=0;KwPrimaryLeft[k] .length;1++) {  
ans[l] += wPrimaryLeft[к ] [1 ]*v [k + la s t ];

>
>
forCint k=vPrimaryLeft. length;k<last-l-wPrimaryRight. length;k++)
{
forCint 1=0;KwPrimary.length;1++) {

ans[2*Ck-l)-l+ l] += wPrimary[1 ]*v [k + la s t ];
>
>
forCint k=0;k<wPrimaryRight.length;k++) {  

forCint l=0;l<wPrimaryRight[k] .length;1++) {  
ans[l-wPrimaryRight[k]. length+ans.length] += 
vPrimaryRight [к] [1] *v [k+2*last-l-wPrimaryRight. length] ;

>
>
System. arr ay copy Cans, 0, v , 0, ans. length );
> // end method invTransform

> // end class

16.5 Two-Dimensional Wavelets
There are several methods to build bases on functional spaces in dimension greater 
than 1. The simplest one uses separable wavelets. Consider d =  2. The simplest 
way to build two-dimensional wavelet bases is to use separable products (tensor 
products) of a one-dimensional wavelet ф and scaling function <f>. This provides the 
following scaling function

Ф(®1,®2) =  Ф{Х1)Ф(Х2)

and there are three wavelets

ф{1){х и х 2) =  ф(х1)ф{х2)

Ф{2)(х1 ,х2)= ф (х 1 )ф (х 2) 

ф ® {х i, ®2) =  ф{х\)ф{х2) .

There are also non-separable two-dimensional wavelets.
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Assume that we have a scaling function Ф and wavelets

Ф := { ф® : i =  1 ,2 ,3 }

constructed by tensor products described above of a one-dimensional orthogonal 
wavelet system. If we define

t f$ (x ) :=  2ty(<)(2*x—j), t =  1,2,3

where к 6 Z, and j  G Z 2, then any function /  in the Hilbert space £2(R 2) can be 
written as the expansion

/ ( x ) =  £ ( / . ^ j , * ) l M x)
j  Х Ф

where the sums range over all j  e  Z 2, all к €  Z, and all ф 6 Ф. Here (, ) denotes 
the scalar product in the Hilbert space L2(R 2), i.e.

< / . * й > = $ = / R2/M </#(x)dx .

Thus we have

/ ( x )  =  £ ( / ,  ^ ) ^ ( x )  +  £ ( / ,  ^ V S ’ ( x )  +  £ < / ,  ^ M ? ( x )  • 
j,fc j,fc j,*

Instead of considering the sum over all dyadic levels к, one can sum over k >  К  iov 
a fixed integer К . For this case we have the expansion

/ ( x ) =  Ч,к,Жк(*) +  £  rfj .* $ j .* ( x )
j€ Z 2,* > * > € *  jGZ2

where

and
di,K =  fRJ (x ) $ iA x )dx-

When we study finite domains, e.g., the unit square / ,  then two changes must be 
made to this basis for all of L2(R 2) to obtain an orthonormal basis for £2(/)- First, 
one considers only nonnegative scales к >  0, and not all shifts j  €  Z 2, but only those 
shifts for which ф^к intersects I  nontrivially. Second one must adapt the wavelets 
that overlap the boundary of /  in order to preserve orthogonality on the domain. 
Consider a function /  defined on the unit square /  :=  [0, l )2, which is extended 
periodically to all of R 2 by

/ ( x +j)  = / ( x)
x  € / ,  j  € Z2, where

Z2 := (U u h ) 1 3u h  € Z } .
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One can construct periodic wavelets on L2(I) that can be used to decompose periodic 
fuctions /  on 1^(I). For example, for ф e  Ф, к >  0 and j  e  {  0 ,1 , . . . ,  2k -  1 } 2 one 
sets

^jffc(x ) :=  2 2  .fc(x +  n)> x  € I .
n€Z2

One constructs фМ in the same way; we have Ф ^ (х ) =  1 for all x, since

(ФО- j )  : j e z 2}

forms a partition of unity. One now has a periodic orthogonal wavelet system on 
L2(I) such that

/ (x )  =  ( /, Ф(р)) +  22  (/> V»],fc)̂ £fc (x ) •

In practice we are given only a finite amount of data, so we cannot calculate the 
above formula for all к >  0 and all translations h € I. Assume that we have 2m 
rows of 2m pixels, each of which is the average of /  on a square of size 2“ m x 2-m. 
Then using the orthogonal wavelets constructed by Daubechies we can calculate 
these formulae for к < m and average over 22m different pixel translations j/2m, 
J =  О'ь^г), 0 < j i , j 2 <  2m, instead of averaging over h 6 I. We obtain

m ( ,  -  ( « -  i ) .

For each dyadic level к we need to compute 3 x 22m terms, one for each pixel and 
one for each ф e  Ф.



Chapter 17 

Discrete Hidden Markov Processes

17.1 Introduction
A Markov chain is a finite state machine with probabilities for each transition, that 
is, a probability that the next state is Sj given that the current state is s*.

Equivalently, a Markov chain is described by a weighted, directed graph in which 
the weights correspond to the probability of that transition. In other words, the 
weights are nonnegative and the total weight of the outgoing edges is positive. If 
the weights are normalized, the total weight, including self-loops is 1.

The hidden Markov model ([90], [14]) is a finite state machine with probabilities for 
each transition, that is, a probability that the next state is Sj given that the current 
state is s*. The states are not directly observable. Instead, each state produces one 
of the observable outputs with certain probability.

Computing a model given sets of sequences of observed outputs is very difficult, since 
the states are not directly observable and transitions are probabilistic. Although the 
states cannot, by definition, be directly observed, the most likely sequence of sets 
for a given sequence of observed outputs can be computed in 0 (n T )t where n is 
the number of states and T  is the length of the sequence. Thus a hidden Markov 
model is a Markov chain, where each state generates an observation. We only see 
the observations, and the goal is to infer the hidden state sequence.

Hidden Markov models are very useful for time-series modelling, since the discrete 
state-space can be used to approximate many non-linear, non-Gaussian systems.

In a statistical framework, an inventory of elementary probabilistic models of basic 
linguistic units (e.g., phonemes) is used to build word representations. A sequence 
of acoustic parameters, extracted from a spoken utterance, is seen as a realization 
of a concatenation of elementary processes described by hidden Markov models.

483
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A hidden Markov model is a composition of two stochastic processes, a hidden 
Markov chain, which accounts for temporal variability, and an observable process, 
which accounts for spectral variability. This combination has proven to be powerful 
enough to cope with the most important sources of speech ambiguity, and flexible 
enough to allow the realization of recognition systems with dictionaries of hundred 
of thousands of words.

Applications of the hidden Markov model are

in mobile robots, where

states =  location, observations =  sensor input 

in biological sequencing

states =  protein structure, observations =  amino acids

In biological sequencing the objective of the algorithm is: Given the structure of a 
protein, such as insulin, find the amino acids that make up that protein. There are 
20 amino acids.

in speech recognition

states =  phonemes, observations =  acoustic signal 

Given a speech signal, find the most probable sequence of words

words =  argmax-P (words—speech)

Two formal assumptions characterize hidden Markov models as used in speech recog
nition. The first-order Markov hypothesis states that history has no influence on 
the chain’s future evolution if the present is specified, and the output independence 
hypothesis states that neither chain evolution nor past observation influences the 
present oberservation if the last chain transition is specified.

In general, there are many different possible sequences

an ice cream 
and nice cream 
and nice scream

A statistical language model can be used to choose the most probable interpretation:

assign probabilities to all possible sequences of words

select most probable sequence from those proposed by the speech analyzer
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In the contemporary speech research community, the hidden Markov model is a 
dominant tool used to model a speech utterance. The utterance to be modeled may 
be a phone, a syllable, a word, or, in principle, an intact sentence or entire para
graph. In small vocabulary systems, the hidden Markov model tends to be used 
to model words, whereas in a large vocabulary conversational speech recognition 
system usually the hidden Markov model is usually used to model sub-word units 
such as phone or syllable. There are two major tasks involved in a typical automatic 
speech recognition system.

First, given a series of training obervations and their associated transcriptions, how 
do we estimate the parameters of the hidden Markov models which represent the 
words or phones covered in the transcriptions?

Second, given a set of trained hidden Markov models and an input speech observa
tion sequence, how do we find the maximum likelihood of this observation sequence 
and the corresponding set of hidden Markov models which produce this maximum 
value? This is the speech recognition problem.

We first introduce Markov chains and then, as an extension, hidden Markov pro
cesses.

17.2 Markov Chains
In this section we introduce Markov chains and give a number of examples.

First we introduce some definitions.

Definition. A (row) vector p  =  (ро»Рь • • • tPN-i) is called a probability vector if 
the components are nonnegative and their sum is 1, i.e.,

N-l
£  Pi =  1
j=0

Exam ple. The vector
P =  (1 /4 ,1 /8 ,0 ,5 /8 )

is a probability vector. ♦

Exam ple. The nonzero vector (2,3,5,0,1) is not a probability vector. However 
since all numbers are nonnegative it can be normalized to get a probability vector. 
Since the sum of the components is equal to 11 we obtain the probability vector

p  =  (2 /11,3/11,5/11,0,1/11). *

Definition. An N x N  square matrix A =  (a»,) is called a stochastic matrix if each 
of its rows is a probability vector, i.e. if each entry of A is nonnegative and the sum
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of the entries in each row is 1.

Example. The following matrix is a stochastic matrix

A =

[  0 1 0 0 \
1/2 1/6 1/3 0
0 1/3 0 2/3

V1/4 1/4 1/4 1 /4 /

We can easily prove that if A\ and A2 are stochastic N  x N  matrices, then the 
matrix product A\A2 is also a stochastic N x  N  matrix.

Example. Let

Then

(  0 M 2/3 \
Vl/2 1/2) ' U /4 3 / 4 ;

A i A * - (  1/4 2/3  ̂1 2  \7/24 17/24J '
If A\ is a stochastic N x N  matrix and A2 is a stochastic M x M  matrix, the A\ ® A2 
is a stochastic (NM)  x (NM)  matrix, where <8> denotes the Kronecker product.

Example. Let

Then

_  ( 1 /2  I / 2 )  ’
A2 /1 /3  2/3 \

V1/4 3 /4 /  •

f  0 0 1/3 2/3 \
0 0 1/4 3/4 

1/6 1/3 1/6 1/3
V1 /8  3 / 8  1 /8  3 / 8 /

Note that the direct sum of two stochastic matrices is also a stochastic matrix.

Definition. A stochastic matrix A  is called regular if all the entries of some power 
of A, An, are positive.

Example. The stochastic matrix

A -

is regular since

is positive in every entry.

Л2 =

( 0 Vl/2 1/2У
/1 /2  1/2 \ 
\1/4 3/4 ;
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Example. The stochastic matrix

is not regular since

Definition. A fixed point p* of a regular stochastic matrix A is defined as the 
solution of the equation

The vector p* can be written as p* =  (x,y,  1 — x  — y) with the constraints x €  [0,1] 
and у €  [0,1]. Then the solution to the fixed point equation pM =  p* is given by

The fundamental property of regular stochastic matrices is contained in the follow
ing theorem.

Theorem. Let A  be a regular stochastic matrix. Then

(i) A has a unique fixed probability vector p, and the components of q are all posi
tive.

(ii) the sequence of matrices A, A2, Л3, . . .  of powers of A approaches the matrix 
В  whose rows are each the fixed point p*.

(iii) if p is any probability vector, then the sequence of vectors pA, pA2, pA3, ... 
approaches the fixed point p*.

Next we consider Markov chains. We consider a sequence of trials whose outcome, 
say

o0, 0i, 02, •••, от- 1 
satisfy the following two properties:

(i) Each outcome belongs to a finite set of outcomes

called the state space of the system. If the outcome on the £-th trial is <&, then we 
say that the system is in state at time t or at the t-th step.

p M  =  p \

Example. Consider the regular stochastic matrix

p* =  (1 /5 ,2 /5 ,2 /5 ) .

{<7o, 9ii <72, i }
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(ii) The outcome of any trial depends at most upon the outcome of the immediately 
preceding trial and not upon any other previous outcomes; with each pair of states 
{QiiQj) there is given the probability that qj occurs immediately after g* occurs.

Such a stochastic process is called a finite Markov chain. The numbers ay, called 
the transition probabilities can be arranged in the square N  x N  matrix

' a00 a01 O-ON-l \

A  = а Ю an O -lN -l

\ O'N-lO 0>N-11 • • O -N -IN - 1 /
called the transition matrix. The transition matrix A of a Markov chain is a stochas
tic matrix.

Example. A typical example of a Markov chain is a random walk. Given the set 
(state space)

{0 , 1, 2, 3, 4 ,5 }
where 0 is the origin and 5 the end point. A woman is at any of these points. 
She takes a unit step to the right with probability p or to the left with probability 
q =  1 -  p, unless she is at the origin where she takes a step to the right to 1 or the 
point 5 where she takes a step to the left to 4. Let ot denote her position after t 
steps. This is a Markov chain with the state space given by the set above. Thus 2 
means that the woman is at the point 2. The transition matrix A  is

/ 0 1 0 0 0 ° \
я 0 V 0 0 0
0 Я 0 V 0 0
0 0 я 0 V 0
0 0 0 я 0 V

^0 0 0 0 1 0 )
Next we discuss the question: What is the probability, denoted by a§\ that the 
system changes from the state to the state qj in exactly t steps? Let A be the 
transition matrix of a Markov chain process. Then the t-step transition matrix is 
equal to the £-th power of A\ that is A® =  A1. The afj are the elements of the 
matrix A®.

Example. Consider again the random walk problem discussed above. Suppose the 
woman starts at the point 2. To find the probabihty distribution after three steps 
we do the following calculation. Since

p ®  =  ( 0 ,0 ,1 , 0 ,0 ,0 )

we find
pW =  р(°)л =  (0, q, 0, p, 0,0)
p(2) =  p (1)A =  (q2, 0,2 pq, 0, p2, 0)
p(3) =  p (2) A =  (0, q2 +  2pq2, 0,3p2q, 0, p3) .
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Thus the probability after three steps to be at the point 1 is q2+2pq2. If p =  q =  1/2 
we obtain p ^  =  1/2. Notice that

p<3Usp<°M3. *

Definition. A state q* of a Markov chain is called absorbing if the system remains 
in the state g* once it enters there. Thus a state qt is absorbing if and only if the 
г-th row of the transition matrix A has a 1 on the main diagonal and obviously zeros 
everywhere else in the row.

Example. Consider the transition matrix

( 1/4 0 1/4 1/4 l/4>
0 1 0 0 0

1/2 0 1/4 1/4 0
0 1 0 0 0

 ̂ 0 0 0 0 1 )

The states q\ and q4 are each absorbing (notice that we count from 0), since each of 
the second and fifth rows has a 1 on the main diagonal. A

The transition probabilities of a Markov chain can be represented by a diagram, 
called the transition diagram, where a positive probability a»,- is denoted by an 
arrow from the state to the state qj.

17.3 Discrete Hidden Markov Processes
The following notation is used.

N  is the number of states in the model.

M  is the total number of distinct observation symbols in the alphabet. If the obser
vations are continuous then M  is infinite. We only consider the case for M  finite.

T  is the length of the sequence of observations (training set), where

i = 0 , l , . . . ,T - l .

Thus there exist N7 possible state sequences.

Let
Clq {<7o, Qi,  - - - ,Q n - i }  

be the finite set of possible states. Let

V  :=  {v 0, V i,. .. ,v m -i}
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be the finite set of possible observation symbols.

qt is the random variable denoting the state at time t (state variable).

ot is the random variable denoting the observation at time t (output variable).

О =  (oo, 0 i,. . . ,  Ог- i )  is the sequence of actual observations.

The set of state transition probabilities is A  =  (a#), where i , j  =  0 ,1 , . . . ,  N  — 1

Oij =  p(Qt+ 1 = j\qt =  i)

where p is the state-transition probability, i.e. the probability of being in state j  
at time t +  1 given that we were in state i at time t. We assume that the Oj/s are 
independent of time t. Obviously we have the conditions

dij > 0  for itj  =  0 ,1 , . . . ,TV - 1

N - l
22 dij =  1 for г =  0 ,1 , . . . ,  N  — 1.
3=0

Thus A is an N  x TV matrix.

Example. If we have six states the transition matrix in speech recognition could 
look as follows

fo.3 0.5 0.2 0 0 0 ^
0 0.4 0.3 0.3 0 0
0 0 0.4 0.2 0.4 0
0 0 0 0.7 0.2 0.1
0 0 0 0 0.5 0.5

 ̂ 0 0 0 0 0 1.0 J
The conditional probability distribution of the observation at the £, ot, given the 
state j  is

bj{k) =  p(ot =  Vk\qt =  j )

where j  e  {0 ,1 , . . . ,  N  -  1} and к G {0 ,1 , . . . ,  M  -  1}, i.e. p is the probability of 
observing the symbol vk given that we are in state j .  Let В  :=  {  bj(k) }. We have

bj(k) >  0

for j  e  { 0 ,1 , . . . ,  N  — 1} and к € { 0 ,1 , . . . ,  M  -  1} and

M -1
E  bj(k) =  1 
fc=0

for j  =  0 ,1 , . . . ,  N -  1.
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The initial state distribution 7Г =  {  щ }

=  р(Яо =  i)

where i =  0 ,1 , . . . ,  N —1, i.e. щ is the probability of being in state i at the beginning 
of the experiment (t =  0).

Thus we arrive at the definition:

A hidden Markov model (HMM) is a five-tuple (Qg, V,A, B , 7r).

Let Л :=  (A , В , 7r) denote the parameters for a given hidden Markov model with 
fixed Clq and V.

The three problems for hidden Markov models are:

1) Given the observation sequence

О =  (<?o,oi,.. . , 0т-i)

and a model Л =  (A, B, 7r). Find P(0|A): the probability of the observations given 
the model.

2) Given the observation sequence

О =  (о0)оъ . . . , от-i )

and a model A =  (A,B,n) .  Find the most likely state sequence given the model 
and observations. In other words, given the model A =  (A, В , n) how do we choose 
a state sequence q =  (g0, Qi, • •., Ят-i )  so that P(0 ,  q|A), the joint probability of the 
observation sequence О =  (oq, Oi,. . . ,  От- i ) and the state sequence given the model 
is maximized.

3) Adjust A to maximize P (0 |A). In other words how do we adjust the hidden 
Markov model parameters A =  [A, В , 7r) so that P (0 |A) (or P (0 , v|A) is maximized.

Excimple. Consider the Urn-and-Ball model. We assume that there are N  urns 
(number of states) in a room. Within each urn is a number of coloured balls, for 
example

{ red, blue, green, yellow, white, black }  .
Thus the number M  of possible observations is 6. The physical process for obtaining 
observations is as follows. Randomly we choose an initial urn. From this urn, a ball 
is chosen at random, and its colour is recorded as the observation. The ball is then 
replaced in the urn from which is was selected. A new urn is then selected according 
to the random selection procedure associated with the current urn (thus there is a 
probability that the same urn is selected again), and the ball selection is repeated.
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This process generates a finite observation sequence of colour, which we would like 
to model as the observable output of a discrete hidden Markov model. For example

0  =  (blue, green, red, red, white, black, blue, yellow).

Thus the number of observation is T  =  8. It is obvious that the simplest hidden 
Markov model that corresponds to the urn-and-ball process is one in which each 
state corresponds to a specific urn, and for which a ball colour probability is defined 
for each state. The choice of urns is dictated by the state-transition matrix of the 
discrete hidden Markov model. The ball colours in each urn may be the same, and 
the distinction among various urns is in the way the collection of coloured balls is 
composed. Therefore, an isolated observation of a particular colour ball does not 
tell which urn it is drawn from. ♦

Example. We consider a discrete hidden Markov model representation of a coin
tossing experiment. Thus we have M  =  2. We assume that the number of states is 
N =  3 corresponding to three different coins. The probabilities are

state 0 state 1 state 2

P(Head) 0.5 0.75 0.25
P(Tail) 0 .5  0.25 0.75

We set Head = 0 and T ail = 1. Thus

b0(0) =  0.5, MO) =  0-75, b2(0) =  0.25

60(1) =  0.5, &i(l) =  0.25, 62(1) =  0.75.
Assume that all state-transition probabilities are 1/3 and assume the initial state 
probability of 1/3. Assume we observe the sequence (T  =  10)

О =  (Я, Я, Я, Я, Т, Я, Т, Т, Т, Т ) .

Since all state transitions are equiprobable, the most likely state sequence is the one 
for which the probability of each individual observation is a maximum. Thus for 
each Head, the most likely state is 1 and for each Tail the most likely state is 2. 
Consequently the most likely state sequence is

q =  (1 ,1 ,1 ,1 ,2 ,1 ,2 ,2 ,2 ,2 ).

The probability of О and q given the model is

/1 \ 10
P(0,q|A) =  (0.75)10( - j  .

Next we calculate the probability that the observation came completely from state
0, i.e.

q =  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ).
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Then
10/1 \ ш

P ( 0 ,  q|A) =  (0.50)“  ( - )  .

The ratio R  of P (0 , q|A) to P (0 , q|A) is given by

(i)"
Thus the state sequence q  is much more likely than the state sequence q. A

_ P(0,q|A) _
Я - Щ ) ' ы  ”  5 7 -6 7 -

17.4 Forward-Backward Algorithm
Given the model A =  (A,B,  7r). How do we calculate P(0|A), the probability of 
occurrence of the observation sequence

О — (o0,ou .. . , o t - i ) ?

The most straightforward way to find P(0|A) is to find P(0|q, A) for a fixed state 
sequence. Then we multiply it by P(q|A) and then sum up over all possible state 
sequences. We have

P(0|q,A) =  П Р ( 01|9(,А) 
t=0

where we have assumed statistical independence of observations. Thus we find 

P(0|q, A) =  bqo{o0)bqi(oi) . . .  1) *

The probability of such a state sequence q can be written as

Р (Ч | А )  =  'Jrq o a 'q o q ia q iq 2  • • • a Q T - 2 4 T - l  ’

The joint probability of О and q, i.e., the probability that О and q occur simulta
neously, is simply the product of the above two expressions, i.e.

m q | A )  =  P(C|q,A)P(q|A).

The probability of О (given the model) is obtained by summing this joint probability 
over all possible state sequences q. Thus

P (0\ \ )=  £P (0|q ,A )P (q|A ).
allq

Thus we find

P(0|A) — 2 2  7r<?0̂ 9o (0o )a 9ogi6qi (^ l )  • • • ачт-2ЧТ-\^Ят-l  ( ° T - l )  * 
qo,qi,-,4T-l

The interpretation of the computation is as follows. At time t =  0 we are in state 
<?o with probability 7rqo and generate the symbol oq (in this state) with probability
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bqo{o0). The time is incremented by 1 (i.e. t -  1) and we make a transition to 
state <71 from state qo with probability aqoqi and generate symbol 0\ with probability 
bqi(oi). This process continues in this manner until we make the last transition (at 
time T - l )  from state qr- 2 to state qr- 1 with probability аЧт_2Чт_1 and generate 
symbol with probability 69r i (or _i).

We see that the summand of this equation involves 2T — 1 multiplications and there 
exists NT distinct possible state sequences. Hence a direct computation of this 
equation will involve of the order of 2TNT multiplications. Even for small numbers, 
for example N  =  5 and T  =  100, this means approximately 1072 multiplications.

Fortunately a much more efficient technique exists to solve problem 1. It is called 
forward-backward procedure.

The forward procedure is as follows. Consider the forward variable cxt{i) defined as

ort(i) :=  P {O0Oi . . . o t)qt =  г|А)
where i =  0 ,1 , . . . ,  N — 1 . Thus orf(t) is the probability of the partial observation 
sequence up to time t and the state г at time £, given the model. It can be shown 
that at(i) can be computed as follows:

Initialization:
Q0(i) =  7Г ibi(o0)

where i =  0 , 1 , . . . ,  TV — 1 .

Recursion: For t =  0 ,1 ,.. . ,T  -  2 and j  =  0 ,1 , . . . ,  N  -  1 we have

(
N - l

Л  Qt{i 
t=0

where j  =  0 ,1 , . . . ,  N  -  1 and t =  0 ,1 , . . . ,  T  -  2.

