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FO REW O RD

This volume through its diversity reflects Lin’s journal-editing side. In 
addition to the mathematics he did he always read widely and with good 
taste in and around all the lovely terrain which neighbors on topology. 
Topology, in this way is a good subject for an eclectic. There is almost no 
domain from condensed m atter physics to p-adic analysis that one cannot 
find a topological excuse to study. Lin, the journal editor, did this. I hope 
he would find this volume interesting and thoughtful enough that he might 
have put it together himself.

Lin was, with Fred Hickling, one of my first two graduate students. So 
he and I figured out the thesis advising process together. I needed a lot of 
help. I had had an unusual education and had missed some of the steps. 
To my great relief Lin seemed to know how it would go. He would talk 
to me about what I was working on, focus in on something that I was 
not understanding properly and then dig in. As with most great students 
the advisor has little to do with the thesis. Lin had a great idea, which 
he developed with Habegger, and is further expanded in this volume. The 
idea was very reductionist, he thought the subject of knots and links had 
begun in the wrong place, as if physicists had tried to solve for H £  without 
doing the hydrogen atom first. His idea was to study “string links” : arcs 
in a ball with fixed boundary conditions, rather than ordinary links in 5 3. 
First thing first. Do the local problem before going global. It was a very 
sensible idea and amazing that knot theory had existed 100 years without 
this idea popping up. I think, 20 years later in 2008, this idea would be 
considered obvious. But this is a sign that Lin and a few like him exerted 
a systematic influence: localizing and systematizing geometric topology. If 
you like making topology more like quantum field theory.

Quantum field theory is another area where Lin was in the vanguard. 
The idea tha t some (but not all) classical link invariants are naturally de
scribed as coefficients of a perturbative expansion was sorted out between 
Bar-Natan and Lin in the early 1990s leading quickly to the theory of finite 
type invariants. It was a thrill for me to see how Lin took to the then new



subject of quantum topology. At first I did not expect to learn this subject 
myself. However in the mid 90s I was thinking about building a computer 
based on the Chern-Simons Lagrangian and Lin became my tutor, explain
ing the Jones representations, and all the related algebras. He made the 
subject very friendly. For over a decade he would stay in touch w hat he was 
doing and thinking in the “Jones” world. His work in this area is among 
the finest and this volume serves, also, as a tribute to these contributions.

Finally, it is not well known but Lin made a serious effort to under
stand Perelman’s proof of Thurston’s geometrization conjecture and the 
many ancillary expositions. The article herein on generalized Ricci flow 
commemorates his efforts both as a researcher and journal editor here.

Lin was a great and generous spirit, well loved by our community. He 
was our dear friend. We miss him and dedicate our work to him.

Michael H. Freedman



P R E F A C E

On January 14, 2007, our beloved friend Xiao-Song Lin left us. On his 
50th birthday—July 27, 2007, his friends, colleagues and family members 
gathered in the Chern Institute of Mathematics to celebrate his wonderful 
life. These proceedings resulted from this conference, and is a permanent 
tribute to a humble person, an excellent mathematician, a great friend, and 
a devoted family man.

Topology and physics are central themes in Xiao-Song’s professional ca
reer. A central player in quantum topology is knot theory. Knot invariants 
such as the celebrated Jones polynomial and finite type invariants were con
stantly on Xiao-Song’s mind. As one of the leading quantum knot theorists 
in the world. Xiao-Song made fundamental contributions to the develop
ment and popularization of knot theory. With his untimely death, the knot 
world lost a leader.

During the international conference from July 27 to July 31, 2007 at the 
Chern Institute of Mathematics, Xiao-Song’s friends and colleagues covered 
a variety of topics in topology and physics. We are sure that Xiao-Song will 
smile in heaven when the topics dear to his heart continue to flourish.

We thank all the participants and speakers for making the conference 
a memorable one. Staff in the Chern Institute won the hearts of the par
ticipants for staying on top of everything. We thank all of them, especially 
Mrs. Hongqin Li.

Zhenghan Wang 
Weiping Zhang



Short B iography of Lin

Xiao-Song Lin, a Professor of Mathematics at the University of Cali
fornia at Riverside, died on January 14, 2007 in Riverside, California, six 
months after being diagnosed with advanced stage liver cancer. He was 49.

Xiao-Song Lin was born in Songjiang, Shanghai, on July 27, 1957, and 
grew up in Suzhou, Jiangsu. In 1984, he received his M.S. in Mathematics 
from Beijing University under the direction of Professor Boju Jiang. That 
same year, he arrived in the United States to study at the University of 
California, San Diego under Professor Michael H. Freedman. After obtain
ing his Ph.D. in 1988, he began his career at Columbia University. In 1995, 
he joined the faculty at the University of California, Riverside, where he 
remained until the time of his death.

Xiao-Song Lin was a mathematician of exceptional ability and creativity. 
His areas of specialization were in low-dimensional topology and quantum 
topology. He was best known for his numerous contributions to knot theory. 
Throughout his entire career, Xiao-Song Lin maintained a passionate com
mitment to mathematical research and the mathematics community. He 
was co-founder and co-Editor-in-Chief of the research journal Communica
tions in Contemporary Mathematics, and served on the editorial boards of 
several others. He advised five Ph.D. students, and he served as a mentor 
to many other graduate and post-doctoral students in topology. He will 
always be remembered by his students and his colleagues for his patience, 
his generosity, and his willingness to share mathematical ideas.

Xiao-Song Lin received many honors and awards, including the pres
tigious Sloan Fellowship (1992-1994); he was a member of the Institute 
for Advanced Study (Spring 1988 and 1993-1994); he was a Professor of 
Special Mathematics Lectures at Beijing University (1998-2000); and he 
was named Beijing University’s Chang Jiang Scholar (2006-2008) by the 
Chinese Ministry of Education.

Despite his employment in the USA, Xiao-Song Lin was actively in
volved in the advancement of Chinese mathematics and kept in close con
tact with the topology research group at Beijing University. Beginning in
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the early 1990s, he spent most of his summers in China, primarily giv
ing lectures and teaching classes at his alma mater Beijing University To
gether with Professor Boju Jiang and Professor Shicheng Wang, he helped 
to plan and organize the annual Chinese Low-Dimensional Topology Sum
mer School, the 2002 ICM Satellite Conference in Geometric Topology, as 
well as many other mathematical meetings and conferences in China.

His untimely death is a great loss to the international topology commu
nity, and to all who knew him. In his honor and in his memory, the Xiao- 
Song Lin Award was established by Xiao-Song Lin’s family: Each year, a 
cash prize of at least 1000 USD will be awarded to a senior undergraduate 
at Beijing University who has demonstrated truly exceptional scholarship 
in mathematics.
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Xiao-Song’s first major work was a joint paper with Prof. M. Freed
man 011 the A-В slice problem. In 1981, Freedman solved the 4-dimensional 
topological Poincare conjecture. Actually, he achieved a complete classifica
tion of all closed simply-connected topological 4-manifolds. Later, Freedman 
proved that his method, in principle, works for a large class of fundamental 
groups including all finitely generated abelian groups. But he conjectured 
th a t his method will not cover the cases of non-abelian free groups. The 
A-В slice problem is a program to prove Freedman’s conjecture. This diffi
cult problem is still open. Prof. V. Krushkal’s paper in this book gives an 
up-to-date account of this problem. The experience that Xiao-Song gained 
from this project strongly influenced his career and future research. In this 
paper, link homotopy was introduced into the study of 4-dimensional topol
ogy. Freedman recently wrote on this work: “Sometimes when I think of our 
work on that problem, I feel like an old time mountaineer stormed off a high 
peak just short of the summit.”

After the A-В slice problem, it was natural for Xiao-Song to study link 
homotopy. In a joint work with Prof. N. Habegger, he solved a problem of 
Prof. J. Milnor from 1950s on the classification of links up to homotopy, 
where the notion “string link” was invented.

These two beautiful papers were essentially written during his graduate 
school years. After obtaining his Ph.D, he went to work at Columbia Uni
versity. There in a joint paper with Prof. J. Birman, he axiomatized Prof. 
V. Vassiliev’s knot invariants combinatorically, then expanded the Jones 
polynomial of knots into Vassiliev or finite type invariants. The Birman- 
Lin condition, which characterized finite type invariants, was discovered in 
this work. Soon afterwards, a second revolution in quantum knot theory 
after Prof. V. Jones’ first one started.

Xiao-Song’s personal favorite work was his paper A knot invariant via 
representation spaces. Following an idea of Prof. A. Casson, Xiao-Song de
fined a knot invariant, which turned out to be the knot signature. Recently, 
this work was generalized using symplectic Floer homology by Prof. W. Li.

M athem atics of Lin



The paper Representations of knot groups and twisted Alexander polyno
mials shows something that we are familiar with and grateful: Xiao-Song’s 
generosity in mathematics. He introduced the twisted Alexander polyno
mials in this paper, but never rushed to publish the paper for the sake of 
credit. Actually this paper would never have been published if not solicited 
by an editor.

His unfinished work Zeros of Jones polynomials had captured his a tten 
tion for a long time. Since the beginning of quantum knot invariants, Jones 
realized that his knot polynomial is related to statistical mechanics. In 
physics, the zeros of partition functions encode deep information about the 
corresponding physical systems. In his unfinished manuscript, Xiao-Song 
asked: how can one tell whether or not a Laurent polynomial with integer 
coefficients is the Jones polynomial of a knot? Then he wrote: maybe this 
was the wrong question. If so, what would be the right question? He be
lieved that the right question would lead to some beautiful mathematics. 
At the end of the manuscript, he suggested to look for statistical laws for 
the norms and phases of the zeros of the Jones polynomials.

There are 38 publications by Xiao-Song listed in M athematical Reviews 
so far, and 8 more papers are posted on the arXiv. Another 5 unpublished 
papers are collected in this volume. In addition, there are 4 more unfinished 
works on: the zeros of Jones polynomials, an L2-approach to the volume 
conjecture, wood puzzle games, and finger loop braids, respectively, that 
can be found on Xiao-Song’s webpage h t tp :  / /m a th .u c r .e d u /~ x l/ .

We cannot do justice to Xiao-Song’s mathematics in a few pages. As 
Prof. D. Bar-Natan’s talk title in Nankai said: following Lin. Then we are 
bound to discover beautiful gems in mathematics.

Quoting Freedman again: “There will ever after be string links and finite 
type invariants.” We add: there will ever after be the name of Xiao-Song 
Lin in mathematics.

xvi
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W elcom e Speech o f W eiping Zhang

First of all, on behalf of the Chern Institute of Mathematics, I would like 
to welcome all of you to attend this International Conference on Topology 
and Physics, which is dedicated to the memory of our beloved friend Xiao- 
Song Lin.

As many of us might have already known, today is actually Xiao-Song’s 
50th b irthday Xiao-Song could not be with us. However, I am sure that his 
smile and friendship, along with his love of mathematics, will stay with us 
during the whole conference, as well as in the future to come.

Let me also say a few words about our Institute. As you may know, 
this Institute was founded in 1985 by Professor Shiing-shen Chern, and 
was called the Nankai Institute of Mathematics at that time. Since then, 
Professor Chern devoted almost all of his energy to the development of the 
Institute. Moreover, he established the unique style of the Institute among 
the mathematical centers in China. It was renamed as the Chern Institute of 
M athematics in December of 2005, at the 20th Anniversary of the Institute. 
All our faculty and staff are now working hard to maintain the spirit of the 
Institute established by Professor Chern, and seeking various ways to make 
contributions to the development of mathematics in China.

I would like to thank all of you, in particular Xiao-Song’s family mem
bers, for coming to the Chern Institute. My special thanks go to Zhenghan 
for all his endless effort to make this conference possible. I t ’s really an honor 
for the Chern Institute to be able to host such a conference for Xiao-Song!

I wish all of you a pleasant stay, and I wish our conference success.
Thank you very much!
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Speech o f B oju  Jiang

Our friend Xiao-Song Lin has left us, but he will always be remem
bered for many reasons. I ’ll speak from the perspective of a mathematician 
working in China. Xiao-Song knew the Chinese mathematical community 
very well. He kept in close contact with us, especially the topology group 
in Beijing University.

Around the year 1990, during a period of rapid social changes in China, 
Chinese mathematics was experiencing a kind of crisis. Funding was very 
low, but this was not new to us. W hat was special to that time was a sharp 
decline in mathematics enrollment. It never happened before and has never 
happened again so far. The recovery took almost a decade. In topology, the 
turning point was the decision by the Chinese National Science Foundation 
to support an annual low-dimensional topology summer school.

The idea came about in close discussion with Xiao-Song: the summer 
school would bring together faculty and students from different universities, 
along with some overseas scholars, to learn about recent advances and to 
discuss their own ideas. Xiao-Song played a key role in the planning of the 
summer schools, especially in inviting speakers and in shaping the themes. 
During almost every summer since 1994, Xiao-Song was busy working in 
China giving lecture series and organizing discussions. His lectures were 
always very popular, not only to graduate students, but undergraduate 
students also liked his lectures very much. Several collaborations between 
Xiao-Song and faculty and even graduate students grew out of these sum
mer contacts. We have continued the annual school now for more than ten 
years.

Xiao-Song also played a significant role in China’s international ex
change. A remarkable example is the 2002 ICM Satellite Conference on 
Geometric Topology, held in Xi’an. During the two years of preparation, 
Xiao-Song dedicated a lot of his energy, and acted almost as the communi
cation center for the conference because we had so many -  more than 100
-  foreign participants.

He cared deeply about the future of Chinese mathematics. Together with
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Professor Gang Tian, Xiao-Song proposed to the Chinese National Science 
Foundation to pay more attention to gifted high school students, following 
the example of Russia and other countries. In the past, we all know th a t the 
Chinese International Mathematical Olympiad team  has done quite well. 
But Xiao-Song thought that mathematical competitions are not the only 
way, nor the best way, to attract young students into m athematics. So Xiao- 
Song and Tian helped to start a summer camp for high school students, 
which started in 2000 and has continued every year since.

Xiao-Song was able to play a key role in the development of Chinese 
mathematics because he knew very clearly what Chinese mathem aticians 
really need, not only in theory but also in practice. Xiao-Song was an ex
cellent example of how an overseas Chinese m athematician can actively 
and effectively contribute to the mathematical community in China. Deep 
inside, he was a cultivated and thoughtful Chinese scholar.

It is only appropriate to have this conference in his memory in China. 
I want to express my thanks to Zhenghan Wang for proposing and orga
nizing this conference, and to Weiping Zhang and the Chern Institu te of 
M athematics for hosting it.

Thank you.

Boju Jiang
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Invited Contributions
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Jianguo Cao
Mathematics Department, University of Notre Dame,

Notre Dame, IN 46556, USA;

Department of Mathematics, Nanjing University,
Nanjing 210093, China.

Email: cao.7@nd.edu

Shu-Cheng Chang
Department of Mathematics, National Tsing Hua University, 
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In this paper, we derive a partial result related to a question of Yau: “Does a 
simply-connected complete Kahler manifold M with negative sectional curva
ture admit a bounded non-constant holomorphic function?”

M ain T heorem . Let M 2n be a simply-connected complete Kahler manifold 
M with negative sectional curvature <  — 1 and Soo{M) be the sphere at infinity 
of M . Then there is an explicit bounded contact form (3 defined on the entire 
manifold M 2n.

Consequently, if M 2n is a simply-connected Kahler manifold with negative 
sectional curvature —о2 < sec л/ < —1, then the sphere Soo(M) at infinity of 
M admits a bounded contact structure and a bounded pseudo-Hermitian metric 
in the sense of Tanaka- Webster.

We also discuss several open modified problems of Calabi and Yau for 
Alexandrov spaces and CR-manifolds.
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manifolds.

mailto:cao.7@nd.edu
mailto:scchang@math.nthu.edu.tw


4 J. Cao and S.-C. Chang

0. In tro d u c tio n

In this paper, we will provide a detailed construction of bounded contact 
structures on a simply-connected complete Kahler manifold M  with neg
ative sectional curvature <  —1. Afterwards, we will discuss related open 
problems inspired by Calabi and Yau.

In 1979, Professor S. T. Yau [Yl] asked the following question.

P ro b le m  0 .1 . (Yau [Y lj) Let M 2n be a simply-connected complete Kahler 
manifold M with negative sectional curvature < —1. Does M 2n admit a 
bounded non-constant holomorphic function?

In fact, an even more attractive problem in complex analytic differential 
geometry is to characterize bounded domains in Cn within noncompact 
manifolds.

P ro b le m  0 .2 . (Yau [Y lj) Let M 2n be a simply-connected complete Kahler 
manifold M  with negative sectional curvature <  — 1. Is M  bi-homeomorphic 
to a bounded domain in Cn ?

Some partial progress has been made by Bland [Bl] and Nakano-Ohsawa 
[NO]. Under extra assumptions, they proved the existence of CR functions 
on the ideal boundary S oq(M ). In [Bl], two sufficient conditions were given 
for a complete Kahler manifold M  of non-positive sectional curvature to 
admit nonconstant bounded holomorphic functions, which seems also to 
guarantee that M  is a relatively compact domain with smooth boundary.

The precise definition of ideal boundary Soo(M) can be found in [BGS].

T h eo rem  0.3. Let M 2n be a simply-connected complete Kahler manifold 
M  with negative sectional curvature <  — 1 and Soo(M) be the sphere at 
infinity o f M . Then there is an explicit bounded contact form  (3 defined on 
the entire manifold M 2n.

Consequently, if  M 2n is a simply-connected Kahler manifold with neg
ative sectional curvature —a2 < веем  <  —1, then the sphere Soo(M) at 
infinity of M  admits a bounded contact structure and a bounded pseudo- 
Hermitian metric in the sense of Tanaka- Webster.

Our proof of Theorem 0.3 was inspired by Gromov’s bounded cohomol
ogy [Grol-2] and calculations in [CaX].

Let и  be the Kahler metric on M 2n. It is clear th a t dw =  0. When M 2n 
is a simply-connected complete Kahler manifold with negative sectional
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curvature < — 1, Gromov observed that there must be a bounded 1-form (3 
with

d/3 = uj. (0.1)

The proof of Gromov’s assertion was outlined in [Pa] and [JZ]. In this 
paper, we provide a detailed proof of Gromov’s assertion in §1. A simi
lar sub-linear estimate for equation (0.1) on manifolds with non-positive 
curvature was given by the first author and Xavier in [CaX].

1 . B o u n d ed  so lu tio n s  to  d(3 =  ot on  m anifo lds w ith  n eg a tiv e  
c u rv a tu re

In this section, we prove Theorem 0.3. In addition, we present a new direct 
proof of Gromov’s bounded cohomology theorem of negative curvature, see 
Theorem 1.4 and its proof below. Gromov’s original approach to Theorem
1.4 below was based a volume estimate of fc-dimensional cone over a (A; - 1)- 
dimensional chain, and then use a dual space argument to complete the 
proof. Our new method is to work on k-chains directly with a controlled 
Poincare lemma for negative curvature. Our approach might have some 
potential independent applications.

Throughout this section (M m,g ) will be a complete simply-connected 
manifold of negative sectional curvature < — 1. Let also a  be a bounded 
smooth closed k-form on M  with к >  1. Since M m is diffeomorphic to R m 
there exists a form (3 such that d(3 =  a . The purpose of this section is to 
show that (3 can be chosen to be bounded. The proof will follow from the 
Poincare lemma by a comparison argument.

Fix p € M  and denote by expp : TPM  —> M  the exponential map based 
a t p.

L em m a 1.1. Consider the maps Tt : M  
expp(texp ~ l (x)), where 0 < t < 1. Then

for every tangent vector where r  =  d(x,p).

P ro o f. Let a  : [0,1] —► M n be the geodesic segment joining p to re, £ 6 
TxM n and у  =  (expp)~ l (x ) e  TpM n . By a straightforward computation 
one has

(^ it)*^  =  P p )t(e x p p) _ 1 ( x ) [ ^ ( ^ P p  )(a:)£]

=  (d expp)ty {t[d{expp)y] - 1Z}.

M , given by x  \— > 

( l . i)



Recall that a(t) =  expp(ty). It is now manifest from the above formula 
that

J(tr) := ( n U  (1-2)

is the Jacobi field along a satisfying J(0) =  0, J(r) =  £. On the other 
hand, since the sectional curvatures are <  —1, we estimate the function 
f ( s )  \ J (s)) by a method inspired by Gromov. It is sufficient to verify

\J(s)\ Ш  (1 3)
sinh s sinh r 7

for all 0 <  s < r.

We may assume that r  > 0, otherwise the inequality (1.1) holds trivially. 
To do this, we consider the function

ф ) - 4 м
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sinh s
It is sufficient to verify

f ( s )  <  Ж  or V w  > 0 . (1.4)
sinli s sinh r  

Since we have

// \ / ;(s ) s — f ( s) cos^ s 
4 (s) = -----------m T # ----------- '

it remains to verify that

[/ '(s) sinh s — / ( 5) cosh 5)' =  f" {s)  sinh s — f( s )  sinh s > 0. (1.5)

Recall that the curvature tensor R  is given by R (X , Y )Z  =  -  V x V y Z +  
V y V x ^ +  V[x,Y)Z  where [.X , Y] =  X Y  -  Y X  is the Lie bracket of X  and 
У.

Following a calculation in [BGS], by our assumption of sccm <  - 1  we 
have

r w  =  U W I"

|J|3

U l3

> /(» ).
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where we used the assumption that = — {R{cr\ J)cr', J) > | J |2. It
follows from (1.5)-(1.6) that (1.4) holds. This completes the proof of (1.3) 
as well as Lemma 1.1. □

Recall that if a  is a A:-form and Z  is a vector field, then (a|_z) is the 
(k — l)-form given by

(a|_z)(fi,--* =  ot(Z,£i ,- --  1).

For the sake of completeness we give a proof of the following elementary 
result.

L em m a 1 .2 . Let Ф be a closed к -form in Km. Then the (к — \)-form  Ф 
defined by

Ф[x) = r Л(п)*(Ф1*)|(*)Л
J  0

satisfies =  Ф; here £  = J2T=i = ( E S i  x i Y /2 and Tt(x ) = tx •

Proof. By the standard proof of the Poincare lemma ([SiT], p. 130), Ф can 
be taken to be Ф(х) =

[ t k~1V il...ik (tx)dt>)d x il A " - A d x i j A - - - h d x ik, 
ii<-<ik j =1 °
where Ф =  £ i:<...<ifc Л - - - Л dxik.

In particular, one has

Ф (х )=  A- ' -A cfc i JL jA -
i i < - ” < i k  j = l  0  J

=  r  ^  (  /" t k~19 il...ik(tx)d t^(dxil

= r

=  т [ \ т г Г ( П & ) ) Ш ,
J  o

as desired. □

We would also like to borrow another elementary but useful observation 
of Gromov, in order to prove our main theorem
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L em m a 1.3. (Gromov, [Cha, page 124]) Suppose that f  and h are positive 
integrable functions, of real variable r, for which

f
9

is an increasing with respect to r. Then the function

£ /
Jo 9

is also increasing with respect to r > 0.
Let us now provide a new detailed proof of a theorem of Gromov.

T h eo rem  1.4. (Gromov) Let M m be a simply-connected complete Rie- 
mannian manifold with negative sectional curvature < — 1. Suppose that a  
is bounded closed к -form with к > 2. There is a bounded (к — I)-form  (3 
with d(3 = a  satisfying

l l / % ~  <  (1 .7 )

P ro o f. Let (jci, ... ,xn) be Euclidean coordinates on TVM  and consider the 
pull-back metric h of the metric g under expv : TPM  —* M . Observe 
that there are now two ways to interpret the map rt . The first interpre
tation comes from Lemma 1.1 with (M ,p) being replaced by (TpM ,h )\ 
alternatively, one can think of rt as the self-map of TPM , (x i , . . . ,x n) ■— * 
t ( x i , ..., x n), tha t appears in the Poincare lemma (Lemma 1.2). It is an easy 
and yet basic observation that these two ways of thinking about r t give rise 
to the same map.

We may also replace the form a  tha t appears in the statem ent of Lemma 
1.2 by a closed form Ф on TPM  which is bounded in the induced metric h. 
Let Ф be given by Lemma 1.2 and observe that, by Lemma 1.1,

| (п )> М |к < ( 2 7 ) Ы |ф (х ) ) |к , к > 2 ,  (1.8)

holds for any (к — l)-form ip on TPM \ here | • \h is any one of the equivalent 
norms induced by h. Since \-§ \̂ =  1, it follows from (1.3) and Lemma 1.2
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that

m*)\h < r  J \ l ( r ty (n&) ] (x ) \hdt

L

,up W i , )k  
(sinh r)k 1 0<з<г r

(1.9)

Choosing f ( r )  =  (sinhr)* 1 and £(r) =  (k — l)(s in h r)fc-2coshr in 
Lemma 1.3, we see that [ |] '  =  (fe_ 1)(ginhr)2 >  0 and

/^(sinhs)*-1 ^  1
— ------- ---------< --------  (1 10)

(sinhr)*"1 - k - 1 K }

It follows from (1.9)-(1.10) that

|ф (* ж  <  sup  i® i*- (L11)

Hence Ф is a bounded solution of с1Ф =  Ф and the proof of Theorem 1.4 is 
completed. □

P ro o f o f M ain Theorem :
Our main theorem Theorem 0.3 can be derived as follows. We fix a base 

point p  as above. There is a differential structure Ep imposed on Soo(M) 
given by the map

Forp Ф q, the transitive map F ~ l oFp : i?i(0) ~ * ^ i(O ) ls not necessarily 
smooth. However, we fix one differential structure 3 P on Soo{M) via the 
map Fp.

Let J  be the complex structure of our Kahler manifold M . Let r(x) =  
d(x,p) and p  — J  о dry i.e., fi(w) =  dr(Jw ) for all w  E TX(M ). When 
—a2 < веем  — 1, it is known that

\ x \ 2 < |(V x< fr)W I =  \H ess(r)(X ,X )\ < a |X |2 

for all X  e  Tx (dB r (p)) with r  »  1.
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Since M  is Kahler, we have V x J  — 0- It follows tha t \Vx(3\ <  <A^\ f°r 
X  € Tx (dBT(p)) with r »  1.

Thus, {Р\двг(р)} defines an equi-continuous family of contact forms 
on Soo(M). By Ascoli lemma, there is a subsequence th a t converges to 
a bounded contact form ( 3 on Soo(M). Since sccm <  —1, it is known 
that d(3(X ,X )  =  H ess{r){X ,X )  +  H ess{r){JX , J X )  > 2 \X \2 for all 
X  € Tx{dBr(p)) and X  1  V r, where X  =  - fe [ X - y /= lJ X \ .  Therefore, Д» 
defines a non-trivial contact form on S oq(M ). Moreover, Wqo =  d / 3 gives 
rise to a pseudo-hermitian metric on Soo(M).

Similarly, one can also choose (3* satisfying d(3* — u , where и  is the 
Kahler form of M  and (3* in the proof of Theorem 1.4. W ith some extra 
effort, one can show that |V/3*| <  c\ for some constant c\. Thus, {(3*\dBr(p)} 
defines an equi-continuous family of contact forms on Soo(M) as well.

This completes the proof of our main theorem.

2 . T h e  m odified  C alab i-Y au  p ro b lem s for s in g u la r spaces 
a n d  C R -m an ifo lds

In tills section, we will discuss the generalized Calabi problems on Kahler 
manifolds with boundaries. In addition, we will comment on the existence of 
positive sup-harmonic functions on (possibly singular) Alexandrov spaces 
with non-negative sectional curvature.

§A. S u p -h a rm o n ic  fu n c tio n s  on  A lex an d ro v  spaces w ith  n o n 
n eg a tiv e  sec tio n a l c u rv a tu re

Professor S. T. Yau also had earlier results on bounded harmonic func
tions on smooth complete Riemannian manifolds with non-negative Ricci 
curvature. We would like to extend this theorem of Yau to singular spaces.

In an im portant paper [Perl], Perelman provided an affirmative solution 
to the Cheeger-Gromoll soul conjecture. More precisely, he showed that “if  
a smooth complete non-compact Riemannian manifold M n of non-negative 
curvature has a point po with strictly positive curvature K \Po > 0, then 
M n must be diffeomorphic to Шп . In [Perl], Perelman also asked to what 
extent the conclusions of his paper [Perl] would hold for (possibly singular) 
Alexandrov spaces with non-negative curvature.

Recently, the first author, together with Dai and Mei, showed the fol
lowing.

T h e o re m  A .I .  (Cao-Dai-Meiy 2007, [CaMDlj) Let M n be a n- 
dimensional complete, non-compact Alexandrov space with non-negative
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sectional curvature. Suppose that M n has no boundary and M n has positive 
sectional curvature on an non-empty open set. Then M n is contractible.

In 1976, Professor S. T. Yau proved the following Liouville type theorem.

T heorem  A .2 . (Yau, 1976 [Y3]) Let M n be a n-dimensional complete, 
non-compact smooth Riemannian space with non-negative Ricci curvature. 
Then any positive harmonic functions on M n must be a constant function.

On an (possibly singular) Alexandrov space, we introduce the following 
notion of sup-harmonic function.

D efin ition  0.1. Definition A.3 Let M n be a n-dimensional complete, non
compact Alexandrov space with non-negative sectional curvature. Suppose 
that M n has no boundary, f  : M n —> M is a Lipschitz continuous function 
and

for any sufficiently small £ > 0. Then we say that /  is a sup-harmonic 
function on M .

For example, f ( x )  =  — [d(x,xo)}2 is a sup-harmonic function on M , 
whenever M  has non-negative sectional curvature in generalized sense.

P roblem  A .4. (Liouville-Yau type problem) Let M n be a n-dimensional 
complete, non-compact Alexandrov space with non-negative sectional cur
vature. Suppose that M n has no boundary. Is it true that any positive sup- 
harmonic functions on M n must be a constant function?

In [CaB], the first author and Benjamini studied a different Liouville- 
type problem of Schoen-Yau. One hopes to continue to work on Liouville- 
Yau type problem mentioned above.

§B. T he generalized Calabi problem s for K ahler dom ains w ith  
boundaries

The classical Calabi problems for Ricci curvatures on compact Kahler 
manifolds without boundary have been successfully solved by Professor S.
T. Yau.

T heorem  B .l .  (Yau [Y4]) Let M 2n be a compact smooth Kahler mani
fold without boundary. Then the following is true: (1) For any Kahler form

wo e  # (1,1)(M 2n) and any (1 ,1)-form (5 representing the first Chern class
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C\(M2n), there is a Kahler metric u) =  uq 4- id d f  such that its Ricci cur
vature tensor satisfies

Riccj =  (3\

(2) I f  the first Chem class C\(M) < 0, then M 2n admits a Kahler-Einstein 
metric.

For a Kahler manifold П with boundary M 2n_1 =  Ш , we consider a 
similar problem. This problem is closely related to the existence problem 
of CR-Einstein metrics, or partially Einstein metrics.

D efinition B .2. (CR-Einstein metrics or partially Einstein metrics, 
[Lee2]) Let E2n_1 be a С R-hypersurface with С R-distribution Oi&n-i =  
кет в for some contact l-/orm  в and let ge(X , J Y )  =  dQ(X, J Y )  be a pseudo- 
hermitian metric as above. I f  the Ricci tensor of ge satisfies

Ric9e(X ,Y )  = cge(X ,Y )

for all X , Y  € !HS2n-i =  ker0 where с is a constant, then ge is called a 
CR-Einstein (partially Einstein) metric.

Inspired by Yau’s result, Lee proposed to study the C R -version of the 
Calabi problem.

P roblem  B .3 . (CR-Calabi Problems, [Lee2]) Let M 2n_1 be a C R - 
manifold, Ф be a closed form representing the first Chem class for the bundle 
T (i.o)(M 2n—i) and фь( х ,у )  =  Ф (Х ,У ) for X , Y  € K & n -i =  ker(9.

(1) Can we find a pseudo-metric ge such that its Ricci tensor satisfies

Ricge{X ,Y )  = $ b{ X ,Y )  (В. 1)

for all X , Y  € 0{.£2n-i — ker0?
(2) Given a (1 ,1)-form  € [ci(M 2n-2]b, can we find a pseudo-metric 

ge such that its Ricci tensor satisfies

Ricge( X ,Y ) = l3 ( X ,Y )  (B. 2)

for all X , Y  € =  кет в?
The pseudo-Hermitian metric for general С manifolds was also dis

cussed in [Tal-2] and [Web]. Authors derived the following partial answer 
to Problem 3:

P rob lem  B .4. ([CaChJ) Let M 2n~ l be the smooth boundary of a bounded 
strongly pseudo-convex domain Cl in a complete Stein manifold V 2n. Then
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for n > 3, M 2n 1 admits a CR-Einstein metric (or partially Einstein met
ric).

One might be able to continue working on Problem B.3, using Kohn- 
Rossi’s ^ -th eo ry  described below.

§C. T h e  C a lab i-E sco b ar ty p e  p ro b lem  for K a h le r d o m ain s w ith  
b o u n d a r ie s

The first author and Mei-Chi Shaw studied the C#-version of the 
Poincare-Lelong equation idbdbU =  Ф& in [CaS3]. The linearization equation 
for (B.2) is related to the CR-version of Poincare-Lelong equation.

In fact, to solve the linear function

The details for solving the d-Cauchy problem (C.2) was given in Chapter 
9 of [ChSh].

In 1992, Escobar [Esc] was able to solve the non-linear curvature equa
tion on manifolds with boundary.

T h e o re m  C .l .  (Escobar [Esc]) Let fi С Rn be a compact domain with 
smooth boundary dCl and n  > 6 . Then there is a conformally flat metric 
g on П such that the scalar curvature Scalg o f g is zero and the mean 
curvature Hg of (<9f2, g) is constant:

дьи =  Ръ on 6П, (C .l)

Kohn and Rossi [KoRo] used the solutions to the d -Cauchy problem to solve 
дьи — (Зь extrinsically as follows. Let us first choose an arbitrary smooth 
extension p  on Cl. If we can solve

dv =  dp  on П
(C.2)

\  №_x= o, for X  6  T i° 'l)(bQ)

Clearly /3 =  p  — v is a ^-closed extension on Cl of p. If we solve

Bu =  p  -  v on (П U bfi), (C.3)

then the restriction и =  й|_ш satisfies

<ЗДй)|ш] = Рь on Ш.

{СА)

for some constant с.
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Inspired by Theorem C .l and the Kohn-Rossi’s solution to Cauchy 
problem, we are interested in the following type.

P ro b le m  C .2 . (Calabi-Escobar type problem) Let Cl be a compact domain 
in Stein manifold M  with smooth strongly pseudo convex boundary bCl, and 
let H ™  be the partial sum of second fundamental form  of (6ft, <7) over the 
СR-distribution kerQ of 6ft. Is there is a Kahler-Einstein metric g on Cl 
with constant CR-mean curvature on the boundary bCl? In another words, 
we would like to find the existence of solution to the following non-linear 
boundary problem:

(  RiCg  =  Cig on ft 

\  H ™  =  c2 on 6ft

for some constant numbers C\ and сг-
The linearalization of non-linear equation is the Poincare-Lelong equa

tion with boundary conditions. The first author and Mei-Chi Shaw [CaS] 
were able to solve

{дьдьи =  ©*> on 6ft (С'б)

even for weakly pseudo-convex domains ft in C P n .
One hopes to continue to work in direction, in order to investigate Prob

lem C.2.
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1 . In tro d u c tio n

Topological quantum field theories (TQFTs) emerged into physics and 
mathematics in the 1980s from the study of three distinct enigmas: the 
infrared limit of 1 +  1 dimensional conformal field theories, the fractional 
quantum Hall effect (FQHE), and the relation of the Jones polynomial 
to 3 - manifold topology. Now 25 years on, about half the literature in 
3—dimensional topology employs some “quantum” view point, yet it is still 
difficult for people to learn what a TQ FT is and to manipulate the simplest 
examples. Roughly (axioms will follow later), a (2 +  1)—dimensional TQ FT 
is a functor which associates a vector space V ( Y )  called “modular functor” 
to a closed oriented surface Y  (perhaps with some extra structures); sends 
disjoint union to tensor product, orientation reversal to dual, and is natural 
with respect to transformations (diffeomorphisms up to isotopy or perhaps 
a central extension of these) of Y . The empty set 0 is considered to be a 
manifold of each dimension: {0 ,1, ■ • •}. As a closed surface, the associated 
vector space is C, i.e., V(0) =  C. Also if Y  =  д Х , X  an oriented 3-m anifold 
(also perhaps with some extra structure), then a vector Z (X )  E V ( Y )  is 
determined (surfaces Y  with boundary also play a role but we pass over this 
for now.) A closed 3-m anifold X  determines a vector Z (X )  G V(0) =  C, 
that is a number. In the case X  is the 3-sphere with “extra structure”

On P ic tu re  (2 + l)-T Q F T s
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a link L, then W itten’s “5 /7(2)-fam ily” of TQ FTs yields a Jones poly
nomial evaluation Z (S 3,L ) =  «//,(е27г*/г )> r =  3 , 4 , 5 , . . . ,  as the “closed 
3—manifold” invariants, which mathematically are the Reshetikhin-Turaev 
invariants based on quantum groupsJolWltt.RT This is the best known ex
ample. Note that physicists tend to index the same family by the levels 
к = r — 2. The shift 2 is the dual Coxeter number of S U (2). We will use 
both indices. Most of the “quantum” literature in topology focuses on such 
closed 3—manifold invariants but there has been a growing awareness th a t 
a deeper understanding is locked up in the representation spaces V (Y )  and 
the “higher algebras” associated to boundary (У) (circles) and pointsF(̂ .Fd 
Let us explain this last statement. While invariants of 3—manifolds may be 
fascinating in their interrelations there is something of a shortage of work 
for them within topology. Reidemeister was probably the last topologist 
to be seriously puzzled as to whether a certain pair of 3—manifolds were 
the same or different and, famously, solved his problem by the invention of 
“torsion” . (In four dimensions the situation is quite the opposite, and the 
closed manifold information from (3+1) dimensional TQ FTs would be most 
welcome. But in this dimension, we do not yet know interesting examples 
of TQ FTs.) So while the subject in dimension 3 seems to be m aturing away 
from the closed case it is running into a pedological difficulty. It is hard to 
develop a solid understanding of the vector spaces V (Y )  even for simple 
examples. Our goal in these notes is, in a few simple examples to provide 
an intuition and understanding on the same level of “admissible pictures” 
modulo relations, just as we understand homology as cycles modulo bound
aries. This is the meaning of “picture” in the title. A picture T Q FT  is one 
where V (Y )  is the space of formal C —linear combinations of “admissible” 
pictures drawn on У modulo some local (i.e. on a disk) linear relations. We 
will use the terms formal links, or formal tangles, or formal pictures , etc. to 
mean С-linear combinations of links, tangles, pictures, etc. Formal tangles 
in 3-manifolds are also commonly referred to as “skein”s. Equivalently, we 
can adopt a dual point of view: take the space of linear functionals on mul
ticurves and impose linear constraints for functionals. This point of view 
is closer to the physical idea of “amplitude of an eigenstate” : think of a 
functional /  as a wavefunction and its value / ( 7 ) on a multicurve 7  as as 
the am plitude of the eigenstate 7 . Then quotient spaces of pictures become 
subspaces of wavefunctions.

Experts may note tha t central charge с Ф 0 is an obstruction to this 
“picture formulation”: the mapping class group М (У) acts directly on pic
tures and so induces an action on any V (Y )  defined by pictures. As с
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determines a central extension C(Y ) which acts in place of M(K), the 
feeling tha t all interesting theories must have с Ф 0 may have discouraged 
a pictorial approach. However this is not true: for any V (Y )  its endomor
phism algebra End V  =  V* (g)K has central charge с =  0 (c(V*) = -с (1 0 ) 
and remembers the original projective representation faithfully. In fact, all 
our examples are either of this form or slightly more subtle quantum dou
bles or Drinfeld centers in which the original theory V  violates some axiom 
(the nonsingularity of the S —matrix) but this deficiency is “cured” by dou- 
blingK.Mu Although those notes focus on picture TQFTs based on varia
tions of the Jones-Wenzl projectors, the approach can be generalized to an 
arbitrary spherical tensor category. The Temperley-Lieb categories are gen
erated by a single “fundamental” representation, and all fusion spaces are 
of dimension 0 or 1, so pictures are just 1-manifolds. In general, 1-manifolds 
need to be replaced by tri-valent graphs whose edges carry labels. But с =  0 
is not sufficient for a TQ FT to have a picture description. Given any two 
TQFTs with opposite central charges, their product has с = 0, e.g. TQFTs 
with Z n fusion rules have с = 1, so the product of any theory with the 
mirror of a different one has с =  0 , but such a product theory does not 
have a picture description in our sense.

While these notes describe the mathematical side of the story, we have 
avoided jargon which might throw off readers from physics. When different 
terminologies prevail within mathematics and physics we will try to note 
both. Within physics, TQFTs are referred to as “anyonic systems” Wll.DFNSS 
These are 2-dimensional quantum mechanical systems with point like ex
citations (variously called “quas-particle” or just “particle” , anyon, or per
haps “nonabelion”) which under exchange exhibit exotic statistics: a non- 
trival representation of the braid groups acting on a finite dimensional 
Hilbert space V  consisting of “internal degrees of freedom” . Since these 
“internal degrees of freedom” sound mysterious, we note that this informa
tion is accessed by fusion: fuse pairs of anyons along a well defined trajectory 
and observe the outcome. Anyons are a feature of the fractional quantum 
Hall effect; Laughlin’s 1998 Nobel prize was for the prediction of an anyon 
carrying change e/3  and with braiding statistics e2?ri/ 3. In the FQHE cen
tral charge с Ф 0 is enforced by a symmetry breaking magnetic field B. It 
is argued inFn that solid state realizations of doubled or “picture” TQFTs 
may - if found - be more stable (larger spectral gap above the degenerate 
ground state manifold) because no symmetry breaking is required. The im
portant electron - electron interactions would be at a lattice spacing scale 
~  4A rather than at a “magnetic length” typically around 150A. So it is
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hoped that the examples which are the subject of these notes will be the 
low energy limits of certain microscopic solid state models. P icture T Q FTs 
have a Hamiltonian formulation, and describe string-net condensation in 
physics, which serve as a classification of non-chiral topological phases of 
m atter. An interesting mathematical application is the proof of the asymp
totic faithfulness of the representations of the mapping class groups.

As mentioned above, these notes are primarily about examples either 
of the form Г ® У  or with a related but more general doubled structure 
D(Vr). In choosing a path through this material there seemed a basic choice:
(1) present the picture (doubled) theories in a self contained way in two 
dimensions with no reference to their twisted (c ±  0) and less tractable 
parent theories V  or (2) weave the stories of T>(V) and V  together from 
the start and exploit the action of 1){У) on V  in analyzing the structure of 
D(V). In the end, the choice was made for us: we did not succeed in finding 
purely combinatorial “picture-proofs” for all the necessary lemmas — the 
action on V  is indeed very useful so we follow course (2). We do recommend 
to some interested brave reader that she produce her own article hewing to 
course (1).

In the literature8HMV comes closest to the goals of the notes, andWal2 
exploits deeply the picture theories in many directions. Actually, a  large 
part of the notes will follow from a finished.Wal2 If one applies the set up of 
[BHMV] to skeins in surface cross interval, У х / ,  and then resolves crossings 
to get a formal linear combination of 1—submanifolds o fY  =  Y x ^ c Y x /  
one arrives a t (an example of) the “pictures” we study. In this doubled 
context there is no need for the p \— structure (or “two-framing”) intrinsic 
to the other approaches. To readers familiar withBHMV one should think of 
skeins in a handle body tf ,  дН  =  У, when an undoubled theory V (Y )  is 
being discussed, and skeins in Y  x I  when D V  (Y) is under consideration.

By varying pictures and relations we produce many examples, and in 
the Temperley-Lieb-Jones context give a complete analysis of the possible 
local relations. Experts have long been troubled by certain sign discrepan
cies between the S —m atrix arising from representations (or loop groups or 
quantum  groups)MSWlttKM on the one hand and from the Kauffman bracket 
on the otherLlTu.KL The source of the discrepancy is that the fundamen
tal representation of S U (2) is anti-symmetrically self dual whereas there is 
no room in Kauffman’s spin-network notation to record the antisymmetry. 
We rectify this by amplifying the pictures slightly, which yields exactly the 
modular functor V  coming from representation theory of SU (2)q.

The content of each section is as follows. In Sections 2, 3, we treat dia
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gram TQ FTs for closed manifolds. In Sections 4, 5, 7.1, we handle bound
aries. In Sections 7, 9, 8 , we cover the related Jones-Kauffman TQFTs, and 
the Witten-Reshetikhin-Turaev St/(2)-TQ FTs which have anomaly, and 
non-trivial Frobenius-Schur indicators, respectively. In Section 10, we first 
prove the uniqueness of TQFTs based on Jones-Wenzl projectors, and then 
classify them according to the Kauffman variable A. A theory V  or V (V )  
is unitary if the vector spaces V  have natural positive definite Hermitian 
structures. Only unitary theories will have physical relevance so we decide 
for each theory if it is unitary.

2. Jones representations

2.1. Braid statistics

Statistics of elementary particles in 3-dimensional space is related to rep
resentations of the permutation groups S n. Since the discovery of the frac
tional quantum Hall effect, the existence of anyons in 2-dimensional space 
becomes a real possibility. Statistics of anyons is described by unitary rep
resentations of the braid groups B n. Therefore, it is important to under
stand unitary representations of the braid groups B n . Statistics of n  anyons 
is given by unitary representation of the n-strand braid group B n. Since 
statistics of anyons of different numbers n  is governed by the same local 
physics, unitary representations of B n have to be compatible for different 
n ’s in order to become possible statistics of anyons. One such condition is 
that all representations of B n come from the same unitary braided tensor 
category.

There is an exact sequence of groups: 1 — * P B n — » B n — ► S n — * 1, 
where P B n is the n-strand pure braid group. It follows that every rep
resentation of the permutation group S n gives rise to a representation of 
the braid group B n . An obvious fact for such representations of the braid 
groups is that the images are always finite. More interesting representations 
of B n are those that do not factorize through Sn , in particular those with 
infinite images.

To construct representations of the braid groups B n, we recall the con
struction of all finitely dimensional irreducible representations (irreps) of 
the permutation groups Sn : the group algebra C[Sn], as a representation of 
S n, decomposes into irreps as <C[Sn] =  ® £ Cd,mVi <g>V*, where the sum is over 
all irreps Vi of Sn . This construction cannot be generalized to B n because 
B n is an infinite group for n  >  2. But by passing to various different finitely 
dimensional quotients of C[Bn], we obtain many interesting representations
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of the braid groups. This class of representations of B n is Schur-Weyl dual 
to the the class of braid group representations from the quantum  group ap
proach and has the advantage of being manifestly unitary. This approach, 
pioneered by V. Jones,Jo1 provides the best understood examples of unitary 
braid group representations besides the Burau representation, and leads to 
the discovery of the celebrated Jones polynomial of knots.Jo2 The theories 
in this paper are related to the quantum SU (2)q theories.

2.2. G en eric  Jo n e s  rep re sen ta tio n  o f  the  braid groups

The n-strand braid group B n has a standard presentation with generators 
{(Ti,i =  1,2, • • • , n  — 1} and relations:

<TiCTj =  if |г -  j  I >  2, (2.1)

0‘i&i+l0'i — (2 -2)

If we add the relations o f =  1 for each г, we recover the standard presen
tation for Sn ■ In the group algebra k[Bn\, where к is a  field (in this paper к 
will be either С or some rational functional field C(A) or C(q) over variables 
A  or q), we may deform the relations a 2 =  1 to linear combinations (super
positions in physical parlance) of =  ao* -I- b for some a, b € k. By rescaling 
the relations, it is easy to show tha t there is only 1-parameter family of such 
deformations. The first interesting quotient algebras are the Hecke algebras 
of type A, denoted by # n (<?), with generators 1, <71, (?2> • * * , <?n-i over Q{q) 
and relations:

9 i9 j= 9 j9 i. H - j | > 2 ,  (2.3)

9i9i+i9i — 9i+i9i9i+i- (2-4)
and

9i = ( Я ~  l)Si +  ?■ (2-5)

The Hecke relation 2.5 is normalized to have roots {—l ,q }  when the 
corresponding quadratic equation is solved. The Hecke algebras H n (q) a t 
q = 1 become C[Sn], hence they are deformations of € [5 n). When q is 
a variable, the irreps of Hn (q) are in one-to-one correspondence with the 
irreps of C[Sn].

To obtain the Hecke algebras as quotients of C[Bn], we set q = A 4, and 
gi = A 3<Ti, where A  is a new variable, called the Kauffman variable since 
it is the conventional variable for the Kauffman bracket below. Note th a t
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Q =  A 2 in.KL The prefactor A 3 is introduced to match the Hecke relation
2.5 exactly to a relation in the Temper ley-Lieb algebras using the Kauffman 
bracket. In terms of the new variable A, and new generators <7i ’s, the Hecke 
relation 2.5 becomes

а? = ( А - А - 3)<л + А ~ 2. (2.6)

The Kauffman bracket < >  is defined by the resolution of a crossing in 
Figure 2.1

= A + A
- i U

Fig. 2.1. Kauffman bracket

As a formula, о* =  A  ■ id +  A ~ l Ui, where C/* is a new generator. The 
Hecke algebra Hn(q) in variable A  and generators 1, U \t C/2, • • • ,Un- 1 is 
given by relations:

UiUj =  UjUi, if \i — j\  > 2, (2.7)

UiUi+1Ui - U i  = Ui+iUiUi+i -  Ui+U (2.8)

and

U2 = dUi, (2.9)

where d — —A 2 — A ~ 2.
The relation 2.9 is the same as relation 2.6, which is the Hecke relation 

2.5. The relation 2.8 is the braid relation 2.4.
The Temperley-Lieb (TL) algebras, denoted as TLn(A), are further quo

tients of the Heck algebras. In the TL algebras, we replace the relations 2.8 
by

UiUi±1Ui = Uu (2.10)

i.e., both sides of relation 2.8 are set to 0 .

P rop  2.1.
The Kauffman bracket < > : fc[£n] — ► TLn (A) is a surjective algebra 

homomorphism, where к = С (A).
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The proof is a straightforward computation.
When A  is generic, the TL algebras Т ЬП(Л) are semi-simple, hence 

TLn(>l) =  0 iM atni(C(>4)), where M atn,. are щ  x щ  matrices over € (Л ) for 
some rii s.

The generic Jones representation of the braid groups B n is defined as 
follows:

D efinition 2 .1 . By the decomposition TLn (A) =  ®jM atn i(C(y4)), each 
braid <j €i B n is mapped to a direct sum of matrices under the Kauffman 
bracket. It follows from Prop. 2.1 that the image m atrix of any braid is 
invertible and the map is a group homomorphism when restricted to B n .

It is an open question whether or not the generic Jones representation is 
faithful, i.e., are there non-trivial braids which are mapped to the identity 
matrix?

2.3. U n ita ry  Jo n es  rep resen ta tio n s

The TL algebras TLn(A) have a beautiful picture description by L. Kauff
man, inspired by R. Penrose’s spin-networks, as follows: fix a rectangle #  
in the complex plane with n  points at both the top and the bottom  of IK 
(see Fig.2.2), TLn (A) is spanned formally as a vector space over C(A) by 
embedded curves in the interior of Я  consisting of n  disjoint arcs connect
ing the 2n  boundary points of Я and any number of simple closed loops. 
Such an embedding will be called a diagram or a multi-curve in physical 
language, and a linear combination of diagrams will be called a formal dia
gram. Two diagrams that are isotopic relative to boundary points represent 
the same vector in TLn (A). To define the algebra structure, we introduce 
a multiplication: vertical stacking from bottom to top of diagrams and ex
tending bilinearly to formal diagrams; furthermore, deleting a closed loop 
must be compensated for by multiplication by d =. — A 2 -  A ~2. Isotopy and 
the deletion rule of a closed trivial loop together will be called “d-isotopy” .

>

Fig. 2.2. Generators of TL 

For our application, the variable A  will be evaluated at a non-zero com-



On Picture (2+1)- TQFTs 27

plex number. We will see later that when d =  —A 2 — A ~2 is not a root 
of a Chebyshev polynomial Д*, ТЬП(Л) is semi-simple over C, therefore, 
isomorphic to a matrix algebra. But when d is a root of some Chebyshev 
polynomial, TLn(A) is in general not semi-simple. Jones discovered a semi
simple quotient by introducing local relations, called the Jones-Wenzl pro- 
jectorsJo4We.KL Jones-Wenzl projectors have certain rigidity. Represented 
by formal diagrams in TL algebras, Jones-Wenzl projectors make it possible 
to describe two families of TQFTs labelled by integers. Conventionally the 
integer is either r > 3 от к = r —2 > 1. The integer r  is related to the order of 
A, and к is the level related to the 5C/(2)-Witten-Chern-Simons theory. One 
family is related to the S£/(2)fc-Witten-Reshetikhin-Turaev (WRT) TQFTs, 
and will be called the Jones-Kauffman TQFTs. Although Jones-Kauffman 
TQ FTs are commonly stated as the same as WRT TQFTs, they are really 
not. The other family is related to the quantum double of Jones-Kauffman 
TQFTs, which are of the Turaev-Viro type. Those doubled TQFTs, la
belled by a level к >  1, are among the easiest in a sense, and will be called 
diagram TQFTs. The level к =  1 diagram TQ FT for closed surfaces is the 
group algebras of Z2-homology of surfaces. Therefore, higher level diagram 
TQ FTs can be thought as quantum generalizations of the Z2-homology, 
and the Jones-Wenzl projectors as the generalizations of the homologous 
relation of curves in Figure 2.3.

Fig. 2.3. Zo homology

The loop values d = -  A 2 -  A ~ 2 play fundamental roles in the study of 
Temperley-Lieb-Jones theories, in particular the picture version of T L n(A) 
can be defined over C(d), so we will also use the notation TLn(d). In the 
following, we focus the discussion on d, though for full TQFTs or the dis
cussion of braids in TLn(A), we need ,4’s. Essential to the proof and to the 
understanding of the exceptional values of d is the trace tr: TLn(d) — * С 
defined by Fig.2.4. This Markov trace is defined on diagrams by (and then 
extended linearly) connecting the endpoints at the top to the endpoints at 
the bottom of the rectangle by n  non crossing arcs in the complement of the 
rectangle, counting the number #  of closed loops (deleting the rectangle), 
and then forming d&.

The Markov trace (x , y) >-* t r (xy) extends to a sesquilinear pairing on
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X  = Nu f r ( * ) =  И ) ) =  d
2

Fig. 2.4. Markov Trace

TLn(d), where bar (diagram) is reflection in a horizontal middle-line and 
bar (coefficient) is complex conjugation.

Define the nth Chebyshev polynomial Л п(я) inductively by До =
l , A i  =  x, and A n+i(x) =  x A n (x) — A n- i(x ) .  Let cn be the C atalan 
number Cn =  (2™). There are Cn different diagrams {£>*} consisting of 
n  disjoint arcs up to isotopy in the rectangle R to connect the 2n  bound
ary points of These cn diagrams generate TLn(d) as a vector space. Let 
M CnXCn = (rriij) be the matrix of the Markov trace Hermitian pairing in a 
certain order of {Di}, i.e. rriij =  t r (D iD j), then we have:

Det(M CnXCJ  =  n A i (d) ° " ‘1 (2 .11)
t=l

where =  (nf " . 2) +  С " )  - 2 ^ ) .
This is derived in.DGG
As a quick consequence of this formula, we have:

Lem m a 2.1. The dimension of TLn (d) as a vector space over С (d) is 
Cn if  d is not a root of the Chebyshev polynomials Д», 1 <  i <  n, where

Proof. By the formula 2.11, if d is not a root of Д*, 1 <  i < n, then {Di} 
are linearly independent. As a remark, since each Di is a monomial of C/i’s, 
it follows th a t {Ui} generate TLn (d) as an algebra. □

Next we show the existence and uniqueness of the Jones-Wenzl projec
tors.

T heorem  2.1. For d 6 С that is not a root of Ajt for all к < n, then 
TLn(d) contains a unique element pn characterized by: v \ — Pn 7̂  0 and 
UiPn =  PnUi =  0 for all 1 <  i < n  — 1. Furthermore pn can be written as 
pn =  1 +  U where U =  Y l cjh j ,  hj & product of UiS, 1 <  i < n  — 1 and 
cj e  C.
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P ro o f. Suppose pn exists and can be expanded as pn = a l +  U, then 
Pn =  Pn{ a  1 4 U) — pn(a 1) =  apn =  a21 +  aU, so a =  1. Now check 
uniqueness by supposing pn =  1+U  and pn =  1+V  both have the properties 
above and expand pnpn from both sides:

Pn =  1 • Pn =  (1 +  U)Pn = VnVn =  Pn(l +  V) = Pn ■ 1 =  Pn-

The proof is completed by H. Wenzl’sWe inductive construction of pn+i 
from pn which also reveals the exact nature of the “generic” restriction on 
d. The induction is given in Figure 2.5, where ц п =  Лд ^ у --.

р. = Ш

p>" и
-  1

T J

p = p *n+1

d -CL
Г )

—
/

| 4R, 1 
l l -l

Fig. 2.5. Jones Wenzl projectors

Tracing the inductive definition of pn+i yields tr(pn+i) =  d tr(pn) — 
^ р Ч г ( р п) showing tr(pn) satisfies the Chebyshev recursion (and the initial 
data). Thus tr(pn) =  A n.

It is not difficult to check tha t Uipn = PnUi =  0 , г < n. (The most 
interesting case is C/n- i  ) ConsultKL or141 for details. □

The idempotent pn is called the Jones- Wenzl idempotent, or the Jones- 
Wenzl projector, and plays an indispensable role in the pictorial approach 
to TQFTs.

T heorem  2.2. (1): I fd  € С is not a root of Chebyshev polynomials A*, 1 < 
i < n, then the TL algebra TLn (d) is semisimple.

(2): Fixing an integer r > 3, a non-zero number d is a root of Дг, г <  r  
i f  and only if  d = —A 2 — A ~2 for some A  such that A 41 =  1,1 < r. I f  
d =  — A 2 — A ~2 for a primitive Ar-th root of unity A  for some r > 3 or a 
primitive 2rth o rr th  for r odd, then the TL algebras {TLn (cQ} modulo the 
Jones-Wenzl idempotent pr- i  are semi-simple.
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Proof.
(1): TLn(<2) is a *-algebra. By formula 2.11, the determ inant of the 

Markov trace pairing is ПГ=1 A i(d)an,i, hence the ^-structure is non
degenerate. By Lemma B.2, TLn(d) is semi-simple.

(2): The first part follows from An(d) =  (—l ) n • In Section
5, we will show that the kernel of the Markov trace Hermitian pairing is 
generated by pr- 1, and the second part follows. □

The semi-simple quotients of TLn (d) in the above theorem will be called 
the Temper ley-Lieb-Jones (TLJ) algebras or just Jones algebras, denoted 
by T L Jn(d). The TLJ algebras are semi-simple algebras over C, therefore 
it is isomorphic to a direct sum of matrix algebras, i.e.,

T L JnW  = ® iM atni(C). (2.12)

As in the generic Jones representation case, the Kauffman bracket followed 
by the decomposition yields a representation of the braid groups.

Prop 2.2.
(1): When the Markov trace Hermitian paring is ±-definite, then Jones 

representations are unitary, but reducible. When A = ±ie±2& , the Markov 
trace Hermitian pairing is + -definite for all n ’s.

(2): Given a braid cr E B n , the Markov trace is a weighted trace on the 
matrix decomposition 2 .12, and when multiplied by (—A )~3cr results in the 
Jones polynomial of the braid closure of a evaluated at q = A4.

Unitary will be established in Section 10, and reducibility follows from 
the decomposition 2.12. T hat the Markov trace, normalized by the framing- 
dependence factor, is the Jones polynomial follows from direct verification 
of invariance under Reidermeister moves or Markov’s theorem (see e.g.KL).

2.4. Uniqueness of Jones-W enzl projectors

Fix an r > 3 and a primitive 4 rth  root of unity or a primitive 2r th  or 
r th  root of unity for r odd, and d = —A2 — A~2. In this section, we prove 
th a t TLrf has a unique ideal generated by pr-\- When A is a primitive 4 rth  
root of unity, this is proved in the Appendix ofFn by F. Goodman and 
H. Wenzl. Our elementary argument works for all A as above.

Notice that TL^ admits the structure of a (strict) monoidal category, 
with the tensor product given by horizontal “stacking” , e.g., juxtaposition 
of diagrams. This tensor product (denoted <g>) is clearly associative, and lo, 
the identity on 0 vertices or the empty object, serves as a unit. The tensor 
product and the original algebra product on TL^ satisfy the interchange
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law, ( /  0  g) • ( / '  0  g') =  ( /  • / ' )  0  (# ■ p'), whenever the required vertical 
composites are defined.

We may use this notation to recursively define the projectors pk'. Pk+i =
Pk <8> li  -  Vk(Pk ® l i )U£+l(pk 0  li) . We define p0 =  lo, Pi =  li and 
lik =  Using this we can prove a sort of “decomposition theorem” for
projectors:

P r o p  2 .3 .  Pk =  P r ) ®  P(k mod r )*

Proof. We proceed by induction, using the recursive definition of the 
Jones-Wenzl projectors. For p\ the statement is trivial. Assuming the as
sertion holds for pk, we then have (let m = к mod r):

Pk+1 =  Pk ® h  -  Vk(Pk <8> li)t/^+1(PA: <3 U)
L# J l i J  L»J

=  ({^ ) Pr) 0  Pm 0  ll — MA:(((^) Pr) <S> Pm ® ll)^fc +1 (((^ ) Pr) ® Pm ® l l)  
i=l i = l  *=1  

Then, if m Ф 0, 
l i J

=  (0 P r)0 P m ® ll ~ 
i = l

I7 J  LrJ

0  ll)(l* -m  ® C +1) ( @ P r) ® l l)  
i=l i=l

LrJ

=  ((^)Pr) ® (Pm 0  l l  -  Mm (Pm ® ll)^m  + 1(Pm ® ll) )
i=l

(The I -  J copies of pr can be factored out of the second term by prpr = p r-) 
т

L7J

=  ( ( ^ ) P r )  ® P m + l  
1=1

If m < r -  1, then m +  1 =  (A: +  1) mod r; if m =  r -  1, then we get one 
more copy of pr, as needed. So it remains to consider the case above where 
к mod r =  0. But then fik =  № mod r =  Mo =  0, so that

* L ^ J

Pfc+1 = (0Pr) ® ll = ( 0 Pr) ®Pl 
1=1 1=1

as desired. D
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In analogy with the standard notion from ring theory, an ideal in TL is 
defined to be a class of morphisms which is internally closed under addition, 
and externally closed under both the vertical product (composition) • and 
the horizontal product <g>. Given such an ideal / ,  we may form the quotient 
category T L //, which has the same objects as TL, and hom-sets formed 
by taking the usual quotient of Hom(m, n) by those morphisms in /  П 
Hom(m, n).

We can prove that <pr_ i>  is an ideal.

Lemma 2.2. The ideal ‘Rd — < P r - 1> is a proper ideal.

Proof. It suffices to show that the <g>-identity 10 is not in the ideal. In 
order for lo to be in the ideal, it would have to be obtained from some 
closed network (e.g., element of Hom(0,0)) which contains at least one 
copy of pr- i ■ Fixing such a projector, we expand all other terms in the 
network (this includes getting rid of closed loops), so that we are left with 
a linear combination of closed networks, each having exactly one r — 1 strand 
projector. Now, considering each term seperately, if there are any strands 
that leave and re-enter the projector on the same side, then the network 
is null (since pT- \ V =  0). So the only remaining terms will be strand 
closures of Pr-i\ but by the above, these are null as well, so that every term 
in the expansion vanishes.

Since every closed network with pr-\ is null, it follows that lo i  
and therefore Old is a proper ideal of TL. □

In fact, this same ideal is generated by any pk for к > r — 1; this is 
established via a sequence of lemmas.

Lemma 2.3. <pr>=<pr- 1>

Proof. It is clearly sufficient to show pr_ x G<pr>. Set x =  pr 0  l i ,  and 
expand pr in terms of pr_i according to the recursive definition. Then con
nect the rightmost two strands in a loop: e.g., by pre- and post-multiplying 
by the appropriate elements of Hom(r — 1, r +  1) and Hom(r +  1, г — 1), 
respectively. Using the fact that pr_ipr_i =  pr_i, the resulting diagram 
simplifies to (d — /ir_ i)pr_i; and since цг- 1 Ф d> the coefficient is invert
ible, so that pr-1  €<pr>. □

Lemma 2.4. For any integer к > 1, <pkr>= < P r-1>-
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Proof. By induction; the base case is established in the previous Lemma. 
For к > 2, we can write pkr — P(k-2)r <8>pr <8)pr, and then consider the 
tangle pkr <S> l r- By again pre- and post-multiplying by appropriate tangles, 
and using prpr = p r} we see that P(k-i)r €<Ркг>- □

Lemma 2.5. For any к > r -  1, <pk>=<pr- 1>-

Proof. This basically uses the same technique as the previous lemma, com
bined with the fact that pr{pi <8> lr - /)  =  Pr (seeKL).

Let m =  к mod r; if m =  0, then this falls under the case of the previous 
lemma, so 0 < m < r. Now consider x =  pk <8> I2r - m ’, we can use the 
technique of the previous lemma to merge the last three groups of r strands 
into one, so that the resulting element x' =  P ^ jr ® (pr{pi ® lr -/)lr )-  But 
p r {pi ® lr—/) =  Prj so that x' =  whence, by the previous lemma,
< p r - i > = < p k > .  Г □

Thus, in the quotient category TL/!Rrf, all fc-projectors, for к > r — 1, 
are null.

We have shown that Я a is an ideal; our strategy in showing that Я d is 
unique will be to show that it has no proper ideals, and that the quotient 
TL/Rd has no nontrivial ideals. To show the latter fact, we will show that 
the ideal (in the quotient) generated by any element is in fact all of T L /^ .

We note also that TL/$<* may be described succinctly as the subcate
gory of TL whose tangles have less than r -  1 “through-passing” strands. 
This subcategory does not close under <8) as described above, but can be 
shown to be well-defined under the reduction l r_ i ^  ( lr—1 — Рг- i ) -  This 
view is not necessary in what follows, so we do not pursue it further; but 
it may be useful in thinking about the quotient category.

A preliminary observation is that TL/Old has no zero divisors:

Lemma 2.6. Let x ,y  € TL/Rd- I f x ® y  =  0, then x =  0 ory  = 0.

Proof. The statement clearly holds in TL; so the only way it could fail in 
the quotient is if pr- 1 had a tensor decomposition.

So, suppose, x 0  у =  р г -ь  where re is a tangle on к > 0 strands and 
у is a tangle on / > 0 strands, both nontrivial (that dom(x) =  cod (я) and 
dom(y) =  cod(?/) follows from the fact that P r - i P r - i  =  P r - 1)- Then the 
properties of projectors and the interchange law give:

x <g> у =  {x <S> y)(x ® y) =  xx 0  yy = >  xx =  x,yy =  y
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Further (x ® y)Uf+l =  0 for all г, so that xUf 0  у =  0 =$> xUf =  0, and 
likewise yU\ =  0. Thus both x and у are projectors. But the strand closure 
of Pk®Pi is AfcAj, which are both nonzero, and the strand closure of pr-\ 
is zero, so we have reached a contradiction. □

The next lemma introduces an algorithm that is the key to the rest of 
the proof:

Lemma 2.7. Any nonzero ideal I С TL/Jld contains at least one element 
of H om (r -3 ,r—3).

Proof. Let x Ф 0 € / ,  say x 6 Hom(m,n). First, if m Ф n, then we 
can tensor with the unique basis element in either Hom(0, 2 ) or Hom(2,0) 
the appropriate number of times so that we get an x' 6 Hom(k, к) € I, 
where к — max{m, n}. (By the previous lemma, x' Ф 0.) If к < r — 3, then 
x' <g> l r—3—fc E Hom(r -  3, r -  3) is an element of the ideal; so it remains to 
show the case where к > r — 3.

First, assume к and r — 3 have the same parity; if not, use a;' <S> 11 instead 
of x ' . Then let ко =  к, x '0 =  x\ and use the following algorithm (starting 
with г =  0):

(1) If ki =  r — 3, then stop: x\ G Hom(r — 3, r -  3) is in the ideal.
(2) Since ki > r — 1, and х[ ф 0, it follows that х\ Ф apia, since all 

r -  1 and above projectors are null in TL/Old- Recall that pk{ is the 
unique element in Hom(ki5ki) such that (i) U^pki =  Pk^j* =  0 f°r 
1 < j  < ki\ and (ii) Рк{Рк{ =  Pki• From this it follows that the only 
elements which satisfy (i) are apk{, for some a G C. Therefore, since 
х\ ф а р ь , there exists some Ui =  Uj* such that Uix' Ф 0.

(3) Using an argument similar to the above, there exists some U[ =  
such that (Uix')U- Ф 0.

(4) Set Vi to be the unique basis element in Hom(kj — 2 , ki) which connects 
the ji and ji +  1 vertices on the top (codomain) objects, and connects 
the remaining к — 2 vertices on top and bottom to each other. Then 
ViUix'U< can be described as being exactly like Uix'U[, except that the 
top half-loop of the Ui has been factored out as d, thus reducing the 
domain object by two vertices. It is thus clear that ViUix'U[ Ф 0.

(5) Similarly, choose V,[ to be the unique element in Hom(ki,ki_2) con
necting the j[ and j[ -f 1 vertices of the domain object, thus closing the 
half loop of U[. Then У^х'Щ У! ф 0.

(6) Set x 'i+1 =  ViUix’U'iYl, ki+1 = ki -  2, and return to step (1).
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After j  =  — (r — 3)) passes through the algorithm, the desired 
element ж'- 6 I is produced. □

The proof of the previous Lemma is useful in establishing that Rd has 
no proper sub-ideals.

Lemma 2.8. For any x € Ф 0, then <x>= 0ld.

Proof. Use the techniques previous Lemma to get an element x' e < x >  
such that x' € Hom(k, k), and к =  r -  1 mod 2. Then follow the algorithm, 
except for on steps (2) and (3): for, since x\ e  it is possible that 
x\ — apki • If this is not the case, proceed with the algorithm as it is stated. 
However, if x\ — ctpkn then it follows that < x > =  %d, by Lemma 2.5. So 
it only remains to show that this does happen at some point before the 
algorithm terminates: e.g., that for some г, x[ =  ap

But, suppose this didn’t happen; then, the algorithm goes through to 
completion, yielding an element у €<x>  such that у e  Hom(r — 3, r -  3), 
у ф 0. But then у 0 $<*, since every nonzero element of must have at 
least r — 1 strands. This contradicts the fact that у €<x>C Jld', therefore, 
there must be some i such that x\ — apk{ , and so the lemma follows. □

Now we can put all of this together to obtain our desired result:

Theorem 2.3. TLd has a unique proper nonzero ideal when A is as in 
Lemma 3.1.

Proof. By Lemma 2.2, = < p r_ x>  is a proper ideal, which, by Lemma
2.8, has no proper sub-ideals. To prove the theorem, therefore, it suffices to 
show that the quotient category TL/Old has no proper nonzero ideals.

Consider < x > , for any x € TL/$<*• By Lemma 2.7, there exists some 
у e< x>  such that x e  Hom(r -  3, r -  3). But now, instead of stopping at 
this point in the algorithm, we continue the loop, with the possibility that 
x\ might actually be a projector. So we again modify steps (2) and (3), as 
below:

(1’) If ki — 0, stop; set x' =  x[.
(2’) If x'{ =  apki f°r some constant a , then stop, with x' — x\. Otherwise, 

proceed with step (2) of the original algorithm.
(3’) If Uix'i =  ap^ for some constant a, then stop, with x' =  x\. Otherwise, 

proceed with step (3) of the original algorithm.
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So now, when the algorithm terminates, we are left with some x' € < £ > , 
with either: (a) x' =  a lo, а  ф 0; or (b) x7 =  apk for some 1 <  к < r — 1, 
а Ф 0. In case (a), we have that lo €<x>,  so that < x> =  TL/Л<f. In case 
(b), consider the element у — £ x7 <g> 1 к =  Рк ® U- €<£>•  We can then 
pre- and post-multiply by the elements of Hom(0,2k) and Hom(2k, 0), 
respectively, which join the left group of к strands to the right group of 
к strands. In other words, the resulting element is simply Afc, the strand 
closure of pk, times lo- Since Д*. Ф 0 for 1 <  к < r — 2 , it follows that 
lo €<£>, so that we still have <x>=  TL/Old-

So we have shown that TL/Old has no proper nonzero ideals, and there
fore, that TL has the unique ideal Old. D

As a corollary, we have the following:

Theorem 2.4. 1 ):If d is not a root of any Chebyshev polynomial Afc,/с > 1, 
then the Temperley-Lieb category TLd is semisimple.

2): Fixing an integer r > 3, a non-zero number d is a root of Afc, 
к < r if and only if d — —A2 -  A~2 for some A such that A41 =  1,1 < 
r. If d =  —A2 — A~ 2 for a primitive 4r-th root of unity A or 2r-th r 
odd or r-th r odd for some r >  3, then the tensor category TLJd has a 
unique nontrivial ideal generated by the Jones-Wenzl idempotent pr-i -  The 
quotient categories TLJd are semi-simple.

3. Diagram TQFTs for closed manifolds

3.1. “d-isotopy ”, local relation, and skein relation

Let Y  be an oriented compact surface, and 7  С У be an imbedded un
oriented l-dimensional submanifold. If dY Ф ф then fix a finite set F  of 
points on dY and require d'y = F  transversely. That is, 7 a disjoint union 
of non-crossing loops and arcs, a “multi-curve” . Let S be the set of such 
7 ’s. To “linearize” we consider the complex span C[S] of S, and then impose 
linear relations. We always impose the “isotopy” constraint 77 =  7 , if 77 is 
isotopic to 7 . We also always impose a constraint of the form 7  U О = d • 7  
for some d € C\{0}, independent of 7 (see an example below that we do 
not impose this relation). The notation 7  U О means a multi curve made 
from 7  by adding a disjoint loop О to 7 where О is “trivial” in the sense 
that it is the boundary of a disk B2 in the interior of Y . Taken together 
these two constraints are “d-isotopy” relation: 7 ' — 3 • (7 U O) =  0 if 77 is 
isotopic to 7 .

A diagram local relation or just a local relation is a linear relation on
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multicurves 7 b  ■ • • 1 7m which are identical outside some disk B2 in the 
interior of Y , and intersect dB2 transversely. By a disk here, we mean a 
topological disk, i.e., any diffeomorphic image of the standard 2-disk in the 
plane. Local relations are usually drawn by illustrating how the 7* differ on 
B2. So the “isotopy” constraint has the form:

and the 11 d—constraint” has the form:

Fig. 3.2. d constraint

Local relations have been explored to a great generality inWa12 and en
code information of topologically invariant partition functions of a ball. We 
may filter a local relation according to the number of points of 7* П dB2 
which may be 0 ,2 ,4 ,6, . . .  since we assume 7 transverse to dB2. “Isotopy” 
has degree =  2 and “d-constraint” degree =  0.

Formally, we define a local relation and a skein relation as follows:

Definition 3.1.

(1) Let {Di}  be all the diagrams on a disk B2 up to diffeomorphisms of 
the disk and without any loops. The diagrams {Di}  are filtered into 
degrees =  2n according to how many points of Di П dB2, and there 
are Catalan number Cn many diagrams of degree 2n (со =  1 which is 
the empty diagram). A degree =  2n diagram local relation is a formal 
linear equation of diagrams J2i A  =  0? where c* € C, and Cj =  0 if 
D{ is not of degree =  2n.

(2) A skein relation is a resolution of over-/under-crossings into formal 
pictures on B2. If the resolutions of crossings for a skein relation are all 
formal diagrams, then the skein relation induces a set map from C[Bn] 
to TLn(d).
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The most interesting diagram local relations are the Jones-Wenzl pro
jectors (the rectangle IR is identified with a disk В2 in an arbitrary way). 
When we impose a local relation on C[S], we get a quotient vector space 
of C[S] as follows: for any multi-curve 7  and a disk В2 in the interior of 
E, if 7 intersects B2 transversely and the part 7  П B2 of 7  in B2 matches 
one of the diagram Dj topologically in the local relation c* A  =  0, and 
Cj Ф 0, then we set 7 =  — fjTi *n ^[S] where 7* is obtained from 7 
by replacing the part 7 П B2 of 7 in B2 by the diagram D*.

Kauffman bracket is the most interesting skein relation in this paper. 
More general skein relations can be obtained from minimal polynomials 
of Л-matrices from a quantum group. Kauffman bracket is an unoriented 
version of the SU(2)q case.

As a digression we describe an unusual example where we impose 
“isotopy” but not the “d-constraint” . It is motivated by the theory of fi
nite type invariants. A singular crossing (outside S) suggests the “type 1” 
relation in Figure 2.3.

This relation is closely related to Z 2—homology and is compatible with 
the choice d =  1. We will revisit it again under the name Z 2—gauge theory.

Now consider the “type 2” relation Figure 3.4 which comes by resolving 
the arc in Figure 3.3 using either arrow along the arc. (Reversing the arrow 
leaves the relation Figure 3.4 on unoriented diagrams unchanged.)

Fig. 3.3. Singular arc

Fig. 3.4. Resolution relation

Formally we may write the resolution relation Figure 3.4 as the square 
of the 2 term relation drawn in Figure 3.5.

Interpreting “times” as “vertical stacking” makes the claim immediate 
as shown in Figure 3.6.