Probability: We have

P (0| A )=  E a r ^ i ) .  
i=0

The initialization step involves N  multiplications. In the recursion step the summa
tion involves N  multiplications plus one for the out of bracket 6j(oi+i) term. This 
has to be done for j  =  0 to N  -  1 and t =  0 to T  -  2, making the total number 
of multiplications in step 2 as (N  -  1 )N{T  +  1). Step 3 involves no multiplications 
only summations. Thus the total number of multiplications is

N +  N{N +  l ) ( T - l )
i.e., of the order N2T  as compared to 2TI'F  required for the direct method. For 
N =  Ь and T  =  100 we need about 3000 computations for the forward method as 
compared to 1072 required by the direct method - a saving of about 69 orders of 
magnitude. The forward algorithm is implemented in the following Java program.



17.4. FORWARD-BACKWARD ALGORITHM 495

// Forward.java 

public class Forward 
{

public static void main(String[] args)

int T = 10; // Number of observations
int M = 2; // number of observation symbols
int N = 3; // Number of states

int[] obser = new int[T];
obser[0] = 0; obser[1] = 0; obser[2] = 0; obser[3] = 0; 
obser[4] = 1; obser [5] = 0; obser[6] = 1; obser[7] = 1; 
obser[8] = 1; obser[9] = 1;

double [] [] b = new double [N] [M] ;
b[0] [0] = 0.5; b[l] [0] = 0.75; b[2] [0] = 0.25;
bCO] [1] = 0.5; b[l][l] = 0.25; b [23 Cl] = 0.75;

double [] [] A = new double [N] [N] ;
A [0]  [0 ] = 1 . 0 / 3 . 0 ;  A [0 ]  [1 ]  = 1 . 0 / 3 . 0 ;  A [0] [2 ] = 1 . 0 / 3 . 0 ;
A Cl] [0 ] = 1 . 0 / 3 . 0 ;  А С1] Cl] = 1 . 0 / 3 . 0 ;  ACl] C2] = 1 . 0 / 3 . 0 ;
A[2] [0 ] = 1 . 0 / 3 . 0 ;  AC2H1] = 1 . 0 / 3 . 0 ;  AC2]C2] = 1 . 0 / 3 . 0 ;

double C] alphaold = new double[N]; 
double □  alphanew = new double[N];

// initialization 
int temp = obser [0];

fo r ( in t  i=0;i<N ;i++)
{ alphaold Ci] = (1.0/3.0)*bCi] Ctemp]; >

// iteration
fo r ( in t  t= 0 ;t<=T-2; t++)

temp = obser Ct+1]; 
for(int j=0;j<N;j++)

double sum = 0.0; 
for(int i=0;i<N;i++)
i sum += alphaold[i] *A[i] [j] ; > // end for loop i 
alphanew[j] = sum*bCj] Ctemp] ;
} // end for loop j
for(int k=0;k<N;k++) { alphaoldCk] = adphanew[k] ; >
} // end for loop t

// probability
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double P = 0.0;
forCint i=0;i<N;i++) < p += aiphaneH[ i ] ; >
System.out.printin("P = " + p) •
У // end main

>

In a similar manner we may define a backward variable ft ( i )  as

Pt(i) :=  P{ot+1ot+2 ■.. O r-itqt =  г|А) 
where г =  0 ,1 , . . .  N - l  Th
from t +  l to T  —' 1 тл t-u 1S e Pr°bability of the observation sequence
tbat А  (г) can b e 'c o m p ^ d t  £  *  the "  A- 11 ca"  be sh°™

Pr~\(i) =  1

have 1. For t =  T  -  2 ,T  -  1 , . . . ,  i ,  о and i =  0 ,1 , . . . ,  TV -  1 we
N - l

A  00 — Y l  a»i^ (°«+ i)A + i(i).
j = 0 

Thus

P ( 0 |A) -  Y  щЬ{(оо)/30( { ) .

^ o n s^ °H e ^ ^ b o th °th ^ ^  Ufing A W ^so involves of the order of N 2T  calcula- 
computation of P(0|A) ^  backward method are equally efficient for the

17.5 Viterbi Algorithm

sequence (q0 n8° П^  ^ “  a^ jithm to compute the optimal (most likely) state 
outputs In other wnrHc i1 Markov model given a sequence of observed

of occurrence of the o £ SUCh that the ргоЫЬШ1у

(°0, Oi, .. . , Op_1)

the Г апеГ than that from any other state sequence. Thuspro Diem is to find q  that will maximize P(0 ,  q| A).

estimation ^ o b lm a T p fn r ^ i Y.lt6rbl alSorithm as applied to the optimum state 
expression for P ( 0  q|A) ^  & ЮП Pr°blem will be useful. Consider the

m  q|A).  P (0|q, л )Р д а )  ,  ^
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We define

т - i  \
|nK o W ° o ) )  +  £  lnK , - , „ W ° i ) )  • 

t= 1 /

It follows that
P (0 , q|A) =  exp (-t/(g0, f t , , tfr-i)) •

Consequently the problem of optimal state estimation, namely

maxg,P (0 , go, f t , . . . ,  gr-i|A)

becomes equivalent to
mingt U(g0, f t , • • •, Ят-\) •

This reformulation now enables us to view terms like

-1п (а*дА Л ° ‘ ))

as the cost associated in going from state $  to state Qj at time t.

The Viterbi algorithm to find the optimum state sequence can now be described as 
follows: Suppose we are currently in state i and we are considering visiting state j  
next. We say that the weight on the path from state i to state j  is

- l n  (dijbjiot))

i.e., the negative of the logarithm of the probability of going from state i to state 
j  and selecting the observation symbol ot in state j .  Here ot is the observation 
symbol selected after visiting state j .  This is the same symbol that appears in the 
observation sequence

О  =  ( o o , f t ,  • • • ) & r - i)  ■

When the initial state is selected as state i the corresponding weight is

-  1п(тг*6»(о0)).

We call this the initial weight. We define the weight of a sequence of states as the 
sum of the weights on the adjacent states. This corresponds to multiplying the 
corresponding probabilities. Now finding the optimum sequence is merely a matter 
of finding the path (i.e. a sequence of states) of minimum weight through which the 
given observation sequence occurs.

17.6 Baum-Welch Algorithm
As described above the third problem in hidden Markov models deals with training 
the hidden Markov model such a way that if a observation sequence having many 
characteristics similar to the given one be encountered later it should be able to

^ ( t f o , f t ,  • • • ,<7r-i) - (
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identify it. There are two methods that can be used:

The Segmental К -means Algorithm : In this method the parameters of the 
model A =  (A , B, 7r) are adjusted to maximize P ( 0 , q|A), where q  here is the opti
mum sequence as given by the solution to the problem 2.

Baum-Welch Algorithm : Here parameters of the model A =  (Л, В, тг) are ad
justed so as to increase P(0|A) until a maximum value is reached. As described 
before calculating P(0|A) involves summing up P (0 , q|A) over all possible state 
sequences.

17.7 Distances between H M M s
If we want to compare two hidden Markov models then we need a measure for 
distance between two hidden Markov models. Such a measure is based on the 
Kullback-Leibler distance between two probability distribution function.

The Kullback-Leibler distance measure is given as follows: let p\(x) and p2(x) be 
two probability density functions (or probability mass functions) then the Kullback- 
Leibler distance measure can be used to find out how close the two probability dis
tributions are.

Definition. The Kullback-Leibler distance measure I(p\,p2) for determining how 
close the probability density function p2{x) is to pi(z) with respect to p\{x) is

/(P ., A )  : = £ / i M  In 

In case /?i (ж) and p2(x) are probability mass functions then

' “ - Р ' М Ч Ш ) '
Note that the Kullback-Leibler distance measure is not symmetric

H Pute) Ф I{p2,p\)
in general. If our objective is to simply compare p\ and p2 we can define a symmetric 
distance measure as

Л (л »Р г) :=  ^ (/(Р ь Р г) +  /(P2 ,P i )).

It is the use of the Kullback-Leibler distance measure which leads to the definition 
of the distance measure between two hidden Markov models. For hidden Markov 
models, the probability function is very complex, and practically it can be only 
computed via a recursive procedure - the forward/backward or upward/ downward 
algorithm ([90]). Thus there is no simple closed form expression for the Kullback- 
Leibler distance for these models. Commonly, the Monte-Carlo method is used to 
numerically approximate the integral given above.
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17.8 Application of HM M s

We look at some of the details of applying the HMM algorithms to speech recog
nition. These include selecting the size of unit to model and connecting models 
together to make words and phrases.

A Hidden Markov Model is a statistical model of a sequence of feature vector ob
servations. In building a recogniser with HMMs we need to decide what sequences 
will correspond to what models. In the very simplest case, each utterance could 
be assigned an HMM: for example, one HMM for each digit in a digit recognition 
task. To recognise an utterance, the probability metric according to each model is 
computed and the model with the best fit to the utterance is chosen. However, this 
approach is very inflexible and requires that new models be trained if new words 
are to be added to the recogniser. A more general approach is to assign some kind 
of sub-word unit to each model and construct word and phrase models from these.

The most obvious sub-word unit is the phoneme. If we assign each phoneme to 
an HMM we would need around 45 models for English; an additional model is also 
created for silence and background noise. Using this approach, a model for any word 
can be constructed by chaining together models for the component phonemes.

Each phoneme model will be made up of a number of states; the number of states 
per model is another design decision which needs to be made by the system designer. 
Each state in the model corresponds to some part of one input speech signal; we 
would like the feature vectors assigned to each state to be as uniform as possible 
so that the Gaussian model can be accurate. A very common approach is to use 
three states for each phoneme model; intuitively this corresponds to one state for 
the transition into the phoneme, one for the middle part and one for the transition 
out of the phoneme. Similarly the topology of the model must be decided. The 
three states might be linked in a chain where transitions are only allowed to higher 
numbered states or to themselves. Alternatively each state might be all linked to 
all others, the so called ergodic model. These two structures are common but many 
other combinations are clearly possible.

When phoneme based HMMs are being used, they must be concatenated to con
struct word or phrase HMMs. For example, an HMM for cat can be constructed 
from the phoneme HMMs for / к /  / а /  and / t / .  If each phoneme HMM has three 
states the cat HMM will have nine states. Some words have alternate pronuncia
tions and so their composite models will have a more complex structure to reflect 
these alternatives. An example might be a model for liv e s  which has two alterna
tives for the pronunciation of * i  *.

While phoneme based models can be used to construct word models for any word 
they do not take into account any contextual variation in phoneme production. One 
way around this is to use units larger than phonemes or to use context dependant
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models. The most common solution is to use triphone models where there is one 
distinct phoneme model for every different left and right phoneme context. Thus 
there are different models for the / a i /  in /к - a i - t /  and in /h - a i - t / .  Now, a 
word model is made up from the appropriate context dependant triphone models: 
’ ca t’ would be made up from the three models [ / s i l - k - a /  /к - a - t /  / a - t - s i l / ] .

While the use of triphones solves the problem of context sensitivity it presents 
another problem. With around 45 phonemes in English there are 453 =  91125 
possible triphone models to train (although not all of these occur in speech due to 
phonotactic constraints). The problem of not having enough data to effectively train 
these models becomes very important. One technique is state tying but another is 
to use only word internal triphones instead of the more general cross word triphones. 
Cross word triphones capture coarticulation effects accross word boundaries which 
can be very important for continuous speech production. A word internal triphone 
model uses triphones only for word internal triples and diphones for word final 
phonemes; cat would become:

[sil /к-а/ /к-a-t/ /а-t/ sil]

This will clearly be less accurate for continous speech modelling but the number of 
models required is smaller (none involve silence as a context) and so they can be 
more accurately trained on a given set of data.

There are many free parameters in an HMM, there are some tricks to reducing the 
number to allow better training. We discuss two of these: state tying and diagonal 
covariance matrices.

A single HMM contains a number of free parameters whose values must be deter
mined from training data. For a fully connected three state model there are nine 
transition probabilities plus the parameters (means and covariance matrices) of three 
Gaussian models. If we use 24 input parameters (12 Mel-frequency cepstral coeffi
cients plus 12 delta Mel-frequency cepstral coefficients) then the mean vector has 
24 free parameters and the covariance matrix has 242 =  576 free parameters making 
609 in all. Multiply this by 45 phoneme models and there are 27,405 free parame
ters to estimate from training data; using context sensitive models there are many 
more (around 2.5 billion). With this many free parameters, a very large amount of 
training data will be required to get reliable statistical estimates. In addition, it is 
unlikely that the training data will be distributed evenly so that some models in a 
triphone based recogniser will recieve only a small number of training tokens while 
others will recieve many.

One way of addressing this problem is to share states between triphone models. If 
the context sensitive triphone models consist of three states (for example) then we 
might assume that for all / i /  vowel models ( / i /  in all contexts) the middle state 
might be very similar and so can be shared between all models. Similarly, the initial
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state might be shared between all / i /  models preceeded by fricatives. Sharing states 
between models means that the Gaussian model associated with the state is trained 
on the data assigned to that state in both models: more data can be used to train 
each Gaussian making them more accurate. The limit of this kind of operation is 
to have all / i /  models share all states, in which case we have reduced the models 
to context insensitive models again. In practice, states are shared between a signif
icant number of models based on phonetic similarity of the preceding and following 
contexts.

The covariance matrix associated with each Gaussian inside each state measures 
both the amount of variance along each dimension in the parameter space and the 
amount of со-variance between parameters. In two dimensions this со-variance gives 
us the orientation and ’stretch’ of the ellipse shape. One simplification that can be 
made is to ignore the co-variance part of the matrix and only compute and use the 
individual dimension variances. In doing this we retain only the diagonal part of 
the co-variance matrix, setting all of the off-diagonal elements to zero. While this 
simplification does lose information it means a significant reduction in the number 
of parameters that need to be estimated. It is therefore used in some HMM imple
mentations.

Choosing to build phoneme or triphone based models means that to recognise words 
or phrases we must make composite HMMs from these subword building blocks. A 
model for the word cat can be made by joining together phoneme models for /к /  
/ а /  and / t / .  If each phoneme model has three states then this composite model 
has nine states but can be treated just like any other HMM for the purposes of 
matching against an input observation sequence.

To be able to recognise more than one word we need to construct models for each 
word. Rather than have many separate models it is better to construct a network 
of phoneme models and have paths through the network indicate the words that are 
recognised. The phonemes can be arranged in a tree, each leaf of the tree corre
sponds to a word in the lexicon.

An example lexical tree which links together phoneme models in a network such that 
alternate paths through the network represent different words in the lexicon. The 
tree of phoneme models ensures that any path through the network corresponds 
to a real word. Each open circle represents a single HMM which might consist 
of three states. Each solid circle corresponds to a word boundary. Cases of mul
tiple pronunciations (for fA’ ) and homonyms ( ‘ hart’ and ’ heart') can be seen 
in this network. If triphones models are being used this network would be expanded.

For connected word recognition this network can be extended to link words together 
into phrases such that the legal paths through the network correspond to phrases 
that we want to recognise. This begs the question of what phrases are to be allowed; 
the answer lies in what is called a language model who’s job is to define possible
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word sequences either via definite patterns such as grammar rules or via statistical 
models. The language model defines the shape of the network of HMMs; in any
thing but the simplest cases this network will be extremely complicated. While it 
is useful to think of a static, pre-constructed network being searched by the Viterbi 
algorithm, in a real recogniser the network is constructed as it is searched.

Assuming that we have designed our individual phoneme or triphone HMMs then 
the first step is to initialise the free parameters in the models. These parameters are 
the transition probabilities between states and the means and covariance matrices 
of the Gaussian models associated with each state. Our next step will be to begin 
supervised training where we will force align the models with speech samples and 
update the model parameters to better fit that segmentation. If we begin with a 
poor set of parameters (for example, by choosing random values for each parameter) 
the forced aligment will be unlikely to assign appropriate phonemes to each model 
and so the model will be unlikely to improve itself. HMM training can be thought 
of as a search for the lowest point on a hilly landscape; if we begin from a point 
close to the lowest point we may well find it but if we begin from a point close to 
a higher dip, we may get stuck there and be unable to see the better solution over 
the horizon. The standard way to initialise the Gaussian models in each state is 
to use a small amount of hand segmented data and align it to each model. In a 
three state model, each state might be given four vectors of a twelve vector input 
sequence corresponding to one token. In this way the Gaussians are initialised to 
approximate the distributions for each phoneme. Transition probabilities are less 
troublesome and are usually initialised to equal values.

This is the largest part of training the low level HMM parameters. The raw data are 
speech recordings for which word transcriptions are available. The supervised train
ing procedure looks at each utterance in turn, constructs an HMM corresponding to 
that utterance from the sub-word constituent models, recognises the utterance with 
the HMM and finally updates the statistical estimates needed for training. After all 
of the utterances have been treated in this way, the parameters of the constituent 
models are updated according to the statistics collected. This process is repeated 
until the changes to the HMM parameters on each iteration are very small.

17.9 C + +  Program
The C + +  program implements the hidden Markov model, where N  is the number 
of states (N  =  3 in main), M is the total number of distinct observations (only 
M  =  2 possible) and T  is the number of observations.

// hmmtl.cpp

#include <iostream>
#include <string>
#include <cmath> // for log
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using namespace std;

class Data { 
private:
double **transitions;
double **emissions;
double *pi_transitions;

public:
Data(int,int);

double get_transition(int i,int j)
{ return transitions [i] [j] ; }

double get_emission(int i,int j)
{ return emissions [i] [j] ; >

double get_pi_transition(int i)
{ return pi_transitions[i]; >

void set_transition(int i,int j,double v)
{ transitions [i] [j] = v; >

void set_emission(int i,int j,double v)
{ emissions[i][j] = v; >

void set_pi_transition(int i,double v)
{ pi_transitions[i] = v; >

>;

Data::Data(int n=0,int m=0)

transitions = new double*[n+1];
for(int i=0;i<n+l;i++) transitions[i] = new double[n+1]; 

emissions = new double*[n+1];
for(int i=0;i<n+l;i++) emissions[i] = new double [m+1]; 

pi_transitions = new double[n+1];
>

class HMM { 
private:

int N, M, T; 
string o;
double** alpha_table; 
double** beta_table; 
double* alpha_beta_table;
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double* xi_divisor;
Data* current;
Data* reestimated;

public:
HMM(int n,int m);

void error(const string s)
{ cerr «  "error: " «  s «  ’\п’; >

void init(int si,int s2,double value)
{ current->set_transition(sl,s2,value); >

void pi_init(int s,double value)
•( current->set_pi_transition(s, value) ; )■

void o_init(int s,const char c,double value)
{ current->set_emission(s,index(c),value); }

double a(int si,int s2)
i  return current->get_transition(sl,s2) ; > 

double b(int state,int pos)
{ return current->get_emission(state,index(o[pos-1])); > 

double Mint state,int pos,string o)
{ return current->get_emission(state,index(o[pos-l])); У 

double pi(int state)
{ return current->get_pi_transition(state); }

double alpha(const string s); 
double beta(const string s); 
double gamma(int t,int i); 
int index(const char c);
double viterbi(const string s,int *best_sequence);
double** construct_alpha_table();
double** construct_beta_table();
double* construct_alpha_beta_table();
double xi(int t,int i,int j);
void reestimate_pi();
void reestimate_a();
void reestimate_b();
double* construct_xi_divisor();
void maximize(string training.string test);
void forward_backward(string s);
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HMM::HMM(int n=0,int m=0)

N = n; M = m;
current = new Data(n,m);
reestimated = new Data(n,m);

>

double HMM::alpha(const string s)
{
string out; 
double P = 0.0; 
out = s;
int Tl = out. lengthO ;
double* previous_alpha = new double[N+l]; 
double* current_alpha = new double[N+l];

// Initialization:
for(int i=l;i<=N;i++) previous_alpha[i] = pi(i)*b(i,l,out)

// Induction: 
for(int t=l;t<Tl;t++) { 
for(int j=l;j<=N;j++) { 
double sum = 0.0; 
for(int i=l;i<=N;i++)
{ sum += previous_alpha[i]*a(i,j); } 
current_alpha[j] = sum*b(j,t+l,out);

>
for(int c=l;c<=N;c++)
previous_alpha[c] = current_alpha[c];

>

// Termination:
for(int i=l;i<=N;i++) P += previous_alpha[i] ; 
return P;

>

double HMM::beta(const string s)
{
double P = 0.0; 
о = s;
int T = o.lengthO;
double* next_beta = new double[N+l];
double* current_beta = new double[N+l];

// Initialization:
for(int i=l;i<=N;i++) next_beta[i] = 1.0;

// Induction:
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double sum;
forCint t=T-l;t>=l;t— ) { 
forCint i=l;i<=N;i++) { 
sum =0.0;
forCint j=l;j<=N;j++)
{ sum += aCi, j)*bCj ,t+l)*next_beta[j] ; > 
current_beta[i] = sum;

>
forCint c=l;c<=N;c++)
next_beta[c] = current_beta[c];

>

// Termination:
forCint i=l;i<=N;i++) P += next_beta[i]*piCi)*bCi,1); 
return P;

>

double HMM::gammaСint t,int i)
{
return Calpha_table[t][i]*beta_table[t][i])/Calpha_beta_table [t]) ;

>

int HMM::indexСconst char c) { 
switchCc) { 
case ’H’: return 0; 
case *T*: return 1;
default: errorC'no legal input symbol!"); 
return 0;
>

double HMM::viterbiCconst string s,int best_path[])

double P_star = 0.0; 
string о = s; 
int *help = new int; 
int T = o.lengthC);
double* previous_delta = new double[N+1]; 
double* current_delta = new double[N+1]; 
int** psi = new int*[T+1]; 
forCint i=0;i<=T;i++) psi[i] = new int[N+1];

// Initializitaion: 
forCint i=l;i<=N;i++)
{ previous_delta[i] = piCi)*bCi, 1); psi[l][i] = 0; >

double tmp, max;
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// Recursion: 
forCint t=2;t<=T;t++) < 
forCint j=l;j<=N;j++) { 
max = 0.0;
forCint i=l;i<=N;i++) {  
tmp = previous_delta[i]*aCi,j) ; 
if Ctmp >= max) { max = tmp; psi[t] [j] = i; >

>
current_delta[j] = max*bCj,t);

>
forCint c=l;c<=N;C++)
previous_delta[c] = current_delta[c];

>

// Termination: 
forCint i=l;i<=N;i++) {
if Cprevious_delta[i] >= P_star) {
P_star = previous_delta[i]; 
best_path[T] = i;

>
>

// Extract best sequence: 
forCint t=T-l;t>=l;t— )
best_path[t] = psi [t+1] [best_path[t+l]] ;

best_path[T+l] = -1; 
return P_star;

>

double** HMM::construct_alpha_tableC)

double** alpha_table = new double*[T+1];
forCint i=0;i<=T+l;i++) alpha_table[i] = new double[N+l];

// Initialization:
forCint i=l;i<=N;i++) alpha_table[1] [i] = piCi)*bCi,1);

// Induction: 
forCint t=l;t<T;t++) < 
forCint j=l;j<=N;j++) { 
double sxim = 0.0; 
forCint i=l;i<=N;i++)
•[ вгш += alpha_table[t] [i]*aCi,j); У 

alpha_table[t+l] [j] = sum*bCj ,t+l);
>

>
return alpha_table;
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>

double** HMM::construct_beta_table()

double **beta_table = new double* [T+1];
forCint i=0;i<=T+l;i++) beta_table[i] = new double [N+1];

// Initialization:
forCint i=l;i<=N;i++) beta_table[T][i] = 1.0;

double sum;

// Induction: 
forCint t=T-l;t>=l;t— ) { 
forCint i=l;i<=N;i++) { 
sum = 0.0;
forCint j=l;j<=N;j++)
{ sum += a(i, j)*bCj ,t+l)*beta_table [t+1] [j] ; > 
beta_table[t] [i] = sum;

>
>

// Termination: 
forCint i=l;i<=N;i++) 
beta_table[1] [i] = beta.table [1] [i]*piCi)*bCi,l) ;

return beta_table;
>

double* HMM::construct_alpha_beta_table С)

double* alpha_beta_table = new double[T+1];

forCint t=l;t<=T;t++) { 
alpha_beta_table[t] = 0; 
forCint i=l;i<=N;i++) { 
alpha_beta_table [t] += Calpha_table [t] [i] *beta_table [t] [i] ) ;

>
>
return alpha_beta_table;

>

double* HMM::construct_xi_divisorО
■С
xi_divisor = new double[T+1]; 
double sum_j;

forCint t=l;t<T;t++) {
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xi.divisor[t] = 0.0; 
forCint i=l;i<=N;i++) { 
sum_j = 0.0; 
forCint j=l;j<=N;j++) {
sum_j += Calpha_table[t] Ci]*aCi,j)*bCj,t+l) 

*beta_table [t+1] [j] ) ;
>
xi_divisor[t] += sum_j;

>
>
return xi_divisor;

>

double HMM::xiCint t,int i,int j)

return CCalpha_table[t][i]*aCi,j)*bCj,t+l) 
*beta_table[t+l] [j] )/Cxi_divisor [t])) ;

void HMM::reestimate_piC)

forCint i=l; i<=N; i++) { 
reestimated->set pi transitionCi,gammaCl,i));

>
>

void HMM::reestimate_aC)

double sum_xi, sum_gamma;

forCint i=l;i<=N;i++) { 
forCint j=l;j<=N;j++) {
sum_xi = 0.0; sum_gamma = 0.0; 
forCint t=l;t<T;t++) { sum_xi += xiCt,i,j); У 
forCint t=l;t<T;t++) { sum_gamma += gammaCt.i); } 
reestimated->set_transitionCi, j , Csum.xi/sum.gamma) )

>
>

>

void HMM::reestimate_bO
<
double sum_gamma, tmp_gamma; 
double sum_gamma_output; 
forCint j=l;j<=N;j++) { 
forCint k=0;k<M;k++) {.
sum_gamma - 0.0; sum_gamma_output = 0.0; 
forCint t=l;t<saT;t++) {
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tmp.gamma = gamma(t,j);
if (index(o[t-l] )==k) { sum_gamma_output += tmp_gamma; > 
sum_gamma += tmp_gamma;

>
reestimated->set_emission(j ,k, Сsum_gamma_output/sum.gamma)) ;

>
>

>

void HMM::forvard_backvard(string o)
{
T = o.length();
alpha_table = construct_alpha_table();
beta_table = construct_beta_table();
alpha_beta_table = construct_alpha_beta_table();
xi_divisor = construct_xi_divisor();
reestimate_pi();
reestimate_a();
reestimate_b();

// deletion
forCint t=l;t<=T;t++) deleted alpha_table[t] ; 
delete [] alpha_table;

forCint t=l;t<=T;t++) delete[] beta_table[t] ; 
delete [] beta_table; 
delete [] alpha_beta_table; 
delete [] xi_divisor;

Data* tmp_value = current; 
current = reestimated; 
reestimated = tmp_value;

>

void HMM::maximizeCstring o,string test)
{
double diff_entropy, old_cross_entropy, new_cross_entropy; 
int с = 1;
int t = test.length0;
old_cross_entropy = -CCloglOCalphaCtest))/loglOC2))/t); 
cout «  "Re-estimation:\n";
cout «  " initial cross_entropy: " «  old_cross_entropy «  "\n"; 

do {
forwaird_backwardCo) ;
new_cross_entropy = -CloglOCalpha(test))/loglOC2))/t; 
diff.entropy = Cold_cross_entropy - new_cross_entropy); 
old_cross_entropy = new_cross_entropy;



17.9. C + + PROGRAM

c++;
} while(diff_entropy > 0.0);

cout «  " No of iterations: " «  с «  "\n"; 
cout «  " resulting cross_entropy: "

«  old_cross_entropy «  "\n";
>

int main(void)

HMM hmm(3,2);
hmm.pi_init(1,0.33333333); 
hmm.pi.init(2,0.33333333); 
hmm.pi_init(3,0.33333333); 
hmm.init(1,1,0.33333333); 
hmm.init(1,2,0.33333333); 
hmm.init(1,3,0.33333333); 
hmm.init(2,1,0.33333333); 
hmm.init(2,2,0.33333333); 
hmm.init(2,3,0.33333333); 
hmm.init(3,1,0.33333333); 
hmm.init(3,2,0.33333333); 
hmm.init(3,3,0.33333333); 
hmm.o_init(l,’H’,0.5); 
hmm.o_init(2,’H’,0.75); 
hmm.o_init(3,’H*,0.25); 
hmm.o_init(l,*T*,0.5); 
hmm.o_init(2,*T*,0.25); 
hmm.o_init(3,’T’,0.75);

string training = "HTTHTTTHHTTHTTTHHTTHTTTHHTTHTTT"
«HHTTHTTTHHTTHTTTHHTTHTTTHh ГгНТТТН" 

string test = ИНТНТТНТНТТНТНТНТНТТННТНТНТТНТНТТННТ";

cout «  "\nlnput: " «  training «  "\n\n"; 
cout «  "Probability (forward) : "

«  hmm.alpha(training) «  "\n"; 
cout «  "Probability (backward): "

«  hmm.beta(training) «  "\n\n"; 
int *best_path = new int[256]; 
cout «  "Best-path-probability : "

«  hmm.viterbi(training,best_path) «  "\n\n";
cout «  "Best path: "; 
for(int t=l;best_path[t+1]!=-l;t++) 
cout «  best_path[t] «  ; 

cout «  best_path[t] «  "\n\n"; 
hmm.maximize(training,test); 
cout «  " Probability (forward) : "
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«  hmm.alpha(training) «  "\n"; 
cout «  " Best-path-probability : "

«  hmm.viterbi(training,best_path) «  "\n"; 
return 0 ;

>



Chapter 18 

Fuzzy Sets and Fuzzy Logic

18.1 Introduction
A classical set (also called crisp set) is defined as a collection of elements or objects 
x  e  X  which can be finite, countable, or overcountable. Each single element can 
either belong to or not belong to a set А, А С X . In the former case, the statement 
x belongs to A is true, whereas in the latter case this statement is false. Such a 
classical set can be described in different ways: one can either enumerate (list) the 
elements that belong to the set; describe the analytically, for instance, by stating 
conditions for membership; or define the member elements by using the character
istic function, in which 1 indicates membership or 0 nonmembership.

Exam ple. The set
N0 := { 0 ,  1,2, 3 , . . . }

is the set of all non-negative integers. The set is countable. The set of all integers Z 
is als countable, because it can be mapped 1-1 into No via 0 «-► 0, 1 *-* 1, — 1 <-» 2, 
2 «-» 3, — 2 *-* 4 etc. ♦

Exam ple. The set

A  :=  {  x : ж is a letter in the english alphabet, a; is a vowel }

is given by
A =  {  a, e, i, о, и }  .

The set is finite. ♦

Exam ple. The set of all real numbers is denoted by R. This set is overcountable. 
*
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Both C ++ using the STL with the class set and Java with the class TreeSet allow 
set-theoretical operations. We can find the union, intersection and difference of two 
finite sets. We can also get the cardinality of the finite set (i.e. the number of 
elements). Furthermore, we can find out whether a finite set is a subset of another 
finite set and whether a finite set contains a certain element.

In C ++ the class set is a sorted associative container that stores objects of type 
Key. The class set is a simple associative container, meaning that its value type, 
as well as its key type, is key. It is also a unique associative container meaning that 
no two elements are the same. The class set is suited for the set algorithms

includes
set_union
set_intersection
set.difference,
set_symmetric_difference

The reason for this is twofold. First, the set algorithms require their arguments to 
be sorted ranges, and, since the class set is a sorted associative container, their 
elements are always sorted in ascending order. Second, the output range of these 
algorithms is always sorted, and inserting a sorted range into a set is a fast opera
tion. The class set has the important property that inserting a new element into a 
set does not invalidate iterators that point to existing elements. Erasing an element 
from a set also does not invalidate any iterator, except of course, for iterators that 
actually point to the element that is being erased.

The following program shows an application of this class.

// setsstl.cpp

#include <iostream>
#include <set>
#include <algorithm>
#include <string>
#include <iterator> 
using namespace std;

int main(void)

const int M = 4; 
const int N = 3;
const string a[M] = { "Jones", "Miller", "Steeb", "Smith" >; 
const string b[N] = ■{ "Hardy", "Copper", "Steeb" >; 
set<string> sl(a,a+M); 
set<string> s2(b,b+N); 
set<string> s3;
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cout «  "union of the sets si and s2: " «  endl; 
set_union(sl.begin(),sl.end(),s2.begin(),s2.end(), 

ostream_iterator<string>(cout," ")); 
cout «  endl «  endl;

cout «  "intersection of the set si and s2: " «  endl; 
set_intersection(si.begin(),sl.end(),s2.begin(),s2.end(), 

ostream_iterator<string>(cout," ")); 
cout «  endl «  endl;

cout «  "difference of the sets si and s2: " «  endl; 
set.difference(si.begin(),sl.end(),s2.begin(),s2.end(), 

inserter(s3,s3.begin())); 
copy(s3.begin(),s3.end(),ostream_iterator<string>(cout," ")) ; 
cout «  endl «  endl;

// s2 subset of si ?
bool ss = includes(si.begin(),sl.end(),s2.begin(),s2.end()); 
cout «  "s2 subset of si ? " «  ss «  endl;

// s4 subset of s2 ?
const string c[l] = { "Hardy" >;
set<string> s4(c,c+l);
ss = includes(s2.begin(),s2.end(),s4.begin(),s4.end()) ; 
cout «  "s4 subset of s2 ? " «  ss «  endl;

// size of set (number of elements)
cout «  "si has " «  sl.sizeO «  " elements " «  endl;

// is set s2 empty?
bool empty = s2.empty();
cout «  "empty = " «  empty «  endl;

return 0;
>

In Java the interface Set is a Collection that cannot contain duplicates elements. 
The interface Set models the mathematical set abstraction. The Set interface 
extends Collection and contains no methods other than those inherited from 
Collection. It adds the restriction that duplicate elements are prohibited. The 
JDK contains two general-purpose Set implementations. The class HashSet stores 
its elements in a hash table. The class TreeSet stores its elements in a red-black 
tree. This guarantees the order of iteration.

The following Java program shows an application of the TreeSet class.

// SetOperation.java
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import java.util.*; 

public class SetOperation

public static void main(String [] args)
{
String[] A = { "Steeb", "C++", "80.00" >; 
String[] В = { "Solms", "Java", "80.00" >;

TreeSet SI = new TreeSetO;
for(int i=0;i<A.length;i++) SI.add(A[i]);
System, out .printlnC'Sl = " + SI);
TreeSet S2 = new TreeSetO;
for(int i=0;i<B.length;i++) S2.add(B[i]);
System, out .println(11S2 = " + S2) ;

// union
TreeSet S3 = new TreeSet(SI); 
boolean bl = S3.addAll(S2);
System.out.println("S3 = " + S3);
System, out .printlnC'Sl = " + SI);

// intersection 
TreeSet S4 = new TreeSet(SI); 
boolean b2 = S4.retainAll(S2); 
System.out.println("S4 = " + S4);
System, out.printlnCS2 = " + S2);

// (asymmetric) set difference 
TreeSet S5 = new TreeSet(SI); 
boolean b3 = S5.removeAll(S2);
System, out.printlnCS5 = " + S5) ;

// test for subset
TreeSet S6 = new TreeSet(SI);
boolean b4 = S6.containsAll(S2);
System.out.println("b4 = " + b4);

// is element of set (contains) 
boolean b = Sl.contains("80.00");
System.out .printlnCb = " + b); 
b = S2.contains("Steeb");
System.out.printlnCb = " + b) ;
>

>

The output is

SI = [80.00, C++, Steeb]
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52 = [80.00, Java, Solms]
53 = [80.00, C++, Java, Solms, Steeb]
51 = [80.00, C++, Steeb]
54 = [80.00]
52 = [80.00, Java, Solms]
55 = [C++, Steeb] 
b4 = false
b = true 
b = true

In fuzzy logic (Yager and Zadeh [121], Bojadziev [9], Bandemer [4], Ross [93], 
Zimmermann[123]) the notion of binary membership is extended to accommodate 
various degrees of membership on the real continuous interval [0,1], where the end
points of 0 and 1 conform to no membership and full membership, respectively, 
just as the indicator function does for crisp sets, but where the infinite number of 
values in between the endpoints can represent various degrees of membership for 
an element x in some set on the universe X . The sets on the universe X  that can 
accommodate degrees of membership are termed as fuzzy sets. For a fuzzy set, the 
characteristic function allows various degrees of membership for the elements of a 
given set. The universe of discourse is the universe of all available information on 
a given problem. Once the universe is defined we are able to define certain events 
on this information space. We describe sets as mathematical abstractions of these 
events and of the universe itself.

Fuzzy logic and fuzzy sets are powerful mathematical tools for modelling: uncertain 
systems in industry, nature, and humanity; and facilitators for common-sense rea
soning in decision making in the absence of complete and precise information. Fuzzy 
logic and fuzzy sets find applications in control theory, signal processing, robotics, 
intelligent process control, expert systems, image processing, decision making, pat
tern recognition, cluster analysis, and a variety of learning methods, such as neural 
networks, genetic algorithms, and inductive reasoning.

Let us first give an example where fuzzy sets can be applied.

Exam ple. If we talk about hot and cold we might classify all temperatures above 
25°C as hot and all temperatures equal to or below 25°C as cold. This would give 
us a crisp binary set where any temperature would be classified as either hot or 
cold. Alternatively we might want to specify a degree of hotness/coldness by the 
following mapping

T < 0  °c -► very cold
0 °C < T < 18 °C — > moderately cold
18°C < T < 25°C —► just right
25°C < T < Ж С — > moderately hot

T > 30 ° c — > very hot
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Here we map temperatures on a crisp quintary set.

Definition. A fuzzy set, F, on a collection of objects, X , is a mapping

fi f (x)  : X  -> [0, Of].

Here Цр(х) indicates the extent to which x has the attribute F. Hence Др(ж) is called 
the membership function. The most common types of fuzzy sets are normalized fuzzy 
sets, F, for which

a  =  sup Hp{x) =  1. 
xex

A nonempty fuzzy set A  can always be normalized by dividing fi^(x) by supx fi^(x).

In this case the result of the mapping, fifi(x), can be interpreted as a degree of mem
bership or as a level of confidence in the truth or compatibility of the statement.

An alternative definition of a fuzzy set can be given.

Definition. If X  is a collection of objects denoted generically by x  then a fuzzy set 
A in X  is a set of ordered pairs

A : =  { ( х , Ц д { х ) ) \ х е Х } .

The function /x j is called the membership function or grade of membership (also 
called degree of compatibility or degree of truth) of x  in A  which maps X  to the 
membership space M. When M  contains only two points 0 and 1, A  is nonfuzzy 
and /x^(x) is identical to the characteristic function of a nonfuzzy (crisp) set. The 
range of the membership function is a subset of the nonnegative real numbers whose 
supremum is finite. Elements with a zero degree of membership are normally not 
listed.

Thus we consider ordinary sets as special cases of fuzzy sets, viz. those with only 0 
and 1 as membership degrees.

Definition. Two fuzzy sets A  and В are equal if they have the same membership 
functions

A =  В •<=> Мд(я) =  /*§(*) f°r all x  e  X .
Exam ple. Employees of a company might need a minimum of 16MB RAM to run 
the CAD package used by the company and should preferably have 64MB to run 
it efficiently. The degree of cost efficiency of a computer may be described by the 
following fuzzy set

Ё  =  {  (4,0), (8,0), (16,0.2), (32,0.5), (64,1), (128,0.8), (256,0.5), (512,0.2) }  .
Exam ple. A vehicle should be kept close to the desired travelling speed. The 
degree of closeness is modeled by the following continuous membership function
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where d is the desired travelling speed. A fuzzy set of speeds can be denoted by

S = { ( x ,  ц {3)(х )) I x  € [0,200] }  .

Example. The fuzzy set A  “real numbers close to 3” could be modelled by the 
membership function

fj.A(x) =  exp(—2|z -  3|).

Exam ple. The fuzzy set A  “integers close to 15” can be expressed by the finite 
fuzzy set

A =  {  (12,0.2), (13,0.5), (14,0.8), (15,1.0), (16,0.8), (17,0.5), (18,0.2) } .

The fuzzy set consists of 7 ordered pairs. Thus the membership function takes 
the following values on [0,1]

12) =  0.2, Мя(13) =  0.5, /^ (14) =  0.8, /хя (15) =  1.0,

/^ (16) =  0.8, мя(17) =  °-5> ^ (1 8 )  =  0.2.
In many cases the membership function is a trapezoidal function. A C ++  imple
mentation is as follows. We assume that a < b < с < d.

// trapez.cpp

#include <iostream> 
using namespace std;

double trapez(double a,double b,double c,double d,double x)

if((x >= b) kk (x <= c)) return 1.0; 
if((x > a) kk (x < b)) return (x-a)/(b-a); 
if((x > c) kk (x < d)) return (d-x)/(d-c); 
else return 0.0;

>

int main(void)

double a = 1.0, b ■ 2.0, с * 5.3, d = 7.3; 
double x = 6.1;
double result = trapez(a,b,c,d,x);
cout «  "x = " «  x «  " " «  "result = " «  result;
cout «  endl;
x = 4.1;
result = trapez(a,b,c,d,x);
cout «  "x = " «  x «  " " «  "result = " «  result; 
cout «  endl; 
return 0;

>
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Definition. A fuzzy set A can be contained within another fuzzy set В and we 
write

А С В iff дд-(я) <  Mg(s) for all x  € X .

A is strictly contained in А С В, iff fi^(x) <  /ig(x) for all x  £ X .

Example. The fuzzy set

A =  {  (0.1,0.2), (0.2,0.4), (0.3,0.7), (0.4,1.0), (0.5,0.2), (0.6,0.1) }

is contained within В

В  =  {  (0.1,0.3), (0.2,0.4), (0.3,1.0), (0.4,1.0), (0.5,0.6), (0.6,0.2) }  .

Both, A and В are normalized fuzzy sets.

Definition. The support for a fuzzy set, F, 5 (F ), is the crisp set of all x  £ X  such 
that Цр(х) >  0.

Definition. The а -level set is the crisp set of elements that belong to the fuzzy set 
F  with degree of membership equal to or greater than a

Fa :=  { x  e  X  \ up >  a }  .

Example. In the first example the support for the set E is given by {16, 32, 64, 
128, 256, 512 }  and the 0.5-level set is given by

Fo.s =  {  32, 64, 128, 256 }  .

Definition. A fuzzy set F  is convex if its membership function, цр(х),  is convex,
i.e. if

Hp{\xi +  (1 -  A)z2) > min{/x^(a;i), /х? (z2)} ,  ®i, x 2 € X , A £ [0,1]. 

Alternatively, a fuzzy set is convex if all а -level sets are convex.

A special property of two convex fuzzy sets, say A and B, is that the intersection 
of these two fuzzy sets is also a convex fuzzy set.

Definition. The crossover points of a membership function are defined as the ele
ments in the universe for which a particular fuzzy set A  has the values equal to 0.5,
i.e., for which =  0.5.

Definition. For a finite fuzzy set A the cardinality \A\ is defined as

И1 :=  £  А*я(х) •
xex
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The quantity

is called the relative cardinality. Obviously the relative cardinality of a fuzzy set 
depends on the cardinality of the universe X . Thus we have to choose the same 
universe if we want to compare fuzzy sets by their relative cardinality.

Exam ple. Consider the fuzzy set

A  =  {  (1,0.2), (2,0.5), (3,0.8), (4,1.0), (5,0.7), (6,0.3) }  .

Then
\A\ =  0.2 +  0.5 +  0.8 +  1.0 +  0.7 +  0.3 =  3.5.

Its relative cardinality is

w i  =  f .

The relative cardinality can be interpreted as the fraction of elements of X  being in 
A , weighted by their degrees of membership in A.

18.2 Operators for Fuzzy Sets

18.2.1 Logical Operators
In this section we give the basic definitions for operations on fuzzy sets. The mem
bership function is obviously the crucial component of a fuzzy set. It is therefore not 
surprising that operations with fuzzy sets are defined via their membership func
tions. They constitute a consistent framework for the theory of fuzzy sets. They 
are, however, not the only possible way to extend classical set theory consistently. 
The main operations of fuzzy sets are:

the intersection of fuzzy sets

the union o f fuzzy sets

the complement o f fuzzy sets.

Definition. The membership function №q (x) of the intersection

С  =  АП В

satisfies for each x £ X

ц5 (х) =  m in{^ (a ;),//g (a ;)}.

Definition. The membership function iig{x) of the union

C  =  A U B
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satisfies for each x  € X

цб (х) =  т ах{цх ( х ) , ^ ( х ) } .

Definition. The membership function tigix) of the complement

С  <£ A

satisfies for each x  € X

M cM  =  ^ л ( Х) =  1 -  Мд(я) •

These are extensions of the intersection, union, and complement for classical sets. 
In the C + +  program we implement the intersection of fuzzy sets. We pass the 
membership function f l ( )  and f  2 () to the function min() to find the intersection

// fuzzmin.cpp 

#include <iostream>
#include <cmath> // for exp(), fabs()
using namespace std;

double fl(double x) { return exp(-fabs(x-3.0)); >

double f2(double x) { return exp(-fabs(x-4.0)) ; }

double min(double (*fl)(double).double (*f2)(double),double x)

if(fl(x) >= f2(x)) return f2(x); 
else return fl(x);

>

int main(void)
{

double x = 3.5;
double result = min(f1,f2,x);
cout «  "x = " «  x «  " " «  "result = " «  result «  endl; 
x = 3.0;
result = min(fl,f2,x);
cout «  "x = " «  x «  " " «  "result = " «  result «  endl; 
x = 5.0;
result = min(f1,f2 ,x);
cout «  "x = " «  x «  " 11 «  "result = " «  result «  endl; 
return 0;

>

Exam ple. Let Ё  be the fuzzy set of efficient PCs discussed above and let В  be the 
fuzzy set of powerful PCs

P  =  {(4 ,0), (8,0), (16,0.2), (32,0.3), (64,0.4), (128,0.5), (256,0.8), (512,1.0)} .
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А =  Ё П Р
=  {(4 ,0), (8,0), (16,0.2), (32,0.3), (64,0.4), (128,0.5), (256,0.5), (512,0.2)} 

while the union operation yields 

0  =  E\JP
=  {(4 ,0 ), (8,0), (16,0.2), (32,0.5), (64,1), (128,0.8), (256,0.8), (512,1.0)} . 

The fuzzy set of PCs which are NOT powerful is given by 

N =  £  P
=  {(4 ,1), (8,1), (16,0.8), (32,0.7), (64,0.6), (128,0.5), (256,0.2), (512,0)} . *

Exam ple. Assume that the statement “The weather in Johannesburg is hot” is 
given a confidence level represented by the following membership function

=  1 +  exp(—(T — 24)/2) 

and that the pleasant temperature range is given by

Thus for the logical AND we have “It is hot AND pleasant” , and for the logical OR 
we have “It is hot OR pleasant” . «fr

Consider the fuzzy sets A, B, and C.  We have the following properties

АП A =  A idempotence

A U A =  A  idempotence 

А П В  =  В П A commutativity 

A U В  =  В  U A  commutativity 

(А П В) П С  =  А  П (В П C) associativity 

(A U B) U С  =  A U (B U C) associativity 

А  П {B U С) =  (А П B)  U (А П C) distributive 
Л и (5 П С )  =  (Л и 5 )П ( 1 и С )  distributivity

A =  A  double complement 

A n В =  A U В DeMorgan’s law
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A  U В =  А  П В DeMorgan’s law 

These properties have the same structure as those for classical sets.

Let 0 be the empty fuzzy set. Then we have the rules

A П ( Х  x [0,1]) =  A  identity

A  U 0 =  A  identity 

А П 0 =  0 identity 

i?U (X  x [0,1]) =  X  x  [0,1] identity

18.2.2 Algebraic Operators
Besides the basic operations on fuzzy sets given above, namely intersection, union 
and complement we can define a large number of other algebraic operations which 
we now summarize.

Definition. The algebraic sum, С  =  A +  B, of two fuzzy sets with membership 
functions and /zg is a fuzzy set with membership function

Va+b (x) =  М дМ  +  -  М д М М в М . x e X -

We write
С  =  А +  В =  { ( х , цх+ё ( х ) ) \ х е Х } .

Definition. The algebraic product, С  =  A ■ B, of two fuzzy sets with membership 
function and /zg is a fuzzy set with membership function

Pa-в =  Ра (х)Рв (х )> x e X .

We write
б  =  {(®,Мл.в(*)) \x ^ x ) ‘

Definition. The bounded sum, С  =  A ® 5 , of two fuzzy sets with membership 
function Дд and jzg is a fuzzy set with membership function

^л®в s  min{ Мл(х) +  MgW } ■
We write

6 ={(*,M a© 5( * ) ) \ x e x } .
Definition. The bounded difference, С  =  A Q B ,  of two fuzzy sets with membership 
function /2д and /xg is a fuzzy set with membership function

/*Яев =  max{ 0, 4jfa)  +  ^ в(г ) _  1 )  '

We write
c =  { ( s ,M ie s ( s ) ) | s e X } .
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The Cartesian product of fuzzy sets is defined as follows.