Since the two term relation Figure 3.5 does not appear to be a conse-
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Fig. 3.5. Two term relation

0

0

Fig. 3.6. Two term squared

quence of the resolution relation Figure 3.4, dividing by the resolution rela
tion induces nilpotence in the algebra (of degree =  2 diagrams under vertical 
stacking). By imposing the “eT relation we find that only semi-simple al
gebras are encountered. This is closer to the physics (the simple pieces are 
symmetries of a fixed particle type or “super-selection sector” ) and easier 
mathematically so henceforth we always assume a “d—constraint” for some 
deC\{  0}. ^

3.2. Picture classes

Fix a local relation R =  0. Given an oriented closed surface Y. The vector 
space С [8] is infinitely dimensional. We define a finitely dimensional quo
tient of C[S] by imposing the local relation R as in last section: C[S] modulo 
the local relation. The resulting quotient vector space will be called the pic
ture space, denoted as PicH(K). Elements of Рюл(У) will be called picture 
classes. We will denote PicR(Y) as Pic(Vr) when R is clear or irrelevant for 
the discussion.

Prop 3.1.

(1) Pic(F) is independent of the orientation of Y.
(2) Pic(S2) =  C0, so it is either 0 or C.
(3) Pic(Yi I IY2) =  Pic(Yi) <g> Pic(Y2).
(4) Pic(Y) is a representation of the mapping class group M (Y). Further

more, the action of M (Y) is compatible with property (3).

Proof.
Properties (1) (3) and (4) are obvious from the definition. For (2), since 

every simple closed curve on S2 bounds a disk, a multicurve with m loops
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is dm0 by “d-isotopy” . Therefore, if 0 is not 0, it can be chosen as the 
canonical basis. □

For any choice of А ф 0, we may impose the Jones-Wenzl projector 
as a local relation. The resulting finitely dimensional vector spaces Pic(Y) 
might be trivial. For example, if we choose a d Ф ±1 and impose the 
Jones-Wenzl projector p2 =  0 as the local relation. To see that the resulted 
picture spaces =  0 , we reconnect two adjacent loops in a disk into one 
using p2 =  0; this gives the identity (d2 — 1)0 =  0. If d Ф ± 1, then 0 =  0, 
hence Pic(S2) =  0. Even if P ic(Y)’s are not 0, they do not necessarily form 
a TQFT in general. We do not know any examples. If exist, such non
trivial vector spaces might have interesting applications because they are 
representations of the mapping class groups. In the cases of Jones-Wenzl 
projectors, only certain special choices of 4̂’s lead to TQFTs.

3.3. Skein classes

F ix a d e C \ {0 } ,a  skein relation К  =  0 and a local relation R =  0. Given 
an oriented 3-manifold X  (possibly with boundaries). Let jF be all the non
crossing loops in X , i.e., all links Vs in the interior of X , and € [?] be their 
linear span. We impose the “d-isotopy” relation on C[£F], where a knot is 
trivial if it bounds a disk in X. For any 3-ball B3 inside X  and a link Z, 
the part l П Б 3 of I can be projected onto a proper rectangle $  of B3 using 
the orientation of X  (isotopy I if necessary). Resolving all crossings with 
the given skein relation К  =  0, we obtain a formal diagram in 01, where 
the local relation R — 0 can be applied. Such operations introduce linear 
relations onto С [У]. The resulting quotient vector space will be called the 
skein space, denoted by Sd,K,R(X) or just S(X ), and elements of S(X)  will 
be called skein classes.

As mentioned in the introduction, the empty set 0 has been regarded 
as a manifold of each dimension. It is also regarded as a multicurve in 
any manifold У or a link in any X , and many other things. In the case of 
skein spaces, the empty multicurve represents an element of the skein space 
S(X).  For a closed manifold X , this would be the canonical basis if the 
skein space S(X)  =  C. But the empty skein is the 0 vector for some closed 
3-manifolds. In these cases, we do not have a canonical basis for the skein 
space S (X ) even if S(X)  =  C.

Skein spaces behave naturally with respect to disjoint union, inclusion 
of spaces, orientation reversal, and self-diffeomorphisms: the skein space of 
a disjoint union is isomorphic to the tensor product; an orientation pre
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serving embedding from X\ —> X 2 induces a linear map from S (X i) to 
5 (^ 2), orientation reversal induces a conjugate-linear map on S(X), and 
diffeomorphisms of X  act on S(X)  by moving pictures around, therefore 
S(X)  is a representation of the orientation preserving diffeomorphisms of 
X  up to isotopy.

Prop 3.2.

(1) If У is oriented, then Рю(У) is an algebra.
(2) If д Х  =  У, then Pic(y) acts on S(X). If У is oriented, then S(X)  is a 

representation of Рю(У).

Proof.
(1): Given two multicurves x,y  in У, and consider У x [—1,1], draw x 

in У x 1 and у in У x — 1. Push x into the interior of У x [0,1] and у into 
У x [—1,0]. Isotope x , у so that their projections onto У x 0 are in general 
position. Resolutions of the crossings using the given skein relation result in 
a formal multicurve in У, which is denoted by xy. We define [x][?/] =  [xy\, 
where [•] denotes the picture class. Suppose the local relation is R =  0, and 
let Я be a multicurve obtained from the closure of R arbitrarily outside a 
rectangle where the local relation resides. To show that this multiplication 
is well-defined, it suffices to show that Ry =  0. By general position, we may 
assume that у miss the rectangle IR. Then by definition, Ry =  0 no matter 
how we resolve the crossings away from the local relation R. It is easy to 
check that this multiplication yields an algebra structure on Pic(y).

(2): The action is defined by gluing a collar of the boundary and then 
re-parameterizing the manifold to absorb the collar. Let Yc be У x [0,e], 
which can be identified with a small collar neighborhood of У in X. Given 
a multicurve x in X  and 7 in У, draw 7 on У x 0 and push it into Ус. Then 
the union 7 U1 is a multicurve in X + =  Ye Uy X.  Absorbing Yt of X+ into 
X  yields a multicurve 7 U x in X , which is defined to be 7 .Ж. □

3.4. Recoupling theory

In this section, we recall some results of the recoupling theory in,KL and 
deduce some needed results for later sections.

Fix a A e  C\{0), two families of numbers are important for us: the
. r 1 A2n-A -2nChebyshev polynomials A n(d) and the quantum integers [п]д =  A$_A-$ . 

When A is clear from the context, we will drop the A from [n]^. The 
Chebyshev polynomials and quantum integers are related by the formula 
A n(d) =  ( - l ) n[n + l]A.
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Note that [-п ]д  =  -[п ]л ,[п ]_д  =  [п]д =  [га] a, [n]iA =  ( - l ) n+1[nU- 
Some other relations of quantum integers depend on the order of A.

Lemma 3.1. Fix r > 3.

(1) If A is a primitive Arth root of unity, then [ra +  r] =  — [n] and [r — n] =  
[га]. The Jones-Wenzl projectors {p*} exist for 0 < i < r — 1, and 
Тг(рг-г) =  A r =  0 .

(2) If r odd and A is a primitive 2rth root of unity, then [n +  r) =  [n] and 
[r —ra] =  — [n]. The Jones-Wenzl projectors {p*} exist for 0 <  i < r — 1, 
and Tr(pr_ i) =  A r =  0.

(3) If r odd and A is a primitive rth root of unity, then [n +  r] =  [n] and 
[r — n] =  — [n]. The Jones-Wenzl projectors {pi} exist for 0 <  г <  r — 1, 
and Tr(pr- i )  =  ДГ =  0 .

The proof is obvious using the induction formula for pn in Lemma 2.1, 
and [n] Ф 0 for 0 < n < r — 1 for such A's.

Fix an r and A as in Lemma 3.1, and let I  be the range that pi exists 
and Tr(pi) Ф 0. Let La =  {P i}i€ /» then I  =  {0,1,• • • ,r  — 2}. Both La and 
I will be called the label set. Note that if A is a primitive 2rth root of unity 
and r is even, then {pi} exist for 0 < i < and Тг^т^г) =  0.

Given a ribbon link I in S3, i.e. each component is a thin annulus, also 
called a framed link, then the Kauffman bracket of I, i.e. the Kauffman 
bracket and “d-isotopy” skein class of /, is a framed version of the Jones 
polynomial of denoted by < I > a . The Kauffman bracket can be gen
eralized to colored ribbon links: ribbon links that each component carries 
a label from Ьд; the Kauffman bracket of a colored ribbon link I is the 
Kauffman bracket of the formal ribbon link obtained by replacing each 
component a of I with its label pi inside the ribbon a and thickening each 
component of pt inside a into small ribbons. Since S3 is simply-connected, 
the Kauffman bracket of any colored ribbon link is a Laurent polynomial 
in A , hence a complex number.

Let Hij be the colored ribbon Hopf link in the plane labelled by Jones- 
Wenzl projectors pi and pj, then the Kauffman bracket of Hij is

i«  =  ( - i ) 4+J'[(i +  i)0' +  i)U - (3-i)

The matrix s =  {sij)ijei is called the modular 5-matrix. Let seven be the 
restriction of s to even labels. Define i =  к — г =  r — 2 — i.
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(1) If A is a primitive 4rth root of unity, then the modular s matrix is 
non-singular.

(2) I f r is  odd and A is a primitive 2rth or rth root of unity, then sjj =  Sij.
(3) If r odd, and A is a primitive 2rth root of unity or rth root of unity,

then the modular s has rank =  z-^ .  Moreover, s =  Seven ® ^  • 

P roof.
Since s is a symmetric real matrix, so the rank of s is the same as s2. 
By the formula 3.2, we have ( s 2 )ij

=  __( ~ 1)*+J2 2 ^ [д 2 ^+ 1 )(Л -1 )_ ^ -2 (г+ 1 )(/+ 1 )][д 2 (Л -1 )а + 1 )_ ^ -2 (^+ 1 )0 + 1 )]
(A -  A 2)2 /=0

Lemma 3.2.

— ^ ^  S l'‘ fyd2(t+l)(/+l)+2(/+l)(j+l) I /i-2(t+l)(Z+l)-2(i+l)(j4-l)
( A 2 - A - 2)2 ^ 1

_ A 2(i+1)(l+1) - 2(l+1)U+1) _  4̂- 2(*+l)(J+l)+2(i+l)(<7+l)j

The first sum J2i~o A2(i+1)(l+1)+2(l+1W+1) is a geometric se
ries =  A ( ^ _д2(*+̂ '+2) ф i seconcj sum

о A “ 2(i+1W+1)- 2(*+i)(J+i) is the complex conjugate of the first sum.
The third sum — Y î=o A2̂ l+l^l+1 ~̂2̂ l+1^ +i  ̂ is also a geomet

ric series =  — 1̂ 2(?-я if А2̂ ~^ ф 1. The 4th sum 
~ E[=o Л -2(<+1)^+1)+2^+1) '̂+1) is the complex conjugate of the third sum.

If A is a 4rth primitive, since 0 < z, j  < r — 2, we have 4 < 2 (i +  
j  +  2) < 4r -  4 and — (r — 2) <  i — j  < r -  2. Hence, A2̂ t+j+2  ̂ ф 1 
and А2̂ ~^ ф 1 unless i =  j . The first sum and the second sum add
to --------------1_л2(Г+>+2) — ----- --------- • So if г +  j  is even, then =  - 2; if
i +  j  is odd, then =  0. If A2̂ x~^ Ф 1, then the third and 4th add to 
- - 2(* 3A ( It is =  2 if i — j  is even and =  0 if i — j
odd. Therefore, if i ф j ,  the four sums add to 0 and if г =  j ,  then they 
add to —2 — 2(r — 1) =  —2r. It follows that s2 is a diagonal matrix with 
diagonal entries =  (дтЕурзр--

If A is a 2rth or rth primitive, if A2̂ +J+2  ̂ ф 1, then the first sum —1. 
The second sum is also -1  since it is the complex conjugate. If А2̂ г~^ Ф 1, 
then the third sum is =  1 and so is the 4th sum. It follows that if neither 
^ 2(i+.7+2) =  i nor A2(i-j) — x, then the (г, j)th  entry of s2 is 0.
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If >l2(i+J+2) =  1, then 2(i +  j  +  2) =  r, 2r, 3r as 0 < i , j  < r -  2 and
4 < 2 (z+ j-f 2) < 4 r -4 . When r is odd, 2 (i+ j+ 2 ) =  2r, so i — j.  Therefore, 
if i +  j  +  2 Ф r, the first and second sum is — 1. If i +  j  +  2 =  r, then the 
first and second sum both are r — 1. If A2̂ ~^ =  1, then 2(г — j )  =  —r, 0, r 
as —2(r — 2) < 2(i — j )  < 2(r — 2). It follows that г =  j  as r is odd. If i =  j , 
the third and 4th sum both are =  — (r — 1). Put everything together, we 
have if г ^  j  or г +  j  Ф r — 2, then (s2)*? =  0. If г =  j ,  then г +  j  Ф r — 2 
because r — 2 is odd, and (s2)ij =  • If i +  j  =  r — 2, then г ^  j ,
and (s2)ij =  -(-дзг р̂ тр  • Hence s2 =  where =  0 unless
i =  j  or i + j  — к =  r — 2 . □

We define a colored tangle category A a based on a label set La - Con
sider С x / ,  the product of the plane С with an interval / ,  the objects of 
A a are finitely many labelled points on the real axis of С identified with 
С x {0 } or С x { 1}. A morphism between two objects are formal tangles in 
C x i  whose arc components connect the objects in €  x {0 } and C x  {1} 
transversely with same labels, modulo Kauffman bracket and Jones-Wenzl 
projector Pr-i- Horizontal juxtaposition as a tensor product makes A a into 
a strict monoidal category.

The quantum dimension d{ of a label i is defined to the Kauffman 
bracket of the 0-framed unknot colored by the label i. So dj =  A j(d). 
The total quantum order of A^ is D =  d|, so D =
The Kauffman bracket of the 1-framed unknot is of the form 6 id i, where 
9i =  А~г(г+2  ̂ is called the twist of the label i. Define p± =  Y^iei > 
then D2 — p+p- .

A triple (г, j,  k) of labels is admissible if Hom(pj ®Pj,Pk) is not 0. The 
theta symbol Q(i, j ,  к) is the Kauffman bracket of the theta network, see.KL

Lemma 3.3.

(1) Hom(pj <8>Pj,Pk) is not 0 if and only if the theta symbol 9(i,j,k) is 
non-zero, then Hom(pi ®Pj,Pk) — C.

(2) 6 ( i , j , к) Ф 0 if and only if i +  j  +  к < 2(r -  2), г 4- j  +  к is even and
i + j  > fc, j  +  к >  г, к +  i > j .

3.5. H and les and S -m a tr ix

There are various ways to present an n-manifold X : triangulation, surgery, 
handle decomposition, etc. The convenient ways for us are the surgery de
scription and handle decompositions.
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Handle decomposition of a manifold X  comes from from a Morse func
tion of X. Fix a dimension= n, a A:-handle is a product structure Ik x In~k 
on the n-ball Bn, where the part of boundary d lk x In~k ~ Sfc_1 x In~k is 
specified as the attaching region. The basic operations in handlebody the
ory are handle attachment, handle slide, stabilization, and surgery. They 
correspond to how Morse functions pass through singularities in the space 
of smooth functions on X.  Let us discuss handle attachment and surgery 
here. Given an n-manifold X  with a sub-manifold Sk~l x In~k specified in 
its boundary, and an attach map ф : d lk x In~k —► Sk~x x In~k, we can 
attach a A:-handle to X  via ф to form a new manifold X' — X  Ik x In~k. 
The new manifold X'  depends on ф, but only on its isotopy class. It follows 
from Morse theory or triangulation that every smooth manifold X  can be 
obtained from О-handles by attaching handles successively, i.e., has a handle 
decomposition. Moreover, the handles can be arranged to be attached in 
the order of their indices, i.e., from О-handles, first all 1-handles attached, 
then all 2-handles, etc.

Given an n-manifold X,  a sub-manifold Skx l n~k and a map ф : d lk+l x 
gn—k—i §k x $n-k- we can change x  to a new manifold X' by doing 
index к surgery on Sk x In~k as follows: delete the interior of Sk x In~k, 
and glue in Ik+l x Sn~ k~ 1 via ф along the common boundary Sk x Sn~k~l . 
Of course the resulting manifold X ' depends on the map </>, but only on 
its isotopy class. Handle decompositions of n 4- 1-manifolds are related to 
surgery of n-manifolds as their boundaries.

It is fundamental theorem that every orientable closed 3-manifold can be 
obtained from surgery on a framed link in S3; moreover, if two framed links 
give rise to the same 3-manifold, they are related by Kirby moves, which 
consist of stabilization and handle slides. This is extremely convenient for 
constructing 3-manifold invariants from link invariants: it suffices to write 
down a magic linear combination of invariants of the surgery link so that 
the combination is invariant under Kirby moves. The Reshetikhin-Turaev 
invariants were discovered in this way.

The magic combination is provided by the projector ljo from the first row 
of the S matrix: given a surgery link L of a 3-manifold, if every component 
of L is colored by u;o, then the resulting link invariant is invariant under 
handle slides. Moreover, a certain normalization using the signature of the 
surgery link produces a 3-manifold invariant as in Theorem 3.1 below.

The projector uq is a ribbon tensor category analogue of the regular 
representation of a finite group, and is related to surgery as below. In gen
eral, all projectors Ui are related to surgery in a sense, which is responsible
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for the gluing formula for the partition function Z of a TQFT.

Lemma 3.4.

(1) Given a 3 manifold X  with a knot К  inside, if К  is colored by uq, then 
the invariant of the pair (X , К ) is the same as the invariant of X ', 
which is obtained from X  by 0-surgery on K.

(2) Let S2 С X be an embeded 2-sphere, then any labeled multicurve 7 
interests S2 transversely must carry the trivial label. In other words, 
поп-trivial particle type cannot cross an embeded S2.

The colored tangle category A a has natural braidings, and duality, 
hence is a ribbon tensor category. An object a is simple if Hom(a, a) =  € . A 
point marked by a Jones-Wenzl projector pi is a simple object of A a - There
fore, the label set La can be identified with a complete set of simple object 
representatives of A a - A ribbon category is premodular if the number of 
simple object classes is finite, and is called modular if furthermore, the mod
ular 5-matrix S =  j^s is non-singular. A non-singular 5-matrix 5  =  ($*7) 
can be used to define projectors Ui =  ^  ]Cjg/ sijPji which projects out the 
zth label.

Given a ribbon link I, < * I > denotes the Kauffman bracket of the 
colored ribbon link I that each component is colored by ĉ o-

Theorem 3.1.

(1) The tangle category A a is a premodular category, and is modular if 
and only if A is a primitive 4rth root of unity.

(2) Given a premodular category A, and X  an oriented closed 3 -manifold 
with an m-component surgery link I, then Z jk (X )  =  < 
u>o * I > is a 3-manifold invariant, where a (I) is the signature of the 
framing matrix of I.

3.6. D ia g ra m  T Q F T s fo r  closed m an ifo lds

In tills section, fix an integer r > 3, A as in Lemma 3.1. For these special 
values, the picture spaces Рюл (У) form a modular functor which is part of 
a TQFT. These TQFTs will be called diagram TQFTs. In the following, 
we verify all the applicable axioms for diagram TQFTs for closed manifolds 
after defining the partition function Z.

The full axioms of TQFTs are given in Section 6.3. The applicable 
axioms for closed manifolds are:

(1) Empty surface axiom: V(0) =  С
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(2) Sphere axiom: V{S2) =  C. This is a consequence of the disk axiom and 
gluing formula.

(3) Disjoint union axiom for both V and Z:
(4) Duality axiom for V:
(5) Composition axiom for Z: This is a consequence of the gluing axiom.

These axioms together forms exactly a tensor functor as follows: the 
category X2,cld of oriented closed surfaces Y as objects and oriented bor- 
disms up to diffeomorphisms between surfaces as morphisms is a strict rigid 
tensor category if we define disjoint union as the tensor product; — Y  as the 
dual object of Y; for birth/death, given an oriented closed surface Y, let
Y x S i : 0 — ► — Y  Ц Y be the birth operator, and Y x 5 }  : - Y  Ц Y — > 0 
the death operator, here S^ are the lower/up semi-circles.

Definition 3.2. A (2 +  l)-anomaly free TQFT for closed manifolds is a 
nontrivial tensor functor V : X2'cld — > V, where V is the tensor category 
of finite dimensional vector spaces.

Non-triviality implies K(0) =  С by the disjoint union axiom. Since 
0 Ц 0  =  0, K(0) =  V(0) 0  ^(0). Hence K(0) =  С because otherwise 
V(0) =  0 the theory is trivial. The empty set picture 0 is the canonical 
basis, therefore, K(0) =  C.

The disjoint union axiom and the trace formula for Z in Prop. 6.1 fixes 
the normalization of 3-manifold invariants. Given an invariant of closed 3- 
manifolds, then multiplication of all invariants by scalars leads to another 
invariant. Hence Z on closed 3-manifolds can be changed by multiplying 
any scalar к. But this freedom is eliminated from TQFTs by the disjoint 
union axiom which implies к = k2, hence к =  1 since otherwise the theory 
is trivial. The trace formula implies Z(S2 x S1) =  1. We set Z(S3) =  
and D is the total quantum order of the theory.

Recall that the picture space PicA(Y) is defined even for unorientable 
surfaces. When Y is oriented, Pic(K) is isomorphic to I<a(Y x  I). Given a 
bordism X  from Y\ to Y2, we need to define Zd(X)  G Р 1 с л ( —Y\ Ц Y2). It 
follows from the disjoint union axiom and the duality axiom, Zd(X)  can 
be regarded as a linear map PicA(Fi) — ♦ Рюд (>2)-

Given a closed surface Y, let Vd (Y) =  Рюл(У). For a diffeomorphism 
/  : Y —► Y, the action of /  on pictures is given by moving them in Y. 
This action on pictures descends to an action of mapping classes on V(Y). 
To define Zo(X)  for a bordism X  from Y\ to У2, ^  a relative handle 
decomposition of X  from Y\ to >2•
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Suppose that У2 is obtained from Y\ by attaching a single handle of 
indices =  0,1,2,3. For indices =  0,3, the linear map is just a multiplication 
by where Djk — Since S3 is a 0-handled followed by a
3-handle, Zd [S3) =  7̂ —. This is not a coincidence, but a special case of aUJK
theorem of K. Walker and V. Turaev that Z q ( X )  =  \ Z j j < ( X ) \ 2 for any 
oriented closed 3-manifold.

Given a multicurve 7 in Yi,
1): If a 1-handle I x B2 is attached to Yi, isotopy 7  so that it is disjoint 

from the attaching regions dl  x B2 of the 1-handle. Label the co-core circle
I x dB2 of the 1-handle by cjo to get a formal multicurve in Y2. This defines 
a map from PicA(Yi) to P ic^Y i) by linearly extending to pictures classes.

2): If a 2-handle В2 x I  is attached to Y\, isotopy 7 so that it intersects 
the attaching circle dB2 x | of the 2-handle transversely. Expand this at
taching circle slightly to become a circle s just outside the 2 handle and 
parallel to the attaching circle dB2 x Label shy uq. Fuse all strands of 7  
so that a single labeled curve intersects the attaching circle dB2 x only 
the 0-labeled curves survive the projector uq on s. By drawing all remaining 
curves on the Y\ outside the attaching region plus the two disks В 2 x {0 } 
and B2 x { 1}, we get a formal diagram in Y2.

We need to prove that this definition is independent of handle-slides 
and cancellation pairs, which is left to the interested readers.

Now we are ready to verify all the axioms one by one:
The empty surface axiom: this is true as we have a non-trivial theory.
The sphere axiom: by the “d-isotopy” constraint, every multicurve with 

m loops =  dm0. If 0 picture on S2 is =  0 in PicA(S2), then Zd (B3) =  0 
which leads to Zd {S3) =  0. But Zd {S3) Ф 0, it follows that P\cA{S2) =  C.

The disjoint union axioms for both V and Z are obvious since both are 
defined by pictures in each connected component.

Pic(—Y) =  Pic(Y) is the identification for the duality axiom. To define a 
functorial identification of PicA(—Y) with Рюл (У)*, we define a Hermitian 
paring: PicA(Y) x Рюл (У) — » С. Since Pic"4 (У) is an algebra, and semi
simple, it is a matrix algebra. For any x,y  G PicA(Y), we identify them 
as matrices, and define < x , у > =  Тг(гс^). This is a non-generate inner 
product. The conjugate linear map x —>< ж, • > is the identification of 
Рюл (—Y) with PicA(Y)*.

Summarizing, we have;

Theorem 3.2.
The pair (Vb, Zp) is a (2 +  1) -anomaly free TQFT for closed manifolds.
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In Section 3.1, we consider C[S] for surfaces Y even with boundaries. Given a 
surface Y  with m boundary circles with щ fixed points on the ith boundary 
circle, by imposing Jones-Wenzl projector pr-1 away from the boundaries, 
we obtain some pictures spaces, denoted as Р1сл(У ;п ь  • • • ,nm). To un
derstand the deeper properties of the picture space Рюл (У), we need to 
consider the splitting and gluing of surfaces along circles. Given a simple 
closed curve (see) s in the interior of Y, and a multicurve 7 in Y, isotope 
s and 7 to general position. If Y is cut along s, the resulted surface Ycut 
has two more boundary circles with n points on each new boundary circle, 
where n is the number of intersection points of s fl7 , and n € { 0, 1, 2, • • • , }. 
In the gluing formula, we like to have an identification of 0 Pic'4(Ycut) with 
all possible boundary conditions with Рюл(У), but this sum consists of 
infinitely many non-trivial vector space,which contradicts that Рк:л (У) is 
finitely dimensional. Therefore, we need more refined boundary conditions. 
One problem about the crude boundary conditions of finitely many points 
is due to bigons resulted from the “d-isotopy” freedom: we may introduce 
a trivial see intersecting s at many points, or isotope 7 to have more inter
section points with s. The most satisfactory solution is to define a picture 
category, then the picture spaces become modules over these categories. 
Picture category serves as crude boundary conditions. To refine the crude 
boundary conditions, we consider the representation category of the pic
ture category as new boundary conditions. The representation category of 
a picture category is naturally Morita equivalent to the original picture cat
egory. The gluing formula can be then formulated as the Morita reduction 
of picture modules over the representation category of the picture category. 
The labels for the gluing formula are given by the irreps of the picture 
categories. This approach will be treated in the next two sections. In this 
section, we content ourselves with the description of the labels for the di
agram TQFTs, and define the diagram modular functor for all surfaces. 
In Section 6.3, we will give the definition of a TQFT, and later verify ail 
axioms for diagram TQFTs.

The irreps of the non-semi-simple TL annular categories at roots of unity 
were contained in,GL but we need the irreps of the semi-simple quotients of 
TL annular categories, i.e., the TLJ annular categories.

The irreps of the TLJ annular will be analyzed in Sections 5.5 5.6. In 
the following, we just state the result. By Theorem B.l in Appendix B, each 
irrep can be represented by an idempotent in a morphism space of some 
object. Fix h (0 < h < k) many points on 5 1, and let uj^h be the following

3.7. Boundary conditions for picture TQFTs
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diagram in the annulus A: the two circles in the annulus are labeled by 
Ui,Uj, and h =  3 in the diagram.

Fig. 3.7. Annular projector

The labels for diagram TQFTs are the idempotents oJij-h above. Given a 
surface Y with boundary circles 7*, г =  1, ..,m .In the annular neighborhood 
Ai of 7i, fix an idempotent сo ĵ-h inside Л*. Let Pic£(Y;W ij./t) be the span 
of all multicurves that within Ai agree with Wij-h modulo pr- i  •

Theorem 3.3.
If A is as in Lemma 3.1, then the pair (PicA(Y), Zd ) is an anomaly-free 

TQFT.

3.8. Jones-Kauffman skein spaces

In this section, fix an integer r > 3, A as in Lemma 3.1, and d =  — A2 — A~2.

Definition 3.3. Given any closed surface Y, let PicA(Y) be the picture 
space of pictures modulo pT-i-  Given an oriented 3-manifold X,  the skein 
space of pr-1 and the Kauffman bracket is called the Jones-Kauffman skein 
space, denoted by K a {X).

The following theorem collects the most important properties of the 
Jones-Kauffman skein spaces. The proof of the theorem relies heavily on 
handlebody theory of manifolds.

Theorem 3.4.
a): Let A be a primitive Arth root of unity. Then

(1) K A(S3) =  c.
(2) There is a canonical isomorphism of Кд {Х  1И Х 2) — K a (X i)# /<r(^ 2)-
(3) If dX  1 =  6 X 2, then Ka{X  1) =  Ka{X 2), but not canonically.
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(4) If the 0 link is not 0 in Ka(X) for a closed manifold X , then Ka{X)  =  
С canonically. The 0 link in I<a(#™=iS1 x  S2) and Ka(Y  x  S1) is not
0 for oriented closed surface Y.

(5) K a (—X ) x I<a (X)  — > K a (DX) is non-degenerate. Therefore, I<a (X) 
is isomorphic to K a {X)*, but not canonically.

(6) Ka(Y  x I) — ► End(KA{X)) is an isomorphism if dX  =  Y.
(7) PicA(Y) is canonically isomorphic to I<a {Y x  I) if Y is orientable, 

hence also isomorphic to End(KA{X)).

b): If A is a primitive 2rth root of unity or rth root of unity, then (2) does 
not hold, and it follows that the rest fail for disconnected manifolds.

P roof.
(1) Obvious.
(2) The idea here in physical terms is that non-trivial particles cannot 

cross an S2.
The skein space Ka{X i II X 2) is a subspace of Ka(X\)#K(X2) by 

inclusion. So it suffices to show this is onto. Given any skein class x in 
Ka(X\)#K(X2), by isotopy we may assume x intersects the connecting S2 
transversely. Put the projector u>o on S2 disjoint from x, then ljq encircle x 
from outside. Apply и о to x to project out the О-label, we split x into two 
skein classes in Ka{X  1 IIX 2), therefore the inclusion is onto.

(3) This is an important fact. For example, combining with (1), we see 
that the Jones-Kauffman skein space of any oriented 3-manifold is =  C.

We will show below that any bordism W 4 from X\ to X 2 induces an 
isomorphism. Moreover, the isomorphism depends only on the signature of 
the 4-manifold W 4.

Pick a 4-manifold W  such that dW =  — X\ Uy (Y x I) Uy X 2 (W  exists 
since every orientable 3 manifold bounds a 4 manifold), and fix a handle- 
decomposition of W. О-handles, and dually 4-handles, induce a scalar multi
plication. 1-handles, or dually 3-handles, also induce a scalar multiplication 
by (2). By (2), we may assume that X {,i =  1,2 are connected. Therefore, 
we will fix a relative handle decompositions of W with only 2-handles, and 
let Ьх{ , i =  1,2 be the attaching links for the 2-handles in X {, respectively. 
Then Xi\LXl =  X 2\Lx2. The links LXi,i =  1,2 are dual to each other in
a sense: let L vual be the link consists of cocores of the 2-handles on Xi , then

. »

surgery on Lxx *n Xi results X 2, while surgery on L xx ua in X\ results 
X i, and vice versa.

Define a map Л1 : K A(X  1) —> K A{X2) as follows: for any skein class 
representative 71, isotope 71 so that it misses L xx • Note that in the skein
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spaces, labeling a component L\ of a link L by wo, denoted as uq * Li, is 
equivalent to surgering the component; then h(71) =  71 Ц  u>0 * Ьх2> where 
71 is now considered as a link in X 2. Formally, we write this map as:

№ ; t i )  № ;^ X x  U ^ x 1dualЦ 71) -* Ц т г ) ,

where 72 is 71 regarded as a skein class in X 2. In this map, L x x is mapped to 
the empty skein as it has been surged out, while L x idual is mapped to Lx2- 
Then define h2 similarly. The composition of h\ and h2 is the link invariant 
of the colored link L x{ union a small linking circle for each component plus 
a parallel copy of L x ,dual union its small linking circles as in the Fig. 3.8, 
which is clearly a scalar, hence an isomorphism.

\ *

Fig. 3.8. Skein space maps

Now we see that a pair, (W , a handle decomposition), induces an iso
morphism. Using Cerf theory, we can show that the isomorphism is first 
independent of the handle decomposition; secondly it is a bordism invari
ant: if there is a 5-manifold N  which is a relative bordism from W  to W\ 
then W  and W' induces the same map. Hence the isomorphism depends 
only on the signature of the 4-manifold W. The detail is a highly non-trivial 
exercise in Cerf theory.

(4) follows from (l)-(3 ) easily.
(5) The inner product is given by doubling. By (3) I<a {X)  is isomorphic 

to K a {H), where Я  is a handlebody with the same boundary. By (4), 
the same inner product is non-singular for K a {H). Chasing through the 
isomorphism in (3) shows that the inner product on K a {X)  is also non
singular. Since K a (DX)  =  C, hence K a (X)  is isomorphic to K a (X)*-
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(6) K a(Y x I) is isomorphic to K A( - X  LI X)  by (3). It follows that the 
action of K a{Y x I) on K A(X): K A{X)®I<A(Y x I) - »  K A(X  Uy (Y x I) 
becomes an action of K A(—X  Ц Х )  on KA(X): K A( X ) ® K A(—X  JJX) —* 
K a(DX  Ц X).  By the paring in (5), we identify the action as the action of 
End(X) =  K A(~X)  <g> KA(X) on K A(X).

(7) follows from (6) easily. □

The pairing K A( - X ) x K A(X) — * K A(D X ) allows us to define a 
Hermitian product on K A(X)  as follows:

Definition 3.4.
Given an oriented closed 3-manifold X , and choose a basis e of K A(DX).  

Then K a (DX) =  Ce. For any multicurves x, у in X , consider x as a mul
ticurve in —X , denoted as x. Then define x U y  = <  ж,у  >  e, i.e. the ratio 
of the skien xU y  with e. If 0 is not 0 in I<A(DX),  then Hermitian pairing 
is canonical by choosing e =  0.

Almost all notations are set up to define the Jones-KaufFman TQFTs. 
We see in Theorem 3.4 that if two 3-manifolds Xi,i  =  1,2 have the same 
boundary, then K A(X i) and K A(X2) are isomorphic, but not canonically. 
We like to define the modular functor space V (Y) to be a Jones-Kauffman 
skein space. The dependence on Xi is due to a framing-anomaly, which 
also appears in Witten-Restikhin-Turaev SU{2) TQFTs. To resolve this 
anomaly, we introduce an extension of surfaces. Recall by Poincare dual
ity, the kernel Ax of Hi(dX-R)  —> # i (X ;R )  is a Lagrangian subspace 
Л С H\(Y\ R). This Lagrangian subspace contains sufficient information to 
resolve the framing dependence. Therefore, we define an extended surface 
as a pair (Y;A), where A is a Lagrangian subspace of # i (Y ;R ) . The ori
entation, homology and many other topological property of an extended 
surface (Y\ A) mean that of the underlying surface Y.

The labels for the Jones-Kauffman TQFTs are the Jones-Wenzl pro
jectors {pi}. Given an extended surface (У; A) with boundary circles 
7i,z =  1 ,..,m . Glue m disks B2 to the boundaries to get a closed surface
Y and choose a handlebody H such that дН  =  У, and the kernel А я of 
Hi (Y ; R) —► Hi (Я; R) is A. In a small solid cylinder neighborhood B 2 x [0, e] 
of each boundary circle 7*, fix a Jones-Wenzl projector p^ inside some 
arcx[0,c], where the arc is any fixed diagonal of B2. Let V^K{Y\\, {p^ }) 
be the Jones-Kauffman skein space of H of all pictures within the solid 
cylinders B2 x [0,e] agree with {p^}.
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Lem m a 3.5.
Let В2 be a 2-disk, A an annulus and P a pair of pants, and (Y, Л) an 

extended surface with m punctures labelled by pij , j  =  1, 2 , • • • ,m, then

(1) VjAK{B2]Pi) =  0 unless i =  0, and VfK{B2 -p0) =  C.
(Ю v j k ( A 'iPiiPj) =  0 unless i =  o> and y fA ^ V u V i)  =  с
(3) V AK(P\pi,pj,pk) =  0 unless i , j ,k is admissible, and V Ak{P\Pu 

P j,P k) =  С if i , j ,k is admissible.
(4) Given an extended surface (Y; A), and let H be a genus=g handlebody 

such that dH =  (Y; A) as extended manifolds. Then admissible labelings 
of any framed trivalent spine dual to a pants decomposition of Y with 
all external edges labelled by the corresponding boundary label p^ is a 
basis of VjAK(Y-,\,{Pij)}.

(5) Vjj<[Y) is generated by bordisms {X\dX — Y } if Y  is closed and 
oriented.

Given an extended surface (Y;A), to define the partition function 
Z jk (X )  for any X  such that dX =  Y, let us first assume that dX  =  (Y; A) 
as an extended surface. Find a handlebody H such that A# =  A, and a 
link L in H such that surgery on L yields X.  Then we define Zx  as the 
skein in V d { H )  given by the L labeled by a>o on each component of L. If 
Ax is not A, then choose a 4-manifold W  such that dW =  —X  ]JX  and 
the Lagrange space A and Ax extended through W . W  defines an isomor
phism between I<a(X) and itself. The image of the empty skein in I<a{X) 
is Z(X).  Given /  : (Yi;Ai) —► (Y2; A2), the mapping cylinder / /  defines an 
element in V(Y\ Ц У2) =  V(Yi) 0  ViX2) by the disjoint union axiom. This 
defines a representation of the mapping class group M (Y ), which might be 
a projective representation.

T heorem  3.5.
If A is a primitive 4rth root of unity for r > 3, then the pair [Vj k > Zj k ) 

is a TQFT.

This theorem will be proved in Section 7.
There is a second way to define the projective representation of 7Vt(Yr). 

Given an oriented surface Y, the mapping class group M (Y) acts on Pic(Y) 
by moving pictures in Y. This action preserves the algebra structure of 
Pic(Y) in Prop. 3.2. The algebra Pic(Y) =  E n d (/^ (Y )) is a simple matrix 
algebra, therefore any automorphism p is given by a conjugation of an 
invertible matrix Mp, where Mp is only defined up to a non-zero scalar. It 
follows that for each /  E M (Y), we have an invertible matrix Vj =  М /,
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4. M orita  equivalence and cut-paste topology

Temper ley-Lieb- Jones algebras can be generalized naturally to categories by 
allowing different numbers of boundary points at the top and bottom of the 
rectangle Another interesting generalization is to replace the rectangle by 
an annulus Л. Those categories provide crude boundary conditions for V{Y) 
when Y  has boundary, and serve as “scalars” for a “higher” tensor product 
structure which provides the formal framework to discuss relations among 
V(Yys  under cut-paste of surfaces. The vector spaces V{Y)  of a modular 
functor V can be formulated as bimodules over those picture categories. An 
important axiom of a modular functor is the gluing formula which encodes 
locality of a TQFT, and describes how a modular functor V(Y)  behaves 
under splitting and gluing of surfaces along boundaries. The gluing formula 
is best understood as a Morita reduction of the crude picture categories to 
their representation categories, which provides refined boundary conditions 
for surfaces with boundaries. Therefore, the Morita reduction of a picture 
category amounts to the computation of all its irreps. The use of bimodules 
and their tensor products over linear categories to realize gluing formulas 
appeared in [BHMV]. In this section, we will set up the formalism. The 
irreducible representations of our examples will be computed in the next 
section.

We work with the complex numbers С as the ground ring. Let A de
note a linear category over С meaning that the morphisms set of A are 
vector spaces over С and composition is bilinear. We consider two kinds 
of examples: “rectangular” and “annular” A’s. (The adjectives refer to 
methods for building examples rather than additional axioms.) We think 
of rectangles(IR) as oriented vertically with a “top” and “bottom” and 
аппиИ(Л) has an “inside” and an “outside” . Sometimes, we draw an an
nulus as a rectangle, and interpret the rectangles as having their left and 
right sides glued. The objects in our examples are finite collections of points, 
or perhaps points marked by signs, arrows, colors, etc., on “top” or “bot
tom” in the rectangular case, and on “inside” or “outside” in the annular 
case. The morphisms are formal linear combinations of “pictures” in IR or 
A  satisfying some linear relations. The most important examples are the 
Jones-Wenzl projectors. Pictures will variously be unoriented submanifolds 
(i.e. multicurves), 1-submanifolds with various decorations such as orient
ing arrows, reversal points, transverse flags, etc., and trivalent graphs. Even 
though the pictures are drawn in two dimensions they may in some the-

which forms a projective representation of the mapping class group M(Y).
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ories be allowed to indicate over-crossings in a formal way. A morphism 
is sometimes called an “element” as if A had a single object and were an 
algebra.

Our IR’s and .A’s are parameterized, i.e. not treated merely up to dif- 
feomorphism. One crucial part of the parameterization is that a base point 
arc * x I c S 1 x I  =  A h e  marked. The * marks the base point on Sl and 
brings us to a technical point. Are the objects of A the continuously many 
collections of finitely many points in I (or S1) or are they to be simply 
one representative example for each non-negative integer m. The second 
approach makes the category feel bit more like an algebra (which has only 
one object) and the linear representations have a simpler object grading. 
One problem with this approach is that if an annulus A  factored as a com
position of two by drawing a degree=l see 7 С A  (and parameterizing both 
halves), even if 7 is transverse to an element x in A  7 П x may not be 
the representative set of its cardinality. This problem can be overcome by 
picking a base point preserving re-parameterization of 7 . This amounts to 
“skeletonizing” the larger category and replacing some “strict” associations 
by “weak” ones. Apparently a theorem of S. MacLane guarantees that no 
harm follows, so either viewpoint can be adopted.Ma We will work with the 
continuously many objects version.

Recall the following definition from Appendix B:

D efinition 4.1. A representation of a linear category A is a functor p : A —► 
V, where V is the category of finite dimensional vector spaces. The action 
is written on the right: p(a) =  Va and given m € Mor(a, b),p(m) : Va —*
We write on the left to denote a representation of Aop.

Let us track the definitions with the simplest pair of examples, tem
porarily denote A^ and A*4 the Я and Л-categories with objects finite 
collections of points and morphisms transversely embedded un-oriented 1- 
submanifolds with the marked points as boundary data. Let us say that 1) 
we may vary multicurves by “d-isotopy” for d =  1, and 2) to place ourselves 
in the simplest case let us enforce the skein relation: p2 =  0 for d =  1. This 
means that we allow arbitrary recoupling of curves. This is the Kauffman 
bracket relation associated to A =  e 2̂ 1 ,d =  —A2 — A ~2 =  1. The admis
sible pictures may be extended to over-crosssings by the local Kauffman 
bracket rule in Figure 2.1 in Section 2.2.

In these theories, which we call the rectangular and annular Temperley- 
Lieb-Jones categories TLJ at level =  1 ,d =  1, over-crossings are quite 
trivial, but at higher roots of unity they are more interesting. In schematic
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Figures 4.1, 4.2 give examples of A^ and AA representations.

Fig. 4.1. Л3* acts (represents) on vector space of pictures in twice punctured disk (or 
genus=2 handlebody)

It is actually the morphism between objects index by 4 to 2 points, resp. 
which is acting in Figure 4.1, Figure 4.2.

Fig. 4.2. Ал acts on vector space of pictures in punctured genus=2 surface

The actions above are by regluing and then re-parameterizing to absorb 
the collar. For each object a in TLJd=i, the functor assigns the vector space 
of pictures lying in a given fixed space with boimdary data equal the object
a. Given a fixed picture in 01 and A , i.e. an element e of A, gluing and 
absorbing the collar defines a restriction map: /(e )  : V\ —> Vi (in the case 
illustrated) between the vector spaces with the bottom (in) and the top 
(out) boundary conditions. To summarize the annular categories act on 
vector spaces which are pictures on a surface by gluing on an annulus. The 
rectangular categories, in practice, act on handlebodies or other 3-manifolds 
with boundary by gluing on a solid cylinder; Figure 4.1 is intentionally 
ambiguous and may be seen as a diagram or 3—manifolds. Because we can 
use framing and overcrossing notations in the rectangle we are free to think 
of % either as 2-dimensional, I x I, or 3—dimensional I  x B2.

4.1. Bimodules over picture category

Because a rectangle or annulus can be glued along two sides, we need to 
consider Aop x A actions: Aop x А Л  V. The composition A —>mi—►(m°P*m)
Aop x A -^ V  describes the action of gluing an or A  on two sides (Figure
4.3, Figure 4.4).
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Fig. 4.3. Лж acts on both sides

We refer to the action of Aop as “left” and the action of A as “right” . 

D efinition 4.2.
1) Let M  be a right Л-representation (or “module” ) and N a left Л- 

module. Denote by M  0 Л N the С-module quotient of ® M a ® c aN by
a

all relations of the form =  av, where “a” and “b” are general
objects of A, и € Ma, v € and a 6 a^b =  Mor(a, b).

2) A С x D bimodule is a functor p : Cop x D — > V. Note that С is 
naturally a С x G bimodule, which will be called the regular representation
of e.

Suppose now that A is semi-simple. This means that there is a set I 
of isomorphism classes of (finite dimensional) irreducible representations 
Pi,г € I  of A and every (finite dimensional) representation of p may be 
decomposed p =  ®  (g) pi, where Vi is a C-vector space with no A action; 
dim (Vi) is the multiplicity of pi. (If рг(а) =  M* and p2(a) =  M 2, then 
Pi Ф  P2 =  ф  M 2, and similarly for morphisms.)

The following example is contained in the section in the general discus
sion, but it is instructive to see how things work in TLjJ=1 and TLJ^=1, 
the TLJ rectangular and picture categories for d =  1. These simple ex
amples include the celebrated toric codes TQFT inKl1 or Z2 gauge theory, 
and illustrate the general techniques. Since it is almost no extra work, we 
will include the corresponding calculation for TLjJ_ _ 1 and TLJ^L.j where 
A =  , d =  - 1  and p2 =  0 for d =  —1.

A general element x € aA^lb is determined by its coefficients of 
“squeezed” diagrams where only 0 and 1 arcs cross the midlevel of the 
rectangle such diagrams look like:

Similarly x € a&±l b are determined by the coefficients of the diagrams
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u ■ \ J
or

V

/V n n \ ( \

Fig. 4.5. Squeezed morphisms

in an annulus made by gluing the left and right sides of FIGS??. To each 
a G A0, A =  A^j01-•A, let Va be the vector space spanned by diagrams, 
with a end points on the top (outside) and zero (a even) or one (a odd) 
end point on the bottom (inside), thus Va =  ooriAa. The gluing map

Oor iA„ ® aA^ —> oor iA^ provides the two representations Po anc  ̂ p f 
A±i (po (or i) sends a odd (or even) to the O-dimensional vector space.)

Lemma 4.1. The representation pQ- and p f are irreducible.

Proof. Consider p j ,  the morphism vector space 2k^2k has dimension=l 
(spanned by the empty diagram in a rectangle) so that in “grade” , 2/c, p j  
is automatically irreducible. There is a morphism m G 2k ^ 2n, £  2n ^ 2k'

m — d  /2

с si с

- п /
4 kXJ

к .

<ччtsи+£

псс СС

Fig. 4.6. Factored morphisms

and ratm =  id E 2k̂ -2k- Thus any representation {V’} on the even 
grades of the categories must have equal dimension in all (even) grades 
since Po {rn) and pj(m^) are inverse to each other. It follows that any proper 
subrepresentation of p j  must be zero dimensional in all grades. Thus Po is 
irreducible.

The argument for p f  is similar, simply add a vertical line near the right 
margin of the rectangles in Fig. 4.6 to obtain the corresponding 771, ттг* in 
the odd grades. □

Lem m a 4.2. Any irreducible representation of A ±L is isomorphic to p j  or 
Pi-

Proof. The proof is based on “resolutions of the identity” . In this case
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that means:

2k

id

2 k+ 1

=(±d‘
V и
Л 0

=(±D'
ТПГ 
n A

2k 0M 2k 2k ^ 0  0 ^ 2 к

Fig. 4.7. Resolution of identity

Acting by p on {V } may be factored schematically as shown in Figure
4.8.

\ V 'J

-action here

■action here

action trivial here
(even case, illustrated for k = 2)

Fig. 4.8. Picture action

By Theorem B.l, for every a € A0, Va is a subspace of аЛь for sone b € 
A0. In formulas, let I € 2n&2k (for the even case) p(l) =  p ( l  - 2 /^ 0  ‘ om2 
so the action factors through 0Л2А;. On the even (odd) grades the action is 
isomorphic to p j  (p f ) tensor the subspace of 2пЛо generated by elements 
of the form I • 2№ 0  with trivial action. So the general representation is 
isomorphic to a direct sum of irreducibles. In this simple case it was not 
necessary (as it will be in other cases) to construct the Hermitian structure 
on A to derive semi-simplicity. О

Now consider representations of A^x. Again x € is determined
by diagrams with a “weight” of 0 or 1.

In the special ( “principle graph” ) cases: 0Л0 and 1Л1 there are four 
diagrams (Figure 4.9) up to isotopy in the presence of relations P2 =  0 f°r 
d =  ±  1.

The reader should observe that if pictures are glued to be outside of
0, ring R , straight arc / ,  or twist T they may be transformed to another
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© © ©
"e m p ty "  R "r in g ” I "id en tity " T "tw ist"

Fig. 4.9. Idempotents for annular d =  ±  1

picture:

0 0 я  =  л, Д 0 Д  =  ±0, / 0 Г  =  Г, a n d T 0 T  =  ±T.

(The signs are for d =  ±1). Let us call the object (i.e. number of end points) 
a “crude label” . We have two crude labels “0” and “1” in this example. 
For each crude label the symmetric ^^±£,and and anti-symmetric
(^|^,and ) averages are in fact (+ 1, - 1) eigenvectors under gluing on 
a ring R in oAi,o and gluing on T in iAi,i. The combinations (0 — iR) and 
(0 +  iR) are ±  1-eigenvectors for the action of R in oA_i,o and (T — iT) 
and (T +  гТ) are ±  1-eigenvectors for the action of T in oA_i,o. In all 
cases these vectors span a 1-dimensional representation of four algebras 
oAi,o, iA _ ito, iA i,!, iA _ i(i in which they lie. That is, oAo and 1Л1 have the 
structure of commutative rings under gluing (•) and formal sum (+). They 
satisfy 0A ±i|0 =  С [R]/(R2 =  ±0) and iA ±u  =  C(T)/(T2 =  ±1) with 0 
and I  serving as respective identities.

What is more important than the representations of these algebras is 
the representations of the entire category aA±i,b in which they lie. Similar 
to the rectangular case, these four representatives together form the “prin
ciple graph” from which the rest of the “Bratteli diagram” for full category 
representations follows formally.

Lem m a 4.3. These 4 representations of A^j are a complete set of irre- 
ducibles.

The Bratteli diagram in Figure 4.10 explains how to extend the algebra 
representations to the linear category ( “algebroid” ) in the rectangle IR case.

All vector spaces above are 1-dimensional and spanned by the indicated 
picture in Я and the f  is “add line on right” , the \  “bend right” . The 
annular case is similar and is shown in Figures 4.11, 4.12.
Note that we interpret the rectangles as having their left and right sides 
glued.

In the case of annular categories there is no tensor structure (horizontal 
stacking) so in general the arrows present in the IR-case seems more difficult



62 M. Freedman, С. Nayak, К. Walker and Z. Wang

г \ Л  л

0 1 2 3 4

Fig. 4.10. Bratteli diagram

crude
label

Ц - 5 • С '

Ш * 0 л + 1 ^ J

° П-В □ - в
0 Q S  0 Ш*0 1 2

Fig. 4.11.

crude
label

1 Ш * ' 0  

Ш -'Э  

•□"В СМЗ 
•□-■В П-10

0 1 2  3

Fig. 4.12.
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to define in generality, but should be clear in these examples. In the annu
lar diagrams above all vector spaces of morphisms аАь have dimension=2  
if a =  b mod 2 and zero otherwise. As in the rectangular case, resolutions 
of the identity morphisms of A^x into morphism which factor through 0 
or 1-strand show that all representations are sums of the four. One dimen
sionality and the existence of invertible morphisms between grades (exactly 
those shown in Fig. 4.6, but now with the convention that the vertical sides 
of rectangles are glued to form an annulus) again show that the four are 
irreducible.

By the corollary B.l to Schur’s lemma, the above decompositions into 
irreducibles are all unique. There are direct generalizations of the categories 
so far considered to Temperley-Lieb-Jones categories in the next section.

4.2. Cutting and paste as Morita equivalence

Crude labels for picture categories are given as finitely many points of the 
boundary. In the gluing formulas for TQFTs, labels are irreps of the picture 
categories. The passage from the crude labels of points to the refined labels 
of irreps is Morita equivalence.

Definition 4.3. Two linear categories С and V are Morita equivalent if 
there are 6 x D bimodule M  and D x C  bimodule N such that M<8)N  =  6 
and N <g> M  =  Ъ as bimodules.

Let A be a linear category, {a * }^ / a family of objects of A. For each
i E / ,  let be an idempotent in the algebra aiAai. Define a new linear 
category A as follows: the objects of A is the index set / ,  and the morphism 
set iA j =  eidiA.aj.

Given an object a in A, define the A x A bimodule M  as iMa =  e,ai Aa, 
and the A x A bimodule N  as aNi =  QAafej.

A key lemma is the following theorem in Appendix A of:BHMV

Theorem  4.1.
Suppose the idempotents e* generate A as a two-sided ideal. Then the 

bimodule M  <g>A N =  A and N  ®д M  =  A, i.e., A and A are Morita 
equivalence.

Consequently, tensoring (on the left or right), by the modules N and M , 
gives rise to the Morita equivalence of A and A . Moreover, these equiva
lences preserves tensor product of bimodules.

Given two surfaces Y\, Y2 such that dY\ =  71 W^.dYi =  7 П72, and 
the picture spaces Pic(Yi), Pic(Y<2) are bimodules over the picture category
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A, then the picture space Pic(Yi U7 Y2) is the tensor product of Pic(Yi) and 
P ic(r2) over A. Morita equivalence, applied to the picture category A, sends 
the bimodule _Pic(Yi U7 Y2)_  to the bimodule _Pic(Yi) ®Pic(Y2)_ (over 
the representation category A of the picture category A) because tensor 
products are preserved under Morita equivalence. Now the general gluing 
formula can be stated as a consequence of Morita equivalence:

T heorem  4.2.
Let Y\, >2 o,re two oriented surfaces such that dY\ =  7 i П 7  ani  ̂

dY<i — 7П 72- Then the picture bimodule _ У (У !и 7 У2)_  is isomorphic 
to -  V(Yi) 0 д V(Y2)_  as bimodules.

As explained in Appendix B, the idempotents e* label a complete set 
of irreps of the linear category Л. Therefore, gluing formulas for picture 
TQFTs need the representation categories of the picture categories. In the 
axioms of TQFTs the label set was a mysterious feature, now we will see 
its origins in picture TQFTs.

Now let us write the Morita equivalence more explicitly. Let A be some 
A31 (or Лл ) and suppose A is semi-simple with index set I. The pictures in 
a fixed 3-manifold (surface) with a “left” and “right” gluing region provide 
a bimodule аВь on for A. If the gluing region is not connected within the 
3-manifold (surface) then В =  ВШь (g)A £ right. We treat this case first.

Lem m a 4.4. Bl ® ABr ( У ; ® ^ ) ,  where aB r'̂ ht ^  ®V i® P i  and

aBMt =  ( p ? V )  =  (M ™ ))1) '

Proof. Note that p°p ®  pj =  HomA(pi, ft )  -  {  о if • As usual ф л dis- 
tributes over (g)A, the unusual feature is that the coefficients are vector 
spaces V{ and Wj, not complex numbers. They are “multiplied” by (ordi
nary) tensor product □

The manipulations above are standard in the context of 2-vector 
spacesFd ,Wa12 and in fact a representation is a 2-vector in the 2-vector space 
of all formal representations.

Now suppose the regions to be glued to the opposite ends of Я (Л) 
are part of a connected component of a 3-manifold (surface), then write 
the bi-module аВь =  ®  Wij <g> (p°p pj) as a bimodule. Define a

2-trace,
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trВ =  (£ ) аВа/исе =  aopu, 
a€obj(A)

where a G аЛь,и E &£a are arbitrary. Again, “linear algebra” yields:

Lem m a 4.5. tr(B) =  ® W «- 
i6/

P roof. Schur’s lemma implies p°pp (g)c pj =  С iff i — j .  □

Note that disjoint union of the spaces carries over to tensor product, 
(^)c , of the modules of pictures on the space. This makes lemma 4.4 a 
special case of lemma 4.5. And further observe that both lemmas match 
the form of the “gluing formula” as expected, with I  =  Ju, the label set, 
and adjoint (f) is the involution^: £  —>

4.3. Annualization and quantum double

Annular categories are closely related to the corresponding rectangle cate
gories. In particular, there is an interesting general principle:

Conjecture: If Лл and Ал are rectangular and annular versions of
locally defined picture/relation categories, then (V(Rep(А31)) =  Ле^Л^), 
the Drinfeld center or quantum double of the representation category of the 
rectangular picture category is isomorphic to the representation category of 
the corresponding annular category.

The conjecture and its higher category generalizations are proved in.Wa12

5. Tem perley-Lieb-Jones categories

To obtain the full strucure of the picture TQFTs, we need to consider 
surfaces with boundaries, and boundary conditions for the corresponding 
vector spaces V(Y). The crude boundary conditions using objects in TLJ 
categories axe not suitable for the gluing formulas. As shown in Section 3.7, 
Section 4, we need to find the irrpes of the TLJ categories. Two important 
properties of boundary condition categories needed for TQFTs are semi
simplicity and the finiteness of irreps. For TLJ categories, both properties 
follow from a resolution of the identity in the Jones-Wenzl projectors.

Let X  be a compact parameterized n-manifold. The interesting cases in 
this paper are the unit interval I — [0,1] or the unit circle Sl. Define a cat
egory Q{X) as follows: an object a of C(X) consists of finitely many points
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in the interior of X , and given two objects a, b, a morphism in Mor(a, b) is 
an (n +  l)-manifold, not necessarily connected, in the interior of X  x [0,1] 
whose boundaries are a x 0, b x 1, and intersects the boundary of X  x [0,1] 
transversely. Given two morphisms /  G а£ь,9  € {>Cc, the composition of 
/ ,  g will be just the vertical stacking from bottom to top followed by the 
rescaling of the height to unit length 1. When X  is a circle, we will also 
draw the vertical stacking of two cylinders as the gluing of two annuli in 
the plane from inside to outside. More often, we will draw the stacking of 
cylinders as vertical stacking of rectangles one on top of the other with 
periodic boundary conditions horizontally. Note the two boundary circles 
of a cylinder are parameterized, so they have base points and are oriented. 
The gluing respects both the base-point and orientation.

Fig. 5.1. Composition of annular morphisms

Given a non-zero number d € C, the Temperley-Lieb category TLrf is the 
linear category obtained from C([0, 1]) by first imposing d-isotopy in each 
morphism set, and then taking formal finite sums of morphisms as follows: 
the objects of TL</ are the same as that of C([0,1]), and for any two objects
a, 6, the vector space Могть(а, b) is spanned by the set Mor(a, b) modulo 
d- isotopy.

The structure of the Temperley-Lieb categories TL<f depends strongly 
on the values of d as we have seen in the Temperley-Lieb algebras TLn(d) =  
Mor(a,a) for any object a € TL^ consisting of n points. When A is as 
in Lemma 3.1, the semi-simple quotient of the Temperley-Lieb category 
TLrf by the Jones-Wenzl idempotent pr_i is a semi-simple category. The 
associated semi-simple algebras TLn(d) were first discovered by Jones in.Jo4 
Therefore the semi-simple quotient categories of TLd for a particular d 
will be called the rectangular Temperley-Lieb-Jones category T L jJ , where 
d =  — A2 — A~2. Note that there will be several different A’s which result in 
the same TLJ category as the coefficients of the Jones-Wenzl idempotents 
are rational functions of d. If we replace the interval [0,1] in the definition 
of the Temperley-Lieb categories by the unit circle S 1, we get the annular
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Temperley-Lieb categories TLA, and their semi-simple quotients the annular 
Temperley-Lieb-Jones categories TLJA.

5.1. Annular Markov trace

In the analysis of the structure of the TL algebras, the Markov trace defined 
by Figure 2.4 in Section 2 plays an important rule. In order to analyze the 
annular TLJ categories, we introduce an annular version of the Markov 
trace and 2-category generalizations.

Recall that Дп(ж) is the Chebyshev polynomial. Let Cn(x) be the alge
bra С[ж]/(Дп(ж)). Inductively, we can check that the constant term of A n 
is not 0 if n is odd, and is 0 if n is even. For n even, the coefficient of ж is
(—l)?n . Let n =  2m and q2m(x) be the element of Cn(x) represented by 
A2mM

X

Define the annular Markov trace TrA as follows: TrA : TLnid —* Cn(x) 
is defined exactly the same as in Figure 2.4 in Section 2 except instead 
of counting the number of simple loops in the plane, the image becom
ing elements in the annular algebra, where x is represented by the center 
circle(=called a ring sometimes).

Prop 5.1. TrA(pn) =  A n(x).

It follows that the algebra Cn(x) can be identified as the annular algebra 
when d is a simple root of Дп(ж).

If the inside and outside of the annulus A  are identified, we have a torus 
T 2. The annular Markov trace followed by this identification leads to a 
2-trace from TLn>d to the vector space of pictures in T 2.

5.2. Representation of Temperley-Lieb-Jones categories

Our goal is to find the representations of a TLJ category T L jJ  or TLJA. 
The objects consisting of the same number of points in such categories are 
isomorphic, therefore the set of natural numbers { 0, 1, 2, • • •} can be identi
fied with a skeleton of the category (a complete set of representatives of the 
isomorphism classes of objects). Each morphism set Мог(г, j )  is spanned by 
pictures in a rectangle or an annulus.

To find all the irreps of a TLJ category, we use Theorem B.l in Ap
pendix В to introduce a table notation as follows: we list a skeleton 
{0, l , - - -  , }  in the bottom row. Each isomorphism class pj of irreps of 
the category is represented by a row of vector spaces {Vjti} =  {pj(i)}- 
Each column of vector spaces { V i j }  determines an isomorphism class of
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objects of the category. The graded morphism linear maps of any tw o  
columns will be iTLJj3 in particular the graded linear maps of any column 
to itself give rise to the decomposition of iTLJ* into matrix algebras, i.e., 
jTLJi =  0 j  Hom(Vj5i, V^i). To find all irreps of TLJ, we look for minimal 
idempotents of iTLJ* starting from i =  0. Suppose there exists an mo such 
that the irreps {e^ } of jTLJj, j  <  mo are sufficient to decompose every 
mTLJm as 0 :7i.Hom(Vrj i)Tn, Vji>m) for all m >  mo, then it follows that all ir
reps of TLJ are found; otherwise, a non-zero new representation space Vk,a 
from some new irrep pk and a G TLJ0 implying Hom(Vfci0, Vk,a) С aTLJa 
will contradict the fact that aTLJa =  ф ^ * Н о т (1 ^ 0, Vj,a)-

R em ark: For the annulus categories, we can identify one irrep as the 
trivial label using the disk axiom of a TQFT. Given a particular formal 
picture x in an annulus, we define the disk consequences of я as all the 
formal pictures obtained by gluing ж to a collar of the disk: given a picture у 
on the disk, composition x and у is a new picture in the disk. By convention, 
pictures with mismatched boundary conditions are 0. Then the trivial label 
is the one whose disk consequences form the vector space C, while all others 
would result in 0.

For an object m € TLJ0 if idm =  ' 9j,m) for fm,j e
mTLJj,g^m e  jTLJm, where I is a finite number depending on j , then 
we have a resolution of the identity of m into lower orders.

Lem m a 5.1. If for some object m of a TLJ category, we have a resolution 
of its identity idm into lower orders, then every irrep of the category TLJ 
is given by a minimal idempotent in j TLJ j for some j  < m.

Given a TLJ category and two objects a, с € TLJ0, there is a subalgebra, 
denoted by A£c, of the algebra Acc =  CTLJC consisting all morphisms gen
erated by those factoring through the object a: f  • p, /  € cTLJa, g € aTLJc- 
If ea is an idempotent of aTLJa, then g denotes the subalgebra of Aacc 
consisting all morphisms generated by those factoring through ett, i.e., those 
of the form /  • ea ■ g.

Lem m a 5.2. Given two objects a,b of a TLJ category, and two minimal 
idempotents ea G aTLJa,eb G bTLJb, then

jI): Aeci is the simple matrix algebra over the vector space cTLJa â-
2): If the two representations eaTLJ,ebTLJ are isomorphic, then for 

any с G TLJ3, which is neither a nor b, the subalgebras A h , Aecbc of Acc are 
equal

We will use these lemmas to analyze representations of TLJ categories,
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but first we consider only the low levels.

5.3. Rectangular Tempeley-Lieb-Jones categories for low 
levels

Denote A^ =  iAj. Note that Ац is an algebra, and Aij =  0 if i Ф j  mod 
2. The Markov trace induces an inner product < ,> : A^ x Aу —► С on all 
A^ given by < x, у > =  Tr(xy).

5.3.1. Level=l, d? =  1

Using p2 =  0, we can “squeeze” a general element x 6  Aу so that there 
are only 0 or 1 arcs cross the mid-level of the rectangle. Such diagrams in 
Figure 4.5) in Section 4.1.

The algebra Aoo =  С, and the empty diagram is the generator. The first 
irrep po of TLjJ=;fcl is given the idempotent po, which is just the identity idg 
on the empty diagram: if j  is odd, Po(j) =  0; if j  is even, po(j) =  Aoj =  C.

The algebra А ц =  С, generated by a single vertical line. The identity 
does not factor through the 0-object, so we have a new idempotent p\ 
(=idenity on the vertical line). The resulting irrep p\ sends even j  to 0, and 
odd j  to A\j =  C.

Continuing to Л22, we see that the identity on two strands does factor 
through po given by the Jones-Wenzl idempotent P2. By Lemma 5.1, we 
have found all the irreps of T L J^ , which are summarized into Table 1.

Pi 0 1
Po 1 0

0 1

TLJ J=1 does not lead to a TQFT since the resulting 5-matrix ^ 1 1  ̂

is singular. Although TLjJ=_ x does give rise to a TQFT, the resulting 

theory with 5-matrix =   ̂ \  f  ^ is not unitary. The semion theory with

S-matrix =  ^ 1 *1 ^ can be realized only by the representation category

of the quantum group SU(2) at level=l. This subtlety comes from the 
Frobenius-Schur indicator of the non-trivial label, which is 1 for TLJ and 
-1 for quantum group.
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5.3.2. Level=2, d2 =  2

Since рз is a resolution of the identity of id3 into lower orders, it suffices to 
analyze Ац for г <  2. The cases of Aoo, An  are the same as level=l. Since 
dimA2o = l, d irnd l =0  and dim>l22= 2, id2 does not factor through lower 
orders, so there is a new idempotent in ^ 22- The 1-dimensional subalgebra 
A22 is generated by ег, which is the following diagram:

It is easy to check в2 is the identity of A°2- Since the identity of A22 is the 
sum of the two central idempotents (the two identities of each 1-dimensional 
subalgebra), the new idempotent P2 is id2 — 62- The irrep corresponding to 
P2 sends each odd j  to 0, and each even j  to p2A2j-

Therefore, the irreps of the level=2 TLJ^ are given by poTLJ, piTLJ, 
P2TLJ, which are summarized into Table 2.

P2 0 0 1
Pi 0 1 0
Po 1 0 1

0 1 2

5.3.3. Level=3, d2 =  1 +  d or d2 =  1 — d

The same analysis for objects 0,1,2 yields three idempotents po>Pi»P2- 
Direct computation shows Hom(3,3) =  € 5, Hom(3,0) =  Hom(3,2) =  0 and 
Hom(3,1) =  C2. By Lemma 5.2 , A3X3 =  A\3 is the 4-dimensional algebra 
of 2 x 2 matrices over the vector space A 13. Let v\tv2 be the two vectors 
of A31 represented by diagrams such that <V\,V2 > = <  V2 ,V\ > =  d2, and
< vi,v\ > = <  V2,V2 > =  d. Using Gram-Schmidt on the vectors V\,V2 , we 
get an orthonormal basis e\ =  ^-,e2 =  v£y~i of Л31. Hence the identity 
of the algebra A33 is |ei > <  ei| +  |б2 > <  ег|. Therefore, the remaining 
idempotent of A33 is id3 — \e\ X  e\\ -  |ег > <  ег|, which is just рз- It 
follows that the irreps of TLJ are given by poTLJ, piTLJ,p2TLJ,p3TLJ.
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5.4. Annular Temperley-Lieb-Jones theories for low levels

First we have the following notations for the pictures in the annular mor
phism sets Aqq, A\i , Aq2 , A22, where l o , # , B, l i ,T i ,  12,^2 are annular di
agrams: l o , l i , l 2 are identities with 0,1,2 strands, R is the ring, В is 
the birth, and T\ is the Dehn twisted curve, and T2 is the fractional Dehn 
twisted curve. We also use B' to denote the diagram of RB after Z2 ho
mology surgery. A diagram with a " is the one obtained from a reflection 
through a horizontal line.

5.4.1. Level=l, d2 =  1

The Jones-Wenzl idempotent P2 is a resolution of id2 into the lower or
ders, so we need only to find the minimal idempotents of Hom(0,0) and 
Hom(l, 1). Since any two parallel lines can be replaced by a turn-back, the 
algebra Aqo is generated by the empty picture 0 and the ring circle R. Stack
ing two rings R together and resolving the two parallel lines give R2 =  1, 
hence Aq0 is the algebra C[R]/(R2 -  1). By Lemma 2.1, the two minimal 
idempotents of Aqq are e\ = ^ ^ ,e 2 = To test which idempotent is 
of the trivial type, we apply e i,e2 to the empty diagram on the disk and 
obtain ei0 =  (^ - )0 ,  e20 =  Hence if d =  1, then ei is of the trivial
type, and if d =  — 1, then &2 is of the trivial type.

The algebra An  is generated by the straight arc I  and the tiwst T. 
By stacking two rings R together and resolving the two parallel lines, we 
see that Au is the algebra C[T)/(T2 — dl). By Lemma 2.1, for d =  1, 
we have two minimal idempotents езд =  ^^*,64,1 =  ^г~- For d =  —1, 
we have two minimal idempotents ез,_х =  Note that
Hom(0,1) =  Hom(l,0) =  0. Therefore, the annular TLJ categories for 
d =  ±1 have 4 irreps e^i =  1,2,3,4.

5.4.2. Level=2, d2 =  2

For the TLJ categories at level=2, d2 =  2, p3 is a resolution of the identity of 
ids into lower orders, so we need to analyze the algebras Лоо, Лцл ^ 22- The 
algebra Aq0 is generated by the empty picture 0 and the ring R. Since R3 =  
2R, Aoo =  С[Я]/(Я3 -  2R). By Lemma 2.1, the three minimal idempotents 
are ei =  0 — ^ - ,e 2 =  =  —4— . Testing on the disk, we know
that ег is of the trivial type.

For Л и , we apply the Jones-Wenzl idempotent рз to the stacking of two 
twists T 2. After simplifying, we get T 4 — dT2 +  1 =  0. Again by Lemma
2.1, we have 4 minimal idempotents: ^ ( a 2/  +  cuT -  aAT2 — a 3T3), where
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a 4 — da2 +  1 =  0.
A new phenomenon arises in the algebra A22, which is generated by 8 

diagrams: I2, B B , T2, B'B , BB\ B'B' , BRB, B'RB. Computing their inner 
products shows that A22 =  С8. A02 is spanned by B,B\RB,R B'. Using 
the three minimal idempotents in Aoo, we see that eoAo2 is spanned by 
RB +  RB' =  / 0, e iA )2 is spanned by В — ~RB' — Д, B' — \RB =  /{ , and 
e iЛ02 is spanned by RB -  RB' =  f2. Hence A%2 =  C6 as the direct sum of
2 1 x 1 matrix algebras generated by / 0, /2  and a 2 x 2 algebra generated 
by / ь /i -  Therefore there are two more idempotents in A 22- Applying рз 
to the action of the 1/2-Dehn twist F  on A22, we get F 2 =  1 modulo lower 
order terms, hence the last two idempotents are of the form ^(/2 plus 
lower order terms in Since A§2 =  -6 A02 +  В'A20, we need to find an x 
such that e =  — | l2 ±  5T2 +  ж is a projector and eB =  eB' =  0. Solve the 
equations, we find

5.4.3. Level=3, d2 =  1 +  d or d2 =  1 — d

The algebra Aoo is the algebra С [Я ]/(Д 4 — 3R2 +  1), so we have 4 minimal 
idempotents.

The algebra An  is generated by the twist T, so A n  is the algebra 
C [T ]/(T 6 — dTA — dT2 +  1), so we have 6 minimal idempotents.

Let F  be the fractional Dehn twist on A22, then P4 results in a depen
dence among F -2 , F -1 , / 2, F, F 2: F 4 -  dF2 +  1 modulo lower order terms.
So we have 4 minimal idempotents.

Let F be the fractional Dehn twist on A33, then p4 results in a relation 
between F _ 1, / 3,F . So we have 2 minimal idempotents.

We leave the exact formula for the idempotents to interested readers. 
Note that the number of irreps of the annular TLJ categories is the square 
of the corresponding TLJ rectangular categories.

5.5. Temperley-Lieb-Jones categories fo r  primitive 4rth  
roots o f  unity

Let A be a primitive 4r-th root of unity, and d =  —A2 — A -2 . TLJ^ ’^’"4 
is just the TLd modulo its annihilator pT-\. We found that it has minimal 
idempotents Р0>РьР2» ■ • • ,Рк, к =  r -  2 and with image (pk+i) being the 
annihilator of the Hermitian paring (, ).

The case A a primitive 2r-th or rth root of unity, r odd, e.g. A =
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e27rt/ 6,fc =  l ,d  =  1; is identical as far as the rectangle categories go, but 
for the annular categories is more complicated; it is analyzed in the next 
section.

T heorem  5.1. Rectangle diagrams with < г < к, near the bottom 
and object t at top span spaces { W lA i }  :=  W a ,i on which A :=  A3*’*’'4 acts 
from above. The families (as i varies ) are the к +  1 (isomorphism
classes of) irreducible representations of A. The involutionл is the identity.

Proof. Most of the argument is by now familiar. Resolving the identity 
shows that any representation is a direct sum of < i < k .

For the first time dim(W^ i) may be > 1 and there will not be invertible 
morphism t —> t! but irreducibility can still be proved as follows: for all 
m  =  p i -m o  and m ! = p i -  m'0 one may construct morphism x  and у  so that 
m ! — m x  and m  — m 'y , where p* G iAj,ra,mo €  iAa,m ',mo G {А ь ,х  G 
a-Afo, у  G aAfr. О

It is a bit harder to find the irreps of Лл,А:,л := A, but we will do this 
now. Similar irreps for TLA categories were previously found by Graham- 
Lehner,GL in a different context.

We do not know how to proceed in a purely combinatorial fashion 
but must invoke the action of the doubled theory on the undoubled. 
Topologically this amounts to the action on pictures in the solid cylin
der (jB2 x / ,  B2 x di) under the addition of additional strands in a shell 
(B2\B2 x / ;  B2\B2 x di). Logically our calculation should be done until we 
have establishedt the undoubled TQFT based on A^ ,fc,j4 where the hypoth
esis A a primitive 4rth root is used. This can be done in Section 3 already 
or from here by going directly to Section 7 which does not depend on this 
section. Therefore, we will freely invoke this material.

In the low level cases we found that #пгерзЛл =  (#irrepsA^)2. This 
is not an accident but comes from identifying AA with End(A^). AA’k'A 
is too complicated to ’’guess” the irreps so we compute them from the 
endomorphism view point.

Recall from Section 3.4 the projectors ша =  J2 Д(а+1дс+1̂  onto the
c=0

*It has been shown in Lemma 3.2 that the Temperley-Lieb-Jones theories Л^'к,А violate 
an important TQFT-axiom when A 2r =  1. The 5-matrix is singular, half the expected 
rank, so the action of the mapping class group is not completely defined. In this case 
irreps of Ал>к'А have a more complicated structure.
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а-label, and D2 =  j ] A 2+1.
c=0

Also recall from Section 7 if Y =  dX  and 7  С interior^ is a fam
ily of sees labelled by ua and 7  cobounds a family of imbedded annuli 
А  с  X  with 7 ' С Y„ i.e. dA =  7  U 7 ', then Z (X ,7Ша) (E У(У\7 ;а ,а) С 
® * Лт ^Ъ ыПУ\Г,Ц )=У(У) .

Consider the 4—component formal tangle in annulus cross interval, — Ax  
/ ,  where /1 =  \i — j\:

Fig. 5.2. 4-component formal tangle

Let X  be the 3-manifold made by removing small tubular neighborhoods 
of the /i-labeled arc, and write X  =  У х / ,  where У is the annulus with a new 
puncture, and dX =  DY  the double of У . Let (У, lo) be У with dY labeled 
as follows: outer boundary —► j, inner boundary —» г, new boundary —> h. 
Prom Lemma 3.5 we know V(Y,lo) =  Vi,j,h — C.

Another useful decomposition of dX  results from expanding the inner 
and outer boundary components of У to annuli, Ai and Aq: dX  =  — У U 
+ У  U —Ai U +A q U Ah. Applying V we have: V(dX) =

0  У*(У, I) (g) V(Y, I) 0  V { A U I) 0  V(Ao, I) 0  V(Ah,!).(*)
admissible labels

Let us restrict to label: io- By lemma, dimV^Y, /0) =  1 and let x  be the 
unit normalized vector к, e V ( Y J 0),

The Jones-Wenzl projectors Pi,Pj and ph are inserted as shown.
The arc diagram should be pushed into a ball B+ bounding the 2- 

sphere S2 made by capping dY , to define an element of V(Y, lo)- The root 
0—symbol normalizes ||ж'||2 to the invariant of D(B3) =  5 3 and the Sq0 
kills this factor so as defined ||ж'||2 =  1.

Let Vi0(dX) denote the lo summand of the rhs (*). Fixing 
x ' , and therefore its dual x\ give an isomorphism e  ̂ : Vi0 
Hom(V(Ai ; i ,i) , V (A o - j j )  = : Н о т (^ ,^ ) .
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Consider the partition function Z(X,L)  of (X, L), where L is the 3- 
component link in X  labelled by с and u>h in FIG??, and Z(X,L ) С 
Vio(X).

We now check that e/ij(Z (X ,L) )  is a non-zero vector in Hom(Vi,V}) 
whose definition is independent of phase(X).

The pairing axiom can be used to analyze the result of gluing X  to the 
genus two handlebody (# , Oijjъ) which is a thickening of the г, j, h labelled 
0-graph (with the graph inside), we get:

SoQ@ijh — SqiSQj Sqh £ ) (Рц j Pii) {Pjj» P jj) • ( * * )

The two factors of Sot and Soj come from gluing along the seems sep
arating off the inner and outer annuli (respectively); the factor Soh de
rives from gluing across the “new component” of dY , Sqo is the 3-sphere 
normalization constant, making the lhs (**) a “spherical 0-symbol” . Pre
viously we arranged (:x\x') =  1 and {0 Za,Pao) =  Sq^ so ^ we define

x =  anci redefine e'{i to tij by replacingy/sooy/eijk 000 J
x' with x in its definition, we obtain:

ч ( г ( Х , ь ) ) = ] % 0м>
i.e. the canonical element of Н от(К , Vj).

Now attach a 2-handle to X  along the “new” component of dY to reverse 
our original construction: X  U 2-handle =  A x  I. The co-core of the 2-handle 
should now be labeled by h and the cj^-labeled component can be dispensed 
with (it is now irrelevant). Call this new idempotent 3—component formal 
tangle Lij. Fix x , as above, a map eij closely related to is now defined: 
€ij : V ( A  x  J, L)  —► Hom(Vi, Vj)  and as before we have

Lemma 5.3. elj(Z(A x  I, L)) =  Pifijj•
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Using the geometric interpretation of links in a product as operators, 
and using the product structure from the middle factor in A x l  =  S1 x l x l ,  
we see Pl^Pjj realized by a formal knot projection (L) С S1 x | x I. This 
projection can be Kauffman-resolved to a formal 1-submanifold = : Lij С
Sl x I (ignoring the constant ^). This is the minimal, in fact 1-dimensional 
idempotent of AA,k,A. In fact by counting we see that we have achieved 
a complete resolution of the identity, and in the annular algebras iAA a 
complete list of isomorphisms classes of irreducible representations of the 
full annular category AA'k,A.

Our assumption in Section 7 is that A is a primitive 4r-th root of unity, 
r =  к +  2. Section 7 constructs a TQFT with {labels} =  {iiTepsA^,fc,/l}. 
Using the s-matrix of this TQFT, we have just constructed a basis {P*iPjj}

of (к +  l )2 operators for Н от  ( ®  V*, ®  Vj ) which are geometrically rep-
\i=o j =о J

resented as formal submanifolds {Lij С A }, also an idempotent in hAA'k,A.
The counting argument below holds for A a primitive 4rth or 2rth root 

of unity r odd or rth root of unity r odd, and so applies in the next section 
as well.

By a direct count of classical (not formal) pictures up to the projector 
relation pk+i =  pr- i  we find:

dim ( Л< ’м )  < {  2к + к2'_ j  * h ® k (* * *).

Summing over h, dim /гЛ^’/г,л^ < (к +  l ) 2.

Since {L^,  0 <  г, j  < к} represent as {к +  l )2 linearly independent 
operators, the above inequalities must, in fact, be equalities.

oAA,k'A is spanned by the empty picture 0, the ring circle # , and its 
powers up to Rk. The projector decomposes Rk+l into a linear combination 
of lower terms.

For h =  1, let I  denote the straight arc picture and T the counter 
clockwise Dehn twist. The pictures: f (/c“ 1 \ f k~2\ ■ • • , / ,  T, • • ■ Tk~l appear 
(and are) independent but there is an obvious dependency if the list is 
expanded to T~k • • • ,T fc. This dependency leads quickly to the claimed 
bound for h =  1.

For h >  1, the argument is similar to the above, except a fractional 
Dehn twist F  replaces T.

Lem m a 5.4. {L^, 0 < < k} is a complete set of minimal idempotents
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Proof: From Fig. 5.2, each L is a minimal idempotent and L^ represents 
the same operator.

Fixing h > 0 now consider the action of “fractional Dehn twist” , F on 
b y .

Lem m a 5.5. For i < j , F(Lij) =  — At+j+2Lij, and for i > j ,  F(Lij) =  
- A l+i+2Lij.

Proof: Use the Kauffman relation to resolve the diagram below, noting 
the left kink is equal to a factor of — A3 and that only the resolution indi
cated by arrows gives a term not killed by the projectors; its coefficient is 
Ai+j~K

for { Лл £ |M},0  < h <  k.

\ p>

= -

fori< j

Fig. 5.4. Annular idempotent

For i > j  one considers the mirror image of the above, interchanging A 
and A~l .

If h =  0,г =  j ,  then =  cJ* and we may consider the action R of 
ring addition to t^. Since a;* is the projector to the i-th label, we have 
R(<Sji) =  ~{A 2i+ 2 +  A -2i- 2)<di,.

This establishes:

Lem m a 5.6. R{Lu) =  - { A 2i+ 2 +  А~21~2)Ьц.

Let Vij be the vector space spanned by formal 1-submanifolds in the 
annulus which near the inner boundary agree with Lij.

Essentially the same argument employed for the rectangle categories: 
resolution of the identities but now for id € jA f ’^ jO  < г < к shows:

Theorem  5 .2 . The spaces {Vij} form a complete set of irreps for 
Rep(AA'k'A). Direct sum decompositions into these irreducibles are unique.
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The irreps Vij have another “diagonal” indexing by (h =  \i -  
j|, eigenvalue^, j)).  We think of h as the “crude label” it specifies the 
boundary condition (object); it is refined into a true label by the additional 
information of eigenvalue under fractional Dehn twist.

Note that for ring addition: eigenvalue(i,j) =  —А г^ +2 for г Ф j.

5.6. Temperley-Lieb-Jones categories for primitive 2rth 
root or rth root of unity, r odd

In Lemma 3.2 we compute the 5  matrix associated to the rectangle category 
A'R,fc,A, A a primitive 2rth root or rth root of unity, r odd and find it is 
singular (Note that the last theorem of Ch XI141 holds only for even r 
because the 5  matrix is singular for odd r). We find there is an involution 
on the label set ~: { 0 , • • • , k} —► { 0 ,••• , k} defined by a =  к — a so that
5  =  Seven® ( }  } ) .)  We use the notation zeven or just ге,0 < i < k, to 
denote the even number г or г. (Note that ~ is not the usual duality 
on labels which is trivial in the TLJ theory. Also note that since к is odd 
exactly one of г and г is even,) The by matrix Seven is nonsingular 
and defines an SC/(2)£ven-TQFT* on the even labels at level к, explicitly:

« и .  =  У ; ( - 1)н , ([* +  1Ш +  1]). (8* i )

The formal 1—submanifolds LieJe,0 <  i , j  < к can be defined just as 
in last section. As operators on the SU(2)£ven TQFT they are (3*eicl3jcje- 
Also each Lij has an interpretation as a formal 1-manifold in the category 
дл,А:,е27Г1/6 (This is the “d =  1” category ( “Z 2” -gauge theory) that we have 
been developing as a simple example.)

Letting го denote the odd index, г or г, the tensor decomposition of the 
5-matrix implies uie =  ujio. It follows that L*ej e =  Li0j 0 and Liej 0 =  Li0j e 
so we have found only half of the expected number of minimal idempo
tents. Let Riej e be “reverse” (LieJe), Lietje with certain (—1) phase fac
tors. That is, if Liej e =  X2nanan where a* is a classical tangle then 
Rie,jc =  1)*лвп<*п» where kn = f k(an)) is the transverse intersec

*These TQFTs are called 50(3)-TQ FTs by many authors. As noted in,RSW there is some 
mystery about those TQFTs as SO(3)-Witten-Chern-Simons TQFTs. Since they are the 
same TQFTs as Si/(2)-Witten-Reshetikhin-Turaev TQFTs restricted to integral spins, 
therefore we adopt this notation. Their corresponding MTCs are denoted by (A i,k )±

in.^w



tion number with a radial segment, s x I  с  S1 x /  =  A  in the annulus. 
Similarly define Riej 0.

Recall the four irreps of Z 2-gauge theory, 0 =  0+Л, e =  0 -Л , m — /+ Т , 
and em =  /  — T, and consider the following bijection:

5 Je > ,jo > .JO }  ~ >

{«л 0 А.Л 0 4  0 /*w. 0 e. flu. 0 Aj. 0 rn, /?* ie
0 0 em} (5c.2)

Theorem  5.3. (3 is a bijection between the minimal idempotents of two 
graded algebras:
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лл ^ Д лл ^ 3” ‘/о 0 Я пЛ  0  ,K)Л,к,А

j=even

where A is a primitive 2rth root or rth root of unity, r odd. The bijection (3 
induces a bijection between the isomorphism classes of irreps of categories:

irreps. (Лл ’*,л) Д  irreps. ^Лл,;с,е ' ^ E n d ( AeveA"4) )  •

Proof: The second statement is by now the familiar consequence of the 
first and a “resolution of the identity.”

The dimension count (upper bound) of last section applies equally for 
primitive 2rth roots or rth roots, so it suffices to check that Rie,je and Riej a 
are idempotents. Writing either as reverse(L) =  J3n(—1 )knanan we square:

(reverse(L))2 =  ( ^ ( - l ) fcnana:n)2 =  ^ ( - i ) fcn+fcmanamanQ!m =
n n,m

reverse I ^  a„ama„Qm =  reverse(£2) =  reverse(L). (5c.3)
\n,m /

In the third equality holds since intersection number with a product ray 
in A  is additive under stacking annuli:

kn +  km — k(ctn) “Н к(ат) — k(anocm) — кп>т-

6 . The definition o f  a T Q F T

There are two subtle ingredients in the definition of a TQFT: the framing 
anomaly and the Frobenius-Schur (FS) indicator. For the TQFTs in this
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paper, the diagram and black-white TQFTs have neither anomaly nor non
trivial FS indicators, therefore, they are the easiest in this sense. The Jones- 
Kauffman TQFTs have anomaly, but no non-trivial FS indicators. Our 
version of the Turaev-Viro SU(2)-TQFTs have non-trivial FS indicators, 
but no anomaly; while the WRT TQFTs have both anomaly, and non-trivial 
FS indicators.

Our treatment essentially followsWal1 with two variations: first the ax
ioms inWa11 apply only to TQFTs with trivial FS indicators, so we extend 
the label set to cover the non-trivial FS indicators; secondly we choose to 
resolve the anomaly for 3-manifolds only half way in the sense that we en
dow every 3-manifold with its canonical extension, so the modular functors 
lead to only projective representations of the mapping class groups. One 
reason for our choices is to minimize the topological prerequisite, and the 
other is that for application to quantum physics projective representations 
are adequate.

6 .1 . Refined labels fo r  TQFTs

A TQFT assigns a vector space V(Y)  to a surface Y. If Y  has boundaries, 
then certain conditions for dY have to be specified for the vector space 
V(Y)  to satisfy desired properties for a TQFT. In Section 4, we see that 
crude boundary conditions need to be refined to the irreps of the picture 
categories, which are the labels. But for more complicated theories such as 
Witten-Reshetikhin-Turaev TQFTs, labels are not sufficient to encode the 
FS indicators. Therefore, we will introduce a boundary condition category 
to formalize boundary conditions. More precisely, boundary conditions are 
for small annular neighborhoods of the boundary circles. Our boundary 
condition category will be a strict weak fusion category C, which enables 
us to encode the FS indicator for a label by marking boundaries with ± U , 
where U G C°. In our examples, the strict weak fusion categories are the 
representation categories of the TLJ categories. Then the labels are irreps of 
TLJ categories. In anyonic theory, labels are called superselection sectors, 
topological charges, or anyon types, etc. Boundary conditions which are 
labels are preferred because anyonic systems with such boundary conditions 
are more stable, while general boundary conditions such as superpositions 
of labels are difficult to maintain.

A fusion category is a finitely dominated semi-simple rigid linear 
monoidal category with finite dimensional morphism spaces and simple 
unit. A weak fusion category is like a fusion category except that rigidity is 
relaxed to weak rigidity as follows. A monoidal category С is weakly rigid if
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every object U has a weak dual: an object U* such that # om (l, £/<g> W) =  
Hom(U*, W) for any object W  of 6 .

A refined label set for a TQFT with a boundary condition category С 
is a finite set Le =  {± V i}i€/, where the label set L =  {Vi}ieJ is a set 
of representatives of isomorphism classes of simple objects of C, and I  a 
finite index set with a distinguished element 0 and Vo =  1. An involution 

Le — > Le is defined on refined labels I =  ±V* by I =  - I  formally. There 
is also an involution on the index set I  of the label set: i =  j  if Vj =  V.•*. 
A label Vi € L is self-dual if i =  i, and a refined label is self dual if the 
corresponding label is self dual. A (refined) label set is self-dual if every 
(refined) label is self-dual. Each label Ц has an FS indicator v\: 0 if not 
self-dual, and ±1  if self-dual. A self-dual label Vi is symmetrically self-dual 
or real in conformal field theory language if V* =  Ц in C, then we say 
щ =  1, and anti-symmetrically self-dual or pseudo-real if otherwise, then 
we say Vi =  —1, i.e., V* is not the same object V* in G, though they are 
isomorphic. Secretly — Vi is and we will identify the label —Vi with Ц 
if the label is symmetrically self-dual; but we cannot do so if the label is 
anti-symmetrically self-dual, e.g., in the Witten-Reshetikhin-Turaev SC/(2) 
TQFTs. Frobenius-Schur indicators are determined by the modular S and 
T  matrices.RSW Note that the trivial label 1 is always symmetrically self
dual.

6.2. Anomaly of TQFTs and extended manifolds

In diagram TQFTs in Section 3, we see that Z(X\ Uy2 X 2) =  Z(X  1) ■ Z(X2) 
as composition of linear maps. For general TQFTs, this identity only holds 
up to a phase factor depending on Xi, X 2 and the gluing map. Moreover, 
for general TQFTs, the vector spaces V(Y) for oriented surface Y are not 
defined canonically, but depend on extra structures under the names of 2- 
framing, Lagrange subspace, or pi structure, etc. A Lagrangian subspace 
of a surface У is a maximal isotropic subspace of # i(Y ;]R ) with respect 
to the intersection pairing of # i(Y ;R ). We choose to work with Lagrange 
subspaces to resolve the anomaly of a TQFT.

An extended surface У is a pair (У, A), where A is a Lagrangian subspace 
of # i(Y ;]R ). Note that if dX  =  У, then У has a canonical Lagrange sub
space Ax  =  ker(Hi(Y;R) — ► # i(X ;R )) . In the following, the boundary У 
of a 3-manifold X  is always extended by the canonical Lagrangian subspace 
Ax unless stated otherwise. For any planar surface У, # i(Y ; R) =  0, so the 
extension is unique. Therefore, extended planar surfaces are just regular 
surfaces.
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To resolve the anomaly for surfaces, we define a category of labeled 
extended surfaces. Given a boundary condition category C, and a surface 
Y, a labeled extended surface is a triple (Y ;A ,/), where Л is a Lagrnagian 
subspace of # i (Y ;R ) , and I is an assignment of a signed object ±U  G C° 
to each boundary circle. Moreover each boundary circle is oriented by the 
induced orientation from Y, and parameterized by an orientation preserving 
map from the standard circle S1 in the plane.

Given two labeled extended surfaces (Kj; =  1, 2, their disjoint
union is the labeled extended surface (Yi Ц Y2; Ai 0  A2, /1 U h)- Gluing of 
surfaces has to be carefully defined to be compatible with the boundary 
structures and Lagrangian subspaces. Given two components 71 and 72 of 
dY parameterized by and labeled by signed objects ± U , and let gl be a 
diffeomorphism Ф2 • r • 1, where r is the standard involution of the circle
S 1. Then the glued surface Ygi is the quotient space of q : Y —> Ygi given 
by x ~  x' if gl(x) =  gl(x'). If Y is extended by A, then Ygi is extended 
by q*(A). The boundary surface dMf  of the mapping cylinder М / of a 
diffeomorphism /  : Y  —> Y of an extended surface (Y ; A) has a canonical 
extension by the inclusions of A.

Labeled diffeomorphisms between two labeled extended surfaces are ori
entation, boundary parameterization, and label preserving diffeomorphisms 
between the underlying surfaces. Note that we do not require the diffeo
morphisms to preserve the Lagrangian subspaces.

6.3. Axiom s fo r  TQFTs

The category X2,e>* of labeled extended surfaces is the category whose ob
jects are labeled extended surfaces, and the morphism set of two labeled 
extended surfaces (Yi,Ai,Zi) and (Yi, Аг,^) are labeled diffeomorphisms.

The anomaly of a TQFT is a root of unity /с, and to match physical 
convention, we write к, =  в7” 0/ 4, and с € Q is well-defined mod 8, and called 
the central charge of a TQFT. Therefore, a TQFT is anomaly free if and 
only if the central charge с is 0 mod 8.

Definition 6.1.
A (2 +  1)-TQFT with a boundary condition category 6 , a refined label 

set Le, and anomaly к consists of a pair (V, Z ), where V is a functor from 
the category X2,e>* of oriented labeled extended surfaces to the category
V of finitely dimensional vector spaces and linear isomorphisms composed 
up to powers of «, and Z is an assignment for each oriented 3-manifold X  
with extended boundary, Z(X,  A) e V(dX\X), where dX  is extended by
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a Lagrangian subspace Л. We will use the notation Z(X),V(dX)  if dX  is 
extended by the canonical Lagrangian subspace A*. V is called a modular 
functor. Z is the partition function if X  is closed in physical language, and 
we will call Z the partition function even when X  is not closed.

Furthermore, V and Z satisfy the following axioms.

Axioms for V:

(1) Empty surface axiom:

V(&) =  С

(2) Disk axiom:

_ _/ _»o ■ \ I С if / is the trivial label , ~ л ,V(B2; I)** I , where B2 is a 2-disk.
[0 otherwise

(3) Annular axiom:

f С if a =  b
V{A\ a, 6) =  < , where Л is an annulus, and a, 6 € Le are

[ 0 otherwise
refined labels.

(4) Disjoint union axiom:

F(Yi И Y2;Ai 0 A2,/! Ц Ь ) =  VXY^Ai.Ji)® K(Y2;A2,Z2). The isomor
phisms are associative, and compatible with the mapping class group 
actions.

(5) Duality axiom:

F(-Y;0 = V(Y;i)*.

The isomorphisms are compatible with mapping class group actions, 
with orientation reversal and disjoint union axiom as follows:
a) The isomorphisms V(Y) —> V(—Y)* and V(—Y) —* V(Y)* are mu
tually adjoint.
b) Given /  : (V i;/i) — (Y2;/2) and let /  : (-У1;Й ) -> (-V i; 6 ), then 
< x,y > = <  V(f )x ,V ( f )y  > , where x £ V{Y\\l\),y € V(-Ynli) .
c) Let ot\ <S> <*2 E V(Yi Ц ^ )  =  V{Y\) ® and (5\ ® /?2 £ 
VirYx Ц -Y 2) =  V { - Y x) <g> V{-Y%)% then

<  ai ®a2>/3i <8> P2 > = <  ol\,(3\ > <  a 2,/?2 >  .
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(6) Gluing Axiom:

Let Ygi be the surface obtained from gluing two boundary components 
of Y, then V(Ygi) =  (BiebV{Y\ (I, /)), where i j  label the two glued 
boundary components. The isomorphism is associative and compatible 
with mapping class group actions.

Moreover, the isomorphism is compatible with duality as follows: let 
0 idLOLi G y{Ygi]l) =  0 ге£У(У ;/,(г,г)) and 0 i f t  G V (-Y grJ) =  
0 i€L V ( -y ; i ,  (»,»)), then there are non-zero real numbers s* for each 
label Vi such that

<  © , > = Y l Si<  >  ■
i

Axioms for Z:

(1) Disjoint axiom:

If X  = Xi  П X 2, then Z (X ) =  Z[X i) 0  Z (X 2).

(2) Naturality axiom:

If f  : (Xi, (dX\,\i)) — > (X 2, (dX 2,A2)) is a diffeomorphism, then 
V{ f )  : VidXi)  — > V(dX2) sends Z (XU Ai) to Z (X 2,A2).

(3) Gluing axiom:

If aX i =  -У х II У2,а Х 2 =  -У 2 II У3, then Z (X x Uy2 X 2) =  
« nZ (X i)Z (X 2), where n =  /Li((A_Xi), A2, (A+X 2)) is the Maslov in
dex (see Appendix C).

More generally, if X  is an oriented 3-manifold and let Уг,г =  1,2 be 
disjoint surfaces in dX,  extended by Ai С A x ,г =  1,2, and /  : Y\ —̂> Y2 
be an orientation reversing dffeomorphism sending Ai to A2.

Then V(dX)  is isomorphic to £ ibia V (Y r,/i)0 V(Y2;J2) 0  V(<9X\(YiU 
У2); ( luh))  by multiplying /cm, where U runs through all labelings 
of Yf, and m =  \\ 0  A2, A) (see Appendix C). Hence Z( X)  =

E 3- <  ® ® Tfl A -

If gluing Y\ to У2 by /  results in the manifold X/, then

z ( x f ) =  Km' £ < n f W „ t i >



(4) Mapping cylinder axiom:

If Y  is closed and extended by A, and Y  x I  is extended canonically by 
A 0  (—A). Then Z(Y  x J, A 0  (—A)) =  idv(Yy

More generally, let Ijd be the mapping cylinder of id : Y  —> Y, and idi 
be the identity in V(Y\l) <g>V(Y;l)*, then

z (lid 1 A 0  (—A)) =  ®l£L(Y)idl.

□

First we derive some easy consequences of the axioms:

Prop 6.1.

(1) V (S2) 2  c
(2) Z(Xi№ )  =
(3) Trace formula: Let X  be a bordism from closed surfaces Y, extended 

by A, to itself, and X j  be the closed 3-manifold obtained by gluing Y 
to itself with a diffeomorphism / .
Then Z(Xf )  =  ят Т гу (у )(К (/)), where m =  jz(A(/),Ay 0 /* (A ), A y ) 
and A( / )  is the graph of /*, A y is the diagonal of H\(—Y\ M) 0  
H\{Y; M). In particular, Z{Y  x Sl) =  dim(V(Y)).

(4) The dimension of V(T2) is the number of particle types.

For a TQFT with anomaly, the representations of the mapping class 
groups are projective in a very special way. From the axioms, we deduce:

Prop 6.2.
The representations of the mapping class groups are given by the map

ping cylinder construction: given a diffeomorphsim /  : Y — * Y  and Y 
extended by A, the mapping cylinder Yf induces a map V( f )  =  Z(Yf) : 
V(Y)  — > V(Y). We have V(fg)  =  K*to -MM rlM)v(f)V(g) .

It follows from this proposition that the anomaly can be incorporated by 
an extension of the bordisms X , in particular, modular functors yield linear 
representations of certain central extensions of the mapping class groups.

6.4. More consequences of the axioms

For refined labels a, 6, c, we have vector spaces Va =  V(B2 ',a),Va,b =  
V(Aab), Va,b,c = V(Pabc)y where P  is a pair of pants or three-punctured
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sphere. Denote the standard orientation reversing maps on В 2, А аь, Pabc by 
ф. Then ф2 =  id, therefore ф induces identifications Vabc =  Vaa =  Vr*&i 
and Vi =  Vi*. Choose basis Pi G Vi,/?aa G Vaa such that < Pa,Pa > =

Prop 6.3.

(1) Z (B 2 X / )  =  A ® A
(2) Z( Sl x B 2) = p n
(3) Z (X \ B 3) =  ^ Z (X )® /? 1 ® /?1.

Proof.
Let В3 be a 3-ball regarded as the mapping cylinder as the identity map 

id : В2 — * В 2. By the mapping cylinder axiom, Z(B3) =  Pi <S> Pi- Gluing 
two copies of B 3 together yields S3. By the gluing axiom Z(S3) =  soo =
It follows that Z(X\B3) =  ® Pi <g) f t .  □

Prop 6.4.
The action of the left-handed Dehn twist along a boundary component 

labeled by a of В2,Лаь,Раьс on Vi,Va>a or Vabc is a multiplication by a 
scalar 9a- Furthermore, 0\ =  1,0а =  0&, and 9a is a root of unity for each 
refined label a.

6.5. Framed link invariants and modular representation

Let К  be a framed link in a 3-manifold X.  The framing of К  determines a 
decomposition of the boundary tori of the link compliment X\nbd(K)  into 
annuli. With respect to this decomposition,

Z(X\nhd(I<)) =  eiJ(K ;l )paxdl 0  ■ • • 0  Panani

where J(k;l) G С and I =  (ai,*** ,an) ranges over all labelings of the 
components of K. J{K\l) is an invariant of the framed, labeled link (K\ Z). 
When (V, Z) is a Jones-Kauffman or WRT TQFT, and X  =  S3, the result
ing link invariant is a version of the celebrated colored Jones polynomial 
evaluated at a root of unity. This invariant can be extended to an invariant 
of labeled, framed graphs.

A framed link К  represents a 3-manifold x(K)  yia surgery. Using the 
gluing formula for Z, we can express Z(x{K) )  as a linear combination of 
J(K-l):
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Consider the Hopf link Я  ̂ labeled by i , j  € L. Let Sij be the link 
invariant of Hij. Note that when a component is labeled by the trivial 
label, then we may drop the component from the link when we compute 
link invariant. Therefore, the first row of s consists of invariants of the 
unknot labeled by i € L. Denote 5*0 as di, and di is called the quantum 
dimension of label i. In Prop. 6.4, each label is associated with a root of 
unity which will be called the twist of label i. Define D =  у
and S =  jFjS, T  =  (5ij9i), then 5, T  give rise to a representation of SL(2, Z), 
the mapping class group of T 2.

6.6. Verlinde algebras and Verlinde formulas

Let T 2 =  S1 x Sl =  dD2 x S1 be the standard torus. Define the meridian 
to be the curve ц =  S1 x 1 and the longitude to be the curve Л =  1 x Sl.

Let (V, Z) be a TQFT, then the Verlinde algebra of (V, Z) is the vec
tor space V (T 2) with a multiplication defined as follows: consider the 
two decompositions of T 2 into annuli by splitting along f i and Л, respec
tively. These two decompositions determine two bases of V (T 2) denoted 
as ma =  Paa, and la =  fiaa- These two bases are related by the modular 
S-matrix as follows:

la ~~ ^  ̂SgbTTlb) ГПд - ^  ̂Sgblb• (6-1)
b b 

Define Nabc =  dimV(Pabc), then we have

mbmc =  Nahdma. (6.2)
a

The multiplication makes V (T 2) into an algebra, which is called the 
Verlinde algebra of (V, Z).

In the longitude bases la, the multiplication becomes

Ub =  Sab8^ l a. (6.3)

This multiplication also has an intrinsic topological definition: Z^PxS1) 
gives rise to a linear map from V (T 2) x V (T2) —» V (T2) by regarding P x S 1 
as a bordism from T2 Ц T2 to T 2.

The fusion coefficient Nabc can be expressed in terms of sab, we have
=  ^  Sa^SbrSc, (g 4)

ttb  So*
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More generally, for a genus=(? surface Y  with m  boundaries labeled by
I =  (ai • • ■ dm),

dimV'(y) =  5 3  з ^ 29- " ( П  satx). (6.5)
x£L

7. Diagram and Jones-Kauffman TQFTs

For the remaining part of the paper, we will construct picture TQFTs and 
verify the axioms for those TQFTs. Our approach is as follows: start with 
a local relation and a skein relation, we first define a picture category A 
whose objects are points with decorations in a 1-manifold X  which is either 
an interval I  or a circle 5 1, and morphisms are unoriented sub-l-manifolds 
in X  x I  with certain structures connecting objects (=points in X  x {0} or 
X  x {1}). More generally, the morphisms can be labeled trivalent graphs 
with coupons. Those picture categories serve as crude boundary conditions 
for defining picture spaces for surfaces with boundaries. Secondly, we find 
the representation category С of A, which is a spherical tensor category. 
The irreps will be the labels. In the cases that we are interested, the result
ing spherical categories are all ribbon tensor categories. Thirdly, we define 
colored framed link invariants with the resulting ribbon tensor category in 
the second step. Invariants of the colored Hopf links with labels form the 
so-called modular 5-matrix. Each row of the 5-matrix can be used to de
fine a projector Ui which projects out the г-th label if a labeled strand goes 
through a trivial circle labeled by

Fig. 7.1. Projectors

The projector wo is used to construct the resulting 3-manifold invariant. 
Finally, we define the partition function Z  for a bordism X  using a handle 
decomposition. This construction will yield a TQFT if the 5 -matrix is non
singular, which is always true for the annular TLJ cases. If the 5 -matrix 
is singular, we still have a 3-manifold invariant, but we cannot define the 
representations of the mapping class groups for high genus surfaces, though 
representations of the braid groups are still well defined.
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In this section, we outline the proof that for some r > 3, A a primitive 4rth 
root of unity, or a primitive 2rth  root of unity and r odd, or a primitive 
rth  root of unity and r  odd, the diagram theories PicA(Y ) ,Z p  defined in 
Section 3 indeed satisfy the axioms of TQFTs.

The diagram TQFTs are constructed based on the TLJ annular cat
egories. The boundary condition categories С are the representation cat
egories of the TLJ annular categories A. A nice feature of those TQFTs 
is that we can identify the objects of the TLJ annular categories A as 
boundary conditions using Theorem B.l: each object in TLJ gives rise to a 
representation of Л and therefore becomes an object of C, which is in gen
eral not simple, i.e., not a label. Hence picture vector spaces are naturally 
vector spaces for the diagram TQFTs.

For the diagram TQFTs, all labels are self-dual with trivial FS indica
tors. Therefore, it suffices to use only the label set. The label sets of the dia
gram TQFTs are given by the idempotents L =  { с ^ л )  in Fig- 3.7. Given a 
surface Y  with d Y  =  71, • • • , 7m, and each boundary circle 7» labeled by an 
idempotent e* G L. Then the picture space Pic^(Y ; ei, • * • , em) consists of 
all formal pictures that agree with e* inside a small annular neighborhood 
Ai  of the boundary 7* modulo the Jones-Wenzl projector pr_ 1 outside all 
A i’s in Y.  Given a bordism X  from Y\ to Y2, the partition function Z q {X)  
is defined in Section 3.6. Now we verify that (Pic"4, Zq ) is indeed a TQFT.

For the axioms for modular functor V :
(1) is obvious.
(2) Since Jones-Wenzl projectors kill any turn-backs, then 

Pic"4(B2;uij^h) =  0 unless h =  0. For h =  0, all pictures are multiples 
of the empty diagram.

(3) Since Hom(pi,pj) =  0 unless i =  j ,  so PicA(A;tJitjy yh, i<̂ i,j>h) =  0 
unless h =  hi. If h =  h \  then we have Ui - щ  and ал, ■ wy,  respectively in 
the annulus. Recall that u au =  6аьша, it follows that unless г =  i \ j  =  f ,  
Pic (A\ Wy =  0.

(4) Obvious
(5) Рюл (-У ) =  PicA(K), hence duality is obvious.
(6) Gluing follows from Morita equivalence.
The axioms of partition function Z  follow from handle-body theory and 

properties of the S  matrix.
The action of the mapping class groups is easy to see: a diffeomorphism 

maps one multicurve to another. Since a diffeomorphism preserves the local 
relation and skein relation, this action sends skein classes to skein classes.

7.1. Diagram TQFTs
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The compatibility of the action with the axioms for vectors spaces is easy 
to check.

7.2. J o n es -K a u f fm a n  T Q F T s

In this section, we outline the proof that for r >  3, A a primitive 4rth 
root of unity, the Jones-Kauffman skein theories VfK (Y), Z j k  defined in 
Section 3 indeed satisfy the axioms of TQFTs.

The boundary condition category for a Jones-Kauffman TQFT is the 
representation category of a TLJ rectangular category. The label set is 
L =  {pi}ier,  and I  =  {0,1, • • • , r  — 2}. Same reason as for the diagram 
TQFTs, we need only the label set.

The new feature of the Jones-Kauffman TQFTs is the framing anomaly. 
If A and r as in Lemma 3.1, then the central charge is 3 r̂~—.

Given an extended surface (Y;A), the modular functor V(Y\X)  is de
fined in Section 3.4. If d X  =  Y, then we define Z (X )  as the skein class 
in K a (9X)  represented by the empty skein. TQFT axioms for V  and Z 
follow from theorems in Section 3.4. The non-trivial part is the mapping 
class group action. This is explained at the end of Section 3.4.

8. W RT and Turaev-Viro 5C7(2)-TQFTs

The pictorial approach to the Witten-Reshetikhin-Turaev SU(2) TQFTs 
was based on.KM The paperKM finished with 3-manifold invariants, just 
asKL for the Jones-Kauffman theories. The paperBHMV took the picture ap
proach inKL one step further to TQFTs, but the same for WRT TQFTs has 
not been done using a pictorial approach. The reasons might be either peo
ple believe that this has been done byBHMV or realize that the Frobennius- 
Scur indicators make a picture approach more involved. It is also widely 
believed that the two approaches resulted in the same theories. But they 
are different. The spin 1/2 representation of quantum group SU(2 )q for 
q — e±27rt/ r has a Frobenius-Schur indicator=—1, whereas the correspond
ing label 1 in Temperley-Lieb-Jones theories has Frobenius-Schur indicator 
=  1. The Frobenus-Schur indicators —1 in the Witten-Reshetikhin-Turaev 
theories introduce some — l ’s into the 5-matrix, hence for the odd levels k, 
these —l ’s change the 5-matrix from singular in the Jones-Kauffman the
ories when A  =  ± i e ±2^  to non-singular. For even levels k, the 5 -matrices 
are the same as those of the Jones-Kauffman TQFTs, even though the 
TQFTs are different theories (seeRSW for the level=2  case).

In the pictorial TLJ approach to TQFTs, there is no room to encode
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the Frobenius-Schur indicators — 1. In this section, we introduce “flag” dec
orations on each component of a framed multicurve which can point to 
either side of the component. These flags allow us to encode the FS indi
cator — 1, hence reproduce the Witten-Reshetikhin-Turaev SU(2) TQFTs 
exactly. The doubled theories of WRT TQFTs are not the diagram TQFTs, 
and will be called the Turaev-Viro ST/(2)-TQFTs. They are direct products 
of WRT theories with their mirror theories.

8.1. Flagged TLJ categories

In flagged TLJ categories, the local relation is still the Jones-Wenzl pro
jectors, but the skein relation is not the Kauffman bracket exactly, but a 
slight variation discovered by R. Kirby and P. Melvin in.KM

The skein relation for resolving a crossing p is given inKM is as follows: 
if the two strands of the crossing belongs to two different components of 
the link, then the resolution is the Kauffman bracket in Figure 2.1; but if 
the two strands of the crossing p are from the same component, then a sign 
e(p) =  ±1  is well-defined, and the skein relation is:

The flagged TLJ categories have objects signed points in the interval 
and morphism flagged multicurves as follows: given an oriented surface Y, 
and a multicurve 7 in the interior of Y, and no critical points of 7 are within 
small neighborhoods of dY.  Let 7 x [—6, e] be a small annulus neighborhood 
of 7 . A flag of 7 at p G 7  is an arc p x [0, e] or p x [—e, 0]. A flag is admissible 
if p is not a critical point of 7 . A multicurve 7 is flagged if all flags on 7 
are admissible and the number of flags has the same parity as the number 
of critical points of 7 . An admissible flag on 7 can be parallel transported 
on 7  so that when the flag passes through a critical point, it flips to the 
other side. In the plane, this is the same as parallel transport by keeping 
the flag parallel at all times in the plane. A multicurve is flagged if all its 
components are flagged.

Fig. 8.1. Kirby-Melvin skein relation



Given a surface Y  with signed points on the boundary. Each signed 
point is flagged so that if the sign is + , the flag agrees with the induced 
orientation of the boundary; if the sign is —, the flag is opposite to the 
induced orientation. Let C[S] be the space of all formal flagged multicurves 
in with signed points at the bottom and top, then the morphism set 
between the bottom signed point and the top signed point of TLflag is the 
quotient space of С [8] such that

(1) Flags can be parallel transported
(2) Flipping a flag to the other side results in a minus sign
(3) Two neighboring flags can be cancelled if there are no critical points 

between them and they are on the opposite sides.
(4) Apply Jones-Wenzl projector to any part of an multicurve with no flags.

Then all discussions for TL apply to TLflag. The representation cate
gory is similarly given by the same Jones-Wenzl projectors. The biggest 
difference from TL is the resulting framed link invariant.

Lemma 8.1.
Given a framed link diagram D , then the WRT invariant <  D > k m  

of D using Kirby-Melvin skein relation and the Jones-Kauffman invariant
< D > k  using Kauffman bracket is related by:

< D > KM (A) =  (- i ) D D < D > K ( a ) .  (8.1)

8 .2 . Turaev-Viro  Un i ta ry  T Q F T s

Fix A =  ± e ± 2f? for some r >  3.
The label set is the same as that of the corresponding diagram TQFT, 

but for the first time we need to work with the refined label set.
Given a surface Y  with boundaries labeled by refined labels €iV{. If e* =  

1, we flag the point to the orientation of dY\  if e* =  — 1, we flag the points 
opposite to the orientation of dY.  Then define the modular functor space 
analogous to the skein space replacing multicurves with flagged multicurves. 
The theories are similar enough so we will leave the details to interested 
readers. The difference is that when the level=A; is odd, our version of the 
Turaev-Viro theory is a direct product-а trivial quantum double, while the 
corresponding diagram TQFT is a non-trivial quantum double.

8.3. W R T  Unitary  T Q F T s  

Fix A =  ± e ±2^  for some r  > 3.
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The label set of a WRT TQFT is the same as that of the corresponding 
Jones-Kauffman TQFT, but it needs to be extended to the refined label 
set. The central charge of a level=/c theory is The discussion together 
with the Turaev-Viro theories is completely parallel to the Jones-Kauffman 
TQFTs with diagram TQFTs.

9. Black-W hite TQFTs

Interesting variations of the TLJ categories can also be obtained by 2- 
colorings: the black-white annular categories T L jfw. The objects of the 
category are the objects of the corresponding annular TLJ category en
hanced by two colorings of the complements of the points. In particular 
there are two circles: black and white. Morphisms between two objects are 
enhanced by colorings of the regions. A priori there are two enhancements 
of each Jones-Wenzl idempotent, but it has been proved inFn that the two 
versions are equivalent.

9.1. В lack-white TLJ categories

Fix some r >  3 and A , where A is a primitve 4rth root of unity, or a 
primitive 2rth  root of unity and r odd, or a primitive rth  root of unity and 
r  odd

The objects of black-white TLJ categories are points in the interval 
or S 1 with a particular 2-coloring of the complementary intervals so that 
adjacent intervals having different colors. Given two objects, morphisms are 
multicurves from the bottom to top whose complement regions have black- 
white colors that are compatible with the objects, and any two neighboring 
regions receive different colors. The local relation is the 2-color enhanced 
Jones-Wenzl projector and the skein relation is the 2-color enhancement 
of the Kauffman bracket. The representation theories of the black-white 
categories are considerably harder to analyze.

The object with no points in the circle has two versions 0b,0w , which 
might be isomorphic. Indeed sometimes they are isomorphic and sometimes 
not. Therefore a skeleton of a black-white TLJ category can be identified 
with {Ob, 2,4, • ■ ■} with the possibility that Ob =  Ojy. We will draw 
the black object 0*> as a bold solid circle, and the white object as a dotted 
circle. Interface circles between black and white regions will be drawn as 
regular solid circles. Morphisms will be drawn inside annuli, directed and 
composed from inside-out. There are two color changing morphisms rbw G 

Hom(0*,,0w),rwb G Н от(0гу , Об).
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Let us denote the two compositions rbw ■ rwb =  хъ € Hom(0&, 0*,), rwb • 
rwb =  xw £ H o m ^ O n ,) , which are just rings in the annulus.

Given an oriented closed surface Y,  a 2-colored multicurve in У is a pair 
(7 , c), where 7  is a multicurve, and с is an assignment of black or white to all 
regions of Y \7  s o  that any two neighboring regions have opposite colors. Let 
C[S] be the vector space of formal 2-colored multicurves, and PicBW(Y) be 
the quotient space of С [8] modulo the BW-enhancement of JW  projectors.

9.2. Labels for  black-white theories

Recall in Section 5.1, we define the element q^m £ C2m(s)-

Lemma 9.1.
The element q^m is a minimal idempotent of C2m(x)- 

Prop 9.1.
(1): If r is even, then хь, xw are not invertible, hence 0ь is not isomorphic 

to Ou,.
(2): If r  is odd, then xb,xw are invertible, hence 0*, and 0-̂  are isomor

phic.
(3): The color swap involution is the identity on the TQFT vector spaces.

9.2.1. Level=2, d2 =  2

The algebra Аоьоь — C2, and so is the algebra Аошои(- Both are generated 
by x, so =  C[x]/(x2 =  2x).

Нот(0ь,0^) =  С is generated by Similarly, Нот(0гу,0ь) =  С is 
generated by rwb.

^ 2,2 — C4. Following the same analysis as in Section 5, we get the irreps 
denoted by the following:

Рз 0 0 1
P2 1 0 1
Pi 0 1 1
Po 1 1 1

Ob 2

9.2.2. Level=3

The algebra А0в,0в — C2 is generated by x so =  C[z]/(x2 — 3x +  1).
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The algebra A22 =  C7. Similar analysis as above leads to:

Рз 0 0 1
P2 0 0 1
Pi 1 1 2
Po 1 1 1

Об 0™ 2

9.3. B W  T Q F T s  

Theorem 9.1.
(1): If r > 3, and A a primitive Arth root of unity, or a primitive 2rth 

root of unity and r odd, or a primitive rth root of unity and r odd, then 
(Vgw , z * w ) is aTQ FT.

(2): If r  odd, then (V^w , Z g W) is isomorphic to the doubled even TLJ 
sub-category TQFT, i.e., the TQFT from the quantum double of the even 
TLJ subcategory at the corresponding A.

The proof of this theorem and the irreps for all r  are left to a future 
publication.

We have not be able to identify the BW TQFTs with known ones when 
r  is even, and A is a primitive 4rth root of unity. If r  =  4, then (VqW, Z qW) 
is isomorphic to the toric code TQFT. We conjecture Theorem 9.1 (2) still 
holds for these cases. Furthermore, each (Vb w ^ b w ) decomposes into a 
direct product of the toric code TQFT with another TQFT.

10. Classification and Unitarity

In this section, we classify all TQFTs based on Jones-Wenzl projectors and 
Kauffman brackets. Then we decide when the resulting TQFT is unitary. 
In literature A has been chosen to be either as a primitive 4r-th root of 
unity or as a primitive 2rth root of unity. We notice that for r  odd, when 
A is a primitive rth  root of unity, the resulting TL J  rectangular categories 
give rise to ribbon tensor categories with singular 5-matrices, but their 
annular versions lead to TQFTs which are potentially new. Also when A is 
a primitive 4rth root of unity and r  even, the BW TQFTs seem to contain 
new theories.
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10.1. Classification of diagram local relations

By d generic we mean that d is not a root of some Chebyshev polynomial 
A*. Equivalently d ф В  +  В  for some В  such that B e =  1.

Let us consider d-isotopy classes of multicurves on a closed surface Y .  
Call this vector space TLd(Y'). This vector space has the subtle structure 
of gluing formula associated to cutting into subsurfaces (and then reglu
ing); there is a product analogous to both times and tensor products in 
TLJd- Also for special values of d TLd(Y) has a natural singular Hermitian 
structure.

Theorem  10.1. If d has the form: d =  —A 2 — A~2, A a root of unity. Then 
there is a (single) local relation R(d) so that TLd{Y) modulo R(d), denoted 
by VdiY), have finite nonzero dimension. If d is not of the above form then 
VdW) =  0 or =  TLd(Y) for any given R(d). Furthermore the quotient space 
Vd(Y) of TLdiY) when it is neither {0} nor TLd(Y) is uniquely determined, 
and when A is a primitive 4rth root of unity, then Vd(Y) is the llDrinfeld 
double” of a Jones-Kauffman TQFT at level к =  r — 2 .

Proof. Consider a local relation Ro(d) of smallest degree, say 2n, which 
holds in TLd (i.e. is a consequence of R(d)). Arbitrarily draw Ro{d) in a 
rectangle with n endpoints assigned to the top and n endpoints assigned 
to the bottom, to place Ro(d) in the algebra TLn(d). Adding any cup or 
cap to Rq gives a consequent relation of degree =  2n — 2; this relation, 
by minimality, must be zero. This implies that eiRo(d) =  Ro{d)ei =  0 for 
1 < г <  n — 1. So by Proposition 2.1, Ro(d) =  срП)</, с a nonzero scalar.

The trace, tr(pn<d) e  С is a degree =  0 consequence of pn,d so unless d 
is a root of A n, t r [pn,d) Ф 0 and so generates all relations: pn,d{y)  =  0 .

Now suppose d is the root of two Chebyshev polynomials Am 
and A £, m < i. This happens exactly when (m +  1) di
vides (I +  1). In fact to understand the roots of A n(d) intro
duces a change of variables d =  В  +  В -1 , then: A n(d) =  
{Bn+1 — B~n~l ) / (B  -  J3-1 ). The r.h.s. vanishes (simply) when (and only 
when) В  is a 2n +  2— root of unity Ф ±1. In particular if d is a root of A m 
and Af then pm>d is a consequence of pm,i by “partial trace” as shown in 
Figure 10.1.

Trace both sides to verify the coefficient /  =  and note that since 
both numerator and denominator have simple roots at d the coefficient at 
d is well defined and nonzero.

Thus for a diagram local relation (or set thereof) to yield a nontrivial 
set of quotient space Ф 0 , d must be a root of lowest degree A n and the
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Fig. 10.1. Partial trace

relation(s) are equivalent to the single relation рП)<*.
Geometrically, 0 =  pn =  1 +  U implies 1 =  - U  means that the multic

urves whose multiplicity is less than n along the 1— cells, S K l (Y ), ( “bonds” 
in physical language) of any fixed triangulation of Y  determine pn(Y). Here 
multiplicity < n for a multicurve 7  means that 7  runs near S K l (Y) and 
with fewer than n parallel copies of a 1— cell (bond) of S K l (Y). Finite 
dimensionality of pn{Y) is an immediate consequence. (S K l stands for 
“1-skeleton.”)

The quotient space Ф 0, for Y  =  S 2 this follows from the nonvanishing 
of certain 0-symbols; for Y  of higher genus the Verlinde formulas. □

10.2. Unitary TQFTs

A unitary modular functor is a modular functor such that each V(Y)  is 
endowed with a non-degenerate Hermitian pairing:

< , > : Щ х К ( Г ) ^ С ,

and each morphism is unitary. The Hermitian structures are required to 
satisfy compatibility conditions as in the naturality axiom of a modular 
functor. In particular,

<  > =  ] P s i0  <  Vi } W j  >  .

i
Note that this implies that all quantum dimensions of particles are positive 
reals. It might be true that any theory with all quantum dimensions positive 
is actually unitary. Moreover, the following diagram commutes for all Y :

V(Y)  V ( - Y У

a l  1 "
V{Y)* V { - Y )

A unitary TQFT is a TQFT whose modular functor is unitary and whose 
partition function satisfies Z ( —M)  =  Z(M).
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10.3. Classi f ication an d un i ta r i t y

There are two kinds of TQFTs that we studied in this paper: undoubled 
and doubled, which are indexed by the Kauffman variable A.

When A is a primitive 4rth root of unity for r  > 3, we have the Jones- 
Kauffman TQFTs. The even sub-categories of TLJs yield TQFTs for r  odd, 
but have singular 5-matrix if r  even. If r  is even, and A =  ± i e ± ~z?, then 
the Jones-Kauffman TQFTs are unitary.

We also have the WRT SU(2)-TQFTs for q =  e±2^ , which are unitary. 
WRT TQFTs were believed to be the same as the Jones-Kauffman TQFTs 
with q =  A ±4y but they are actually different. Jones-Kauffman TQFTs and 
WRT TQFTs are related by a version of Schur-Weyl duality as alluded in 
Section 2 for the braid group representations.

All above theories can be doubled to get picture TQFTs: the doubled 
Jones-Kauffman TQFTs are the diagram TQFTs, while the doubled WRT 
TQFTs are the Turaev-Viro TQFTs.tv The doubles of even sub-categories 
for r  odd form part of the Black-White TQFTs in Theorem 9.1, while for 
r  even this is still a conjecture.

When A is a primitive 2rth or rth  root of unity and r  odd, the TLJ 
categories do not yield TQFTs. But the restrictions to the even labels lead 
to TQFTs. When A =  ±.ie±2& , the resulting TQFTs are unitary. Those 
unitary TQFTs are the same as those obtained from the restrictions of 
WRT TQFTs to integral spins. All can be doubled to picture TQFTs. Note 
that for these cases when A is a primitive rth  root of unity, then — A is a 
primitive 2rth root of unity. For the even sub-categories, they lead to the 
same TQFTs, which form part of the Black-White TQFTs in Theorem 9.1.

□
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Fractional quantum Hall liquids are new phases of matter exhibiting topo
logical orders, and Chern-Simons theories are proposed as effective theo
ries to describe the universal properties of such quantum liquids. Quantum 
Chern-Simons theories are (2+l)-dimensional topological quantum field 
theories (TQFTs), so we define a topological phase of matter as a quantum 
system with a TQFT effective theory.

Ground states manifolds as modular functors

While in real experiments, we will prefer to work with quantum systems 
in the plane, it is useful in theory to consider quantum systems on 2- 
dimensional surfaces such as the torus. Given a quantum system on a 
2-dimensional oriented closed surface £, there associates a Hilbert space 
H consisting of all states of the system. The lowest energy states form the 
ground states manifold У(Е), which is a subspace of H. For a given theory, 
the local physics of the quantum systems on different surfaces are the same, 
so there are relations among the ground states manifolds V (£) for different 
E ’s dictated by the local physics. In a topological quantum system, the 
ground states manifolds form a modular functor—the 2-dimensional part 
of a TQFT. In particular, V(E) depends only on the topological type of E.

Elementary excitations as particles

A topological quantum system has many salient features including an en
ergy gap in the thermodynamic limit, ground states degeneracy and the lack 
of continuous evolutions for the ground states manifolds. The energy gap 
implies that elementary excitations are particle-like and particle statistics 
is well-defined. These quasi-particles are anyons, whose statistics are de
scribed by representations of the braid groups rather than representations 
of the permutation groups.

The mathematical model for an anyonic system is a ribbon category. 
In this model an anyon is pictured as a framed point in the plane: a small 
interval. Given a collection of n anyons in the plane, we will arbitrarily 
order them and place them onto the real axis, so we can represent them by 
intervals [г — б, г +  e], i — 1,2, • • • , n on the real axis for some small e. The 
worldlines of any n anyons from time t =  0 to the same set of n  anyons 
at time t =  1 form a framed braid in R2 x [0,1]. We will represent world
lines of anyons by diagrams of ribbons in the plane which are projections 
from M2 x [0,1] to the real axis x [0,1] with crossings. (Technically we need

Appendix A. Topological phases of matter
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to perturb the worldlines in order to avoid more singular projections.) A 
further convention is the so-called blackboard framing: we will draw only 
single lines to represent ribbons with the understanding the ribbon is the 
parallel thickening of the lines in the plane.

Suppose n elementary excitations of a topological quantum system on 
a surface E are localized at points p i,p 2>*■• ,Pn, by excising the particles 
from E, we have a topological quantum system on a punctured surface E' 
obtained from E by deleting a small disk around each point Pi. Then the 
ground states manifold of the quantum system on E ' form a Hilbert space 
V(E'). The resulting Hilbert space should depend only on the topological 
properties of the particles—particle types that will be referred to also as 
labels. In this way we assign Hilbert spaces V(E, a i, a2, • • • , an) to surfaces 
with boundary components {1, 2, • • • , n} labelled by {a i, a2, • • • , an}.

Braid statistics

The energy gap protects the ground states manifold, and when two particles 
are exchanged adiabatically within the ground states manifolds, the wave- 
functions are changed by a unitary transformation. Hence particle statistics 
can be defined as the resulting unitary representations of the braid groups.

Appendix B. R epresentation of linear category

Category theory is one of the most abstract branch of mathematics. It is ex
tremely convenient to use category language to describe topological phases 
of matters. It remains to be seen whether or not this attempt will lead to 
useful physics. But tensor category theory might prove to be the right gen
eralization of group theory for physics. On a superficial level, the two layers 
of structures in a category fit well with physics: objects in a category rep
resent states, and morphisms between objects possible “physical processes” 
from one state to another. For quantum physics, the category will be linear 
so each morphism set is a vector space. Functors might be useful for the 
description of topological phase transitions and condensations of particles 
or string-nets. For more detailed introduction, consult the book.Ma

A category 6 consists of a collection of objects, denoted by a, 6, c, • • •, 
and a morphism set a^b (also denoted by Mor(a, b)) for each ordered pair 
(a, b) of objects which satisfy the following axioms:

Given /  € aCfe and g e  then there is a morphism /  • g € aCc such 
that
1) (Associativity):
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If /  G g G b^o h G c^dt then ( /  • p) • h — f  • (p • Ii).
2) (Identity):

For each object a, there is a morphism ida G aCa such that for any 
/  G aGb and g G ce a, ida • /  =  /  and g • ida =  0.

We denote the objects of G by C° and write a G C° for an object of C. 
We use C1 to denote the disjoint union of all the sets aCь ■ The morphism 
/  • 9  £ aCc is usually called the composition of f  € aGb and g € 
but our notation /  ■ g is different from the usual convention g - f  as we 
imagine the composition as the join of two consecutive arrows rather than 
the composition of two functions. This convention is convenient when the 
composition in aCa of a linear category is regarded as a multiplication to 
turn ae Q into an algebra.

A category C is a linear category if each morphism set aGb is a finitely di
mensional vector space, and the composition of morphisms is a bilinear map 
of vector spaces. It follows that for each object a, aCa is a finitely dimen
sional unital algebra. It follows that a finitely dimensional unital algebra 
can be regarded as a linear category with a single object. Another impor
tant linear category is the category of finitely dimensional vectors spaces V. 
An object of V is a finitely dimensional vector space V. The morphism set 
Mor(V, W)  between two objects V, W  is Hom(V, И )̂. More generally, given 
any finite set / ,  consider the linear category V[/] of /-graded vector spaces, 
which is a categorification of the group algebra C[G] if /  is a finite group G. 
An object of V[/] is a collect of finitely dimensional vector spaces {Vi}i€/ 
labelled by elements of / ,  and the morphism set Mor({Vi}ie/, is
the (graded) vector space of linear maps 0 i€/Hom(K, Wi). In the following 
all categories will be linear categories, and we will see that any semisimple 
linear category with finitely many irreducible representations is isomorphic 
to a category of a finite set graded vector spaces.

G eneral rep resen ta tion  theory

D efinition B .l . A (right) representation of a linear category С is a functor 
p : 6 —» V, where V is the category of finitely dimensional vector spaces. 
The action is written on the right: p(a) =  Va and given an f  G aQb, v-p(f) =
v . f  =  v • p(f) :Va -*Vb for any v € Va.

The О-representation of a category is the representation which sends 
every object to the 0-vector space. Fix an object a G 6°, we have a repre
sentation of the category 6 , denoted by aG: the representation sends a to 
the vector space QCa, and any other b G C° to aGb- An important construct
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which gives rise to all the representations of a semi-simple linear category 
is as follows: fix an object a G C° and a right ideal Ja of the algebra aCa> 
then the map which sends each object b e  C° to Ja • аСь С aQb affords 
С a representation, where Ja • аСь is the subspace of а£ь generated by all 
elements /  • g , f  € Ja Q a^a,9  £ qC*,. If the right ideal Ja is generated by 
an element pa € аСа , then the resulting representation of C will be denoted 
by pae. In particular if Ja =  аСа , we will have the regular representation 
aC.

The technical part of the paper will be the analysis of the representa
tions of certain picture categories. In order to do this, we first recall the 
representation theory for an algebra—a linear category with a single object.

Definition B.2. Let A be an algebra, an element e 6  A is an idempotent 
if e2 =  e Ф 0. Two idempotents ei, e2 are orthogonal if eie2 =  e2ei =  0. An 
idempotent is minimal if it is not the sum of two orthogonal idempotents.

Given an idempotent e of a finitely dimensional semi-simple algebra A, 
the right ideal eA is an irreducible representation of A if and only if the 
idempotent e is minimal. Since every irreducible right representation of A is 
isomorphic to a right ideal eA for some idempotent of A, the representations 
of A are completely known once we find a collection of pairwise orthogonal 
minimal idempotents e* of A such that 1 =  0 *6*. It follows that A =  
0 ?=ieiA.

Let p(x) be a polynomial of degree=n with n distinct roots a \ , a2, • • • , an 
and A be the quotient algebra C[rr]/(p(x)) of the polynomial algebra С[.т].
Let Uj =  n r= i,i# j(x -  <Ъ)Л =  nr=M *,'(Aj “  A0  and e3 =  Then we 
have the following lemma.

L em m a B .l .  The idempotents {ej}^=l of A are pair-wise orthogonal and 
0 j =1ej =  1 . I t  follows that A is semi-simple and a direct sums of С ,s. Note 
that ej is an eigenvector of the element x £ A associated with the eigenvalue
OLj.

P roof. Since Uj(x — aj) =  p(x) =  0, so Uj • x =  Uj • aj =  ajUj. It follows 
that u2 =  Uj n r= i,i# j(x ~  ai) — ^jUj, therefore e2 =  ej Ф 0. Now consider 
щ • Uj , in Uj there is the factor (x -  ai) if i ф j ,  but щ(х -  ai) =  p{x) =  0 , 
hence UiUj — 0 .

The polynomial g(x) =  ( £ ”=1 ej) -  1 is a polynomial of degree n — 1, 
but it has n distinct roots a i ,a 2, • • • ,a n, so g(x) is identically 0 . □

A representation p of С is reducible if p is the direct sum of two non
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zero representations of б. Otherwise p is irreducible. A linear category 0 is 
semi-simple if every representation {p, V} of 6 is a direct sum of irreducible 
representations.

D efin ition  B .3 . A has a positive definite Hermitian inner product (pdhi) 
iff each morphism set аАь has a finite dimensional pdhi and composition 

p
аЛб®г,Лс —> аЛс satisfies the compatibility < Р {ат ъ ® г>гас), с771<* > = <  
ать, Р{ьтс 0  ст^ ) > j iTTij E {Aj, and for all i , j  E A°,iAj is identified 
with jAi.

Lem m a B .2. Suppose A has positive definite Hermitian inner product, 
then A is semi-simple.

Proof. If A has a pdhi, then any (finite dimensional) representation {p, V} 
of A may also be given a pdhi structure. This means that the V\ are indi
vidually pdhi-spaces and that for all morphisms m, (p(m))* =  p(m). One 
may check that any collections of pdhi-structures on {F } which are aver
aged under the invertible morphisms (and therefore invariant) satisfies this 
condition. □

Most of the usual machinery of linear algebra, including Schur’s lemma, 
holds for С-linear categories.

Lem m a B .3 . (Sch ur’s L em m a f o r  С -l inear categories) Suppose 
{pm, Vi) and E obj{A),m E Morph(i,j), are irreducible rep
resentations of a <C-linear category A (called an algebroid by some authors 
e.g. [BHMV]). Irreducibility means no pm invariant class of proper sub
spaces V( С Vi exists. Suppose that ф : {V} —* {W} is a A-map com
muting with the action A. That is for m E Morph(i,j) and Vi € Vi we 
have Xm(0i(^i)) =  Фз * Pm{vi)• Then either ф is identically zero for all 
i, фi : Vi —> Wi, or ф is an isomorphism. If {V} =  {W} then ф =  A • id for 
some A € C.

Proof. As in the algebra case ker(ф) (and image(^)) are both invariant 
families of subspaces (indexed by i E obj(A).) So if either is a nontrivial 
proper subspace for any i irreducibility of {V} (or {VK}) fails. For the 
second assertion, since С is algebraically closed for any i E obj(A), the 
characteristic equation det((fo — s i)  =  0> has roots, call one Ai- The A-map 
ф — A(/) has non-zero kernel (at least at object 2) so by part one, ф — Х1 =  0 
identically or ф — A I. □
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Corollary B .l .  Suppose the representation {p, V } of A has decomposi
tion {V} =  Vai 0 {Vi} ф  ■ • • ®  Vak ®{Vfc}, where the Vi are distinct (up 
to isomorphism) irreducible representations, I is finite index, 1 <  I <  k, 
and the Vai are ordinary С -vector spaces with no A-action, ( Dimension 
(Vat) =• d(ai) is the multiplicity ofVi.) The decomposition is unique up to 
permutation and of course isomorphism of and scalars acting on {VI}.

Proof. Suppose {V} =  ® m Wam ® {W j}. Apply Schur’s lemma to com
positions:

Va, < g > W  -  { V }  -  Wam (g){W m}.

for all Vai G Vai and w at €  W at to conclude that given I, Vi =  W m  for some 
m and d(ai) =  d(am). This established uniqueness. □

Now we state a structure theorem fromWal2 for the representation the
ory of semisimple linear categories. Both the statement and the proof are 
analogous to those for the semi-simple algebras. A right ideal of С is a sub
set J  of C1 such that for each object a G C°, J  П aQa is a right ideal of aGa- 
Note that each right ideal of С affords С a representation.

Theorem  B .l .
1): Let С be a semi-simple linear category, and be a complete 

set of representatives for the simple right ideals of G. Then G is naturally 
isomorphic to the category of the finite set I-graded vector spaces with each 
object a € 6° corresponding to the graded vector space X ia, where X{a is 
XiHaGa.

2): Each irreducible representation p of G is given by a right ideal of 
the form eaG for some object a € G°, where ea is a minimal idempotent of 
aGa ■ If for some b E G°, which may be a, and еь is a minimal idempotent of 
bGb, then the irrep e&C of G is isomorphic to eaG if and only if there exist 
f  G aGb and g G bGa such that f  • g =  ea, g • /  =  еь-

A ppendix C. Gluing and Maslov index 

Gluing

Gluing of 3-manifolds needs to be addressed carefully due to anomaly. The 
basic problem is when X  is a bordism, the canonical Lagrangian subspace 
Ax € H\(dX\R) is in general not a direct sum. Ax is determined by 
the intrinsic topology as it is the kernel of the inclusion homomorphism:
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H \(d X ;R )  —> But the anomaly is related to the parameteriza-
tions of the bordisms, which are extrinsic.

Suppose X i , i  =  1,2 are bordisms from —Y{ to Yi+i extended by 
X j,j =  1, 2, 3. The canonical Lagrangian subspace \ Xi defines a Lagrangian 
subspace of # i(K 2; K) as follows: let X-X\ =  {b G tfi(Y 2;R)|for some a G 
Ai,(a, 6) G A ^ }, and X+X2 =  {c G #1(^2; K)|for some d G Аз,(с,d) G 
Ax2}• Then we have three Lagrangian subspaces in H\(Y2\ K) together with 
A2.

More generally, let (Vi, A*) be extended sub-surfaces of {dX\Xx), and 
/  : (^i; Ai) —> (—Y2\ A2) be a gluing map. Then we have three Lagrangian 
subspaces in #i(Y i; M)0 #i(Y 2; R): the direct sum Ai®A2, the anti-diagonal 
A = {(ж ф — / , (x)}, and К —the complement of A* in Xx mapped here.

Maslov index

Given three isotropic subspaces Аг-,г =  1,2 ,3 of a symplectic vector space 
( # ,  u>), we can define a symmetric bilinear form < , >  on (Ai +  A2) П A3 as 
follows: for any v}w G (Ai +  A2) П A3, write v =  vi +  v2,Vi G A*, then set
< v,w  > =  сj ( v 2 , w ).  The Maslov index A2, A3) is the signature of the 
symmetric bilinear form <, > on (Ai -I- A2) П A3.
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Some entangled states can be generated based on Temperley-Lieb algebra. The 
dynamics in the entangling degree (9 in this paper) space is set up through the 
Yang-Baxterization and the Berry phase is found in the Yang-Baxter approach.
The Yang-Baxterization has been presented for A{u) and B(u), i.e. the 2- 
dimensional braid matrices related to 2-state anyon model. We also show the 
equivalence between the usual 4 x 4  i?(u)-matrix and the set of A(u) and B(u).

1. Introduction
The Yang-Baxter equation (YBE) originates in solving 5-function inter
action model1 by C.N. Yang and statistical models2 by R. Baxter and 
introduced to solve many quantum integrable models3 by Faddeev and 
Leningrad Scholar. Through RTT relation4 the new algebraic (quantum 
groups) structure was established5 by V. Drinfeld. The usual YBE takes 
the form

R i 2(u )R23(u +  v)Ri2(v) =  R2z{v)Rn{u  +  1>)Я2з(гО (1.1)
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that is valid for three types of Й-matrices, i.e. rational, trigonometric and 
elliptic solutions of YBE. The spectral parameter и plays important role 
that is 1-dimensional momentum (rapidity) in some typical models. The 
asymptotic behavior of R\2(u) is tt-independent.

\\mRi i+i(u) =  bi (1-2)

which satisfy braid relation

bibj — bjbii |i j\ >  2

where

bi =  1 x 1 x 1 • • • bi i+i x • • • x 1

For a statistical model all the elements of R(u)~matrix should be pos
itive because they are related to the Boltzmann weights. The relationship 
between R(u) and b was set up by M. Jimbo,6 V.Jones7 and others.8 We call 
the process obtaining R(u) for a given braid matrix b “Yang-Baxterization” 
that depends on the number of independent eigenvalues in matrix b.

If В  has two independent eigenvalues we have simply

R{u) =  p{xB - x ~ l B ~ l ) (1-4)

where x =  eu(or еги) and p is a normalization factor.
As was pointed out by Kauffman and Lomonaco9,10 the braid matrix 

В n  transforms the “natural basis” (ЦТ), |t l )  ЦТ)> III)) to the Bell state 
(72 ^  ITT))» 75 (lit)  ±  1Т1» )  • ^  is emphased that here the elements 
of В Н  is no longer positive. However, a braid matrix b is nothing with 
dynamics. We should Yang-Baxterize b to be R(x)-matrix and look for the 
physical consequence of the extension.

Generally a solution of R(u) depends on two parameters, say, ф (the 
^-deformation parameter with q =  ei<f>, or it may be originated from other 
parameter such as 77 =  ei(t>, see below Eq(l)) and 9 (the spectral parameter 
or the one dimensional momentum). In physics the parameter ф is flux that 
can be dependent on time t. If we define a quantum state

|Ф(М М )> =  * ( M W M 0)>, (1.5)
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where |Ф(0)) is the initial state independent of t. The normalization con
dition of the quantum states (Ф(0, ф(ЩФ(в, ф{1))) =  (Ф(0)|Ф(0)) =  1 re
quires the unitary condition & ( в ,  (f>{t)) =  It follows from 
Eq(5) that

ihm m
Ж  -|

=  ih 0 (0 )] Ш  Ф Ш т )  (i-6)
=  я(*)|Ф (М (*))),

where the Hamiltonian reads

н щ  =  фц)). ( i .7)

The R(Q, <£)-matrix is related to the braiding matrix through Eq(3.4). 
Suppose |Ф(0)) represents a direct-product state without entangling, and 
В(0)|Ф(О)) yields an entangled state (in general, a maximally entangled 
state). For the case with two distinct eigenvalues, through the Yang- 
Baxterization В(ф) —► R(9, </>), Eq(1.7) defines the Hamiltonian for a Yang- 
Baxter systems. It is interesting to note that as was shown in11 the meaning 
of 12 cos #| is the entangling degree for the Bell state.

The purpose of this paper is to investigate the Berry phase (BP)12 in 
Yang-Baxter systems, quantum criticality (QC) phenomenon13-17 is also 
discussed. Special attention will be paid to set up the connection between 
the Yang-Baxter approach and topologic quantum field theory through 4 x 4 
in YB and 2-dimensional in TQF model.18

2. Berry phase in Yang-Baxter approach

The braiding operators satisfy the following braid relations:

bibi+ibi =  6*+1&г&г+ь 1 < г < n -  1,
bibj =  bjbi, \i — j\ >  2, (2.1)

where the notation 6* =  biti+1 has been used. Let us consider the following 
type of braiding matrix for two spin-1/2 particle911

=  _ L ( /  +  M 53),
v 2

(2.2)



where I  is the 4 x 4  identity matrix and

/  e* \
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M  22 = €

— 6 (2.3)

with e =  ±1, and ф =  ф(Ь) represents the arbitrary flux. The matrix M n  
satisfies the algebraic relations of the extra-special two-group10.18

The trigonometric Yang-Baxterization approach6-8 gives R(x) =  
p(xB — x ~ l B ~ x) (here p is a normalization factor) gives

R(x) =  [2(x2 +  x~2)]~1/2[(x +  x ~ l ) 1 5 5 
+(x  — ж“ 1)М 55])

[О Д ] - 1 =  [2 (x2 +  x - 2) ] - l ' 2[(x +  :c "1)/**
- ( i - x _ 1)M55], (2.4)

The unitary condition [Я(х)] 1 =  # (x  x) leads to <£(£) being real. 
Equation (3.11) can be rewritten as

M55 =  e W D s + s }  -  e~i<f>Si S2 +  cfSfSJ" -  S f S j ) ,  (2.5)

where S* =  S } ± i S 2 are raising and lowering operators of spin-1/2  angular 
momentum for the г-th lattice. We then have from Eq(1.7) that

H\(x,  0(£)) =  —h<j)[2(x2 +  x_2)]_1(x — x -1 ) x 
{ (* -a?“ 1)(5? +  fl|)  +  
{x +  x - 1)(e ^ 5 1+5+ +  c“ ^ 5 f  )}. (2.6)

By using

x =  [— cos 20]_1/ 2 (cos 0 +  sin0)
x -1  =  [— cos 20]_1/2 (sin 0 — cos0), (2.7)

Eq(5) can be recast to

# !  (0, 0 (t)) =  -fc0cos0[cos0(S? +  Sf) +  sme{ei<f>S ? S }
+ e " ^ 5 f 5 2-)]. (2.8)

The eigen-problem of Eq(10) under adiabatic approximation is

Hi(M (<))l<M M (t)))i = £i(0№±(*.*W)>i, (2-9)



where the two non-zero eigenvalues are

E± =  q=/l0cos0
=  ^hwcosO (for ф =  u>t), (2.10)

and the corresponding eigenstates are

l $ + ( M ) >  =  c o s f l  Tt) +  s in § e - i *| | | ) ,  m  
|Ф_(0, ф)) =  - s i n f e ^ l  TT) +  c o s | |  II).

The physical consequence of Berry phase for the above Yang-Baxter Hamil
tonian system, i.e., for Ях(0, </>(£)), has been discussed in.19 Namely, from 
the definition of Berry phase

=  dt (n(R)\^\n(R))  = i j f  dtA(t)

Г2* -  Я -
=  i  j  d t ф - 1 ( n ( R ) \  —  \ n ( R ) ) ,  ( 2 . 1 2 )

here R  =  (sin 0 cos ф, sin 0 sin ф, cos 0) and |п(Я)) =  |Ф±(0, Ф)), one then 
obtains the Berry phases for the Yang-Baxter system as

7± =  (± J  d4>) sin2 ^ =  ±тг(1 -  cos0) =  ± ^ ,  (2.13)

where Q =  27r(l — cos 9 ) is the familiar solid angle enclosed by the loop on 
the Bloch sphere in 0-space.

In terms of S f  =  /+ , S~ =  fi and щ =  f+ f i  the Hamiltonian (10) can 
be recast to the form

H\  (0, <£(£)) =  — huj cos 0[cos 0 ■ (hi +  fi2 — 1)
+  s i n 0 ( e ^ S + + e -* W S “ )], (2.14)

or

H\(9, ф(Ь)) =  - h w V(9)H0(9^( t ) )  (2.15)

where

Но (в, фЦ)) =  2ri(e)S3 + A(t)S+ + A ( t y s ~  (2.16)

ri(9) =  cos 9, A(t) =  sinfle1̂  (2-17)

The standard procedure making Ho(6,<j)(t)) diagonal is

W^H qW  = 2 £S3> £ = s f i r te y j*  + |A(*)I2 = 1 (2-18)
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and the eigenstate is

|£(0)) =  W \vacuum) =  exp(£S+ -  f*S_)| vacuum), 
S -  |vacuum) =  0 ,

with

*  =  1- r =  2 '

in other words, we have

(2.19)

c C0t(2r) = - | | | | |  (2.20)

Substituting Eq(2.17) into Eq(17) and Eq(19) we obtain

9

W'HW\£{0))  =  -ftw ■ 2cos053|C(0)) (2 21)
= —ftwCOs9(fli -fn 2 — 1)|£(0))-

It is nothing but an oscillator Hamiltonian formed by two fermions with the 
frequency l j c o s O. When в =  0 Eq (16) reduces to the standard oscillator 
for A(t) =  0. However, When 9 ф 0, Д(£) plays a role of the “energy gap” 
and the wave function takes the form of spin coherent state .20

3. Berry phase for ham iltonian Нъ{в,ф(£))

In this section, we come to study the Berry phase for a kind of Yang- 
Baxter Hamiltonian related to the well-known six-vertex model3 and the 
Temperley-Lieb algebra.

For the well-known six-vertex model, the braiding matrix reads

B =  S H  =

= q {I  -  q

q 0 0 O' 
0 0 —77 0 
0 — ?7 q -  q ~ l 0 

.0 0 0 q.
чуН ) ,

(3.1)

where

t /H

^0 0 0 0 \  
0 q rj 0 
0 rj~l Q~l 0 

V0 0 0 0 /

(3.2)



The matrix C/H satisfies the Temperley-Lieb algebra, i.e., UiUi±\Ui = 
Щ, U2 =  d Ui (for the above matrix C/H, d =  q +  q~l ). Similarly, the 
trigonometric Yang-Baxterization approach gives

R(x) =  [q2 +  q~2 -  (x2 +  x~2)]~l ,2[{qx -  q~lx~1)I

- ( х - х ~ г) и ^ 1  (3.3)

[Л(ж)]-1  =  [ii 2 +  g~ 2 -  (x2 +  аГ2)]_ 1/2[(даГ1 -  ?_ 1z ) i
+(ж — х~г)и*Ь].  (3.4)

It is easy to check that [Д(ж))*=[Л(а;)]“ 1=Л(-а;) for x =  et1&} rj =  et(p̂ \  
and 9,(p(t),q € real.

One may symmetrize the matrix R(x) given by Eq(3.3) (i.e., to make the
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matrix elements
- .1 /2 , -1 /2  r v -i —1/2,1/2

R(x) =  R(x) ) through the following
\J 1 /2 , - 1 /2  L ' J - 1 /2 ,1 /2  

unitary transformation 

Ri i+l (V(x)) =  У(х )Ъ  i+i(x )^ ( i) t ,  (3.5)

where V(x) = Vi(x) <g> [Vi+i(a;)]'"1 and

( « I

The resultant Ri i+i(K(rr)) is still a solution of YBE. Let only the param
eter 77 = be time-dependent, it yields from Eq(1.7) and Eq(3.5) that

H2(x,<p(t)) =  Пф [q2 +  q~2 -  (ж2 +  i _2)]_1 (x -  x ~ l )
x [(я -  x ~ 1)(Sf -  S f)+ (3.7)
(q -  q~1)(eitpSi'S2 -  e ^ f S * ) ] .

Putting x =  ег1?, $  =  7г/ 2  — в and (p(t) =  <j>(t) — 7t / 2  =  ut,  we have

H2{9,0(0) =  -4 /k j [q2 -I- q~2 +  2 cos 29] 1 cos 9
x[cos 9(Sf — S2)+  (3-8)
\ {q  -  q - l ) ( e^S^S2 +

whose two nonzero eigenvalues are

E± =  -Ah(f>{q2 +  q~2 +  2 cos 20)_1 cos 9X±

4/10 cos 0
A± ’

with

(3.9)

А± =  ± \/co s2 в  +  (5 — <7- 1)2/ 4. (3.10)
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Under the adiabatic approximation the corresponding eigenstates are

- (A - -c o s0 )1/2e-i*|jT)].
The corresponding Berry phases for the Yang-Baxter system are

The above Berry phases have been “g-deformed” , when A+ =  1, or 
q =  \ / l  +  sin2 9 ±  sin0, Eq(3.12) reduces to Eq(15). Remarkably the 
Berry phases in Eq(3.12) can still be expressed in terms of the concur
rence of the states |Ф±(0, ip)) in Eq(3.11) as =  =f7r(l — \ / l  — C2), where 
e = ( q - q ~ l )/(  2A+).

Similarly, the Hamiltonian # 2(0, can be rewritten in terms of
SU{2) generators J+  =  S ? S 2 =  / | / 2, J~ =  =  / i / ] ,  J 3 =
(S? -  S f) =  (ni -  n 2)/2  as

When q — q~l =  0, or q =  ± 1, the Hamiltonian #o(0,0(£)) contracts to 
Щ(0>Ф(£)) — e(0)(fti —^ 2), thus the quantum criticality occurs. Corre
spondingly, one may easily see that the Berry phases in Eq(3.12) vanish.