Definition. Let A\t . . . ,  An be fuzzy sets in X\, . . . ,  X n. The Cartesian product is 
then a fuzzy set in the product space X\ x . . .  x X n with a membership function

v.А г Х . . . х А п ( Х )  =  m/n { (J>Z.(Xi) \x =  {XUX2, . • . , 3 „ ) ,  X{ <E X { } .

Definition. The mth power of a fuzzy set A is a fuzzy set with the membership 
function

VaM  =  x E X .
The Fuzzy AND and Fuzzy OR operators combine the logical AND and OR opera
tors with the arithmetic norm.

Definition. The fuzzy AND of two fuzzy sets A and В  is defined as

С  =  АЙВ

with membership function

M cM  =  Рапв =  7т1п{мд(а:),мв(г)} +  i ( l  -  тНДдС1) +  MgW)

where 7  can be varied between 0 and 1 in order to weight the logical AND against 
the arithmetic mean. For 7 = 1  the fuzzy AND reduces to the logical AND and for 
7  =  0 the fuzzy AND operator reduces to the arithmetic mean.

Definition. The fuzzy OR of two fuzzy sets A and В  is defined as

<5 =  AuB

with membership function 

^ c(x ) =  Мдпв =  A*g(*)} +  ~  7 +  MgW). 7 ^ [0,1].

18.2.3 Defuzzification Operators
In many practical applications we would like to obtain a crisp decision from our 
fuzzy analysis of the problem. For example, in a problem where a company uses 
fuzzy logic to decide on one of many marketing companies the result of the fuzzy 
analysis should be exactly one company. Similarly, in a control problem (e.g. the 
classic pole-balancing problem) we would like a crisp decision for the force which 
should be applied to the cart. The following operators are commonly used to extract 
a crisp decision from a fuzzy set.

Definition. The maximum grade operator returns that support value which has the 
maximum grade (degree of truth). If there is no unique support value corresponding
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to the maximum grade then it returns any one of these.

Definition. The minimum grade operator returns that support value which has the 
minimum grade. If there is no unique support value corresponding to the minimum 
grade then it returns any one of these.

In many cases a small variation in the membership function can cause a very big 
variation in the decision (conclusion). For example, if we have a non-convex fuzzy 
set, then a small variation might change the decision from the one maximum to the 
other. This can be problematic, especially in the case of control problems where it 
can be a major cause of instability. Hence, for control problems one often uses the 
centroid of the fuzzy set for the crisp control strategy.

Definition. The centroid с (or centre of mass) of a fuzzy set, F  with membership 
function /х^(ж), x  € X  is defined by

E x ex s  -M pM  
£ * gx M x )

in the case of a discrete membership function and by

c .=  Ix€ X X ' P f (z )

fx€X

in the case where /i^(x ) is continuous.

For some applications it can be useful to obtain a crisp set from a fuzzy set. For 
example, when trading with stocks, one might want to use fuzzy logic inference to 
decide which stocks should be sold.

Definition. The а -cut operator returns a crisp set with a grade of 0 for support 
values with grade less than a and 1 for support values which have a grade larger 
than or equal to a.

Definition. The (3-cut operator returns the crisp set with grade 1 for the /? support 
values which have the highest grade and 0 for the remaining support values.

Exam ple. Consider the fuzzy set

F  =  {(1,0.85), (2,0.7), (3,0.1), (4,0.44), (5,0.87), (6,0.2), (7 ,0 .19)} .

The maximum grade is 5, the minimum grade is 3, the centroid is 3.34 ^  3, the 
a-cut with a  =  0.7 returns the crisp set

{  (1,1), (2,0), (3,0), (4,0), (5,1), (6,0), (7,0) }

and the /5-cut with /3 =  3 returns the crisp set

{(1 ,1 ), (2,1), (3,0), (4,0), (5,1), (6,0), (7,0) }.
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There are a number of other defuzzification operators described in the literature, 
for example the weighted average method (only applies to symmetrical membership 
functions), the centre of sums, centre of largest area and first (or last) maxima. For 
details and examples we refer to the literature (Ross [93]).

18.2.4 Fuzzy Concepts as Fuzzy Sets
It is often convenient to have implemented fuzzy concepts like large, small, near, 
greater than and less than as fuzzy sets on a given universe. For example, the profit 
made on a product might, for arguments sake, be between 0% and 100%. We would 
like to implement the concept large as a fuzzy set. A simple way of doing this is 
to assume that the fuzzy set has points on a straight line with grade 1 for 100% 
profit and grade 0 for 0% profit. Similarly, we could define the concept, small, as 
a fuzzy set with a straight line as the membership function which gives grade 1 for 
0% profit and grade 0 for 100% profit.

D efinition. The concept small is represented by a fuzzy set, S  with membership 
function

X Xjnax 
Xmin Xmax

and the concept large is represented by a fuzzy set L with membership function

Another useful concept is near. For example, the profit on a certain product might 
be near 40%. We choose to implement near, as a fuzzy set whose membership func
tion is given by a normal distribution with width 10% of the size of the universe.

Definition. Consider a universe, X . The concept, nearp, withp € X  is represented 
by a fuzzy set, N, with membership function

1 М * - р П  
^ x) =  7 ^ e x p V ^ ~ J

where the variance, cr, is chosen by default as a  =  0.1 (Xmax — imin)- If cr —» 0, then 
we find the crisp is equal to the Dirac-Delta function.

Gaussian membership functions are also used in fuzzy pattern recognition. Suppose 
we have a one-dimensional universe on the real line, i.e., X  =  R. Consider two 
fuzzy sets A and В  having normal Gaussian membership functions

^ ( i )  =  exp a) )  . MgM =  exP (  b) )  •

An inner product can be defined (Ross [93]) yielding

■s = exp (ётЗ)= =M5(Io)
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where
uab +  aba

x0 : = ------ ------- .
a a +  аъ

If the two fuzzy sets are identical, then the inner product equals one.

Finally we define the fuzzy concepts greater than and less than For example, the 
profit on a certain product might be greater than 20%. We use a Fermi-Dirac dis
tribution whose transition is at 40% to represent this fuzzy concept.

Definition. Consider a universe, X . The concept, greater than p , with p G X  is 
represented by a fuzzy set, G, with membership function

Hg{x) =  1 +  exp (  ^

where the slope Л is chosen by default as Л =  0.1(жтоя — xmin). Note that for A —» oo 
we recover the crisp greater than which is the step function

( v. [ 1 for all ж >  p
W l * - 400 -  j o  for allx <  p

18.2.5 Hedging
A linguistic hedge or a modifier is an operation which modifies the meaning of a 
term. Concentration and dilation hedges are frequently used in fuzzy inference. 
Typical linguistic terms for concentrators are extremely, very. This shifts the em
phasis towards larger support values, i.e. they increase the restrictiveness of the 
fuzzy set.

Definition. A linguistic hedge is an operation that modifies the meaning of a term 
or, more generally, of a fuzzy set. If A is a fuzzy set then the modifier m  generates 
the (composite) term В  =  m(A).

Mathematical models frequently used for modifiers are

concentration МС0Пд(я) =  (мя(®))2

dilation MditfW =  (м я М )'/2 •
For example, assume we choose the following membership function for the fuzzy set, 
Я , corresponding to the linguistic term the weather is hot

^яСП =  ^ .  r e  [0 :40].

The grade of membership (degree of truth) given to various temperatures is given 
in the following table
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T 0 5 10 15 20 25 30 35 40
m m 0 0.125 0.25 0.375 0.5 0.625 0.75 0.825 1

This membership function will give a support of 0.5 to a temperature of 20°C, 0.75 
to 30°C and 0.825 to 35°C. The set of very hot temperatures should give only higher 
temperatures significant support. The membership function fo^the fuzzy set very 
hot, veryH y can be obtained from the membership function of H  by using a hedge

/ w  m  =  № ) ) 2

The grade of membership for very hot is given in the following table

T 0 5 10 15 20 25 30 35 40
^very н (^) 0 0.016 0.063 0.141 0.25 0.391 0.563 0.681 1

Only the temperatures 35° and 40°C have a 0.6-level support for very hot while 25°, 
30°, 35° and 40°C all have a 0.6-level support for hot. The hedging thus restricts 
(or compressed) our fuzzy set around high temperatures.

A commonly used mathematical expression for hedging is

^hedge# =  ( ^ я ) *

with к >  1 for compression and к <  1 for dilation. For example, we could use the 
following hedge allocation for compression and dilation:

hedge к
vaguely — » 0.05
slightly — » 0.25

somewhat — ► 0.5
very — ♦ 2

extremely — * 3
exactly — ♦ 00

Another hedge commonly used is a contrast enhancer

Г2(Мй(Т))2 for MS( T ) € [ 0,|]
n*nh# 1 1 — 2(1 — Hff(T))2 otherwise

18.2.6 Quantifying Fuzzyness
From information theory we know that we can define the missing information of a 
probability distribution by the Shannon entropy

S(x) (p W loSaPW)
xEX

where the base of the logarithm, a, determines the units of information. If a  =  2, 
then the unit of information is the bit (binary digit). This function has a minimum
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of 0 if the probability distribution is a delta-function. We would expect this since 
in this case we know with certainty that the solution is x0 (with probability 1) and 
hence there is no missing information. Similarly, if the probability distribution is 
flat, i.e.,

v(x) — т ------- 7~\7 f ° r xsize o fX
then the missing information is a maximum. We can define the entropy of a fuzzy

f  =  { ( * . /*?(*)) I* € * }
by

£0( F ) := S 0(F ) +  Sa(fZ F)

with
Sa{F) =  -  £  M S) b g a(|ij?(z))

x€ X

where a  a positive constant. Thus the entropy is a suitable measure for fuzzyness.

Example. Consider the following two fuzzy sets

A  =  {(1,0.4), (2,0.8), (3,1.0), (4,0.7), (5,0.3)}

and
В =  { (  1,0.0), (2,0.1), (3,1.0), (4,0.2), (5,0.1)} .

Then the 82(A) =  3.46 bits, while 82(B)  =  1.66 bits. As we would expect, A  is 
much more fuzzy than B. ^

18.2.7 C + +  Implementation of Discrete Fuzzy Sets
In the following header file fuzzy.h  we implement the functions described above as 
methods within the class Fuzzy. The function name near is replaced by closeTo 
since near is used in some C + +  compilers as keyword.

// fuzzy.h 

#include <fstream>
#include <cmath> // for exp, log, pow 
using namespace std;

class Fuzzy 
{
public:
FuzzyО ;
FuzzyCconst int size,const doublefc xMin=0,const doubleft xMax=l);
Fuzzy(const Fuzzyfe arg);

void setDomain(const doublet xMin,const doublet xMax); 
void fillGrades(const doublet fillValue);
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void normalize();

void small(); 
void large();
void rectangle(const doublet left,const doublet right); 
void triangle(const doublet left,const doublet center, 

const doublet right); 
void trapezoid(const doublet leftBot,const doublet leftTop, 

const doublet rightTop, 
const doublet rightBot);

// Fuzzy greater than
void greaterThan(const doublet arg,double lambda = 0);
// Fuzzy less than
void lessThan(const doublet arg,double lambda = 0);
// Fuzzy near
void closeTo(const doublet arg,double sigma = 0);

int supportMaxGradelndexO const; 
int supportMinGradelndexO const; 
double supportMaxGrade() const; 
double supportMinGradeO const; 
double minGradeO const; 
double maxGradeO const; 
double centroid() const; 
double cardinalityО  const; 
double relativeCardinalityO const;

Fuzzy limit(const doublet ceiling);
Fuzzy alphaCut(const doublet alpha) const;
Fuzzy betaCut(const int beta) const;

double entropy(const doublet base = 2) const;

double xMinO const { return _xMin; >; 
double xMaxO const { return _xMax; >; 
double domainSize () const { return _domainSize; )■; 
double resolution () const { return „resolution; }■;

int isSubSet(const Fuzzyt arg) const;

// grade for support i
doublet operator[] (const int i); // Grade for support i 
// grade at x via linear interpolation 
double operator() (const doublet x) const;

Fuzzyt operator = (const Fuzzyt arg);
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Fuzzy operator ! (
Fuzzy operator &&
Fuzzy operator II
Fuzzy operator +
Fuzzy operator -
Fuzzy operator 1
Fuzzy operator *
Fuzzy operator &
Fuzzy operator 1
Fuzzy operator <
Fuzzy operator >
Fuzzy operator ==
Fuzzy operator >=
Fuzzy operator <=
Fuzzy operator ; =

() const; // Logical NOT
const; // Logical AND
const; // Logical OR
const; // Bounded +
const; // Bounded -
const; // Algebraic +
const; // Algebraic *
const; // Fuzzy AND
const; // Fuzzy OR
const; // Less Than
const; // Greater Than
const; // Equal To
const; // Greater or Equal
const; // Less or Equal
const; // Not Equal To

// Fuzzy AND and Fuzzy OR
double gamma() const { return _gamma; };
void setGamma(const double& nevGamma) { _gamma = newGamma; >;

// Weighted mean of array of fuzzy sets.
// If arg weights omitted, regular mean.
static Fuzzy mean(const Fuzzy* const * const sets,const int nSets, 

const double* const weights = NULL);

Fuzzy enhanceContrast() const;
Fuzzy hedge(const doublefe hedgeExp) const;
// hedge constants: 
static const double extremely; 
static const double very; 
static const double substantially; 
static const double somewhat; 
static const double slightly; 
static const double vaguely;

friend ostreamfe operator «  (ostreamfe,const Fuzzy&); 
friend istreamfe operator »  (istreamfe,Fuzzy&);

public:
double* .grades; 
int _size;
double _gamma; // For FUZZY AND and FUZZY OR. 
double _xMin, _xMax, .resolution, _domainSize; 
void resize(const int newSize);

private:
// default value for gamma parameter 
static const double _defaultGamma;
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double linearlnterpolate(const doublet xO,const doublet yO,
const doublet xl,const doublet yl, 
const doublet x) const;

>;

// static class constants
const double Fuzzy::_defaultGamma = 0.5;
// hedge exponents:
const double Fuzzy::extremely = 4.0;
const double Fuzzy::very = 2.0;
const double Fuzzy:substantially = 1.5;
const double Fuzzy::somewhat = 0.5;
const double Fuzzy::slightly = 0.25;
const double Fuzzy::vaguely = 0.03;

// Implementation 
Fuzzy::Fuzzy()

: _gamma(_defaultGamma), _grades(NULL), _size(0)

setDomain(0,1);
>

Fuzzy::Fuzzy(const int size,const doublet xMin,const doublet xMax) 
: _gamraa(_defaultGamma),.grades(NULL),_size(0)

{
resize(size); 
setDomain(xMin,xMax);

>

Fuzzy::Fuzzy(const Fuzzyt arg)
: _gamma(_def aultGamma) , .grades (NULL) ,_size(0)

{ *this=arg; >

void Fuzzy::setDomain(const doublet xMin,const doublet xMax)
{
_xMin = xMin; _xMax = xMax;
_domainSize = xMax - xMin;
if(_size != 1) .resolution = _domainSize/(_size-l.0); 
else .resolution = 1.0;

>

void Fuzzy::fillGrades(const doublet fillValue)
{ for(int i=0;i<_size;i++) .grades[i] = fillValue; }

void Fuzzy::normalize()

double max = maxGradeO;
for(int i=0;i<_size;i++) .grades[i] /= max;
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>

void Fuzzy::large0

double range = _xMax-_xMin; 
double slope = (double)1/range; 
double intercept = -slope*_xMin; 
double dx = range/(_size-1.0); 
double x = _xMin; 
for(int i=0;i<_size;i++)
{
.grades[i] = slope*x+intercept; 
x += dx;
>

void Fuzzy::small()
{
large();
for(int i=0;i<_size;i++) .grades[i] = 1.0-_grades[i];

>

void Fuzzy::rectangle(const doublet left,const doublet right)

double range = _xMax-_xMin; 
double dx = range/(_size-l.0); 
double x = _xMin; 
for(int i=0;i<_size;i++)
{
if((x <= left) II (x >= right)) .grades[i] = 0.0; 
else .grades[i] = 1 . 0 ; 
x += dx;
>

>

void Fuzzy::triangle(const doublet left,const doublet center, 
const doublet right)

double range = _xMax-_xMin; 
double dx = range/(_size-l.0); 
double x = _xMin; 
for(int i=0;i<_size;i++)
{
if((x <= left) II (x >= right)) .grades[i] =0.0; 
else if(x < center)
.grades [i] = linearlnterpolate(left,0,center,l,x); 
else
.grades [i] = linearlnterpolate(center,1.right,0,x);
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x += dx;
>

>

void Fuzzy::trapezoidCconst doublet leftBot,const doublet leftTop
const doublet rightTop,const doublet rightBot)

double range = _xMax-_xMin; 
double dx = range/(_size-l.0); 
double x = _xMin; 
for(int i=0;i<_size;i++)
{
ifCCx <= leftBot) || Cx >= rightBot)) .grades[i] = 0.0; 
else ifCx < leftTop)
.grades[i] = linearlnterpolateCleftBot,0,leftTop,1 ,x) ; 

else ifCx <= rightTop) .grades[i] = 1.0;
else .grades[i] = linearInterpolateCrightTop,1.rightBot,0,x); 
x += dx;
>

int Fuzzy::supportMinGradelndexC) const

double min = 1.0; 
int minlndex = 0; 
forCint i=0;i<_size;i++)
if(min > .grades [i]) { min = .grades[i]; minlndex = i; > 
return minlndex;

>

int Fuzzy::supportMaxGradeIndex() const
<
double max = 0.0; 
int maxlndex = 0; 
for(int i=0;i<_size;i++)
if (max < .grades [i]) •( max = .grades [i]; maxlndex = i; } 
return maxlndex;

>

double Fuzzy::supportMinGradeO const
■{ return supportMinGradeIndex()*_resolution+_xMin; }

double Fuzzy::supportMaxGrade0  const
{ return supportMaxGradeIndex()*_resolution+_xMin; }

double Fuzzy::minGrade() const
■{ return .grades [supportMinGradelndexQ] ; )■
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double Fuzzy::maxGrade() const 
{ return .grades[supportMaxGradelndex()]; >

double Fuzzy:: cardinalityO const 
{
double cd = 0.0;
forCint i=0;i<_size;i++) cd += .grades[i]; 
return cd;

>

double Fuzzy::relativeCardinalityC) const 
{ return cardinalityC)/_domainSize; >

int Fuzzy::isSubSetCconst Fuzzyfe arg) const

int issubset = 1, i = 0; 
whileС(issubset) && Ci<_size))
{
issubset = (arg..grades[i] >= .grades[i]); 
i++;
>
return issubset;

>

Fuzzy Fuzzy::limit(const doublet ceiling)
{
Fuzzy result(*this); 
for(int i=0;i<_size;i++) 
if(.grades[i] > ceiling) .grades[i] = ceiling; 
return result;

>

Fuzzyfe Fuzzy::operator = (const Fuzzyfe arg)
{
if(_size != arg..size) resize(arg..size); 
for(int i=0;i<_size;i++) _grades[i] = arg..grades[i]; 
setDomain(arg._xMin,arg._xMax); 
return *this;

>

doublet Fuzzy::operator [] (const int i) { return .grades[i]; >

double Fuzzy::operator () (const doublet x) const

int iLow = (x-_xMin)/.resolution; 
int iHigh = iLow+1;
double xLow = _xMin+_resolution*iLow; 
double xHigh = _xMin+_resolution*iHigh;
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return 1inearInterpolate(xLow,.grades[iLow],xHigh, grades[iHigh],x);
>

Fuzzy Fuzzy::operator ! () const 

Fuzzy result(_size,_xMin,_xMax);
forCint i=0;i<_size;i++) result..grades[i] = 1.0-_grades[i]; 
return result;

>

Fuzzy Fuzzy::operator kk Cconst Fuzzyfc arg) const 
{
Fuzzy resultC.size,_xMin,_xMax); 
forCint i=0;i<_size;i++)
ifC_grades[i] < arg..grades[i]) result..grades[i] = .grades[i] ; 
else result..grades[i] = arg..grades[i]; 

return result;
>

Fuzzy Fuzzy::operator I I Cconst Fuzzyfc arg) const 
{
Fuzzy resultC.size,_xMin,_xMax); 
forCint i=0;i<_size;i++)
ifC.grades[i] > arg..grades[i]) result..grades[i] = .grades[i]; 
else result..grades [i] = arg..grades[i]; 

return result;
>

Fuzzy Fuzzy:: operator '/, Cconst Fuzzyfc arg) const

Fuzzy resultC.size,_xMin,_xMax); 
forCint i=0;i<_size;i++)
result..grades [i] = .grades[i]+arg..grades[i]

- .grades[i]*arg..grades[i] ; 
return result;

>

Fuzzy Fuzzy: : operator + Cconst Fuzzyft arg) const 
{
Fuzzy result C.size,_xMin,_xMax) ; 
forCint i=0;i<_size;i++)

double rslt = .grades[i]+arg..grades[i] ; 
ifCrslt < 1 .0) result..grades[i] = rslt; 
else result..grades[i] = 1 .0 ;
>

return result;
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Fuzzy Fuzzy:: operator * (const Fuzzyt arg) const 
{
Fuzzy result(_size,_xMin,_xMax); 
for(int i=0;i<_size;i++)
result..grades[i] = .grades[i]*arg..grades[i]; 

return result;
>

Fuzzy Fuzzy::operator - (const Fuzzyt arg) const 
{
Fuzzy result(.size,_xMin,_xMax); 
for(int i=0;i<_size;i++)
{
double rslt = .grades[i] + arg..grades[i] - 1.0; 
if(rslt >0.0) result..grades[i] = rslt; 
else result..grades[i] = 0.0;
>

return result;
>

Fuzzy Fuzzy::operator t (const Fuzzyt arg) const 
{
Fuzzy result(.size,_xMin,_xMax); 

for(int i=0;i<_size;i++)
{
double gl = .grades[i], g2 = arg..grades [i] ; 
double rslt;
if(gl < g2) rslt = _gamma*gl; 
else rslt - _gamma*g2; 
rslt += 0.5*(1.0-_gamma)*(gl+g2); 
result..grades [i] = rslt;
>

return result;
>

Fuzzy Fuzzy::operator I (const Fuzzyt arg) const

Fuzzy result(.size,_xMin,_xMax); 
for(int i=0;i<_size;i++)

double gl = _grades[i], g2 = arg..grades[i] ; 
double rslt;
if(gl > g2) rslt = _gamma*gl; 
else rslt — _gamma*g2; 
rslt += 0.5*(l-_ganma)*(gl+g2) ; 
result..grades[i] = rslt;
>
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return result;
>

Fuzzy Fuzzy::operator > (const Fuzzyft arg) const

Fuzzy result(_size,_xMin,_xMax); 
for(int i=0;i<_size;i++)
{
if(-grades[i] > arg..grades[i]) result[i] = 1.0 
else result[i] =0.0;
>

return result;
>

Fuzzy Fuzzy::operator < (const Fuzzyfe arg) const 
{
Fuzzy result(_size,_xMin,_xMax); 
for(int i=0;i<_size;i++)

if(-grades[i] < arg..grades[i]) result[i] = 1.0; 
else result[i] = 0.0;
>

return result;
>

Fuzzy Fuzzy::operator == (const Fuzzyfc arg) const

Fuzzy result(.size,_xMin,_xMax); 
for(int i=0;i<_size;i++)

if(.grades[i] == arg..grades[i]) result[i] = 1.0 
else result [i] = 0.0;
>

return result;

Fuzzy Fuzzy::operator >= (const Fuzzyft arg) const

Fuzzy result(.size,_xMin,_xMax); 
for(int i=0;i<_size;i++)
{
if(.grades[i] >= arg..grades[i]) result[i] = 1.0; 
else result [i] =0.0;
>

return result;

Fuzzy Fuzzy::operator <= (const Fuzzyft arg) const
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Fuzzy result(_size,_xMin,_xMax); 
forCint i=0;i<_size;i++)
{
ifC_grades[i] <= arg..grades [i]) result[i] = 1.0; 
else result [i] = 0.0;
>

return result;

Fuzzy Fuzzy::operator != Cconst Fuzzyt arg) const 
{
Fuzzy result C_size,_xMin,_xMax); 
forCint i=0;i<_size;i++)
<
ifC_grades[i] != arg..grades[i]) result[i] = 1.0; 
else result [i] = 0.0;
>

return result;

void Fuzzy:-.great erThan С const doublet arg,double lambda)

double range = _xMax-_xMin; 
ifClambda <= 0.0) lambda = 0.1*range; 
double dx = range/C_size-1.0); 
double x = _xMin; 
forCint i=0;i<_size;i++)
{
.grades[i] = 1.0/Cl.0+expC-Cx-arg)/lambda)); 
x += dx;
>

>

void Fuzzy:-.lessThanCconst doublet arg,double lambda)

double range = _xMax - _xMin; 
ifClambda <= 0.0) lambda = 0.1*range; 
double dx = range/C_size-1.0); 
double x = _xMin; 
forCint i=0;i<_size;i++)
■( .grades[i] = 1.0/Cl .0+expC-Carg-x)/lambda)); x += dx; >

>

void Fuzzy:tcloseToCconst doublet arg,double sigma)
•C

double range = _xMax-_xMin; 
ifCsigma <= 0.0) sigma = 0.1*range;
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double expDenom = 2.0*sigma*sigma; 
double dx - range/(_size-1.0) ; 
double x = _xMin; 
for(int i=0;i<_size;i++)
{ _grades[i] = exp(-powCx-arg,2)/expDenom); x += dx; >

>

Fuzzy Fuzzy::meanCconst Fuzzy* const * const sets,
const int nSets,const double* const weights)

{
const int size = sets[0]->_size;
Fuzzy result Csets[0]->_size,sets [0]->_xMin,sets[0]->_xMax) ; 
forCint ng=0;ng<size;ng++) 
i
double rslt = 0.0; 
forCint ns=0;ns<nSets;ns++)
ifCweights) rslt += sets[ns]->_grades[ng]*weights[ns] ; 
else rslt += sets[ns]->_grades[ng]; 

if С!weights) rslt /= nSets; 
result..grades[ng] = rslt;

>
return result;

>

double Fuzzy::entropyCconst doubled base) const

double result = 0.0; 
forCint ng=0;ng<_size;ng++)
{
double grade = .grades[ng]; 
ifCgrade) result ~= grade*log(grade); 
grade = 1.0-grade;
if(grade) result -= grade*log(grade);
>
return result/log(base);

>

double Fuzzy::centroid() const // Uses Trapezium Integration
i
double numer = (_xMin*_grades[0]+_xMax*_grades[_size-l])/2.0, 
double denom = (_grades[0]+_grades[_size-l])/2 .0 ;
double x = _xMin;
for(int i=l;i<=_size-2;i++)
■C
x += „resolution; 
numer += x*_grades[i]; 
denom += .grades[i];
>
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return numer/denom; // step size cancels out
>

Fuzzy Fuzzy:: hedge (const doublet hedgeExp) const 
{
Fuzzy result(_size,_xMin,_xMax); 
for(int i=0;i<_size;i++)
result ..grades [i] = pow(_grades[i] , hedgeExp); 
return result;

>

Fuzzy Fuzzy::enhanceContrast() const 
{
Fuzzy result(_size,_xMin,_xMax); 
for(int i=0;i<_size;i++)
{
double grade = _grades[i]; 
if(grade <0.5) result..grades[i] = 2.0*pow(grade,2); 
else result..grades[i] = 1.0-2*pow(l-grade,2);

>
return result;

>

Fuzzy Fuzzy::alphaCut(const doublet alpha) const
•C
Fuzzy result(.size,_xMin,_xMax); 
for(int i=0;i<_size;i++)
if(.grades[i] >= alpha) result..grades[i] = 1.0; 
else result..grades[i] =0.0; 

return result;
>

Fuzzy Fuzzy::betaCut(const int beta) const

// Make a copy of the set for bubble sort 
double* grades = new double[.size]; 
int* indexes = new int[.size]; 
for(int i=0;i<_size;i++)
{ grades [i] = _grades[i]; indexes [i] = i; > 
int exchanged, nFound = 0;

// Bubble sort until the beta laxgest elements at end of array 
do

exchanged = 0;
for(int n=0;n<_size-nFound-l;n++)
{
if (grades [n] > grades [n+l])
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>

{
double ddum = grades[n+1]; 

grades[n+1] = grades[n]; 

grades[n] = ddum; 

int idum = indexes[n+1]; 

indexes[n+1] ■ indexes[n]; 

indexes [n] = idum; 

exchanged++;

>
>
nFound++;

> while((exchanged) fefe (nFound<=beta));

Fuzzy result(_size,_xMin,_xMax); 

result.fillGrades(0);

for(int nb=l;nb<=beta;nb++) 

result..grades[indexes[_size-nb]] = 1; 

delete[] indexes; delete[] grades; 

return result;

ostreamfe operator «  (ostreamfe os,const Fuzzyfe arg) 

{
OS «  " [ " ;
double x = arg._xMin;

for(int i=0;i<arg._size;i++)

os «  "(" «  X «  «  arg..grades[i] «  ")";

if(i!=arg._size-l) x += arg..resolution;

>
OS «  " ] " ;
return os;

>

istreamfe operator »  (istreamfe is,Fuzzyfe arg)

int size;

is »  size;

a r g .resize(size);

double xMin, xMax;

is »  xMin »  xMax;

arg.setDomain(xMin,xMax);
for(int i=0;i<size;i++) is »  arg..grades[i], 

return is;

double F u z z y : : linearlnterpolate(const doublet xO,
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const doublet yO,const doublet xl, 

const doublet у1,const doublet x) const

{
double m = (yl-yO)/(xl-xO); 

double с = yl-m*xl; 

return m*x+c;

>

void Fuzzy::resize(const int newSize)

{
delete [] _grades;

.grades = new double[newSize] ;

_size = newSize;

>

We supply 3 constructors. The default constructor which allows the user to create 
an array of fuzzy sets, a constructor allowing the user to create a fuzzy set of a 
certain size and covering a range from xMax to xMin on the support axis. If the 
user does not specify the support-range then it is assumed to be [0 , 1] as specified 
by the default values of the corresponding arguments. The support range can be 
altered at a later stage via the method setDomain. The last constructor is the copy 
constructor. It is important not to forget the copy constructor since the latter is 
used every time we pass or return a fuzzy set by value.

The method f  illGrades sets all grades equal to the supplied fill-value. The method 
normalize normalizes the fuzzy set (i.e. the largest grade will be 1). The method 
rectangle fills all the grades of the fuzzy set whose support is between l e f t  and 
right with 1 and all others with zero. For example, the concept crisp faster than 
100 for a universe of cruising speeds between say 100 and 200 could be defined by 
the rectangle

Fuzzy fasterThanlOO(201,1,200); 

fasterThan100.rectangle(100,200);

The methods triangle ( )  and trapezoidO can be used to define a discrete fuzzy set 
with triangular and trapezoidal membership functions, respectively. For example, 
we could define the fuzzy value for optimal cruising speed by a triangle and the 
range of acceptable cruising speed by a trapezoid

Fuzzy optimalSpeed(201,0,200), acceptableSpeed(201,0,200); 

optimalSpeed.triangle(100,110,120); 

acceptableSpeed.trapezoid(80,100,120,130);

The methods small and large, near, lessThan and greater Than are a direct im
plementation of the corresponding fuzzy concepts.

The methods minGrade and maxGrade return the minimum and maximum grade 
of the fuzzy set, the methods minGradeSupport and maxGradeSupport the corre
sponding support value and the methods
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minGradeSupportIndex maxGradeSupportlndex

the array index for these support values. The method centroid is usually used for 
defuzzification. It returns the centroid of the fuzzy set as a crisp value. The cardi
nality and relative cardinality are returned by the corresponding member functions.

The i f  . . .  then .. . rules require us to limit the degree to which a consequence 
is true to the degree that the antecedent is true. For this purpose we supply the 
member function, lim it, which causes the set to saturate at the ceiling level. For 
example

Fuzzy optimalSpeed(201,0,200); 

optimalSpeed.triangle(100,110,120); 

optimalSpeed.limit(0.5);

The final membership function of the set optimalSpeed is a trapezoidal with corner 
points (100,0), (105,0.5), (115,0.5), (120,0). The methods alphaCut and betaCut 
implement the а-cut and /?-cut operators. The method entropy estimates the en- 
tropic fuzzyness measure. By default the base of the logarithm is taken as 2.

The methods xMin(), xMaxO and domainSizeO are simple query functions, the 
latter returning the size of the support domain. Since this is an implementation of a 
discrete fuzzy set we have a finite resolution on the support domain. The resolution 
can be queried via the method resolution. The method isSubSet returns true, 
i-e. 1, if the set for which the method is called is a subset of the set supplied as 
argument to the method.

We supply two operators for querying the grade for a given support value. The 
first is the array element access operator [] which takes an integer as argument. It 
simply returns the grade for the support value at the specified array index, hence 
at the discretized points. This operator can also be used to change the grade at 
that point. The second operator is the function call operator (). This operator can 
be used to query the grade at any support value between xMin and xMax, not only 
at the discretized grid points. The method uses linear interpolation to obtain the 
grade values between grid points. The assignment operator allows us to assign one 
fuzzy set to another. It returns the object itself by reference to allow concatenated 
standard С-style assignments

setl = set2 = set3 = set4;

Most of the remaining operators are a direct implementation of the fuzzy-set oper
ators. The relational operators

< > = = > =  <= ! =

each return a crisp set (the grades are all either zero or one). For example, the 
greater-than operator, >, returns a fuzzy set with grade one for all support values 
for which the current set, the set for which the method was called, has greater sup
port than the set supplied as argument to the method. The grades for all other



546 CHAPTER 18. FUZZY SETS AND FUZZY LOGIC

support values are zero. The remaining relational operators act in a similar fashion.

For the fuzzy-AND and fuzzy-OR operators we have to specify a value for 7 . The 
value of 7  can be queried and set via the methods gamma and setGamma.

The input/output stream operators, »  and «  are used to read a fuzzy set from an 
input stream (e.g. a file or the keyboard) or to ал output stream (e.g. a file or the 
screen).

The static member function mean() calculates the weighted mean of an array of 
fuzzy sets. If the array of weights is not supplied, the standard arithmetic mean is 
returned. The fact that the member function is static implies that it can be called 
without referring to an object of the class. It is effectively a global member function 
with the scope of the class. We can call it as follows

Fuzzy::mean(setsArray,weights);

Note that both arguments are as constant as can be, i.e. all pointers and what they 
point to are declared constant.

Finally we implement linguistic hedging and contrast enhancement. We allow hedg
ing with any continuous hedge-value. In order to introduce linguistic hedges we 
define static class constants for the terms

extremely, very, substantially, somewhat, slightly, vaguely .

The use could define the linguistic concept, large and then use hedging to introduce 
the concept very large:

Fuzzy large(50); 

large.large();

Fuzzy veryLarge = large.hedge(Fuzzy::very);

The following C ++  program mf uzzy. cpp illustrates the usage of the discrete fuzzy 
set class Fuzzy in the file fuzzy. h.

// mfuzzy.cpp

#include <iostream>

#include <cstdlib>

#include "fuzzy.h" 

using namespace std;

int main(void)

{
if stream finCfuzzy.dat"); 

if(fin =  NULL)

cout «  "file cannot be opened";
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exit(0) ;

>
Fuzzy setl, set2;

fin »  setl »  set2;

cout «  " si = " «  setl «  endl;

cout «  "!sl = " «  !setl «  endl;

cout «  " s2 = " «  set2 «  endl;

cout «  "si && s2 = " «  (setl && set2) «  endl;

cout «  "si || s2 = " «  (setl II set2) «  endl;

cout «  "si + s2 = " «  (setl + set2) «  endl;

cout «  "si - s2 = " «  (setl - set2) «  endl;

cout «  "si & s2 = " «  (setl & set2) «  endl;

cout «  "si | s2 = " «  (setl I set2) «  endl;

Fuzzy set3;

fin »  set3; set3.normalize(); 

cout «  " s3 = " «  set3 «  endl;

cout «  "s3.centroid/cardinality/relativeCardinality/entropy = " 

«  set3.centroidO «  " " «  set3.cardinality() «  " "

«  set3.relativeCardinalityO «  " " «  set3.entropy()

«  endl;

int nSets2 = 2;

Fuzzy** sets2 = new Fuzzy*[nSets2]; 

double* weights = new double[2]; 

weights[0] = 0.2; weights[1] =0.8; 

sets2[0] = fcsetl; sets2[l] = &set2; 

cout «  "mean(sl..s2,weights[0.2,0.8]) = "

«  Fuzzy::mean(sets2,nSets2,weights)

«  endl;

int nSets3 = 3;

Fuzzy** sets3 = new Fuzzy*[nSets3];

sets3[0] = fcsetl;

sets3 [1] = &set2;

sets3[2] = &set3;

cout «  "mean(si..s3) = "

«  Fuzzy::mean(sets3,nSets3) «  endl;

cout «  "s3.hedge(Fuzzy::very) = "

«  set3.hedge(Fuzzy::very) «  endl; 

cout «  "s3.enhanceContrast() = "

«  set3.enhanceContrast() «  endl; 

cout «  "s3.alphaCut(0.65) = " «  set3.alphaCut(0.65) «  endl; 

cout «  "s3.betaCut(3) = " «  set3.betaCut(3) «  endl; 

cout «  "s3.entropy() <=> s3.enhanceContrast().entropy() - 

«  set3.entropy0  «  " <=> "
«  set3.enhanceContrast0 .entropy0  «  endl;
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Fuzzy small(5,0,2); small.small();

Fuzzy large(5,0,2); large.large(); 

cout «  "small: " «  small «  endl; 

cout «  "large: " «  large «  endl;

Fuzzy legalSpeed(7,80,140); legalSpeed.lessThan(120); 

cout «  "legalSpeed = " «  legalSpeed «  endl;

Fuzzy optimumSpeed(7,80,140) ; optimumSpeed. closeTo(llO) ; 

cout «  "optimumSpeed = " «  optimumSpeed «  endl; 

fin.closeO; 

return 0;

>

We used the following input file, fuzzy.dat 

5 1 5

0.4 0.8 1.0 0.7 0.7 

5 1 5 

0.0 0.1 1.0 0.2 0.1 
5 1 5

0.1 0.2 0.5 0.2 0.4

The output of the program is given below

si = [(1,0.4) (2,0.8) (3,1) (4,0.7) (5,0.7)]

!sl = [(1,0.6)(2,0.2)(3,0)(4,0.3)(5,0.3)]

s2 = [(1,0)(2,0.1)(3,1)(4,0.2)(5,0.1)]

si && s2 = [(1,0) (2,0.1) (3,1) (4,0.2) (5,0.1)]

si || s2 = [(1,0.4)(2,0.8)(3,1)(4,0.7)(5,0.7)]

si + s2 = [(1,0.4)(2,0.9)(3,1)(4,0.9)(5,0.8)]

si - s2 = [(1,0) (2,0) (3,1) (4,0) (5,0)]

si & s2 = [(1,0.1)(2,0.275)(3,1)(4,0.325)(5,0.25)]

si | s2 = [(1,0.3)(2,0.625)(3,1)(4,0.575)(5,0.55)]

s3 = [(1,0.2)(2,0.4)(3,1)(4,0.4)(5,0.8)]

s3 .centroid/cardinality/relativeCardinality/entropy

= 3.26087 2.8 0.7 3.38576

mean(sl..s2,weights[0.2,0.8]) = [(1,0.08)(2,0.24)(3,1)(4 ,0 .3 )(5,0.22)] 
mean(sl..s3) = [(1,0.2)(2,0.433333)(3,1)(4,0.433333)(5,0.533333)] 

s 3 . hedge (Fuzzy: -.very) = [(1,0.04) (2,0.16) (3,1) (4,0.16) (5,0.64)] 

s3 .enhanceContrast() = [(1,0.08)(2,0.32)(3,1)(4,0.32)(5,0.92)] 

s3 .alphaCut(0.65) = C(i,0)(2,0)(3,1)(4,0)(5,1)] 

s3.betaCut(3) = [(1,0)(2,0)(3,1)(4,1)(5,1)]

s3.entropy() <=> s3.enhanceContrast().entropy() = 3.38576 <=> 2.61312

small: [(0,1)(0.5,0.75)(1,0.5)(1.5,0.25)(2,0)] 

large: [(0,0)(0.5,0.25)(1,0.5)(1.5,0.75)(2,1)] 

legalSpeed

= [(80,0.998729)(90,0.993307)(100,0.965555)(110,0.841131)(120,0.5)
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(130,0.158869)(140,0.0344452)]

optimumSpeed = [(80,3.72665e-06)(90,0.00386592)(100,0.249352)(110,1)

(120,0.249352)(130,0.00386592)(140,3.72665e-06) ]

18.2.8 Applications: Simple Decision-Making Problems

When buying a pair of shoes there are certain crisp boundary conditions determined 
by the anatomy of one’s feet and by the balance of one’s bank account. We also 
have a fuzzy concept of what we find good-looking and what we find comfortable. 
The problem is thus one of finding a solution which, subject to certain crisp bound
ary conditions, optimizes some fuzzy objectives. Let us take the simple example 
of having to choose between N  pairs of shoes, some of which are too small and 
some of which are too expensive. For this we use two crisp sets, tooSmall and 
tooExpensive. The grades of these crisp sets are either 0 or 1. We implement our 
fuzzy concepts of looks and comfort by the corresponding two fuzzy sets whose 
membership value is now a grade between zero and 1, representing our fuzzy eval
uation of the looks and comfort of each pair of shoes. Consider now the code given 
below:

// shoe.cpp

#include <iostream>

#include <fstream>

#include "fuzzy.h" 

using namespace std;

int main(void)

ifstream infile("shoe.dat");

Fuzzy tooSmall, tooExpensive, looks, comfort;

infile »  tooSmall »  tooExpensive »  looks »  comfort;

ofstream fout("shoe.out");

fout «  "Select a comfortable good-looking shoe which"

«  " is big enough and affordable:" «  endl;

«  "================'• «  endl;

fout «  "Too-small constraint: " «  tooSmall 

«  " (crisp set) " «  endl; 

fout «  "Too expensive constraint: " «  tooExpensive 

«  " (crisp set) 11 «  endl «  endl; 

fout «  "Looks preferences: " «  looks «  " (fuzzy set) "

«  endl;
fout «  "Comfort preferences: " «  comfort «  " (fuzzy set) "

«  endl «  endl;

Fuzzy satisfyConstraints = !(tooSmall I I tooExpensive); 

fout «  "Constraints satisfied by : " «  satisfyConstraints 

«  endl; 

int nPreferences = 2;
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Fuzzy** preferences = new Fuzzy*[nPreferences]; 

preferences[0] = fclooks; 

preferences[1] = fccomfort;

Fuzzy objective = Fuzzy::mean(preferences,nPreferences); 

fout «  "Objective = " «  objective «  endl «  endl;

Fuzzy shoeScores = (satisfyConstraints && objective) ;

fout «  "Shoe scores = " «  shoeScores «  endl;

fout «  "Best shoe = " «  shoeScores. supportMaxGrade О

«  " which has a grade of " «  shoeScores .maxGrade ()

«  "." «  endl «  endl; 

fout «  "Select a shoe which is somewhat good-looking "

«  "and very comfortable"

«  endl «  "(still not too small and not too expensive):"

«  endl;

«  endl;

Fuzzy somewhatGoodLooking = looks.hedge(Fuzzy::somewhat);

Fuzzy veryComfortable = comfort.hedge(Fuzzy::very);

fout «  "somewhatGoodLooking = " «  somewhatGoodLooking «  endl;

fout «  "veryComf ortable = " «  veryComf ortable «  endl «  endl;

preferences [0] = fcsomewhatGoodLooking;

preferences[1] = feveryComfortable;

objective = Fuzzy::mean(preferences,nPreferences);

fout «  "Objective = " «  objective «  endl «  endl;

shoeScores = (satisfyConstraints && objective);

fout «  "Shoe scores = " «  shoeScores «  endl;

fout «  "Best shoe = " «  shoeScores.supportMaxGrade()

«  " which has a grade of " «  shoeScores.maxGrade() «

«  endl; 

infile.close(); 

fout.close();

>

The subset of shoes which satisfies our crisp constraints is determined via

Fuzzy satisfyConstraints = !(tooSmall |I tooExpensive);

We have to somehow take a weighted average of our fuzzy preferences. This is done 
via

Fuzzy objective = FuzzySet::mean(preferences,nPreferences);

which weigths the two preferences equally. We determine now the confidence with 
which we select the various shoes by taking a logical AND (in the fuzzy sense) 
between the constraints and the preferences, i.e. our ideal shoe must satisfy the 
constraints AND the preferences:

FuzzySet shoeScores = (satisfyConstraints && objective);
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This is the fuzzy output of our fuzzy inference engine. At the end of the day we have 
to make a crisp choice between the shoes. For this purpose we have to defuzzify our 
output. In this simple example (which is naturally discrete) we select that particular 
shoe which obtains the highest confidence level, i.e. has the maximum grade. This 
is done by the supportMaxGrade 0  defuzzifier, which returns the support for that 
member of the fuzzy set which received the highest confidence level (grade):

int choiceOfShoe = shoeScores.supportMaxGrade();

Below we give an example of an input file shoe. dat

5 0 4 
0 1 0  0 0 
5 0 4
0 0 0 0 1 
5 0 4

0.7 1.0 0.4 0.7 0.5 
5 0 4

0.4 0.0 0.8 0.6 0.9

In this example we have 5 pairs of shoes to choose from. Hence each of the fuzzy 
sets has length 5 and has a domain ranging from 0 to 4. The first set is actually a 
crisp set specifying that the second shoe is the only shoe which is too small. The 
second set specifies the crisp too-expensive boundary condition (only the last shoe 
is too expensive). The following two sets represent our fuzzy evaluation of the looks 
and the comfort for the various pairs of shoes.

The output shoe. out of the first part of the program is given below:

Select a comfortable, good-looking shoe which is 
big enough and affordable:

Too-small constraint: [(0,0)(1,1)(2,0)(3,0)(4,0)] (crisp set)
Too expensive constraint: [(0,0)(1,0)(2,0)(3,0)(4,1)] (crisp set)

Looks preferences: [(0,0.7)(1,1)(2,0.4)(3,0.7)(4,0.5)] (fuzzy set)
Comfort preferences: [(0,0.4)(1,0)(2,0.8)(3,0.6)(4,0.9)] (fuzzy set)

Constraints satisfied by: [(0,1)(1,0)(2,1)(3,1)(4,0)]
Objective = [(0,0.55)(1,0.5)(2,0.6)(3,0.65)(4,0.7)]

Shoe scores = [(0,0.55)(1,0)(2,0.6)(3,0.65)(4,0)]
Best shoe = 3 which has a grade of 0.65.

Select a shoe which is somewhat good-looking and very comfortable 

(still not too small and not too expensive):

somewhatGoodLooking =

[(0,0.83666) (1,1) (2,0.632456) (3,0.83666) (4,0.707107)]
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veryComfortable =

[(0,0.16)(1,0)(2,0.64)(3,0.36)(4,0.81)]

Ob j ective = [(0,0.49833) (1,0.5) (2,0.636228) (3,0.59833) (4,0.758553) ]

Shoe scores = [(0,0.49833)(1,0)(2,0.636228)(3,0.59833)(4,0)]

Best shoe = 2 which has a grade of 0.636228.

We select a comfortable, good-looking shoe which is neither too small, nor too ex
pensive. The “best” shoe in this case is shoe no 3 (the fourth shoe). If we use 
hedging to select a shoe which is somewhat comfortable, but very good looking, 
then the “best” shoe is shoe no 2 (the third shoe).

Next we look at a simplified version of an optimal pricing problem. We have a 
number of possibly overlapping or even conflicting objectives. For example, the 
shareholders might push for a high price for the product, while the salespersons 
might want a low price so that they can sell a larger quantity. Finally there might 
be a third objective of having a profit margin of around 30% which ensures that 
the company does not come into bad light with the consumer watchdogs and hence 
has to face bad publicity. We might also have an absolute minimum below which 
the producer absolutely refuses to produce and an absolute maximum above which 
the salespersons absolutely refuse to try and market the product. Furthermore, our 
objectives are to make a profit (i.e. that the retail price must be above the cost of 
the product) and to underbid the opposition.

The following C ++  code asks the user for the minimum and maximum price, the 
manufacturing cost and the competitor’s price. It also asks the user to rate the 
various objectives according to their relative importance. It then uses fuzzy logic to 
determine the optimum retail price for the product.