4. Yang-Baxterization of a sim ple m odel in 2-dimensional 
braid relation.

We have seen that the Yang-Baxterization procedure in the section I is used 
to yield the Berry phase. However, in connection with the FQHE there are 
two-dimensional braid matrices as was shown by Z. Wang in his lectures at 
Nankai Institute based on the works of M. Freedman, Z. Wang and others.21 
For the model with two types of particles the basis is taken as |ei) and |e2) 
that in terms of Kauffman’s graphic method22 are shown by

1ф+ М  =  т М А+ -COS0)-1/2 )  |U>

(3.11)
1Ф-(М)> = 75лГ^Л-  - c°s0)_1/2 ( i t fZi) e*|U>

=  ±7Г 1 —
[cos2 9 +  { q -  q~1)2/ 4]1/2. ’

C O S 0 (3.12)

# 2(0, </>(£)) =  — 4/icj

where

Щ(в,ф^))  =  2 e(6 ) J3 +  A(t)J+  +  
e(9) =  cos в, Д(4) =  е ^ ‘> ( « - 9- 1) / 2. (3.14)
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1 1 1 1

!«■> -  75 = л и и
1 0 1

1 1 1 1

= lU J ^ U U
(4.1)

|e2) =
0 1 2  1 0 

while the corresponding operators behave as

A =  75 £ ) U =

A f o  ) =  t i j j  - 7 2  £ 5 U = i ^

=  ^ L A J  =  | e i > + ы  
в ы  = isj-л LAJ= (¥) 'ei>+(¥) 'e2>,

where the operator A makes crossing in the spaces 1 and 2, whereas В for 

2 and 3. Thus their matrix representations in the basis |Ф) = 

given by

(4.2)

m J  are

A  =  p

and they satisfy braid relation

1 o' * в  =  -
1 + г 1 — г

0 i 2 1 — г 1 +  г

ABA  =  BAB.

(4.3)

(4.4)

We emphasize that Eq(4.4) should act on the combined basis |Ф). It is 
worthy noting that the “crossing” in Eq(4) means the usual 4 x 4  braid 
matrix.

In the following we shall show the Yang-Baxterization of Eq(4.4) is given
by

R i 2(u)R23 (t ± ± J L - ) & 2(,,) =  я 2з(»)Я12(г | ± ^ ) Д 2зМ , (4.5)

where R \2(u) =  R(u) <8> 12, # 2з(^) =  12 ® R(v) and the YBE Eq(7) 
admits the celebrated Temperley-Lieb algebra (TLA) for

# 12(u) =  a i (u ) l 4 +bi (u)Ui2,
&2з(и) =  a2(u) l4 +  b2(u)U23,

(4.6)



with U satisfying TLA

U2 =  dU, U n U n U n  =  U12, U23Ul2U23 =  U23. (4.7)

Actually substituting Eq(8) and Eq(9) into Eq(l) we obtain the following 
independent relations

ai(u )a2(u +  u)ai(v) =  a2(v)ai(u +  v)a2(u) 
a i(u )62(u +  v)b\(v) =  b2{v)bi(u +  v)a2{u)
ai{u)bi(v) +  bi(u)ai(v) +  dbi(u)bi (v)a2{u +  г>) 4- 6i(u)b2(ti +  v)bi(v)

=  a2(v)6i(u  +  u)a2(u) 
ai(u)b2{u +  v)a2(v) =  [a2(v)62(w) +  b2(v)a2(u) +  db 2(v)b2{u)}ai(u +  v) 

+b2{v)bi(u +  v)b2{u)
(4.8)

where Eq(9) has been used.
On the other hand by directly acting the 4-dimensional J£(u)-matrix on 

the base |ei) and |e2) one obtains

#12 (*0 |ei) =  [ai(u) +  d 6i(u)] |e i ) ,
# i 2(u) |e2) =  ai(u) \e2) ,

& n(v)  |ei) =  [a2(u) +  |ei) +  ~  162(u) |e2) , 4̂‘9^

# 23(u) \e2) =  —  ~ 1b2(u) |e:) +  [a2(u) +  d - ~ b2(u)\ |e2) .

Introducing matrix elements A(u)ij =  (ei\Ri2(u)\ej) and В(и)ц  =  
(e<|-ft23(t*)|e,-> { i j  =  1, 2) we have

a2(u) +  Ы р
d Ьг(ц) “2(и) +  £ЦгЬ2(и) 

(4.10)
that in terms of Pauli matrices can be recast to
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A(tt) =
а\(и) +  dbi(u) 0

0 ai M .
,B(u) =

A(u) =  f i (u )I  +  0i(u)<73, B(u) =  } 2(u)I +  92{u)ai +  h2(и)аз (4.11) 

where

h ( u )  =  ai(u) +  ^ h(u ) ,  gi{u) =  ffti(u); 

f 2(v) =  a2(u) +  ^ b2(u), g2{u) =  — b2(u),

h2{u) =  2 2d b ^u)' (4' 12)

We first discuss a system other than Eq(4.3). It has d =  2 in which case we 
should let A(u) and B(u) satisfy the spectral parameter dependent braid
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relation

A(u)B(u  +  v)A(u) =  B(v)A(u +  v)B{u)  (4.13)

We substitute Eq(13) into Eq(15) and find the independent relations 

l f \ {u)fi (v)  +  gi(u)gi (v) \f2(u +  v) +  a[fi{u)gi(v)  + gi(u)fi(v)]g2(u +  v) 

=  lf2(v ) f 2{u) +  (Q2 +  l)</2(^)ff2(«)]/l(u +  V)

+  a[h (v ) g 2(u) +  g2(v) f2(u)]gi(u +  v ) (4.14)
[/1 («)fli {v) +  gi (u)/i (v)] f2(u +  v) +  2agi (u)gi(v)g2(u + v)

=  [f2{ v ) M u )  -  (a 2 +  l)52(«)<?2(u))si(« +  v)
[/i(“ )fli(w) -  gi(u)fi(v)]g2(u +  v )

=  \92{v)h{y) -  h { v ) g 2{u)\gi{u +  V)

For the particular case

a\{u) =  a2(u) =  a(u) 
bi(u) =  b2(u) =  b(u)

We then have

Ri,i+i[u) =  a(u)Ii,i+1 +b(u)Uili+1 

and the corresponding A(u) and £(u) read 

A(u) =  f{u) I  +  g(u)a3

(4.15)

(4.16)

(4.17)

(4.18)

B(u) =  f(u) I  +  -^ 2  x 9 {u)ai +  ^ r -p W o -з 

where /(u ) =  a(w) +  | 6(u),^(n) =  | 6(u) and satisfy

[/(u)^(u) +g(u)f(v) ]f(u  +  v) =  [f(v)f(u)  +
4

(1 -  -p)g{v)g(u)]g(u +  v) 

or equivalently

[a(u)6(i>) +  b(u)a(v) +  db(u)b(v))a{u +  v) =
(a(v)a(u) — b(v)b(u)]b(u +  v)

When a(u) and b(u) are independent of и we put a =  p, b =  p£, then

(4.19)

(4.20)

(4.21)

A =  p 

and Eq(23) leads to

l + £ d 0 

0 1
B =  p 1 +  S

f 2 + £ d + l  =  0

(4.22)

(4.23)
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i.e.

{  =  i ( - d ± V r f * -  4)

Eq(24) satisfies the braid relation

A B A  =  BAB 

For R(u) Eq(23) and Eq(20) it follows

a(u) =  p(u), b(u) =  p(u)G(u)
G(u) =  —- — (d =  2) (7 arbitrary) 

7 — и

The corresponding U-matrix takes the form

U =

0 0
,г ф

(4 .24)

(4.25)

(4.26)

(4.27)

that had been given by Eq(2).
However this type of solution does not compatible with Eq(4.3). In 

order to make the equivalence between the 4-dimensional R(x) -matrix and 
Yang-Baxterized braid relation of Eq(4.3) we should go in another way.

5. Yang-Baxterization of Eq(4.3)

We shall show that the consistent Yang-Baxterization for both R(u) and 
A(u),B(u)  is given by

А ц (« )Д ю (“ д ” )Дхa(«) = Aa»(t>)ftia(. Т Ж  -)Дм(и), (5-1)1 +  (d £u v  1 +  j j £UV

A <»>B < T T ^ , J W - B <’ >A ( T T w b > B M ' ( 5 2 )
where /3 is an arbitrary constant. It looks like Lorentz transformation for 
(3 =  iv and the constraint equation for a(u) and b(u) are

(a(u)b(w) +  b(u)a(v) +  db(u)b(v)]a{ -  “  =

[ffl(v)fr(u) +  Ь(и)а(ц)]Ь( 1 (5-3^

In fact the ^(a)-m atrix can be understood to be dependent on a new spec
tral parameter и through a  =  i(3~l ta n u.



Putting a(w) =  p(u) and b(u) =  p(u)G(u) again, the relation satisfied 
by G(u) is given by

G(«) +  G(v) +  dG(u)G(v)  =  [1 -  G(u)G(y)]G ( j f ^ )  (5-4)

Berry Phase and Yang-Baxterization of Braid Relation 119

whose solution can be found

G(u) =
4 epu for d =  V 2 (5.5)

d [1 +  /32u2 -  i 2e(3u]

where e =  ±1  and P is arbitrary. It is emphasized that Eq(5.5) is the 
solution of YBE for d =  л/2 only.

Substituting Eq(5.5) into Eq(12) with a\(u) =  a,2{u) =  a{u), b\(u) = 
62 (w) =  6(it), we obtain

i l + p 2u2 +  i 2epu
A(u) =  p(u)

B{u) =

or for real (3 by letting

а(ц)

1 4* /32и2 — i 2e(3u ^
0 1 
1 +  p 2u2 г 2ф и  

i 2ери 1 + p 2u2

(5.6)

1 + 0 2u2—i 2ф и

1 +  0 2u 2 + г 2 ф и  _ 2ie

1 +  0 2u2 — i 2e(3u

A{u) =
r w 0 
0 ew

B(u)

=  e and p(u) -  e

cos в —i s m в 
- i s m  в cos в

гв

(5.7)

On the other hand we have had the [/-matrix with d =  \f2

1 0 0 e ^ l

U =
V 2

0 1 ie 0 
0 - i e  1 0 

- e “ *  0 0 1

±1 (5.8)

It follows from Eq(26) for d =  y/ 2  £ =  — ехр(±г7г/4) the corresponding 
matrices A and В  read

A =  Tip
1 0
0 ± i

1 TI 
=F i 1

(5.9)

The relation Eq(5.1) tells when R{u) reduces to braid matrix we have to
set и =  v =  - U • There are only two possibilities: и =  v =  0 and

1 + Pzuv
и — v =  P~l . When и =  v =  0, A(0) =  B(0) =  p(0)I whereas for the later 
case it leads to the familiar braid matrices
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A(0  *) =  iep 1 0
0 —it в о т 1) =

,гетг/4

7 Г
1 i t  
ie 1 (e =  ±1) (5.10)

Hence, the A and В  given by Eq(5.9) is nothing but the light velocity limit 
of Eq(5.6).

In conclusion we have bridged the 4-dimensional #(u)-m atrix satisfying 
TLA with d =  \/2 and the 2-dimensional braid matrices related to the 
anyon model with two states.

We are grateful to Prof. Z. Wang for enlighten discussions. This work is 
in part supported by NSFC (Grant No. 10575053).
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We establish the second part of Milnor’s conjecture on the volume of simplexes 
in hyperbolic and spherical spaces. A characterization of the closure of the 
space of the angle Gram matrices of simplexes is also obtained.

1. Introduction  

M ilnor’s conjecture

In ,5 John Milnor conjectured that the volume of a hyperbolic or spherical 
n —simplex, considered as a function of the dihedral angles, can be extended 
continuously to the degenerated simplexes. Furthermore, he conjectured 
that the extended volume function is non-zero except in the closure of 
the space of Euclidean simplexes. The first part of the conjecture on the 
continuous extension was established in4 (7 has a new proof of it which
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generalizes to many poly topes). The purpose of the paper is to establish 
the second part of Milnor’s conjecture.

To state the result, let us begin with some notations and definitions. 
Given an n-sim plex in a spherical, hyperbolic or Euclidean space with 
vertices щ, ...,un+ i, the г-th codimension-1 face is defined to be the ( n - 1)- 
simplex with vertices t t i , t i j + i , ..., un+ T h e  dihedral angle between 
the г-th and j -th codimension-1 faces is denoted by 6^. As a convention, we 
define 9ц =  7r and call the symmetric matrix A =  [— cos(0ij)](n+i)x(n+i) 
the angle Gram matrix of the simplex. It is well known that the angle Gram 
matrix determines a hyperbolic or spherical n-simplex up to isometry and 
Euclidean n-simplex up to similarity. Let Xn+i, Vn+i, £n+i in R(n+1)x(n+i) 
be the subsets of ( n + 1) x (n-f-1) symmetric matrices corresponding to the 
angle Gram matrices of spherical, hyperbolic, or Euclidean n —simplexes 
respectively.

The volume of an n-simplex can be expressed in terms of the angle 
Gram matrix by the work of Aomoto,1 Kneser2 and Vinberg.8 Namely, 
for a spherical or hyperbolic n-simplex a n with angle Gram matrix A , the 
volume V  is

V(^) =  M-V ld e t(a d H )) | [  (1)
J RJ+‘

where R ^ J 1 =  {(#ь •••J^n+i)| Xi >  0}, the constant Цк =  / 0°° xke~x2dx 
and ad{A) is the adjoint matrix of A. In,4 it is proved that the volume 
function V : Xn+i u y n+i —* R  can be extended continuously to the closure 
ЭСп+i U^n+i in R(n+1)x(n+1). The main result of this paper, which verifies 
the second part of Milnor’s conjecture, is the following theorem.

T heorem  1 .1 . The extended volume function V on the closure Xn+iUyn-|-i 
in R (n+1)x(n+1) vanishes at a point A if and only if A is in the closure £ n-fj.

A characterization of angle Gram matrices

We will use the following conventions. Given a real matrix A =  [atJ], we 
use A >  0 to denote aij >  0 for all i , j  and A >  0 to denote aij >  0 
for all i , j .  A1 is the transpose of A. We use ad{A) to denote the adjoint 
matrix of A. The diagonal к x к matrix with diagonal entries (®i, ...Xk) is 
denoted by diag{x\) ...Xk)- A characterization of the angle Gram matrices 
in X „+i,yn+i or Zn+i is known by the work of3 and.5
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P ro p o s itio n  1.1 (,35). Given an (n +  1) x (n +  1) symmetric matrix A =  
[а^] with ац =  1 for all г, then

(a) A £ Zn+i if and only if det(A) =  0, ad(A) > 0 and all principal n  x n 
submatrices of A are positive definite,

(b) A (E Xn+i if and only if A is positive definite,
(c) A G Уп+i if and only if det(A) < 0, ad(A) >  0 and all principal n x n 

submatrices of A are positive definite.

In particular, all off-diagonal entries aу have absolute values less than 1, 
i.e.,\aij \ < 1 for i ф j .

The following gives a characterization of matrices in Xn+i ,y n+i and 
Zn+i in R(n+l)x(n+l)

T heo rem  1 .2 . Given an (n+ 1) x (n+ 1) symmetric matrix A =  [ay] with 
ац =  1 for all г, then

(a) A £ £ n+i if and only if det(A) =  0, A is positive semi-definite, and 
there exists a principal (k +  1) x (k +  1) submatrix В of A so that 
det(B)  =  0 ,ad(B) >  0 and ad(B) ф 0,

(b) A € Xn+1 if and only if either A is in Xn+i or there exists a diagonal 
matrix D  =  diag{e\ , ...,en+i) where e* =  1 or —1 for each i — 1, ...,n  +  
1, such that DA D  € £ n+i,

(c) A 6 Уп+1 if and only if either A 6 &n+i or det(A) <  0, ad(A) >  0 and 
all principal n x  n submatrices of A are positive semi-definite.

The paper is organized as follows. In section 2, we characterize normal 
vectors of degenerated Euclidean simplexes. In section 3, we characterize 
angle Gram matrices of degenerated hyperbolic simplexes. Theorem 1 is 
proved in section 4 and Theorem 3 is proved in section 5.

Acknowledgment
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2. N orm al vectors of E uclidean  sim plexes

As a convention, all vectors in R m are column vectors and the stan
dard inner product in R m is denoted by и • v. In the sequel, for a non
zero vector w 6 R n, we call the set {x  G R n|w • x >  0} a closed 
half space, and the set {x  € R n |w • x >  0} an open half space. Define
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£n+1 =  {(vi,...,vn+i) 6 (R n)n+1| v i , f o r m  unit outward normal 
vectors to the codimension-1 faces of a Euclidean n-simplex }. Following 
Milnor,5 a matrix is called unidiagonal if its diagonal entries are 1. An 
(n -f 1) x (n +  1) symmetric unidiagonal matrix A is in Zn+\ if and only if 
A =  [ы • Vj] for some point (vi, ...,vn+i) € £n+i (this is proved in,35). We 
claim that an (n +  1) x (n +  1) symmetric unidiagonal matrix A is in Zn+i 
if and only if A — [и* ■ Vj\ for some point ( t > i , vn+i) in the closure £n+i in 
(R n)n+1. Indeed, if A =  [vi • Vj] for some point (vi, ...,vn+i) e  £п+ь then 
there is a sequence (u[m\ ..., v ^ \ )  € £n+i converging to (ui, ...,vn+i). We 
have a sequence of matrices A =  [ v ^  • G £n+i converging to A. 
Conversely if A € Zn+i, then there is a sequence of matrices A € Za+i 
converging to A. Write A ^  where (v[ , ...,t^™i) € £n+i-
Since vjm  ̂ has norm 1 for all i ,m,  by taking subsequence, we may assume 
l i m ^ o o ^ , . . . , ^ )  =  (vi,.,..,vn+i) e  £n+i so that A =  [vt-Vj].

A geometric characterization of elements in £n+i was obtained in.3 For 
completeness, we include a proof here.

Lem m a 2.1. A collection of unit vectors (vi, ...,vn+i) € (R n)n+1 is in 
£n+i if and only if one of the following conditions is satisfied.

(4 -1) The vectors vj, are not in any closed half-space.
(4-2) Any n vectors o f v i , vn+i are linear independent and the linear sys

tem ^*1=1 aivi ~  0 has a solution (a i,...,a n) so that a* > 0 for all
2 = 1, ...,П +  1.

Proof. (4.2) =$> (4.1). Suppose otherwise, v i,...,vn+i are in a closed half
space, i.e., there is a non-zero vector w  £ R n so that w  ■ Vi >  0, г =  
l , . . . ,n  +  1. Let a i,. . . ,a n+i be the positive numbers given by (4.2) so that 
ЕГ=/ Qi«i =  0- Then

n+1 n+1
0 =  W • ( ^  CLiVi) =  ^ 2  Cli(w ■ Vi). 

z=l i=l
But by the assumption a,i >  0, w  • > 0 for all i. Thus w  • Vi =  0 for 
all i. This means that u i,...,vn+i He in the (n -  l)-dimensional subspace 
perpendicular to w.  It contradicts the assumption in (4.2) that any n vectors 
of v \ } ...,t;n+i axe linear independent.

(4.1) => (4.2). To see that any n vectors of v \ , vn+i are linear indepen
dent, suppose otherwise, some n vectors of v i , u n+i are linear dependent. 
Therefore there is an (n— l)-dimensional hyperplane containing these n vec-
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tors. Then г > ь t>n+i are contained in one of the two closed half spaces 
bounded by the hyperplane. It contradicts to the assumption of (4.1). 

Since vi, ...,vn+i are linear dependent, and any n of them are linear

0. For any i ф j, let Нц  be the (n — l)-dimensional hyperplane spanned 
by the n — 1 vectors {г>1, ...,vn+i} \  { v i ,v j } and и € R n -  {0} be a vector 
perpendicular to Я у. We have

By the assumption of (4.1), Vi and Vj must lie in the different sides of Я у . 
Thus и • Vi and и • Vj have different sign. This implies that ai and aj have 
the same sign. Hence we can make ai > 0 for all i.

£n+1 &  (4.1). We will show (t>i, . . . ,vn+i) € £n+i if and only if the 
condition (4.1) holds. In fact, given an гг—dimensional Euclidean simplex 
(7, let 5 n_1 be the sphere inscribed to a. We may assume after a translation 
and a scaling that 5 n_1 is the unit sphere centered at the origin. Then the 
unit vectors v i , ..., vn+i are the tangent points of 5 n_1 to the codimension-1 
faces of a. The tangent planes to 5 n_1 at v\s bound a compact region (the 
Euclidean simplex a) containing the origin if and only if the tangent points
vi, ...,г»п+х are not in any closed hemisphere of Sn_1. □

L em m a 2 .2 . A collection of unit vectors (v i,...,un+i) € (R n)n+1 is in 
£n+i if and only if one of the following conditions is satisfied:

(5.1) The vectors ui, ...,i?n+i are not in any open half-space.
(5.2) The linear system =  0 has a nonzero solution (ai, ...,an+i) 

so that ai >  0 for all i =  1,. . . ,n + 1.

P roof. £n+i =^(5.1). To see that elements in £n+i satisfy (5.1), if 
(vi, ...,Vn+i) £ £n+1, there is a family of (u[m), . . . , ^ )1) € £n+i converging 
to (v i,..., vn+i). Since vectors are not in any closed half-space
for any m, by continuity, vectors г>ь ...,un+i are not in any open half-space.

(5.1)=>(5.2). Consider the linear map

independent, we can find real numbers а» ф 0 for all i such that aiVi =

n+l

1= 1

/  V\ • w  \  
V2 • W

\ V n + i - W /
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Statement (5.1) says that

0 =  {tu € • w  > 0 , i  =  1, . . . ,n +  1}
=  {w 6 R n| / H  > 0} 
=  /(R " )n R J + 1.

Since / ( R n) and R>qX are convex and disjoint, by the separation theorem 
for convex sets, there is a vector a =  (a i,..., an+i)* satisfying the conditions
(i) and (ii) below.

(i) For all и G R n+1

a • и >  0.

and
(ii) For all w e  R n,

0 > a ■ f (w)  =

(  ai \  I  v\ • w \
a2

\ a n+i J \ v n+i - w  J

П + 1

=  (£ « ,« * ) w.
i=l

Condition (i) implies that a* >  0, for i =  1, ...,n-|-l and а Ф 0. Condition
(ii) implies aiv* ~  Thus (5.2) holds.

(5.2)=> £n+i. To see that a point (vi,...,vn+i) satisfying (5.2) is in £n+i, 
we show that in any e-neighborhood of ( v i , v n+i) in (Rn)n+1, there is a 
point K , . . . , < +1) € £n+i«

Let be the set of (v \ ,...,Vk) such that Vi G R fe-1,|vt| =  1 for all i 
and J2 i=i aiyi — 0 bas a nonzero solution (ai, ...,а&) with ai >  0 for all i. 
The goal is to prove Nn+i С £n+i* We achieve this by induction on n. It is 
obvious that N 2 С Assume that N n С £ n holds.

For a point (vi,...,vn+i) € Nn+i, if any n vectors of vi,....,vn+i are 
linear independent, then each entry a* of the non-zero solution of the linear

n + l aiV4 =  0, ai >  0, г =  1,..., n + 1  must be nonzero. Thus ai >  0
for all i and (vi,...,wn+i) satisfies (4.2), therefore it is in £n+i-

In the remain case, without loss of generality, we assume that v \ , vn 
are linear dependent. We may assume after a change of coordinates
that Vi G R гг—1 _ R n — 1 {0} С R n, for i =  1 and vn+i =
(un+1 cos(0),sin(0))4, where 0 < в < f  and |un+i| =  1.

We claim that there exists some 1 < г < n +  1 such that 
...,un+i) G >fn, where x  means deleting the element x.

Case 1. If в >  0 i.e., vn+\ is not in R n_1, consider the nonzero solution of 
the linear system 2̂^=1 =  a* — 0»* =  •••»n +l* The last coordinate
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gives aiO 4-... +  anO +  an+ i sin(0) =  0, which implies an+ i =  0. This means 
(a i, .. . ,a n) Ф 0, i.e., (v i , . . . ,v n) G Nn-

Case 2. If 9 =  0 i.e., vn+i € R n_1, then the dimension of the solu
tion space W  =  { (a i,...,a n+1)* € R n+1| =  °} is at least 2* 
Since (v i,..., vn+i) G Nn+i, the intersection П R ^ 1 -  { ( 0 , 0 ) }  is 
nonempty. The vector space W  must intersect the boundary of the cone 

“  {(0» 0)}. Let (ai, ...,an+i) be a point in both W  and the bound
ary of the cone R>q* — {(0,...,0)}. Then there is some a* =  0. Then 
{vi(i),...,V i(t),...,t;n+i(t)} € Nn.

By the above discussion, without lose of generality, we may assume that 
(v i,..., г>п) G Nn. By the induction assumption Nn С £n, i.e., in any | -  
neighborhood of (v\ , ..., vn), we can find a point (^ i ,. . . ,u n) G £n, where 
щ G R n_1 for all i. Recall we write vn+i =  (un+i cos(0),sin(0))4. Let us 
define a continuous family of n-f 1 unit vectors v \ (£), ..., i>n+i(i) by setting

Vi(t) = (щ cos(i2), — shift2))*,1 < г < n,

vn+i(t) =  (un+1 cos(9 +  t ), sin(0 +  t ))L.

We claim that there is a point vn+i(t))  G £n+i for small t >  0
within J-neighborhood of ((щ , 0)6, ..., (un, 0)l ,vn+i). By triangle inequality, 
this point is within e-neighborhood of (vi, ...,un+i). We only need to check 
that . . . ,vn+\(t))  G £ n+i for sufficiently small t >  0 by verifying the
condition (4.2).

To show any n vectors of vi(£), ..., vn+i(£) are linear independent, it is 
equivalent to show that

det[vi(t),...,vi(t),...,vn+i(t)] Ф 0
for each i =  1, ...,n  +  1.

First,

til cos(£2) U2 cos(t2) ... un cos(t2)
— sin(£2) -sin (£2) ... — sin(t2)det[t>i(£),..., vn(t)] — det

=  — sin(£2) cos(t2)n 1 det Ui U2 ... un 
1 1 ... 1

To see the determinant is nonzero, suppose there are real numbers 
a i, ...,an such that ]СГ=1 aiiui> I )4 =  0- Then we have ЕГ=1 aiUi ~  ^ anc* 
ЕГ=1 ai =  ^У assumption (щ , ...}un) G £n , we know either a* =  0 for 
all г or ai Ф 0 and have the same sign for all i . Hence EJLi ai =  0 implies 
ai — 0 for all i. Thus the vectors (ui, 1 ) * , (un, l )4 are linear independent. 
Hence det[vi(£), •••> *>«(*)] Ф 0 for t G (0, ^ /f] .



Second, we calculate the determinant of the matrix whose columns are 
*M-i(£) and some n — 1 vectors of ...,un(£). Without loss of generality, 
consider

f ( t )  =  det[u2(*)>-">Vn(<),u„+i(£)]

=  det
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V>2 COs(£2) ... Un COS(£2) Un+1 COs(e -f t) 
-sin(£2) ... -sin(£2) sin(0 +  t)

If в > 0, by the assumption (ui, ...,un) €  £n, then

/ ( 0) =  det =  sin(0) det[ii2, un\ Ф 0.
u2 ... un un+icos(0)
0 ... 0 sin(0)

It implies f ( t )  Ф 0 holds for sufficiently small t >  0.
If в =  0, then /(0) =  0. By expanding the determinant,

/(£) =  -  sin(£2)p(£) +  sin(£) det[w2 cos(£2) , ..., un cos(£2)],

for some function g(t), therefore /'(О) =  det(u2, Ф 0. Hence f ( t )  /  0
holds for sufficiently small t > 0.

Next, let

a,i(t) =  ( - l ) l_1det[t;i(0,...,^W ,-.,wn+i(0 ] ,l  < i  < n +  1,

then aM vi{t) =  0. Since det[vi(0),..., vn(0)] =  0, we have an+i(0) =
0. This shows that Х)Г=1 аг(0)г?г(0) =  0, therefore Y î=i fli(0)wi = 0- By the 
assumption (щ,  ...,un) € £n, we obtain ai(0) • а^(0) > 0 for 0 < г, j  < n. 
By the continuity we obtain a.i(t) • a.j(t) >  0 for 0 < г, j  < n , for sufficient 
small t > 0. Consider the last coordinate of Y%=]i =  0 we obtain

n

— sin(£2) ^ 2  a* № +  sin(^ +  t )an+1 {t) =  0. 
t=i

Thus an+i(£) has the same sign as that of a,i(t). Thus (ai(£), ...,an+i(£)) or 
(—ai ( t )y..., —an+i(£)) is a solution required in condition (4.2). □

3. D egenerate  hyperbolic sim plexes

Let R n>1 be the Minkowski space which is R n+1 with an inner product (,) 
where

( (Z l ,  •••> Xn, ^n+l)*> (yi> 2/mj 2/n+l) ) =  Х1 У1 +  ... -j- Xny n ~ ^n+ l2 /n+ l-

Let H n =  {x  =  (a?i,...,rrn+i)* € R n,1|(a;,x) =  - l , r r n+i > 0} be 
the hyperboloid model of the hyperbolic space. The de Sitter space is
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{x  € R n,1|(x,x) =  1}. For a hyperbolic simplex a  in H n, the center and 
the radius of the simplex о are defined to be the center and radius of its 
inscribed ball.

Lem m a 3.1. For an n-dimensional hyperbolic simplex a  £ H n with center 
en+\  =  ( 0 , 0 ,  l ) 4, its unit outward normal vectors in the de Sitter space 
are in a compact set independent of cr.

Proof. Let v\,  ...,un+i be the unit outward normal vectors of cr, i.e.,

cr =  {ж € H n\(x,Vi) <  0 and (Vi,Vi) =  1 for all г}.

Let vf- be the totally geodesic hyperplane in H n containing the (n — 
1)—dimensional face of cr perpendicular to Vi for each i =  1 , . . . , n+  1. The 
radius of a is the distance from the center en+i to v^ for any i =  1,..., n + 1 
which is equal to sinh“ 1(|(en+i, t»i)l) (see for instance9 p26). It is well known 
that the volume of an n —dimensional hyperbolic simplex is bounded by the 
volume of the n—dimensional regular ideal hyperbolic simplex which is fi
nite (see for instance6 p539). It implies that the radius of a hyperbolic 
simplex cr is bounded from above by a constant independent of cr. Hence 
(en+i ,Vi)2 is bounded from above by a constant cn independent of a for 
any i =  1, .. . ,n +  1. It follows that Vi, ...,vn+i are in the compact set

(*̂ 1 > •••> >̂ n+l) I j — I j (^n+l 5 Я?) ^  C71}
{x (x j, ..., Xn+ i ) -f- ... +  Xn xn+1 +  1, Xn_|_i ^  Cn} 

independent of a. □

L em m a 3.2. If A E Уп+i and det(A) =  0, then A  € Zn+i.

Proof. Let A be a sequence of angle Gram matrixes in Уп+1 converging 
to A. By Proposition 2 (c), for any m, all principal n x n submatrices of A ^  
are positive definite. Thus all principal n x n submatrices of A are positive 
semi-definite. Since det(A) =  0, we see that A is positive semi-definite.

Let cr(m) be the n —dimensional hyperbolic simplex in the hyperboloid 
model H n whose angle Gram matrix is A and whose center is en+i =  
(0, ...,0 ,1)1. By Lemma 6 , its unit outward normal vector is in a com
pact set. Thus by taking a subsequence, we may assume (г>[т \  
converges to (vi, ...,i>n+i) with (Vi,Vi) =  1. Since A ^  =  [(vjm\vj-m )̂] and 
A(m) converges to A , we obtain

A -  [(vj,^)] =  [vb...,vn+j]<5[vi,...,vn+i],
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where S  is the diagonal matrix diag( 1, ...,1, - 1).
Since det(A) =  0, the vectors ...,vn+i are linear dependent. Assume 

that the vectors ..., vn+i span a k—dimensional subspace W  of R " '1, 
where к < n .

For any vector x G W, write x =  xiyi- Then

(x,x) =  (x i,...,x n+i)[vi,...,un+i]t5[vi,...,i;n+i](x i,...,xn+i) t 
(x i, Xn+l )A(xi, ..., Xn+l)

> 0

due to the fact that A is positive semi-definite.
Now for any x, у  G W, the inequality (x +  ty, x +  ty) > 0 for any t e  R  

implies the Schwartz inequality

(x, ?/>2 < (x,x)(y,y).

To prove that A G Z.n+b we consider the following two possibilities.
Case 1. If (x, x) > 0 holds for any non-zero x G W, then the Minkowski 

inner product restricted on W  is positive definite. Since the Minkowski 
inner product restricted on R fc =  R fc x 0 С R 71’1 is positive definite, by 
W itt’s theorem, there is an isometry 7 of R ”’1 sending W  to R fc (see9 pl4- 
pl5). By replacing by 7 ( ^ m )̂ for each i and m, we may assume that 
г>1, ..., vn+1 are contained in R fc. Thus (Vi,Vi) =  Vi • Vj for all i , j .  Therefore

A =  [vi, ...,г>п+1]45 [г;1, ...,vn+i] =  [vu  ...,vn+i]4[vi, ...,vn+i].

To show A G £ n+i, by Lemma 5, we only need to show that vi, ...,i;n+i 
are not contained in any open half space of R*\ This is the same as that 
t>i,..., vn+i are not contained in any open half space of R n.

Suppose otherwise, there exists a vector w G R fc such that Vi • w >  0 
for all г. Thus (vi, w) =  Vi ■ w > 0. By taking m  large enough, we obtain 
(v!lm\ w )  >  0 for all i.

It is well known that for the unit normal vectors of a compact 
hyperbolic simplex in # n, the conditions {v\m\ w )  >  0 for all i implies 
(w , w) <  0. But this contradicts the assumption that w G R fc which implies 
(w, w) >  0.

Case 2. If there exists some non-zero vector xo G W  such that (xo, xo) =
0, then by the Schwartz inequality we have

(x0,2/)2 < (xo,xo)(y,y) =  0

for any у G W. Thus (xo,y) =  0 for any у G W. This implies that the 
subspace W  is contained in Xq", the orthogonal complement of xq.



132 R. Guo and F. Luo

Since the vector и =  ( 0 , 0 , 1, 1)* € R n>1 satisfies {u,u) =  0, there is an 
isometry 7  of R 71’1 sending xo to u. Thus 7  sends Xq to u± . By replacing 
t;|m  ̂ by 7 (vt-w )̂ for each i and m,  we may assume that v\,  ...,vn+i are 
contained in t r 1.

For any г, since (гч, u) =  (Vi, (0, ...,0 ,1,1)*) =  0, we can write Vi as

V{ = W i  +  CLiU

for some Wi € R n_1 and ai 6 R. Since (wi,u) =  0, thus (vi,vj) =  Wi • Wj 
for all i , j .  Therefore

A =  [vx, V n+ll^V l,

=  [w1,...,w n^ ] t [wi,...,wn+i].

To show A € £ n+i> by Lemma 5, we only need to show that tyn+i
are not contained in any open half space of R n_1 which is equivalent to 
that w \ , tun+i are not contained in any open half space of R n.

Suppose otherwise, there exists a vector w  € R n-1 such that Wi • w  >  0 
for all i. Then

(vi ,  w )  =  ( w i , w )  +  ((0, . ..,0,аг,аг)*,ги) =  Wi ■ w  +  0 >  0

for all i. By taking m  large enough, we obtain (v\m\ w )  >  0 for all i. By 
the same argument above, it is a contradiction. □

4. P ro o f  of th eo rem  1 

Spherical  case

We begin with a brief review of the relevant result in.4 For any positive semi- 
definite symmetric matrix A , there exists a unique positive semi-definite 
symmetric matrix \ [A  so that (V A )2 =  A. It is well know that the map 
A 1— * y/A is continuous on the space of all positive semi-definite symmetric 
matrices.

Suppose A € Xn+1 =  {A  =  [ay\ e  R(»+i)x<«+i>| A1 =  A , all a« =  1, 
A is positive definite}, the space of the angle Gram matrices of spherical 
simplexes (by the Proposition 2). By making a change of variables, the 
Aomoto-Kneser-Vinberg formula (1.1) is equivalent to

V(A) =  u, - 1 (  X{VAx)e~xtxdx, (1)
J R"+»

where x  is the characteristic function of the set R>q* in R n+1. It is proved 
in4 that volume formula (2) still holds for any matrix in Xn+i = { A  =  [ay] € 
R(n+i)x(n+i)| a 1 =  A, all ац =  1, A  is positive semi-definite}.
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Suppose V(A) =  0, by formula (2), we see the function x°h ' R n+1 —> R  
is zero almost everywhere, where h : R n+1 —> Rn+1 is the linear map 
sending x to \J~Ax. Equivalently, the (n -I- l)-dimensional Lebesque mea
sure of h~1(R Jo 1) is zero* We claim h(R n+1) П R Jq 1 =  0- For other
wise, / i - ^ R J q 1) is a nonempty open subset in R n+1 with positive (n +  1)- 
dimensional Lebesque measure. This is a contradiction.

Now let \ [A — [wi,«.,vn+i](n+1)X(n+1)i where Vi G Rn+1 is a column 
vector for each i. First ^ (R n+1)fiR Jo 1 =  0 implies that det \J~A =  0. There
fore {г>1, ...,vn+i} are linear dependent. We may assume, after a rotation 
r  G 0 { n  +  1), the vectors i>i, ...,un+i lie in R n x {0}. Now

0 = /i(Rn+1) П RJo1 
=  {yfAw\w G Rn+1} П R>o*
=  {(г>1 -ги,...,ип + 1 • w)l \w G R ^ J n R J J 1

This shows that there is no w € R n+1 such that Vi-w > 0 for г =  1, . . .,n + l,
i.e., the vectors i>i, ...,wn+i are not in any open half space. By lemma 5, we 
have (v i,..., vn+i) G £n+i, therefore A =  [vi • Vj\ G 2n+i-

Hyperbolic case

Let A G Уп+i- If det(A) Ф 0, it is proved in4 that the volume formula
(1.1) still holds for A. In formula (1.1), since — x tad(A)x is finite, the inte
grant e~xtad^ x > 0. Therefore the integral fR„+1 e~xt(Ld̂ xdx > 0. Hence*/л >0
V(A)  > 0.

It follows that if the extended volume function vanishes at A, then 
det A =  0. By Lemma 7 , we have A G £ n+i-

5. Proof of theorem 3 

Proof of (a)

If A G Zn+i, then A =  [vi ■ Vj] for some point (vi, ...,i>n+i) G £n-fi- By 
Lemma 5, the linear system aiV{ =  0,а* > 0,i =  1 , ...,n  +  1 has
a nonzero solution. Let (аь ..., an+i) be a solution with the least num
ber of nonzero entries among all solutions. By rearrange the index, we 
may assume a\ > 0, ...,afc+i > 0,а *+2 =  ... =  an+\ =  0. We claim 
rank[v\,  Vfc+i] =  k. Otherwise rank[v\, <  к — 1, then the dimen
sion of the solution space W  — {(ж1,...,ха;+1)* G R^+1| Yli=i x ivi =  0} 
is at least 2. Thus П =  W  D R^q1 is a nonempty open convex set in 
W  whose dimension is at least 2. Hence Г2 contains a boundary point
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(6i , ..., bk+i) £ Cl — {(0,..., 0)} with some bj =  0, due to d im W  >  2. Now we 
obtain a solution (&i, ...6j_ i, 0 , bj+1, bk+i, 0 ,..., 0) which has lesser num
ber of nonzero entries than (ai, ...,an+i). This is a contradiction.

Let В  =  [vi • Vj](k+i)x(k+1)- Since rank[vi,...,Vfc+i] =  A:, we have 
det(B) =  0. We claim that ad(B) >  0 and ad(B) Ф 0. This will verify the 
condition (a) in Theorem 3 for A. Let ad(B) =  [6ij](fc+i)x(fc+i)- Evidently, 
due to rank(B)  =  k,ad(B) ф 0. It remains to prove that ad(B)  >  0. By 
the construction of В , we see bjj >  0 , for all j.  Since rank[vi, ...,u/e+i] =  к , 
it follows the dimension of the solution space of Yli=i aiyi =  0 is 1. Since 

bijVj — 0, (bn,... ,bik+i) is proportional to ( a i , ...,a/c+i), where a* >  0 
for 1 < i <  k + 1. This shows that if bjj > 0, then > 0 for all г, if bjj =  0, 
then bij =  0 for all i. This shows ad(B) >  0.

Conversely, if A is positive semi-definite so that det(A) =  0 and there 
exists a principal ( k + 1) x ( k + 1) submatrix В  so that det(B) =  0, ad(B)  >  0 
and ad(B) Ф 0, we will show that A e  Zn+i- Since A is positive semi- 
definite and unidiagonal, there exist unit vectors v \ ,..., i?n+i in R n such that 
A =  [vi- Vj]. We may assume В  =  [v* • Vj](k+i)x(k+i)> 1 < i , j  < k  +  1 and 
ad(B) =  [bij]. Due to det(B) =  0,ad(B) Ф 0, we have rank(vi , ..., =  
к. We may assume V2, ...,Ufc+i are independent. Thus the cofactor bn >  0. 
By the assumption ad(B) >  0, we have > 0 for s =  1, ...к +  1. Since 

bis(us 'Vj) =  0 for all j  ~  2, A;+ 1 and г/2, ..., Vk+i are independent, 
we get Yls=l b\svs =  0. Thus we get a nonzero solution for the linear system 
H i=i  а№  =  0 ,a i > 0 ,г =  l , . . . ,n  +  1.

Proof of (b)

If A e  Xn+i -  Xn+i, then A =  [vi- Vj] where vi, . . . , V i  are linear depen
dent. We can assume v i , ..., vn+\ lie in R n x {0}. By change subindex, we 
may assume Y17=i aiVi =  ^ îas a non"zero solution with ai >  0 if г =  1, к 
while ai <  0 if i =  к +  1, . . . ,n +  1. Thus vectors г»ь  - V f c + i , - v n+i 
satisfy the condition (5.2) in Lemma 5. Let D  be the diagonal matrix 
diag( 1,..., 1, —1, —1) with к diagonal entries being 1 and n — к +  1 diag
onal entries being —1. Thus by Lemma 5, D A D  £ Zn+\.

On the other hand, if for some diagonal matrix D  in Theorem 3 (b), 
we have D A D  e  Zn+b then by Theorem 3 (a), D A D  is positive semi- 
definite. Therefore A is positive semi-definite. Take В  € Xn+i and consider 
the family A(t) =  (1 — t)A 4- tB  for t  € [0,1]. Then limt_»o A(t) =  A and 
A(t) e  Xn+i for t >  0. Thus A e  Xn+i.
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Proof of (c)

First we show that the conditions are sufficient. Suppose A =  
[ai?'](n+i)x(n+i) is a symmetric unidiagonal matrix with all principal n x n  
submatrices positive semi-definite so that either A € Zn+i or det(A) < 0 
and ad(A) >  0. We will show A e  ^ n+i- If A € Zn+i, it is sufficient to 
show that Zn+\ С Уп+ъ i-e., we may assume A € &n+i* this case, let 
J  =  [cu'](n+i)x(n+i) so that cn =  1 and cy =  —1 for i ф j. Consider the 
family A(t) =  (1 — t)A  -I- tJ, for 0 < t < 1. Evidently lim*_>o A(t) — A. We 
claim that A(t) G Уп+1 for small t >  0. Since all principal n x n  submatrices 
of A are positive definite, by continuity, all principal n x n  submatrices of 
A(t) are positive definite for small t >  0. It remains to check det(A(£)) < 0 
for small t >  0. To this end, let us consider ^|t=odet(A(t)). We have

^\t=odet(A{t)) =  Y ^ ( ~ ai3 ~ 1 )c° f(A)ij < °> 
ijtj

due to ad(A) =  [cof(A)ij) > 0 and —ay -  1 < 0 for all г ^  j .  Since 
det(A) =  0 it follows that det(A(t)) < 0 for small t > 0.

In the second case that det(A) < 0 and ad(A) >  0 and all principal 
n x n  submatrices of A are positive semi-definite. Then A has a unique 
negative eigenvalue —A, where A > 0. Consider the family A(t) — A - 1- tXI, 
for 0 < t <  1, where I  is the identity matrix, so that

lim 1 ■ A(t) =  A. 
t^o 1 +  Xt w

We claim there is a diagonal matrix D  whose diagonal entries are ±1  so 
that

(1) D A D  =  A,
(2) Y+\iDA(t)D € yn+1 for 0 < t <  1.

As a consequence, it follows

A =  DAD

=  № > T T \ t D A { t ) D e 4 n + 1 -

To find this diagonal matrix D , by the continuity, det(A(£)) < 0 for 0 < t <
1 and det(A(l)) =  0. Furthermore, all principal n x n  submatrices of A are 
positive definite for t >  0 due to positive definiteness of tXI. Let us recall 
the Lemma 3.4 in4 which says that if В  is a symmetric (n +  1) x ( n + 1 )  
matrix so that all n x n principal submatrices in В  are positive definite and



136 R. Guo and F. Luo

det(B)  < 0, then no entry in the adjacent matrix ad(B) is zero. It follows 
that every entry of ad(A(t)) is nonzero for 0 <  t  <  1.

Let ad(A(l)) =  [ b i j ] ( n + i ) x ( n + i )  and D  to be the diagonal matrix with 
diagonal entries being

for i  =  1 , n  + 1 . Then the entries of the first row and the first column of 
Dad(A(l ) )D  are positive. Since det(A(l)) =  0 and ad(A(l)) ф 0, we see the 
rank of ad(A( 1)) is 1. Thus any other column is propositional to the first 
column. But Ьц > 0 for all i, hence ас£(Л(1)) > 0. Now since every entry 
of Dad(A(t) )D  is nonzero for t >  0, by continuity Dad(A(t) )D >  0 for 
t  > 0 and Dad(A)D  =  Dad(A(0))D >  0. By the assumption ad(A) >  0, it 
follows Dad(A)D  =  ad(A).  On the other hand Dad(A)D  =  ad(D~l A D ~x), 
and det(A) ф 0. Thus D ~ 1A D ~ l =  A  or the same A =  DAD.  This shows

A =  D A D  

=  lim DA(t )D

=  lim ■ 1 DA(t)D.  
t->ol +  \ t  w

By the construction above j ^ j D A ( t ) D  e Уп+1 for 0 < t < 1, this shows 
A  € yn+i*

Finally, we show the condition in (c) is necessary. Suppose A =  
limm-.oo A(m) where G ^ n+i- By Proposition 2, d e t( A ^ )  < 0,
a d ( A ^ )  >  0 and all principal n x n  submatrices of A are positive 
definite. We want to show that A satisfies the conditions stated in (c). 
Evidently, all principal n x n submatrices of A are positive semi-definite, 
ad(A) >  0 and det(A) <  0. If det(A) < 0, then we are done. If det(A) =  0, 
by Lemma 7, we see that A € £ n+i.
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We use an action, of 2i-component string links on /-component string links, 
defined by Habegger and Lin, to lift the indeterminacy of finite type link in
variants. The set of links up to this new indeterminacy is in bijection with the 
orbit space of the restriction of this action to the stabilizer of the identity. 
Structure theorems for the sets of links up to Cn-equivalence and Self-Cn- 
equivalence are also given.

(In fond rememberance of Xiao-Song Lin, 1957-2007)

1. Introduction

In,Mi’M2 Milnor defined invariants of links, known as the Milnor Ji invari
ants. In fact, these invariants are not universally defined, i.e., if the lower 
order invariants do not vanish, they are either not defined, or at best, they 
have indeterminacies.

In ,HL1 the notion of string link was introduced, together with the phi
losophy that Milnor’s invariants are actually invariants of string links. Inde
terminacies are determined precisely by the indeterminacy of representing a 
link as the closure of a string link. This philosophy led to the classification of 
links up to homotopy, and to an algorithm constructed by Xiao-Song. (Here 
and throughout, we will often refer to Xiao-Song Lin by his first name.) 
More precisely, Xiao-Song and the first author constructed an orbit space
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structure for the set of links up to homotopy. The group action was ‘unipo- 
tent’, meaning it acted trivially on the successive layers of the nilpotent 
homotopy string link group. This was the determining structural feature 
which underlay the successful construction of Xiao-Song’s algorithm.

In ,HL2 an analogous orbit space structure for link concordance was ob
tained and a study of the algebraic part of link concordance, corresponding 
to the Milnor concordance invariants, was made. The theory also applies 
to more general ‘concordance-type’ equivalence relations, in particular to 
those studied by Kent Orr° and developed in Xiao-Song’s thesis.

With the advent of the physical interpretation of the Jones Polyno
mial,'3 predicted by AtiyahA and established by Witten,w a whole new 
area, known as Quantum Topology, emerged. Its perturbative aspects are 
succinctly summarized in the Universal Finite Type Invariant known as the 
Kontsevich Integral.K

Recall that, in the seminal paper,L Xiao-Song had shown that Milnor 
Invariants are finite type invariants of string links. We refer the reader to 
the paper of the first author and Gregor Masbaum,HM where a formula is 
given which computes the Milnor Invariants directly from the Kontsevich 
Integral.

No successful attempt has been made at applying the methods 0fHL1,HL2 
to the Vassiliev invariants.v (The Vassiliev invariants were shown by Xiao- 
Song and Joan BirmanBL to be those invariants which satisfy the properties 
of finite type invariants. Subsequently, Bar-NatanB adopted those proper
ties as axioms for finite type invariants.) This is so, because, as we show, 
the classification scheme does not hold. Thus, in the philosophy 0f,HL1’HL2 
the finite type invariants of links ought to be refined.

In this paper, we make such a refinement and show that after refinement, 
the classification scheme applies. We also show it applies to Cn-equivalence 
and to Self-Cn-equivalence.
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2. Prelim inaries

Let D 2 be the standard two-dimensional disk, and let I  denote the unit 
interval. Recall fromHL1 the notion of string link.

D efin ition  2 .1 . Let I > 1. An Z-component string link is a proper embed
ding,

I

i=  1

of the disjoint union Ц *=1 £  °f  ̂copies o i l  in D 2 x I, such that the j  =  0,1 
levels are preserved and dj(T С D 2 x { j }  is the standard inclusion of I points 
in D 2. By an abuse of notation, we will also denote by a  С D 2 x / ,  the 
image of the map cr.

Note that we do not require that the t levels, for t e l ,  be preserved. A 
string link is a pure braid precisely when it preserves the t levels for all 
t e l .  Note also that each string of an Z-component string link is equipped 
with an (upward) orientation induced by the natural orientation of I.

The set SL(l) of isotopy classes of /-component string links (fixing the 
boundary) has a monoidal structure, with composition given by the stacking 
product and with the trivial Z-component string link 1* as unit element. See 
Figure 1.

Fig. 1. Multiplying two 2-component string links.

R e m a rk  2.1. In the above, one may replace the disk D 2 with any surface 
S  to get the notion of a string link in S x I. The Z-component string links 
in 5 , up to isotopy, again has a monoidal structure.
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We denote by L(l) the set of isotopy classes of /-component links. By 
a link, we mean an embedding Ц*=1 Sj —5► R 3- Thus the components are 
ordered and oriented. There is an obvious surjective closure map

л : SL(l) — > L{1)

which closes an /-component string link a into an /-component link a.
In,HL1 Xiao-Song and the first author introduced a certain left (resp. 

right) action of the monoid of isotopy classes of 2/-component string links 
on /-component string links. See Figure 2 for an illustration of these actions. 
Thus given two /-component string links 0 , a \  and a 2/-component string 
link E, one has /-component string links E0 , 0 E, and a closed link crEa'.

ffyi frSk a»
HUE

a T T

Fig. 2. Schematical representations of the left and right actions of £  on a, Ea and aE, 
and of the closed link oY,ar'.

One may represent the closure a  of a string link a as I1I210, as well as 
<jl2/lz, and also as 1г(1г <S) ст)1г, where ai  <g> <72 denotes the 2/-component 
string link obtained by horizontal juxtaposition. (One orients all strands 
appropriately in the above, e.g., in E, one must reverse the parametrization 
of the first / strands.)

The following result on basing links was proven in. HL2

P ro p  2 .1 . Let (7i, 02 be two /-component string links whose closures are 
isotopic. Then there is a 2/-component string link E, with 1;E isotopic to
01, and Е1/ isotopic to 02.

3. T he H abegger-L in Classification Scheme

InHL2 a structure theorem was proven for certain ‘concordance-type’ equiv
alence relations on the set of links. Given here for the convenience of the
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reader, though stated slightly differently, the result is in fact implicit in the 
proof in.HL2

Consider an equivalence relation E  on string links and on links (for all 
/), which is implied by isotopy. We will denote by E (x ), the E  equivalence 
class of x. We denote by ESL(l) ,  resp. E L(l ), the set of E  equivalence 
classes of /-component string links, resp. links. We will also denote by E  
the map which sends a link or string link to its equivalence class.

Consider the following set of Axioms for an equivalence relation E\
For г =  1,2, let <т* be /-component string links with E(a i)  =  E(c72), and 

let Ei be 2/-component string links with £ ( £ 1) =  E(T,2).

(1) E ( a l ) =  E (a 2)
(2) E(l i  <g> a i)  =  £(1/ <g> cr2)
(3) E i a ^ )  =  E (a 2Z 2)
(4) Е & к п )  =  E (Z 2a2).
(5) For all string links <r, there is a string link <j\ , such that E(crai) =  E(l i) .
(6) If E(L)  =  E(L')} then there is an m  and a sequence of string links <7i, 

for г =  l , . . . , m ,  such that L is isotopic to <7i, and V  is isotopic to 
<jm, and for alH , 1 <  i < m, either E(ai) =  E(<ji+1), or <Ji is isotopic 
to 04+1 (i.e., the equivalence relation E  on links is generated by the 
equivalence relation of isotopy on links and the equivalence relation E  
on string links).

(5;) For all string links <r, E(aa)  =  £(1*)- Here the string link a  is defined 
by, a  =  о cr о Я5, where R$ and R t are the reflection mappings at 
the source and target.

D efin ition  3.1. An equivalence relation satisfying Axioms (1) — (4) is 
called local.

We have the following result.

P ro p  3.1. Let E  be a local equivalence relation. For г =  1,2, let ai and сг\ 
be /-component string links with E(cri) =  E(a2) and E(a[)  =  E(a2), and 
let Si be 2/-component string links with E ( £  1) =  E ( £ 2). Then E{a\<j'l ) =  
E (a 2a2) and E(aiT,ia[) =  E(cr2E2cr2).

The monoidal structures, the left (resp. right) action and the closure 
mapping all pass to maps of equivalence classes. Let E S R(l) (resp. E S L(l)), 
denote the right (resp. left) stabilizer of the unit element of ESL(l).  Then 
E S R(l) (resp. E S L(l)) is a submonoid of ESL{21). Furthermore, the closure 
mapping of ESL(l)  to EL(l ), passes to the set of orbits of the E S R(l) (resp. 
E S L(l)) action, i.e., we have a map
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ESLV  _  Fr m

If in addition, Axiom (5) holds, then the monoid ESL(l) is a group, and 
E S R(l) (resp. E S L(l)) is a subgroup of ESL(2l). If Axiom (5') holds, then 
E S R(l) =  E S L(l).

Proof. By Axiom (2), E(Ii<8xj[) =  E(Ii®g'2). Using Axiom (3), we have 
that E(aia[)  =  E(a i( l i  0 ^ ) )  =  EfaO-i  <8>02)) =  E(c

One defines E(a i)E (a2) =  E{g \(j2). This is well defined by the above, 
and the element £ ( lj)  is a unit. One also defines E(cr)E{£,) =  E(gY,) and 
E(T,)E(a) =  E(Ecr). These are well defined, by Axioms (3) and (4), and 
are monoidal actions (of sets).

Suppose cr and cr' define the same element of , i.e., there is
S (£ ) € S R(l) such that E{L)E{<j) =  E(a').  One has E(&') =  E{liLa)  =  
E ( h l 2l<j) =  E(a),

If Axiom (5) holds, each element E(a) has a right inverse. Hence ESL(l) 
is a group, for all I.

If E(E) belongs to E S R(l), then E(E) belongs to E S L(l). But if Axiom 
(5;) holds, then E(S)  is the inverse of £ (£ ), so also belongs to E S L(l). 
This proves one inclusion and the other is proven similarly. □

Theorem 3.1 (Structure Theorem for ^-equivalence).

(1) Let E be a local equivalence relation satisfying Axiom (5). Then the 
quotient map

ESL(l)
SL(l) 

■e mapj 

E  : L(l)

E S R(l)
factors through the closure mapping, i.e., we have a link invariant

ESL(l)
E S R(l)'

such that the composite map to EL(l) is E.
(2) Furthermore, if Axiom (6) also holds, then we have a bijection

ESL(l) _
~ s W  -  m ) ■

Proof.
Suppose <j is isotopic to a' . By Proposition 3.9, one has that, for some 

£o, cr' is isotopic to EqIi and cr is isotopic to ljEo- Set £  =  £ o (li ® ^i)»
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where E(ai )  satisfies E(aai)  =  E(l i )  (and hence also E ( c j \ cr) =  E(l i)) .  
One has that £ ( 1Z)£(E ) =  E(  1|£ )  =  E{acn )  =  E { l z), so E ( £) € S R(l). 
See Figure 1.

a i a i

I

Fig. 1. Proof that E lies in SR(l).

Finally, one has that E(T,)E(a) =  E(Ecr) =  E(Eo)E(cricr) =  E(T,o)E(li) =  
E(T,q1i) =  E(a').  See Figure 2. This completes the proof of (1).

f r x 1
a

Fig. 2. Proof that Ecr is equivalent to a ' .

To see (2), note that we have already shown that if the closures of two 
string links are isotopic, then they define the same element of • Thus

E SL ( l )we have that for all i in Axiom (6), E(<ii) and 2?(<7i+1) both agree in ■ s^(i) * 
Thus the surjective map from to EL(l)  is injective. □

4. Structure Theorem s for Cn-equivalence and for 
Self-Cn-equivalence.

We will denote by FTn , the equivalence relation on tangles determined by 
finite type equivalence up to degree n, i.e., FTn-equivalent tangles differ by
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an element in the n +  1st term of the Vassiliev filtration. In,H K. Habiro 
showed that, for knots, FTn-eq\iivalence agrees with another equivalence 
relation, called Cn+i-equivalence. Habiro conjectured inH that for string 
links, FTn equivalence is equivalent to Cn+\-equivalence.

Habiro also showed that for links, the result does not hold. Note that, 
since the structure theorem holds for Cn+\-equivalence, if the equivalence 
relations were the same both for string links and for links, it would also hold 
for FTn equivalence. However, for FTn equivalence, the structure theorem 
does not hold (see Theorem 5.1 and the Borromean ring example of Section 
5).

By definition, two tangles are said to be Cn-equivalent, if there is a 
finite sequence of tree clasper surgeries, of degree greater than or equal to 
n, taking one tangle to the other, up to isotopy. SeeH for the definition. 
(Note that in,H a tree clasper is called an admissible, strict tree clasper.) 
Here the leaves of the tree can be assumed to be trivial and intersect the 
tangle in a single point. It is known that Cn+\-equivalent tangles are FTn- 
equivalent (see [H, £ 6]).

By definition, two tangles are said to be Self-Cn-equivalent, if there is 
a finite sequence of tree clasper surgeries, of degree greater than or equal 
to n, taking one tangle to the other, up to isotopy, such that the leaves of 
each tree are restricted to all intersect the same tangle component.

Remark 4.1. Self-C^-Equivalence, for n =  1, is link-homotopy. For n =  2 
it is also known as Self-Delta equivalence.

Cn-equivalence and Self-Cn-equivalence are obviously local, i.e., they 
satisfy Axioms (1) — (4) of Section 3. Axiom 5 was shown in [H, Theorem 
5.4] for Cn-equivalence.

Prop 4.1. Self-Cn-equivalence satisfies Axiom (5) of Section 3.

Prop 4.2. Cn-equivalence and Self-Cn-equivalence satisfy Axiom (6) of 
Section 3.

Applying Theorem 3.2, one has the following result.

Theorem 4.1 (Structure Theorem and Self-Cn-equivalence).

CnSL(l)
CnSR(l)

Self-CnSL(l)
Self-CnSR(l)

=  CnL(l).

=  Self-CnL(l).
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Proof of Proposition 5.2. Suppose that V  is obtained from L by surgery 
on a disjoint union F  of tree claspers of degree >  n. Let L be the closure 
of o. Since the disk base for L retracts onto a 1-complex, we may assume 
it is disjoint from F. Thus V  is the closure of a string link о ', obtained 
from a by surgery on a union of tree claspers of degree >  n. This shows 
that Cn-equivalence (resp. Self-Cn-equivalence) for links is implied by i n 
equivalence (resp. Self-Cn-equivalence) for string links and isotopy. □

Proposition 5.1 is a special case of the following result.

Prop 4 .3. Let S be any surface. Self-Cn-equivalence (and consequently 
Cn-equivalence) classes of string links in S x /  form a group.

Proof of Proposition 5.3. The proof is by induction on the number I of 
components. For I =  1, Self-Cn-equivalence is Cn-equivalence, so we may 
invoke [H, Theorem 5.4].

Suppose the result is true for I — 1. Removing the first component from 
cr, we have an I — 1-component string link сто- By the induction hypothesis, 
ao has an inverse <ji, up to Self-Cn-equivalence. Let cr' =  o(l\ «Эс^). It 
suffices to find a right inverse for cr' , up to Self-Cn-equivalence. Note that 
the string link o'0, obtained from o' by removing the first component, is 
Self-Cn-equivalent to the trivial string link l*_i. Thus lj_ i is obtainable 
from erg by surgery on a disjoint union F  of trees of degree n such that the 
leaves of each tree are restricted to intersect a single component.

We may assume that F  is disjoint from the first component of cr' . Per
form surgery on F  to obtain from o' a string link a". As o' is Self-Cn- 
equivalent to o ", it remains to find a right inverse for cr". Note that after 
removing the first component of cr", we obtain the trivial I — 1-component 
string link. Thus if we remove from o "  the last I — 1 components, we have 
a one-component string link o 'q in S' x I, where S' is the surface obtained 
from S by removing I — 1 points. Since, by the result for / =  1, the string 
link o 'q has a right inverse, up to Self-Cn-equivalence, so does o " . □

5. The Indeterminacy of Finite Type Invariants.

In this section we assume the reader is familiar with the notion of finite type 
invariant as well as the Kontsevich Integral, which is the Universal Finite 
Type Invariant. Recall from the last section that we have denoted by FT„, 
the equivalence relation on tangles determined by finite type equivalence up 
to degree n, i.e., FTn-equivalent tangles differ by an element in the n +  1st 
term of the Vassiliev filtration.
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Let us begin with a disturbing fact about finite type invariants of links. 
The Borromean Rings are distinguished from the unlink by the triple Mil
nor Invariant. Unfortunately, this invariant, which is really only defined 
as an integer when the linking numbers of the 2-component sublinks van
ish, dies in the space of trivalent Feynman diagrams (also known as Jacobi 
diagrams) on 3 circles. This is because, when passing from 3 intervals to 
3 circles, invariants of linear combinations of string links, which die upon 
closure, must also die upon closure for other linear combinations which are 
equivalent.

This can be seen using the Kontsevich Integral. Specifically, in the space 
of Jacobi diagrams on 3 intervals we have

A A A  A A A  A A A

where the right-hand side is obviously mapped to zero when closing. (Recall 
that the coefficient of the F-shaped diagram on the left-hand side corre
sponds to the triple Milnor Invariant.)

To see how this comes about more geometrically, consider the free group 
on 2 generators as a subgroup of the 3 component pure braid group. The 
word xyx~ly ~1 represents the Borromean rings, after closure. Since xyx~l 
and у  are conjugate, and thus agree after closure, we see that the quantity 
xyx~ly ~1 — 1, which (say after applying the Magnus expansion) is in degree
2 before closure, lies in degree 3 after closure, since it agrees after closure 
with the quantity (xyx~ly~ l -  1 )(y — 1), which is in degree 3. (The degree 
considerations here are valid in the Vassiliev filtration as well). Thus we see 
that we can no longer distinguish the Borromean rings from the unlink!

In summary, the indeterminacies of higher order invariants due to the 
non-vanishing of lower order ones, propagate to destroy what should be 
invariants of links whose lower order invariants vanish. We are thus led to 
a problem of refining the indeterminacies in a less algebraic way. We are 
guided by the structure theorem of the last section.

Rationally, it is known, see,™ that the set rational finite type equiva
lence classes of /-component string links is a finitely generated torsion free 
nilpotent group. Over the integers, it follows from the last section, since 
Cn+iSL(l) is a group and surjects to FTnSL(l), that FTnSL(l) is also a 
group.

The set FTnSL(2l) acts on FTnSL(l) on the left and right. Let 
FTnSR(l) denote the stabilizer of FTn(h) under the right action. FTnL(l) 
denotes the set of FTn equivalence classes of /-component links.
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The main result of this paper is the following.

Theorem 5.1 (Structure Theorem for Finite Type Equivalence).

(1) The projection mapping, of SL(l) to the set £ £ § £ $  of left FTnSR(l) 
orbits, factors through L(l) and thus gives a well defined invariant of 
links

g y  , FTnSL(l)
n ' FTnS R(l)'

(2) The above link invariant lifts the indeterminacies given by finite type
invariants of links, i.e., if two links determine the same element of 
F T  SL[V)FTnŜ (Z) ’ then they have the same finite type invariants up to degree

n. That is, the above map, FTn, factors through a (surjective, but not 
generally injective) map,

FTnSHl)
FTnS R(l) FT" L(l>’ 

and the composite mapping is

FTn : L(l) — > FTnL(l).

Proof. Axioms (1) — (4) follow from the local definition of the Vassiliev 
filtration. Axiom (5) follows from the remark above that FTnSL(l) is a 
group. □

Remark 5.1. The analogous theorem also holds if one restricts to the 
equivalence relation FT®, given by rational invariants of finite type of de
gree up to n. One can use the local property of the Kontsevich Integral (and 
the result cited above fromHM) to give an alternative proof of the Axioms
(1) — (5) in this case.

Let A<n(l) denote the algebra of Jacobi diagrams on I strands of degree 
up to n. The action of FT®SL(2l) on the set FT$SL{1) is induced, via 
the Kontsevich Integral, by an analogously defined action of A <n(2l) on 
A<n{ given purely diagrammatically. (In the definition of the action of 
string links, just replace the string links with diagrams.) Let A <n(2l)\ be 
the stabilizer of the unit element in A <n(l). The stabilizer Л<п(2/)х contains 
F T® SR(I). It is easily seen that there are surjective maps of the space of 
covariants A <n(l)/F T® SR(l) to the space of covariants A <n(l)/A<n{2l)i, 
and from A <n(l)/A<n(2l)i to the space ^4<n(Il!= i S -) diagrams on I 
circles, up to degree n. Using the link invariance of our theorem, and the
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universal property of the Kontsevich Integral, one can check that these 
maps are both isomorphisms. (We do not have a diagrammatical proof of 
this fact.) It follows that one should not pass to covariants to try to refine 
finite type invariants of links!

We conclude this section with several problems.

Problem 5.1:

Use the ‘unipotent’ action to write an algorithm, analogous to Xiao- 
Song’s link-homotopy algorithm, ‘calculating’ whether or not two (string) 
links determine the same element in the orbit space.

Problem 5.2:

Does the full Kontsevich Integral for links (or integrally, modulo the 
intersection of the Vassiliev filtration) ‘recapture1 the information lost at 
each finite level? (For example, the triple Milnor Invariant dies, but its 
cube does not. But of course the degree is now 6 and not 2.)
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Generalized Ricci Flow I: Local Existence and Uniqueness

Chun-Lei He* , Sen Ни* , De-Xing Kong* and Kefeng Liu§

In this paper we investigate a kind of generalized Ricci flow which possesses 
a gradient form. We study the monotonicity of the given function under the 
generalized Ricci flow and prove that the related system of partial differential 
equations are strictly and uniformly parabolic. Based on this, we show that 
the generalized Ricci flow defined on an n-dimensional compact Riemannian 
manifold admits a unique short-time smooth solution. Moreover, we also derive 
the evolution equations for the curvatures, which play an important role in our 
future study.

Keywords: Generalized Ricci flow, uniformly parabolic system, short-time ex
istence, Thurston’s eight geometries.

1. Introduction

In the early eighties R. Hamilton introduced the Ricci flow to construct 
canonical metrics for some manifolds. Since then many mathematicians, 
including Hamilton, Yau, Perelman and others, developed many tools and 
techniques to study the Ricci flow. The latest developments confirmed that 
the Ricci flow approach is very powerful in the study of three-manifolds. In 
fact, a complete proof of Poincare’s conjecture and Thurston’s geometriza- 
tion conjecture has been offered in Cao-Zhu’s paper3 and others after Perel
man’s breakthrough.

It is useful to observe that, in Perelman’s work,10 a key step is to intro
duce a functional for a metric g and a function /  on a manifold M

W{g, f ) =  [  d3xJge~f(R  +  |V/|2).
Jm 3

The variation of this functional generates a gradient flow which is a system

'"Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China;
* Department of Mathematics, University of Science and Technology of China, Hefei
230026, China;
* Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China;
§ Department of Mathematics, University of California at Los Angeles, CA 90095, USA.
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of partial differential equations

9ij =  +  V fV j /) ,

/  =  —(Д +  Д Я -

If we fix a measure for the conformal class of metrics ds2 of a metric,
i.e., let dm =  e~f dV be fixed, then we get back to the original Ricci flow 
after we apply a transformation of diffeomorphism generated by the vector 
field V if  to the metric. In this way, we express the Ricci flow as a gradient 
flow. Dynamics of a gradient flow is much easier to handle. The functional 
generating the flow gives a monotone functional along the orbit of the flow 
automatically. If the flow exists for all time, then it shall flow to a critical 
point which leads to the existence of a canonical metric. Even for a flow 
which does not exist for all time, the generating functional helps very much 
in the analysis of singularities.

Perelman’s above idea came from physics. Ricci flow arises as the first 
order approximation of the renormalization flow of a sigma model. Since 
there are many kinds of sigma models, it would be interesting to try some 
other models. Indeed such a generalization was made by physicists in.11 
For a three-manifold M 3, they proposed to add a U( 1) gauge field with 
potential 1-form A  and field strength F  which are coupled as a Maxwell- 
Chem-Simons theory. The corresponding action given by6 or5 reads

S =  f  d3Xy/ge-f ( - x  +  R+\Vf\2) - l e - f H A * H - e ~ fFA*F.
J M  2

The U( 1) gauge field A is a one-form potential whose field strength F  =  
dA. The Wess-Zumino field В is a two-form potential whose field strength 
H  =  dB , /  is a dilaton. In their paper, they find that Thurston’s eight 
geometries appear as critical points of the above functional. Furthermore 
they show that there are no other critical points. So basically critical points 
of the above functional are eight geometries of Thurston. They also propose 
to study the gradient flow of the functional S' as a generalization of the Ricci 
flow. Unfortunately, they modify the gradient flow in a way to change sign 
for the variable of gauge fields. Although the modified flow shares the same 
set of critical points they lost the important monotone property (along an 
orbit).

In addition, we are also able to consider a flow for a similar functional 
for a four-dimension manifold

S i =  f  di x J g e - f ( x  +  R + \ V f \ 2) - ] ; e - f H A * H - e - f F / \ * F + ? r F A F  
J M  1  z
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where e is the Euler number e{rj) of the bundle 77. The corresponding flow 
is given by

' =  - 2[Ay +  V .V j/ -  -  F, *fy],

^  =  - e f Vk(e- f Fik),

=  x -  2Л -  ЗД/ +  |V/|2 +  ±H 2 +  ?F 2.

The generalization to four-manifolds is probably more interesting. It 
may offer a systematic way to study four-manifolds.

The success of studying three-manifolds relies on a program proposed 
by Thurston, i.e., his geometrization conjecture. He conjectures and proves 
for several large classes of three-manifolds, that every three-manifold can be 
decomposed into pieces of three-manifolds of canonical metrics, i.e., those 
manifolds carrying one of the eight geometries of Thurston.

For four-dimension manifolds the critical points of Si might play a sim
ilar role as building blocks of smooth four-dimension manifolds. It would be 
interesting to study those critical points and to study what other four man
ifolds one can get by performing surgeries and gluing on those manifolds. 
We shall address this problem in the future.

As a first step, we shall show that the flow does exist. We shall also 
prove that the modified system of partial differential equations are strictly 
and uniformly parabolic.

The paper is organized as follows. Section 2 is devoted to the proof of 
local existences and uniqueness. In section 3 we study the monotonicity of 
S under the modified flow. In Section 4 we investigate the equations for the 
critical points of S and point out that fields F  and H  do not provide any 
help for the case of compact manifold but maybe play an important role 
for the noncompact case. In Section 5, we derive the evolution equations 
for the curvatures, which play an important role in our future study.

2. Local Existences and Uniqueness

In this section, we mainly establish the short-time existence and unique
ness result for the gradient flow (1), (2) and (3) on a compact 3-dimensional 
manifold M . It is known that the gradient flow (1), (2) and (3) is a system 
of second order nonlinear weakly parabolic partial differential equations.
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By the proof of the local existence and uniqueness of the Ricci flow (for 
example see3,4 ), we can obtain a modified evolution equations by the dif- 
feomorphism ip of M , which is a strictly parabolic system. Then, by the 
standard theory of parabolic equations, the modified evolution equations 
has a uniqueness solution.

Let us choose a normal coordinate {a;*} around a fixed point x € M

such that =  0 and gij (p) =  <%.

Theorem 2.1. (Local existences and uniqueness) Let (M , g i j ( x )) be a 
three-dimensional compact Riemannian manifold. Then there exists a con
stant T  >  0 such that the evolution equations

^  =  - 2 [ %  -  \НМ Н “  -  Fi kFjt

l r  =  - VfeF*fc- ' (1)

dt k l3'

has a unique smooth solution on M  x [0, X) for every initial fields.

Lemma 2.1. For each gauge equivalent class of a gauge field A, there exists 
an A such that d(*A ) =  0.

The lemma can be proved by . the Hodge decomposition.
Proof. For each one-form A , by the Hodge decomposition, there exists an 
one-form Ao, a function a and a two-form (3 such that

A =  Ao "Ь dot. +  d* (3,

dAo =  0, d* A q — 0.

Let A' =  A  — da. A' is in the same gauge equivalent class of A. Since 
d(*Ao) =  0, d(*d*fi) =  0, then we have d(*A') = 0 .  □

Lem m a 2.2. The differential operator of the right hand of (2) with respect 
to the gauge equivalent class of a gauge field A is uniformly elliptic.

Proof. Let A =  Aidx1 be a gauge field. By Lemma 4.1 we can choose an 
A' in the gauge equivalent class of A such that d(*A ) =  0. We still denote

з d2Ak
A! as A . Since d(*A) =  0, we have dd*A =  0, then QxkQ^i =  * =
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f)A f ) A ■
1, • • • , 3. Noting that F  =  dA and Fu =  -  ^ 4 ,  We have

ox1 ox1

^ i  =  - V , F k =  - V , =  nkl( — Ai  -  -5! d L \  =  
dt * fĉ fl ^  3 W a x *  dxfc5x ^  5 d x W

The right hand side of above equation is clearly elliptic at point x. If we
apply a diffeomorphism to the metric it won’t change the positivity property
of the second order operator of the right hand side. □

Now let us consider the equation for By.

Lemma 2.3. For each gauge equivalent class of a B-field B, i.e., a two- 
form, В on M , there exists a B' such that d(*B ) =  0.

Proof. Again we use the Hodge decomposition. For a two-form £ , there 
exist a one-form a, a two-form Bo and a three-form /? such that

В  =  Bo +  da. +  d*fi,

dB0 =  0, dT Bq =  0.

Let B' — В -  da. Since B' is in the same gauge equivalent class of £ , 
we have d(*B ) =  0. □

Lemma 2.4. The differential operator of the right hand side of (3) with 
respect to the gauge equivalent class of a В -field В is uniformly elliptic.

Proof. Let us consider the equation for В-field. Without loss of generality, 

we assume d(*B) =  0. Thus dd'B =  0. Then +  gx^ t) =

0, V i, j  =  1, • • • ,3. We have

OBy k Mf & в ц cPBji P B g  =  kl P B y  
dt k дхкдх1 dxkdxl dxkdxi dxkdxl

The right hand side is clearly elliptic at the point x. If we apply a diffeo
morphism to the metric it does not change the positivity property of the 
second order operator of the right hand side. □

Suppose gij(x,t) is a solution of the equations (1), and (pt : M  —> M  is 
a family of diffeomorphisms of M . Let

9ij  (®> £) =  *Pt 9ij  t)  >

where ip* is the pull-back operator of ipt- We now want to find the evolution 
equations for the metric <7y(x, t).

Denote

y(x,t) =  <pt(x) =  { y 1(x,t),y2(x,t),- --  , 3/ " (x ,i ) }
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in local coordinates. Then

and

Т М ХЛ) =  Ft

dy<*

дуа дур d ду<* дур дгГ д .
:9ap(y, t) + -j— -jj— - ^ д ар(у, t)dx1 do'J dt dx' dxi dt dy~<

Sa/jfe, ) 9a;i( ) dxj + 9at){y,t) 9xi Q xj( gt )

Since

dya dyP dy7 5 л dt/a дг/'* d dxk dx1
dx1 dxi dt dy^ 9q/3 — dxг dxi dt ^kl dy7 v dya dy&

dyP d2xk dyQ dya d2xk dy@
dt dyadyP dxi k dt dy^dyP dxi

Tk _  dya d x / dxk ~ 7 dxk d2yQ
il dxi Qxl dy1 af3 dyQ dxi dx1

Qik

then

dyQ dy13 p 5  __  t t  t T j  k l  d y  ^ У ^  T? P  T P -  __  Z 7 1 к

dx1 dxj ap0 P 1 i 5 Qxi Qxj-jFJ’Fp,, =  F{ kFjk .