// price.cpp

#include <iostream>

#include <fstream>

#include "fuzzy.h" 

using namespace std;

int main(void)

int minPrice, maxPrice, manufacturingCost, competitorsPrice; 

cout «  "Enter minimum price (to nearest Rand): 

cin »  minPrice;

cout «  "Enter maximum price (to nearest Rand): "; 

cin »  maxPrice;

cout «  "Enter manufacturing cost (to nearest Rand): "; 

cin »  manufacturingCost;

cout «  "Enter competitors price (to nearest Rand): ";
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cin »  competitorsPrice;

int nPointsOnGrid = maxPrice - minPrice + 1; 

const int nObjectives = 5;

Fuzzy** objectives = new Fuzzy*[nObjectives];

// Shareholders objective of a very high price: 

objectives[0] = new Fuzzy(nPointsOnGrid,minPrice,maxPrice) ; 

objectives [0]->large();

// Salesperson’s objective of a low price:

objectives[1] = new Fuzzy(nPointsOnGrid,minPrice,maxPrice) ;

objectives[1] -> small();

// Moralists objective of a 30*/, profit:

objectives[2] = new Fuzzy(nPointsOnGrid,minPrice,maxPrice) ; 

objectives[2] -> closeTo(manufacturingCost*1.3) ;

// Objective of making a profit:

objectives[3] = new Fuzzy(nPointsOnGrid,minPrice,maxPrice) ; 

objectives[3] -> greaterThan(manufacturingCost);

// Objective for competitiveness:

objectives[4] = new Fuzzy(nPointsOnGrid,minPrice,maxPrice) ; 

objectives[4] -> lessThan(competitorsPrice) ; 

int importance[nObjectives];

cout «  "Enter the importance of each of the following criteria: 

«  endl;
cout «  "(0->vaguely,l->slightly,2->somewhat,3->substantially," 

«  endl
«  » 4->very,5->extremely)" «  endl;

«  endl;

cout «  "Shareholder’s desire for high price: "; 

cin »  importance[0];

cout «  "Salesperson’s desire for a low price: 

cin »  importance[1];

cout «  "Moralist’s objective of a 30*/, profit: "; 

cin »  importance[2];

cout «  "Retail price > manufacturing price: "; 

cin »  importance[3];

cout «  "Retail price < competitors price: ";

cin »  importance[4];

f o r (int n0b=0;n0b<n0bjectives;n0b++)

{
switch(importance[nOb])

case 0: *obj ect ives [nOb] =obj ect ives [nOb] ->hedge (Fuzzy:: vaguely) ; 

break;
case 1: *obj ectives [nOb]=obj ectives [nOb]->hedge(Fuzzy::slightly); 

break;
case 2: *objectives [nOb]objectives [n0b]->hedge(Fuzzy:: somewhat); 

break;
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case 3: «objectives[nOb]=objectives[nOb]-> 

hedge(Fuzzy:substantially); break; 

case 4: *objectives[nOb]=objectives[nOb]->hedge(Fuzzy::very); 

break;

case 5: *ob j ectives[nOb]=obj ectives[nOb] ->hedge(Fuzzy::extremely) ; 

break;

>
>
Fuzzy fuzzyPrice = (*objectives[0]) kk (*objectives [1])

kk (*objectives[2]) kk (*objectives[3]) 

kk (*obj ectives[4]);

cout «  endl

«  "Recommended retail price: R"

«  fuzzyPrice.supportMaxGradeO «  endl; 

return 0;

>

The user dialogue could be as follows:

Enter minimum and maximum price (to nearest Rand): 2000 5000 

Enter manufacturing cost (to nearest Rand): 2500

Enter competitors price (to nearest Rand): 4500

Enter the importance of each of the following criteria:

(0 -> vaguely, 1 -> slightly,

2 -> somewhat, 3 -> substantially,

4 -> very, 5 -> extremely)

Shareholder’s desire for high price: 4

Salesperson’s desire for a low price: 3

Moralist's objective of a 30*/, profit: 1

Retail price > manufacturing price: 5

Retail price < competitors price: 4

Recommended retail price: R3649

Note that each of the fuzzy sets has 3000 elements. Assume now that the need to 
achieve turn-over becomes high and thus the salesperson’s desire for a low price is 
given more importance. The shareholders still refuse to budge from rating their im
portance of a high price as very important, but the turn-over becomes now extremely 
important.

Enter minimum price (to nearest Rand): 2000

Enter maximum price (to nearest Rand): 5000

Enter manufacturing cost (to nearest Rand): 2500

Enter competitors price (to nearest Rand): 4500

Enter the relative importance of each of the following criteria:

(0 -> vaguely, 1 -> slightly, 2 -> somewhat, 3 -> substantially,

4 -> very, 5 -> extremely)
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Shareholder’s desire for high price: 4

Salesperson’s desire for a low price: 5

Moralist’s objective of a 30'/, profit: 1

Retail price > manufacturing price: 5

Retail price < competitors price: 5

Recommended retail price: R3146

Our fuzzy inference engine suggests now a significantly lower price.

18.3 Fuzzy Numbers and Fuzzy Arithmetic

18.3.1 Introduction

So far we have discussed only fuzzy sets and the algebraic operations that can be 
performed on fuzzy sets. In real-life, however, one usually works with numbers. 
Often these numbers are fuzzy, for example influenced by inaccurate measurements,
noisy data,___In this section we define fuzzy numbers and the algebraic operations
between fuzzy numbers. Simple examples of fuzzy numbers are large, approximately 
30, much larger than 10, a few. It would of course be convenient if we did not have 
to redevelop the entire algebra for fuzzy numbers. Fortunately there is the extension 
principle which is a general method for extending algebraic operations on standard 
crisp numbers to fuzzy numbers.

Definition. A  fuzzy interval, I, is a convex, normalized fuzzy set of the real num
bers R  whose membership function fij{x ) is piecewise continuous on R.

Definition. A  fuzzy number, N, is a fuzzy interval with membership function, 
Мд?(х ), such that there exists exactly one x0 € R  for which fifi(xo) =  1*

Definition. A positive (negative) fuzzy number, N, has a membership function 
such that

M~(z) =  0 for all x  <  0 (for all x >  0).

Example. Consider

N  =  {  (3,0.2), (4,0.6), (5,1.0), (6,0.6), (7,0.2) }  .

This fuzzy number could be called “approximately 5 .

Example. The fuzzy set

M  =  {(1,0.2), (2,0.8), (3,1.0), (4,1.0), (5,0.8), (6,0.2)} 

is not a fuzzy number since ^(3) =  1.0 and fi(4) =  1.0.



Example. The fuzzy set

P  =  {(3,0.3), (4,0.7), (5,1.0), (6,0.2), (7,0.5), (8,0.1)} 

is not a fuzzy number due to the terms (6,0.2), (7,0.5), where 0.2 <  0.5. Ф

The definition of a fuzzy number is often modified. In many cases trapezoidal 
membership functions are used.

18.3.2 Algebraic Operations

First we define the extension principle (Dubois [26], Zimmermann [123]).

Definition. Given N  fuzzy sets Fb . . . ,F N in X i , ... ,X N. Given a mapping, p, 
from the product space X  ~  X\ x ... x X n  onto a universe Y ,

y =  g (x  i,®2,...,® n ).

Then the extension principle allows us to define a fuzzy set G  in Y  by

<5 •■= {  {y, Mgfo)) | У =  p (x ),x  =  (®b .. . ,  xN) e X  }

with
., /,л =  if 9~1(y ) Ф 0
G |0 otherwise

For N  =  1, the extension principle reduces to

H =  g{F ) =  { (у,МйЫ ) |У =  p(z), x e X }

where
u - M  = !  sup^ -4 v ) Ы х) if 9~\y) Ф 0
И’нУУ) |o otherwise

Example. Consider the fuzzy set

F =  {(-1 ,0 .5 ), (0,0.8), (1,1.0), (2,0.4)} 

and g{x) =  x2. Then we find by applying the extension principle 

В =  /(Л ) =  {(0,0.8), (1,1.0), (4,0 .4)}.

The term (1,1.0) we find from —1 • —1 =  1 and sup{ 0.5,1.0 }  =  1.0. ♦

Example. Consider the fuzzy sets

A =  {(1,0.2), (2,1.0), (3,0.5), (4,0.3)}

and
В  =  {  (3»0.9), (4,1.0), (5,0.4)}.
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Let
У '■= 9 (x i,x 2) =  х г + х 2.

Then _the_ fuzzy addition of the two fuzzy sets, A and B, yields a new fuzzy set, 
С  =  A +B  with membership function

Цд (у =  4 )= Ц д (1 +  3)
=  0.2

H5(y =  5) =  s u p {^ (l  +  4),/ig(2 +  3)}

=  sup{0.2,0.9}
=  0.9

fxd(y =  6) =  sup{M5( l  +  5), цд ( 2 +  4), ц5(3 +  3)}

=  sup{0.2,1.0,0.5}
=  1.0

fid (y =  7) =sup{/^(2 +  5), fj.g{3 +  4), fi5(4 +  3 )}

=  sup{0.4,0.5,0.3}
=  0.5

ц д ( у  =  8) =  snp{fi5{3 +  5), ц д { 4  +  4)}

=  sup{0.4,0.3}
=  0.4

fj,d(y =  9) =  fid(4 +  b)
=  0.3

We thus finally obtain the fuzzy set

С  =  A + B  =  {(4,0.2), (5,0.9), (6,1.0), (7,0.5), (8,0.4), (9,0.3)} .

Inspecting the membership function of С  we note that the addition of fuzzy 2 and 
fuzzy 4 does indeed result in fuzzy 6. The fuzzyness of the sum is equal to the sum 
of the fuzzyness of the terms in the sum. Calculating the fuzzyness (entropy) S2 of 
A , В  we obtain S2(A ) -  2.60322 and S2(B ) =  1.43995 bits respectively. The sum 
of these two is exactly equal to fuzzyness of the sum, S2(C ) =  4.04317 bits.

The extended operations on the basis of the extension principle cannot be applied 
directly to the fuzzy numbers with discrete support. We show this for the multipli
cation of fuzzy sets (Zimmermann [123]).

Example. Let

X  =  {(1,0.3), (2,1.0), (3,0.4) }, Y  =  {(2,0.7), (3, 1.0), (4,0.2) }  .

Then we find

Pu(u — 2) — M y(l' 2)
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=  0.3

М£?(и =  3) =  Мс(1-3)
=  0.3

fiv (u =  4) =  s u p {^ ( l  • 4), fid (2 • 2 )}

=  sup{0.2,0.7}

=  0.7

VV{u =  6) =  su p {^ (2  • 3), fM5 {3 • 2 )}
=  sup{1.0,0.4}

=  1.0

M5(u =  8) =  sup{/x5 (2 -4) }
=  sup{0.2}

=  0.2
HV(u =  9) =  д5 (3-3)

=  0.4

=  i2) =  sup{/i£f(3 -4 )}
=  sup{0.2}

=  0 .2 .

Hence

U =  X  • У  =  {  (2,0.3), (3,0.3), (4,0.7), (6,1.0), (8,0.2), (9,0.4), (12,0.2) }  .

The result is obviously not a fuzzy number due to the term (9,0.4).

Given a set of one-dimensional arrays of real numbers. All these one-dimensional 
arrays have the same length. The following C ++  program maxmin.cpp finds first 
the minimum values for each of the one-dimensional arrays and then the maximum 
of these values. We store the set of the one-dimensional arrays as a two-dimensional 
array x, where the first index runs through the number of arrays and the second 
index runs through the length of each array.

// maxminl.cpp

#include <iostream> 

using namespace std;

int main(void)

// m number of vectors, n length of each vector 
int m, n; 

m = 4; n = 3;

int i, j; // indices for for-loops 

double** x = NULL; x = new double*[m];
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for(i=0;i<m;i++) x[i] ■ new double[n]; 

x [0] [0] = 3.1; x[0] [1] = 4.5; x[0][2] = 1.7; 

x[l] [0] * 1.1; x[l][l] = 6.7; x[l][2] = 5.1; 

x [2] CO] = 0.9; x[2][l] = 0.5; x[2] [2] = 4.9; 

x[3] [0] = 1.1; x[3] Cl] = 0.7; x[3][2] = 6.1;

// store minimum value of each vector 

double* у = new double[m];

double element; 

for(i=0;i<m;i++)

{
element = x[i] [0] ; 

for(j=0;j<n;j++)

if(x[i][j] < element) element = x[i][j]; 

y[i] = element;

>
>
double maxmin = у[0]; 

for(i=l;i<m;i++)

<
if(y[i] > maxmin) maxmin = y[i];

>

for(i=0;i<m;i++)

{  cout «  "y[" «  i «  "] = " «  y[i] «  endl; > 

cout «  "maxmin * " «  maxmin «  endl;

for(i=0;i<m;i++) delete x[i]; 

delete[] x; 

delete [] y; 

return 0;

>

The output is 

y[0] = 1.7

y[l] = 1. 1
У [2] = 0.5 
y[3] = 0.7 

maxmin = 1.7

18.3.3 LR-Representations
We can define a fuzzy set by its membership function only. However, if any fuzzy 
set can be represented by some arbitrary membership function, then applying alge
braic operations (e.g. addition) repetitively to such fuzzy sets results in fuzzy sets
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with complex membership functions. For this reason the form of the membership 
function is often restricted to a relatively small class of membership functions. For 
example, fuzzy numbers are often represented by triangular fuzzy sets. TViangular 
fuzzy sets are a special case of the more general LR-fuzzy numbers introduced for 
reasons of efficiency and generality (Dubois and Prade [26], Zimmermann [123]).

Definition. A fuzzy number, JV, is of LR-type (L  for left and R  for right) if the 
membership function can be written in the form

/ ч f L ( rk? )  fora11 Z < n  
( я ^ г )  for all x > n

Here L and R are the left and right spread functions, n is the mean value of N  and 
a and p are the left and right spreads of the LP-membership function.

Usually the left and right spread functions, L (z ) and R (z), are chosen to be decreas
ing functions which map the positive real numbers onto the interval [0,1] and for 
which L(0) =  R (0) =  1.

The Li?-representation of fuzzy numbers can be expanded in such a way that it can 
be used for fuzzy intervals.

Definition. A fuzzy interval, I ,  is of LR-type if the membership function can be 
written in the form

( -k ( 2? £)  f°r all x <  m
:=  < 1 for all m <  x < n  

for a lls > n

As before, L and R are the left and right spread functions, and a and ft are the left 
and right spreads. The values at which the left and right fall-off starts are m and n.

Example. Often fuzzy numbers are represented by triangular fuzzy sets. For a 
triangular fuzzy set one chooses a straight line with negative (positive) slope for the 
left (right) spread functions. For example

Д 2) =  Щ.г ) =  /(z) — |1 () Z otherwise

In order to represent the fuzzy number, 4, we would choose the mean to be /x =  4. 
The left and right spreads would be determined by the application. For example, 
we could have a =  2 and P — 0.5

1
0 for all x <  2 
i - ^ f o r a U x G M  
l - ^ j r  for allz 6 [4,4.5]

0 for alia: >4.5
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Naturally the left and right spread functions need not have the same functional 
form. For example we could have an exponential fall-off to the left and a Gaussian 
fall-off to the right as is illustrated in the following example.

Example. Let
L (z ) =  e~z, R (z) =  e-2’ 

and assume ц = 5, a = 1, p = 3.

The LЯ-representation for fuzzy intervals contains trapezoidal fuzzy intervals as a 
special case. This is illustrated in the following example.

Example. An acceptable cruising speed might be represented by a trapezoidal 
fuzzy set with grade 1 for speeds between lOOkm/h and 120km/h with a very rapid 
fall-off at speeds exceeding 120km/h (due to possible safety implications) and a more 
moderate fall-off as the cruising speed falls below lOOkm/h. Again we choose the 
same straight line for the left and right spread functions

r / \ r>/ \ tf \ — (1  — z f°r аИ -г: ^ [0,1]
L (z ) =  R (z) -  f (z )  =  | 0 otherwise

Thus we choose fj, =  100, v — 120, a =  30 and P =  10.

Commonly-Used Spreading Functions

When choosing suitable spreading functions, f (z ), for L(z) and R(z) one generally 
looks for decreasing functions which map the positive real numbers onto the interval 
[0,1] and for which /(0) =  1. The following functions are the most commonly used 
spreading functions:

• Straight Lines:
. f  1 -  z for all 2 € [0,1]

J\z) — | о otherwise

• Exponentials: f (z )  =  e~z

• Gaussians: f (z )  =  e“z*

• Range Lim ited Polynomials o f the form

f (z )  =  max{0, (1 -  z)p}

• Range Lim ited Polynomials o f the form

f (z)  =  m ax{0, ( 1 - 2P) }



The following example considers once again the fuzzy set of acceptable cruising 
speeds, but it uses range-limited polynomials instead of straight lines for the spread
ing function.

Example. The fuzzy interval of acceptable cruising speed with left spreading func
tion

L (z ) =  max{ 0, (1 — z25) }

and right spreading function

R(z) =  max{ 0, (1 -  z )5S }  .

When using only a single spreading function within a fuzzy system, it is customary 
to use the notation

N  =  ot, p )LR

for fuzzy numbers and

7 =  (/x, i/,a,/3)

for fuzzy intervals.

18.3.4 Algebraic Operations on Fuzzy Numbers

The extension principle can be used to define the algebraic operations such as addi
tion, subtraction, multiplication and division for fuzzy numbers. The definitions of 
the addition and subtraction operators follows exactly from the extension principle.

Definition. If N i =  (l*u<xitlh)LR and N2 =  {ц-2}а2) P t ) l r  axe two fuzzy numbers, 
then the algebraic sum of these two numbers is defined by

{^l^a \yP\)bR+[ll2,Oi2,P 2) LR := (Mi +  М2, Oil +OC2,Pl +  P l )b R •

Definition. If N  =  (/х,а,/3)^я is a fuzzy number, then changing its sign ( unary 
minus) is defined via

Z {h ><*,P)l r :=

From the above two definitions we can define the algebraic difference between two 
fuzzy numbers/intervals.

Definition. If Ni =  (^ i,a\ ,p i)LR and TV2 =  (ц2,а2,P2) Lr  are two fuzzy numbers, 
then the algebraic difference of these two numbers is defined by

(Mb <*1, Pl)bR (М2> <*2, P2)bR (Ml -  /x2, C*1 +  p2, P i +  OL2) l r  •

Fuzzy algebra can be extended to include multiplication of fuzzy numbers. No 
closed form definition can be obtained from the extension principle for multiplica
tion and division (the result cannot be represented with the same Lfl-functions as 
the operands). The expressions given below only approximate the exact result with
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ал accuracy which improves with decreasing spreads.

Definition. If N i =  (/xi, oii,P\ )lr and N2 =  (д2, 012,@2) l r  are two fuzzy numbers, 
then the algebraic product is defined by

А )ь л х (/ Х 2, C X 2 , p 2 ) b R  • =  (м  1/^2, |m|i<*2 +  |/̂ l|/?2 +  |/42|A)l.R •

The operation is only defined if both, N 1 and N2 are either positive or negative. We 
can thus multiply positive numbers, negative numbers and a positive and negative 
fuzzy number but not a fuzzy number whose membership includes both positive and 
negative numbers.

It is not possible to define an inverse such that a fuzzy number times its inverse 
results in a crisp 1. Below we give a definition which reduces to the crisp analogue 
if the spreads, a and p, are zero.

Definition. If N  =  (д, a, P )lr is either a positive or a negative fuzzy number then 
we define ( multiplicative inverse)

l_ _  1 _  f l  P________ a _ _ \

N  (m,&,P )lr ' V/iV(/z +  ̂ )X M  +  a )J  '

If we divide one fuzzy number, N it by another, N2, we multiply N\ with the inverse 
of N2

N1~/N2 =  N 1x l r .
N2

Example. Assume we have

N 1 =  (2,0.5,0.5)Lie, N2 =  (3,0.5,0.5)LR.

Then

(2,0.5,0.5)L*+ (3 ,0.5,0.5)L*  =  (5,1,1)LR 

(2,0.5, 0.5)l * - (3 , 0.5,0.5)ья = (-1 ,1 , 1 )l*
(2,0.5,0.5) LR x (3,0.5,0.5)^ =  (6,2.5,2.5) LR

(2,0.5,0.5)Li?/(3,0.5,0.5)ья =  (2/3,0.2619,0.2619)LJ?.

To perform algebra with a mixture of crisp and fuzzy numbers is straightforward. 
We simply take the crisp numbers as fuzzy numbers with zero spreads and use the 
fuzzy algebraic operators to obtain a resultant fuzzy number.

18.3.5 C + +  Implementation of Fuzzy Numbers

The C ++  implementation is a straightforward implementation of an abstract data 
type. Below we give the implementation for triangular fuzzy numbers. To change 
the L#-spread functions to something other than straight lines one has to only
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change a single line in the private member function LRf unc.

The private data members are simply the mean, /z, the left spread, a  and the right 
spread, p. The private member function LRf unc ( )  defines the spread function used. 
In the current implementation these are simply straight lines and fuzzy numbers are 
t us triangular fuzzy numbers. To change the type of fuzzy number, for example 
to one using Gaussian or exponential spread, one only has to change the private 
member function LRf unc.

Besides the copy constructor we have a constructor taking the mean, left- and right- 
spread as arguments. Each of the arguments has the default value zero. Hence, if 
no arguments are supplied, a crisp number (zero spread) with value zero is created.

we omit the spreads but supply the mean, a crisp number with the value of the 
mean is created. The following six methods are query/set functions for the mean, 

e e -sprea and the right-spread. The LR  representation for fuzzy numbers is of 
course a continuous representation. We use the function call operator ( )  to retrieve 
the grade of a fuzzy number for a certain support level.

Next we define the arithmetic operators, most of which are class constants (i.e. they 
do not modify the object for which they are called). To see this it is helpful to write 
the operator call as a function call.

x + у -> x.operator + (y)

Hence x is the object for which the operator method is called and since x remains 
.,C,  ̂ e addition operator is a class constant. In order to allow for algebra

о , crisp and fuzzy operands we define class operators which take a crisp 
value as argument enabling the user to make constructs like

fuzl = fuz2 + 4;

In order to support the reverse syntax

fuzl = 4 + fuz2;

we have to define a global operator. The class operator is not called since the above 
is interpreted as

4.operator+(fuz2);

The operators take a crisp number as first argument and a fuzzy number as second 
argument. The global operators are global functions (not encapsulated within any 
с ass) w ic are friends of the class, that is, they have access to the private members 
o^ e с ass. inally we supply stream access also via global friend operators »  and

iS t̂r.a*£btforward and requires little explanation. If we want 
nnmhprc fv»6 spre A ction  (to something else than linear resulting in fuzzy 
in the fnnrt'01 т da tr 8̂f1f u âr и̂22У ambers) one only has to change a single line 

the functlon LRhnc (the return statement):
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double FuzzyNumber::LRfunc(const double* x) const 

{
if((x >= 0.0) fefe (x <= 1.0)) return 1.0-x; 

else return 0.0;

>

The header file FuzzyN. h is given by 

// fuzzyN.h

#include <iostream> 

using namespace std;

class FuzzyNumber 

{
public:

FuzzyNumber(const doublefe mu=0,const doublefe alpha=0, 

const doublefe beta=0);

FuzzyNumber(const FuzzyNumberfe num);

double mean() const; // also conversion from fuzzy to crisp

double leftSpreadO const;

double rightSpreadQ const;

void setMean(const doublefe mu);

void setLeftSpread(const double* alpha);

void setRightSpread(const double* beta);

double operator() (const double* x) const;

FuzzyNumberfe operator = (const FuzzyNumberfe num) ;

FuzzyNumber operator + (const FuzzyNumberfe num) const; 

FuzzyNumber operator - (const FuzzyNumberfe num) const; 

FuzzyNumber operator * (const FuzzyNumberfe num) const; 

FuzzyNumber operator / (const FuzzyNumberfe num) const; 

FuzzyNumber operator - () const; // Unary minus. 

FuzzyNumberfe operator = (const doublefe num);

FuzzyNumber operator + (const doublefe num) const; 

FuzzyNumber operator - (const doublefe num) const; 

FuzzyNumber operator * (const doublefe num) const; 

FuzzyNumber operator / (const doublefe num) const; 

FuzzyNumber invert() const;

friend FuzzyNumber operator + (const doublefe crisp,
const FuzzyNumberfe fuzzy); 

friend FuzzyNumber operator - (const doublefe crisp,
const FuzzyNumberfe fuzzy); 

friend FuzzyNumber operator * (const doublefe crisp,
const FuzzyNumberfe fuzzy); 

friend FuzzyNumber operator / (const doublefe crisp,
const FuzzyNumberfe fuzzy);

friend istreamfe operator »  (istreamfe is,FuzzyNumberfe num); 

friend ostreamfe operator «  (ostreamfe os,const FuzzyNumberfe num)
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private:

double _mu, _alpha, _beta;

double LRfunc (const doublet x) const;

// implementation

FuzzyNumber::FuzzyNumber(const doublet mu,const doublet alpha, 

const doublet beta)

: _mu(mu) , „alpha(alpha) , .beta(beta) O ;

FuzzyNumber:-.FuzzyNumber(const FuzzyNumbert num)

{  *this = num; >

FuzzyNumbert FuzzyNumber: roper at or= (const FuzzyNumbert num)

_mu = n u m . _mu;

_alpha = num._alpha;

_beta = num._beta; 

return *this;

>

double FuzzyNumber::mean() const { return _mu; >; 

double FuzzyNumber: :leftSpread() const •{ return _alpha; 

double FuzzyNumber: :rightSpread() const { return _beta; };

void FuzzyNumber::setMean(const doublet mu)

{ _mu=mu; >

void FuzzyNumber::setLeftSpread(const doublet alpha)

i  _alpha=alpha; >
void FuzzyNumber::setRightSpread(const doublet beta)

{  _beta=beta; >

FuzzyNumber FuzzyNumber::operator + (const FuzzyNumbert num)

double mu = _mu+num._mu; 

double alpha = _alpha+num._alpha; 

double beta = _beta+num._beta; 

return FuzzyNumber(mu,alpha,beta);

>

FuzzyNumber FuzzyNumber::operator - (const FuzzyNumbert num)

double mu = _mu-num._mu; 

double alpha = _alpha+num._alpha; 

double beta = _beta+num._beta; 

return FuzzyNumber(mu,alpha,beta);

>

const

const
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FuzzyNumber FuzzyNumber::operator * (const FuzzyNumberfe num) const 

{
double mu = _mu*num._mu;

double alpha = _mu*num._alpha+num._mu*_alpha; 

double beta = _mu*num._beta+num._mu*_beta; 

return FuzzyNumber(mu,alpha,beta);

>

FuzzyNumber FuzzyNumber::operator / (const FuzzyNumberfe num) const 

{ return *this*num.invert(); }

FuzzyNumber FuzzyNumber::operator- () const // Unary minus.

{ return FuzzyNumber(-_mu,_alpha,_beta); >

FuzzyNumber FuzzyNumber::operator+ (const doublefe num) const 

{
double mu = _mu+num;

return FuzzyNumber(mu,_alpha,_beta);

>

FuzzyNumber FuzzyNumber::operator- (const doublefe num) const

■c
double mu = _mu-num;

return FuzzyNumber(mu, alpha,_beta);

>

FuzzyNumber FuzzyNumber::operator* (const doublet num) const 

{
double mu = _mu*num; 

double alpha = num*_alpha; 

double beta = num*_beta; 

return FuzzyNumber(mu,alpha,beta);

>

FuzzyNumber FuzzyNumber::operator/ (const doublefe num) const 

{  return *this*((double)1/num); }

double FuzzyNumber::operator() (const doublefe x) const

if(x < _mu) return LRfunc((_mu-x)/.alpha); 

else return LRfunc((x-_mu)/_beta);

>

double FuzzyNumber::LRfunc(const doublefe x) const

if((x >= 0.0) fefe (x <= 1.0)) return 1.0-x; 

else return 0.0;
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FuzzyNumber FuzzyNumber::invert() const 

{
double mu = (double)l/_mu; 

double alpha = _beta/(_mu*(_mu+_beta)) ; 

double beta = _alpha/(_mu*(_mu+_alpha)); 

return FuzzyNumber(mu,alpha,beta);

>

// Global Operators

FuzzyNumber operator* (const doublet crisp,const FuzzyNumbert fuzzy) 

{ return FuzzyNumber(crisp) + fuzzy; }

FuzzyNumber operator- (const doublet crisp,const FuzzyNumbert fuzzy) 

{ return FuzzyNumber(crisp) - fuzzy; >

FuzzyNumber operator* (const doublet crisp,const FuzzyNumbert fuzzy) 

{ return FuzzyNumber(crisp)*fuzzy; >

FuzzyNumber operator/ (const doublet crisp,const FuzzyNumbert fuzzy) 

{ return FuzzyNumber(crisp)/fuzzy; >

istreamt operator »  (istreamt is,FuzzyNumbert num)

•c
is »  num._mu »  num._alpha »  num._beta; 

return is;

>

ostreamt operator «  (ostreamt os,const FuzzyNumbert num)

{
os «  "(" «  num._mu «  «  num._alpha «

«  num._beta «  ")"; 

return os;

>

As ал example consider the program fuzzyN.cpp 

// fuzzyN.cpp

#include <iostream>

# include "fuzzyN.h'' 

using namespace std;

int main(void)

FuzzyNumber numl(2.0,0.5,0.5), num2(3.0,0.5,0.5);

cout «  "numl, num2, -num2 = " «  numl «  ", " «  num2 «  " "

«  -num2 «  endl;
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const double xMin = 1.5, xMax = 3.5; 

const int nPoints = 9;

const double dx = (xMax-xMin)/(nPoints-l.0);

double x = xMin;

forCint i=0;i<nPoints;i++)

•C
cout.precisionC4); cout.widthC6); cout «  x «  " ";

cout.precisionC4); cout.widthC6); cout «  numlCx) «  " ";

cout.precisionC4); cout.widthC6); cout «  num2Cx) «  endl;

X +=
г

dx;

j

cout « "numl + num 2 = " «  numl+num2 « endl;

cout « "numl - num2 = " «  numl-num2 « endl;

cout « "numl * num2 = " «  numl*num2 « endl;

cout « "numl / num2 = " «  numl/num2 « endl;

cout « "numl + 2 = " «  numl+2 «  endl;

cout « "numl - 2 = " << numl-2 «  endl;

cout « "numl * 2 = " «  numl*2 «  endl;

cout « "numl / 2 = " «  numl/2 «  endl;

cout « "1.3 + numl = " «  1.3+numl «  endl;

cout « "1.3 - numl = " «  1.3-numl «  endl;

cout « "1.3 * numl = " «  1.3*numl «  endl;

cout « "1.3 / numl = " «  1.3/numl «  endl;

cout « "enter fuzzy number: mu, alpha, beta: ";

FuzzyNumber num3; cin »  num3; cout «  num3; 

return 0;

>

We first create two fuzzy numbers and then calculate their value on a grid using the 
function call operator ( ) .  Note that one can view this as a discretization process 
of the continuous fuzzy numbers. In the rest of the code we simply test the various 
algebraic operators. The output of the program is given by:

numl, num2, -num2 = C2,0.5,0.5), C3,0.5,0.5) C~3,0.5,0.5)

1.5 0 0

1.75 0.5 0

2 1 0

2.25 0.5 0

2.5 0 0

2.75 0 0.5

3 0 1

3.25 0 0.5

3.5 0 0

numl + num2 = C5,l,l)

numl - num2 = C“l, 1,D

numl * num2 = C6,2.5,2.5)

numl / num2 = CO.6667,0.2619,0.2619)

numl + 2 = C4,0.5,0.5)
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numl - 2 = (0,0.5,0.5) 

numl * 2 = (4,1,1) 

numl / 2 = (1,0.25,0.25)

1.3 + numl = (3.3,0.5,0.5)

1.3 - numl = (-0.7,0.5,0.5)

1.3 * numl = (2.6,0.65,0.65)

1.3 / numl = (0.65,0.13,0.13)

1.2 0 . 1  0 . 2
(1 . 2 , 0 . 1 , 0 . 2)

18.3.6 Applications

Fuzzy numbers have a large number of applications in engineering and science. A 
large number of them are described in Ross [93].

Example. Assume we want to determine the power from two fuzzy measurements, 
the voltage and the current. The spreads for the fuzzy measurements of the voltage 
and the current axe determined by the estimation of the errors in the measurement. 
Assume, for example, that the maximum reading of the voltmeter is Knax =  200V 
and that the error at full-scale is e =  5%. The spreads are then set to

ay =  Py =  eVmax =  10V.

Assuming we measure a potential difference of 120V, we have V  =  (120,10, 10)lh- 
In the same way we obtain the fuzzy current reading I .  The power is then given by

P  — V x T .

Assuming
/ =  (10,0.2,0.2)^

we obtain
P =  (1200,124,124)^.

Example. The equation of state for an ideal gas is given by pV =  N k T . If N  and 
T  are kept constant, we have

pV =  const.

Assume that for T  and N  fixed an ideal gas of fuzzy volume

Vi =  {(0.5,0.0), (0.75,0.5) (1.0,1.0), (1.25,05), (1.5,0.0)}

is under a fuzzy pressure

Pi =  {  (0.5,0.0), (1.75,0.5) (2.0,1.0), (2.25,0.5), (2.5,0.0) }  .

Using the extension principle one can calculate the fuzzy pressure if the volume is 
reduced to

V2 =  {  (0.4,0.0), (0.45,0.5) (0.5,1.0), (0.55,0.5), (0.6,0.0) }  .
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18.4 Fuzzy Rule-Based Systems

18.4.1 Introduction

The purpose of control is to influence the behaviour of a system by changing an 
input or inputs to that system according to a rule or set of rules that model how 
the system operates. The system being controlled may be mechanical, electrical, 
chemical or any combination of these. Classic control theory uses a mathematical 
model to define a relationship that transforms the desired state (requested) and 
observed state (measured) of the system into an input or inputs that will alter 
the future state of that system. The most common example of a control model is 
the PID (proportional-integral-derivative) controller. This takes the output of the 
system and compares it with the desired state of the system. It adjusts the input 
value based on the difference between the two values according to the following 
equation

output =  A.e +  B.INT(e)dt +  C.de/dt

where, A, В and С are constants, e is the error term, INT(e)dt is the integral of the 
error over time and de/dt is the change in the error term. The major drawback of 
this system is that it usually assumes that the system being modelled is linear or 
at least behaves in some fashion that is a monotonic function. As the complexity of 
the system increases it becomes more difficult to formulate that mathematical model.

Fuzzy control replaces the role of the mathematical model and replaces it with an
other that is build from a number of smaller rules that in general only describe a 
small section of the whole system. The process of inference binding them together to 
produce the desired outputs. That is, a fuzzy model has replaced the mathematical 
one. The inputs and outputs of the system have remained unchanged. The usage 
of fuzzy approaches for the automatic control of technical processes tries to imitate 
the conscious behaviour of a human operator controlling complex nonlinear pro
cesses or production plants which can hardly be modelled by mathematical-physical 
reflections. These circumstances disable a systematical design of a conventional 
model-based controller.

Examples for these kinds of processes are

• biotechnological production processes,

• chemical processes,

• image processing,

• wastewater treatment plans or

• autonomous vehicle steering and control.

Instead of a conventional linear or nonlinear controller a fuzzy controller is used 
which consists of the three elements
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• fuzzyfication,

• inference and

• defuzzyfication

The first task of a fuzzy controller is the translation of the numerical input variables 
to linguistic variables.

Definition. Labeling the crisp value of a numerical input variable with a linguis
tic term and determing the corresponding grade of membership is called fuzzification.

Example. Assuming that the output variable у can be measured in a standard 
control loop, in the following steps only the corresponding linguistic variable with 
terms like negative big, negative etc. will be processed. Therefore a set of member
ship functions for у has to be defined.

Definition. The determination of conclusions or the generation of hypotheses based 
on a given input state is called inference.

For the operation within the standard control loop this means, that the rules define 
the dependencies between linguistically classified input values and linguistically clas
sified output values. The result is a manipulated variable и according to the input 
situation. This all occurs in an upper symbolic level first. The implementation can 
use a couple of operators which are partially discussed above. Mainly the inference 
component imitates the human operator strategies. Common inference strategies 
are

• the max-prod inference, which multiplies the whole output’s membership func
tion, and

• the max-min inference, which cuts the output’s membership function at the 
top.

But the symbolic control action cannot be used for a real technical plant, the lin
guistically obtained manipulated variable has to be defuzzified.

Definition. Defuzzification is the calculation of a crisp numerical value as the con
troller output based on the symbolic results.

In most cases several rules will be fired and caused by the fuzzyness different terms 
and therefore different control actions will be activated. But the actuator requires 
a crisp value which can be calculated by different approaches. The most common 
defuzzification methods are

• center of gravity,

• COS - center of singletons,
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• maximum membership and

• center of maximum memberships.

The practical usage of the given definitions is illustrated by the following example.

Example. A fuzzy controller uses the actual system deviation e(k) as an external 
input variable. An internal short term memory delays the deviation for one sampling 
period so that the previous system deviation e{k — 1) can also be used for the 
controller mapping. The membership functions are chosen equally for all linguistic 
variables, i.e. e(&), e(k — 1) and the manipulated variable u(k). For the sake of 
simplicity the inference contains only two rules:

• IF  the system deviations e(k) and e(k — 1) are approximately zero, TH E N  
the control action u{k) is approximately zero.

• IF  the system deviations e(k) and e(k — 1) are positive, T H E N  the control 
action u(k) is positive.

It can easily be seen that this rulebase is incomplete because a lot of terms of the 
input variables and the possible combinations are not used.

A fuzzy control system usually receives a fuzzy input signal and performs some 
logical or arithmetic operations on that input and gives a fuzzy output. Often the 
original input signal is obtained from crisp measurements and has to be fuzzified. 
Often knowledge about the error in the measurement apparatus can be used to 
fuzzify the input signal. Also, for many control problems the output must again be 
crisp. In these cases we defuzzify our output via one of the defuzzification operators, 
for example by determining the centroid of the fuzzy output signal. Consider, for 
example, the typical fuzzy control system depicted in the figure. The controlled 
process could be the breaking system of a car, the throttle and wing settings of an 
airplane or an investment portfolio. Usually measurements on the system result in a 
crisp measurement signal. This is then fuzzified, often using the error information of 
the measurement apparatus. The fuzzy system then uses the resultant fuzzy input 
signal together with approximate reasoning based on fuzzy rules to obtain a fuzzy 
output signal. Again, the controlled system usually requires a crisp input signal, the 
change in the throttle setting of the aeroplane or the amount invested in a certain 
stock item. To obtain this crisp signal we defuzzify the fuzzy signal with one of the 
defuzzification operators. For the system to work weU we need a good knowledge 
base. The knowledge base contains the rules as well as the information regarding a 
suitable fuzzification and defuzzification method for the system.
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Figure 18.1. Fuzzy Control System

A simple example is temperature control. One can apply a fuzzy logic control 
strategy to control the temperature. A temperature control system consists of a 
thermostat that contains a heater resistor, a potentiometer, and a thermistor. The 
resistor is the temperature controlling controlling element, and the thermistor is the 
temperature sensing element. The resistor, activated by a pulse width modulated 
(PWM) source, heats the adjacent thermistor. A potentiometer sets the desired 
final temperature (setpoint), and the thermistor senses the current temperature. In 
proportional/differential control mode one determines the value for the temperature 
error, Те , and the rate of the temperature error change dTs/dt. The fuzzy control 
algorithm uses these values and sends back the duty cycle for the pulse width mod
ulation resistor. The rule base for the temperature is as follows.

Rule 1. IF the linguistic input term is COLD,
THEN the DUTY CYCLE is LARGE.

Rule 2. IF the linguistic input term is COOL,
THEN the DUTY CYCLE is MEDIUM.

Rule 3. If the linguistic input term is JUST RIGHT,
THEN the DUTY CYCLE is SMALL.

Rule 4. If the linguistic input term is HOT,
THEN the DUTY CYCLE is ZERO.

In the defuzzification process we have to associate output linguistic terms with the 
crisp output DUTY CYCLE values which vary from zero to 100 percent.

18.4.2 Fuzzy If-Then Rules

Fuzzy control systems use the following conditions to define and implement a rule 
base:
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1) Input and output linguistic variables contain terms that may be true to a degree 
ranging from zero to one. Zero represents totally untrue and one represents totally 
true. A linguistic term that is true to a degree 0.5 would be half true and half false.

2) The linguistic operators AND, and OR express conditions in the rule base.

3) IF ... THEN operators express conditions in the fuzzy logic rule base. This rule 
is of the general form

IF antecedent THEN consequence
4) A fuzzification step links crisp input values to the fuzzy logic control.

5) A defuzzification step links output linguistic terms to crisp output values.

To implement a fuzzy control strategy to control for example the temperature we 
must use two way translations between the crisp and linguistic terms. To implement 
a fuzzy logic control process we uses the following three steps.

1) Fuzzification. One translates crisp input values into linguistic terms and assigns 
a degree of membership to each crisp input value. Linguistic variables are fuzzy sets 
which contain linguistic terms as members of the set.

2) Fuzzy Rule Inference. IF ... THEN rules that define the relationship between 
the linguistic variables are established. These rules determine the course of action 
the controller must follow. Thus most fuzzy logic application solutions use produc
tion rules to represent the relationship between linguistic variables and to derive 
actions from sensor inputs. Production rules consist of a precondition (IF part) and 
a consequence (THEN part). The IF part can consist of more than one condition 
linked together by linguistic conjunctions like AND and OR. The computation of 
fuzzy rules is called fuzzy rule inference. Aggregation uses fuzzy logic operators to 
calculate the result of the IF part of a production rule when the rule consists of 
more than one input condition. One of the linguistic conjunctions, AND or OR, 
links multiple input conditions. Composition uses the fuzzy logic operator, PROD, 
to link the input condition to the output condition. Using the conjunction AND 
for the minimum and OR for the maximum is often appropriate in small control 
applications.

3) Defuzzification. The result of the fuzzy inference is retranslated from the linguistic 
concept to a crisp output value.

18.4.3 Inverted Pendulum Control System

The most famous example (Ross [93], Bojadziev [9]) for fuzzy control is the broom 
stick balancer (also called inverted pendulum control system). The inverted pendu
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lum consists of an arm attached to a cart at a point. The arm rotates in the plane 
Oxy. The cart moves along the x axis forward and backward under the influence 
of a force F. The input parameters are the angle a and the velocity v. The output 
parameter is the force. The control objectives is for any pair (a, u) which specify 
the position and the velocity of the system to find apply a corresponding force F  to 
the cart that the arm is balanced, i.e. does not fall over the cart.

For fuzzy control applications it is often convenient to write the fuzzy controllers 
output as a system of if-then rules. For example, we could use the following rule as 
part of a simple broom balancer:

IF
the angle of the broom is small positive,

THEN
set the force on its base small negative.

In Boolean logic the consequence becomes true when the antecedent is true (not 
necessarily vice-versa). In fuzzy logic we often work with half-truths or graded 
truths. Here the consequence only becomes true to the extent that the antecedent 
is true. We can implement this simple rule in the following way:

Fuzzy smallPositiveAngleCl00,-45,45); 

smallPositiveAngle.triangle CO,15,30);

Fuzzy smallNegativeForceС40,-3,3); 

smallNegativeForce.triangle C~2,-1,0);

Fuzzy fuzzyForce

= smallNegativeForce.limit CsmallPositiveAngle Cangle));

The actual force applied to the broom must, of course, be a crisp value. For this 
purpose we defuzzify the fuzzy force via, for example, the centroid defuzzifier

double force = fuzzyForce.centroidC);

Generally we have of course more complicated fuzzy control systems. For example, 
our broom balancer might be a little more successful if we use the angle and angular 
velocity as inputs. We might, for example, have the rule

IF
the angle of the broom is large positive,

AND
the angular velocity is large positive 

THEN
set the force on its base large negative.

double antecedent

= min CsmallPositiveAngleCangle),largePositiveVelocityCvelocity)); 

force = largeNegativeForce.limitCantecedent).centroidC);
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In general we have many rules and many possible consequences. Consider, once more 
the very simple broom balancing problem. Our universe of discourse for angles could 
be LN, SN, Z, SP and LP for large negative, small negative, zero, small positive and 
large positive represented by fuzzy sets. We have a similar universe of discourse for 
the applied force and a rule base connecting the two universes. In our case we have 
the primitive rule base:

IF angle zs LP  THEN force is LN.
IF angle is SP THEN force is SN.

IF angle is Z  THEN force is Z.
IF angle is SN  THEN force is SP.
IF angle is LN  THEN force is LP.

Assume now the actual angle is about 25°. Then the confidence level for an LP angle 
is about 0.68, the confidence for an SP angle is about 0.32 and the confidence for all 
other fuzzy angles is zero. Hence the highest confidence level is given to the fuzzy 
angle LP and consequently the first rule is selected. The IF ... THEN rule limits 
the confidence level of the consequence (the LN force) to that of the antecedent (the 
LP angle). Using the centroid defuzzifier results in a crisp force of about —1.75.

18.4.4 Fuzzy Controllers with В-Spline Models

B-spline basis functions can be used for input variables and fuzzy singletons for 
output variables to specify linguistic terms. ” Product” is chosen as the fuzzy con
junction, and ” centroid” as the defuzzification method. By appropriately designing 
the rule base, a fuzzy controller can be interpreted as a B-spline interpolator. Such 
a fuzzy controller may learn to approximate any known data sequences and to min
imise a certain cost function. By choosing such a function appropriately, the learning 
process can be made to converge rapidly. Fuzzy controllers are universal approxi
mators. The membership functions can be selected as triangles as described above 
and each pair overlaps. TViangular membership functions with a 1/2 overlap level 
produce a reconstruction error of zero.

To solve the problem of numerical approximation for smoothing statistical data, 
’’ basis splines” (В-Splines) can be introduced. B-splines are also used in computer 
aided geometric design for curve and surface representation (Hardy and Steeb [48]). 
Owing to their versatility based on only low-order polynomials and their straight
forward computation, B-splines have become more and more popular. B-splines can 
also be used for neural network modelling and control.

B-spline basis functions and parametric membership functions of a linguistic vari
able are both convex, overlapping set functions. Splines and fuzzy controllers possess 
good interpolation features. The synthesis of a smooth curve with spline functions 
can easily be associated with the defuzzification process.
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One considers the membership functions that are used in the context of specifying 
linguistic terms ( “values” or “labels” ) of input variables of a fuzzy controller. In the 
following, basis functions of periodical Nonuniform В-Splines are summarised and 
compared with a fuzzy controller.

Assume a; is a general input variable of a control system that is defined on the 
universe of discourse [#o, a;m]. Given a sequence of ordered parameters (knots): 
(a?oiSi,®2»**-»3m)» the ith normalised B-spline basis function (В-function) N^k of 
order fc is defined as

-{J
and

Nijk(x ) := - ? ■ 3  % - i M  +  Xi+k X A W - i W  if fc >  1
x i + k  ~  X i + k

with i  =  0 ,1 ,..., m — A;. The properties of В-functions are

Partition of unity: E£L0/Vi|fc(x) =  1.
Positivity: N itk(x) >  0.
Local support: N itk(x ) =  0 for x £ [xi} xi+fc].
Ck~2 continuity: If the knots {a:*} are pairwise different from each other,

then N itk{x) e Ck~2, i.e., N itk{x) is (fc — 2) times 
continuously differentiable.

The В-functions are employed to specify the linguistic terms, and knots are chosen 
to be different from each other (periodical model). The selection of к (the order of 
the В-functions) determines the following factors of the fuzzy sets for modelling the 
linguistic terms. Thus for order fc =  1 we have a rectangular shape, for к =  2 a 
triangular shape, for к =  3 a quadratic shape and for fc =  4 a cubic shape. (Hardy 
and Steeb [48]).

It is assumed that linguistic terms are to be defined over [жо, ®m], the universe of an 
input variable ж of a fuzzy controller. They are referred to as real linguistic terms. 
To maintain the partition of unity for all x G [xo,xm], more В-functions should 
be added at both ends of [жо,жт ]- They are called marginal В-functions, defining 
virtual linguistic terms. In the case of order 2, no marginal B-function is needed. In 
the case of order 3 or 4, two marginal В-functions are needed, one for the left end 
and another for the right end.

We define the core rules as linguistic rules that use real linguistic terms. If virtual 
linguistic terms appear in the premise additional rules are needed to describe the 
control action for these cases to maintain the output continuity at both ends of the 
universe of x.
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Since these rules use the virtual linguistic terms that are defined by membership 
functions neighbouring the ends of the universe of each variable, they are called 
marginal rules. The output value of each marginal rule is selected just as the output 
value of the nearest core rule, i.e., the rule using the directly adjacent linguistic 
terms in its premise.