Therefore, in the normal coordinate, we have

® ( +\ — & ,d ya .dyP dxk dx1 dya d (dy&. dxk dx1 
Qj.9ij x’ Qxi qi d x ^ kl dya dy® dxi dxi dt ^kl dya dy@

x dya d (dxk 4 ̂  t dyP d f dxk 4 _
+ Iftd ri^ ljy Pdt dxi dy 

dy*
dxi dxi

1 A
2 (Ra0 -  -AHapSH ^  -  FapFpp)

dx1 dt dy1 dxi dt dyP

+ - Я ш Я ,ы +  2 Л кЛik

dya dxk d x / dxk
=  - 2  Rij +  V i i ^ Q ^ g j k )  +  VjC-^r^TjSifc)dt dy0 '

+ - H M Hjkl +  2Fi kFjk .
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If we define y(x,t) =  </?г(я) by the equations

f  = g > < r M S » .  „
ya(x,0) =  xQ

and Vi =  9ikgjl(^ji —Fji), we get the following evolution equations for the 
pull-back metric

~ 9 ф ,  t) =  -2Я * + ViVj +  VjVi +  \ н м И к1 + 2Fi kFjk,

9ij(x ,0 ) = g ij{x ),

where gij{x) is the initial metric and is the connection of the initial 
metric. The initial value problem (2) can be rewritten as

дУ° __ ,U( Qy0 d y'~  dya - k
dt 9  ( dxWxl dxi dxl 0y dxk 3l! ’ (4)

ya{x, 0) =  xa.

Equation (4) is clearly a strictly parabolic system. Then, we have 

8
dt

Q-lx t) =  —  -  —  L kl( ^  +  —  ~
’ дхг \ dx3 j  dxk \ дхг dxi dxl J

+  J ! _  L . knP4 I g k m / ^ m q  +  —
dxi \ J 2 dxP dx<* dxm )j

+ — {(a ia vqlakm{ ^ 1  +  dg~  -  д9рч)\ 
dxi \ 13г,:5 25 [ дхР дхя дхт>)

+ 1 Н М Н М +  2Ft kFjk 

As a result, from the original equations, we can obtain

dAi gkl d'2 A, (5)
dt dxkdxl ’

__  д./ d 2  B i j

dt 9 dxkdxl
Let

U\ =  g\uU2  =  512,^3 =  ^13,^4 =  022,^5 =  023, Щ — 933>

U7 =  A i ,^ 8  — -^2, tig =  А з ,и ю  =  #12 ,^ 11  =  B \3,U \2  =  #23
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The above equations can be rewritten as the following form 

^ + (lower order terms'> 
j к l

(k j  =  1,2,3; г, j  =  1,2, • •• , 12), in which

aikji =  9kl (j = i ) ,  aikji = 0  [j Ф i) (i =  1,- ■ ■ ,12),

For arbitrary £ € R4x11 \ {0}, we have

= £  £ * “ «&> о.
ijfcj Ы г

Summarize the above discussions, we have the following lemma.

Lemma 2.5. The differential operator of the right hand side of (5) with 
respect to the metric g is uniformly elliptic.

Proof of Theorem 4.1. Noting Lemmas 4.2, 4.4, 4.5 and the compactness 
property of M, and using the standard theorem of partial differential equa
tions (see,1,27), we can immediately obtain the local existence of smooth 
solution of the modified system (5) with the initial value

9ij(x, 0) =  gij(x), Аг(ж,0) = ii(z), В ^(х ,0 )  =  В^(х).

In turn the solution of the gradient flow (1) can be obtained from (4) (or
(2)). The proof of the existence of smooth solution is completed.

Now we argue the uniqueness of the solution of the gradient flow (1). 
By Lemmas 4.2, 4.4 and the standard theorem of partial differential 

equations, we can obtain the uniqueness of A and В . For any two solutions 
and of the gradient flow (1) with the same initial data, we can 

solve the initial value problem (4) (or (2)) to get two families <pW and (p^  
of diffeomorphisms of M . Thus we get two solutions

to the modified evolution (5) equations with the same initial value 
9ij(x, 0) =  gij(x). The uniqueness result for the strictly parabolic equa
tion implies that =  g\V. Since the initial value problem (4) is clearly a 
strictly parabolic system, the corresponding solutions <pW and (p^ of (4) 
must agree. Consequently, the metrics g ^  and g ^  must agree also. Thus, 
we have proved Theorem. □  •
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Remark 2.1. we are also able to consider a flow for a similar functional 
for a four-dimension manifold

S i =  [  d>x s/ g e -^ {x+ R + M ^ \ 2) ~ e - f H A * H -e Fe- f FA*F+^F/\F  
Jm * 2

where e is the Euler number e(rj) of the bundle rj. The corresponding flow 
is given by

' %  =  - 2 [ %  +  W  -  -H M H "  -  Ft kFjk),dt
dBi

dt
dAj
dt

д-[ь = X -  2Л~ ЗА/ + |V/|2 + \h2 + j F 2.

By the same argument, we can obtain the same results in sections 3-4.

3. The Monotonicity Formula

Let M  be a n-dimensionai compact Riemannian manifold with metric gij , 
the Levi-Civita connection is given by the Christoffel symbols

r k =  -  dg‘i }
ij 2 \ ax’ dx1 j  ’

where (дгз) is the inverse of (tfo). The Riemannian curvature tensors read

R*= §  -  Ш+ r» r*  -
The Ricci tensor is the contraction

Rik =  <7̂ Rijkl

and the scalar curvature is

R =  gijRij.

For each field we shall consider the gauge equivalent classes of fields. 
Two metrics <71, g2 are in the same equivalent class if and only if they are 
differ by a diffeomorphism, i.e., there exists a diffeomorphism /  : M  —> M  
such that <72 =  f* 9 i • Two gauge fields A\ and A2 are equivalent if and only 
if there exists a function a: on M  such that A2 =  Ai +  da. Two В-fields B\ 
and B2 are equivalent if and only if there exists an one-form /? on M  such 
that B2 =  B\ +  d(3.
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Prom the first variation of 5, we can obtain the flow equations 

( ^  =  —2[Rij +  WiVjf -  \HM HM -  Fx kFjk],

Ц * =  efVk(e~fH%),

=  - е Щ е - ' Ъ * ) ,

^  =  x -  Ш  -  З Д / +  |V/|2 +  ± H 2 +  ? F 2.

If ipt is a one-parameter group of diffeomorphisms generated by a vector 
field V / ,  we have

^9ij _  л/г)  I
~ d f - ~  2 ( ^ - 4

dt <9â

адLet A — A — dp where —  =  V kfA k , then F  =  F  and

^  _  V 6 fc
Ж  - “VfcFi '

Similarly, let В =  В  +  dw where -7̂ - =  V kfB ik, then

dB.гз _
at = V * T O -

Because A and Л (5  and B) are in the same gauge equivalent class, we 
still denote A (В ) as A  (В ). Now we consider the flow equation

=  - 2 ( %  -  \НШН “  -  FikFjk), (1)

(2)

дВ
dt

(3)
Theorem 3.1. Let and f  evolve according to the coupled flow
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Г Ч г  = _2[^  "  \HiklHi H ~

= Vttffc. 
dt l3'

— -VfcF- 
dt * 1 ’

=  X -  2Я — ЗЛ / +  2 |V/|2 +  i f f 2 +  ? F 2.

Then

§  =  / [ ( - х  +  я - ^ / | 2 +  2 л / - 1 я 2 - ^ 2)2 

+  2(Яц +  V .V j /  -  | Я « Я /  -  F{ fcFjfc)2 

+  2(VfcF ,* -  Ft kV kf )2 +  \ {V kHkij -  HkijV kf )2 -f dV.

In particular S is nondecreasing in time and the monotonicity is strict 
unless we are on the critical points.

Proof.

dS
f  -  Ц Я - X  +  R +  i A ,  -  IV/I- -  i f f -  -  i f " )

+  J d 3x J g e -} ^ - { - R i j  -  V jV j / +  \ н ш Н / ‘ +  F{ kFjk)

+ J  d3x ^ e - ^ ( - 2 V * ( F ^ - V )  + ^ ( 5 V fc( f f V - V )

=  / ( A / - | V / | 2)(—x +  Я -  |V/|2 +  2 Л / -  ^ Я 2 -  l- F 2)e~U V  

+  f l - X  +  R ~  IV/I2 +  2Д / -  ^ f f 2 -  \ F 2]2e~fdV 

+  J 2(R ij +  V ,V j /  -  i f f .w f f / '  -  FikF jk)2e~f dV 

+  J  -2 V iV ,/( Я у  +  V iV j /  -  ^ Я ш Я /' -  FikF k)e -} dV 

+  J  2(V kFi k — Fi kV kf ) 2e~^d,V +  j \ { V kH %  -  Н % Ч к} ) 2е~ !dV 

+  J  2Fi *Vfc/(V*:Fj* — Fi hV kf)e~^dV  

+  J \ H % V kf{ V kH% -  H % V kf)e -'d V .



By the similar argument of Ricci flow, we have

/ ( Д /  -  |V/|2)(fl -  |V/ |2 +  2& f)e-'dV  =  2 / V ,V j / ( V i V j /  +  
Rij)e-’ dV.

And noting the following properties 
VmHijk =  ^iHmjk +  VjHimk +  V kHijm, we have

J ( A f  -  |V/|2)(—x -  1 я 2 -  i F 2)e-^dK

=  J 5'3( V ,V j / -  v j v ^ / x - x  -  ^ я 2 -  i F 2)e- /d y  

=  J  ̂ V . / V ^ x + ^ H 2 +  l- F 2)e-fdV  

=  J  9iiVif(.\vj HpklH’’kl +  \73FklFkl)e- 'd V  

=  J  9ijVitt\(VPHjkl +  VkHpjl +  V lHpkj)H”k‘ 

+  (-VfcFy -  VtFjk)Fkl)e -fdV 

=  J  9ijVif(\VpHjk,H’,kt + 2 V kFjlF kl)e-'dV  

=  J  -  2g'iVk4 lfFjlFk,)e -f dV 

+  J  \gijHjklV i f { - ^ pHpkl +  Vp} H rkl)e~ 4V

+  J2g4VifFji{Vkf F kl -  V kF k,)e~} dV

=  J  2V4V - F̂ F̂ e-'dV
+  J \ v kfH % (H ptJV pf  -  V pH\3)e -U V  

+  J  2VkfFi k(FikV kf  — V kFi k)e~*dV.

Combining with the above argument, we finish the proof.
Let и =  e-  ̂ be the lowest eigenfunction of the Schrodinger operator,

i.e.

( R - ^ H 2 - ' - F 2 - 4 A ) u =  \u, 

or,
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R ~ J 2 H 2 ~ \ f 2 +  2 A / - | V / |2 =  A.

It minimizes the functional

S{g, A, B , f ) =  [  dVe~f ' 2(R -  ± -H 2 -  V  -  4 A )e ~ "2/  f  e~UV. 
Jm  m  * Jm

We have a new functional

A [g, A, B) =  in f у  | Su c- f dv=i)S(9, A, B, f). 

Let A(t) =  X(g(t),A(t),B(t)), we have

S  =  I M{lRl] +  V iV j / “  \ Hik’ HT  ~  FikFi \2 +  \\VkRk'i ~  Hk‘jV kf \2

+  |V|jF* -  F kV kf\2)e~} dV.

We have then (see also9):
1) A(£) is monotone, i.e. >  0.
2) Critical points of (*) are the same as critical points of Л.

4. Critical points

Consider the functional

S =  [  d3Xy/ge~f ( - x  +  R +  |V/|2) -  \e~f  H  Л *H — e~f F  Л *F  
J m  2 (1)

=  J  d3x̂ e-f(-X + R + IV/12 -  ^ Я 2 -  i f 2).

Its first variation can be expressed as follows

S S = J  d3x ^ g e - f { ^ s gij -  S f) ( -X +  R +  2 Д / -  |V/|2 -  ± H 2 -  ± F 2)

+  J (P xy/ge-'Sgvl-R ij -  V t f j f  + \ н м Н к1 + Ft kFjk)

+ f W )+ «o (5 V ^ (Я *иe-V)•
(2)

The U( 1) gauge field A is a one-form potential whose field strength F  =  dA. 
The Wess-Zumino field В  is a two-form potential whose field strength H  =  
dB , 77 is the volume form, /  is a dilaton. And in 3-diinension manifold, the
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field strength is proportional to the Levi-Civita tensor Н цир =  Я(гг)?7/11/р, 
where H(x) is a scalar field and ryM1/p =  & vp/  yjg is the completely skewsym- 
metric Levi-Civita tensor. Therefore, the critical points satisfy the following 
equations

Rij +  V . v , /  -  \ н м Н “  -  Ft kFjk =  0, (3) 

V fc(Fi fce - 0  =  0, (4) 

V k(H % e-f)  =  0, (5) 

~X +  R +  2 А /  -  |V/|2 -  — ^ F 2 =  0. (6)

Suppose M  is a compact Riemannian manifold. From (4) and (1.3), we 
can obtain F  =  H  =  0 at the critical points of the general Ricci flow on 
M . In fact,

[ F 2e~f d V =  [ F ijF ije-f d V =  f F ij(V<Aj -  VjAi)e~f dV
J m J m J m

= 2 [  FijViAje-fdV =  -2  f Vi(Fije - f )AjdV =  0, 
Jm Jm

f  H 2e~f d V =  [  H ijkHijke - f dV 
J m J m

=  [  НЧк(У кВц +  V tB]k +  V j B ^ e - U V
J m

=  3 [  H iikViBjke - f dV =  - 3  [  V i{H ijke~f )BjkdV =  0.
J m J m

Remark: Although the fields F  and Я  do not provide any help in 
the study of critical points of general Ricci flow for compact Riemannian 
manifold, they maybe play an important role for the noncompact case.

5. Evolution of Curvatures

By virtue of the curvature tensor evolution equations of the Ricci flow, we 
can obtain the curvature tensor evolution equations under the gradient flow 
(1). Let us choose a normal coordinate system {я1} around a fixed point

x G M  such that =  0 and gij (p) =  5{j.
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Theorem 5.1. Under the gradient flow (1), the curvature tensor satisfies 
the evolution equation

d
=  A Rijki +  2(Bijki — Bijik — B iljk + Bikji)

-  9Pq(RpjklRqi +  RipklRqj +  RijplRqk +  RijkpRql)

-  +  V  ̂ к(ЩряН™)\

+  V i V i { F * F jp) -  V tV k( F / F lp) -  V '̂VKF^Fip) +  V,V  ̂  Flp) 

+ gmn(FkpFmpRijnl +  F ^ F ^ k n ) ,

where Bijki =  gpr gq$ Rpiqj Rrksi and Л is the Laplacian with respect to the 
evolving metric.

Proof. At the point x € M , which we has chosen a normal coordinate

— T h — \ !L nhTn ( ®9mi dgmj _  dgji \ 
dt jl 2 d t 9  V d x i d x l d x ™ )

m Г d ( d9m i, d { dgm j) _  d . dgji ' 
29 d x d t  } dxlK dt } dx™K dt } 5

1 hv am ®9pg (  d 2gmi d 2gmj  _  d 2gji 
r,y J A* \ Яо.гЯл.1

, 1 hP am ^9pg (  d 2gmi d 2gmi _  d 2gu \ 
2 dt \ d x i d x { d x ^ d x1 d x W x m J

i 1 {thmt 92 ( f f a n A  _  &  ( d 9 j l \
2 d x ld x l \ dt )  d x td x Tn \ dt J

_ Э2 f d g j ]  Э2 /с&Л, 
d x W x 1 \ dt )  d x id x m \ dt J

+  \ { V ,V t(HkpqH ™ )  -  V iV k(H]pqH ™ )

+  ±gmn(HkpqH ™ R ijnl + НтрчН ™ П ,]кп)

system such that =  0, we compute 
d x k
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=  V ™ |  92 /  dgmA  _  c>2 /  dgjt\
2 дхгдх1 \ dt J  dxidxm \ dt )
-  d 2 ( d 2 f % Л ,  _  nhpd9yq R q

д х Ю х 1 V  dt J d x W x m \  dt ) '  9  d t ijl ’

d d d 
T^Rijkl — ~r^Rijl9kh +  R-ijl ~?̂ 9kh 

_ ( д 9 к Л
2 dxidxl \  dt J
-  д2 ( ддЛ  _  92 f 4. 92 ( dQi l\  

dxidxk \ dt J  dxWx1 \ dt J  dx^dxk \ d t )

then we have

d_ d2 n d2 p d2 p d2 p 
dt j7cZ dxldxk dxidxl dx^dx1 kt dx^dxk 1

— Л  +  +  / 3 .

By the identity (see3)

V iV fe%  -  V iV /% . -  VjVfcili! +  V,-Vti^fc 

^ R ijk l  H“ 2 (Bijkl — Bijlk — Bujk Bikji) — g P4(RpjklRqi "b BipklBqj

and

-  e - j ^ r s  -  * * £ 4 .

1



we have

h = ViVfcRji + Rmi-̂ ТЪ + Л,т АП» - v 4V,Hy

-  V . V ^ ,  -  Я ™ ,^-Г Й  -  -Rim^-ГЙ +  VjV i^ m

+  * - й 7ПГ +  * - £ г В

^ k R j l  ~~ ^zV iRjk ~ ^ k ^ U l  “b VjViRik ~ Rkm^ijl "I" Rrnl^ijk 
=  A R-ijkl +  2(Bijhl ~  Bijlk ~  Bujk  "t- Bikjl)

9 P<1{R pjklR qi  4 "  RipklR qj  “ h  R ijplRqk  +  Rijkp^tql)i

where Bijkl =  д*гg*3RpiqjRrksi- 
Now we compute / 2.
It is easily verified that
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у гу к(н ]рчн г )  =  g ^ ( H jpqH r ) - H mp4H r  ± r

As a result, we obtain

h  =  ViVi(HkpqH f q) +  Нтщн ^ — т9 —>m 
Ik

d+ HkpqH pq̂ V Tj -  ViVk(HjpqH ” )

-  н ^ н г -jL  Г »  _  я , Р, я т- А г й

-  у ^ я ^ я * " )  -  а д "  J j n s

-  HkpqH ™ -^ -T %  +  V^ к(ЩтН ™ )

+  я я и я , ^ г й  +  я „ я » 1 г й

-  +  У ^ ^ ( Я 1ИЯ ,И )

+  HkpqH™R?3l + HnpqH ™ R %  

= У .У (№ р ,# ,и ) -  V iV k(HjP4Hl’,q)
-  Wj V l(HkpqHipq) +  V JV k(HipqHlpq)

+  9mn(HkpqHrPqRijni +  HmpqHlrqRijkn) .
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V, W / F * )  =  ^ ( F / F p )  -  -  F /F rop А Г й

yields

h  = VtV ,(F /F JP) + F J F ^ T K  +  F /F mp А Г£  -  V ,V ,(F /F ip)

-  F- F' » £ l r S  -  -  v i v <(Ffc”Fip) -

-  F /F mpA r-  + VjVt(FipFip) +  Fm”Flp +  F / F ^ ^ -ГЙ 

=  V,V,(FfcpFjp) -  V ,V ,(F /F lp) -  V jV ,(F /F ip) +  V j V k( F / F lp)

" t"  <7 ( - P 1fcP-^mpRijnl  “ I-  F-m Q p R ijk n )  ■

Combining the above discussions, we complete the proof of the
theorem. □

Theorem 5.2. TTie Ricci curvature satisfies the following evolution 
equation

r\
j t Rik =  ЛЪ к +  2g’,rg‘‘sRplql:Rrs -  2 g ^ R piRqk 

+  ^ ' [ ^ У , ( Я кр,Я /* )

-  +  V jV b iH in H ™ ))

+ ^gmn{HkpqHT£ <lRin -  

+  ^'[ViVKF/Fjp) -  ViVfc(F /F ip)
-V jV K F /F ^  +  VjV^F/Fp)] 
+ 9mn(FkPFmpRin -  g^F^FipRijkn)-
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Proof. By Theorem 5.1, we can compute

=  | i W '  -  fP t p R a u ^ g *

— gjl[ARijki +  2(Bijki -  Bijik -  Bujk +  Bikji) 

~  9^\RpjklRqi “b RipklRqj H~ RijplRqk 
"b BijkpBql)] +  RijklBpq

+  \9il{ViVt(HkpqH f'’ ) -  v tv k(Hm H r )

-  +  V j V k(Hip, f f lp")]

+  \ 9i l 9mn( H kpqH ^ R i jnl +  H ^ H ^ R i j k n )

~  Y R'Jkl31P9l4HP™ H4mn +  9j‘ {ViVi(FkpFjp) 

-  ViVfc(F /F ip) -  V.VKF/Fip) + V ^ F /t f p ) ]  
+  gmn(FkpFmpRin +  gilF J F lpRijkn) -  2eFRijklgipgl''FpmFqm 

=  ARik +  2gprg“3RpiqkRrs -  2gp«RpiRqk

+  \gj ,[ V iV ,№ P, t f / ’ ) -

-  V ,V  1(Нкр„Щ рч) +

+  ^ ( H ^ H ^ r U n  -  g3‘ H mpqH lp'1 R ijk n )

+ gjl{ViVt(FkpFjp) -  ViVk(F /F lp)

-V ,V ,( F /F ip) +  VJV*(Fi ’’Flp)]
+  gmn(FkpFmpRin -  gilF^FipRijkn). □

Theorem 5.3. The scalar curvature satisfies the following evolution equa
tion

^ R  =  A R  +  2\Ric\2 +  ^gilgik[ViVi{HkpqH P4) -  " ) ]  

+ 25V ' t(ViVi(F /F 3P) -  VtV ,(F /F Ip)]

-  gipRik ( j H pmnH kmn +  2FpmF kmSj  .
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Proof. By a direct calculation, we have

I я -  + * • £ • *  - 1 " “ »“  -
=  gik(&Rik +  2g ^g^R p^R rs  -  2g^RpiR.k) +  2gipgkqRikRpq 

+  \gjlgiklViV l(HkpqH / ‘l) -  Ч Я к( Н м Н Г )

-  V jV  ,(НкрдН ™ ) +  

+  \gikgmn(HkpqH ” Rin -  g>1 Rt]kn) 

-  \gip9k4RikHpmnH4mn

+ 5‘V '[V tV ,(F /F JP) -  ViVfc(F /F ip)
- V j Vl(F /F ip) + VjVfc(Fi’’Fip)]
+  gikgmn(FkpFmpRin -  gi1 FJ?FipRijkn) -  2gip gk* RikFpm Fqm 

=  ДЯ +  2|ffic|2 +

+ 2^iSi*[ViV ,(F /F jp) -  ViVfc(F /F lp)]

-  3,рДг/с Q H pmnfffcmn + 2FpmFfcm)  . □
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We review the g-deformed spin network approach to Topological Quantum 
Field Theory and apply these methods to produce unitary representations of 
the braid groups that are dense in the unitary groups. The simplest case of 
these models is the Fibonacci model, itself universal for quantum computation.
We here formulate these braid group representations in a form suitable for 
computation and algebraic work. In particular, we give quantum algorithms 
for computing colored Jones polynomials and the Witten-Reshetikhin-Turaev 
invariant of three-manifolds.

Keywords: knots, links, braids, quantum computing, unitary transforma
tion, spin networks, Jones polynomial, colored Jones polynonmials, Witten- 
Reshetikhin-Turaev invariant

1. INTRODUCTION

This paper describes the background for topological quantum computing 
in terms of Temperely -  Lieb Recoupling Theory and gives an explicit 
description of the resulting unitary representations of the Artin braid group, 
including the Fibonacci model as the simplest case. This paper is a modified 
version of our papesr.14,15 In particular, we give quantum algorithms for 
computing colored Jones polynomials and the Witten-Reshetikhin-Turaev 
invariant of three-manifolds.

We use a recoupling theory that generalizes standard angular momen-

mailto:lomonaco@comcast.net
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turn recoupling theory, generalizes the Penrose theory of spin networks and 
is inherently topological. Temperely -  Lieb Recoupling Theory is based on 
the bracket polynomial model for the Jones polynomial. It is built in terms 
of diagrammatic combinatorial topology. The same structure can be ex
plained in terms of the SU(2)q quantum group, and has relationships with 
functional integration and Witten’s approach to topological quantum field 
theory. Nevertheless, the approach given here will be unrelentingly elemen
tary. Elementary, does not necessarily mean simple. In this case an architec
ture is built from simple beginnings and this architecture and its recoupling 
language can be applied to many things including: colored Jones polynomi
als, Witten-Reshetikhin-Turaev invariants of three manifolds, topological 
quantum field theory and quantum computing.

The contents of this paper are based upon the work in13,15 and we shall 
refer to results from those papers.

In quantum computing, the application is most interesting because the 
recoupling theory yields representations of the Artin Braid group into uni
tary groups U(n). These represententations are dense in the unitary group, 
and can be used to model quantum computation universally in terms of 
representations of the braid group. Hence the term: topological quantum 
computation.

In this paper, we outline the basics of the Temperely -  Lieb Recoupling 
Theory, and show explicitly how unitary representations of the braid group 
arise from it. We will return to this subject in more detail in subsequent 
papers. In particular, we do not describe the context of anyonic models for 
quantum computation in this paper. Rather, we concentrate here on show
ing how naturally unitary representations of the braid group arise in the 
context of the Temperely -  Lieb Theory. For the reader interested in the 
relevant background in anyonic topological quantum computing we recom
mend the following references {2-6>16*17>19<20

In the last section of this paper (Section 4) we show how these methods 
lead naturally to quantum algorithms for the computation of the colored 
Jones polynomials and the Witten-Reshetikhin-Turaev invariants of three- 
manifolds.

Here is a very condensed presentation of how unitary representations 
of the braid group are constructed via topological quantum field theoretic
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methods. For simplicity assmue that one has a single (mathematical) parti
cle with label P that can interact with itself to produce either itself labeled 
P, or itself with the null label *. When * interacts with P  the result is 
always P. When * interacts with * the result is always *. One considers 
process spaces where a row of particles labeled P  can successively interact, 
subject to the restriction that the end result is P. For example the space 
V[(ab)c] denotes the space of interactions of three particles labeled P. The 
particles are placed in the positions a, 6, c. Thus we begin with (PP)P. In 
a typical sequence of interactions, the first two P ’s interact to produce a *, 
and the * interacts with P  to produce P.

(PP)P — > (*)P — ♦ P.

In another possibility, the first two P ’s interact to produce a P, and the P  
interacts with P to produce P.

(PP)P — > (P)P — ► P.

It follows from this analysis that the space of linear combinations of pro
cesses V[(a6)c] is two dimensional. The two processes we have just described 
can be taken to be the the qubit basis for this space. One obtains a rep
resentation of the three strand Artin braid group on V[(ab)c] by assigning 
appropriate phase changes to each of the generating processes. One can 
think of these phases as corresponding to the interchange of the particles 
labeled a and b in the association (ab)c. The other operator for this rep
resentation corresponds to the interchange of b and c. This interchange is 
accomplished by a unitary change of basis mapping

F  : V[{ab)c] — ► V[a{bc)\.

If

A : V[{ab)c] — > V[{ba)c : d\

is the first braiding operator (corresponding to an interchange of the first 
two particles in the association) then the second operator

В : V[{ab)c] — ► V[(ac)b]

is accomplished via the formula В =  F ~ lAF  where the A in this formula 
acts in the second vector space V[a(bc)] to apply the phases for the inter
change of b and c.
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In this scheme, vector spaces corresponding to associated strings of par
ticle interactions are interrelated by recoupling transformations that gen
eralize the mapping F  indicated above. A full representation of the Artin 
braid group on each space is defined in terms of the local intechange phase 
gates and the recoupling transfomations. These gates and transformations 
have to satisfy a number of identities in order to produce a well-defined rep
resentation of the braid group. These identities were discovered originally 
in relation to topological quantum field theory. In our approach the struc
ture of phase gates and recoupling transformations arise naturally from the 
structure of the bracket model for the Jones polynomial.8 Thus we obtain 
a knot-theoretic basis for topological quantum computing.

2. Spin Networks and Temperley -  Lieb Recoupling Theory

In this section we discuss a combinatorial construction for spin networks 
that generalizes the original construction of Roger Penrose.18 The result of 
this generalization is a structure that satisfies all the properties of a graph
ical TQFT  as described in our paper on braiding and universal quantum 
gates,12 and specializes to classical angular momentum recoupling theory 
in the limit of its basic variable. The construction is based on the properties 
of the bracket polynomial.9 A complete description of this theory can be 
found in the book “Temperley -  Lieb Recoupling Theory and Invariants of 
Three-Manifolds” by Kauffman and Lins.11

The “^-deformed” spin networks that we construct here are based on 
the bracket polynomial relation. View 2.1 and 2.2.

In Figure 2.1 we indicate how the basic projector (symmetrizer, Jones- 
Wenzl projector) is constructed on the basis of the bracket polynomial ex
pansion.9 In this technology, a symmetrizer is a sum of tangles on n strands 
(for a chosen integer n). The tangles are made by summing over braid lifts 
of permutations in the symmetric group on n letters, as indicated in Figure
2.1. Each elementary braid is then expanded by the bracket polynomial 
relation, as indicated in Figure 2.1, so that the resulting sum consists of 
flat tangles without any crossings (these can be viewed as elements in the 
Temperley -  Lieb algebra). The projectors have the property that the con
catenation of a projector with itself is just that projector, and if you tie two
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n strands

{n)!= 2 ( A -V (0) W  = 0 
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(1/{n)!) Е (А -3),(0)Г §  
aes„ 4-

Fig. 2.1. Basic Pro jectors

l = 1/5

n
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=  Г—
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-A ri/An+1
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A .1 =  о A о =  1

A n+1 =  S A n ■ A n-1

Fig. 2.2. Two Strand Pro jecto r

lines on the top or the bottom of a projector together, then the evaluation 
is zero. This general definition of projectors is very useful for this theory.
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Ж

V
i + j = a

с  j + k = b  
i +  к  =  с

Fig. 2.3. T rivalent Vertex

The two-strand projector is shown in Figure 2.2. Here the formula for that 
projector is particularly simple. It is the sum of two parallel arcs and two 
turn-around arcs (with coefficient -l /d >  with d =  —A2 -  A~2 is the loop 
value for the bracket polynomial. Figure 2.2 also shows the recursion for
mula for the general projector. This recursion formula is due to Jones and 
Wenzl and the projector in this form, developed as a sum in the Temper- 
ley -  Lieb algebra (see Section 5 of this paper), is usually known as the 
Jones- Wenzl projector.

The projectors are combinatorial analogs of irreducible representations 
of a group (the original spin nets were based on SU (2) and these deformed 
nets are based on the quantum group corresponding to SU(2)). As such the 
reader can think of them as “particles” . The interactions of these particles 
are governed by how they can be tied together into three-vertices. See Figure 
2.3. In Figure 2.3 we show how to tie three projectors, of a, 6, с strands 
respectively, together to form a three-vertex. In order to accomplish this 
interaction, we must share lines between them as shown in that Figure so 
that there are non-negative integers i , j ,к so that a =  i +  j,b  =  j  +  k,c =  
i +  k. This is equivalent to the condition that a +  b +  с is even and that the 
sum of any two of a, 6, с is greater than or equal to the third. For example 
a +  b >  c. One can think of the vertex as a possible particle interaction 
where [a] and [b] interact to produce [с]. That is, any two of the legs of the 
vertex can be regarded as interacting to produce the third leg.

There is a basic orthogonality of three vertices as shown in Figure 2.4. 
Here if we tie two three-vertices together so that they form a “bubble” 
in the middle, then the resulting network with labels a and b on its free 
ends is a multiple of an а-line (meaning a line with an а-projector on it) or



178 L. H. Kauffman and S. J. Lomonaco Jr.

zero (if a is not equal to 6). The multiple is compatible with the results of 
closing the diagram in the equation of Figure 2.4 so the the two free ends 
are identified with one another. On closure, as shown in the Figure, the left 
hand side of the equation becomes a Theta graph and the right hand side 
becomes a multiple of a “delta” where A a denotes the bracket polynomial 
evaluation of the a-strand loop with a projector on it. The ©(a, 6, c) denotes 
the bracket evaluation of a theta graph made from three trivalent vertices 
and labeled with a, b, с on its edges.

а( ^ )  =  =  ла

a =  0(a,c,d)

There is a recoupling formula in this theory in the form shown in Figure 
2.5. Here there are “6-j symbols” , recoupling coefficients that can be ex
pressed, as shown in Figure 2.7, in terms of tetrahedral graph evaluations 
and theta graph evaluations. The tetrahedral graph is shown in Figure 2.6. 
One derives the formulas for these coefficients directly from the orthogo
nality relations for the trivalent vertices by closing the left hand side of the 
recoupling formula and using orthogonality to evaluate the right hand side. 
This is illustrated in Figure 2.7.

a l
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a b

Fig. 2.5. R ecoupling Formula

k =  « [ " .  S I]

Fig. 2.6. Tetrahedron N etwork
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" h 1 0(a,b,k)0(c,d,k)
Ak

r <1 Tetf a  b i 1 _ 1
Га b i 1 
[  с d к J| Ak

I  c d k J 0(a,b,k) 0(c,d,k)

Fig. 2.7. Tetrahedron Formula for Recoupling Coefficients
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v a b ,  a by

o  =  » ? y

A®cb =  (-1)

x' = x(x+2)

(a+b-c)/2 (a'+b'-c')/2 
A

Fig. 2.8. LocalB raidingForm ula

Finally, there is the braiding relation, as illustrated in Figure 2.8.

With the braiding relation in place, this ^-deformed spin network theory 
satisfies the pentagon, hexagon and braiding naturality identities needed for 
a topological quantum field theory. All these identities follow naturally from 
the basic underlying topological construction of the bracket polynomial. 
One can apply the theory to many different situations.

2.1. Evaluations

In this section we discuss the structure of the evaluations for A n and the 
theta and tetrahedral networks. We refer to11 for the details behind these 
formulas. Recall that Дп is the bracket evaluation of the closure of the 
n-strand projector, as illustrated in Figure 2.4. For the bracket variable A , 
one finds that

л2п+2 _  л —2n—2

One sometimes writes the quantum integer
A 2n _  и —2n

Ы  =  ( - 1 ) " — 1  A n —t  =  л 2  _  ^ _ 2  •

If

A =  ei,r/2r 

where r is a positive integer, then

sin((n-t- l)7r/r)
An =  ( - 1 ) ’ sini^/r)
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Here the corresponding quantum integer is

, . _  sin(nir/r)
1 J sin{n/r) '

Note that [n +  1] is a positive real number for n =  0,1,2, ...r — 2 and that 
[r -  1] =  0.

The evaluation of the theta net is expressed in terms of quantum integers 
by the formula

where

a =  m +  Pib =  m-\-n,c =  n-\-p.

Note that

(a +  b +  c)/2 =  m +  n +  p.

When A =  ег7г/ 2г, the recoupling theory becomes finite with the re
striction that only three-vertices (labeled with a, 6, c) are admissible when 
a +  b +  с <  2r -  4. All the summations in the formulas for recoupling are 
restricted to admissible triples of this form.

2.2. Sym m etry and Unitarity

The formula for the recoupling coefficients given in Figure 2.7 has less 
symmetry than is actually inherent in the structure of the situation. By 
multiplying all the vertices by an appropriate factor, we can reconfigure 
the formulas in this theory so that the revised recoupling transformation is 
orthogonal, in the sense that its transpose is equal to its inverse (compare 
with7). This is a very useful fact. It means that when the resulting matrices 
are real, then the recoupling transformations are unitary.

Figure 2.9 illustrates this modification of the three-vertex. Let 
Vert[a, 6, c] denote the original 3-vertex of the Temperley -  Lieb recoupling 
theory. Let ModVert[a,b,c] denote the modified vertex. Then we have the 
formula

ModVert[a,b,c] =  Vert{a,b,c]-
y /0 (a,b,c)



182 L. H. Kauffman and S. J. Lomonaco Jr.

Lemma. For the bracket evaluation at the root of unity A =  ег7г/ 2г the 
factor

, ч у /  \/ДаДб^  Да, 6, с) =
y /0 {a,b, с)

is real, and can be taken to be a positive real number for (a, 6, c) admissible 
(i.e. with а +  b +  с <  2r — 4).

Proof. See our basic reference.13

In13 we show how this modification of the vertex affects the non-zero 
term of the orthogonality of trivalent vertices (compare with Figure 2.4). 
We refer to this as the “modified bubble identity.” The coefficient in the 
modified bubble identity is

/ А ЬЛ с _  / -I\ (6+c—а)/2 / [6+ l ] [ c + l ]

V Да '  ' V l“ + 1 ]

where (a, b, c) form an admissible triple. In particular b +  с — a is even and 
hence this factor can be taken to be positive real.

We rewrite the recoupling formula in this new basis and emphasize that 
the recoupling coefficients can be seen (for fixed external labels a, 6, c, d) 
as a matrix transforming the horizontal “double-У ” basis to a vertically 
disposed double-У  basis. In Figure 2.10 and Figure 3.1 we have shown the 
form of this transformation,using the matrix notation

M[a,6,c,d]ij

for the modified recoupling coefficients. In Figure 3.1 we show an explicit 
formula for these matrix elements. The proof of this formula follows directly 
from trivalent-vertex orthogonality (See Figure 2.4 and Figure 2.7.), and is 
given in.13 The result shown in Figure 3.1 is the following formula for the 
recoupling matrix elements.

M[a, b, c,d]ij =  ModTet ( “ * ‘Л  / ^ A aA bA cA d

where \/ДаДбАсА^ is short-hand for the product
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=  ( _ 1)(a+t - J)/2(_ 1)(c+d-J)/2(_ 1)y  ̂  +  l][b +  1] +Д М  +  1] у  +  jj 

=  ( - l ) ( “+(’+=+‘i) /V [a  +  l][6+ l][c+l][d+ 1]

In this form, since (a ,b ,j) and (c, d,j) are admissible triples, we see that 
this coefficient can be taken to be positive real, and its value is independent 
of the choice of i and j. The matrix M[a, 6, c, d] is real-valued.

It follows from Figure 2.10 (turn the diagrams by ninety degrees) that 

M[a, 6, c, d]-1 =  M[b, d, a, с].

Figure 10 implies the formula

M[a, 6, c, d]T =  M[6, d, a, с].

It follows from this formula that

M[a, 6,c,d]T =  M[a, 6, c,d]-1 .

Hence M[a, 6, c, d] is an orthogonal, real-valued matrix.

a b

Fig. 2.10. M odified  R ecoupling  Formula

Theorem. In the Temperley -  Lieb theory we obtain unitary (in fact real 
orthogonal) recoupling transformations when the bracket variable A has 
the form A =  e*ff/ 2r. Thus we obtain families of unitary representations of 
the Artin braid group from the recoupling theory at these roots of unity.
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Fig. 2.11. M odified  R ecoupling  M atrix  

Proof. The proof is given by the discussion above and in.13

3. Explicit Form of the Braid Group Representations

In order to have an explicit form for the representations of the braid group 
that we have constructed we return to the description of the vector spaces in 
the introduction to this paper. Here we make this description of the vector 
spaces more precise as follows. We describe a vector space V[(aia2)a3 : сц] 
depending upon a choice of three input and output spins where (ab) denotes 
the possible outcome of two spin labels interacting at a trivalent vertex as 
in Figure 2.3. In that figure we see that (ab) can represent с (the remaining 
leg of the vertex) and that there is a range of values possible for с given 
by the constraints on г j  and к as shown in that figure. Here we insist that 
the composite interaction (а хаг) аз shall equal a4 so that the vector space 
У[(аха2)аз : a4] corresponds to the left-hand tree shown in Figure 3.2. In 
that figure we indicate the recoupling mapping F : V[(aia2)a3 : a4] — * 
V[ai(a2a3) : a4]. The matrix form of F  is composed from the recoupling 
matrix of Figure 3.1. In Figure 3.2 we have labeled x =  (a102) corresponding 
to one of the basis vectors in V[{a\a2)a$ : 04]. Similarly, we have у =  (агаз) 
corresponding to one of the basis vectors in У[(а1а2)аз : 04]. We let the 
corresponding vectors be denoted by \x) and |t/) respectively. Then we can 
write

F|i> =  T,jFji |j)

where j  ranges over the admissible labels for the interaction of аг and аз-
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a1 a2 a3 a1 a2 a3

a4

F

4 a4

Fig. 3.1. Recoupling M ap F  : V ((a i <12)03 : 04 ) — ► ^ [0 1 (0 2 0 3 ) : 0 4 ]

To see how the three strand braid group acts on К[(а1а2)аз : см], view 
Figure 13. If we let si denote the generator of the three-stand braid group 
B3 that twists the first two strands and s2 denote the generator that twists 
the second two strands, then we see that $i acts directly at a trivalent 
vertex, giving the formula

where A(ai, a2, x) =  AJ1,a2 is the braiding factor of Figure 2.8. On the other 
hand, we need to perform a recoupling in order to compute the action of 
s2. As shown in Figure 3.3, we have

This gives a complete description of the representation of the three-strand 
braid group on the vector space V[(a\a2)az : a4\. Our next task is to gen
eralize this to an abitrary “left-associated” tree.

We wish to consider larger left associated trees such as

^[((((aia2)a3)a4)a5) •* а6].

To this purpose it is useful to declare that a fully left-associated product 
may be written without parentheses. Thus we have

si\x) =  А(а1,а2,я)|ж)

s2|z) — А (а з ,a>4)j)Fji\k).
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Fig. 3.2. A ction  o f  the Braid G roup

In the general case we have the spaces V[aia2 • • -an : an+i] with basis 
elements \x2x3 • • • £„_i) where ( a ^ )  has X2 as an outcome, (x2dz) has 
X3 as an outcome, and so on until (o:n_ian) has an+1 as an outcome. For 
articulating the braiding we need mappings

F  : V7"[cZ-iCZ.2 * ‘ * • ^n+l] * V[<ZiCl2 ' * * 1 )^i+2 ' * ’ • ®n+l]•

The target space has the strands labeled i and г +  1 combined at a vertex 
so that the braiding for Si in the target space is local. We also need a 
basis for V"[aia2 • • * ai_i(aia{+i)ai+2 • • • an : an+i]. This is given by the kets 
\y2y3 ’ "  Уп-i )  where

(aia2) =  У2

{У1-2<Н-1) =  yi+1 

=  Уг 

(yi+ia i+2) =  yi+2

(2 /n -2& n -l) — Уп- l



We then have

Si\x2xz • • • xn-i )  =  (Fl)-1 A(ai, ai+ i)F l\x2Xs • • • xn-i>- 

Here it is understood that

A(ai, ам )\у2уз • • • Уп- i )  =  A (a*, ai+i tyi)\y2y3 • • • yn_i),

where A(a, 6, c) is defined as explained above. Finally, using the recoupling 
matrix formalism of Figure 2.10, we have

F l\x2x3 -  • xn-x) =  S yM[ai,ai+i,a:i_i,Xi+ i]yXi|x2a;3 •••x„_i).

This completes our description of the action of the braid group on these 
vector spaces.
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3.1. The Fibonacci Model

In the Fibonacci model,15 there is a single non-trivial recoupling matrix F. 

(  1/Д  1Д/ДЛ /  г  у/т

where Д =  1+2̂  is the golden ratio and r =  l /Д . The local braiding 
matrix is given by the formula below with A =  e31" / 5.

/Л 8 0 \ _  ( e M 'b 0 \
V О - A * )  V 0

The simplest example of a braid group representation arising from this 
theory is the representation of the three strand braid group generated by 
Si =  R and s2 =  F R F  (Remember that F  =  F T =  F ~ 1.). The matrices $i 
and S2 are both unitary, and they generate a dense subset of U (2), supplying 
the local unitary transformations needed for quantum computing.

In the Fibonacci model there are two labels, as we described in the 
introduction (see Figure 4.2): P  and *. P can interact with itself to produce 
either P  or *, while * acts as an identity element. That is, * interacts with 
P  to produce only P, and * interacts with * to produce *. Let

V[n] =  V[a\a2 • • • an : an+i] =  V ( P P P - -P  : P).

The space V[n] has basis vectors \x2x3 • • • xn_i) where {хо^з, ■ ■ -s n- i }  
runs over all sequences of P ’s and * ’s without consecutive * ’s. The dimen
sion of V[n] is /„ ,  the n-th Fibonacci number: fi =  1, /2 =  1, /3  =  2, /4 =
3, /5  =  5, fe =  8, • • • and f n+1 =  fn +  fn -i-
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Fig. 3.3. F ibonacci Vertices

In terms of the matrix Я, we have and A(*) =  A8 and A(P) =  —A4. The 
representation of the the braid group Bn on V[n) is given by the formulas 
below (with ж0 =  xn =  P  and i =  1,2, • ■ • n — 1 and the matrix indices for 
F  are * and P  corresponding to 0 and 1 respectively). We use the matrix 
N =  F R F  below.

Sl\x2xz • • -Xn_i) =  \{X2)\X2X3 - • -Xn_i),

and for г >  2 :

$г|Ж23?з * ' ‘ Xjx—1) =  А(Хг)|з>2Хз ’ * ' *̂ n—l)

if X{-i ф P  ОГ Xi+i ф P.

Sj|x2x3 • • • xn—i) =  5jQ=*,piV0[)Ii |х23>з • • • Xi—i a Xi+j • • • xn_i)

if Xi-I =  Жг+I =  p .

These formulas make it possible to do full-scale computer experiments with 
the Fibonacci model and the generalizations of it that we have discussed. 
We will pursue this course in a subsequent paper. This model is universal 
for quantum computation.

4. Quantum Computation of Colored Jones Polynomials 
and the Witten-Reshetikhin-Turaev Invariant

In this section we make some brief comments on the quantum computation 
of colored Jones polynomials. This material will be expanded in a subse
quent publication.
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= £  B(x,y) 
х.У

= В(0,0)(да) 2

Fig. 4.1. Evaluation o f  the P lat Closure o f  a Braid

First, consider Figure 4.1. In that figure we illustrate the calculation of 
the evalutation of the (a) - colored bracket polynomial for the plat closure 
P (B ) of a braid B. The reader can infer the definition of the plat closure 
from Figure 15. One takes a braid on an even number of strands and closes 
the top strands with each other in a row of maxima. Similarly, the bottom 
strands are closed with a row of minima. It is not hard to see that any knot 
or link can be represented as the plat closure of some braid.

The (a) - colored bracket polynonmial of a link L, denoted <  L > a, is 
the evaluation of that link where each single strand has been replaced by a 
parallel strands and the insertion of Jones-Wenzl projector (as discussed in 
Section 2). We then see that we can use our discussion of the Temperley-Lieb 
recoupling theory to compute the value of the colored bracket polynomial 
for the plat closure PB. As shown in Figure 4.1, we regard the braid as 
acting on a process space уоа,а," ' ,а and take the case of the action on the 
vector v whose process space coordinates are all zero. Then the action of 
the braid takes the form

Bv(0y • • • ,0) — fXnB(x i , • • • , xn)v(xi, • • ■ , xn)
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Fig. 4.2. D ubrovnik  Polynom ial Specialization  at T w o Strands

where B(x i ,  • • • , x„) denotes the matrix entries for this recoupling transfor
mation and v (x i,• • • ,x n) runs over a basis for the space У0а,а’" ' ,а. Here n 
is even and equal to the number of braid strands. In the figure we illustrate 
with n =  4. Then, as the figure shows, when we close the top of the braid 
action to form P B , we cut the sum down to the evaluation of just one term. 
In the general case we will get

< P B > a=  B(О,- - ,0)Д ?/2 .

The calculation simplifies to this degree because of the vanishing of loops 
in the recoupling graphs. The vanishing result is stated in Figure 15.

The colored Jones polynomials are normalized versions of the colored 
bracket polymomials, differing just by a normalization factor.

In order to consider quantum computation of the colored bracket or col
ored Jones polynomials, we therefore can consider quantum computation of 
the matrix entries B(0, • • • ,0). These matrix entries in the case of the roots 
of unity A =  е™,2г and for the a =  2 Fibonacci model with A =  e3in/5 
are parts of the diagonal entries of the unitary transformation that repre
sents the braid group on the process space У0а,а,’" ’а. We can obtain these 
matrix entries by using the Hadamard test as described in the subsection 
that concludes this section of the paper. As a result we get relatively effi
cient quantum algoritms for the colored Jones polynomials at these roots



of unity, in essentially the same framework as we described in section 3. We 
reserve discussion computational complexity of these algorithms, discussion 
of the factorization of the algorithm into elementary gates and comparison 
with the results of1 to a subsequent publication. We point out here that in 
order to apply the algorithm for a colored Jones polynomial we only require 
the Hadamard test for a single entry of the unitary matrix that represents 
the braiding. This is a savings for the algorithm. The methods of Section 3 
supply the necessary information for factoring the braiding representation 
into elementary gates.

These algorithms give not only quantum algorithms for computing the 
colored bracket and Jones polynomials, but also for computing the Witten- 
Reshetikhin-Turaev (WRT) invariants at the above roots of unity. The 
reason for this is that the W R T  invariant, in unnormalized form is given 
as a finite sum of colored bracket polynomials:

WRT(L) =  Е ^ Д а  <  L > . ,

and so the same computation as shown in Figure 4.1 applies to the WRT. 
This means that we have, in principle, a quantum algorithm for the com
putation of the Witten functional integral21 via this knot-theoretic combi
natorial topology. It would be very interesting to understand a more direct 
approach to such a computation via quantum field theory and functional 
integration.

Finally, we note that in the case of the Fibonacci model, the (2)-colored 
bracket polynomial is a special case of the Dubrovnik version of the Kauff
man polynomial.10 See Figure 16 for diagammatics that resolve this fact. 
The skein relation for the Dubrovnik polynomial is boxed in this figure. 
Above the box, we show how the double strands with projectors reproduce 
this relation. This observation means that in the Fibonacci model, the nat
ural underlying knot polynomial is a special evaluation of the Dubrovnik 
polynomial, and the Fibonacci model can be used to perform quantum 
computation for the values of this invariant.

4.1. The Hadamard Test

In order to (quantum) compute the trace of a unitary matrix U , one can 
use the Hadamard test to obtain the diagonal matrix elements (jp\U\ )̂ of 
U. The trace is then the sum of these matrix elements as \ip) runs over an
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orthonormal basis for the vector space. We first obtain

\ +  \R e№ \i>)

as an expectation by applying the Hadamard gate H

Я|0> =  -^(|0) +  |1»

я|1) = -Ь(|о)-|1»

to the first qubit of

C u o (H ®  1 )|0M  =  i=(|0> ® \ф) +  |1> ® и\ф).

Here Си denotes controlled £/, acting as U when the control bit is |1) and the 
identity mapping when the control bit is |0). We measure the expectation 
for the first qubit |0) of the resulting state

i(ff|0) ® W + H|l) ® um  = |((|0> + |1>) ® \ф) + (|0> -  |1)) ® и\ф)) 

=  |(io> ® ( w + и щ ) + ii) ® dt/-> -  u \ m -

This expectation is

\ m  +  m ' m + и щ ) =  \ +  \ R e № w .

The imaginary part is obtained by applying the same procedure to

■^=(|0) ® №) — i|l) ® и\ф)

Note that the Hadamard test enables this quantum computation to estimate 
the trace of any unitary matrix U by repeated trials that estimate individual 
matrix entries (7p\U\̂ p). We shall return to quantum algorithms for the 
Jones polynomial and other knot polynomials in a subsequent paper.
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In this article, we obtain a universal method to compute the Gromov-Witten 
type invariants using the localization technique. This method can be applied 
to any natural cohomology class on the moduli space of curves M g%n- As ap
plications, we illustrate a new proof of the Witten’s conjecture as well as the 
proof of Marino-Vafa formula.

1. Introduction

The localization technique has been proved to be a useful tool in studying 
the Gromov-Witten invariants as was shown in the proof of the Marino- 
Vafa formula and a new proof of the Witten conjecture/Kontsevich theo
rem. Especially when applied to the relative stable moduli, it allows us to 
express the Gromov-Witten invariants in terms of other invariants such as 
double Hurwitz numbers or another type of Gromov-Witten invariants. In 
this paper, we present a universal method to obtain recursion relations on 
the Gromov-Witten type invariants: let и € H*(X) be any natural coho
mology class on the target space X , we can determine the Gromov-Witten 
invariants

through the recursion relation obtained by localization technique. It is nat
ural to expect that these invariants should depend only on the degeneration 
of the domain curves and how the cohomology class cj behaves under the

mailto:yskim@math.uchicago.edu
mailto:liu@cms.zju.edu.cn
mailto:liu@math.ucla.edu
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degeneration. The method we present here strongly suggests that this is 
actually the case, as was suggested by the generalized Witten conjecture 
and the general Virasoro conjecture.

The rest of this paper is consisted as follows: In section 2, we briefly 
review the Gromov-Witten invariants, the moduli space of relative stable 
morphisms, and the virtual localization technique. In section 3, we present 
the universal approach to the Gromov-Witten invariants using localization 
technique. In sections 4 and 5, we present, as applications, a new proof of 
Witten conjecture and the proof of Marino-Vafa formula. In section 6, we 
list several open problems to which we can apply this general approach.

2. Preliminaries

2.1. The G rom ov-W itten invariants

Let X  be a smooth projective variety and M gin(X,/3) be the moduli stack 
of n-pointed stable maps of genus g and degree /?, i.e. it consists of maps

• С  is a Riemann surface of arithmetic genus g =  /i1(C, Oc) and n 
marked points x\, • • • ,x n with only nodal singularities.

• An algebraic map /  : С  — » X  such that f*[C] =  /3 6 H2(X, C).
• It admits no infinitesimal automorphisms fixing the marked points.

For each marked point ж*, consider the line bundle Li over №g>n{X }P) 
whose fiber over [C\xi, - -  - ,xn] 6 M g,n(X,/3) is the cotangent line T*.C  
at the г-th marked point Xi. Then define the xp-class as its first Chern- 
class, i.e. т/ч =  ci(Li). For each г, let evi : M 5>n(X,/?) — ♦ X  be the 
evaluation map which sends Xi to its image /(x*) € X . The construction 
of virtual fundamental class, denoted by [MPjTl(X,/5)]u*r, allows us to do 
the intersection theory on M p>n(X,/?). The Gromov-Witten invariants are 
defined as the intersection numbers

such that

where Z i, ■ ■ - , Zn are cohomology classes of X .
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2.2. Localization technique

In this section, we will briefly summarize various versions of localization 
formulas.1,15,16 We start with the equivariant cohomology.

2.2.1. Equivariant Cohomology

Let G be a compact Lie group acting on M . The equivariant cohomology 
of M  is defined as the ordinary cohomology of the space M g obtained from 
a fixed universal G-bundle E G , by the mixing construction

M g =  EG xg  M

Here, G acts on the right of EG  and on the left of M, and the notation 
means that we identify (pg, q) ~  (p, gq) for p e EG , q € M , g £ G. Hence 
M g is the bundle with fibre M  over the classifying space BG  associated 
to the universal bundle EG  — ♦ BG. We have natural projection map 
7Г : M g — ♦ BG  and a : M g — ♦ M /G } which fits into the mixing diagram 
of Cartan and Borel:

EG <------- EG x M ---------- > M

BG  <— *- E x G M  -2 — > M /G

If G acts smoothly on M , then we have M g — M /G . This is not true in 
general but it turns out that M g is a better functorial construction and the 
proper homotopy theoretic quotient of M  by G. In any case, the equivariant 
cohomology, denoted by Hq (M ), is defined by

H*g (M) =  H*(M g )

and constitutes a contravariant functor from G-spaces to modules over the 
base ring :=  #£(pt) =  H*(BG). The map о defines a natural map 
o'* : H *(M /G ) — * Hq (M) which is an isomorphism if G acts freely. The 
inclusion г : M  — ♦ M g induces a natural map i* : Hq (M) — ♦ H*(M).

2.2.2. Atiyah-Bott Localization Formula

Let i : V <—> M  be a map of compact manifolds. The tubular neighborhood 
of V inside M  can be identified with the normal bundle of V. On the total 
space of the normal bundle, there is the Thom form Фу which has compact 
support in the fibres and integrates to one in each fiber. Extending this 
form by zero gives a form in M , and multiplying by Фу provides a map
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H*(V) =  H*+k{M , M\V) — ► In particular, the cohomology class
1 € H°(V) is sent to the Thom class and this class restricts to the Euler 
class of the normal bundle WV/jif oi V  in M . Hence, we see that

i*i+l =  е(Ху/м)-

This also holds in equivariant cohomology by the same argument applied 
to M g • The theorem of Atiyah and Bott says that an inverse of the Euler 
class of the normal bundle always exists along the fixed locus of a group 
action. Precisely, i*/е(У4у/м) is the inverse of г* in equivariant cohomology,
i.e. for any equivariant class 0, we have a decomposition

* = £

where F  runs over the fixed locus of G-action. In the integrated form, we 
have

/
J A

2.2.3. Functorial Localization Formula

Let X  and Y  be T-manifolds. Assume that /  : X  — * У  is a T-equivariant 
map, jE : E  <—► Y  is a fixed component in У , and ip ’ F  <—> f ~ x(E) is a 
fixed component in X . For any equivariant class и € H ^(X), we have the 
commutative diagrams;

j
eT ( F / X )  ^  

] "  
0l[er(F/X)]

Je

U>

■flM

Applying the Atiyah-Bott localization formula with the naturality relation 
f\(u • f*a) =  • a, we obtain the functorial localization formula:

r » f M  1 J e /iM  
9 '\.eT{F /X)\ e r (E /Y )

2.2.4. Virtual Functorial Localization Formula

The above functorial localization formula is also valid in the case where X  
and F  are virtual fundamental classes. In this paper, we will use [M5(X  x
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P1; X  x {00} I /3] ц)]тг for X , and [Рг]ШГ for F. Hence for any equivariant 
class cj, we have:

[ _  u = y  [  J r H _  (i)
J[Mg(XxPi]Xx{oo}\l3]fi)]Vir ^  J[Fr]Vtr er(^Fr)

where denotes the normal bundle of the fixed locus given by Fr in the 
relative stable moduli space M g(X  x P1; X  x {00} |

2.3. The moduli space o f relative stable morphisms

In this section, we briefly summarize the definitions and results from24-26’30 
with minor modifications. Let X  be a smooth projective variety and 
JD1, • • • , D k be disjoint smooth divisors. For a = l define

A(D a)(m) =  A(D a)i U ■ ■ • U A(D a)m

where A(D Q)i =  P(Od« ® K ^ a /x ) —> T)Q for each г, a, and N<d° / x  de
notes the normal sheaf of a subvariety V Q in X . The projective line bundle 
A(T)a) —>• V Q has two distinct sections

£>□ =  P(Odo ф 0), =  P(0 0  /x )-

We have У$ъ%/&{Ъа) — ^ ъ а/х  an<̂  ~  ^т>а/х -  Then
A(D Q)(ra) is constructed by gluing along the two distinct sections of 
A(T>Q)t’s that correspond to two distinct sections and The en
action on Ot>° induces a C*-action on A(DQ) such that A(D a) —» DQ is 
C*-equivariant, where C* acts on D a trivially. The two distinct sections Dq , 

are fixed under this C*-action. So there is a (C*)m-action on A (D a)(m) 
fixing Dg, • • • , D* , such that А(*1)а)(?п) -»  Da is (C*)m-equivariant, where 
(C*)m acts on Da trivially. The variety

к
X[m \ ■ • • ,m*] =  X  U [J  A(K Q)(m“ )

Q = 1

with normal crossing singularities is obtained by identifying T>a С X  with 
T>o С A (D q) under the canonical isomorphism. There is a morphism

• ■ ,m fc] : X[m}, * • • ,m k] — > X

which contracts A(D a)(mQ) to T>a. The (Сф)®т  -actions on A(T>a)(ma) 
give a (C *)® ^ m0t action on Xjra1, - - -  , mfc] such that 7r[m V " ,m k] is 
(C*)® ^  m°-equivariant with respect to the trivial action on X . Let ft €
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H2{X,Z) be a nonzero homology class and ца be a partition of dQ, for 
a =  1, • • • , fc, where dQ's are defined to be

a =  [  ci(0(D a)) >  0. 
h'P

Define the relative stable moduli

M g( X ,D \ - - - ,D k 

to be the moduli space of relative stable morphisms

f  ■■ (Ci ■ • • - { ^ } ' /= i )) —  • • , mk)

such that

(1) (C; {ж*}2?j_\ • • ■ , { xi}l=i^) ^  a connected prestable curve of arith
metic genus g with X2a=i K^Q) marked points.

(2) ('ir[m \-.^m k} o f ) . [ C ] = 0 e H 2(X iZ).
(3) As Cartier divisors, we have =  S i= i   ̂ particular, 

if da =  0, then is empty.
(4) The preimage of D f consists of nodes of С  for I =  0, • • • ,m a — 1. 

If f(y) € D f and Ci A  are two irreducible components of С  which 
intersect at y, then f\cx and f\c2 have the same contact order to D ^  
at y.

(5) The automorphism group of /  is finite.

The arguments in J.Li’s papers24-26 show that M g(X-,DQ | /?; /xa) is a sep
arated, proper Deligne-Mumford stack which admits a perfect obstruction 
theory of virtual dimension

к
Cl(TX) +  (1 -  p)(dim X  -  3) +  Y ,  (*(/**) -  1 Л )

Q — 1

In order to perform the virtual localization computation on the relative 
stable moduli D 1, • • ■ , D k \ /3\ д 1, • • • ,/zfc), we need to compute the
Euler class of the tangent space T 1 and the obstruction space T 2 of 
M g(X ; D l , • • • ,D k | /3\ fi1, • • • , /ifc) at the moduli point

/  : (С; {**}«£>,•• • , {x k} ‘£ ]) —  *[m\ • • • ,mk\.

This can be done by the following two exact sequences:

0 — .Ext°(fic (fl),O c) — > ff°(D ‘ ) —  T l 
— *Ext1(nc (H),Oc ) — * — * T 2 — > 0

L

i



0 -  Я 0( с ,/* (П х|т., . . ,тк)( ^ 1 о 6 1.“ о))У)
Q=1

-  # °(D *) — 0 0
Q = 1  1=0

-  Я 1 (с , Г  (n * [» ., . . ,« * | (E  log® m .))V)
a = l

_  ffi(D -) -  0  т0 Яе\(КГ) -  0
Q=1 1=0

where

к i(na)
R =  E  E  *?• ^ i W )  = Н°(ЪГ,ЬГ)9П' / Н ° ( Ъ Г ,L f),

a = l  i = l

n  =  0  Tq( f - \ A ( V a)t)) e  Tjif-'iACD*),)) a  €®n°,
9€ / " lW )

and nf is the number of nodes over V f . Please refer to the paper by C.-C. 
Liu, K.Liu, and J.Zhou30 for detailed notations.
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3. A new approach to the Gromov-Witten theory

In this section, we will illustrate a new approach to derive a recursion 
relation for any natural cohomology class on Жд,п(Х,(3). Precisely, let и 
be a cohomology class on M 9in(X ,p) that can be lifted to a equivariant 
class ljt  on M g(X  x x {oo} | fan). We obtain a recursion relation
for the Gromov-Witten invariants involving lj by the following two steps:

1) Localization on the relative stable moduli: We have a natural
projection map

|/?;a0 —  Ms(Pl ;{oo} I W; / i )

along with the branching morphism,9

Br :M9(Pl ; {oo} | M ; M) —  SynT (P1) *  Pr
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Combining these morphisms, we obtain information for the Gromov- 
Witten invariants involving u>t  through:

F (u )=  [ _  ит (В го рУ ( Ц ( Я - * ) )
J[Mg(XxV'-,Xx{oo} \ 0 m ) ) ^  \  '

Here, В is any subset of {0,1,2, • • • , r} and H  is the hyperplane class of 
H*(Fr) such that Н\Рк =  к for each fixed point pk of Pr under the nat
ural 5 1-action. F(u) is, in general, a polynomial of the equivariant pa
rameter u. On the other hand, the virual functorial localization formula
(1) applied on the relative stable moduli M g(X  x P 1; !  x {oo} | /?;/z) 
expresses F(u) as the sum over all fixed locus of 5 1-action. Precisely, 
we have the following expression:

n « ) =  £ ( ! [ ( ' - * ) ) - а д  a )
l € B c ке В

where Гi (il) is the contribution from the fixed locus that are mapped to 
the fixed point pi under Br о p. These contributions have the following 
form:

Fz(u) = ^  [ f  i* (cj) ■ t/4m j • [known data C{Г?)] (2)

where г*(и;) is the restriction of u> to the components of fixed locus. 
The coefficients C (rf)  depends on the partition ц and the splitting- 
type of the fixed locus which is governed by the following Cut-and-Join 
operation:44

• Cut-operation : Geometrically this coreesponds to the pinching 
of the domain curve along a non-trivial cycle. In terms of localiza
tion computation, this corresponds to the Cut-operation on the 
partition fi:

• Join-operation : Geometrically this corresponds to the bubbling 
of the domain curve by pinching a cycle enscribing two marked 
points. In terms of localization computation, this corresponds to 
the Join-operation on the partition fi:

/ != (• • •  --- >T)= (*•• iMi+Mjr*” )

Moreover the fixed locus that are mapped to a fixed point pi is precisely 
those curves that are obtained by performing the Cut-and-Join oper
ation on the fixed locus that are mapped to the fixed point pi+i- For
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example, there is a unique curve Qr of genus g and n-marked points 
that is mapped to pr . And the fixed locus that are mapped to the 
branching point pr~\ are precisely

f (Cut-of-type-I) A curve that is obtained by pinching a meridian 
of Cr . This curve will have arithmetic genus g — 1 and one more 
special point coming from the pinching, 

f (Cut-of-type-II) A curve that is obtained by pinching a longitude 
of Cr . This curve will consist of two smooth components with 
genus 0 i,c/2 such that gi +  g2 =  g. 

t (Join) A curve that is obtained by pinching a cycle that enscribes 
two marked points. This curve will consist of two smooth compo
nents, one of which has genus g with one less marked points.

As the result, RHS of the relation (1) can be explicitly computed and 
consists of the Gromov-Witten invariants involving ш. This relation 
contains enough information to compute all Gromov-Witten invariants. 
However, we can extract more precise relations from (1) by using the 
asymptotic analysis as described below.

2) A sym pto tic  Analysis: The relation (1) holds for any given partition 
ц of any size. Hence it is natural to expect that, if we choose arbitraty д, 
we should be able to extract relations on the Gromov-Witten invariants 
that are independent of the partition д, i.e. relations between absolute 
Gromov-Witten invariants. This idea is realized by letting the size of 
H to be arbitrarily large \fi\ —*■ oo. Precisely we consider the following 
scaling limit of the partition /i:

Write Hi =  N  • Xi where i V e Z , i j € Q  and let N  —♦ oo

In the localization computation, we encounter the following type of 
combinatorial numbers that depend on the partition fi:

Щ____
H i !

Under the Cut-operation, this number will be replaced by the cor
responding combinatorial number for v. Especially the effect of the

П
Z=1
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Cut-operation is reflected through

E  4 Z r -  (3)щ\ P'.q
1 P + < ? = M i  ^  4

where a and b depend on ki and the splitting-type of fixed locus. The 
asymptotic behaviour of this combinatorial number is given by the 
following asymptotic formulas.22
• Asym ptotic Formula : Let a, b e  N and к > 0. As N  —► oo, we 
have the following asymptotic behaviours

e- „  Г  _  j  Г (2a-  1)11.(26 -  Щ  b +b
6 2 -  p!o! 2 L 2a+b(a +  b)l Г  [ 'p+q=N

N pP+ ^+ V -i n*+4 _  r(2fc +  l)!!i fc)
P'-Я'- y/2*  1 2k + ik\ J +  1 ’

(4)

e
р+9=ЛГ

These asymptotic formulas are obtained through an application of the 
integration by parts and the Stirling’s formula

N\ ~  %/2ne~NN N+i  (1 +  +  • • •).

This allows us to derive the limiting equation of the recursion relation 
under the scaling limit N  — ► oo. Moreover, the asymptotic behaviour 
does not depend on the specific partition-type of /z. Hence this allows 
us to extract relations between absolute Gromov-Witten invariants. 
Precisely, under the scaling limit N  —► oo, we obtain a stratification of 
the relation (1) with respect to the degree of N.  This stratification gives 
us a system of recursion relations between absolute Gromov-Witten 
invariants.

4. Localization proof of the W itten conjecture

As an application of the new approach described in the previous section, we 
summarize the new proof of W itten’s conjecture using localization method. 
Please refer to the paper by Y.-S. Kim and K. Liu22 for details. The famous 
Witten conjecture40 claims that stable intersection theory on moduli space 
is equivalent to the ’’hermitian matrix model” of two-dimensional gravity.
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Precisely, E. Witten considered the generating function of the stable inter
section theory on moduli space

OO .Щ
F ( t  о 1 * 1 , - - - )  =  £ П г т < т о 0 г " , т - Г - - - > -  

0
and formulated the Witten's conjecture as follows: The generating function 
F (t0, ti, • • •) is determined by the following two constraints

(1) The object U =  d2F /d t l  obeys the KdV equations.

where U =  d U /d t0, U =  d2U /d t l , etc., are the derivatives of U with 
respect to to, and Rn+i(U, U,U,-  • ■) are certain polynomials in U and 
its to derivatives that are well-known in the theory of the KdV equations 
(and can be determined by recursion relations that are explicitly given).

(2) In addition, F  obeys the “string equation,”

—  + Г (  дЛ
dto 2 ^  dti'

Now there exist several different approaches to this conjecture:

1. M. Kontsevich23 gave the first proof by constructing the main iden
tity which relates the stable intersection theory on MР)П to its proper 
combinatorial model. The string partition function r(t):

oo

r(t) =  exp J ](e x p  *пОп)д 
9=0 n

admits an integral representation which involves the following integral 
over N  x N  Hermitian matrix Y  of the form2

t (Z )  =  p(Z ) - 1 J  d Y  ■ exp TV [ -  ^ Z Y 2 +  l- Y 3]

where Z  is a second N  x N  Hermitian matrix, and p{Z) is the one-loop 
integral

p(Z) =  J  d y - e x p [ - i i v z y 2]

A. Okounkov-R. Pandharipande35 gave another approach through the 
enumeration of branched covering of P 1 using the ELSV-formula:6

• |Aut „I №  r f  Г Л*(1)
(2g  -  2  +  \ц\  +  V = 1  Mi ? J Г К 1  “  V i A )
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3. M. Mirzhakani34 derived the Virasoro constraints by connecting the 
stable intersection theory on M5)U to the Weil-Petersen volume and by 
using the McShane identity on the Weil-Petersen volume.

4. M. Kazarian-S. Lando20 obtained an algebro-geometric proof by using 
the ELSV-formula and the PDEs which govern the generating series of 
Hurwitz numbers to derive the KdV-equation.

There are a couple of equivalent formulations for the Witten conjec
ture, namely the Virasoro constraints and the recursion relation for the 
correlation functions of topological gravity.

• The Virasoro constraints: The KdV-hierarchy can be expressed as 
linear homogeneous differential equations for the т-function2

Ln 'T =  0, ( n > - l )

where Ln denote the differential operators

г 1 $ v ^ / i  1 \~ d  l~o
i - 1 - - 2 ^  +  B f c + 2 )tfc^ T  + 3 <0

k=  1
oor 1 d  V ^/t 1 ч ~ d 1

° “ " 2 ^  +  ! > + 2)tfca 4  +  l 6 

.  _  1  д  . . l , r  д  1 A  d 2bn -- T" _ ~
2 d tn- i  ^  2 d tk+n 4 ^  d t i - i d t n- i

The recursion relation for the correlation functions of topolog
ical gravity: R. Dijkgraaf, E. Verlinde, and H. Verlinde derived,2,3,39 
through physical arguments, the following recursion relation for the cor
relation functions of topological gravity and showed that it is equivalent 
to the Virasoro constraints.

( ^ n  П ^ > 3  = ] C ( 2 f c +  1 ) < 5 ' n + f c - l  П ^ ‘ >9 +  \
keS  k€S l^k a+b=n—2 leS

+ \ ( 5 « П  f a  П
S=XuY,a+b=n~2,g1+g2=g keX  leY

(1)

where an =  [(2n +  l)!!]crn =  [(2n +  l)!!]^n and

f a ,  • • • *к,)д =  [ П №  +  1)Н1 [ _
1=1 ^ « ,1
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The above recursion relation (1) has the same degeneration type as that of 
the Cut-and-Join relation. It is proved22 to be the limiting equation of the 
Cut-and-Join relation obtained by applying localization technique on the 
relative stable moduli DVt^P1, д). We summarize the proof below:

Let и  be the trivial class and В — {0,1,2, • • • , r  — 2}. Then the class 
и  • Br* Па:€В {H ~ k) has strictly less degree than the virtual dimension 
of the relative stable moduli M ^P^foo}  | |/4|,/x). Hence the relation (1) 
becomes

0 =  г!Гг +  (r — 1)!Гг_!

As was explained in the previous section, the fixed curves that are mapped 
to pr- 1 are precisely the curves obtained by performing the Cut-and-Join 
operation to the unique curve Cr . This gives the following Cut-and-Join 
relation:21,29

^ - Ё [ Е т т 5 гу + Е п ж й ( гй +  £  r s ) l
i= l  W p= 1 Vi~P 91+92=9^1^2=^

(2)
where Г ./,Г с1,Г с 2 denote the contributions from Join-curve, Cut-of-type- 
1, and Cut-of-type-II, respectively. Precisely they are defined as follows:

The unique fixed curve that is mapped to the branching point pr

г =  f  A«(1)
|Aut/i| ^  Jm3 „ ГК1 -  )

Join curve that is obtained by joining i-th and j-th  marked points:

i  гг1 v ?  [  л эу(1)
J |AutT?) A=1 T)k \ УлГ,.„_1 ГК1 -  ПкФк)Г? = ,, , , ]1 I гт7Т - - ч- V е JyM

к -

• Cut curve that is obtained by pinching around the г-th marked point:

- n + l vie г Л V / 1  ’j

r b l =  jA u H  n  J r  I l g i n + i  n ( i - U )  ’ v € C i W

Cut curve that is obtained by splitting around the г-th marked point:
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where Ag (u) =  u9 -  \ \ u 9~l H------ \ - ( - l ) 9Xg is the total Chern-class of the
dual Hodge bundle. Applying the scaling limit N  —> oo gives a stratification 
for Гг,Г ./,Г с1, and Гс2 with respect to N , i.e. we have expansions of the 
form

f f r ^ l  [  л * (1)__ =  y \ f \ d ! l  I] [  т \ф к‘ +  о (м “)
Щ  Mi! J П(1 - Л *) fa  Щ  Mi! J i iV * ;

where d is the highest iV-degree in the expression and (ki) =  (fei, • • • , kn) 
runs over the sequences of non-negative integers such that Х]Г=1 ki =  3g — 
3+n =  dimcMp)7l. Note that the top-degree terms consist of Hodge integrals 
of only ^-classes since the total Chern-class of dual Hodge-bundle A^ (1) =
1 — Ai H---- ±  \ g do not involve the scaling parameter N. By applying the
asymptotic formulas (4), we obtain a system of relations between linear 
Hodge integrals on from (2). The highest N -degree relation turns out 
to be a trivial one:

П ki —1/2 ,  n ki —1/2 r

M V  i . , П*?' - <£*.) n V  L  n *?i - 0

The second-highest N -degree relation is the following:

0 -  Y  K2fcL+  1)!! TT x i ’ 1/2 [  T T / j  _  
h [ 2k'+ lk‘l к , . п Ш

£  ( а + Д + 1 ) ! ! ^ П ^ ( ^i=fci—2 Z j / i  V27r

e  L m ^ L
_ ^ (Xi +Х 3)Д+ ^ ~ 1/2

k+l=ki—2 

+

(3)

This relation is identical to the recursion relation for the correlation func
tions of topological gravity (1) which can be seen as follows: Introduce 
formal variables s* € R>o and recall the Laplace Transformation:

r o o  k - 1 / 2  ЛО О

/  — j = - e r x^ d x  =  (2* - 1)!! sfc+1/2, /  xke~x/2sdx =  /с! (2s )*+1 
Vo v27t 7o
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After taking the Laplace transformation of (3), we recover the recursion 
relation for the correlation functions of topological gravity (1)

f a  П  °k)s  =  5 ^ (2 k +  l ) (5 n+fc_i Д  at)g +  j  5 3  fa * *  П  ^ 9 - 1
k e s  k e s  1фк а+ь=п - 2  l e s

+\ E fan П
S=yYuy,a+6=n—2,pi+52=^ ZCV

Since this recursion relation is equivalent to the Virasoro constraints and the 
W itten’s conjecture, this finishes the proof of Witten’s conjecture through 
localization technique. As a remark, the system of relations given by the 
stratification of (2) may give more identities between linear Hodge-integrals. 
For example, the third-highest ЛГ-degree relation verifies the following ex
pression of Ax-class in terms of я i-class and V'-classes

12 Ai =  Ki +  S — ^  ipi.

5. Proof of Marino-Vafa formula

In this section, we summarize the survey note of the second author31 about 
the recent proof of Marino-Vafa formula.29 Based on the string duality be
tween open topological string theory on the deformed conifold T*S3 and 
the closed topological string theory on the resolved conifold, M. Marino and 
C. Vafa33 conjectured a closed formula about the generating series of the 
triple Hodge integrals for all genera and any number of marked points in 
terms of the Chern-Simons invariants, or equivalently in terms of the repre
sentations and combinatorics of symmetric groups. The precise statement 
is as follows:

The Marino-Vafa conjecture is an identity between the geometry of the 
moduli spaces of stable curves and Chern-Simons knot invariants, or the 
combinatorics of the representation theory of symmetric groups. Let us first 
introduce the geometric side. For every partition v  =  (fii >  • • • Mz(a0 > 1), 
we define the triple Hodge integral to be,

S w M  =  A (t ) . [ _  
J M.