Since a multi-input-multi-output rule base is normally divided into several multi
input-single-output rule bases, we consider only the multi-input-single-output case. 
Under the following conditions:

• Periodical B-spline basis functions as membership functions for inputs.

• Fuzzy singletons as membership functions for outputs.

• “Product” as fuzzy conjunctions.

• “Centroid” as defuzzification method.

• Addition of virtual linguistic terms at both ends of each input variable.

• Extension of the rule base for the virtual linguistic terms by copying the output 
values of the nearest neighbourhood.

The computation of the output of such a fuzzy controller is equivalent to that of a 
general B-spline hypersurface. Consider a multi-input-single-output system with n 
inputs ®2» • • ■ i xn, rules with the n conjunctive terms in the premise are given in 
the form

{Ru le(iu i f fo  is N}lM ) к ... S (x„ is A£ifcl) then у is a J

where

• Xj is the jth  input ( j  — 1 ,..., n).

• kj is the order of the B-spline basis functions used for Zj.

• TV? is the ith linguistic term of Xj defined by B-spline basis functions.

•  i j  =  0 , . . . ,  r r ij represents how fine the jth  input is fuzzy partitioned.

• is the control vertex (de Boor points) of Rule(ii}i2, ■ • • Лп)- 

Then the output у of a multi-input-single-output fuzzy controller is

_ № .....< * ,(% ■ ))
y £^о---ЕГ=оПU Ni , * №

mi mn n
=  ...v  П  4 , ^ ) )

<1=0 in=0 ;=1

This is called a general nonuniform B-splines hypersurface. It has the properties
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• If the В-functions of order fcb fc2> • • •, kn are employed to specify the linguistic 
terms of the input variables a?i, x2i. . . ,  xn it can be guaranteed that the output 
variable у is (kj —2) times continuously differentiable with respect to the input 
variables Xj}j  =  1 ,..., n.

• If the input space is partitioned fine enough and at the correct positions, the 
interpolation with the B-spline hypersurface can reach a given precision.

18.4.5 Application

Let us have a look at an approximate reasoning example. Consider the following 
rules for analyzing a computer code for the computer language used.

IF
vaguely many extends,

THEN
Java.

IF
more than n semicolons,

AND
somewhat many curly brackets 

AND NOT 
many begin 
AND NOT 

Java 
THEN 
C ++

Again, we can use our discrete fuzzy set class to implement this fuzzy inference 
problem.

// language.cpp

#include <iostream>

#include "Fuzzy.h" 

using namespace std;

template <class T>

T min4(const T& xl,const T& x2,const T& x3,const T& x4)

T min = xl;

if(min > x2) min = x2; 

if(min > x3) min = x3; 

if(min > x4) min = x4; 

return min;

>



18.4. FUZZY RULE-BASED SYSTEMS 581

int main(void)

■C
const int pMin = 0; 

const int pMax = 10; 

const int nDiscr = 200;

Fuzzy enoughSemicolons(nDiscr,pMin,pMax); 

enoughSemicolons.greaterThan(5);

Fuzzy somewhatManyCurlyBrackets(nDiscr,pMin,pMax); 

somewhatManyCurlyBrackets.large(); 

somewhatManyCurlyBrackets

= somewhatManyCurlyBrackets.hedge(Fuzzy::somewhat);

Fuzzy manyBegin(nDiscr,pMin,pMax); 

manyBegin.large();

Fuzzy slightlyManyExtends(nDiscr,pMin,pMax); 

slightlyManyExtends.large();

slightlyManyExtends = slightlyManyExtends .hedge (Fuzzy: .-slightly);

double nSemicolon, nCurlyBracket, nBegin, nExtend;

cout «  "Enter no of ; "; cin »  nSemicolon;

cout «  "Enter no of { "; cin »  nCurlyBracket;

cout «  "Enter no of begin "; cin »  nBegin;

cout «  "Enter no of extend "; cin »  nExtend;

double java = (slightlyManyExtends)(nExtend);

double notJava = (!slightlyManyExtends)(nExtend) ;

double cpp = min4(enoughSemicolons(nSemicolon),

somewhatManyCurlyBrackets(nCurlyBracket),

(!manyBegin)(nBegin),notJava); 

cout «  "Confidence that program is Java: " «  java «  endl; 

cout «  "Confidence that program is C++ : " «  cpp «  endl; 

return 0;

>

We can run the program now for various inputs for the frequency of occurance of 
the program elements, semicolon, curly bracket, begin and extend (on some ar itrary 
scale): Below is the output for 2 different trial runs:

Enter no of ; 10

Enter no of { 10

Enter no of begin 0

Enter no of extend 0

Confidence that program is Java: 0

Confidence that program is C++ : 0.993307

Enter no of ; 20

Enter no of i  15

Enter no of begin 5

Enter no of extend 10

Confidence that program is Java: 1

Confidence that program is C++ : 0
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18.5 Fuzzy С-Means Clustering

The aim of this clustering technique is to group a given set of data consisting of n 
vectors in R fc

X  =  {xo, xi, ... xn_i }

into a number of clusters c, so that the data in the same group are as similar as 
possible and the data in different groups are as dissimilar as possible. Fuzzy C-Means 
achieves this classification by minimising the objective function

J(i/,vO =  £ £ ( / * ) ,,,l lx . - v J||* 
i=0 j =0

where Ду represents the membership degree of data х* to the cluster centre Vj. The 
quantity /Zy satisfies the following conditions

(Mj <= [0,1] for i  =  0 ,1 ,..., n  -  1, j  =  0 ,1 ,..., с -  1

and
c—1

=  1, for г =  0 ,1 ,...,71- 1.
j=o

Furthermore Цх,- -  Vj\\ is the Euclidean distance between x, and Vj. The parameter 
m is used to control the fuzziness of membership of each datum, m >  1. There 
is no theoretical basis for the optimal selection of the exponent m, but a value of 
m =  2.0 is usually chosen. The n x с matrix U  =  (/iy) is called a fuzzy partition 
matrix and V  =  {v0, vb . . . ,  vc_i} is a set of cluster centres (of course also vectors 
in K k). The fuzzy С-mean clustering algorithm attempts to partition a finite colle- 
cetion of elements of the set X  into a collection of с fuzzy clusters with respect to 
some given criterion. Thus the fuzzy С-means clustering needs an a priori assump
tion of the number of clusters. The fuzzy С-means clustering algorithm is as follows:

1) Initialize the membership matrix U  =  (/*y) with random values so that

IMj € [0,1] for г =  0 ,1 ,..., 7i — 1, j  =  0 ,1 ,..., с — 1

and
c - l

Y^Pij =  for г =  0 ,1 ,..., тг -  1. 
j =о

2) Compute the fuzzy centres Vj using

E

for j  —  0 ,l , . . . , c -  1.
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3) Calculate the new distances

dii = 11* -  vj'II
for i =  0 ,1 ,..., n — 1 and j  =  0 ,1 ,..., с — 1.

4) Update the fuzzy membership matrix U  =  (/iy) according to: if <kj Ф 0, then

1

else
Mij =  1 •

5) Repeat step 2) to 4) until the minimum J  value is achieved.

In the C ++  program we consider four vectors in R 3, m =  2 and two clusters, i.e. 
с =  2. We do 20 iterations. It is left as an exercise to calculate J (U ,V ) at each time 
step and consequently obtain a criteria for convergence.

// clustering.cpp

♦include <iostream>

♦include <cmath> // for sqrt 

using namespace std;

double distance(double* wl,double* w2,int k) 

double r = 0.0;
for (int i=0;i<k;i++) { r += (wl[i]-w2 [i])*(wl[i]-w2 [ij), }

return sqrt(r);

>

int main(void)

-C
int n = 4; // number of vectors 

int к = 3; // length of vectors 

double** X = new double*[n];

for (int i=0; i<n; i++) { X[i] = new double 00; >

X СО] C03 = 1.0; XC0] [13 - 1.0; XCO] [23 = 0.0;

XC1H0] = 0.0; XCl] Cl] - 1.0; XCl] C2] = 1.0;

XC2H0] = 1.2; ХС2П1] = 0.9; XC2]C2] = 0.1;

XC3] CO] = 0.1; XC3H1] = 1.1; XC3][2] = 0.95;

int с = 2; // number of clusters

double** V = new double* Cc];
for (int i=0;i<c;i++) { VCi] = new double Ck] ; >

double** U = new double* Cn];
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forCint i=0;i<n;i++) { U[i] = new double[c]; > 

u [03 CO] = 0.1; U[0] [1] = 0.9; U[l] [0] = 0.4; U[l] [1] = 0.6;

U[2] [0] = 0.5; U[2] [1] = 0.5; U [3] [0] = 0.7; U [3] [1] = 0.3;

double** D = new double*[n]; // distances 

for(int i=0;i<n;i++) { D[i] = new double[c]; >

// Compute the fuzzy centres 

int count = 0; 

while(count < 50)

{
forCint j=0;j<c;j++) 

forCint l=0;l<k;l++)

{
double tl = 0.0; double t2 = 0.0; 

forCint i=0;i<n;i++)

{
tl += U[i] [j]*U[i] [j]*X[i] [1] ; t2 += U[i] [j]*U[i] [j] ;

> // end for loop i 

V[j] [1] = tl/t2;

} // end for loop 1 

} // end for loop j

for Ci=0;i<n;i++)

{
forCj=0; j<c; j++) { D[i] [j] = distance CX [i] ,V[j] ,k) ; >

>

forCint i=0;i<n;i++)

•C
forCint j=0;j<c;j++)

■C
double t3 = 0.0;

if CD[i] [j]==0.0) U[i][j] = 1.0;

else

forCint p=0;p<c;p++) { t3 += D[i] [j]*D[i] [j] / CD[i] [p] *D [i] [p]) ; > 

U[i][j] = 1.0/t3;

>
>
count++;

> // end while

forCint i=0;i<n;i++) 

forCint j=0;j<c;j++)

cout «  "U[" «  i «  "] [" «  j «  "] = " «  U[i] [j] «  endl; 

forCint j=0;j<c;j++) 

forCint i=0;i<k;i++)
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cout «  "V[" «  j «  "][• ' «  i  «  " ] = •• «  V [j] [ i ]  «  endl;

// free memory
forCint i=0;i<n;i++) < dele te [] X [i ] ;  > delete□ X 
forCint i=0;i<c;i++) {  deleteG V [i] ; > delete[] X 
forCint i=0;i<n;i++) {  delete [] U [i] ; > delete[] U 
forCint i=0;i<n;i++) {  deleteG DCi] ; > delete[] D 
return 0;

>

Another strategy of the fuzzy clustering method is called the penalized fuzzy C- 
means (P F C M ) algorithm owing to the addition of a penalty term. It is a fuzzy 
С-means algorithm of generalized type depending upon the penalized term in ac
cordance with the value of w. The penalized fuzzy С-means algorithm is more 
meaningful and effective than the fuzzy С-means method. The objective function is 
given by

Jpfc m  =  I E  E  ft"  II®* -  wi II2 -  \v  E  E  л” ln °ч 
л j= l  i = l  *  j= l  t= i

=  J f c m  -  111 a 3

where ctj is a proportional constant of class j  and v (>  0) is a constant. When 
v =  0, Jpfcm  equals Jf c m • The penalty term

— Ц =  1 1° aj

is added to the objective function and o tj, Wjt and /Zy are defined as

E n ..m
t= l  • __ 1 0  n

a j Ц=1 £"=ift™ ’ 3 ~  ’ ......
. E"=i ft" д.

У̂ П um ’2 î=i Л  j

and
/ Л (1кх-ц;,112-г ;1 п ^ )1/(т 1)xj

V/Й (II®* “ w*ll2 ”  ylnQfi)1/(m_1) J
where i  =  1 ,2 ,..., n, j  =  1,2,..., c. Then the steps in the penalized fuzzy C-means 
algorithm are

1) Randomly set cluster centroids Wj (2 <  j  <  c), fuzzification parameter m 
(1 <  m  <  oo), and the value € >  0. Give a fuzzy С-partition U (0).

2) Compute the Wj(t) with U ( t - 1) using the second and third equations. Cal
culate the membership matrix U — (fMj) with acj(t)t Wj(t) using the fourth equation.



586 CHAPTER 18. FUZZY SETS AND FUZZY LOGIC

3) Compute Д := max(|U{t +  1) — U (t)|). If Д  >  €, then go to step 2; otherwise go 
to step 4.

4) Find the results for the final class centroids.

18.6 fXOR Fuzzy Logic Networks

The algebraic Reed-Muller expansion of boolean functions is one of the fundamental 
approaches in the design of digital systems, especially when dealing with the VLSI 
technology. This algebraic representation is also useful in error detection and error 
correction models. Let f (x i ,x 2l. .. ,xn) be a boolean function. We define with 
respect to Xj ( j  =  1,2,. ..,n )

fiZj (x ) • f  ( i l  j • • • j Xj—1, 1, Xj+1» • • • > %n) 
fxj{x) . f [ x i , .. . , Xj—i, 0, Xj+j , . . . , Xji)

Qx . :== fxj{x ) © fxj{x)

as the positive cofactors of /, negative cofactor of /, and the boolean derivative of 
f .  Then the Reed-Muller expansion (also called Davio expansion) is given by

ft)
where 0  is the XOR operation and • is the AND operation. The complement of the 
variable is denoted by an overbar, that is x =  1 - x. Note that (а ® Ь )-с  ф a ® (b -c ) 
in general, for example for a =  1, 6 =  0, с =  0.

Example. Consider the sum-of-product form of the boolean function

/(xb x2, £3, 2:4) =  Xi -x3 +  Xi • x2 • 14 +  £i • x2 ■ xz -f Xi • х3 • Xi .

This can be written in the (obviously simpler) form

f ( x  1,Х2,Хз,1 4) = i i 0 x 30  (x2 • x3 • x4) . ♦

A generalization of the Reed-Muller algebraic representation applied to multivalued 
(fuzzy) functions is as follows (Pedrycz and Succi [86]). One has to define fuzzy 
exclusive-OR functions that are a cornerstone of such a representation. One can 
develop a logic-based architecture of fuzzy neural networks, called fXOR networks 
here, that are capable of realizing this type of mapping. In contrast to the standard 
way of approximation of fuzzy functions that is realized via a generalized sum of 
minterms and becomes a generalized Shannon representation model, the approach 
leads to a compact representation and features several useful learning properties.
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One uses t- and s-norms described above. The t— and 5—norms are treated as two 
general classes of logic connective (logic operators). All variables assume values in 
the unit interval.

The fuzzy XOR neuron (fXOR) is a generalization of the standard XOR operation 
(gate) used in digital (boolean) systems. An n-input single output fXOR is governed 
by the expression

у =  fXOR(x, w)

where x and w  are elements in the n-dimensional unit hypercube, i.e. x, w  6 [0, l]n. 
The underlying logic static transformation is realized through the use of s- and 
t-norms. We have

у — fXOR(x, w )
n

=  0(ZtSW<) 
i=l

=  (x i s Wl) 0  (x2 s w2) 0  • • • 0  (Xn s wn)

where the generalized exclusive-OR operation given above (0 ) is defined by the s — t 
composition

a 0  b := (a t b) s (atb), a, b E [0,1].

The expression of the fXOR neuron is given with Xj and Wj being the coordinates of 
the fuzzy sets, j  =  1,2 ,..., n and t- and s-describing triangular norms and conorms. 
The above convolution of x and the weight vector (vector of the connections) w is 
just a t — s composition of two fuzzy sets. Thus it follows the fundamentals of the 
calculus of fuzzy relational equations.

By studying the characteristics of the neuron (for n =  1), one finds that for differ
ent inputs we achieve higher values of the output. The more similar the inputs, the 
lower the output of the fXOR neuron. In the binary (two-valued) case we end up 
having the standard characteristics of the XOR function.

The meaning of the connections becomes obvious by studying the properties of the 
t — s composition. We find that the connections help quantify the relationships 
between the input variables and the corresponding output. The higher the value 
of the connection, the less intensive (visible) the impact of the corresponding input 
variable on the output of the neuron. For Wj =  1 this impact is totally eliminated.
On the other hand, for Wj =  0, the impact is the most evident.

The fuzzy neural network generalizes the algebraic representation of fuzzy functions 
and is in analogy to what occurs in the Reed-Muller expansion of Boolean functions. 
Two types of fuzzy neurons are: the fXOR neurons and the AND neurons. The 
network exhibits a single hidden layer consisting of AND neurons that is followed 
by the output layer of the fXOR neurons. The role of the AND neurons is to build 
a logical AND aggregation of the input variables (appearing here in a direct as well
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as complemented format), that is X\, x2, .. . ,  xn. The expression governing this is 
given by

г = AND(x; v)

where v is a vector of the connections (weights) of this neuron. Considering indi
vidual variables, we can write

z =  T j - i { x j  s Vj) t T j=1(x j  s vn+ j ) 

or using the uniform notation in which we combine all inputs and their complements

In view of the t — s composition we find that the higher the value of the connection, 
the less impact is reported for the corresponding variable. If Vj =  1 then the associ
ated variable ( i j )  does not impact the output (z) as it has been totally eliminated. 
When we are confined to boolean gates, the AND neuron generalizes a well-known 
AND-gate.

18.7 Fuzzy Hamming Distance

The Hamming distance quantifies the extent to which two bitstrings of the same 
length differ. An application is in the theory of error-correcting codes, where the 
Hamming distance measured the error introduced by the noise over a channel when 
a message is sent between its source and destination. However the distance does not 
distinguish whether a discrepancy of 1 bit between a target and source is separated 
by one or many positions. Consider the following three bitstrings of length 10

b0 =  1100100000, 6i =  1100010000, b2 =  1100000001

The Hamming distance bewteen bo and bi is 2 and the Hamming distance between 
bo and 62 is also 2. However one would consider b\ a better match to bo than b2 to 
bo- b\ could be mapped into 60 by shifting the bit 1 at position 4 one position to 
the left. To map b2 into bo we have to shift the 1 bit at position 0 five places to the 
left. This should be taken into account for a definition of a fuzzy Hamming distance.

One can define a fuzzy Hamming distance as follows. One defines three operations 
in the bistrings

1) Insertion: flip a bit from 0 to 1
2) Deletion: flip a bit from 1 to 0
3) Shift: Move a 1 bit from position i  to position j

Both insertion and deletion are edit operations. Each operation has constant cost. 
One could set the cost for insertion and deletion, c* and respectively, to 1 for both 
cases. The shift operation allows us to transfer a 1-bit in bitstring Bs to a nearby 
1-bit in bitstring BT at less cost than deleting the 1-bit in Bs and inserting it in Вт- 
The shift operation is an abstraction of the concrete task of attempting to match a
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1-bit in a target and missing, but getting closer -  it thus captures, for our measure, 
the notion of neighbouring bit-sites. The cost for shift, ca, should be proportional 
to the difference in bit positions, i and j .  Thus c* =  c<* =  1 and c3 =  abs(z -  j )  * k, 
where к is arbitrarily chosen so that at some threshold point it becomes cheaper to 
insert and delete. A  choice could be к =  0.15. The fuzzy Hamming distance is then 
defined as the optimal cost to change bitstring b\ to bitstring b2 using only these 
operations. Since the optimal cost can be written as a minimum of the cost of a 
current operation plus the cost of obtaining the given bitstring, dynamic program
ming can be applied. The fuzzy Hamming distance is a metric.

Closely related is the Levenshtein distance (also called the edit distance). The Lev- 
enshtein distance (LD) is a measure of the similarity between two strings not nec
essarily of the same length. One refers to the two strings as source string s and 
target string t. The distance is the number of deletions, insertions, or substitutions 
required to transform the source string s into the target string t. Obviously if the 
strings s and t  are the same then LD (s , t) =  0.

Example. If we have the source string test and the target string tent, then 
L D (s ,t ) =  1. *

Example. Another example is

L D (“abc” , “bca” ) =  2.

On the other hand the Hamming distance would be 3. ♦

The Levenshtein distance is a metric and therefore has the properties

L D (s ,t )>  0

and (triangle inequality)

LD (s , t) <  LD(s, r ) +  L(r, t) .

The algorithm to find the Levenshtein distance is

1) Set n to be the length of the source string s. Set m to be the length of the target 
string t. If n — 0, return m and exit. If m =  0, return n and exit.

2) Construct a (m +  1) x (n -I- 1) matrix with rows 0... m and columns 0... n. 
Initialize the first row to 0.. .  n. Initialize the first column to 0... m.

3) Examine each character in the source string s (г =  1,..., n). Examine each char
acter of the target string t  ( j  — 1 ,..., m).

3a) If s [ i ]= = t [ j ] ,  the cost is 0. If s [ i ]  != t [ j ] ,  the cost is 1.
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3b) Set cell d[i][j] of the matrix equal to the minimum of:
i. The cell immediately above plus 1, i.e. d[i — 1][?'] +  1
ii. The cell immediately to the left plus 1, i.e. d[i\\j — 1] +  1
iii. The cell diagonally above and and to the left plus the cost, i.e. d[i—l ] [ j —l]+cost.

4) After the step 3) is complete, the Levenshtein distance between s and t  is in the 
matrix element d[n][m\.

A C++ implementation is 

// levenshtein.cpp

#include <iostream>

#include <string> 

using namespace std;

int min(int a,int b.int c)

{
int m = a;

if(b < m) { m = b; } 

if(c < m) { m = c; > 

return m;

>

int LD(string s,string t,int n,int m,int** D)

{
int cost; // cost 

// step 1

if(n==0) return m; 

if(m==0) return n;

// step 2

for(int p= 0 ;p<=n;D[p] [0]=p++); 

for(int q=0;q<=m;D [0] [q]=q++);

// step 3

for(int i=l;i<=n;i++) { 

for(int j=l;j<=m;j++) { 

cost = (t.substr(j-l,l)==s.substr(i-l,1) ? 0 : 1);

D[i][j] = min(D[i-l] [j]+l,D[i] [j-l]+l,D[i-1] [j-l]+cost) ;

>
>
return D[n] [m] ;

>

int main(void)

i
string s = "010101010101"; 

string t = "101010101010"; 

int n = s.lengthO;
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int m = t.length(); 

int** D = NULL;

D = new int*[n+1];

forCint k=0;k<=n;k++) D[k] = new int[m+l]; 

int distance = LDCs,t,n,m,D); 

cout «  "distance = " «  distance «  endl; 

forCint l=0;l<=n;l++) delete D [13; delete[] D; 
return 0;

>

Exercise. Find the Levenshtein distance between the bitstrings

0000000011111111 
1111111100000000

and between the bitstrings

1010101010101010

0101010101010101

Compare to the Hamming distance.

18.8 Fuzzy Truth Values and Probabilities

What is the relationship between fuzzy truth values and probabilities? This question 
has to be answered in two ways: how does fuzzy theory differ from probability the
ory mathematically, and second, how does it differ in interpretation and application.

At the mathematical level, fuzzy values are commonly misunderstood to be prob
abilities, or fuzzy logic is interpreted as some new way of handling probabilities. 
However this is not the case. A minimum requirement of probabilities is “additiv
ity” , loosely speaking that is that they must add up to one, or the integral of the 
density curve must be one.

However, this does not hold in general with membership grades. While membership 
grades can be determined with probability densities in mind, there are other meth
ods as well, which have nothing to do with frequencies or probabilities.

Owing to this, fuzzy researchers have gone to great pains to distance themselves 
from probabilities. However in doing so, many of them have lost track of another 
point, which is that the converse does hold; all probability distributions are fuzzy 
sets. As fuzzy sets and logic generalize Boolean sets and logic, they also generalize 
probability.

In fact, from a mathematical perspective, fuzzy sets and probabilities exist as part 
of a greater Generalized Information Theory which includes many formalisms for 
representing uncertainty (including random sets, Demster-Shafer evidence theory,
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probability intervals, possibility theory, general fuzzy measures, interval analysis, 
etc.). Furthermore, one can also speak about random fuzzy events and fuzzy ran
dom events.

Semantically, the distinction between fuzzy logic and probability theory has to do 
with the difference between the notions of probability and a degree of membership. 
Probability statements are about the likelihoods of outcomes: an event either occurs 
or does not. However, with fuzziness, one cannot say unequivocally whether an event 
occured or not, and instead we are trying to model the “extent” to which an event 
ocurred.
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