Л *(1 )Л *(-т-1 )Л *(т)
а д ,М,..ы
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where the coefficient is given by

+ 1 ) |,и "  n  ( ^ , - 1)1 - 1 -

These expressions arise naturally from localization computations on the 
moduli spaces of relative stable maps into P 1 with prescribed ramification 
type ц at oo. We now introduce the generating series

S„(A;t) =  £ a 2s - 2+'W 39,„(t).
9 >  0

Introduce formal variables p — (p\,p2, • • • ,P n , • • •)> anc  ̂ define

Pm = Pni * * * Ртм

for any partition д. These p correspond to TV in the notations of string 
theorists. The generating series for all genera and all possible marked points 
are defined to be

S(A;т;р)* =  exp( ^  ЗДА;т)р„),
Ы>1

which encode the complete information of the triple Hodge integrals.

Next we introduce the representation theoretical side. Let denote 
the character of the irreducible representation of the symmetric group S [M|, 
indexed by /x where |/x| =  Let C(p) denote the conjugacy class of
5|м| indexed by ц. Introduce

sin [(/ia -  ць +  b -  a) A/2]

W" (A) i<al?<i(>.) sin № -  a)^/2] n 'L l  n^L i 2 sin K v - i + m m

This has an interpretation in terms of quantum dimension in Chern-Simons 
knot theory. We define the following generating series

Я(А;т;р)* =  £  ( Y ,  ^ ^ е ^ < т+*)к"л/2К (А )j p„
Ы>о \М=И Z[L J

where fil are sub-partitions of д, > and

=  м + JZo*? “  2i■&)
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for a partition \i which is also standard for representation theory of sym
metric groups. There is the relation = \Aut(n)\ni • ■ • Ццц). Finally we 
can give the precise statement of the Marino- Vafa conjecture:

Marino-Vafa conjecture: S(A;r;p)# =Я(А;т;р)в

This conjecture was first proved by C.C. Liu, K. Liu, and J. Zhou29 by 
showing that both sides have the same initial data, i.e.;

S(A,0 . . С Н Ё ^ - В Д  

and satisfy the following Cut-and-Join relation: for П =  9*, Я*, we have

do. ^  / . .  .. . . .  dQ \
—  = -------- 2 ^  ( VPi+j a_ a -  +  (l +  j)PiPi-------1

i.j>l '
d r  2 V ' J,” ” dpi+ j j '

Since this Cut-and-Join relation completely determines for any given ini
tial condition, we conclude the identity of 9* and which is the Marino- 
Vafa conjecture.

Now let us explain how the new approach we illustrated in this paper 
applies to this case. Let i r : Ug^ —> and P  : 7 g^  —♦ M ^ P 1, /z)
be the universal domain curve and the universal target, respectively. There 
is an evaluation map F  : U5f#t —> 7g^  and a contraction map тг: 7g^  —* P1. 
Let С U9iti be the divisor corresponding to the /(//) marked points. 
Define

Vd =  R 1 ̂ r.(Oue.M( - © ^ ) )  and VDd =  R }* .F *0  Pi ( - 1), 

where F =  п о F : Ugyfi —> P1. The fibers of Vd and Vpd at

[ /  ■ (C ,  X \ } • • ' ) £ { ( / * ) )  ~ > P  i771] ]  £  - M - p .o ( P  j a O

are H l (C, O c{—D)) and Я ^ С , /* 0 Pi (-1)), respectively, where D =  
xi +  . . .  +  хцц), and /  =  7Г[m] о / .  Note that tf°(C, Oc (-£>)) =  
H °(C , /*Opi (-1 )) =  0, so Vb and Vbd are vector bundles of rank l(fi)+g - 1 
and d + g — 1, respectively. The obstruction bundle

V  =  VD 0  VDd

is a vector bundle of rank r =  2g — 2 +  d +  =  vdimM9(P1, fi). We 
integrate the equivariant Euler class of V over the relative stable moduli 
Ms (P \/ i)  to obtain

K W  =  I -  ет{у)
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where K *(A) is of zero u-degree which depends on /x and A. On the other 
hand, the localization computation gives a relation of the form (2). In this 
case, the ’known data’ in (2) turns out to be the double Hurwitz numbers. 
Precisely, we reach the following convolution formula between triple Hodge 
integrals and double Hurwitz numbers

K W  =  £  3*(А,т,р)2„Ф* м(—гтА)
M=M

where Ф*(А) is a generating series of double Hurwitz numbers. This convo
lution formula can be inverted to give the convolution expression of Hodge 
integrals28

S*(A,r,p)= £  2(1-К’*(А)Ф* (гтА,р, 1)
И>о

It is a direct consequence, from this expression, that 9* satisfies the Cut- 
and-Join relation since the generating series of double Hurwitz numbers Ф* 
also satisfies it, hence finishing the proof of the Marino-Vafa formula. Let 
us end this section with several consequences44 of the Marino-Vafa formula 
obtained by comparing the coefficients of r  in the Taylor expansions of the 
two expressions 3* and $*: It gives a simple proof of the A9-conjecture

^р  +  п - З ^ - 1 - !  \B2g\
L  t i ' - ^  =  ( 2k9 + n ~k 3JM0.n ,n )  229~l ' ( 2  g)\'

and the following identities for Hodge integrals

1 \B2g -2 \ \&2сI 1 — I Ay_2Ap_iAff — 
J Jm„!_g y-1 9 2 (2 0 - 2)! 2p - 2  20

23-1 L i v '  W  -  J-A*92 -  1 )•-,
’g i u92 >

f  ^9-1  _  L 1 1 (201 -  l )-(202 -  1)!, ,

9 \ , 9 2 > 0

where B2g are Bernoulli numbers, bo =  1 and bg — 2%д1-г"ш f°r 9 >  0-

6. Future Research problems

In this section, we list several open problems to which our new approach 
can be applied. Each of them has an equivalent formulation in the form of 
recursion relations which has the same structure as that of the Cut-and-Join 
relation.
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6.1. Generalized Witten conjecture

Consider a series of integrable hierarchies I<dVr , where r  =  2,3,-*-, called 
the generalized KdV, or Gelfand-Dickey hierarchies. E.Witten generalized 
his original conjecture,42,43 suggesting that for each r  there should exist 
moduli space and cohomology classes on them whose intersection numbers 
assemble into the formal r-function of the KdVr-hierarchy. Recently its first 
proof appeared in the paper by C.Faber, S.Shadrin, and D.Zvonkine8 which 
relies on the equivalence of the formal and the geometric Gromov-Witten 
potentials under certain conditions. The corresponding moduli spaces of 
higher spin curves are constructed and the zero-genus case of the conjec
ture has been proved.17,18 A brief idea of the construction is as follows:38 
Let a i, • • ■ , an € {0, • • • , r  — 1} be integers assigned to the marked points 
X\, ■ • ■ , xn such that 2g — 2 -  J2ai *s divisible by r. On a smooth curve C, 
there are r2g different line bundles 7  with an identification

The space of smooth curves endowed with such a line bundle 7  is de- 
noted by M j f l , T h e  compactified space, denoted by ,a„ > is
constructed17 and is called the moduli space of stable r-spin curves. The 
construction uses the Jarvis- Vistoli twisted curves, i.e. curves that are them
selves endowed with an orbifold structure. It is a smooth stack with a finite 
projection mapping

Its analogue of the Gromov-Witten classes is also constructed17 and is called 
a virtual class cjfn(a) in #  e(M*£b. . .an). In the physics notation, we write

(<rmi,ai • • =  f  • . .* ? * .

There is a conjectural recursion relation27 for these intersection numbers:

T  f i m , l  ^  0Vi(,ai ) g  =  53 "1“ “^ ) ( crm + n , - l , a l }  j[ & n j , Q j ) g

1=1 I

+  л 53 53 Г( а п - 2 ,а <7 т - п , Н - а  ya i ) g - l

n= 2 a € /  1=1

+  53 f i n - 2 , a  & n i , o c i ) g i  f i m —n , h — a  ,01)92]

s = x u y  l e x  le Y
5=<?i+<72
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where h is the dual Coxeter number such that a  € I  if and only if h — a  € I. 
The above recursion formula implies the generalized W itten conjecture, 
i.e. the generating series of these integrals with the W itten virtual class 
cjfn(a) satisfies the KdVr-hierarchy where we denote a  =  (ai,-- - ,a n)- 
Note that the above recursion formula has the same structure as that of 
the Dijkgraaf-Verlinde-Verlinde recursion relation which implies the original 
Witten conjecture. Our approach can be applied to this problem as follows: 
We first use the functorial localization formula on the moduli space of stable 
r-spin curves 3Vt*^(/z, P1) into P1. Combining the natural projection to the 
moduli space of relative stable maps M p ^ P 1) and the branch morphism, 
we obtain an equivariant morphism

The asymptotic analysis technique applied to the resulting cut-and-join 
equation will yield a recursion formula generalizing the cut-and-join equa
tion for Hodge integrals involving the Witten virtual class clg[h (a) and the 
^-classes, which, in turn, should agree with the above conjectural recursion 
formula for higher spin intersection numbers.

6 .2 . Faber’s conjecture on Hodge integrals

C. Faber7 obtained a set of conjectures concerning the tautological Chow 
ring R*(Mg). The following identity on Hodge integrals is one of them:

(2g — 3 +  ге)! 1 .
229- 1(23 -  1)! П*=1(2е3 - 1 )И 1 " ' 

к
~ ' ' * Tej-iTej+2g-iTej+i ’ • • Tek)

j= 1
1 2*~2

+  9 ( 1 {^д—2—j TjTei ■ • • Tek) 
j=0

+ !  E  Л  ( - i):,(rJ I l Te‘Hr2s-2-j П r̂ )
k=m j  j =0 iei Ш

As a remark, this conjectural identity implies,11 through an application of 
the degree 0 Virasoro conjecture for P2, the following \ g\ g- i -conjecture

[n ( 2 fc4 -  1)!!] I_  A3A9_ ^ f ‘ . . .^ " = (2 5 - 3  + п)!



where B2g denotes the Bernoulli number. A recent result of K.Liu and
H.Xu32 revealed that the constant term on the LHS is the third summation 
term on the RHS. This puts the above conjectural identity into a simpler 
equivalent recursion form

к

(Tei ’ ’ ' те к т2д) =  У  ̂ (rei ' * * Te j - i Tej  + 2 g —lT e j + l * * * Tefc) 
j=  1

k=I UJ  j —0 i e i  i €J

This recursion formula, in particular, is in the form of the Cut-and-Join 
equation where we perform the operation on the distinguished gravitational 
descendant term T2g. The fourth-highest N-degree relation given by the re
cursion relation obtained in the proof of Witten’s conjecture strongly sug
gests this conjectural identity. The combinatorial techniques developed in a 
recent paper14 may be used to simplify the technical difficulties arising from 
this approach. On the other hand, the two-partition Marino-Vafa formula 
was proved through a cut-and-join equation for the involved two partitions, 
which has the same type of recursion formula. We can apply the asymptotic 
analysis to this two-partition equation to derive more generalized recursion 
formulas. Two-partition Marino-Vafa formula was also proved by applying 
localization formula on moduli spaces of relative stable maps into a toric 
surface, which in principle indicates that the resulting formula should con
tain the same information as the Virasoro conjecture for surface. This is 
another approach to the above conjectural recursion formula.

6.3. General Virasoro conjecture

Let V  be a non-singular projective variety. The general Virasoro conjecture 
for V asserts vanishing relations on the total Gromov-Witten potential

°0 , V
Z(V) =  exp( £  W~l -  £  taC  ' ’ '’ ■ ( * i ) •'* •'̂  f r -  »* ) * 

<j> 0  n= 0  * k f ' k nai-**an

Precisely, there are differential operators L*4,5 which annihilates Z(V), i.e.
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LkZ{V)  =  0 for all к > - 1 .  (1)
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k+l , — 1 1 
° = £ Й  E  (- l)mk  + m+i]^(fiir b(((T-m- 1,0rm+fc-i,b))J'_1

i= 0  m = i —k 

9 1 + 9 2 = 9

+  5 3  [^a +  2 ]» ( ^ ) a C ( ( rm +fc-i,b))$ )  +  ~ Y - { R k + 1 )a b to tQ
m =0

+  <5fc,o ,̂ip(V')

where R ba is the matrix associated to multiplication on the affine superspace 
H(V) by the first Chern class c\(V)  of V, defined by

^a7b =  Ci(Vr)U 7a

and p(V) is the characteristic number of V. This conjectural relation has 
the same structure as that of the Cut-and-Join relation except that the 
first Chern class of V  is involved in it. The approach illustrated in this 
paper can be applied to this conjecture by considering a general relative 
stable moduli M g((d, x P 1) relative to the divisor V  x {00} and its 
natural projection map M g((d, д), V  x P1) — ► Ж д(ц, P1). Combining with 
the branch morphism, we get a equivariant morphism

K p((d,/i),V  x P1; V x 00) —+ M ^ P 1) — ► Pr

from which we get a general Cut-and-Join type formula involving the Chern 
classes of V. The asymptotic analysis method used in the proof of the Wit
ten conjecture can be applied on this general cut-and-join formula. The 
resulting identity will be a quadratic recursion relation involving the first 
Chern class of V  in agreement with the above conjectural identity. The 
main difficulty will be to understand the one-dimensional moduli space of 
relative stable maps to V  with prescribed contact type at two divisors. Note 
that the special genus 0 case of the Virasoro conjecture has been previously 
proved. Givental and others12 have announced the proof of the Virasoro 
conjecture for projective spaces and the Grassmannian manifolds. Our pro
posed method is quite different from the previous approaches, and it should 
prove the Virasoro conjecture for all genera and for general projective man
ifolds without any restriction.

It is known that (1) is equivalent to the following recursion relation:10
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The A — В  slice problem is a reformulation of the topological 4—dimensional 
surgery conjecture in terms of decompositions of the 4—ball and link homo
topy. We show that link groups, a recently developed invariant of 4—manifolds, 
provide an obstruction for the class of model decompositions, introduced by M. 
Freedman and X.-S. Lin. This unifies and extends the previously known partial 
obstructions in the A — В  slice program. As a consequence, link groups satisfy 
Alexander duality when restricted to the class of model decompositions, but 
not for general submanifolds of the 4—ball.

Keywords: 4—dimensional surgery, A —В slice problem, Alexander duality, link 
homotopy, link groups.

1. Introduction

The surgery conjecture, a core ingredient in the geometric classification 
theory of topological 4-manifolds, remains an open problem for a large 
class of fundamental groups. The results to date in the subject: the disk 
embedding conjecture, and its corollaries -  surgery and s-cobordism theo
rems for good groups1,5,6,11 -  show similarities of classification of topological 
4—manifolds with the theory in higher dimensions. On the other hand, it 
has been conjectured2 that surgery fails for (non-abelian) free fundamental 
groups.

The A — В  slice problem3 is a reformulation of the surgery conjecture 
for free groups which seems most promising in terms of the search for an 
obstruction. In this approach one considers smooth codimension zero de
compositions D 4 = Ai U Bi of the 4-ball, extending the standard genus
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one Heegaard decomposition of the 3-sphere. (A precise definition is given 
in section 2, also see figure 2.1.) Then the problem is formulated in terms of 
the existence of disjoint embeddings of the submanifolds Ai, Bi in D4 with 
a prescribed homotopically essential link in S3 =  dD 4 as the boundary 
condition. The central case corresponds to the link equal to the Borromean 
rings. The problem may be phrased in terms of the existence of a suitably 
formulated non-abelian Alexander duality in dimension 4. Recently this ap
proach has been sharpened and now there is a precise, axiomatic description 
of what properties an obstruction, which in this context is an invariant of 
decompositions of £>4, should satisfy.

The A — В  slice formulation of surgery was introduced by Freedman3 
and further extensively studied by Freedman-Lin.4 In particular, the latter 
paper introduced a family of model decompositions which appear to approx
imate, in a certain algebraic sense, an arbitrary decomposition D 4 =  A u В . 
This family of decompositions is defined in section 4. In this paper we use 
link groups of 4—manifolds, recently introduced by the author,8 to formu
late an obstruction for the family of model decompositions:

T heorem  1 .1 . Let L be the Borromean rings, or more generally any ho
motopically essential link in S3. Then L is not A — В slice where each 
decomposition D 4 =  Ai U Bi is a model decomposition.

The invariant using link groups formulated in the proof unifies and 
generalizes the previously known partial obstructions4,9 in the A -  В  slice 
program. The definitions of link groups and the underlying geometric notion 
of Bing cells are given in section 3.

To place this result in the geometric context of link homotopy, it is con
venient to introduce the notion of a robust 4—manifold. Recall that a link 
L in S3 is homotopically trivial12 if its components bound disjoint maps of 
disks in D 4. L is called homotopically essential otherwise. (The Borromean 
rings is a homotopically essential link with trivial linking numbers.) Let 
(M ,7 ) be a pair (4—manifold, embedded curve in dM).  The pair (M ,7 ) 
is robust if whenever several copies (M i,7i) are properly disjointly embed
ded in (£)4,S 3), the link formed by the curves {7*} in S 3 is homotopically 
trivial. The following statement is a consequence of the proof of theorem 
1 .1 :

C orollary 1 .1 . Let D 4 =  A u B  be a model decomposition. Then precisely 
one of the two parts A, В is robust.

It is interesting to note that there exist decompositions where neither
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of the two sides is robust.10 The following question relates this notion to 
the A -  В  slice problem: given a decomposition D 4 =  A U B, is one of the 
given embeddings A «-> D4, В D 4 necessarily robust? (The definition 
of a robust embedding e: (M, 7 ) «—> (D4 ,S 3) is analogous to the definition 
of a robust pair above, with the additional requirement that each of the 
embeddings (M j,7 i) С (D 4 , S 3) is equivalent to e.)

In a certain sense, one is looking in the A — В  slice problem for an 
invariant of 4-manifolds which is more flexible than homotopy (so it sat
isfies a suitable version of Alexander duality), yet it should be more robust 
than homology -  this is made precise using Milnor’s theory of link homo
topy. The subtlety of the problem is precisely in the interplay of these two 
requirements. Following this imprecise analogy, we show that link groups 
provide a step in construction of such a theory.

2 . Surgery  and  th e  A  — В  slice problem

The 4-dimensional topological surgery exact sequence (cf [FQ], Chapter 
11), as well as the 5—dimensional topological s-cobordism theorem, are 
known to hold for a class of good fundamental groups. In the simply- 
connected case, this followed from Freedman’s disk embedding theorem1 
allowing one to represent hyperbolic pairs in 7Г2(M 4) by embedded spheres. 
Currently the class of good groups is known to include the groups of subex
ponential growth6,11 and it is closed under extensions and direct limits. 
There is a specific conjecture for the failure of surgery for free groups:2

C onjectu re  2 .1 . There does not exist a topological 4 - manifold M , ho
motopy equivalent to V35 1 and with dM  homeomorphic to S°(Wh(Bor)), 
the zero-framed surgery on the Whitehead double of the Borromean rings.

In fact, this is one of a collection of canonical surgery problems with 
free fundamental groups, and solving them is equivalent to the unrestricted 
surgery theorem. The A — В  slice problem, introduced in ref. 3 , is a refor
mulation of the surgery conjecture, and it may be roughly summarized as 
follows. Assuming on the contrary that the manifold M in the conjecture 
above exists, consider the compactification of the universal cover M ,  which 
is homeomorphic to the 4—ball.3 The group of covering transformations 
(the free group on three generators) acts on D 4 with a prescribed action 
on the boundary, and roughly speaking the A — В  slice problem is a pro
gram for finding an obstruction to the existence of such actions. Recall the 
definition of an A -  В slice link.3,4
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D efinition 2 .1 . A decomposition of D 4 is a pair of smooth compact codi
mension 0 submanifolds with boundary А, В С D 4, satisfying conditions 
(1) “  (3) below. (Figure 2.1 gives a 2-dimensional example of a decompo
sition.) Denote

d+A =  dA ndD 4, d+B  =  d B n d D 4, дА =  Э+Аид~А, DB =  d +Bud~B.  

(1) A U B  =  D 4,
(2) А П В  =  d~A =  d~B,
(3) S 3 =  d +A U д +В  is the standard genus 1 Heegaard decomposition of 
S3.

a

a

Fig. 2.1. A 2—dimensional analogue of a decomposition (A, a), {B,/3): D 2 =  AU  B, A 
is shaded; (a, (3) are linked 0—spheres in dD 2.

D efinition 2 .2 . Given an n-component link L =  ( / i , . . . , i n) С S3, 
let D (L ) =  ( h J i , . ..  , ln,l'n) denote the 2n-component link obtained 
by adding an untwisted parallel copy V  to L. The link L is A — В  
slice if there exist decompositions (A i,B i) , i  =  of D 4 and self-
homeomorphisms a , ,p i  of D 4, i =  1, . . . ,n  such that all sets in the collec
tion ai A \ , . . . ,  a nAn,p i B i , . . . ,  PnBn are disjoint and satisfy the boundary 
data: a*(d+A*) is a tubular neighborhood of Ц and Pi(d+B i) is a tubular 
neighborhood of ZJ, for each i.

The surgery conjecture holds for all groups if and only if the Borromean 
Rings (and the rest of the links in the canonical family of links) are A  -  В 
slice.3 Conjecture 2.1 above can therefore be reformulated as saying that 
the Borromean Rings are not A — В  slice.
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As an elementary example, note that if a link L is  A — В  slice where for 
each г the decomposition D 4 =  Ai UBi consists of Ai =  2—handle D 2 x D 2, 
and Bi =  the collar on d +B i , then L is actually slice.

Of course the Borromean Rings is not a slice (or homotopically trivial) 
link. However to show that a link is not A — В  slice, one needs to eliminate 
all choices for decompositions (A i,B i).

3. Link groups and B ing cells

In this section we recall the definition of Bing cells and link groups of 
4-manifolds, denoted Л(M 4), introduced in Ref. 8 , in order to formulate 
the invariant I \  used in the proof of theorem 1.1. The definition is inductive.

D efinition 3.1. A model Bing cell of height 1 is a smooth 4-manifold 
С  with boundary and with a specified attaching curve 7  С dC, defined 
as follows. Consider a planar surface P  with к 4-1 boundary components
7 , a i , . . . ,  а к { k >  0), and set P  =  P  x D 2. Let L \ , . . . ,  Lk be a collection of 
links, Li с  ai x D 2, г =  1, . . . ,  к. Here for each г, Li is the (possibly iterated) 
Bing double of the core a i . Then С  is obtained from P  by attaching zero- 
framed 2-handles along the components of L\  U . . .  U Lk.

The surface S  (and its thickening S ) will be referred to at the body of 
C, and the 2-handles are the handles of С .

A model Bing cell С of height h is obtained from a model Bing cell of 
height h — 1 by replacing its handles with Bing cells of height one. The 
body of С  consists of all (thickenings of) its surface stages, except for the 
handles.

Figures 3.1, 3.2 give an example of a Bing cell of height 1: a schematic 
picture and a precise description in terms of a Kirby diagram. Here P  is a 
pair of pants, and each link Li is the Bing double of the core of the solid 
torus ai x D 2, г =  1, 2 .

R em ark  3.1. To avoid a technical discussion, the definition presented here 
involves only the links L which are Bing doubles. To reflect this difference, 
we reserve for these objects the term Bing cells rather than the more general 
flexible cells discussed in Ref. 8 . The definition in Ref. 8 involves more 
general homotopically essential links, however just the Bing doubles suffice 
for the applications in this paper.

Bing cells in a A—manifold M  are defined as maps of model Bing cells in 
M , subject to certain crucial disjointness requirements. (In particular, this
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Fig. 3.1. Example of a model Bing cell of height 1: a schematic picture

Fig. 3.2. A Kirby diagram of the model Bing cell in Figure 2.1

will be important for the discussion of model decompositions in section 4.) 
Roughly speaking, objects attached to different components of any given 
link Li in the definition are required to be disjoint in M. To formulate this 
condition rigorously, recall the definition of the tree associated to a given 
Bing cell.

3.1. The associated tree

Given a Bing cell C, define the tree Tc  inductively: suppose С  has height 1. 
Then assign to the body surface P  (say with k +  1 boundary components) 
of С  the cone Tp on к + 1 points. Consider the vertex corresponding to the 
attaching circle 7  of С as the root of Tp, and the other к vertices as the 
leaves of Tp. For each handle of С  attach an edge to the corresponding leaf
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Fig. 3.3. The tree Tc associated to the Bing cell С in figures 3.1, 3.2.

oiTp.  The leaves of the resulting tree Tc  are in 1 — 1 correspondence with 
the handles of C.

Suppose С  has height h > 1, then it is obtained from a Bing cell C' of 
height h — 1 by replacing the handles of C' with Bing cells {C*} of height 
1. Assuming inductively that T c  is defined, one gets Tc  by replacing the 
edges of Tc> associated to the handles of C' with the trees corresponding 
to {Cj}. Figure 3.3 shows the tree associated to the Bing cell in figure 3.1.

Divide the vertices of Tc  into two types: the vertices ( “cone points”) 
corresponding to body (planar) surfaces are unmarked; the rest of the ver
tices are marked. Therefore the valence of an unmarked vertex equals the 
number of boundary components of the corresponding planar surface. The 
marked vertices are in 1 — 1 correspondence with the links L defining C, 
and the valence of a marked vertex is the number of components of L plus 
1. It is convenient to consider the 1—valent vertices of Tc' its root and 
leaves (corresponding to the handles of С ) as unmarked. This terminology 
is useful in defining the maps of Bing cells below. The height of a Bing cell 
С  may be read off from Tc  as the maximal number of marked vertices along 
a geodesic joining a leaf of Tc  to its root, where the maximum is taken over 
the leaves of Tc-

D efinition  3.2. A Bing cell is a model Bing cell with a finite number of 
self-plumbings and plumbings among the handles and body surfaces of C, 
subject to the following disjointness requirement:

• Consider two surfaces A, В  (they could be handles or body stages) of 
С . Let a, b be the corresponding vertices in Tc- (For body surfaces this is 
the corresponding unmarked cone point, for handles this is the associated 
leaf.) Consider the geodesic joining a, b in Tc, and look at its vertex с closest 
to the root of Tc -  in other words, с is the first common ancestor of a , b. If 
с is a marked vertex then A, В are required to be disjoint.
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In particular, self-plumbings of any handle and body surface are allowed. 
In the example shown in figures 3.1, 3.2 above, the handle h\ is required 
to be disjoint from /i2, /13 is disjoint from /14; all other intersections are 
allowed.

A Bing cell in a 4-manifold M  is an embedding of a Bing cell into M. 
We say that its image is a realization of С  in M, and abusing the notation 
we denote its image in M  also by C.

The main technical result of Ref. 8 shows how Bing cells fit in the context 
of Milnor’s theory of link homotopy. This theorem is used in the analysis 
of the invariant I \  below.

T heorem  3.1. If the components of a link L С S3 =  dD 4 bound disjoint 
Bing cells in D 4 then L is homotopically trivial.

Recall12 that a link L in S3 is homotopically trivial if L is homotopic to 
the unlink, so that different components stay disjoint during the homotopy. 
The theorem above builds on a classical result that if the components of 
L bound disjoint maps of disks in D 4 then L is homotopically trivial. The 
proof of theorem 3.1 is substantially more involved than the argument in 
the classical case. This is due to the topology of Bing cells which forces 
additional relations in the fundamental group of the complement. The main 
new technical ingredients in the proof are the generalized Milnor group 
and an obstruction which is well-defined in the presence of this additional 
indeterminacy.8

The link groups Xn(M) are defined as {based loops in a 4—manifold 
M ]  modulo loops bounding Bing cells of height n. These groups fit in a 
sequence of surjections

TTi (M) — ♦ Лi(M ) — > Л2(M) — ►.. .

The groups Xn{M) are topological but not in general homotopy invari
ants of M. In particular, they are not correlated with the first homology 
jffi(M), or more generally with the quotients of 7Ti (M) by the terms of its 
lower central or derived series. Define A(M) to be the direct limit of Xn(M). 
Given a pair (M, 7 ) where M  is a 4—manifold and 7  is a specified curve in 
dM ,  consider the invariant I \ { M ,7 ) € {0,1}:

JA(M, 7 ) =  1 if 7  =  1 С A(M),

set /д(М, 7 ) =  0 otherwise. When the choice of the attaching circle 7  of M  
is clear, we will abbreviate the notation to I \(M ).
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R em ark  3 .2 . For the interested reader we point out the “geometric du
ality” between Bing cells and gropes. Recall the definition:5 A grope is 
a special pair (2-complex, circle). A grope has a class к =  1 ,2 ,...,o o . 
For к =  2 a grope is a compact oriented surface E with a single bound
ary component. For к >  2 a к-grope is defined inductively as follow: Let 
{on, Pi, i =  1 , . . . ,  genus} be a standard symplectic basis of circles for E. For 
any positive integers pi, qi with Pi +  q i>  к and pi0 + q i0 =  к for at least one 
index io, a fc-grope is formed by gluing pi-gropes to each ai  and <fc-gropes 
to each ft. A grope has a standard, “untwisted” 4-dimensional thickening, 
obtained by embedding it into M3, times 7.

Consider a more general collection of 2-complexes, where at each stage 
one is allowed to attach several parallel copies of surfaces. Then one checks 
using Kirby calculus that model Bing cells are precisely complements in 
D 4 of standard embeddings of such generalized gropes. This observation is 
helpful in the analysis of the A — В  slice problem, where gropes play an 
important role, see section 4 .

4. An o b stru c tio n  for m odel decom positions.

In this section we show that the invariant I \  defined above provides an 
obstruction for the family of model decompositions. We start the proof 
of theorem 1.1 by constructing the relevant decompositions of D 4. The 
simplest decomposition D 4 — A \JВ  where A is the 2—handle D 2 x D 2 and 
В is just the collar on its attaching curve, was discussed in the introduction. 
Now consider the genus one surface S  with a single boundary component a , 
and set A\ =  S  x D 2. Moreover, one has to specify its embedding into D 4 
to determine the complementary side, B. Consider the standard embedding 
(take an embedding of the surface in S3, push it into the 4—ball and take a 
regular neighborhood.) Note that given any decomposition, by Alexander 
duality the attaching curve of exactly one of the two sides vanishes in 
it homologically, at least rationally. Therefore the decomposition D 4 =  
A\ U Bi  may be viewed as the first level of an “algebraic approximation” 
to an arbitrary decomposition. The general model decomposition of height
1 is analogous to the decomposition D 4 =  A\ U B \ , except that the surface 
S  may have a higher genus.

P ro p  4.1. Let A\ =  S x D 2, where S is the genus one surface with a 
single boundary component a. Consider the standard embedding (Л ь a  x 
{0}) С (D4, S3). Then the complement B\ is obtained from the collai' on its 
attaching curve, S 1 x D 2 x J, by attaching a pair of zero-framed 2—handles



to the Bing double of the core of the solid torus S 1 x D 2 x {1}, figures 4 .1,
4.2.
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Fig. 4.1. A model decomposition D 4 =  A \ U Bi of height 1: a schematic (spine) picture 
(figure 5) and a precise description in terms of Kirby diagrams, figure 4.6.

Fig. 4.2.

The proof is a standard exercise in Kirby calculus, see for example 
Ref. 4. A precise description of these 4—manifolds is given in terms of 
Kirby diagrams in figure 4.2. Rather than considering handle diagrams 
in the 3—sphere, it is convenient to draw them in the solid torus, so the 
4-manifolds are obtained from S l x D 2 x I  by attaching the 1— and
2—handles as shown in the diagrams. To make sense of the “zero fram
ing” of curves which are not null-homologous in the solid torus, recall that 
the solid torus is embedded into S3 =  dD 4 as the attaching region of a 
4-manifold, and the 2-handle framings are defined using this embedding.

This example illustrates the general principle that (in all examples con
sidered in this paper) the 1—handles of each side are in one-to-one corre
spondence with the 2—handles of the complement. This is true since the
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embeddings in D 4 considered here are all standard, and in particular each
2—handle is unknotted in D 4. The statement follows from the fact that 
1—handles may be viewed as standard 2—handles removed from a collar, a 
standard technique in Kirby calculus (see Chapter 1 in Ref. 7.) Moreover, in 
each of our examples the attaching curve a  on the A -side bounds a surface 
in A , so it has a zero framed 2 —handle attached to the core of the solid 
torus. On the 3—manifold level, the zero surgery on this core transforms the 
solid torus corresponding to A into the solid torus corresponding to B. The 
Kirby diagram for В  is obtained by taking the diagram for A , performing 
the surgery as above, and replacing all zeroes with dots, and conversely all 
dots with zeroes. (Note that the 2—handles in all our examples are zero
framed.)

Note that a distinguished pair of curves a i,o ;2, forming a symplectic 
basis in the surface S, is determined as the meridians (linking circles) to 
the cores of the 2-handles # i ,# 2  of В i in D 4. In other words, a i ,  OL2 are 
fibers of the circle normal bundles over the cores of Hi, # 2  in D 4.

Fig. 4.3. A model decomposition D 4  =  A2 U В2  of height 2.

An important observation4 is that this construction may be iterated: 
consider the 2—handle Hi in place of the original 4—ball. The pair of curves 
(a i, the attaching circle Pi of Hi) form the Hopf link in the boundary of 
Hi. As discussed in the beginning of this section, it is natural to consider 
two possibilities: either a i  or Pi bounds a surface in Hi. For simplicity of 
exposition, we again assume at this point that this is a surface of genus 
one. The first possibility (ai bounds) is shown in figure 4.3: note that in 
this decomposition one side, A2 , is a grope of height 3 (discussed in remark
3.2) and its complement B2 is an example of a Bing cell.

Consider the second possibility: Pi bounds a surface in Hi. As dis
cussed above, its complement in Hi is given by two zero-framed 2—handles
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attached to the Bing double of a i. Assembling this data, consider the new 
decomposition D 4 =  A '2 U B2, figures 4.4, 4.5. As above, the diagrams are 
drawn in solid tori (complements in S3 of unknotted circles drawn dashed in 
the figures.) The decompositions D 4 =  Л2и В 2, D 4 =  A2 UB2 are examples 
of model decompositions of height 2. To get a general decomposition of this 
type, one also considers the alternative as above for the pair of curves a 2, 
(32 in the 4—ball Я 2. For simplicity of illustration, in the examples shown 
in figures 4.3 - 4.5 the curve /?2 bounds a surface of genus zero. One gets 
models of an arbitrary height by an iterated application of the construction 
above, and in general one considers (orientable) surfaces of an arbitrary 
genus at each stage. See figure 4.6 for examples of model decompositions of 
height 3.

Fig. 4.4.

Fig. 4.5. Another example of a model decomposition D A =  A'2 U of height 2.

It follows from theorem 3.1 that the following lemma implies our main 
result, theorem 1.1:
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Lem m a 4.1. Let D 4 =  A U В be a model decomposition. Then

Fig. 4.6. Examples of model decompositions D 4 =  A 3  U B 3 , D 4 =  A3  U B'3 of height 3.

Indeed, suppose a link L =  ( h , . . . ,  ln) is A -  В  slice where each decom
position D 4 =  A iU  B^ i =  1 ,... ,n  is a model decomposition. According

equals 1. For each г, denote C i =  A i if I \ ( A i )  =  1 and C i =  B i  otherwise. 
Let 7 i denote the attaching curve of Ci. It follows from the definition of I \  
that 7 i bounds a Bing cell in C i. Since the collections {a*}, {Pi }  form the 
link L and its parallel copy, the collection of curves (71 , . . .  , 7n) is isotopic 
to L. This contradicts theorem 3.1 since L is homotopically essential. This 
concludes the proof of theorem 1.1, assuming lemma 4 .1.

Proof of lemma 4-1- It suffices to prove that given a model decomposition 
D 4 =  ЛиВ, either a  =  1 e  X(A) or =  1 € A(B). Then theorem 3.1 implies 
that precisely one of these two possibilities holds. The proof of the statement 
above is inductive. Given a model decomposition of height 1 (figure 4.1), 
observe that one of the two parts of the decomposition - the handlebody B\ 
in the example in figure 4.1 - is a model Bing ceil of height 1. (In this case the 
planar surface С in definition 3.1 is the annulus.) Therefore /0 =  1 6  A(Bi).

I\(A , a) +  / a (B , f3) =  1.

to lemma 4.1, the invariant I \  of precisely one part of the decomposition



Link Groups and the A-В Slice Problem 233

In the case that A\ is a surface of genus g >  1, the handlebody description 
of B\ consists of first taking g parallel copies of the core curve of the solid 
torus, Bing doubling them and then attaching zero-framed 2—handles to 
the resulting link. One observes that the attaching curve (3 still bounds a 
model Bing cell of height 1 in this handlebody, indeed there are g choices 
of Bing cells bounded by (3.

Suppose lemma is proved for model decompositions of height < n, and 
let D A =  A U В  be a model decomposition of height n +  l. The attaching 
curve of either A or В  is trivial in its first homology group. To be specific, 
assume a  =  0 € Н\(А\Ъ). First assume the surface £  bounded by a  has 
genus 1. Then A is obtained by attaching models Л', A" of height < n 
to a symplectic basis of curves a \ , a 2 of S, figure 4.7. Similarly, using the 
notation of figure 4.1, В  is obtained from the model В i of height 1 by 
replacing its 2-handles # i ,# 2  by two models B',B"  of height < n. Here 
D A =  A' U B \ D 4 =  A" U B" are two decompositions for which lemma 
holds according to the inductive assumption. Therefore I\(A')  +  I\{B') — 
I\{A") +  I\(B") =  1. Consider two cases:

Case l : h ( B ' )  =  Ix(B") =  l
Case 2: At least one of I \ {A '), I \{A n) equals 1.

Fig. 4.7. Proof of lemma 4.1: the inductive step.

We claim that in the first case I \(B )  =  1 and in the second case I\(A ) =  
1. Consider case 1. By assumption, the attaching curve /3' of B' bounds a 
Bing cell C' in B \  and similarly the attaching curve /3" bounds a Bing 
cell C" in B". Consider the handlebody С  obtained from S 1 x D 2 x /  by 
attaching C',C"  to the Bing double of the core of the solid torus. The 
associated tree Tc  is illustrated on the left in figure 4.8. (Note that the 
trees Tc", Tc•• join in a marked vertex.) Since B' and B" axe disjoint, there 
are no С' -  C” intersections. (Note that such intersections are not allowed
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in the definition 3.2 of a Bing cell.) Therefore the attaching curve (3 bounds 
a Bing cell in B, and I\(B,/3) =  1.

Tc> Tc" T c  T-£>

Fig. 4.8.

Consider the second case. Without loss of generality assume I \(A ')  =  1, 
so a i bounds a Bing cell C  in A'. Surger the first stage surface E along a u  
the result is a pair of pants whose boundary consists of a  and two copies 
of a \.  Consider two copies of C  (denote them by C  and С ) and perturb 
them so there are only finitely many intersections between surfaces in C  
and surfaces in С  . Consider the handlebody С  assembled from the (pair 
of pants)xD 2 with C \ C  attached to it. The tree Tc  associated to С  is 
shown on the right in figure 4.8; observe that the trees T c ,  T̂ > join in an 
unmarked vertex. Note that all C ‘ — c '  intersections are of the type allowed 
in definition 3.2, therefore a  bounds a Bing cell in A , and I \ ( A ,a )  =  1.

In the case when the surface E has genus g >  1 the proof is analogous to 
the genus one case discussed above. Specifically, A is obtained by attaching 
models A'{, A", г =  to a symplectic basis of curves in £. The
complements are denoted B ” . One observes that if there exists 1 < i < 9 
such that 1\{В[) =  I\(B")  =  1, then I \(B )  =  1. On the other hand, if for 
each i either 1\{А[) or I\(A") equals 1, then I\(A )  =  1. This concludes the 
proof of lemma 4.1 and of theorem 1.1. □

R em ark  4.1. In the example of the decomposition D 4 =  A2UB2 in figures
4.4, 4.5 the proof above shows that I\(A'2 ,a )  =  1. One may find an explicit 
construction of a Bing cell bounded by a  in A '2 in the proof of [9, Lemma
7.3].
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In this paper, we construct a knot invariant with SL (2, C) representations by 
using the fundamental L2-representation of the fundamental group of a knot 
complement, which may be thought of as an twisted L2 -Alexander(-Conway) 
invariant of the knot in S 3. Both L2-Alexander and L2 -Alexander-Conway 
invariants define functions from the representation space of the knot group to 
nonnegative real numbers, and descend to functions from the SL (2 ,C) char
acter variety of the knot group. We also show that the twisted L2-Alexander 
invariant is a L2-Reidemeister torsion twisted by the S L (2,C) representation.
The L2-Alexander (and L2 -Alexander-Conway) invariant twisted by GL(n,<C) 
representations of the knot group is given.

1. Introduction

T his is a sequel that continues the study of the L 2-A lexander(-C onway) 
invariant defined by the authors in ,LZ,LZ2 where we gave a C*-param eterized  
L2-invariant of knots from abelian representation tensoring w ith infinite 
dim ensional representations of the knot group. As we m entioned earlier, 
such L2-invariants w ith parameters and their tw isted versions would play a  
role in the study of knots. It is natural to  develop the L 2-Alexander-Conway  
invariant of knots with parameters through finite dim ensional (non-abelian)

"Partially supported by MOEC and the 973 project.

mailto:wli@math.okstate.edu
mailto:weiping@nankai.edu.cn


representation tensoring with infinite dimensional representations of the 
knot group, especially through SX(2 , {^-representations of hyperbolic knot 
groups.

jn LZ,LZ2 w e m ajn jy concentrated on the most natural one which is as
sociated with the universal covering of the knot complement and the C* 
representations of the first homology group of the knot complement. It ex
tends the one constructed by LiickLu2 who considers the case where the 
above C* representation is the trivial representation of the first homology 
group of the knot complement. We call such an invariant the L2-Alexander(- 
Conway) invariant.

GukovGu proposed a complex SL(2,C) version of Witten’s SU(2) topo
logical quantum field theory, and generalized the volume conjecture to C*- 
parameterized version with parameter lying on the zero locus of the A- 
polynomial from the SL(2,C) character variety of the knot in S3. In,GuMu 
Gukov and Murakami showed that the difference of their conjectures (inGu 
andMu respectively) comes from the different choices of polarization (differ
ent choices of the SL(2 , C) representations of the knot group). The work of 
the first author and WangLWa shows that by focusing only on the regulator 
we can have a different generalized volume conjecture from that of Gukov 
(Gu) from the motivic point of view. In both cases, the character variety 
of the hyperbolic knot plays an essential role. In this paper, we construct 
the twisted L2-invariant with parameter through a tensor of an infinite 
dimensional representation with a SL(2,C) representations (a character). 
This extension fits naturally into the study of volume conjecture from the 
character variety point of view. In particular, we show that our twisted 
L2-Alexander invariant is a twisted L2-Reidemeister torsion of the knot 
complement. The essential ingredient for twisted SL(2, C) L2-invariants is 
the invertibility problem we solved in section 3. Hence it is natural to give 
the complete L2-invariant twisted by GL(n , C) representations.

This paper is organized as follows. In Section 2, recall the basic proper
ties of the Fuglede-Kadison determinant for morphisms between free Hilbert 
modules over a group von Neumann algebra. In Section 3, for simplicity 
we construct the twisted L2- Alexander (-Conway) invariant, with SL(2,C)- 
parameters, through the Wirtinger presentations of a knot. In Section 4, 
we interpret the L2-Alexander (-Conway) invariant constructed in Section 3 
through the L2-Reidemeister torsion of the knot complement with a twisted 
SL(2,C) flat bundle. In Section 5, we extend the L2-Alexander invariant 
from the SL(2,C) representation to its character. In Section 6 , we show 
how to define the twisted L2-Alexander(-Conway) invariant with any gen
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eral GL(n, C)-representation parameters.
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2 . G roup von N eum ann algebra  and  Fuglede-K adison  
d e te rm inan t

In this section, we recall the definition and basic properties of the Fuglede- 
Kadison determinant, which will be used in the next section in our definition 
of the L2-Alexander invariant. The basic reference is the comprehensive 
book of Liick.Lul

Let Г be a finitely generated discrete group. We assume that Г is an 
infinite group.

Let 12{T) be the standard Hilbert space of squared summable formal 
sums over Г with complex coefficients. Then every element in 12{T) can be 
written as

a =  ^  a77 , a7 € C, with ^  |a7 |2 < +oo.
7€Г 7 €Г

If a =  are two elements in 12{T), their inner
product is given by

(a, b) =  a767. (1)
76Г

The left multiplication defines a natural unitary action of Г on /2(Г). 
The group von Neumann algebra N (r) is the algebra of Г-equivariant 

bounded linear operators from J2(r) to £2(Г). The von Neumann trace on 
N (r) is defined by

TrT : N (D  ^  С, / M (/(e),e), (2)

where e € Г С l2(Г) is the unit element.
The right multiplication of Г induces a natural isometric Г-action of 

/2(Г) on /2(Г). Hence for any 7  € Г, one can consider Г С N (r). Moreover, 
for any 7 6 Г с  >Г(Г),

TrT[7 ] =  1 if 7  =  e; TrT[7 ] =  0 if 7  Ф e. (3)
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For any positive integer n, set

г2(Г )И  =  /2(г )  e  • • ■ e  г2(Г ) .
4---------- ----------- '

n

We call it a free N(r)-Hilbert module of rank n. The action of Г on /2(Г) 
(through left multiplications) induces a canonical action of Г on /2(Г)М. 
A morphism between two free N(r)-Hilbert modules is a Г-equivariant 
bounded linear map between them.

Let /  : /2(Г)М —► /2(Г)М be such a morphism. Let e*, * =  1, • * ■ ,n , be 
the unit element in the i-th copy of /2(Г) in /2(Г)М. Then we can extend 
the von Neumann trace in (2) to define

а д  =  £ ( / ( * ) , « ) .  (4)
t=i

The Fuglede-Kadison determinant DetT(/)  of /  can be defined as fol
lows:

(i) If /  is invertible and /* is the adjoint of / ,  then define (cf. [Lul, 
Lemma 3.15 (2)])

DetT( /)  =  exp Q ttt (log ( /* /)] )  I (5)

(ii) If /  is injective, then define (cf. [Lul, Lemma 3.15 (4), (5)])

DetT( /)  =  lim vl>etT ( /* /  +  £) =  x/DetT ( /• /) -  (6)
e—■0+

If /  is injective and Detr (/)  0, then we say that /  is of determinant 
class.

(iii) If both / ,  g : /2(Г)Н -» i2(r)W are injective, then g о /  is also 
injective. Moreover (cf. [Lul, Theorem 3.14 (l)]),a

Detr ( g o f )  =  DetT(/)  • DetT(5 ). (7)

(iv) If Л  : /2(Г)М -  /2(Г)М, / 2 : /2(Г)Н  |2(Г)Н  and f 3 . 
/2(Г)М _> /2 р̂̂ [п] ^  morphisms such that f \  and /2 are injec

tive. Then ( f 1 j : /2(Г)1л+т1 —» /2(Г)(п+т1 is also injective. Moreover
V /з /2  J

aIndeed, in [Lul, Theorem 3.14 (1)], it requires that /  has dense image. Note that in 
finite von Neumann algebras the properties of an bounded operator to be injective and 
to have dense image are equivalent (seeDIX).
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(cf. [Lul, Theorem 3.14 (2)]),b

DetT f  J  =  DetT(/i)  • DetT( /2). (8)

(v) Let /  : /2(Г )^  —* /2(Г )^  be an invertible morphism. Then there 
exists a C l path / u, и € [0,1], of invertible morphisms such that /о =  / , 
f i  =  Id. One then has (cf. [CFM, Theorem 1.10])

log (DetT (/))  =  —Re TrT £ &  dv)j. (9)

3. Twisted SL(2, C) L2-Alexander invariant of a knot

Let К  С S3 be a knot. Let Г =  7Ti(5 3 \  К ) denote the knot group. Let

Р(Г) = <*!,■•• ,Xk\r i , - - -  ,rfc_l> (1)
be a Wirtinger presentation of Г.

Let Fk =  (xi , • ■ • , Xk) denote the free group of rank k.
Let ф : Fk —♦ Г denote the canonical surjective homomorphism associ

ated to (3.9). Then it induces a ring homomorphism

ф : Z[Fk] -  г[Г]. (2)

Let p  be a SL(2 ,C) representation of the knot group Г

/? :Г -» 5 1 (2 ,С ) . (3)

Then /3(xi),/3(x2),- ■ • ,/5(xfc) G SL(2,C) satisfy

/3(ri(xb -*- ,a fc)) =  /d 2x2,--- ,/?(rfc- i ( x i , • • • ,ж*)) =  /d 2x2- (4)

Let GL(l2(T)) denote the set of invertible elements in К(Г). Let

pr  : Г —»• GL(l2(T)) (5)

denote the fundamental representation of Г, which is given by the right 
multiplication of the elements in Г. We denote the associated ring homo
morphism of the integral ring Z(r) to Х(Г) by

pr : Z[r] —► N (r). (6)

Let pr <S> P be the tensor product representation of pr and p. Hence for 
any 7  e  Г we have Рг(7)®/?(7) : /2(Г)<8>€2 —* 12(Г )® С 2. Let p(7 ) : C2 —>

bWe here replace the condition that / 1  has dense image to that / 1  is injective, which is 
possible as (7) now holds for /  injective. Compare with the proof in [Lul, page 135].



C2 be a SL(2 ,C) matrix and C2 be the vector space with an ordered basis 
{eb e2}. Hence /?(7 )(ei) =  a(7 )ei +  b('y)e2,P(7 ) =  c(7 )ei +  d(7 )e2 has its

matrix form/?(7 ) =  e SL(2,C) with а(7) ф ) - 6 ( 7 )0(7 ) =  1.

Let us identify

l2(T) ® C2 as /2(Г)®2 as i2(r) ® ei e  г2(Г) ® e2. (7)

Now the tensor product representation has the following 

Pr<8>/?(7)(a®ei) =  pr(7 )(a)0 /?(7 )(ei) =  a (7)pr(7)(a)0ei+&(7)pr (7)(a)0e2;

Рг®РЬ)(а®е2) =  pr(l){a)® P(l){e2) =  c(7 )pr (7 )(a)®ei+d(7 )pr (7 )(a)®e2.

Hence the tensor product representation can be identified with the mor
phism from /2(Г)®2 =  /2(Г) 0  ex 0  /2(Г) 0  e2 to *2(Г) 0  ex 0  /2(Г) <g> e2 as 
the following.

) =  М 7 Ы 7 )  c ( 7 ) P r ( 7 ) \
№ W )  V6(7)pr(7) ^(7)Pr(7)J

_  f Р гЫ  0 \  /  0(7 ) c(7) \
\  0 р г Ы У  V ft(7 )  4 7 )  /

=  (рг(7)«2х2)-у9(7)- (8)

Let /3 : Z[rj —► M2x2(<C) be the induced ring homomorphism from the 
SL{2, C) representation, where M2x2(C) is the 2 x 2 matrices. The induced 
ring homomorphism of the integral group rings for the tensor product rep
resentation is given by

: Z[r] -» >Г(Г) 0  M2x2(C). (9)

Let the composition of the ring homomorphism in (3.10) with the tensor 
product of pr and the homomorphism in (9) be denoted by

Ф =  (рг<8>Д)о<£: Z [Fk] -> ЩГ) 0  M2x2(C). (10)

Consider the morphism

AprW  : /2(Г)®2 ® • • • ф /2(Г)®2 -  г2(Г)®2 ф ■ • • ф /2(Г)®2 (11)
V------------- -------------- '  '--------------v------------- '

fc-1  fc
which when written as a {к -  1) x /г-matrix, the (г, j)-component is given 
by

> W ( y >  =  ф ( f e )  6  w(r ) ® ^ x 2(C), (12)
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where is the standard Fox derivative and /2(Г)®2 is identified in (7).
We call Apr®0 the SL(2,C) twisted L2-Alexander matrix of the pre

sentation Р(Г) associated to the fundamental representation pr and the 
SL(2, C) representation /3.

For any 1 < j  < k, let

Кг®Р: *2(г )®2 © • • • ® *2(П02 -  i2{V)02 e  • • ■ e г2(г)®2 (13) 
fc-1 fc-1  

denote the morphism obtained from Apv®p by removing the j-th column 
from its (к — 1) x к matrix form.

The following result can be thought of as an L2-analogue of [W, Lemma
2 and Lemma 3] or an extension of [LZ, Lemma 3.1].

Lemma 3.1. (i) For any 1 < j  < fc, Ф(аг<7* — 1) € N(F) is injective and has 
dense image, (ii) If one of the A3pr^  ’s, 1 < j  < к, is injective, then every 
А3ргфр, 1 < j  < к, is injective. Moreover, in this case, for any 1 < j  < j '  <  
к, one has

DetT ( 4 r0<3)  DetT (Ф(х3- -  1)) =  DetT ( а ^ 0)  DetT (» (* , -  1)). (14) 

Proof (i) From (3.10), (4), (8) and (10), one sees that

» (* , -  1) =  (pr(ф(х^)Ы2х2) ■ W * j ) )  -  (15>
Clearly, 7j =  ф(Xj) G Г is of infinite order and /3(7j) G SL(2,C).

Assume a G /2(Г) and 21,22 € С satisfies ((pr(0( z j ) )^ 2x2) • Р(Ф(хз)) ~ 
Id)(a 0  [z\e\ -1- z2e2)) =  0. Then a direct verification shows that 
(Pr(7j ) ^ 2x2 -  P(l j )  [z\e\ + 22e2)) =  0- N°w we have identify
/3(7j) as a morphism in l2(Г)®2 with trivial action on l2(Г) factor. For any 
В G SL(2,C) with B (a0 (2iei + 22e2) =  a 0 (B(2iei +  22e2)) =  0, we have 
z\ — Z2 =  0, thus a 0  (2iei 4- z2e2) =  0.

For /?(тj), let A be a SL(2,C) matrix such that AP(xj)~1A~l =

(  J*-i^ . Then we have A(pr(7j ) ^ 2x2 - / 5(7j )_1) ^ _1 =  (Pr(7j ) ^ 2x2 -

^ ( 7 i ) -1^ -1 ) and ker(pr (7j ) ^ 2x2 -  /3(7j)”1) =  ker(pr(7j )/d 2x2 -  
>i/3(7J)“ 1i4-1 ) by the above. Now let a 0 (2 iei +  z2e2) G ker(pr(7jK^2x2 — 
i4/3(7j) - 1i4_1). Thus we have

(Pr(7j)(a) -  Vjd)  0  2iei -  bja 0  z2e2 =  0 

(Pr(7j)(a) ~  V /1®) ® z2e2 =  0.
Hence we have either Z2 =  0 or pr(7j)(a)—т/“ 1(а) =  0 from the last equality, 
and z\ — 0 or рг(т?)(а) — yja =  0. If z\ — Z2 — 0, then we are done; if
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Pr{lj)(o) - y j l (a) =  0 and yj e  U( 1), then a =  0 follows from Lemma 3.1
(i) of;LZ if yj £ C/(l),

a  =  yjPrbj)(a)  =  у2ргЬ*){а) =  • • • =  у?ргЬ")(а)

hence a =  0 for pr(7 ) unitary representation; if z i  — 0 and p r( l j ) (o )  — 
\jja =  0, we have a =  0 by the same method. Hence ker(pr(7j ) /^ 2x2 — 
A(3(pfj)~l A ~ l ) = {0}. Thus, we obtain

ker((pr(0 (z,))M>x2) ■ P M x j) )  -  Id) =  {0}. (16)

Hence ty(xj — 1) e ЗчГ(Г) is injective and has dense image (seeDIX). The 
dense image property follows from (16) as we have

Im{(pr (<t>(Xj))Id2x2) ■ 0(<t>(xj)) -  Id)1'

=  кет((рг(ф(х~1))Ы2х2) ■ Р'(ф(х~1)) -  Id) =  {0},

where f)'(ф(х~1)) is the complex conjugate of /3(ф(х~1)).

(ii) Without loss of generality, we may assume j  =  1 and j ' =  2. Since 
Ti — 1 in Z [Fk], it is easy to see that
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from which we get

t * ( l < 1 8> 

Let A U A2 : l2(Г)®2 0  • • • 0  /2(Г)®2 -> /2(Г)®2 0  • • ■ 0  /2(Г)®2 be the
V---------------------------- '  '------------- V------------- '

k - 1  к - 1
endomorphisms such that

A\ =  Ф(Ж1 — 1)|/2(Г)®2 0  Id|j2(p)®2 0  • • ■ 0  Id|j2(r)®2| (19)

while A2, when represented in the ( к - 1) x ( k - 1) matrix form, is determined 
by

Л адд, =  « (x l+1 -  1), AUtJ) =  Sij ■ (Id : г2(Г)®2 -  /2(Г)®2) for j  >  2 .
(20)

From (18)-(20), and from the definition of A3pr^0 , one deduces that

’ A2 =  ~ A 2Pr®P '

E &*«-*)=о in w
i=i dxi

(17)



By (i), it is easy to see that both A\ and A2 are injective. Thus А *r0J0 
is injective if and only if А2рг<§р is injective.

By (8), one finds for j  =  1, 2,

DetT(A,) =  Detr (Ф(xj -  1)). (22)

Prom (7), (21) and (22), one gets (7). Q.E.D.

Now recall that the spectral radius of a matrix A is defined to be the 
maximal of eigenvalues of the matrix A. For j3(xj) 6  SL{2 ,C), its spec
tral radius of (3(xj) equals to m a x ^ , ^ 1} for its eigenvalues y j , y j l • The 
absolute spectral radius of the P{xj) is max{|yj|,

P ro p  3.1. For any 1 < j  < k, the following identity holds,

DetT (4f(xj -  1)) =  Detr (pr (7j)-2/j)-DetT(p r(7 j)-2 /r1) =  max{|y,-|, 1yj1!}»
(23)

where Pi'yj) =  A ~l J ” 1)  A f°r some A € SL (2 ,€ ) . I.e., 

Detr — 1)) equals to the absolute spectral radius of P(<f)(xj)) =

Proof. By (8) and the proof of Lemma 3.1 (i), we have

A («(x j-1 )A " 1 =  P r f r j W t x t - A P b M - 1 =  ( ^ q  " % 3/J1)
(24)

Hence DetT (Ф(Xj -  1)) =  Detr (pr (7j) ”  Уз) ' Detr(p r(7j) ~  V j l ) ЬУ the 
Fuglede-Kadison determinant properties (iii) and (iv) in section 2.

If yj £ U{ 1), we know DetT(pr (7j) ~ 2/j) =  Detr (pr (7j) -  y j l ) =  1 ЬУ 
Proposition 3.2 of.LZ If \yj\ > 1, then we can compute

DetT(pr (7i) _  Уз) =  Detr(% (2/ J 1)№(7j) -  Щ
=  Ы  • DetT(y“1pr(7j) -  Id.) =  Ivjl, 

where the last identity follows from the proof of Proposition 3.2 of.LZ 

DetT (Ф(х;- -  1)) =  DetT(pr(7j) -  Уз) • DetT(pr (7j) -  y j 1)
=  max{l, |vj|} • max{l, |у“ г[}
=  max{l, \yj\, |y71} =  max{|yj|, |y /a|}-

Hence our result follows. Q.E.D.

Recall the following types of transformations for group presentations: 
(la) To replace one of the relators r* by its inverse r ” 1; (lb) To replace
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one of the relators n  by its conjugate wriw~l (w € Fk)\ (Ic) To replace 
one of the relators r* by r^ j  (г Ф j)\  (II) To add a new generator x and 
a new relator xw ~l for any word w in terms of previous generators. Two 
presentations are strongly Tietze equivalent if there is a finite sequence of 
operations of transformation types (la), (lb), (Ic) and (II) and their inverse 
such that one presentation can be transformed to another one.

The following result may be thought of as an twisted L2-analogue of [LZ, 
Proposition 3.4] and [W, Theorem 2].

T heorem  3.1. (1)  The quantity

DetT (^pi-gg)
= - I ,  V S  (25)

does not depend on the choice of the Wirtinger presentation P (Г) in (3.9) 
a n d j  =  1, 2 , —

(2) The quantity

J DetT • DetT (^pr0 /3- i )
^  Й Г 1 )  =  1 -------------------- -------------------Т Г Т Г ^ Г Х -------------------------------  ( 2 6 )max{l2/jI, \Vj 1}

does not depend on the choice of the Wirtinger presentation P (Г) in (3.9) 
a n d j  =  1, 2, ••• ,k.

D etT (/ l{
Proof. (1) By Lemma 3.1 and Proposition 3.1, we have ------ —̂£— *—max{\yj \,\yj 1}

is independent of j  for 1 < j  <  k. Without loss of generality, we assume 
that j  — 1. Since by [W, Lemma 6], all Wirtinger presentations of Г are 
strongly Tietze equivalent in the sense of,w we need only to show that
---- - /ТУЛ is invariant under the transformations defining the strongmax{|yi l>IVj 1 }
Tietze equivalence. This can be carried out in the same way as in [LZ, 
Proposition 3.4] and [W, Proof of Theorem 2]. We present the proof for 
completeness.

T ype la). To replace one of the relators г* by its inverse r r 1.
This amounts to change the homomorphism АРг<$р to —APr^ 3, which 

clearly does not change Detr (i41r0/3).
T ype lb ). Note that

Ф ( A  ( t ^ t iT 1) )  =  Ф И Ф  , 1 < j  <  k. (27)
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By proceeding as in the proof of Lemma 2.1(ii), one finds that DetT(A1r _ 
changes by a factor DetT($(w)). Now by (4) and (10) one sees that $(w)  € 
GL(l2(T)®2) is a unitary operator pr(w)Id2*2 tensor with 0(w)  G SL (2, C), 
which implies

D M * » - » *  ( "

=  D e t T{pr{(fr(w))y((f){w))) • T>etr{pr(<P{uj))y((f){w)) l )

= \y((p(w)\DetT(pr{<f>(w))) • \y{(})(w))~l \Detr(pr{<l>{w)))

= 1,
where we use the diagonal form of /3(w) since the determinant is unchanged. 
Thus the Type lb) transformation does not change DetT(A*r0j3).

T ype Ic). For this transformation we have

ф  ( 4 { r i T m ) )  =  ф  ( t j ) +  ф  ( f e )  • 1  £  - f c - ( 2 8 )

Let В : г2(Г)®2 © • • • ф г2(Г)®2 - » г2(Г)®2 ® • • • © г2(Г)®2 be the endomor-
---------------v--------------' >--------------v '

f c -1  fc-1  
phism which, when expressed through (к — 1) x (к — 1) matrix, takes the
form Bitm =  Id , while otherwise BSit =  Sst ■ (Id : /2(Г)02 — /2(Г)02). Then 
one finds that A lpr®p changes to B A lpr<B)f3. Note that DetT(B) =  1. Thus 
the type (Ic) transformation does not change DetT(A*r(g>0 ).

T ype I I ) . In this case, the corresponding endomorphism

A %e>e ■ П г Г  © • ■ • © (2(r)®2 ©i2(r)®2 -»г2(г)®2 © • • • © г2(г)®2 ©г2(г)®2
 ̂ V S “ V

fc -1 f c -1
(29)

can be written as © Idp{r)®2 plus a mapping from
г2(Г)®2 © ■ ■ ■ © г2(Г)®2 to г2(Г)®2. Thus, by (8),- ■ -J

fc-1

DetT « r ^ ) = D e t T ^ r0/3) .  (30)

The type (II) transformation does not change

DetT(Ajr0 j3)/m ax{|yl |) |yi_1|}.

Similarly, the inverse of transformation (la), (lb), (Ic) or (II) does not 
change Detr (Ajre/,)/m ax{|yi|, Ij/f1!}.
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Therefore Detr (A1r(g)/3)/m ax{|2/i|, l^/f1!} =  A^(/3) is invariant under 
the strong Tietze equivalent transformations. By [W, Lemma 6], it does not 
depend on the Wirtinger presentations of Г.

(2) From Р(ъ ) =  A ~l j  A, we have

« • » ) - ’ - * - ( f  

Hence DetT(i4^r<g|̂ _1)/m axflj/f *|, |?/i|} =  A ^ f/? -1 ) is invariant under the 
strong Tietze equivalent transformations. Therefore

4 2)( а г 1) =

is independent of the choice of the Wirtinger presentation. Q.E.D.

By Lemma 3.1, Proposition 3.1 and Theorem 3.1, we see that 
depends only on the knot К  and the representation p. Since its construc
tion is closely related to the usual construction of the (twisted) Alexander 
polynomial of a knot, we make the following definition.

D efinition 3.1. (i) We define A$ ( P )  to be the twisted L2-Alexander 
invariant of the knot К  in S3 with (3 : Г —> SL(2,C), and A ^  : 
Нот(Г, SL(2 , C)) —» R+.

(ii) We define A ^ \ p ,  P-1 ) to be the twisted L2-Alexander-Conway in
variant of the knot К  in S 3 with P,P ~ 1 € Нот(Г, 5L(2,C)).

R em ark  3.1. It is clear that A k \ P )  and A ^ ( P ,P ~ 1) can be defined by 
using any presentation of Г which is strongly Tietze equivalent to some 
Wirtinger presentation of Г. We conjecture that any presentation of a knot 
group with deficiency one is strongly Tietze equivalent to a Wirtinger pre
sentation of the knot group.

R em ark  3.2. When p  =  diag(t,$-1 ) is a U( 1) representation of SL(2,C), 
A ^(£) has been studied in our previous work [LZ, Definition 

3.5], and that A ^ ( l )  is equivalent to the L2-Reidemeister torsion of S 3 \ K .  
For t E С*, Ak \ P )  is proportional to the definition [LZ, (7.2)] for the 
L2-invariant associated to C* representations, and д ^ / ? , / ? - 1) is the L2- 
Alexander-Conway invariant studied in [LZ2 , Theorem 3.2].

Note that for any representation P : Г —» SL(2,C), there is^ajpseudo) 
developing map for P which is a smooth equivariant map fp : S3 \  К  —► H 3
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which sends dS 3 \  К  into S^  and intS3 \  К  into H 3, where the bound
ary has an equivariant cone structure on the neighborhood of d S 3 \  К  
in S 3 \  К  and some extra conditions (seeCCGLS’Dun*FR for more details). 
Let fp (V о1цз) be the pullback of the volume form on H 3. Hence the de
scending 3-form n+ifpiVoln*)) is well-defined since the (pseudo) devel
oping map is equivariant, where n : S3 \ K  —* S3 \  K .  Then the vol
ume of ft is defined to be the integral of the descending 3-form over 
S 3 \  K .  In [Dun, Lemma 2.5.2], the volume of (3 is well-defined for the 
P whose character lies in an irreducible component of the character va
riety of S 3 \  К  which contains the character of a discrete faithful repre
sentation. Our twisted L2-Alexander(-Conway) invariant is an extension of 
volume by the work of.LuS It is natural to ask that if there is any link be
tween these two functions Vol : Нот(Г, SL(2, C)) —> R+ (seeDun,FR) and 
A™ : Н от(Г, SL(2, C)) -> R+.

R em ark  3.3. In view of [W, Section 5], the above construction can also 
be applied to links.

4. Tw isted L2-Reidem eister torsion

We first recall the definition of the L2-Reidemeister torsion (CFM>Lul).
Let (C*,d) be a finite length N(r)-chain complex

( a , a ) : o - . c „ ^ c n- i a^ ‘ • • • ^ C o - o ,  (i)

where each С», 0 < i <  n, is a (finite rank) Х(Г) free Hilbert module. We 
make the assumption that {C*,d) is weakly acyclic, i.e., for any 0 < г < n, 
ker(di) =  Im(dj_i) (usually one uses the terminology “L2-acyclic”).

For any 0 < г < n, let d* : Ci-1  —» Ci be the adjoint of di : Ci —* C i - 1- 
Then didг* : Im(dj) —» Im(<9i) is injective.

We say that (C+yd) is of determinant class if for any 0 < г < n, did* : 
Im(dj) —> Im(5i) is of determinant class. In this case, we define the L2- 
Reidemeister torsion of (C*,d) to be a real number T (2)(£*>#) given ЬУ

logr(2)(C .,5) =  - l £ ( - i ) M o g D e t T (й З * |е т )  (2)
i= 0

(cf. [Lul, Definition 3.29]).
Let X  be a finite cell complex and let p : 7Ti(X) —* GL(H) be an К(Г)- 

linear representation of Г =  7Ti(X) on a (finite rank) free Х(Г) Hilbert 
module. Let X  be the universal covering of X .  Then the chain complex
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(C*(X) ® Я, d ) induces canonically a chain complex (C*(X, Hp), dp) in the 
sense of (1), where C+(X,HP) =  (C+{X) 0^,(x),p #)•

If (C*(X, Я р), (9P) is weakly acyclic and of determinant class, one can 
then define its L2-Reidemeister torsion T(2\C * (X ,  Hp),dp) as in (2).

R em ark  4.1. If p : тгчрГ) — GL{H) is unitary, then Т™{С*(Х, Hp),dp) 
is a well-defined piecewise linear invariant. SeeLul,MA for more information.

Let Р(Г) be a Wirtinger representation of the knot group of a knot К  
as in (3.9), where r* is the cross relation for each i.

Let W  be a 2-dimensional cell complex constructed from one О-cell p, к 
1-cells x \ y • • ■ , Xk and (к — 1) 2-cells D \,  • • • , D k- i  with attaching maps 
given by ri, • • • , Гк-i -  It is well-known that the knot complement S3 \  К  
collapses to the 2-dimensional complex W.

Let

pp =  p <8> 0  : Г —> GL  (*2(Г)) ® SL(2 , C) =  GL (г2(Г)®2) (3)

denote the representation of Г obtained from the tensor product of the 
representations in (3.11), (4) and (5).

Then the N(r)-chain complex (C+(S3\K ,  l2(F)f2), dP0) is weakly acyclic 
if and only if (C*{W, ^(Г)®^2), dP0) is weakly acyclic. Moreover, by the sim
ple homotopy invariance of the L2-Reidemeister torsion (cf. [LuR, Corol
lary 3.12]), (C*(S3 \  К,12(Г)®0 ) ,дР0) is of determinant class if and only if 
(C+(WJ2( r ) f 2) ,dP0) is of determinant class, and in this case,

r<2> (c. (s3 \ K ,  i2(r)®2)  , )  =  T<2> ( c .  ( w ; /2(Г)®2) , 8„  ) .  (4)

P ro p  4.1. The complex {C+(S3 \  I<} l2(Г)®2), dP0) is weakly acyclic if and 
only if A lpvQp defined in (6) is injective. Moreover, A lpr®p is of determinant 
class if and only if (C*(S3 \  K , l 2(T )f2) ,dP0) is of determinant class and 
one has

r (2) f a  (5* \  К , /2(Г)®2) , д „ ) -  (5)

Proof. By (4), we need only to compute the L2-Reidemeister torsion of 
(С.(1У,;2(Г)®2),а рв). For any m  6  N, let (*2(Г)®2)£> denote the W(I> 
Hilbert module of rank m,

(/2(Г)®2) Н  = /2(Г)®2 Ф . . .  © /2(Г)®2 .

771

(6)



Then the chain complex [C*(W,l2(T)®2) , 8P0) is given as follows,

0 _ *  (fa (T)®2)& -11 (;2(Г)®2)М (/2(г)® 2)Р„ —  0, (7)

where 82 , when expressed through а (к — 1) x к matrix (with respect to the 
right matrix multiplications), is given by

d2 =  Ap90 =  ( * ( 4 ^ ' )  with 1 <  i  <  fc — 1, l < j < f c >  (8)
V \ ° хз /  )  (fc-i)xfc

while

а , =  (Ф(х1 - 1) , - - - , Ф ( х * - 1))‘ . (9)

By Lemma 3.1, Ф(г'1 — 1) has dense image, by (9) one sees that the L2- 
homology is given by

Hi2)(c.{w,i2(r)f2),dPS) = 12(г)%/ЩдГ) =  0.

On the other hand, it is clear that

rk<2> (я '2)(с,(и/;2(г)®2),аР0)) -  rk(2) (H[2)(c.(w,i2(r)f2),dP0j)
+  rk(2) ( я ^ ( С . № 1г( Г ) ® Д ^ ) )  =  2 -  2k +  2 (k -  1) =  0 , (10)

where r k ^  is the notation of von Neumann rank (dimension). By (9) and
(10), one sees that (C*(W,l2(T )f2) , 8P0) is weakly acyclic if and only if 62

is injective if and only if Tk̂ 2\ H 22\ c ^ ( W , l 2(T )f2) , 8 P0)) =  0 .
Let A! : 12(Г)®2 0  • • • 0  *2(Г)®2 -> *2(Г)®2 0  • • • 0  2̂(Г)®2 be such that

4--------------v--------------- 4--------------v ^
к к 

when expressed through the к x fc-matrix, one has

4 ,1  = »(*i -1). Kj = Sij {id : г2(г)®2 -  г2(г)®2} for 2 < j < к. 
(и)

From (18) and (11), one finds that the composition A'82 , when expressed 
through the (к — 1) x к matrix, takes the form

Aid2 =  (0, A\ rW ) : г2(Г)®2 Ф • • - © г2(г)® 2 -  /2(Г)®2 © • • • © г2(г)® 2 .
4--------------V--------------' '-------------- ---------------'

к- l  к
( 1 2 )

Note that Ф(жх — 1) is injective and has dense image. One sees easily that 
A' is also injective and has dense image by (11). By (12), we have 82 is injec
tive if and only if is injective. This proves that (C*(W, l2{F)f0 )> 8P0)
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(and thus (C+(S3 \ K J 2{ r ) f 2) ,dP0)) is weakly acyclic if and only if 
is injective.

In order to compute the L2-Reidemeister torsion, one first observes that 
since here Ф(жх — 1) may not be invertible, the method in [Ki, Section 3] 
does not work directly. Here we follow what we did in [LZ, Proposition 5.1]. 

For any e > 0, let A'(e) : *2(Г)®2 © • • • 0  /2(Г)®2 ->
'------------- v------------- '

к
l2(Г)®2 0  ■ • • 0  l2(T )f2 be such that when expressed through the к x k-

V S
к

matrix, one has

Л'1Д(£) =  «-(*!) -  (1 +  e) {Id : г2(Г„„)®2 -  i2( r p„)®2} , (13) 

Л ' »  =  Щхг) -  {id : ;2(Г)®2 -  г2(Г)®2} , 2 <  г <  к,

А ' ф )  =  S i j{ I d : ;2(ГРЙ)®2 - г2(Г„я)®2} for 2 < j < k .

Clearly, for any e > 0, A'(e) is invertible.
Let (C+te(W, l2(T )f2), dP0) be the chain complex

0 (;2(r)®2)[<=-i] (;2(r)® 2)H ,£ *2(r)® 2 — * 0, (14)

where (̂ 2(Г)02 )р2,£ admits the new inner product (-, -)e in /2(Г)®2 given by 

{х,у)е =  {А'{е)'А'(е)х,у). (15)

By (13), we have, for any e > 0,

Detr (^'(e)) =  max{l, (1 +  e)|j/i|} - m ax{l,(l +  е)|?/Г1|}- (16) 

By (14)-(16) and [CFM, Proposition 3.11],

max{l, (1 +  е )Ы }  • max{l, (1 + £г)|уГ1|}Г(2) (c * t£(W,l2(Г)®2),др<3)
(17)

=  r< 2) ( a ^ / 2( г)Р0),дР0).
(18)

We now examine T(2\C+,£(W,l2(X)Pa),dPa) and its limit as e —* 0 . 
Let £ denote the adjoint of d\ with respect to the new inner product in 
(С.,£(ЖЛ2(Г)®2),9м ). Thus we get, by (15),

(dt x ,y )  =  (x ,d ty )  =  ^(Л'(е)*Л'(е))_1 х ,9 ^1/^ =  (x ,  (Л'(е)М '(е)) 1 & tv)t '
(19)



and d'l c =  (Л '(£)М '(е)) -1  д; =  A'(e) - 1 (Л'(е)*)_ 1 Therefore,

=  a ,4 '( e ) - x (A'(e) * ) '1 di- (20)

By (13), one deduces directly that A' ^ ) ” 1 can be written as

^ ( e ) r j  =  4 , 1 ( е Г \  (21)

Л '(е)м  =  - < i ( c M '( e ) r . i .  2 < * < k,

W 1 =  «И {Id : l2(r w )®* -  г2(ГР0)®2} for 2 < j  <  k.

By (9), (13) and (21), we have

SiA'(e)" 1 =  (Id +  2e , 0 • • • , 0)* -  e (A'(e)jf,i, • • • , ^ ( e ) t , i ) '  • (22)
к
By (13), and (20)—(22), 8 ^  =

(Id +  e 4 '(e )r j)  (Id +  еЛ'(е)^}) +  e2 ^  ~
3= 2

( Л '( в ) Г ,1 ) *  ^ ® ( * i  -  l ) * * ( * i  -  1 )  +  £2 J2 ф ( ^  -

( А ' М Г , ! ) -  (23)

By (13) and (21), one has that for any e > 0,

(2<>
Prom (6), (7), Lemma 3.1, Proposition 3.1, (23) and (24), one finds

lim DeW ( d i ^ )  =  lim — — ------ ! • max{|y,|, |» Г *|}2 =  L
e-*o+ e-o+ (l +  £)m ax{|yi|,|y1 |} 2

(25)

Similarly, by (15),

{d2x ,y )c =  (A'(eyA'(e)chx,y) =  (x ,d2 A'(SyA '(e )y ) , (26)

and the adjoint of d2 with respect to the new inner product in 
(C,,e{W,l2(r)f*),dpg) is given by

a2% =  d'2A \e)'A '(e) .  (27)
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By (11), (12) and (27), we have 

dl'Ch =  д'2А \ еуА '(е )д 2 =  A^ 00  ( А ^ ы У

( *  ( f e ) ........... № ) ) ' ( *  ( £ ) ' .........* № ) ■ ) •
(28)

By (6) and (28),

Д т  DetT ( (d2d l c) = Д т  DetT ( ^ f t )  =  Detr (A^ ) 2 . (29) 

By (2), (17), (25) and (29), one finds

T ™ ( c . ( W , l \ Г)®2),9 ,й) =  (30)

Д т  т а х { 1, (1 +  e)|j/i|} • m axfl, (l +  e)|y f 1|} Г ^  ( а , £(Ж,г2(Г)®2),а„„) 

=  Um max{l, (1 +  g)|i/! 1} • max{l, (1 +  е)|уГЧ}

Detr (A>r W )

_  max{|^]|, |j /f ‘ |}

Det

and the result follows. Q.E.D.

R em ark  4.2. We now have extended our previous result [LZ, Proposition 
5.1] for the flat line bundle via a : Г —+ С* to the twisted flat SL(2,C) 
vector bundle via (5 : Г —♦ SL(2, C). Note that this flat SL(2,C) bundle 
over S3 \  plays an important role in understanding the volume conjec
ture beyond the leading order as pointed in.GuMu In,GuMu they claimed 
that the Ray-Singer torsion of the knot complement twisted by the flat 
connection associated to the representation ft : Г —* SL(2 ,C) appears in 
the parameterized volume conjecture. Our L2-Reidemeister torsion twisted 
by the representation /3 : Г —♦ SL(2 , C) shows certainly close and possible 
role in the polarized volume conjecture.
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5. Twisted L2-A lexander (-Conway) invariant w ith  
parameters in character variety

We first recall the character variety and show that our twisted L 2-  
Alexander invariant is depending upon the character of the representation 
/? : Г —► SL(2 , C).

Let К  be a knot in S3 and M k  its complement. That is, M к  =  S 3 — N  к  
where N k  is the open tubular neighborhood of К  in S3. M k  is a compact
3-manifold with boundary д М к — T 2 a torus. Denote by

R (M K ) =  Hom(7n(M /c) ,5 L2(C)) =  Н от(Г, 5L(2,C)

R (dM K) =  Hom(7r1(^M/<-),5 L2(C)) =  Н от(тп(Т2), SL(2 ,<C)).

It is known that they are affine algebraic sets over the complex numbers 
С and so are the corresponding character varieties X ( M k )  and Х (д М к )  
(Seec s). We also have the canonical surjective morphisms t : R (M k )  — * 
X (M k )  and t : R(8 M k)  — ♦ Х (д М к )  which map a representation to 
its character. The natural homomorphism г : (дМ к)  — » 7Г\ (М к)  in
duces the restriction maps r : Х (М к )  — * Х (д М к )  and r : R (M k )  — * 
R (dM K).

Note that 7r i(дМ к)  =  Z 0 Z is generated by two classes, the meridian и 
and the longitude A as its generators. Let R d be the subvariety of R(dMi<) 
consisting of the diagonal representations. Then R d is isomorphic to C* x 
C*. Indeed, for p € R d , we obtain

P(A) =
I 0
o r 1

and p(n) —
m  0 
0 m ~ l

then we assign the pair (/,m) to p. Clearly this is an isomorphism. We shall 
denote by tD the restriction of the morphism t : R (dM x)  — * Х ( д М к ) on 
R d -

Next we recall the definition of the Л-polynomial of К  which was intro
duced in.CCGLS Denote by X '(M k )  the union of the irreducible components 
Y' of X (M k )  such that the closure r(Y')  in Х (д М к )  is 1-dimensional. For 
each component Z' of X '(M k),  denote by Z  the curve t p l (r (Y ')) С Rd- 
We define D K to be the union of the curves Z  as Z' varies over all compo
nents of X'(M k)- Via the above identification oi R d  with С* x C*, Dj< is 
a curve in C x C * .  Now by definition the А -polynomial A(l, m) of К  is the 
defining polynomial of the closure of D k  in С x  C.

From now on, we assume that К  is a hyperbolic knot. Denote by 0o : 
n\(M]<) — ► PSL 2(C) the discrete, faithful representation corresponding



to the hyperbolic structure on M k ■ Note that 0o can be lifted to a SL2 (C) 
representation. Moreover, there are exactly \H1(M k ’,%2) =  Z2I =  2 such 
lifts.

P ro p  5.1. If one of the А р̂г^ 0 (1 < j  <  k) is injective and of determinant 
class for (3 e  Нот(Г, SL(2, C)), then, for irreducible representations with 
[/?] =  [/?'] € X (M K ) ,

Д f i f ( )  = Д £>(/?'), Д(Й Д Г ‘) = A^(/3', (/3')-1).
Proo/. Without loss of generality, we assume j  =  1 and simply compare 
Det-(4 r® /3) with ,-) since the absolute spectral radius is un
changed under the character map.

Let Ap be the morphism A lpv®p, and A0 be the adjoint operator of Ap. 
Note that two SL(2 ,C) representations with the same character must be 
either equivalent or they are reducible. If /3 is irreducible and [/?] =  [/?'] € 
Х ( М к ) у then we have /? and /3' are equivalent by [CS, Proposition 1.5.2]. 
Therefore

Det T(Apr0 ^) =  DetT(Apr0 j3/),

by the property of Fuglede-Kadison determinant in section 2. Hence the 
L2-Alexander and L2-Alexander-Conway invariants are unchanged under 
the character map. Q.E.D.

R em ark  5.1. If (3 is reducible and \(3\ =  [/?'], then (3' is also reducible 
by [CS, Corollary 1.2.2]. If both (3 and /?' are non-abelian reducible, then 
tr/3(c) =  tr(3'(c) =  2 for each element of the commutator subgroup of Г 
by [CS, Lemma 1.2.1]. Since /?[Г, Г] is normal in (3(Y) and there is a unique 
1-dimensional invariant subspace L С С2 of /?[Г, Г], we have the subspace 
L is fixed by (3(Г). By [CS, Corollary 1.2.2], the same holds for (3' since 
(3* is reducible too. Then they both fix the same 1-dimensional subspace 
by changing the basis of C2. We have /? and (3' are equivalent under the 
conjugacy. If both /? and (3' are abelian reducible, then they are equivalent 
under the conjugacy. Hence the L2-Alexander and L2-Alexander-Comvay 
invariants are unchanged under the character map.

R em ark  5 .2 . Proposition 5.1 shows that the twisted L2-Alexander in
variant or the twisted L2-Reidemeister torsion of the knot complement, 
can be reduced into the function of the character variety X (M k )> Note 
that the volume function over the irreducible characters factor through a 
map to a zero-locus of Л-polynomial by [Dun, Theorem 2.6]. Initially we 
are trying to push this further into the А-polynomial, but the difficulty
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relies on the understanding of the restriction map r  : Х ( М к )  —► Х (д М к )  
with the changing of Von Neuman group algebra and the Fuglede-Kadison 
determinant with respect to different von Neumann algebra.

Remark 5.3. If К  is a hyperbolic knot, then the L2~Reidemeister tor
sion of the knot complement determines the hyperbolic volume of the knot 
complement [LuS, Theorem 0.6] (cf. [Lul, Theorem 4.3]). For our twisted 
L2-Reidemeister torsion of the knot complement, is there any relation with 
the volume function parameterized by the zero locus of Л-polynomial after 
identifying elements in the character variety ?

6. Twisted L2-Alexander invariant w ith GL(n,C)  
representations

In this section, we first replace the representation /3 considered in (3.11) 
and (4) by the representation

/3 ': Г —> GL(n, C) (1)

with f)'(xi), ■ ■ ■ , (3'(xk) 6  GL(n, C). Then by proceeding as in Section 1.6, 
we have identified

г2(Г) ® С" ^  /2(Г)®П а  г2(Г) ® ei © ■ • • © г2(Г) ® en. (2)

By identifying the tensor representation of pr  and /3', we have

Pr <S> P 'b )  =  (ргМ М гхп) • Р'Ь)-  (3)
Consider the morphism

K v w  ■ i2(r)®n © • • • © г2(г)®п - 12(r)®n © • • • © ;2(r)®n (4)
N--------------v-------------- '  >-------------- V--------- -----/

f c -1  fc
which, when written as a (fc -  1) x fc-matrix, the (i,j)-component is given 
by

(5)
where is the standard Fox derivative and l2(T)®n is identified in (2).

We call APr00 / the GL(n , C) twisted L2-Alexander matrix of the pre
sentation P (Г) associated to the fundamental representation pr  and the 
GL(n,C) representation /3'.

For any 1 < j  <  k, let

K r w  : ? ( r ) 0 n  ®  • • • ©  *2( П ® П -  *2 ( r ) ® n  ©  • • • e  /2( Г ) Гv 1 sr
f c - i  f c - i
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denote the morphism obtained from APr®p' by removing the j -th column 
from its matrix form.

Lem m a 6 .1 . (i) For any 1 < j  <  k, Ф(жу — 1) € N (r) is injective and 
has dense image, (ii) If one of the AJpr®p>’s, 1 < j  < k, is injective, then 
every A>p r W , 1 < j  < k } is injective. Moreover, in this case, for any
1 < j  <  j '  < k, one has

Detr (AJpr0/3/) Detr (Ф(х7' — 1)) =  Detr (^ Рг< р̂̂  DetT (Ф(xj — 1)). (7)

Proof Note that there exist an A € GL(n,C) such that Ap'(xj)A~l =  
diag(i/j, у2, • • • , y™). Then the rest follows from the same argument in the 
proof of Lemma 3.1. Q. E. D.

T heorem  6.1. (i) For any 1 < j  <  k, the following identity holds, 

DetT (®(x# -  1)) =  Detx(pr (7j) -  y)) • ■ ■ Detr (pr (7j) -  Vj)

=  max {|yjl : 1 < i  < " } ,

where A 0'( x j ) A  1 =  diag(yj, у2, - " ,y*) for some A 6  GL(n,C).
(ii) The quantity

л(2),,*ч Detr { An M r )  fgx
K max{|yj|, 1 < i <  n}

does not depend on the choice of the Wirtinger presentation P (Г) in (3.9) 
and j  =  1, 2 , • • ■ , k.

(Hi) The quantity

Detr |(-4 pr®/3')1 Detr ( Apr<8>(0')-i)I
max{|?/j|, 1 < i < n} max{|y]|_1, 1 < i < n]

does not depend on the choice of the Wirtinger presentation Р(Г) in (3.9) 
and j  — 1, 2 ,-** , k.

Proof. The proof is same as the proof of Proposition 3.1 and Theo
rem 3.1. Q.E.D.



R em ark  6 .1 . If pr is a trivial representation of Г into GL(l2(Г)), then we 
have

д £ У ) =  р е 1 И ^ ' ) |
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m ax{|j/j|,l < i < n} ’

where Det ^ i s  the usual determinant and the absolute value is 
arised from the Fuglede-Kadison determinant. This relates our twisted L2- 
Alexander invariant with the finite dimensional twisted Alexander invariant 
defined in.L,w

R em ark  6 .2 . It would be interesting to know what our twisted L2- 
Alexander(-Conway) invariant really measures when the the infinite dimen
sional representation pr is not the fundamental representation of Г.
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The Faddeev knots are the energy minimizers topologically stratified by the 
Hopf invariant in the Faddeev quantum field theory model governing the inter
action of baryons and mesons. Recent progress made on the existence theory 
indicates that two growth laws expressed in terms of the Faddeev energy and 
the Hopf invariant are essential. The first one, called the Substantial Inequal
ity, describes the energy splitting pattern in a m inimization process and gives 
valuable information on compactness or convergence of a m inimizing sequence.
The second one, which w ill be shown to be universally valid for a broad range of 
energy functionals, ensures that knotted structures are preferred over multiple- 
soliton structures in high Hopf numbers.

1 . In tro d u ctio n

Prelude. During August 20 - 26, 2005, the 23rd International Conference 
on Differential Geometry Methods in Theoretical Physics was held at the 
Chern Institute of Mathematics. A t the conference, we reported our work 
in a talk entitled “Faddeev Knots and Skyrme Solitons.” Xiao-Song was in 
the audience and showed a lot of interest in our work. Since that time until 
May 2006, we had many conversations and email exchanges with Xiao-Song 
on this subject. Below, we first describe what were reported to Xiao-Song 
in 2005 and we then present some new development, which would please 
Xiao-Song if he were here with us today.
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The concept of knots has important applications in science. In the past 
100 years, mathematicians have made great progress in topological and 
combinatorial classifications of knots. In turn, the development of knot 
theory has also facilitated the advancement of mathematics in several of its 
frontiers, especially low-dimensional topology. In knot theory, an interesting 
problem concerns the existence of “ ideal knots,” which promises to provide 
a natural link between the geometric and topological contents of knotted 
structures. This problem has its origin in theoretical physics in which one 
wants to prove the existence and predict the properties of knots “based on 
a first principle approach” .59 In other words, one is interested in determin
ing the detailed physical characteristics of a knot such as its energy (mass), 
geometric conformation, and topological identification, via conditions ex
pressed in terms of temperature, viscosity, electromagnetic, nuclear, and 
possibly gravitational, interactions, which is also known as an Hamiltonian 
approach to knots as field-theoretical stable solitons. The Faddeev knots 
are such structures based on a first-principle approach and arise as knotted 
solitons in the Faddeev quantum field theory model.9,10,27-30,59

In normalized form, the action density of the Faddeev model over the 
standard (3 + l)-dimensional Minkowski space of signature (-1----- ) reads

C = Otln d » n - ± F llu(n )F>“ '(n ), (1.1)

where the field n = (п 1,?г2,пз) assumes its values in the unit 2-sphere 
in K 3 and = n • {d^n A dun). Since n is parallel to d^n A dun,
it is seen that F pu(n )F^ u(n ) = (д^п Л dun) ■ (d^n A dun ),which may be 
identified with the well-known Skyrme term35,55,68-71,83 when one embeds
S 2 into S 3 «  S U (2). Hence, the Faddeev model may be viewed as a refined 
Skyrme model and the solution configurations of the former are the solution 
configurations of the latter with a restrained range.23 In what follows, we 
shall only be interested in static fields which make the Faddeev energy

E (n ) = /  {  £  laJ n l2 + 5 E  l^ ( n ) ! 2}  d3x (1.2)
R3 1 j,k= 1 J

finite. The fmite-energy condition implies that n approaches a constant 
vector noo at spatial infinity (of R 3). Hence we may compactify M3 into S 3 
and view the fields as maps from S 3 to S 2. As a consequence, we see that 
each fmite-energy field configuration n is associated with an integer, Q (n), 
in 7r3(S 2) = Z  (the set of all integers). In fact, such an integer Q (n) is known 
as the Hopf invariant which has the following integral characterization: The 
differential form F  = Fjk(n)dx^ A da;* (j , /с = 1,2,3) is closed in IR3. Thus,
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there is a one form, A  = Ajdxj so that F  = dA. Then the Hopf charge 
Q (n) of the map n may be evaluated by the integral

3 (п ) = 7 т Ч /  A A F ’ (L3 )167Г2 JRз

due to J. H. C. Whitehead,81 which is a special form of the Chern-Simons 
invariant.21,22

The existence of the Faddeev knotted solitons are realized as the solu
tions to the problem

E n  = in f{£ (n ) | E { n) < oo, Q (n ) = AT}, N  € Z, (1.4)

referred to as the Faddeev Knot Problem.
Thus we encounter a direct minimization problem over the full space R 3. 

In such a situation, a typical difficulty is that the minimizing sequence may 
fail to “concentrate” in a local region, which reminds us to look at what the 
concentration-compactness principle of P. L. Lions53,54 can offer. A careful 
examination of the Faddeev Knots Problem indicates that we cannot make 
direct use of this method due to the lack of several key ingredients in the 
Faddeev energy (4) and in the Hopf-Whitehead topological integral (1.3).

A key tool we used was called later by us as “ the Substantial Inequality” 
which may well be explained by what happens in a nuclear fission process: 
When a nucleus fissions, it splits into several smaller fragments. The sum of 
the masses of these fragments is less than the original mass. The “missing” 
mass has been converted into energy according to Einstein’s equation.

On the other hand, in our general framework of minimization of a phys
ical energy functional E  subject to a topological constraint given by an 
integer invariant class Q = iV, we may sim ilarly expect an energy splitting 
of the configuration sequence into finitely many substantial constituents of 
topological charges Q = N s (s = 1,2, • • • , k). We expect that the charge is 
conserved and the energy of the “particle” of charge N  splits into the sum 
of energies E n 3 (s = 1,2, • • • , k) of the “substantial particles” of respective 
charges N s (s = 1, 2, • • ■ , k). Therefore, we expect to have

N  = N\ + N 2 H---+ Nk (charge conservation equality), (1-5)
E n  > E n  1 + E n7 + • ■ ■ + E ^ k (energy conservation inequality).(1.6)

Note that (1.6) is read as an energy conservation relation since possible 
extra energy may be needed for the substances or constituents of energies 
E n x , E n7 , • ■ ■ , E n ,с to form a bound state or composite particle, of energy 
E n  , and, as a result, the composite particle may carry more energy than the 
sum of the energies of its substances or constituents. Hence we collectively
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call the above two relations “ the Substantial Inequality” which spells out a 
first kind of topological growth law describing how energy and topology split 
in a general minimization process. The importance of this inequality is that 
it characterizes the situation when concentration occurs for a minimizing 
sequence. In other words, the charge-energy splitting above is nontrivial 
(k > 2) for a certain charge N  if and only if concentration fails there.

To see how (1.5) and (1.6) can be used to quickly deduce an existence 
theorem for the Faddeev minimization problem (1.4) in 3 dimensions, we 
recall the topological lower bound

E (n) > С|<3(п)|3/ 4 (1.7)

established by Vakulenko and Kapitanski77 where С  > 0 is a universal 
constant. Hence > 0 for any N  Ф  0.

Define

§ = {TV e Z \  {0 } | the Faddeev Problem (1.4) has a solution at N }. (1.8)

The Faddeev Knot Problem asks whether or not there holds § = Z. As a 
first step toward this question, we have

Theorem  1.1. The set § is not empty.

The proof48 amounts to establishing the Substantial Inequality for the 
Faddeev energy (1.2) and noting that if § is empty, then the splitting ex
pressed in (1.5) and (1.6) will continue forever, which contradicts the finite
ness and positiveness of E м for any N .

W ith  (1.5), we can learn more about the soluble set S. For example, 
choose N 0 e Z  \ {0 } so that

E No = min{ E N I N  e Z  \ {0 }}. (1.9)

Then we must have N 0 e S because a nontrivial splitting given in the 
Substantial Inequality will be impossible by the definition of iVo- Thus we 
can state48

Theorem  1 .2 . The least energy point in the Faddeev energy spectrum 
{ E n  I N  G Z  \ {0 }} is attainable, or N q e §.

More knowledge about the set S can be deduced from the Substantial 
Inequality after we realize that the fractional exponent 3/4 in the lower 
bound (1.7) is in fact sharp by establishing48 the sublinear energy upper 
bound

En < C i \N\3'\  (1.10)
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where C\ is a universal positive constant (cf.39 for some estimates for the 
value of C i), which enables us48 to obtain

Theorem  1.3. The set § is an infinite subset o fZ .

Here is a quick proof of the theorem. Otherwise assume that § is finite. 
Set №  = max {TV 6 § } and let No G S  be such that E n0 = min { E n  \ N  € 
§ }, as defined earlier. Taking repeated decompositions if necessary, we may 
assume that all the integers N \,N 2,••• ,N k in (1.5) and (1.6) are in § 
already. Hence |iVi|, |iV2|, • • ■ , |N k\ < № . Thus, in view of (1.5), we have 
N  < k № ; in view of (1.6), we have E n  > ^ E n0• Consequently, E n  > 
(E n0/ N °)N , which contradicts (1.10) when N  is sufficiently large. Hence, 
the assumption that § is finite is false.

In the subsequent sections, we describe some new development on the 
existence of the Faddeev knots. In the next section, we show the existence 
of the Faddeev energy minimizers at the unit Hopf charge Q = ± 1 and 
illustrate how to use the Substantial Inequality (1.5)—(1.6) and a suitable 
estimate on the upper bound on E\ to arrive at a proof. In  Section 3, 
we emphasize that relations given by ( 1.7) and (1.10) spell out a second 
kind of topological growth law which is seen to be fractionally-powered 
and universal in 3 dimensions and we discuss it in the context of other, 
well-known, topological and geometric growth laws in field theory. We also 
recall some recent studies on knot energies and knot invariants in knot 
theory community. In Section 4, we extend the Faddeev knot energy into 
general Hopf dimensions so that the configuration maps are from R 4n-1 into 
S 2n. We are motivated from two considerations: First, in general dimen
sions, we w ill be able to achieve a deeper understanding on the fractional 
power in such topological growth law and single out its universal structures. 
Secondly, theoretical physics not only thrives in but also needs spaces of 
higher dimensions,34,63,84 and a study of the knot energy of the Faddeev 
type in higher dimensions w ill be of interest. In Section 5, we present the 
fractionally-powered universal topological growth law in its most general 
form. In Section 6 , we conclude by commenting on some future issues.

2 . Faddeev K no ts at U n it Charge

For the Faddeev Knot Problem, it has long been anticipated that the Fad
deev energy (1.2) should attain its infimum at the unit charge N  = ±1. 
Indeed, the numerical solutions of Battye and Sutcliffe9,10 indicate that E i 
is the least positive energy point for the evaluated Faddeev energy for the
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Hopf number from one to eight (more recent numerical work by Sutcliffe on 
the Faddeev knots of higher Hopf numbers is reported in76). Then, using 
the Substantial Inequality, we see that E\ would be the least energy point 
among the entire Faddeev energy spectrum. Consequently, by Theorem 1.2, 
E\ is attainable. However, a rigorous proof of this fact along such a line has 
been elusive because it is difficult to establish that E\ is indeed the least 
positive energy point.

Using the classical Hopf map, Ward first estimated78 that for the Fad
deev energy (1.2) the energy E\ has the upper estimate

E i < 32v/2tt2. (2.1)

For more details, see.52
Next, it can be shown52 that the Vakulenko-Kapitanski lower bound 

(1.7) has the explicit form

£ (n ) > 33/88\/27r2|Q(n)|3/4. (2.2)

See also.47,67 Combining (2.1), (2.2), and the Substantial Inequality (1.5)-
(1.6), we have52

Theorem  2 .1. For the Faddeev energy (1.2), the energy E± i is attainable.

Here is a quick proof. Suppose that E i is not attainable. Then in the 
minimization process for E i concentration does not occur and there holds 
the nontrivial energy splitting in view of the substantial inequality: E i > 
E n i + • • • + 1 = N\ + • • • + Nk, N s € Z  \ {0 }, s = 1, * • • , к with 
к > 2. Since each E n s > 0, we see from the fact E i = E - i that N s Ф  ±1  
for s = 1, • • • , k. Hence, one of the integers, N u  • • • , Nk, must be an odd 
number. Assume that N\ is odd. Then \Ni\ > 3. Of course, |iV2| > 2. 
Therefore we are led to

32У27Г2 > E i>  E Nl + E Ni > 33/88\/2тг2(33/4 + 23/4), (2.3)

which is a contradiction and the proof of the theorem follows.

3. G ro w th  Law  Perspectives

We have seen that the fractionally-powered energy-topology growth law of 
the Faddeev model gives rise to a series of important consequences to the 
formation of knots and deserves refreshed close attention and study. In ,50 
we showed that the growth law

En ~  |W|3/4 (3.1)
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for the Faddeev knot energy is universal in the sense that the topological 
growth factor |A f / 4 may be proven to stay unaffected by the fine struc
ture change of the energy. For example, when the L 2-gradient term in the 
Faddeev energy (1.2) is replaced by an Z/p-gradient term so that the total 
energy is of the form

3 3ян = [ {Ei^nip+1E  î (n)i2}d®, (3.2) 
J r 3  4 = 1  j , k = i  J

the asymptotic growth law (3.1) still holds provided that the power p sat
isfies 1 < p < 12/5.

Note that the fractional-exponent topological growth law of the type 
(3.1) is uncommon in quantum field theory models. Indeed, most growth 
laws seen so far are linear, instead of being sublinear. As a comparison, it 
may be instructive to recall some well known problems.

Instantons. Consider an S£/(2)-bundle over the standard 4-sphere 
(S’4, <7) (g is the metric of S 4). The energy (action) functional governing 
an su(2)-valued gauge connection A  is defined by

E (A ) = - [  TYOFa A * F a ), (3.3)
Js 4

where * is the Hodge dual induced from g and F a = dA  + А  Л A  is the 
curvature. One is interested in the global minimizers of (3.3) among the 
topological class that the associated second Chern or first Pontryagin in
variant of the curvature is an integer,

C2{Fa ) =  P i (Fa ) =  - g i j  J  Tr (Fa  A F A) =  N , (3.4)

where N  € Z. It  is well known that for (3.3) subject to (3.4) there holds 
the following linear topological energy lower bound1,8,65,82

E (A ) > 8тг2|ЛГ|. (3.5)

M onopoles. Use the above notation and consider an S U (2)-bundle over 
R 3. Let 0 be a scalar field which lies in the adjoint representation of S U (2). 
The connection A  induces the gauge-covariant derivative И а Ф — d0 +[A, ф]. 
The Yang-Mills-Higgs monopole energy may be written as

E(A,ф)=  jf  ̂ j  -  1тг(Рл л *Fa) -  ^Tr(ИаФЛ *D^ф) + *^(\Ф\2 ~  I)2}

(3.6)
where Л > 0 is a constant and ф obeys the boundary condition \ф(х)\ —> 1 
as |x| —> oo. Therefore, near infinity of M3, we may view ф as a map from S 2
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into S U (2) modulo /7(1). Since SU (2 )/U (1 ) «  S 2, ф may be represented 
by an element in the homotopy group 7Г2(5 2) = Z, which is an integer. This 
integer, say N , is called the monopole number and can be represented by 
the integral

N  = ~  (  Tr(D a </>AFa ). (3.7)
J R 3

When the monopole energy (3.6) is subject to the topological constraint
(3.7), there holds the lower bound43,65

E (A ^ )> A v \ N \ t (3.8)

which is again linear.
Vortices. The formulation is similar to that of monopoles. Let £ be a 

complex line bundle over the Riemann surface S. Use и to denote a section 
£ —1► S. If  A  is a real-valued (Abelian) connection 1-form, then D au  = 
du -  iAu defines an induced connection and F a = &A is the curvature 2- 
form. The Hamiltonian density %  of the Abelian Higgs theory is written 
as

Щ и, A ) = ^ * ( F a A *Fa ) + i  * [ D a u  Л *D^1) + ^(1 -  |u|2)2, (3.9)

where A > 0. We are to find the global minimizers of the energy

E (u , A ) = J K (u ,A )d V , (3.10)

subject to the topological constraint

Cl ̂ )  = - ^ J f a  = N , (3.11)

where ci(£ ) is the first Chern class of the line bundle and N  is a given 
integer. In view of the procedure of Bogomol’nyi,12 it can be shown that 
there holds the topological energy lower bound43

E {u ,A ) > m in {l, A }7r|iV|. (3.12)

B lackholes. Consider an isolated blackhole of mass mgH > 0 whose 
spacetime metric is known to be given by the Schwarzschild line element in 
terms of the spherical coordinates (9, ф, p) as

ds2 = f  1 -  d i2 -  ( l  -  - p 2(dfl2 +sin 2вйф2),

P (3.13)
where G  is the Newton constant. It can be checked that the spatial slice at 
any fixed t has the property that its second fundamental form vanishes and
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that its ADM  mass7 is the same as the blackhole mass m gjj. In  this case, 
the singular surface or the event horizon, £, of the blackhole is a sphere of 
radius ps = 2Grr?3 H whose surface area has the value

A rea(E) = 47r p2s = 167rG2m gH . (3.14)

The Penrose Conjecture62 states that the total energy E  of the spacetime, 
which is a more general concept than the ADM  mass, is bounded from 
below by the total surface area of its apparent horizon E , which coincides 
with the event horizon in the case of a Schwarzschild blackhole, by

1бтtG 2E 2 > A rea(S). (3.15)

In the special case when the second fundamental form of the spatial slice 
vanishes, hence the total momentum is zero and the total gravitational 
energy reduces to the ADM  mass, the relation (3.15) becomes

167rG2m ^DM  > A rea(E ), (3.16)

which is referred to as the Riemannian Penrose Inequality, for which the 
lower bound may be saturated only in the Schwarzschild lim it.14-16,40,41

These growth laws are geometrical rather than topological.
Ideal K n o ts . It  has been an interesting question whether the energy 

infimum of a suitably defined knot energy evaluated over a given knot type 
may be used as a knot invariant. Indeed, Moffat56 articulated to use the 
minimum knot energy as a new type of invariant for knots and links, fur
ther emphasized that any knot or link may be characterized by an “energy 
spectrum” - a set of positive real numbers determined solely by its topol
ogy, and proposed that the lowest energy provides a possible measure of 
knot or link complexity. Katritch et al45 approached knot identification 
by considering the properties of specific geometric forms of knots which 
are defined as ideal so that for a knot with a given topology and assem
bled from a tube of uniform diameter, the ideal form is the geometrical 
configuration having the highest ratio of volume to surface area. Equiva
lently, this amounts to determining the shortest piece of tube that can be 
closed to form the knot. They reported their results of computer simula
tions showing a linear relationship between the length-to-diameter ratio, 
or the ropelength energy, and the (averaged) crossing number, of the knot 
and indicating the practicality of using ropelength energy to detect knot 
type. Buck18 used the minimum ropelength energy of a knot to measure the 
complexity of the knot conformation and investigated the reported linear 
relationship between ropelength energy and the average crossing number 
of knots. He showed that a linear relationship cannot hold in general and
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the rope length required to tie an N -crossing knot or link varies at least 
between A/-3/ 4 and N . Canterella et a l19 further showed that for any power 
3/4 < p < 1, there are infinite families of N -crossing knots and links which 
realize the minimum ropelength energy asymptotic relationship E  ~  N p - 
that is, for each p, there are families of iV-crossing knots and links whose 
minimum ropelength energy and p-powered crossing number ratio, E / N p, 
remains bounded from below and above as TV —> oo. The common feature 
of these studies on the ideal or canonical conformations and complexity of 
knots and links is that they all originate from diagrammatic considerations 
of knotted space curves. Besides, it is often hard to obtain growth laws 
relating the knot energy and knot invariant in a sharp form. For example, 
for a link type with minimum crossing number N  (topology) and minimum 
ropelength L м (energy), the estimate

(4тгЛ711)3/ 4 < L n  < 24N2 (3.17)

was obtained in ,20 in which the left-hand side and right-hand side are quite 
far apart for large values of N . See17,31,33,37,38,44,46,57,60,61,74 for other stud
ies on various energetic and topological characteristics of diagrammatic 
knots.

4. K n o t En erg y  in G eneral H op f Dim ensions

Recall that the integral representation of the Hopf invariant by J.  H. C. 
Whitehead81 of the classical fibration S 3 —> S 2 can be extended to the 
general case of the fibration S 4n-1 -> S 2n. More precisely, let и : S 4n-i —► 
S 2n (n > 1) be a differentiable map. Then there is an integer representation 
of и in the homotopy group 7r4n_ i (5 2n), say Q (u ), called the generalized 
Hopf index of и , which has a similar integral representation as follows. Let 
Q be a volume element of S 2n so that

|S2n| = [  П (4.1)
J s 2n

is the total volume of S 2n and u* the pullback map A (S 2n) —* A (54n-1) 
(a homorphism between the rings of differential forms). Since u* com
mutes with d, we see that du*(Q) = 0; since the de-Rham cohomology 
H 2n(S 4n~ i,R )  is trivial, there is a (2n -  l)-form v on S 4n~l so that 
du = it*(f2). O f course, the normalized volume form П = |S2n|-1ft gives 
the unit volume and v = |S2n|_1v satisfies di) = u*(£l). Since Cl can be 
viewed also as an orientation class, Q (u) may be represented as36,42

Q (u) — [  [  v/\u '(Q ). (4.2)
Js *n- 1 P  I J s 4n~l



The conformal invariance of (4.2) enables us to come up w ith the Hopf 
invariant, Q(w), for maps, it, from R 4n_1 to S 2n which approach fixed di
rections at infinity, as

« (« )  = T ^ i2 /  * Л «*(«)•  dV = U*(n )' (43 )I ^ T  J R4 П - 1

W ith the above preparation, we introduce the generalized Faddeev knot 
energy over R 4n_1 as

E {u ) = j|d u |2 + i| « * (n )|2 }d x , (4.4)

and extend the Faddeev Knot Problem (1.4) into the form

E n  = in f{£?(«) | E {u ) < oo, Q {u) = N }, N  € Z. (4.5)

Theorem  4.1. The generalized Faddeev energy (4-4) of a finite-energy map 
и and its Hopf invariant (4-3) are related by the inequality

E ( u ) > C ( n ) \ Q ( u ) \ (4.6)

where the constant C (n ) in (4-6) has the explicit value

C (n ) = 2 (2 n - l)(2 [4 n - 3 ])“ ^ % ( 2 n ) 5 ^ ( c 0|S2n|2) 1̂ i . (4.7)

Here the constant Co in (4-V is the best constant in the Sobolev inequality 
Co||/1|g < ||V/ | | 2 over R 4n_1 with q satisfying l/q  = 1/2  — l/ (4 n — 1 ) = 
(An — 3)/2(4n — 1), given by the expression

пл o14i / T (2n - i ) r ( 2n + i ) \ ( ^
Co =  ([4n -  l][4n -  3]) 2 ( (J4n_ i --------Г(4n —T)—  J ’ ( )

with u)m being the volume of the unit ball in R m.

Note that, when n = 1, we recover (2.2).

5. Th e  U n ive rsa l G ro w th  Law

The importance of the growth laws relating knot energy and knot invariant 
prompts us to carry out a more thorough investigation. As a starting point, 
we consider the energy

£p(«) = [  |  |du|p + i|u * (Q )|2|d x , (5.1)
JW n - l  t  I  J

which generalizes (4.4). Our first goal is to see how the exponent p affects 
the lower bound (4.6)-(4.7). We have
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Theorem  5.1. Suppose the exponent p in the knot energy (5.1) lies in the 
range

Then there holds the universal fractionally-powered topological lower hound 

E p{ u ) > C ( n , p ) \ Q { u ) \ (5.3) 

where the positive constant C (n , p) may be explicitly expressed as

(col# 2” !2) 1̂ "1 (2n) гип-p) (4n _  p) .  /(n ,p ), (5.4)

where f(n ,p ) (̂4n-
4  n

l ) ( 8 n - p ) - p ( 4 n  +  l )  
8 n (4 n  — p)

l)(8n-p )-p (4n+ l)

Note, (i) In the special case when p = 2, (5.4) reduces to (4.7), namely, 
C (n, 2) = C (n ), as expected, (ii) The most restrictive range of p, as stated 
in (5.2), occurs at the bottom dimension n = 1. In this situation, we have 
l< p < 1 2 / 5 a s  mentioned earlier. When n is larger, the range of p becomes 
bigger quickly, (iii) At the bottom dimension n — 1, an important choice 
for the L p-gradient term is p = 3 which is based on a conformal invariance 
consideration, known to arise in the so-called Nicole type models in particle 
physics.2,3,58,66*80 In ,6 the conformal invariance is designated directly on the 
Skyrme term. These cases are not covered in our range and deserve further 
investigation in 3 and higher dimensions.

See below.
Another, more surprising, property is that we can derive a topological 

upper bound of the form (1.10) in which the constant C\ is independent 
of N  but depends only on the details of the energy density when the knot 
energy is taken to be the most general form

E (u )=  f  IK (Vu ) drc. (5.5)
JR4 n - 1

Here the energy density function !K is only assumed to be continuous with 
respect to its arguments and satisfies the natural condition ^K(O) = 0. We 
have

Theorem 5.2. Let E  be defined by (5.5). Then for any given integer N  
which may be realized as the value of the Hopf invariant, i.e., Q (u) = N  
for some differentiable map и : IR4n_1 —► S 2n, and E n  defined as E n  = 
in f{£ '(u )|£ ,(u) < oo,Q(u) = N }, we have the universal topological upper 
bound

En < C \ N \ (5.6)
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where С  > 0 is a constant independent of N .

A proof of the above theorem can be found in50 under the oversimpli
fied assumption that the Hopf invariant may assume any integer values. In 
particular, our proof relied on using that the smallest positive Hopf num
ber is 1. On the other hand, it is well known that the Hopf invariant13,42 
behaves rather differently in higher dimensions: (i) For n = 1,2,4, there 
are maps S 4n_1 —► S 2n of the Hopf invariant 1. In fact, there are maps 
with the Hopf invariant equal to any integer, (ii) Conversely, if there is a 
map 5 4n_1 —* S 2n of the Hopf invariant 1, then n = 1,2,4. This statement 
is known as Theorem of Adams and Atiyah .4,5,42 (iii) For any n, there is 
always a map S 471-1 —»• S 2n with the Hopf invariant equal to any even 
number. A modified complete proof of this theorem w ill appear elsewhere.

In summary, we have seen that for maps from M4n_1 into S 2n governed 
by the Faddeev type energy and stratified by the Hopf invariant assuming 
an integer value ЛГ, there holds the sharp universal growth law

E jn ~  N  Лп , (5-7)

which has profound implication for knotted structures as energy minimiz- 
ers to exist and is independent of the detailed properties of the energy 
functional.

6. Overlook

Of course, the ultimate goal of our study is to develop an existence theory 
for the Faddeev type knot problems.

Among these problems, an important and useful setting is when we 
consider the existence problem for maps from 54n_1 into S 2n (the compact- 
space setting). We can show that for any possible value N  of the Hopf 
invariant Q there exists an energy minimizer among the constraint class 
Q = N .

The reason for the above rather strong statement to be true is quite 
simple: Since we are in a compact setting, the difficulty with failure of 
concentration disappears. The form of the integral representation of the 
Hopf invariant and the elliptic estimates enable us to show that the Hopf 
invariant is a preserved quantity in the lim it of a minimizing sequence.

Although simple, this situation may be compared with the classical 
study on harmonic maps, especially the result known as the Theorem of 
Sm ith :24,72,73 Every degree N  class of the homotopy group 7rn(S n) = Z  has 
a harmonic representative for n < 7. More precisely, for n = 2, the solu
tions are known explicitly and carry minimum Dirichlet (harmonic map)
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energy;11 for 3 < n < 7, the energy has infimum 0 which can easily be seen 
by a rescaling argument, and hence does not achieve its absolute minimum 
in any class of degree TV ф 0; for n > 8, the situation is not very well under
stood. See.24 Generally speaking, minimization among a homotopy class is 
a difficult issue when there is a lack of a suitable integral representation for 
the class.

As described earlier, a crucial step in the proof that E\ is attainable 
in the classical 3 dimensions amounts to show that the energy splitting 
does not occur at the unit charge Q = 1 by using the explicit energy lower 
bound obtained and a sufficiently good estimate for the energy E\. Unlike 
in the Skyrme model case,25,26,48,49 such an estimate requires some careful 
effort. In order to generalize this type of estimate to the higher dimensions 
over R 4n_1 when n = 2 and n = 4 (say), recall that the classical Hopf 
map (n = 1) is defined via the fibration for which S 3 is viewed as lying 
in C2 and being “factored” out by unit complex multiplication to obtain 
C P 1 = 5 2, resulting in the fiber bundle 5 1 —* S 3 —♦ S 2. For n = 2, we 
may view S 7 as lying in H 2 (quaternionic 2-space) and factor it out by unit 
quaternion multiplication to get H P 1 = S 4, resulting in the fiber bundle
S 3 —» S 7 —♦ S 4. For n = 4, we may use octonions instead and obtain 
the fibration S 7 —► 5 15 —> S 8. These analogies indicate similar possible 
methods for estimating E\ (when n = 2 and 4). Thus it may be hopeful to 
generalize Theorem 2.1 for dimension 3 to dimensions 7 and 15 and prove 
that the knot energy (4.4) for n = 2 and n = 4 attains its infimum at the 
unit Hopf charge Q = ± 1. In the case when n Ф  1,2,4, the lowest positive 
Hopf charge is Q = 2 (the theorem of Adams and Atiyah4,5) and it is not 
known whether E±o is attainable.

Theorem 5.2 suggests that the lower bound expressed in (5.3)-(5.4) 
may be valid for more general energy functionals than that given in (5.1). 
In  particular, the exponent p may be allowed to assume other values than 
the confined range specified in (5.2). In this regard, an interesting model 
is the Nicole model already mentioned earlier governed by the conformally 
invariant energy

% ic o Ie M  = [  Id u l^ d . ,  u :R  (6.1)

See2,3,58 for some study when n = 1. It  is clear that p = 4n — 1 does not 
satisfy (5.2) but it is not hard to establish the lower bound

% icole(u) ^  (6.2)

for some constant C(n) >  0.
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It  will be interesting to know whether the energy (5.5) may be extended 
to contain a potential term which depends on the map и itself, rather than 
its derivatives, so that the model may be used for the situation with a 
broken vacuum symmetry. For this purpose, we consider the energy

E (u )=  [  {:H (V u ) + V {u )} dx. (6.3)
J  R 4 n - 1

In applications, the potential energy density V  scales differently from some 
terms in the kinetic energy density Oi in the integrand of (6.3) so that a 
critical point of (6.3) “partitions” the total energy in a form like

ci / V'(tz) dx + c2 / {some suitable terms in IK (V w )} dx
j R 4 n - 1 j R 4 n - l

= сз / {some other suitable terms in IK (V u )} drc, (6.4)

where the nonnegative constants c\, С2, сз depends on n only so that c\, сз >
0, the terms in CK(Vu) on the left-hand side of (6.4) scale themselves as V , 
and the terms on the right-hand side of (6.4) scale themselves oppositely 
as V . In  view of (6.4) and Theorem 5.2, we see that (5.6) is still valid for 
the more general energy (6.3).

It  is seen that our progress made on the understanding of the topological 
growth laws described here has, to some extent, paved the road to the 
development of an existence theory for knotted structures governed by the 
Faddeev energy in general (Hopf) dimensions.

To end this talk, we would like to highlight and dramatize the univer
sal relation (5.7) relating the knot energy and knot topology through the 
Faddeev quantum field theory as

Physics = Topology,

which supplements the Einstein equation, Geometry = Physics, in General 
Relativity, and reiterates the theme of this conference.
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W e establish an isomorphism between the ring of translation invariant symmet
ric polynomials in n variables and the full polynomial ring in n — I  variables, 
over any field of characteristic 0. In addition, we give a counterexample to a 
conjecture of Haldane3 regarding the structure of translation invariant symmet
ric polynomials. Our motivation is the fractional quantum Hall effect, where 
translation invariant (anti)sym m etric complex polynomials in n variables char
acterize n-electron wavefunctions.

1. Introduction

A polynomial p(z\,. . . ,  zn) is translation invariant iff for all с we have

p(zi +  c,. . . ,  zn +  c) =  p(zu . • •, zn)

Working over C, such a polynomial might yield a quantum mechanical 
description of n particles in the plane. This is the nature of fractional 
quantum Hall states,3 where in addition our polynomials must be sym
metric or antisymmetric. Thus we are led to the study of translation invari
ant (anti)symmetric polynomials. Antisymmetric polynomials fortunately 
do not need special treatment, as they are merely symmetric polynomials 
multiplied by the Vandermonde determinant Y li< j(z* ~ zj )•

In this elementary note we present two results regarding the structure 
of translation invariant symmetric polynomials. Our first result is a sim
ple description of the ring of all such polynomials. Our second result is a 
counterexample to Haldane’s conjecture that every homogeneous transla
tion invariant symmetric polynomial satisfies a certain physically convenient 
property. More precisely, to each symmetric polynomial p one associates a 
certain finite poset B(p)\ Haldane conjectures that if p is homogeneous

mailto:jliptrap@math.ucsb.edu
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and translation invariant, then B (p ) has a maximum. We prove the con
jecture for polynomials in fewer than four variables, indicate how to obtain 
counterexamples, and discuss whether a weakened version of the conjecture 
holds.

2. The ring of translation invariant symmetric polynomials

Let R  С F [z \ ,. . . ,  zn] be the algebra of translation invariant symmet
ric polynomials over a field F  of characteristic 0, and let X Sn С X  = 
F [x i, ... ,x „] be the algebra of symmetric polynomials in x i , ... , xn. Our 
theorem says that R  written in center of mass coordinates becomes X Sn 
modulo one degree of freedom.

Theorem 2.1. The homomorphism a : X Sn —> R  given by cr(xi) = z i—zavg 
is a surjection with kernel (x i -I---- 1- xn), where zavg = £ l zr

An elementary proof of this theorem occupies section 4.
Since charF = 0, any symmetric polynomial in X  can be writ

ten uniquely as a polynomial in the power sum symmetric polynomials 
xf H---- H x£, where 1 < к < n. In other words, the map

9: F [w i , . .. ,iun] -» X Sn, d(wk) = xjr H---- f x j

is an isomorphism of algebras. Note that we could define a different iso
morphism в using elementary symmetric polynomials or complete homo
geneous symmetric polynomials. In  any case, Theorem 2.1 implies that 
crO: F[u>i, .. .  ,w n] —> Я  is a surjection with kernel (w i).

Corollary 2.1. The map ф: F [w 2, . . • ,wn] —* R  given by

Ф{^к) ~  (^1 Zavg) 4“ * ' * "b (^n Zavg) 

is an isomorphism of algebras.

Now let R d be the vector space of all polynomials in R  which are homo
geneous of degree d. Since ф ^ к) is homogeneous of degree к , the isomor
phism ф yields a basis for R d, namely all

n

^л = П ^ ) Лк ^
k=2

where Л is any partition of d in which the integer к appears Xk times, with 
Ai = 0 . Simon et al.2 prove directly that the w\ form a basis of R d, whereas 
we have deduced this fact from the ring structure of R. Although2 defines w\
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using elementary symmetric polynomials rather than power sum symmetric 
polynomials, this difference is purely cosmetic. Since the dimension rrid of 
R d equals the number of partitions of d into integers between 2 and n, it is 
easy to see that a generating function for rrid is given by

OO n 1

Y ^ m dtd =
d= 0 s=2

where mo is defined to be 1.
Finally, we describe the vector space A С Z  of translation invariant 

antisymmetric polynomials. It is well known that any antisymmetric poly
nomial p can be written uniquely as Д</, where q is a symmetric polynomial 
and Д is the Vandermonde determinant П i< j(zi “  zj )• Since Д is transla
tion invariant, we have A  = Д Я, which defines a vector space isomorphism 
from R  to A. Note that Д is homogeneous of degree n(n  — l)/2.

3. Haldane’s conjecture

Every symmetric polynomial is a unique linear combination of symmetrized 
monomials, which physicists like to call boson occupation states. We identify 
symmetrized monomials with multisets of natural numbers:

[Zi, . . . ,  l n \ =  ^ 2  z lJ (i) “  ’ 2tn(n)
<r€Sym(n)

For instance, the multiset [51,02] = [5,0,0] corresponds to the symmetrized 
monomial 2(zf + z\ + z|). Squeezing a symmetrized monomial [/1,. -., /n] 
means decrementing li and incrementing l j , for any pair of indices i , j  such 
that Ц > lj + 1. The set of symmetrized monomials becomes a poset under 
the squeezing order, for a,b e B (p ), put a < b iff a can be obtained from b by 
repeated squeezing. For a symmetric polynomial p, let B (p ) consist of every 
symmetrized monomial whose coefficient in p is nonzero. We view B (p ) as 
a poset under the squeezing order and refer to it as the squeezing poset of 
P-

Definition 3.1. A symmetric polynomial p is Haldane if B (p ) has a max
imum.

Conjecture 3.1 (Haldane). Every translation invariant homogeneous 
symmetric polynomial is Haldane.

R em ark  3.1. Since squeezing moves preserve homogeneous degree, every 
Haldane polynomial is homogeneous. Many homogeneous symmetric poly-
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nomials are not Haldane, such as [3,3,0] -I- [4 , 1, 1], but these might not be 
translation invariant.

Prop 3.1. Haldane’s conjecture holds for polynomials of three or fewer 
variables.

Proof. Since R f  is empty for d > 0, Haldane’s conjecture holds trivially 
for n = 1. For n = 2, every symmetrized monomial is of the form [a, 6] with 
a b — d. Such symmetrized monomials are comparable with respect to 
the squeezing order, so Haldane’s conjecture is automatic for n = 2.

The case n = 3 requires a bit more work. Define an algebra homomor
phism r  : F [z u  * 1*1, by

T(p) {zl j • • • > zn, t) = p(z\ + t } . . . ,  zn + t)

so that p is translation invariant iff т(р) = p. Define a family of linear maps 
7*: F l*b- F[z\, . . . ,z n] by

r (p )  =  To(p) +  T i(p )t  +  . . . +  Td (p )td

so that p is translation invariant iff Ti(p) = 0 for all i > 0. It  is easily 
checked that

Ti([a , 6, c]) = a[a — 1, 6, c] + 6[a, b — 1, c] + c[a, 6, с — 1]

for all a, 6, с > 0. Now suppose [a, 6, c] is a maximal element of the squeezing 
poset of some p e R i  with a > b > с > 0. Then [a + 1,6, с -  1] and 
[a, 6+ 1, с — 1] are not in B (p ). The above equation then implies that the 
coefficient of [a, 6, c] in p equals с times the coefficient of [a, 6, с -  1] in 
T\(p ).  Thus the coefficient of [a ,6, с — 1] in T\(p )  is nonzero, contradicting 
our assumption that p is translation invariant. We conclude that every 
maximal element of B (p ) is of the form [a, 6,0], where a + 6 = d. Since any 
two such elements are comparable, it follows that B (p ) has a maximum. 
Thus Haldane’s conjecture holds in the case n = 3. □

Any two symmetrized monomials written as weakly decreasing se
quences of natural numbers can be compared lexicographically. The lex
icographic order on symmetrized monomials linearizes the squeezing order. 
Let R  — R n be the vector space of translation invariant symmetric homo
geneous degree d polynomials in n variables, and let L  = L dn be the set of 
lexicographic maxima of squeezing posets of polynomials in R. Note that
l^ n l< d im ^ .
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Lem m a 3.1. I f  L d is not linearly ordered with respect to squeezing, then 
some polynomial in R d is not Haldane.

Pro o f. B y  the definition of L d there exist pt € R d such that m* is the 
lexicographic maximum of B (p t), where i — 1,2. W.l.o.g. assume m\ is 
lexicographically bigger than m2, and let c* be the coefficient of in pi. 
Then for any scalar c, the polynomial q = p\ + cp2 € R „  has m2 coefficient 
equal to c\ + cc2. Provided that с 7̂  —C\/c2, the squeezing poset of q 
contains both m\ and m2. Since тп\ is the lexicographic maximum of B(q ), 
and the lexicographic order refines the squeezing order, m i is a maximal 
element of B (q ) with respect to the squeezing order. Since m i and m2 
are incomparable, we conclude that B (q ) does not have a maximum with 
respect to the squeezing order, i.e. q is not Haldane. □

It is a straightforward programming exercise to compute L „  using the 
basis for R d given by formula 1. We find that L% is linearly ordered with 
respect to squeezing for d < 13. Alas,

L j4 = {[14,0,0,0], [12,2,0,0], [11,3,0,0], [10,4,0,0],
[9,5,0,0], [8 ,6,0,0], [8 ,4,2,0], [7,7,0,0]}

is not linearly ordered because [8,4,2,0] and [7,7,0,0] are incomparable. 
Therefore by Lemma 3.1 some q € R\4 is not Haldane. It is a straightfor
ward programming exercise to construct such a q by following the proof of 
Lemma 3.1: one computes the basis of R d given by equation 1 and solves 
two systems of linear equations. We get

q =3(8,4,2,0] -  3(8,4,1,1] -  3[8,3,3,0] + 6[8,3,2,1] -  3(8, 2,2,2)
+ 3[7,7,0,0] -  42[7, 6,1,0] + 46(7,5,2,0] + 80[7,5,1,1] -  22[7,4,3,0]
-  188[7,4,2,1] 4-112[7,3,3,1] + 8(7,3,2,2] + 77[6,6,2,0] 4- 70[6,6,1,1]
-  182[6,5,3,0] -  700[6,5,2,1) + 112(6,4,4,0] + 168(6,4,3,1] -I- 1078(6,4,2,2]
-  728(6,3,3,2] + 5(5,5,4,0] + 1072(5, 5,3,1] + 246(5,5,2,2] -  722(5,4,4,1]
-  2976(5,4,3,2) + 1808(5, 3,3,3] + 1805(4,4,4,2] -  1130(4,4,3,3]

P ro p  3.2. The polynomial q is a counterexample to Haldane’s conjecture.

P roo f. Observe that [8,4,2,0] and [7,7,0,0] are the maximal elements of 
B (q ), which is depicted in figure 3 (with arrows pointing from smaller to 
bigger elements). One checks by computer that q is translation invariant. 
Therefore, being symmetric and homogeneous, q is a counterexample to 
Haldane’s conjecture. □
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Fig. 3.1. Hasse diagram of B(q)

R em ark  3.2. We hope that R dn nevertheless has a basis of Haldane 
polynomials. Computer evidence suggests that \L%\ = dim/?jj. Letting 
L n = O i.•..,/*}> we could then obtain a special basis {p i, . . . ,p k } of R t  
satisfying B (p i )r\L^l = {i; } .  Perhaps {p i, ... tpkj  would be a Haldane basis 
or could be used to construct one.

4. P ro o f o f Theorem  2.1

Let с  Z  — F [z \, . . . ,  zn] be the algebra of symmetric polynomials, and 
let Z  с  Z  be the algebra of translation invariant polynomials, so that we 
are studying R  = Z Sn Г) Let X  = F [x u  • • •, * „], and let

v : X  -> Z F , a (x i) = Zi -  2avg

be the map from the main theorem. Our mission is to show that cr(X Sn) =
R  and kercr = (xavg). Clearly a  is Sn-equivariant, implying cr(X Sn) С R .

or the reverse inclusion, given any p(Z l, . , . ,  zn) € R , translation invariance 
yields

p(zli • • • , 2n) = p(zi -  2avg, . . . , zn -  2avg) = cr(p(x 1, . . . , xn))
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Thus d (X Sn) = R.
It  remains only to show that ker a  = (#avg)- We factor a  into two maps 

which are easier to study.
a

X  т~* Y  n~* Z F 

Let Y  = F [y i, .. .  ,2/n], and define г : X  —> Y , n: Y  —> Z F  by

1 л

3=0
lt {y i )  = Zi -  Zi+i

It is easy to check that the diagram commutes:
1 71-1

1Гт(х{) = -  ^ ( n  -  1 -  j )(z i+j -  zi+j+1)
3=0 

— Z i — Z av g

Thus с  = 7гт, so that we need only show г _ 1(кегтг) = (xaVg)-
First we check that r  is an isomorphism. Let f  : Fx\ H---+ F x n —>

Fy\ H---- 1- F y n be the linear map which extends to т : X  —» Y , and let M
be the matrix of f  with respect to the evident bases. From the definition of 
t  we see that M  is the n x n circulant matrix whose first column is given 
by the vector

v = - (n  — l,n  -  2, . . . ,  0) n
Then M T is the circulant matrix whose first row is v. Since charF = 0, 
the entries of v form a strictly decreasing sequence of nonnegative reals. 
Therefore by Theorem 3 of,1 the matrix M T is nonsingular. Hence M  is 
nonsingular, showing that r  is an isomorphism via the following observation.

O bservation  4.1. Suppose / : F [a i, . . . ,  an] —> F [& i,. . . ,  bn\ is a homo
morphism of polynomial rings which restricts to a linear map

f  : Fa,\ + ■ • • + F a n —♦ Fb\ + ••*•+■ Fbn

Then / is an isomorphism of algebras iff /  is an isomorphism of vector 
spaces.
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Proo f. Exercise in applying the universal property of polynomial rings. □

Now we complete the final step of the proof of Theorem 2.1, which is to 
show that т - 1(кег7г) = (xavg)- B y  the lemma below, ker7r = (yavg)- Since 
r(x avg) = ^ - y ^ 2/avg, and r  is an isomorphism, we have T- 1((y avg)) = 
(xavg). Thus we are done, but for a final lemma.

Lem m a 4.1. ker7r = (yavg), where n : Y
Zi — Zi+1.

Z F is defined by n (y*) =

Proo f. Since 7r(yavg) = 0, we have (yavg) С ker7r. For the reverse inclusion, 
let a  = ( a i , 0:2,Ск:з) be the chain map depicted below

where Y ' = Y/(y\) = F [y 2, . . . ,  yn], n' is the quotient projection, a i is 
the restriction of to (t/i), a 2 sends y\ to t/avg while fixing the remaining 
variables, аз(уг) = Zi — Zi+\, and the unlabelled nonzero maps are inclu
sions. We wish to show that the upper chain is exact. Since the lower chain 
is obviously exact, it suffices to check that a  is a chain isomorphism.

Since the diagram commutes, it suffices to show that each component 
of a  is an isomorphism. B y  Observation 4.1, a 2 is an isomorphism. Then
so is Qi. For аз, define 0 : Y ' —> Y ' by /% *) = yi H---- 1- yn > 2 < г < n.
Again by Observation 4.1, (3 is an isomorphism. Thus it suffices to show 
that 7 = az/3 is an isomorphism. Note that 7  : Y ' —> Z F sends yi to Zi — z\.

For any p (z i,. . . ,  zn) e Z F , translation invariance yields

p(2i, • • •, zn) = p(0, Z2 - Z u . . . r Z n -  zi)
= Р (0 » 7 Ы ,- - - ,7 Ы )
=  7 (p (0 ,2 /2 ,.- .,2 /n ))

Thus 7  is surjective. Now suppose that

0 = 7 (g(2/2, • • •, yn)) = Q{z2 - z u . . . tzn -  z i)

Then in particular q(z2 — z\,. . . ,  zn — z\) is zero modulo (21), implying that 
q(z2, . . .  ,2n) = 0, showing that 7 is injective. Thus 7 is an isomorphism, 
proving the lemma. D
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The main goal of the present paper is to construct new invariants of knots with 
additional structure by adding new gradings to the Khovanov complex. The 
ideas given below work in the case of virtual knots, closed braids and some other 
cases of knots w ith additional structure. The source of our additional grading 
may be topological or combinatorial; it is axiomatised for many partial cases.
As a byproduct, this leads to a complex which in some cases coincides (up to 
grading renormalisation) w ith the usual Khovanov complex and in some other 
cases w ith the Lee-Rasmussen complex.

The grading we are going to construct behaves well w ith respect to some 
generalisations of the Khovanov homology, e.g., Frobenius extensions. These 
new homology theories give sharper estimates for some knot characteristics, 
such as minimal crossing number, atom genus, slice genus, etc.

Our gradings generate a natural filtration on the usual Khovanov complex. 
There exists a spectral sequence starting w ith our homology and converging to 
the (graded version associated w ith) usual Khovanov homology.

1. Introduction

In  the last few years, the invention of link homology (Khovanov homol
ogy» Ozsvath-Szabo invariants, and also papers by Rasmussen, Khovanov- 
Rozansky, Manolescu-Ozsvath-Sarkar-Thurston and others) brought many 
constructions from algebraic topology to knot theory and low-dimensional 
topology.

Such theories take a representative of a low-dimensional diagram (say, 
knot diagram or Heegaard diagram of a 3-manifold) and associate a cer
tain complex w ith this. The homology of this complex is independent of 
the choice of representative, thus the homology defines an invariant of knot 
(resp., 3-manifold, knot in a manifold). Such algebraic complexes have d if
ferent gradings, and this allows one to construct filtrations and spectral
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sequences. The behaviour of such spectral sequences is often closely con
nected to some topological property of knots/3-manifolds. A nice example is 
the work of RasmussenRas estimating the Seifert genus from Khovanov ho- 
mology and giving a simple proof of M ilnor’s conjecture. Another example is 
the work by K.Kawamura,Kaw who sharpened the Morton-Franks-Williams 
estimate for the braiding index.

There is also an approach to estimate the minimal crossing number, 
see.Ma8

We shall mainly concentrate on Khovanov homology In a sequence of 
recent papers, the author generalized Khovanov’s theory from knots in R 3 
to knots in arbitrary thickened 2-surfaces (up to stabilisation, giving virtual 
knots (by Kauffman,KaV) or twisted knots (by Bourgoin,Bou)).

Virtual knots, besides their “knottedness” also carry some information 
about the topology of the underlying surface.

Thus, it would be quite natural to take into account some topological 
data to introduce into Khovanov homology to make the latter stronger. 
This idea was also used in the paper by Asaeda, Przytycki, Sikora.APS We 
shall discuss the interaction between the present work and the workAPS 
later.

The main idea goes as follows: Assume we have a well-defined complex 
made out of some knot diagram. Consider the chain spaces Q (K ) and the 
differential d. It turns out that in some cases it is possible to introduce a 
new grading gr that splits the differential d into two parts d = d' + d" in 
such a way that:

(1) O' preserves the new grading, whence d" increases the new grading;
(2) [C ,d ') is a well-defined complex;
(3) the homology of (C, d ') is invariant (under Reidemeister moves);
(4) there is a spectral sequence with E 1 = H (C ,d ) converging to the

(graded group associated with) usual Khovanov homology (the latter
differential is taken with respect to d).

The new gradings have a topological nature: they correspond to coho
mology classes.

This w ill guarantee that the complex is well defined. However, the grad
ings may be of any other (say, combinatorial) nature; the only thing we 
need is that for the Kauffman bracket states, there are two sorts of circles 
which behave nicely with respect to the Reidemeister moves.

The latter condition guarantees not only that the complex is well de
fined (that is, d' is indeed a differential) but also the invariance under
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Reidemeister moves.
Varying this construction, one can construct further complexes with dif

ferentials of type d' + \d" , where A can be a coefficient or some operator.
The outline of the present paper is the following. In  the next section, we 

define the Kauffman bracket, virtual knots, and Khovanov homology (with 
arbitrary coefficients) for virtual links and classical links (which actually 
constitute a proper part of virtual links).

Section 3 will be devoted to our main example: categorifying the Bour- 
goin invariant with the only one new grading corresponding to the first 
Stiefel-Whitney class for oriented thickenings of non-orientable surfaces.

The proof of the invariance theorem is given in section 4; it indeed 
contains all ingredients for the proof of the main theorem to follow in sec
tion 5, where we have multiple gradings of various types and present more 
examples.

Section 5 also contains the axiomatics for these new gradings and ex
amples what they can be applied to: braids, cables, tangles, long knots 
etc.

Section 6 devoted is to a generalisation of Khovanov’s Frobenius struc
ture. From this point of view, one can think of Lee’s homology as a partial 
case of Khovanov’s Frobenius theory as well as our new theory. As a byprod
uct, we present yet another definition of the Khovanov theory where the 
usual gradings are treated from our “dotted grading viewpoint” .

In section 7, we focus on gradings and filtrations. We discuss the Frobe- 
nius construction due to Khovanov, which is then followed by spectral se
quences, and Lee-Rasmussen invariants.

Section 8 is devoted to applications of the theory constructed and gene
ralisations of some classical constructions in this context

Section 9 is devoted to the discussion and open questions.
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2 . P re lim in arie s : V ir tu a l knots, Kauffm an bracket, atom s, 
and K hovanov hom ology

We think of knot diagrams** as a collection of (classical) crossings on the 
plane somehow connected by arcs, see Fig. 2.1.

Knots are such diagrams modulo Reidemeister moves, but sometimes it 
happens that for a given setup of crossings we are unable to connect them 
by arcs in an appropriate way; this will lead to a diagram called virtual 
with “additional crossings” encircled, see Fig. 2.4.

2 .1 . Atom s and K no ts

A four-valent planar graph Г  generates a natural checkerboard colouring of 
the plane by two colours (adjacent components of the complement R 2\ r  
have different colours).

This construction perfectly describes the role played by alternating di
agrams of classical knots. Recall that a link diagram is alternating if while 
walking along any component we alternate over= and underpasses. Another 
definition of an alternating link diagram sounds as follows: fix a checker
board colouring of the plane (one of the two possible colourings). Then, for 
every vertex the colour of the region corresponding to the angle swept by 
going from the overpass to the underpass in the counterclockwise direction 
is the same.

Thus, planar graphs with natural colourings somehow correspond to 
alternating diagrams of knots and links on the plane: starting with a graph 
and a colouring, we may fix the rule for making crossings: if two edges share 
a black angle, then the we decree the left one (with respect to the clockwise

aW e refer both to knots and links by using a generic term “knot” .



direction) to form an overcrossing, and the right one to be an undercrossing, 
see Fig. 2.2. Thus, colouring a couple of two opposite angles corresponds to 
a choice of a pair of opposite edges to form an overcrossing and vice versa.

292 V. О. Manturov

Fig. 2.2. A crossing corresponding to a vertex of an atom

Now, if we take an arbitrary link diagram and try to establish the colour
ing of angles according to the rule described above, we see that generally 
it is impossible unless the initial diagram is alternating: we can just get a 
region on the plane where colourings at two adjacent angles disagree. So, 
alternating diagrams perfectly match colourings of the 2-sphere (think of 
S 2 as a one-point compactification of R 2). For an arbitrary link, we may 
try to take colours and attach cells to them in a way that the colours would
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agree, namely, the circuits for attaching two-cells are chosen to be those 
rotating circuits, where we always turn inside the angle of one colour.

This leads to the notion of atom. An atom is a pair (M , Г ) of a 2- 
manifold M  and a graph Г  embedded M  together with a colouring of М \Г  
in a checkerboard manner. Here Г  is called the frame of the atom, whence 
by genus (resp., Euler characteristic) of the atom we mean that of M .

Note that the atom genus is also called the Turaev genus,^
Certainly, such a colouring exists if and only if Г  represents the trivial 

Z 2 homology class in M .
Thus, gluing cells to some turning circuits on the diagram, we get an 

atom, where the shadow of the knot plays the role of the frame. Note that 
the structure of opposite half-edges on the plane coincides with that on the 
surface of the atom.

Now, we see that atoms on the sphere are precisely those corresponding 
to alternating link diagrams, whence non-alternating link diagrams lead to 
atoms on surfaces of a higher genus.

In some sense, the genus of the atom is a measure of how far a link 
diagram is from an alternating one, which leads to generalisations of the 
celebrated Kauffman-Murasugi theorem, seeIa and to some estimates con
cerning the Khovanov homology.Ma8

Having an atom, we may try to embed its frame in R 2 in such a way 
that the structure of opposite half-edges at vertices is preserved. Then we 
can take the “ black angle” structure of the atom to restore the crossings 
on the plane.

InMa0 it is proved that the link isotopy type does not depend on the 
particular choice of embedding of the frame into R 2 with the structure of 
opposite edges preserved. The reason is that such embeddings are quite 
rigid.

The atoms whose frame is embeddable in the plane with opposite half
edge structure preserved are called height or vertical.

However, not all atoms can be obtained from some classical knots. Some 
abstract atoms may be quite complicated for its frame to be embeddable 
into R 2 with the opposite half-edges structure preserved. However, if it is 
impossible to immerse a graph in R 2, we may embed it by marking artifacts 
of the embedding (we assume the embedding to be generic) by small circles.

A  virtual diagram is a four-valent graph on the plane with two types of 
crossings: classical or X (for which we mark which pair of opposite 
edges form an overpass) and virtual (which are just marked by a circled 
crossing).
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A virtual link is an equivalence class of virtual diagrams modulo gener
alised Reidemeister moves. The later consist of usual Reidemeister moves 
and the detour move. The detour move removes an arc virtually connecting 
some points A  and В  (that is, having no classical crossings inside) restores 
another connection between A  and В  with several virtual intersections and 
self-intersections, see Fig. 2.3.

Fig. 2.3. The detour move

This move just means that it is inessential to indicate which curves 
connect classical crossings, it is important only to know how these crossings 
are paired.

Considering these diagrams modulo usual Reidemeister moves and the 
detour moves (see ahead), we get what are called virtual knots. The detour 
move is the move removing an arc (possibly, with self-intersections) con
taining only virtual crossing, and adding another arc connecting the same 
points elsewhere.

Virtual knots, being defined diagrammatically, have a topological inter
pretation. They correspond to knots in thickened surfaces S g x I  with fixed 
/-bundle structure (later we will also talk about oriented thickenings of 
non-orientable surfaces) up to stabilisations/destabilisations. Projecting S g
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Fig. 2.4. A  virtual diagram

to R 2 (with the condition, however, that all neighbourhoods of crossings 
are projected with respect to the orientation, we get from a generic dia
gram on Sg a diagram on R 2: besides the usual crossings arising naturally 
as projections of classical crossings, we get virtual crossings, which arise as 
artefacts of the projection: two strands lie in different places on Sg but they 
intersect on the plane because they are forced to do so.

Having a (virtual) knot diagram, we can smooth all classical crossings 
of it in the following two ways: А : “ О С  an<̂  &  : / \  “ 5" / v

Thus, for a diagram L  with n classical crossings we have 2n states. Every 
state is a way of smoothing all (classical) crossings. Enumerate all classical 
crossings by 1 Then the states can be regarded as vertices of the
discrete cube { 0,1 } n, where 0 and 1 correspond to the Л-smoothing and 
the Б -smoothing, respectively. In each state we have a collection of circles 
representing an unlink. We call this cube the state cube of the diagram L.

Then any for any state s we have its height (3(s) being the number 
of crossings smoothed negatively, a (s ) = n — /3(s) being the number of 
crossings smoothed positively, and the number 7 of closed circles.

Then the Kauffman bracket is defined as

асФО-0(* )(_а 2 -  a_2)7(s)_1 (2.1)
s

This bracket is invariant under all Reidemeister moves except for the 
first one.

The normalisation X (I< ) = (- a )“ 3u,(A') (/0 , where w is the writhe num
ber, leads to the definition of the Jones polynomial.

The Kauffman bracket satisfies the usual relation
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After a little variable change and renormalisation, the Kauffman bracket 
can be rewritten in the following form:

(X) = <X> - 9<X) (2-3)
with (0 ) = (<7 + <T1)-
Here we consider bigraded complexes with height (homological grad

ing) г and quantum grading j\ the differential preserves the quantum grading 
and increases the height by 1. The height and grading shift operations are 
defined as (C[fc]{J})*-> = C[i -  k ]{j -  I}.

This form is used as the starting point for the Khovanov homology. 
Namely, we regard the factors (q+q-1) as graded dimensions of the module
V  = { l,X },d e g  1 = l,deg X  = — 1 over some ring R , and the height fi(s ) 
plays the role of homological dimension. Then, if we define the chain space 
[[/C]]fc of homological dimension к to be the direct sum over all vertices 
of /3 = к of V"*W{Jfe} (here {•} is the quantum grading shift), then the 
alternating sum of graded dimensions of [[/^]]fc, is precisely equal to the 
(modified) Kauffman bracket.

Thus, if  we define a d ifferen tia l on [[if]] p reserving  the grad ing 
and increasing the hom ological d im ension by 1, the E u le r  charac
te ris tic  o f th a t com plex would be p recise ly the K au ffm an  bracket.

R em ark  2 .1 . Later on, we shall not care about the normalisation of the 
complexes by degree and height shifts to make their homology invariant 
under the Reidemeister moves. It  is done exactly as in.Kh

We have defined the state cube consisting of circles and carrying no 
information how these circles interact. Turning to Khovanov homology, we 
shall deal with the same cube remembering the information about the circle 
bifurcation. Later on, we refer to it as a bifurcation cube.

The chain spaces of the complex are well defined. However, the problem 
of finding a differential d in the general case of virtual knots, is not very easy. 
To define the differential, we have to pay attention to different isomorphism 
classes of the chain space identified by using some local bases.

The differential acts on the chain space as follows: it takes a chain 
corresponding to a certain vertex of the bifurcation cube to some chains 
corresponding to all adjacent vertices with greater homological degree. That 
is, the differential is a sum of partial differentials, each partial differential



Additional Gradings in Khovanov Homology 297

acts along an edge of the cube. Every partial differential corresponds to 
some direction and is associated with some classical crossing of the diagram.

W ith each circle of each state, we associate the tensor power of the space
V  of graded dimension q + q-1, however, with no prefixed basis. W ith a 
collection of circles, we shall associate the exterior power of this space, as 
follows. W ith  each state s of height b, we associate a basis consisting of 
chains. Now, we order the circles in the state s arbitrarily, fix an arbitrary 
orientation on them and associate with each such circle either 1 or X . W ith 
any such choice, consisting of a state, an ordering of oriented circles and a 
set of elements 1 and X , we associate a chain of the complex. We can also 
associate elements ±1 or ± X  with any circle, which also defines a chain 
of our complex; this chain differs from the corresponding chain with 1 and 
A" by a corresponding sign. Furthermore, we identify the chains according 
to the following rule: the orientation change for one circle leads to a sign 
change of a chain if this circle is marked by ± X  and does not change sign 
if the circle is marked by ± 1; the permutation of circles multiplies the 
chain by the sign of corresponding permutation. This would correspond to 
taking exterior product of vector spaces (graded modules) instead of their 
symmetric product.

Then for a state with I circles, we get a vector space (module) of dimen
sion 21. A ll these chains have homological dimension b. We set the grading 
of these chains equals b plus the number of circles marked by ±1  minus the 
number of circles marked by ± X .

Let us now define the partial differentials of our complex. First, we think 
of each classical crossing so that its edges are oriented upwards, as in Fig.
2.5, upper right picture.

Choose a certain state of a virtual link diagram L  С M . Choose a clas
sical crossing U  of L. We say that in a state s a state circle 7 is incident 
to a classical crossing X  if at least one of the two local parts of smoothed 
crossing X  belongs to 7 . Consider all circles 7 incident to U. Fix  some ori
entation of these circles according to the orientation of the edge emanating 
in the upward-right direction and opposite to the orientation of the edge 
coming from the bottom left, see Fig. 2.5. Such an orientation is well de
fined except for the case when one edge corresponding to a vertex of the 
cube, takes one circle to one circle. In such situation, we shall not define 
the local basis { 1,X } ;  we set the partial differential corresponding to the 
edge, to be zero.

In the other situations, the edge of the cube corresponding to the partial 
differential either increases or decreases the number of circles. This means
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Fig. 2.5. Setting the local basis for a crossing

that at the corresponding crossing the local bifurcation either takes two 
circles into one or takes one circle into two. If  we deal with two circles 
incident to a crossing from opposite signs, we order them in such a way 
that the upper (resp., left) one is the first one; the lower (resp., right) 
one is the second; here the notions “left, right, upper, lower” are chosen 
according to the rule for identifying the crossing neighbourhood with Fig.
2.5. Furthermore, for defining the partial differentials of types m and Д 
(which correspond to decreasing/increasing the number of circles by one) 
we assume that the circles we deal with are in the very initial poisitions in 
oui ordered tensor product; this can always be achieved by a preliminary 
permutation, which, possibly leads to a sign change. Now, let us define the 
partial differential locally according to the prescribed choice of generators 
at crossings and the prescribed ordering.

Now, we describe the partial differentials d' fromMa6 without new 
gradings. If  we set A ( l)  = 1Х д x2 + X x A 12; A (X ) = X x A X 2 and 
m { l i  Л 12) = 1 ;m (X i A 12) = m (li A X 2) = X ;m (X i Л X 2) = 0, de
fine the partial differential &  according to the rule d '(a A P ) = m (a) A(3 (in 
the case we deal with a 2 -» 1-buifurcation, where a  denotes the first two 
circles a ) or d '(a .A p ) = A (a ) A(3 (when one circle marked by a  bifurcates 
to two ones); here by ft we mean an ordered set of oriented circles, not 
incident to the given crossings; the marks on these circles ±1  and ± X  are
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given.

Theorem  2.1.Ma6 [[if]] is a well-defined complex with respect to d; after 
a small grading shift and a height shift, the homology is invariant under 
generalised Reidemeister moves.

Later, when we have new gradings, the differential will be defined just 
by projecting this differential to the grading-preserving subspace, namely, 
d 'a  = pr(jeg=degQ^,Q!’ where prdeg=cjega is the projection to the subspace 
having all additional gradings the same as ot. After all, we shall define d 
as the sum of partial differentials d' . We will get a set of graded groups 
Kh!H with differential d. This differential increases the height (homolog
ical grading), preserves the grading, and does not change the additional 
gradings.

R em ark  2 .2 . The homology theory described above is initially constructed 
out of planar diagrams; thus, it represents a homology theory for links in 
thickened surfaces modulo stabilisation; that is, this homology theory “does 
not feel” removable handles. However, when we impose new gradings, we 
w ill have to fix the thickened surface, since we will deal with its homol
ogy groups. The homology of the new complex to be constructed for such 
thickened surfaces, frankly speaking, would not be a virtual link invariant. 
It would rather be an obstruction for links in thickened surfaces to decrease 
the underlying genus of the corresponding surface.

2 .2 . U sual Khovanov homology

For the case of classical knot theory (and also some parts of virtual knot 
theory) the above setup is actually not needed for constructing Khovanov 
homology. One can get the chain spaces generated by tensor powers of V  
with appropriate grading and degree shifts, as it was done in the original 
Khovanov paper.Kh Namely, one takes just the symmetric tensor power 
V ® k for a vertex of a cube with к circles in the corresponding state. One 
also need not care about signs: the type-X generators are chosen once 
forever. Then it allows to construct partial differentials just by using some 
concrete formulae for A  and m. The main difficulty we had to overcome was 
the case of 1 —> 1-type partial differentials. If  no such 1 —> 1-bifurcations 
occur then the original construction works straightforwardly. Namely, after 
splicing some minus signs, these formulae lead to a well defined complex 
whose homology is the usual Khovanov homology.
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Assume for some category (knots, virtual knots, braids, tangles) we have a 
well-defined Kauffman bracket. That is, we have a set of (classical) cross
ings, which can be smoothed so that the formula (2.3) can be applied.

Consider the following generalisation of virtual knots (proposed by 
Mario Bourgoin, seeBou).

We consider knots in oriented thickenings of 2-surfaces, the latter not 
necessarily orientable. Namely, we take a 2-surface M  and fix the /-bundle 
M  over M  which is oriented as a total fibration space, and keep both the 
orientation and the /-bundle structure fixed.

We consider knots and links in such surfaces up to isotopy and sta
bilisation/destabilisation and refer to them as twisted links. V irtual links 
constitute a proper part of twisted links.Bou

Note that this theory encloses as a partial case the theory of knots in 
R P 3, since R P 3\ {* } is nothing but the oriented thickening of R P 2.

Any link in M  has a projection to the base space, the latter being a 
four-valent graph.

Since the space M  is orientable (and even oriented), there is a canonical 
way for defining the Л-smoothing and the В -smoothing with respect to the 
orientation. Thus, the formula (2.3) gives a well-defined Kauffman bracket 
for such objects, which turns out to be invariant; the proof is standard, see, 
e.g.Ma3

Moreover, the approach described in  the p revious section  gives 
a well-defined Khovanov hom ology theory. To this end, we have to 
establish the chain space and the differentials.

Fix  a cell decomposition of M  with exactly one 2-cell С  and choose a 
canonical “upward” direction for C. Then we can treat every crossing as 
a classical one, that is, identify its neighbourhood with the local picture 
shown in Fig. 2.5.

This allows to define [[K ]] literally as above, and we get the following

Theorem  3.1. For twisted knots the complex [[К-]] is a well-defined com
plex with respect to d '; after a small grading shift and a height shift, the 
homology is invariant under isotopy (the orientation of the ambient space 
remains fixed together with the I-bundle structure); the differential d' in 
creases the homological grading by 1 and preserves the quantum grading.

As shown in ,Ma6 the homology of this complex does not depend on the 
choice of С  and the upward orientation.

We should mention, that there have been a lot of generalisations of the

3. Bourgoin’s twisted knots. Additional gradings
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Kauffman bracket, see e.g. Kauffman-Dye,DK2 Manturov,Ma9 Miyazawa.M,y
Each of these generalisations introduces something new to the formula 

for the Kauffman bracket of either topological or combinatorial nature.
Bourgoin proposed the following generalization of the Kauffman bracket 

for such surfaces.

a“<5b/3(»)jbn"M(-a2 - a-2)V(s> (3.1)
S

where 7 ' and 7 "  correspond to the number of orienting/non-orienting circles 
in the state s, respectively.

The goal of the present section is to describe how to categorify this 
invariant and then see which further examples will fit into the construction.

In the Khovanov setup, we had (<7 + <7_1) instead of (- a 2 -  a-2). W hat 
should we have instead of M ?

W hat should be the vector space categorifying this variable. As can be 
seen from Khovanov’s algebraic reasonings, see,Kh2 the space corresponding 
to one circle should be two-dimensional.

To preserve the sim ilarity with the initial picture, it is convenient to 
make one generator (1) of this space having quantum grading +1 and the 
other one (which might be X  or —X )  having quantum grading to —1.

This is the point where new gradings come into play: with every non
orienting circle in a Kauffman state, we associate the space of graded di
mension qg~l + q~lg, where g corresponds to the new grading. At the 
uncategorified level, this just means M  = qg~l + q~lg, and thus we lose no 
information.

At the categorified level, this means that we introduce a new grading 
for the chain spaces: for every non-orienting loop we associate a Z-grading 
equal to 1 if this loop is marked by X  and —1 if this loop is marked by 1. 
For orienting loops, we have no new gradings.

Now, let us define the new grading (p-grading) for the complex [[/<]] as 
the sum of all new gradings over all non-orienting circles.

Denote the obtained chain space by [[#]]$; this is actually nothing but 
[[if]] with new grading imposed.

N otation . Further on, we shall mark all labels belonging to non
orienting circles by a point, that is, we write i  and X  for labels 1 and 
X  on non-orienting circles.

Here we give an example how one smoothing with dots gets recon
structed into another smoothing; we put dots over some circles which cor
respond to “non-orienting” curves, see Fig. 3.1.
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Fig. 3.1. Dotted circles

Let us look how the differentials in [[if]] behave with respect to the new 
grading p. It  is easy to see that

Lem m a 3.1. The differential d can be uniquely represented as d' 4- d ", 
where d' preserves the new grading, and d" increases the new grading by 2 .

Indeed, one can check all m-type and Д-type partial differentials, and 
see that i A i —> 1, i  A X  —> X , X  —у X  A X  are all increasing the grading 
by 2, whence the partial differential 1 —> X A l  + 1 A X  splits into two parts, 
where the first one preserves the new grading, and the second one increases 
that by 2.

Prom Lemma 3.1 we get

Lem m a 3.2. \[K]\g is a well defined triply graded complex with respect to 
the differential d '.

Pro o f. Indeed, (d/2) is just the projection of д2 = 0 to the grading-
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preserving subspace. □

Luckily, it turns out that the homology of [[K ))g is invariant after the 
same grading and degree shift (for old gradings) as in the usual case of 
classical knots (Kh) or virtual knots with oriented atoms.Ma3 We shall show 
this more generally in the next section.

4. Additional grading: the general case

The goal of our section is the following. Assume we have a space of knots 
(braids, tangles, etc.) with a well-defined Kauffman bracket and Khovanov 
homology. We wish to mark some circles in Kauffman’s states by dots (anal
ogously to non-orienting cirlces in Bourgoin’s case) thus defining the new 
“dotted gradings” : the dotted grading for a chain in a given state is defined 
as the number of all X  minus the number of all i. Then we split the usual 
Khovanov differential d into two parts: the one d' preserving the dotted 
grading and the one d " changing the dotted grading.

W hat are the properties this dotting should satisfy if we want the grad
ing to satisfy the following:

(1) The complex [[Я ]^  is well defined;
(2) Its homology (after some height and degree shift) is invariant under 

isotopy (combinatorial equivalence, Reidemeister moves).

The answer to the first question is easy: we just need that d”  either 
always increase the new grading or always decrease the new grading. Then 
it w ill guarantee d'2 = 0.

But if we want the dots on circles to behave just as in the case of 
Bourgoin so that the rules for multiplication and comultiplication (with 
respect to the new grading) are:

m (l A 1) = 1; m (l Л X ) — X ; m (X  Л 1) = X ; m {X  Л X )  = 0 

m (i Л 1) = i;m (i Л X )  = 0;m (X  Л 1) = X \ m (X  Л X )  = 0 

m( 1 Л i )  = i;m (l Л X )  = X ;m (X  Л i )  = 0;m (X  Л X )  = 0

m(i Л i) =  0;m(i Л X )  =  X ;m (X  Л i) =  X \ m (X  Л X )  — 0
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and

Д(1) = 1 Л 1  + Х Л 1

or

A ( l)  = i A X  + d X  A I

(depending on whether the output circles are dotted)

Д (1 ) = Х л Х

or (when both output circles are dotted)

A ( X )  = 0 .

A(i) = 1 A X

or

A(i) =  X  л i

(depending on which of the two output circles is dotted)

A { X )  = X  A X

or

A ( X )  = X  A X

(depending on which of the two output circles is dotted).
The operators m and Л  above are just as before (in the categorifica- 

tion of Bourgoin’s invariant), however, with the reasons for putting dots 
completely forgotten.

Nevertheless, to have precisely this dotting, we need that the dotting 
of circles is additive modulo Z 2, that is, if we have a 2 —» 1 bifurcation, 
then the number of dots for the two circles is congruent modulo 2 to the 
number of dots for the one circle (analogously for 1 —♦ 2-bifurcations). We 
also require that this dotting is preserved under 1 —* 1-bifurcations, that is
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analogous to the fact that if a surgery transforms one circle to one circle 
then this circle should necessarily be unorienting both before and after the 
surgery.

The conditions above is enough for the complex [[K ]]g to be well defined.
Now, in order to have the invariance under the Reidemeister moves, we 

have to restore the proof picture of Khovanov (or ofMa6).
The invariance under the first Reidemeister move is based on the fol

lowing two which should held when adding a small curl:

(1) the mapping Д is injective
(2) the mapping m is surjective.

In fact, the last two conditions hold when the small circle is not dotted.
Indeed, consider the complex

[(Xii = ([(X)]д [(Хиш) • с4-1)
The usual argument goes as follows: the complex in the right hand 

side contains an m-type partial differential, which is surjective. Thus, the 
complex is killed, and what remains from [/^ J] is precisely (after a 
suitable normalisation) the homology of [[^Xj]-

But Д is injective because for any I € 1 ,X  we have A (l) = l А X  +
(somemess), where the second term X  in I A X  corresponds to the small 
circle.

But in our situation with dotted circles, this happens only if the small 
circle is not dotted. But if the small circle is dotted, it would lead, say, to 
Д : X  —► 0, because X  A X  has another dotted grading (greater by 2 than 
the grading of X ).

An analogous situation happens with

[tXii = ([(Xi)" [(Xiim) • с4-2)
Here we need that the mapping m be surjective; actually, it would suffice 

that the multiplication by 1 on the small circle is the identity. But this 
happens if and only if the small circle is not dotted, that is, we have 1, not 
i.

Quite similar things happen for the second and for the third Reidemeis
ter moves. The necessary conditions can be summarised as follows:

The small circles which appear for the second and the third Reidemeister 
move should not be dotted.
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The explanation comes a bit later. Now, we see that this condition is 
obviously satisfied when the dotting comes from a cohomology class, and not 
necessarily the Stiefel-Whitney cohomology class for non-orientable surface. 
Any homology class should do.

Thus (modulo some explanations given below) we have proved the fol
lowing

Theorem  4.1. Let M  —» M  be a fibration with I-fibre so that M  is ori
entable and M  is a 2-surface. Let h be a Z^-cohomology class and let g 
be the corresponding dotting. Consider the corresponding grading on [[K]\. 
Then for a link К  С Ж  the homology of[[K ]\g is invariant under isotopy of 
К  in M  (with both the orientation of M  and the I-bundle structure fixed) 
up to some shifts of the usual (quantum) grading and height (homological 
grading).

4.1. Ex p lan ation  fo r  the second and the th ird  m oves 

We have the following picture for the Reidemeister move for [£sQ]*

tiXiKi} -=♦ aXm
д т T (4-3) 
[iXl] —» [[><]]{!}

Here we use the notation {•} for the degree shifts, see page 296.

[ [ Х и т  н Х и т
д T t (4-4)
нХн —[[Хиш

This complex contains the subcomlex C':

[tXiiim -=* [[XiH2>
e' = f т (4-5>

о — » о

if the small circle is not dotted.
Here and further 1 denotes the mark on the small circle.
Then the acyclicity of Q' is evident.
Factoring 6 by б7, we get:
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[[Xl]{l}/i=o 0
AT T ■ (4 .6)

[[Xl] ^  [[><)]{!>
In the last complex, the mapping Д directed upwards, is an isomorphism 

(when our small circle is not dotted). Thus the initial complex has the same 
homology group as [ [X ] ] .  This proves the invariance under ft2.

The argument for S73 is standard as well; it relies on the invariance under 
Q2 and thus we should also require that the small circle is not dotted.

5. M o re  gradings; m ore exam ples

We have listed the necessary conditions for the dotting to give such a grad
ing that the homology of [[K ]]g is invariant (up to some shifts); the condi
tions are quite natural: additivity of dots modulo Z 2 and triviality of small 
circles for all types of Reidemeister moves. We have actually missed one con
dition we assumed without saying. Namely, in the pictures corresponding 
to the Reidemeister moves, the sim ilar arcs are dotted similarly.

This means, for example, that for the second Reidemeister move the 
smoothing gives two branches which should have the same dotting as 
the two branches of )  The same follows for all the three moves.

Thus, we introduce the dotting axiomatics. Namely, assume we have 
some class of objects with Reidemeister moves, Kauffman bracket and the 
Khovanov homology (in the usual setup or in the setup ofMa6). Assume its 
circles can be dotted in such a way that the following conditions hold:

(1) The dotting of circles is additive with respect to 2 —* 1 and 1 —> 2- 
bifurcations, and it is preserved under 1 —> 1-bifurcations.

(2) Sim ilar curves for similar smoothings of the RHS and the LH S of any 
Reidemeister move have the same dotting
and

(3) Small circles appearing for- the first, the second, and the third Reide
meister moves are not dotted.

Let us call the conditions above the dotting conditions.

Theorem  5 .1. Assume there is a theory with Khovanov complex ([[/<]], ̂ ) 
such that the Kauffman states can be dotted so that the dotting conditions 
hold. Define [[/^]]5 as before (see page 301).
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1) Then the homology of [[K ]]g is invariant (up to a degree shift and a 
height shift).

2) For any operator A on the ground ring, the complex [[/^]]5 is well 
defined with respect to the differential d' + \ d ", and the corresponding ho
mology is invariant (up to well-known shifts).

3) Moreover, if we have several dottings p i, p2, . . . ,  gk so that for each of 
them the dotting condition holds, then the homology of the complex К ĝ ,...,gk 
with differential dgi%.mm%gk defined to be the projection of d to the subspace 
preserving all the gradings, is invariant.

Proo f. The first part of the theorem follows from the reasonings above.
Now, for the differential d = &  + Ad" we have (<д)2 = д '2 + \ {d 'd " + 

д"д')-\-Х2д "2\ the expression in the right hand side gives the projections of 
(d)2 = (d ' -f d ")2 to three subspaces of corresponding gradings taken with 
some coefficients (here 1,A,A2). Since (d )2 = 0, all projections are zeroes. 
The invariance of the homology is proved as above. The main thing is that 
the mapping m is surjective and A  is injective.

The proof of the last statement is analogous to the proof with only one 
grading. Again, it is enough to mention that m remains surjective and A  
remains injective. □

5.1. Exam ples

One example (already published in the noteMa7) deals with the following 
situation. Consider a fixed oriented thickened surface Ж  which is the total 
space of an /-fibre bundle over some 2-manifold M , not necessarily ori
entable. We assume the orientation of M  and the /-bundle structure fixed.

Consider all Z 2-cohomology classes Н 1(Ж ) (there are finitely many of 
them). For knots in M , each of these classes generates a dotting for circles 
(see page 301) in the Kauffman states, thus, it defines gradings for [[K]\- 
Call these gradings additional (with respect to the two usual Khovanov 
gradings). Denote the obtained complex by [[/f]]p9 and the projection of 
the differential d by dgg.

Theorem  5.2. The homology o f[[K ]]gg with respect to dgg is an invariant 
of K .

Consider the category T  of (classical or virtual) tangles with 2к open 
ends. Then the construction above allows to make the following dotting on 
the states of the Kauffman bracket.
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Fix some number I and mark some of the tangle ends by some of I 
colours 1,2

Couple the endpoints of the tangle in an arbitrary way (so that any 
tangle closes into a classical or virtual knot).

Having done this, for any tangle t e T ,  we can consider its closure C l(t). 
It acquires a dotting from I colours, thus we get I additional gradings for the 
Khovanov complex; denote the obtained complex by [[Cl(t)]\dd, and denote 
the corresponding differential by Odd-

From the above, we get the following

Theorem  5.3. For any fixed endpoint coupling, the homology of [[Cl(t)]]dd 
is an invariant oft.

A particular case of this refers to long classical (and virtual) knots.
Namely, if we deal with long virtual knots, this grading will lead to a new 

invariants. Note that long virtual knots do not coincide with compact virtual 
knots, see e.g.,Ia4 There are non-trivial long virtual knots (and tangles) 
having only trivial classical closures. Say, it is easy to construct two classical
2 — 2-tangle with the same classical closures and different virtual closures.

As for classical knots, thinking of them from the “long” point of view 
seems to be very prospective. In our case, if we take long classical knots 
and put one dot on one end, thus defining a new grading. This will split 
the usual Khovanov differential d into д' -I- d ". The only circle which can 
support the new grading is the one obtained by closing the only long arc. 
It  exists in every state, and it can be marked either by X  or by 1. If  we just 
take d ', then it would split the initial Khovanov complex into two parts: 
the one with X  and the one with i with no differential acting from one part 
to another.

This is nothing but the usual reduced Khovanov homology.
However, if we take not just d', but d' + \d" for some ring R  where Л 

is a zero divisor (say, 2 in the ring Z 4).
This defines new invariants of ordinary knots (or links with one marked 

component).
However, it seems to be much more interesting when we pass from usual 

long knots to cables. Namely, having a long classical knot (assume it to be 
framed), we can take its n-cabling. Then for any dotting and for any closure 
the new homology groups will be invariants of the initial (long) classical 
knot.

One more example refers to rigid virtual knots. We consider virtual 
knot diagrams up to all Reidemeister moves and all detours preserving the
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Whitney index of the curve. Namely, we prohibit the following first virtual 
Reidemeister moves: Rigid virtual knots are of interest because
all quantum invariants of classical knots (which can not be generalised for 
generic virtual knots) can be generalised in full totality for rigid virtual 
knots.

For such knots, since the first virtual Reidemeister move is forbidden, in 
any Kauffman state for any circle the number of self-intersections modulo
2 for such circles is invariant. It  defines well a dotting, thus giving one new 
grading for rigid virtual knots.

5.2. B ra id s

It  is a very intriguing question to get new gradings for classical knots (w ith
out going to long knots).

We are not going to consider braids just as a partial case of tangles and 
put various dots on the ends of the braid. We think of a braid as a source 
of constructing knot invariants via Markov moves.

Thus, a closed braid can be viewed of as a special kind of link in a 
thickened annulus S l x I  x I .  This annulus has non-trivial cohomology 
group H X(5 J x I  x 7, Z 2) = Z 2. From this we get an additional grading, 
thus having a complex [[C7(£)]]5 with differential d'\ here C l(B )  is the 
closure of a braid В . It  is obvious that the homology of this complex is well 
defined not only under braid isotopies, but also under braid conjugations, 
since they preserve the closure.

Thus, in order to get a knot invariant, we have to overcome the second 
Markov move (adding a new loop). Unfortunately, if K ' is obtained from К  
by a second Markov move then the homology of C l(K ')  should not coincide 
with the homology of C l(K ). The reason is that the move we perform is 
the first Reidemeister move, and the small circle that appears is dotted.

However, this allows to extract the difficulty for proving the invariance 
of the the new dotted (grading) homology for knots in its pure form : the 
only obstacle we get is the first Reidemeister move.

Hopefully, the homology of this space with extra gradings behaves in a 
predictable manner under the Markov move, maybe, after some stabilisa
tions.

We shall return to this question while speaking about filtrations and 
spectral sequences.
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5.3. Fu rth e r gradings

The construction above takes into account only Z 2-homology classes (un- 
linke the construction ofAPS) where the homotopy information of Kauffman 
state circles was taken into account to construct a grading.

More homology information can be taken into account in the following 
manner.

Assume we have only one non-trivial cohomology class (say, we live on 
the thickened annulus or deal with long knots with one dot on one end).

Then such an object has H l = Z. Previously, we were using only the 
Z 2 information for constructing our differentials.

We shall now use the Z-cohomology information to introduce the sec
ondary gradings as follows.

If  the usual grading coming from the Z 2-cohomology class is non-trivial, 
then we decree the secondary grading to be zero. If  the first grading is 
trivial, then we look at the value of the cohomology class not over Z 2, but 
over Z 4 and then we set the secondary grading to be 0 if the cohomology 
class is trivial modulo Z 4 and 1 if it is equal to 2 modulo Z 4. Analogously, 
in the case when the primary and the secondary gradings are both zero, 
we define the ternary grading to be 1 or 0 depending on the value of the 
Zg-cohomology (of course, if one of them was not zero, we set all further 
gradings to be zero).

This defines a family of further gradings on circles which answers the 
question what is the maximal power of 2, the corresponding value of the 
cohomology is equal to. For instance, such gradings can be all zeroes (say, 
if the circle is trivial) or (1,0,0, . . . )  or (0, 1,0,0, . . . )  or (0,0, 1,0,0, . . . ) ,  
etc.

These gradings define corresponding dottings and gradings for all ele
ments 1 and X  (as before, we count the gradings for X  with plus, and the 
gradings for 1 with minus).

This defines a multigrading on the complex (chain set) [[if]]. Denote 
the obtained chain set by [[if]]m5- The usual differential d for [[if]] splits 
into two parts: the one d' preserving the new multigrading and the one d" 
not preserving the grading.

Lem m a 5 .1. For any of the new gradings, the differential d " either pre
serves it or increases it

Proo f. Indeed, assume we have a bifurcation 2 —* 1 or 1 —* 2. Such a 
bifurcation may behave in two ways with respect to the new gradings on 
circles: either it preserves the total set (sum) of gradings (each considered
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modulo Z 2) as in the case (1,0, . . . )  A (1 ,0 , . . . , )  —> (0 ,0 . . . ) ,  or it changes 
it, as in the case (1,0, . . . , )  Л (1,0, . . . )  —> (0,1, . .. ) .  In  the second case the 
parity in one grading (in our case, the second) is violated, thus, d' equals 
zero.

In the first case we may think that our differential behaves in the same 
way with all the gradings separately, which returns us to the case of different 
gradings coming from different cohomology classes. □

The above reasonings lead us to the following

Theorem  5.4. The homology of [[-ft"]]™*? with respect to d ' is an invariant 
in the corresponding category.

Analogously, one may consider the case when we have Я 1 of rank greater 
than one.

6. Khovanov’s Frobenius theory

The Khovanov theory for classical knots has some natural generalisations, 
some of them were first discovered by Khovanov. Here we briefly discuss 
the generalisation of them for the case of knots in thickened surfaces and 
additional gradings. The corresponding results without additional gradings 
were published in.Ma3»Ma6

Let A  be commutative rings, and let t : —» A  be an embedding, such 
that l(1) = 1. The restriction functor mapping A -modules to Я -modules 
has a right conjugate and a left conjugate: the induction functor In d (M ) = 
А  <8>я M  and the coinduction functor C o In d (M ) = Н от< %(А ,Ж ). One 
says that t is a Frobenius embedding if these two functors are isomorphic. 
Equivalently: the embedding i is Frobenius, if the restriction function has 
a two-sided dual functor. In this case one says also that the ring A  is a 
Frobenius extension of %  by means of i.

In ,Kh2 Khovanov asked the question: to find a couple of linear spaces 
(Л ,& )  such that, taking Л as the basic coefficient ring and a Frobenius 
extension A  over $  as the homology ring of the unknot, we would be able to 
construct a link homology theory “ in the same way” as the usual homology 
theory.

Here “in the same manner” means that we consider the state cube, 
where at each vertex we put a tensor power of A  (over IR), corresponding to 
the number of circles in the given state, and define the partial differentials 
by means of m and Д (multiplication and comultiplication), and then put 
signs on the edges of the cube and normalise the whole construction by
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height and grading shifts (he did not use wedge product or involution in 
the Frobenius algebra).

Khovanov showed that the invariance under the first Reidemeister move 
requires that A  is a two-dimensional module over 01 and gave necessary an 
sufficeint conditions for the existence of such an invariant link homology 
theory.

Note that in the present section we shall mainly work with the classical 
setup and notation of Khovanov, that is, we use symmetric tensor powers 
and then add minus signs to the cube, thus restricting ourselves for the 
case when no 1 —> 1-bifurcations in the state cube occur. We have partially 
generalised Khovanov Frobenius theory for the case of arbitrary virtual 
knots, and we shall return to that case in the end of the present section.

In ,Kh2 it is also shown that any link homology theory of such sort can be 
obtained b}' means of some operations (basis change, twisting and duality) 
from the following solution called universal:

(1) K  = Z [М ].
(2) A  = K { X ] / ( X 2 - h X - t ) ,
(3) deg X  = 2, deg h — 2, deg t = 4;
(4) A(l) = 1 ® X  + X<8>l-M<g)l
(5) A ( X )  = X  ® X  + t l ® l .

As we see, the multiplication in the algebra A  preserves the grading, 
and the comultiplication increases this by 2.

We omit the normalisation regulating the corresponding gradings.
First note that this Frobenius theory contains (as an important partial 

case) the Lee-Rasmussen theory, see,Lee,Ras when we specify t = h = 1. The 
Lee-Rasmussen theory, has one grading less: indeed, the differentials here 
do not respect the quantum grading.

We call the theory constucted above the universal (Л, A)-construction. 
The corresponding homology of a (classical) link L  is be denoted by 
I< hu(L).

The main question we address in the following section is: how to split 
the differentials above into d' and d "?

Note that if we introduce the new grading just by dotting and then 
counting the number of X  minus the number of i, the partial differential 
corresponding to d [we call it d as well; abusing notation] which is some 
tensor product (or wedge product) of one Л  or one /z with the identity 
operator, would not behave so nicely with respect to the new grading. 
Namely, the mapping Л  may take X  to the sum X  A X  + i Л i, see Fig. 6.1.
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Fig. 6.1. The mapping Д

The mapping to the first term increases the grading whence the mapping 
to the second term decreases it.

Thus, we have to repair the dotted grading. The correct answer is: define 
the dotted grading gr as the difference between # X  — #1  plus half the total 
degree of monomials in t and h.

There is a trick with A, which goes as follows. Denote the usual Kho
vanov differential by d , and denote the “Frobenius addition” containing h 
and t by dp so that we totally have d + Of - According to our rules, if some 
circles are dotted, and the Khovanov (Frobenius) theory is well established 
then we can introduce the new “dotted grading” gr as before, which splits 
the differential into two parts d = d' + d".

Theorem  6 .1 . Consider the basic ring Z[h, t,A|A/i = Xt = 0]. Then the 
homology of the Khovanov Frobenius complex with respect to the differential 
dp + Xd" is invariant

The proof goes as follows. We only need to mention that is that the 
square of this differential equals zero, because in the expression (dp-\- X d ")2 
the interaction between the “Frobenius part” of dp and Xd" gets cancelled. 
This proves that the complex is well defined with respect to the differential 
d" . However, one of our goals is to approach the Lee-Rasmussen theory, 
which is defined over Q with t = 1, h = 0. For these purposes, the approach 
above is not satisfactory.

Then, the terms in the differential corresponding to the “usual” mul
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tiplication and comultiplication (without new t and h) behave as before. 
Also, we know the behaviour of the grading when we have no dotted circles; 
it is correlated by degrees of h and t.

Consider the remaining cases.
т п : Х ® Х  - * Ь - 1 , т : Х ® Х  - + t - l A : X  -+1Л1.
Let us look at our dotted grading more carefully. Denote the former 

dotted grading by gr\ and let us construct the true dotted grading gr by 
varying gr'.

We count the usual quantum grading. It is equal to to t(l) — to t(X ) + h, 
where tot ( I )  is the total number of circles marked by 1 or by i, to t(X ) is 
the total number of circles marked by X  or by X , and h is the height. Then 
we set

= , t o t ( l ) - to t ( X )  + h # X  + # l - # i - # X  + /i 
9 2 2

Lem m a 6 .1. The differential d defined above can be split into summands 
each of which either preserves gr or increases it by 2.

The proof follows from a direct calculation.
Then it is possible to split d into d' (preserving the grading) and d" in

creasing that by 2, and consider the dotted homology of [[K ]]ff with respect 
to d '. This homology will be invariant.

If  we look at the differential d' more carefully, we will see that the new 
“Frobenius” mappings vanish when they are applied to sets of usual (not 
dotted) circles.

Namely, for the mapping X  <8> X  —► t • 1 we have: gr' does not change, 
whence the usual grading [coming from counting to t(l) — to t(X ) -Ь Л] in
creases. <

This means, that if we have no dots at all, the differential coincides 
with the usual Khovanov differential (without h and t).

Considering the Lee-Rasmussen theory for t = 1, h = 0, we get a com
plex [[if]]z ,fl with a differential B l r  which coincides with the usual Kho
vanov differential in the case of classical knots. Note that the complex 
[[^ ]]lh  has two gradings: the height and the grading gr (the quantum 
grading was lost).

However, in the dotted picture, this differential has some other interest
ing terms, like X  <g> X  —► 1.
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6 .1 . Yet another defin ition  o f the K ho vano v hom ology

If we look at the complex constructed above from in the case we have no 
additional (dotted) gradings at all, we see that the new grading prohibits 
exactly those parts of the differential дф which deal with t: e.g., X x X  —> M  
does not change the dotted grading, but it does change the usual quantum 
grading if we forget about t.

Thus, the definition above with t = 1 leads to the usual Khovanov ho
mology if  no circle is dotted.

On the other hand, if many circles are dotted, this is a sort of Lee- 
Rasmussen homology theory.

It is interesting that we can use a mixture to get another definition of 
the Khovanov homology theory. Namely, take a knot diagram К  and put 
dots on circles in an arbitrary way. Then for every dotted circle change 
the notation: replace i  by X  and vice versa. The resulting complex would 
be precisely the Khovanov complex up to some renormalisation in the new 
grading which becomes coincident with the usual quantum grading.

This effect is interesting because it allows one to handle the situation 
with braids: whenever we perform the second Markov move, we replace 1 by 
X , which leads to the injectivity of Д and surjectivity of m. Unfortunately, 
this gives us no new homology theory, but it allows one to look at the usual 
Khovanov homology from another point of view.

6 .2 . K hovanov Probenius theory modulo in  the general 
case

The aim of the present section is to define the differential Of  generalizing 
the theory described above for the case of arbitrary virtual knots in the 
Z 2 case. We shall describe the difficulties that occur in the general case of 
arbitrary virtual knots.

The main difficulty here is to define the differential corresponding to 
the 1 —► 1-bifurcation.

We start up with the chain structure of the complex. First, we assume 
for simplicity h = 0 , the case of generic h will be considered afterwards.

We deal with the ring R  = Z[t], where t has grading 4.
W ith every circle in every Kauffman state we associate the graded mod

ule V  over R  freely generated by 1 of grading 0 and X  of grading 2 (t has 
grading 4, as above). The generator 1 is assumed to be fixed for any circle; 
the generator X  depends on the orientation of the circle as before.

W ith each Kauffman state with n corresponding circles, we associate
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the n-th exterior power of V, and we define the following operations “muli- 
plication and comultiplication” just as before, however, corrected by terms 
containing h:

m (li A I 2) — 1, тп(Х\ Л 12) — 7Ti( 11 A X 2) — X , 
m (X  1 Л X 2) = 0
Д(1) = l i  A X 2 + X\ Л I 2
& (X ) = X \ ® X 2+ t\ \ ® l2, where in the definition of partial differentials 

it is assumed (as before) that we deal with the first two circles in the tensor 
product, and the first one is left (resp., upper), whence the second one is 
left (resp., lower).

For all 1 —»• 1-bifurcations, we set the partial differential to be equal to 
zero.

For all other bifurcations (2 —> 1 or 1 —> 2), we define the partial 
differential d just as in section 3 .

Denote the resulting set of chain spaces for a given virtual knot diagram
*  ьу m  t.

Theorem 6.2. The differential d defines a complex on {[K]\t, so that the 
homology of [[A'JJt with respect to d is an invariant of the link К .

The well-definiteness proof actually repeats the main points ofKh2 to
gether with those in:Ma6 one should consider all 2-faces of the corresponding 
cube and prove that they anticommute. The proof of the invariance under 
Reidemeister moves follows from the surjectivity of m and injectivity of Д.

However, here we do not touch on the variable h. The reason why the 
construction proposed inMa6 behaves nicely when we add the variable t is 
the following: both in the usual Khovanov homology theory and in the 
Frobenius theory with some t and h = 0 , the involution on the space
V  = { 1, ЛГ} defined by 1 и  1Д  м  —X  behaves well with respect to 
the operations Д and m: it changes signs of Д and preserves the sign of m.

However, when we add a new variable h, we will not see this effect any 
more: the mapping Д takes 1 Л 1 —» 1 A X  + X A 1  — Л • 1 A 1. Here the 
involution X  —> - X  changes the sign of one part (1 Л X  -f X  Л 1) and 
preserves the other part (Д • 1 A 1).

Also, the routine check of the well-definiteness (as inMa6) of the complex, 
that is, anti-commutativity of the 2-faces of the cube, leads to an example 
shown below (we are citing,Ma6 see Fig. 6 .2) for the case t = 0.

First, consider the case t = 0. For the lower composition, we have the 
identical zero map by definition. Substituting X  into the upper composition, 
we get ± X  A X  at the first step and 0 at the second step. Substituting 1,
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Fig. 6.2. A face of the cube

we first get l i  Л X 2 + X\ A I 2 here the index refers to the number of circle 
(the first circle is the big one), and the second index refers to the crossing 
number. While passing to the second crossing V2 the circles change their 
roles: the first circle becomes the lower one, and the second circle becomes 
the upper one. Moreover, for the first circle we get a basis change: X  maps to 
—X . Thus we get — ХЛ 1+ 1Л Х , which is taken to zero by the multiplication 
m. Now, we have to check what happens for general t. Subsituting 1 to the 
upper composition, we will get no terms with t at all. Substituting X , we 
shall first get (besides X\ Л Х 2) also t- l i  A l i . Passing to the second crossing 
and multiplying, these terms will give M A I  and -t- 1 A 1, which cancel 
each other.

The example above is in fact the key example of;Ma<3 it works without 
any changes when h — 0 (because t does not appear in the comultiplication 
of 1 or in the multiplication of 1 A X ).

But in the case h ф 0 it does appear, and this would lead to the fact 
that the 1 —> 1-bifurcation should not be zero any more. We will in fact 
need to introduce a new variable being the square root of /1.
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On the other hand, h itself should be treated in a special way so that 
the multiplication m and comultiplication Д behave nicely with respect to 

- X .
We shall consider this problem in a separate publication.

6 .2 .1. The Zi2~case

We first consider the Z2-case solution given in.Ma3 First note that there is 
no difference between A and 0, and we shall use the notation 0.

This time we do not set the 1 —> 1-type partial differentials to be zero; 
we define this partial differential by some mapping I  :V  —* V, the matrix 
I  will be defined later.

Here will show how the square root of h appears. Of course, in this 
case we shall not need exterior products and control the signs. Consider 
the basic ring of coefficients Z 2 [t, c] with deg£ = 4, degc = 1 (we assume 
c2 = h). Now, consider Fig. 6.2. We have the following situation: in the 
lower composition we have two maps corresponding to 1 —> 1 bifurcations, 
thus the corresponding matrix should look like I  ■ I.  Return to Fig. 6.2 in 
the upper part we have the composition of two mappings Д and then m. 
Starting with 1, we get Д (1) = 1 ® Х  + Х ® 1  + h i x 1. Multiplying, we 
see that X  0  1 and 1 0  X  cancel each other, and the only remaining term 
is h ■ 1. Now, if we start with X , we get X  - » X 0 X  + f- 101. After the 
multiplication, we get h X  + t + t = h -X  (we are dealing with the Z 2 case). 
Now we see that the corresponding transformation matrix looks like

(iMSIHi)
For this scalar matrix h ■ Id  we set the matrix corresponding to the 

1 —> 1-mapping to be с • Id , and then any face of the bifurcation cube 
corresponding to Fig. 6.2 will (anti)commute. Then it is not difficult to 
see (seeMa3) that with this scalar 1 —» 1-bifurcation matrix, all other faces 
(anti)commute as well.

Now, the dotted gradings gr appear straigthforwardly by counting 
monomials in t and с and correcting gr' by using this monomials. Denote 
the obtained homology by K h (K )tc.

Note that the degree of с is 1, so we will have half-integer gradings. This 
immeadiately leads to the following

Theorem 6.3. I f  K h (K )tc has a non trivial homology of half-integer addi
tional grading then К  has no diagram with orientable corresponding atom. 
In  particular, the knot К  is not classical.
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Since the works of LeeLee and Rasmussen,Ras spectral sequences play a 
significant role in knot homology. Sometimes it turns out that studying 
convergence of a spectral sequence leads to some interesting and deep in
variants such as Rasmussen’s invariant, which is applicable to estimating 
the Seifert genus and the 4-ball genus of classical links.

The Lee-Rasmussen spectral sequence starts with the Khovanov homol
ogy and ends up with some two-term homology which carries a nice piece 
of information.

Recently (seeBN3), it was discovered that the spectral sequence of Lee- 
Rasmussen does not converge after £ 3-term, and that there are some nice 
torsions in Khovanov homology which survive after the .E^-term of the 
spectral sequence.

Our goal here is to construct a spectral sequence from the “complicated” 
theory with new dotted gradings to the “simple” (Khovanov) theory. Thus, 
in some sense our spectral sequence will behave with respect to the usual 
Khovanov homology as Khovanov homology itself behaves with respect to 
the Rasmussen homology.

It would also be very interesting to inspect two spectral sequences con
verging from the “complicated” theory to the Rasmussen theory.

The argument of the present section is standard. In all cases described 
above when we deal with one new (dotted) grading, the old differential 
d = d' + d" in the complex [[if]]fl does not decrease the new grading.

Thus, let us introduce the (dotted) filtration on the chain spaces as 
follows: we set [[#]]£ = {c G [[-fr))sl0r (c) > n }• Then we have [[/Л1<7°  c
• v  mi  с  mw с  р о д  с  [[к] ] - 1 с .  • • с  [ [ / < ■ ] ] j ° ° .

The usual differential d respects this filtration. This leads to the follow
ing

Theorem  7.1. For any field of coefficients, there is a spectral sequence 
whose Ei-term  is isomorphic to [[/f]] with the first differential d ', the E 2~ 
term isomorphic to the homology of [[/T]]^, so that this spectral sequence 
converges to the usual Khovanov homology (with respect to d).

The argument proving this theorem is standard. We also conjecture that 
all terms of this spectral sequence are invariants (of knots, braids, tangles) 
in the corresponding category.

It would be very interesting to know whether some terms of the spectral 
sequence described above survive after the braid stabilsations. In this case 
we would be able to hope to construct gradings for usual knots without

7. Gradings or filtrations? The spectral sequence
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going into the long category.
Returning to the Lee-Rasmussen theory, we see that in the dotted case, 

we have two complexes: the usual Khovanov complex and the complex 
дья) with homology H (K )l r . They coincide in the case when we 

have no dotting, but they differ in the case when we have dotting.
Quite in the usual manner one proves

Theorem  7.2. For the field Q, there is a spectral sequence whose E\-term 
is isomorphic to [[/<"]]ья with the first differential дыг, the Ei-term  iso
morphic to the homology H (K ) l r ,  s o  that this spectral sequence converges 
to the Lee-Rasmussen homology.

Thus, two bigraded homology theories (the usual Khovanov theory with 
height and quantum grading) and the one described above (with height and 
dotted grading) both converge to the Lee-Rasmussen theory.

It is known that the Lee-Rasmussen theory give nice invariants (quan
tum gradings of the two surviving elements). It would be interesting to 
compare the convergence of the spectral sequence describing above: what 
is the meaning of the dotted grading of surviving elements?

8 . Applications

The theory above has some obvious applications coming from the defini
tions. Thus, if we work for knots in thickened surfaces, there is a natural 
question whether such a knot can be destablised, i.e., some handles of the 
surface are nugatory, or, in other words, the representative of the knot given 
by this surface is minimal. The surface M  has Z2-homology group of rank 
/с, and if they are all used as gradings of some homology groups of a knot 
in M  x/, then the knot can not be destabilised.

Corollary 8 .1 . If  a set of additional gradings of non-trivial groups of 
Khgg (K ) forms a subset in K k not belonging to any hyperplane passing 
through zero, then the link К  does not admit destabilisation, i.e., there is 
no surface M ' of smaller genus obtained from M  by a destabilisation so 
that the link К  lies in the natural fibration over M ' generated by Ж  —* M .

Analogously, the dotted grading can be used for estimating the number 
of virtual crossings of a rigid virtual knot diagram.

Also, we mention (without any details, however) the facts which gener
alise straightforwardly for the case of new gradings:
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(1) The homological length of the complex does not exceed the number of 
classical crossings.

(2) The spanning tree of WehrliWeh and Champanerkar-I<ofmanChK saying 
that the Khovanov homology can be obtained from a complex with a 
smaller chain group. This leads to the estimation for the thickness: 
T h (K h (K )) < 2 + g, where g is the genus of the atom corresponding 
to the diagram К .
Here the thickness estimates the number of diagonals with slope 2 on 
the plane with height and quantum gradings serving as coordinates. 
The same estimates can be obtained for our complex with new gradings 
when looking at the diagonals with respect to the former gradings. This 
leads to

Theorem 8.1. For any knot К , the thickness of the dotted Khovanov 
homology Th(I<hg(K ))  < 2  + g, where g is the genus of the atom cor
responding to any diagram of К .

Together with the lemma saying that span (K ) < 4n, where n is the 
number of classical crossings, we get sharper estimates for the number 
of crossings.

(3) The Bar-Natan topological pictureBN2 for tangles and cobordisms, see 
also.1'11141 We need to generalize Bar-Natan’s topological category and 
construct a functor from it to our category. We shall discuss this in a 
separate publication.

(4) Rasmussen’s estimates for the genus of a spanning surface; here we 
must, indicate the category of cobordisms, say, for knots in M  x I  we 
should consider spanning surfaces in M x J x  I .

9. The relation to other papers

This paper generalises many constructions. First of all, we would like to 
mention the work,APS the workKh2 and the work.Ma6

In fact, the idea of taking new gradings counting X  and 1 on non-trivial 
circles with opposite sides was originally used in.APS However, we used 
this approach for a more general situation. For instance, the grading there 
was necessary to construct the Khovanov homology itself, without it, the 
Khovanov theory for knots in thickened surfaces does not exist; even with 
it, it does not exist for knots in thickened R P 2. We have taken the approach 
fromMa6 with twisted coefficient as the basement for our homology theory 
(that allows us to give a fair generalisation of Khovanov’s theory for virtual
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and twisted knots without any new gradings), and then introduced new 
gradings similar to those ones by M.Asaeda, J.Przytycki and A.Sikora.

They used integral homology or even homotopy classes to define the 
gradings. This was quite difficult for making it more algebraic.

We have axiomatized this approach taking the Z 2-cohomology (or just 
dotting) making it applicable to many other situations.

On the other hand, classical knot diagrams considered up to braid-like 
moves also admit “dotting” . This leads to a class of “knot-like” objects 
where not all equivalences are allowed; they were studied in,AuF,ed and 
their generalisation of the Khovanov homology turned out to be a partial 
case of ours.

Finally, we would like to mention a very recent paper by Ozsvath, Ras
mussen, and SzaboORS where “odd Khovanov homology” was introduced.

Like us they also used exterior vector product instead of symmetric 
products (the idea first appeared inMa6) but with a different goal: they 
constructed another (odd) Khovanov homology with the same chain space, 
whence we rearranged the usual Khovanov homology making it working for 
virtual knots. Certainly, their construction enjoys many properties of the 
usual Khovanov complex (like thickness estimate in terms of atoms). We 
shall discuss the “odd Khovanov homology for virtual knots” and additional 
gradings for odd Khovanov homology in separate papers.
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W e survey some recent developments in the large N  duality between the Chern- 
Simons gauge theory and the topological string theory. Some related problems 
and its applications to different areas of mathematics are also discussed. We 
dedicate this paper to the memory of Professor X.-S. Lin.

1. Introduction

The Gromov-Witten theory has been extensively studied in the past two 
decades. Computing Gromov-Witten invariants, especially at high genera, 
is always a challenging problem in the Gromov-Witten theory. In the case 
of lower genera, localization method or mirror symmetry might be applied 
to the computation. However, if the genus goes higher and higher, these 
two methods will involve more and more terms in the computation and 
thus become essentially impractical.

A complete answer can be given by the large N  duality between the 
Chern-Simons gauge theory and the open Gromov-Witten theory. For ex
ample, in the case of toric Calabi-Yau threefolds, the topological vertex 
theory ’ expresses Gromov-Witten invariants as the combinatorial data 
of Chern-Simons invariants of certain torus link.

The first important bridge connecting gauge theory and string theory 
went back to t Hooft’s work in 1974, where he proposed that gauge the
ory can be identified as an 1/jV expansion in string theory. It was in 1990, 
Witten made a very important step relating the Chern-Simons gauge the
ory on a thiee dimensional manifold as a topological string theory on its 
cotangent bundle. The final picture was merged by R. Gopakumar and C.

mailto:ppeng@math.harvard.edu


Vafa in 1998, in which they conjectured that at large N , topological string 
А-model of T *S 3 with N  D-branes is equivalent to the topological string 
theory on the resolved conifold 0 (- 1 )® 0 (- 1 ) —> P 1. In 2000, H. Ooguri 
and C. Vafa described the topological string theory on the resolved conifold 
in terms of Chern-Simons invariants of knots.

To study this duality conjecture, an important observation is that, in 
both the Chern-Simons gauge theory and the topological string theory, a 
system of ODEs called cut-and-join equation is satisfied. In the Chern- 
Simons gauge theory, the cut-and-join equation reflects the deformation of 
the choice of framing, while, in the topological string theory, it naturally cor
responds to the deformation of holomorphic curves mapped into the target 
space. Therefore, the duality can be approached by proving the uniqueness 
of the solution of the cut-and-join equation under certain condition.

Based on the large N  Chern-Simons/topologial string (CS/TS) dual
ity, in a series of papers, J.M .F. Labastida, M. Marino, H. Ooguri and 
C. Vafa conjectured the existence of a series of certain integer invariants 
which reveals the deep structure of quantum group invariants of links and 
integrality structure of the topological string theory. The highly nontrivial 
check of this integrality phenomenon gives a strong evidence of the large N  
Chern-Simons/topological string duality.

Motivated by the large N  Chern-Simons/topological string duality, 
there are a lot of related problems should have their mathematical con
sequences and the corresponding mathematical foundation should be built. 
All these relations stimulate the development of geometry and topology in 
a very profound way. It ’s not surprising to see more connections between 
quite different areas of mathematics can be motivated from this duality 
picture.

This paper is organized as follows. In section 2, we define quantum group 
invariants of links. The large N  Chern-Simons/topological string conjecture 
is stated in section 3. In section 4, some related results have been discussed. 
In the last section, we discuss some related problems and applications.

2. Quantum Group Invariants

2.1. Partition and symmetric function

A partition A is a finite sequence of positive integers (Ai, A2, ■ ■ •) such that

Ai > A2 > • • • •
The total number of parts in A is called the length of A and denoted by 
^(A). We use raj(A) to denote the number of times that i occurs in A. The
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degree of Л is defined to be

|A| = £ V
i

If |A| = d, we say A is a partition of d. We also use notation A h  d. The 
automorphism group of A, AutX , contains all the permutations that permute 
parts of A while still keeping it as a partition. Obviously, the order of AutX 
is given by

\AutX\ = P Jm f(A )!.
i

There is another way to rewrite a partition A in the following format
^mi(A)2m2(A) ^

A traditional way to visualize a partition is to identify a partition as 
a Young diagram. The Young diagram of A is a 2-dimensional graph with 
Aj  boxes on the j -th row, j  = 1, 2 , ...,^(A). A ll the boxes are put to fit the 
left-top corner of a rectangle. For example

(5 ,4,2,2,1) = (12245) = 54221.

For a given partition A, denote by X1 the conjugate partition of A. The 
Young diagram of XL is transpose to the Young diagram of A: the number 
of boxes on jf-th column of A4 equals to the number of boxes on j -th row of 
A, where 1 < j  < £(X).

By convention, we regard a Young diagram with no box as the partition 
of 0 and use notation (0). Denote by У the set of all partitions. We can 
define an operation “ U ” on У. Given two partitions A and jx, A U (jl is 
the partition by putting all the parts of A and /x together to form a new 
partition. For example

(1223) U (15) = (122235).

Using Young diagram, it looks like

3221 U 51 = 532211.

The following number associated with a partition A is used throughout 
this paper,

За = П Г ЛЛЧ '( А ) ! , *л = £  A,(A* -  2j  + 1).
3 j

It ’s easy to see that

(2.1)
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A power symmetric function of a sequence of variables x = (х ьх г .- ) 
is defined as follows

Pn(x) = J 2 xi-
i

For a partition Л,

f(A)

P\(x ) = П р л ,(« ). 
j=i

It is well-known that every irreducible representation of symmetric 
group can be labeled by a partition. Let x a  be the character of the irre
ducible representation corresponding to Л. Each conjugate class of symmet
ric group can also be represented by a partition fi such that the permutation 
in the conjugate class has cycles of length H i,... ,Ие(ц)- Schur function s\ 
is determined by

*л(*)= E  pл*) (2-2)
м-w

where Сц is the conjugate class of symmetric group corresponding to par
tition д.

2.2. Quantum group invariants of links

Let £ be a link with L  components X a , a  = 1 represented by
the closure of an element of braid group Ъ т ■ We associate to each % a 
an irreducible representation R Q of quantized universal enveloping algebra 
Uq(s [(N ,C )), labeled by its highest weight Aa. Denote the corresponding 
module by V\Q. The j-th strand in the braid will be associated with the 
irreducible module Vj = Уда, if this strand belongs to the component X Q. 
The braiding is defined through the following universal R-matrix of Uq^si^)

R  = q? Z i.i сГ31н<®н} J J  expfl[(l -  q~1)Ep  <g> Fp ].
positive root (3

Here {H i,E i,F i}  are the generators of Uq(s\N), (C ij) is the Cartan matrix 
and

ехр,(х) = Е ^ * (к+1,ТШ .  
k=0
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where

4 4 J=1

Define braiding by $  = Р 12Я, where P\2 {v 0  iu) = w <8>v.
Now for a given link £ of L  components, one chooses a closed braid 

representative in braid group £ m whose closure is L . In the case of no 
confusion, we also use £ to refer its braid representative in Ъ т • We will 
assign each crossing by the braiding as follows. Let £/, V  be two Uq(s\u)- 
modules labeling two outgoing strands of the crossing, the braiding Ru,v 
(resp. R y 'y ) is assigned as

The above assignment will give a representation of Ъ т  on Uq(g)-module 
Vi 0  • • • 0  Vm. Namely, for any generator, о* G Ъ т ,

1 2  i i+1 n-1 n

define*

h((7i) = id 0  • • ■ 0  ^vi.Vi+i 0  • • • <8> idvN •M
Therefore, any link L  will provide an isomorphism

h (L ) e Endt/9(S[w)('^i 0  • • • 0  Vm) •

Let K 2p be the enhancement of in the sense of,31 where p is the half
sum of all positive roots of sl^. The irreducible representation R a is labeled 
by the corresponding partition Aa .

•In the case of ai 1, use instead.



Definition 2.1. Given L  labeling partitions A 1, . . . ,A L , the quantum 
group invariant of £ is defined as follows:

where

1 L 1 
<*(£) = ~ 2  E^ (3 C a )(A tt, л« + 2P) + дР E  lk(3Ca, ЭСй)И°1 • 1̂ 1.

0=1 a</?
and lk(3Ca,9C/?) is the linking number of components X Q and Xp. A sub
stitution of t = qN is used to give a two-variable framing independent link 
invariant.

3. Large N  C S/T S duality

The Chern-Simons partition function associated to a link £ is defined to 
be the following generating function:

L

% cs (£ ;Q,t;x) = 1 + Щ а ^~ ,а* ){чЛ ) П  s>iQ(*a )
Al t—,AL a=l

where sa  is the Schur function. Free energy is defined to be

F  = log Zqs ■

Quantum group invariants of links can be expressed as vacuum expec
tation value of Wilson loops which admit a large N  expansion in physics. It 
can also be interpreted as a string theory expansion (also see12 for more de
tails). The geometric picture of /(a 1,...,a l ) Is proposed in.14 One can rewrite 
the free energy as

F =  £  ...^ W l b -
9=0 a

The quantities can be interpreted in terms of the Gromov-
Witten invariants of Riemann surface with boundaries. It was conjectured 
in27 that for every link £ in S 3, one can canonically associate a lagrangian 
submanifold in the resolved conifold X

0 (- l)® 0 (- l) -* P1,
with b\(Gc) = L, the number of components of £. The construction of such 
lagrangian submanifolds by С. H. Taubes2 can be served as a candidate.
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Let 7a , a  = 1 ,..., L, be one-cycles representing a basis for #  i(e c , Z) 
and /3 € # 2(X , £c;Z ). Consider the holomorphic map / : —► X  from 
genus g Riemann surface with h = (̂Ma) boles to the resolved conifold
X  such that /* [Eg,h] = /5 and the boundary mapped to the cycle 7 a with the 
prescribed winding number. The “number” of such maps will be denoted 

These numbers are the open-string analogue of Gromov- 
Witten invariants*. r ) can thus be expressed as the following
generating function of open Gromov-Witten invariants:

0
where и  is the Kahler class of the Calabi-Yau threefold X , and

t = e-fp" " .

One can write tQ = fp ui, where Q is in general a half-integer.

4. Known results

4.1. M arin o -V a fa  fo rm u la

The first important example is of course the case of the unknot. In ,24 based 
on the large N  Chern-Simons/topological string duality, M. Marino and
C. Vafa proposed a formula relating the Chern-Simons invariants of the 
unknot (in this case, it is the quantum dimension), to certain generating 
series of Hodge integrals. For a mathematical proof, please refer to.20

Let M gtn denote the Deligne-Mumford moduli stack of stable curves of 
genus g with n marked points. Let 7г : М 9)П+1 —► M g>n be the universal 
curve, and let lj  ̂ be the relative dualizing sheaf. The Hodge bundle E  = 
тт*Ытг is a rank g vector bundle over М 9уП. Let $i : М 9)П —> M p,n+i denote 
the section of n which corresponds to the г-th marked point, and let h i = 
slujn. A Hodge integral is an integral of the form

—  y ,» *

where i/>i = c i(L j) is the first Chern class of L i, and Лj  = Cj(E) is the j- th 
Chern class of the Hodge bundle. Let

be the Chern polynomial of E v , the dual of the Hodge bundle.

*The definition of open Gromov-Witten invariants is still at large in general.
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Define

n E W )
L \  С» - 1)!

Г лу(1)л*(-т-1)лу(т)

The Marino-Vafa formula gives the following identity: 

Theorem  4.1 (20).

2+eMes.A T) = !°g  ( i  + ^ 2 sA{ql>)sA(x)'j (4.1)

where qp = (q l 2̂,q 3̂ 2, • • - • • •).

As a remark to the Marino-Vafa formula, one may see that it provides 
a very strong tool to study the intersection theory of the moduli space of 
curves.

4.2. Topological vertex theory

Topological vertex theory was proposed in1 to give a complete solution to 
the topological string theory on toric Calabi-Yau threefolds. A mathemati
cal version of the topological vertex theory is given in,17 which is approached 
by the relative Gromov-Witten theory.15,16 We will adapt this version to 
give a rough picture of topological vertex theory (for more details, please 
refer to17).

A Calabi-Yau threefold X  is toric if it contains an algebraic torus (C *)3 
as an open dense subset and the (C *)3 action can be extended to X . Let
X 1 be the union of all one-dimensional (C*)3orbit closures in X , X °  the 
union of (C *)3 fixed points. Naturally assume that X 1 is connected and X °  
is not empty. Given p e X ° , (C *)3 acts on TPX  and Л3TPX , where TPX  
is the tangent space of X  at p. The action of (C *)3 on A3TPX  gives an 
irreducible character a  : (С *)3 —> C*. a  is independent of choice of p due to 
Calabi-Yau condition and connectedness of X 1. Define T  = Kera  = (C*)2. 
Let Tr = U ( l )2 be the maximal compact subgroup of T  and /2 : X  — * 
be the moment map of the Тк-action on X , where is the dual of the Lie 
algebra of Tr.

The image of X х gives a planar trivalent graph Г. Each vertex of Г  
corresponds to a fix points of T, and each edge of Г corresponds to an 
irreducible component C e of X 1.

9> 0 A
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Let M *(X,/?) be the moduli space of stable maps from possibly dis
connected domains to X  within the class (3 € Н ъ (Х ,Ъ ) satisfying the 
constraint 2* (0 x ) = x • Define the generating function of disconnected 
Gromov-Witten invariants of degree (3 summing for all genera:

[  1. (4.2)
“  J[M*x{X,/3)]vir

Topological partition function of X  is defined as follows:

Ztopstr = 1 + Y z 0(u)Q0.
0*0

To compute Gromov-Witten invariants of toric Calabi-Yau threefold X , 
one can degenerate X  into two relative Calabi-Yau threefold (Y \ ,D ) and 
(Y2,D ) with normal crossing singularity along divisor D. The Gromov- 
Witten invariants of X  can be obtained as a combination of the relative 
Gromov-Witten invariants of (Y \,D ) and (У2, D ) .15,16 This procedure can 
keep going on until all the pieces are indecomposable ones. All these in
decomposable pieces are precisely the topological vertex as proposed in 
physics which amplitudes are certain weighted Chern-Simons invariants. 
This gives the following formula:

e v

Here we is some combinatorial formula associated with the inner edge e of 
the toric diagram Г, and wv is the three-partition Hodge integral associated 
with the vertex v except for a possible negative sign determined by its 
profile. Three-partition Hodge integral is related to the topological vertex 
amplitudes by a convolution formula proved in.17 Given three partitions A , 
jВ, C, the topological vertex amplitude is give by

W  A,B,c(q) = g - {KA- 2KB- iKc)/2Y c^ ) ‘B ^ 4 ^ r
K , 1 (4.4)

хд(_2*-+ 2_ ^ 2W^+jc (g )— Xij1 М Х ч3(2^) •
3/x

Therefore, this closed form of topological string partition gives a complete 
solution to the topological string theory on any given toric Calabi-Yau 
threefolds.



4.3. Labastida-M arino-Оoguri- Vafa Conjecture

The Chern-Simons partition function of £ is a generating function of quan
tum group invariants of links given by

L

Zcs(£; <?,«)= E  W (A '...W £ ; 9 - * ) I I s' l“ (x“ ) <4'5)
A l ,...,AL <*=1

for any arbitrarily chosen sequence of variables

xa =
where s a ° ( x q ) is the Schur function.

Free energy is defined to be:

F  — log Z q s  •
Use plethystic exponential, one can obtain*

F = E  E  W'.(46)
d=l A l ,...1A L a=l

where

(*“ )<* = ((*?)* , (*?)".•••)•
Based on the duality between Chern-Simons gauge theory and topo

logical string theory, J.M .F. Labastida, M. Marino, H. Ooguri, C. Vafa 
conjectured that /д have the following highly nontrivial structures.

For any А, В  € У, define the following function

M A B { q )  = £  * л (С Д Ы С ,) j f  (9-»/* _  . (4.7)
Д ^  J = 1

Conjecture 4.1 (LM O V ). For any (Л 1, ..., A L ) € 7 L ,

(i). there exist for • • •> B L ) € suc^ that
L

/(л1,...^ ) (<?>*) -  ^ 2  •P(S1,...,b£')(?> )̂ Y I  M a * b ° ( q )- (4-8)
|Вй|=|Л“ | oc=i

Furthermore, Р (в 1,...,вь)(чЛ ) has the following expansion:

P{B^...,Bb)(q>t) = Y I  N {B 't...lBL)\giQ(<rlf2 -  ql/2)2g~2tQ . 
g=0 Qez/2

* It also gives a definition of f(Al ,...,AL)’
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09- are integers.

Theorem 4.2 (22). Notations as above, we have:

(q* ~ 6  Щ я 1/2 ~ q~1/2)2,t±l/2} .

The above theorem not only implies the integrality in the LM O V con
jecture, but also shows these integer invariants vanish at large g and Q. 
It also gives a very strong evidence of the duality between Chern-Simons 
theory and topological string theory. The existence of algebraic structure 
of P (B l ,...,BL)(Q>t) implies a deep structure of quantum group invariants of 
links. The pole order of f(A l ,...,AL)(Q>t) at q = 1 a priori tends to go to 
infinity as the degree of the labeling irreducible representation goes higher 
and higher. However, the LM OV conjecture claims that the pole at q = 1 
is at most of order 2 , which implies many miracle cancelations happened.

As a direct corollary, we consider the case that all the labeling irre
ducible representations are fundamental ones. The quantum group invariant 
reduces to HOM FLY polynomial. Simply apply the cancelation at the low
est order, we obtain the following theorem by Lickorish and Millett which 
was originally proved through rather complicated Skein analysis:

Theorem  4.3 (18). Let L  be a link with L  components. Its H O M FLY  poly
nomial,

x.—n r /  i 1\ 2 g + l — L
Pc(q,t) = X^P29+i-iW(9 2 -  95)

g>  0

satisfies:

= П  « ? “ (*)•
Q=1

Here p£a (t) is H O M FLY  polynomial of the a-th component of the link £ 
with <7 = 1 .

4.4. U (N )  Chern-Sim ons gauge theory

It is in fact more nature to consider U (N ) Chern-Simons gauge theory. 
Chern-Simons vevs change under a change of framing, which will give a 
change on the invariants similarly defined in the LM OV conjecture related 
to the BPS  degeneracies of domain walls in a geometry with different IR

In a joint work with K. Liu, we proved the following theorem:
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behavior. In the LM OV conjecture, the integrality of N (B 1,...,BLy,g,Q al“ 
ready highly nontrivial, and it provides one of the major evidences for the 
duality proposed in.4 The integrality predictions for any framing are even 
more surprising.24 In a joint work with K. Liu, we prove the integrality 
holds for any framing change23 in the setting of U (N ) Chern-Simons gauge 
theory.

4.5. Uniqueness o f the cut-and-join system

A very important feature in both Chern-Simons gauge theory and topolog
ical string theory is that they both satisfy a system of non-linear ODEs, 
which is called cut-and-join equations. In the Chern-Simons gauge theory, 
the cut-and-join equation corresponds to the deformation of the framing, 
while in the topological string theory, it reflects deformations of Riemann 
surface mapped into the given Calabi-Yau threefold. Therefore, the large N  
Chern-Simons/topological string duality should be reduced to the unique
ness of this cut-and-join system in the end of the day.

In ,30 we study this system and pride an interesting condition to the 
uniqueness of the cut-and-join system.

Theorem  4.4 (30). Associated to any link £» of L  components, Z i(£ ) and 
Z 2 {& ) can be expressed as the following:

link L , then Z\ = Z<i for any link L .

If we specify all the labeling irreducible representation of a given link £ 
to be the fundamental representation, the quantum group invariants of links 
reduces to the famous HOM FLY polynomial of £. However, we known that 
HOM FLY polynomial can be recursively determined by the skein relation. 
Therefore, the above theorem will imply that if one could prove that in the

L

a=1 
L

satisfy the following cut-and-join equation:

where к = 1,2, 1 < a  < L , and p f = P i ( x a ). I f  Щ = £ (1,...,!) for any



338 P. Peng

topological string theory, such skein relation is satisfied by the generating 
function of the open Gromov-Witten invariants, one could conclude the 
duality between Chern-Simons gauge theory and topological string theory 
at large N.

5. Concluding remarks

It is of course very important to construct open Gromov-Witten theory.
D. Joyce’s work10 will put this foundation a solid ground. We expect a 
general method to prove that the partition function satisfies the cut-and- 
join equation on the geometry side.

There are also many interesting applications to knot theory from the 
large N  Chern-Simons/topological string duality conjecture. As one may 
find the geometry of the moduli space of stable maps from Riemann sur
faces to Calabi-Yau threefolds reveals further structure of three-dimensional 
topology. For example, volume conjecture was proposed by Kashaev in11 
and reformulated by.25 It relates the volume of hyperbolic 3-manifolds to 
the limits of quantum invariants. This conjecture was later generalized to 
complex case26 and to incomplete hyperbolic structures.8 The study of the 
volume conjecture is still staying at a rather primitive stage. We expect 
that certain vanishing phenomenon in the open Gromov-Witten theory will 
give a deep characterization of these limits of quantum invariants.

As mentioned above, quantum group invariants satisfy skein relation 
which must have some implications on topological string side as mentioned 
in .12 One could also rephrase a lot of unanswered questions in the knot 
theory in terms of the open Gromov-Witten theory and vice versa. We hope 
that the relation between knot theory and open Gromov-Witten theory will 
be explored much more in detail in the future.
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Abstract. Let M  be a compact orientable 3-manifold which contains a 
non-separating closed incompressible surface F . Let M ' = M  - 77(F ) where 
77(F ) is an open regular neighborhood of F  in M . In the paper we show 
that if M  has a Heegaard splitting V ' U5' W ' with d (S ) > 2g(M ), then 
g (M ) > g (M  ) —g (F ). Furthermore, if F  is a torus, then g (M ) > g (M  ) + 1.

1 . Introducion

Let M  be a compact orientable 3-manifold. If there is a closed surface S  
which cuts M  into two compression bodies V  and W  with 5 = д+W = d+V, 
then we say M  has a Heegaard splitting, denoted by M  = F U s  W\ and S  is 
called a Heegaard surface of M . Moreover, if the genus g (S ) of S  is minimal 
among all Heegaard splittings of M , then g (S ) is called the genus of M , 
denoted by g (M ). If there are essential disks В  С V  and D  С W  such that 
d B n d D  = 0, then V  Us W  is said to be weakly reducible. Otherwise, it is 
said to be strongly irreducible.

Let M  = V  Us W  he a. Heegaard splitting. The distance between two 
essential simple closed curves a  and (3 on S', denoted by d (a ,0 )} is the 
smallest integer n > 0 so that there is a sequence of essential simple closed 
curves ao = a ,... ,a n = (3 on S  such that a»_i is disjoint from оц for
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1 < i < n. The distance of the Heegaard splitting W  Us V  is d (S ) = 
M in {d (a t0 )}, where a  bounds a disk in V  and (3 bounds a disk in W . 
This was first introduced by Hempel. See [4]. It is clear that V  Us W  is 
reducible if and only if d (S ) = 0, and V  Us W  is weakly reducible if and 
only if d(S) < 1.

Let F  be either a properly embedded surface in a 3-manifold M  or a 
sub-surface of dM . If there is an essential curve on F  which bounds a disk 
in M  with its interior disjoint from F  or F  is a 2-sphere which bounds 
a 3-ball in M , then we say F  is compressible; otherwise, F  is said to be 
incompressible. If F  is an incompressible surface not parallel to d M , then 
F  is said to be essential. A 3-manifold is said to be reducible if it contains 
an incompressible 2-sphere; otherwise, it is said to be irreducible.

Let F  be an essential closed surface in a 3-manifold M . Assume that 
F  is separating in M . Then F  cuts M  into two manifolds M\ and М 2. 
Now if M { = Vi Us* W i is a Heegaard splitting, г = 1,2, then M  has a 
natural Heegaard splitting V  Us W  called the amalgamation of V\ Us, W\ 
and V2 Us2 W 2 with g (S ) < g {S i) + <7(S2) ~ 9(F)- From this point of view, 
g (M ) < g(M \) + g(M 2) — g (F ). There are some examples to show that it is 
possible that g (M ) = g(M \) + g(M 2) — g (F ) -  n for any integer n. See [7] 
and.16 J. Johnson [5] proved that g (M ) > l/b (g (M \) + g (M 2) — g (F )) when 
M i and M 2 are anannular. In general, J. Schultens[15] proved that g (M ) > 
l/5 (p (M i) + p(M 2) — g (F ) — N (M \) — N (M 2)) where N (M {) is the number 
of pairwise disjoint non-parallel essential annuli in M t-. Furthermore, some 
sufficient conditions for g (M ) = g(M \) + g (M 2) — g (F ) have been given. 
See [1], [6] and [9].

Assume now that F  is non-separating in M . Let 77(F ) (N (F ) )  be an open 
(closed) regular neighborhood of F  in M . We denote by F\ and F 2 the two 
boundary components of N (F ). Let M ' — M  — 77(F ) and M* = V  U5> W  
be a Heegaard splitting such that F i ,F 2 С д-V '. Then M  has a natural 
Heegaard splitting V  Us W  called the self-amalgamation of V  Us> W  with 
g (S ) = g (S ') + 1. In this case, g (M ) < g (M \F\  U F 2) + 1. Furthermore, if 
M  is homeomorphic to F  x 5 1, then g (M ) = g (M ', F i U F 2) + 1. See [13]. 
In this paper, we shall give a lower bound of g (M ) when M  has a high 
distance Heegaard splitting. The main result is the following:

Theorem 1 . Let M  be a compact orientable 3-manifold, and F  a 
non-separating incompressible closed surface in M . Let М ' = M  -  77(F ). 
If M  has a Heegaard splitting V  Us> W' with d (S  ) > 2g (M  ), then 
9 (M )> g (M ,)- g (F ) .

Corollary 2 . Under the assumptions of Theorem 1, if F  is a torus,



On the Heegaard Genera of 3-manifolds 343

then g (M ) > g (M ') + 1.

2. An extension of Schultens’s Lem m a

Let M  = V  Us W  be a strongly irreducible Heegaard splitting, and F  be a 
collection of essential surfaces in M . F  is called a good separating system if 
M  — F  contains two components M i and М 2; furthermore, for any subset 
F  , M  — F  contains only one component. By Schultens’s lemma, S  can be 
isotoped to intersect F  in essential simple closed curves on both F  and S. 
In this section, we will give an extension of Schultens’s lemma. The main 
argument is due to [6].

Lem m a 2.1. Let M  = V  Us W  be a strongly irreducible Heegaard 
splitting, and F  a good separating system in M  which cuts M  into two 
manifolds M i and М 2. Then S  can be isotoped so that

(1) each of 5 П M i and S  П М 2 is incompressible or
(2) one of 5  П Mi and S  П М 2 , say S  П M i, is incompressible while 

all components of S ' П М 2  are incompressible except one bicompressible 
component.

(3) one of 5 f)M i and 5пМг, say S flM i, is incompressible while 5ПМг 
is compressible. Furthermore, there is a Heegaard surface S  isotopic to S  
such that

(i) S  D M i is compressible while S ' П M 2 is incompressible, and
(ii) S  is obtained by 5-compressing S  in М 2 only one time.
Rem ark on Lemma 2.1. Bachman, Schleimer and Sedgwick [1] gave

an extension of Schultens’s lemma similar to Lemma 2.1 when F  is con
nected and closed.

Proof. Let { # 1, # 2 } = {W ,V }.  If each of S n  M x and S  D M 2 is 
incompressible, then Lemma 2.1(1) holds. If one of S  П M i and S  П М 2 is 
bicompressible, then, since V  Us W  is strongly irreducible, Lemma 2.1(2) 
holds. We may assume that

(1) one of S  П Mi and S  П М 2 is compressible in M i П H i or М 2  Л H i .
(2) S  П M i is incompressible in М* Г1Я 2 for i = 1,2.
Since F  is a collection of essential surfaces in M , H i and H 2 are non

trivial compression bodies. Let D  is an essential disk of # 2 such that |DDF| 
is minimal among all essential disks in Ho. By Assumption (2), \DC\F\ > 0. 
Furthermore, we may assume that

(3) S  is a strongly irreducible Heegaard surface such that \DnF\ is min
imal among all Heegaard surfaces isotopic to S  and satisfying Assumptions
(1) and (2).

Let a be an outermost component of D  П F  on D. This means that a,
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together with an arc b on d D (С 5), bounds a disk В  in D  which lies in 
either M\ П # 2  or M 2 П H 2 such that В  П F  = a. By the minimality of 
\D П F|, В  is a ^-compressing disk of S  П M i or 5 П M 2.

Now there are two cases:
Case 1. D С М 2 П # 2  and S  П M\ is compressible in M\ П # 1.
By Assumption (2), 5 П М 2 is incompressible in М 2 П # 2.
Now let S ' be the Heegaard surface of M  obtained by ^-compressing S  

along D. We denote by H l and H 2 the two components of M  — S  . We may 
assume that M i П H\ С  M i П H [ . Since S  П M\ is compressible in M\ П tf 1, 
S  Г1М 1 is compressible in M iПH x, and S ' C\M2 is incompressible М 2Г\Н2‘ 
Now if S  П M i is compressible in M\ П H 2, then Lemma 2.1(2) holds.

Suppose that S  П M i is incompressible in M i П H 2. Then S  П M i is 
either incompressible or compressible in М» П H x but not bicompressible. 
Now D  П H 2 is an essential disk in H'2. But \D П H 2 П F\ = \D П F\ — 1. 
This contradicts Assumptions (1), (2) and (3).

Case 2. D  с  M 2 П tf2, S  П М 2 is compressible in M 2 П H i , and S  П M i 
is incompressible in М 1 П Я 1.

By Assumption (2), S f lM i is incompressible in M i Г1Я 2. Hence STl M i 
is incompressible in M\. Similarly, let S ' be the Heegaard surface of M  
obtained by ^-compressing S  along D. We denote by H x and H 2 the two 
components of M  — 5 . We may assume that M i П # 1  С M\ П H v  By 
Assumption (2), S  П М 2 is incompressible in М 2 П # 2- Hence S  П М 2 is 
incompressible in М 2 fl H 2. If S ' П M 2 is incompressible in М 2 П H x, then 
Lemma 2.1(3) holds.

Suppose that S ' П М 2 is compressible in М 2 П H [ . Since S  is also a 
strongly irreducible Heegaard surface, S  ПМ\ is incompressible in M\C\H2. 
But \D n H 2C\F\ = |D fiF | — 1. This contradicts Assumptions (1), (2) and
(3). Q.E.D.

3. The proof of Theorem 1

Lemma 3.1. (I).3 Let M  = У Us W  be a Heegaard splitting, and F  be an 
incompressible surface in M . Then either F  can be isotoped to be disjoint 
from S  or d (S ) < 2 — x(*F)-
(2).12 Let VUs W  and V* Us* W * be two Heegaard splittings for M . Then 
either d (S ) < 2g (S*) or V* Us- W * is a stabilization or ^-stabilization of 
V U  S W .

The proofs of Theorem 1 and Corollary 2. Assume that F  is a 
non-separating incompressible closed surface of genus at least one in M . 
We denote by 77(F ) and N (F )  the open and closed regular neighborhoods
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of F  in M , F\ and F 2 the two boundary components of N (F ). Let М ' = 
M  — 77( F ) .  We assume that M  has a Heegaard splitting V ' U5> W ' with 
d(S  ) > 2g (M  ). By Lemma 3.1, g (M  ) = g (S ). By Haken’s lemma, M  
and M  are irreducible.

Now let M  = V  Us W  be a minimal Heegaard splitting of M . Then
V  Us W  is irreducible.

C laim  1. If V  Us W  is weakly reducible, then g (S ) > g (M ') + 1.
Proof. Now V  Us W  has a thin position as

V Us W = (V[ us[ w[) иЯ1... ия.., (Vn Us; K )  (*)

where n > 2, each component of Я 1, ..., H n-\ is an incompressible closed 
surface in M , and Ц  Ust W i is a strongly irreducible non-trivial Heegaard 
splitting for 1 < i < n. See [11].

Suppose that g (S ) < g (M  ) + 1. By Lemma 3.1(2), g (M ',F i U F2) < 
g (M  ) 4- g (F ). Note that g (H i) < g (S). By Lemma 3.1(1), H i is disjoint 
joint from M  . Hence each component of Я 1, . . . , Я „_1 is parallel to F . 
Hence one of the manifolds M \, М 2, • • •, M n is homeomorphic to M  , say 
M i, and each of M 2, ..., M n is homeomorphic to F  x I.  This means that 
9 (S )= g (M ',F 1U F 2) +1. See [8]. Q.E.D. (Claim 1)

Now suppose that V  Us W  is strongly irreducible, and g (S ) < g (M  ) - 
9(F).

Claim  2. S  can be isotoped so that S  П M  is bicompressible while 
S  П N (F )  is incompressible.

Proof. Let J  = F i U F 2 . Then J  is a good separating system of M . By 
Lemma 2.1, there are three cases:

Case 1. S  П М ' and S n N (F )  are incompressible.
Since g (S ) < д (М ’) -  g (F ) and d (S ') > 2g (M '), by Lemma 3.1(1), S  

can be isotoped to be disjoint from M  . This means that a compression 
body contains an essential closed surface, a contradiction.

Case 2. one of S  П M ' and S  fl N (F ) is bicompressible while the other 
is incompressible.

By the argument in Case 1, 5 fl M ' in bicompressible and S  П N (F ) is 
incompressible.

Case 3. S  П М ' is compressible while S  П N (F ) is incompressible. Fur
thermore, there is a Heegaard surface S * isotopic to S  such that S* П M  
is incompressible while S* П N (F ) is compressible.

Again by the argument in Case 1, this is impossible. Hence Claim 2 
holds. Q.E.D. (Claim 2)

By Claim 2, we may assume that S n M  is bicompressible while S d N (F )
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is incompressible. Furthermore, we assume that \S П J |  is minimal among 
all Heegaard surfaces isotopic to S  and satisfying the above condition.

Claim  3. S  П M  contains only one component.
Proof. Since V  Us W  is strongly irreducible, there is one component of 

S  П M  , say C, which is bicompressible, and S  П M  — С  is incompressible. 
Suppose that S  П M  — X  contains at least one component C ' . Then, by 
Lemma 3.1(1), С is parallel to a surface in J .  Hence C ' can be disjoint 
from M  . This contradicts the assumption on |5ПУ|. Q.E.D. (Claim 3)

The following argument is essentially due to [10].
By Claim 3, S  П M  is connected and bicompressible. Let S v  be the 

surface obtained by maximally compressing S  П M  into M  П V , and Sw  
be the surface obtained by maximally compressing S  П M ' into M  П W . 
By the nested lemma, S v  and Sw  are incompressible in М '. This means 
that there are n essential disks D \,.. . ,  D n in V  such that S y  = ( S П M* -  
и”=1Д  x [0,1]) и^=1 Di x {0, l } .  By Lemma 3.1(1), each component of Sv  
and Sw , say C, is parallel to one component of 3 —dC, say C * , in M  . We 
denote by W q the handlebody bounded by С  and C*.

Claim  4. If C\ and C2 are two components of S v  {S w ), then W c x П 
WC2 =  0.

Proof. Suppose that there are two components of S v , say C\ and C2i 
such that П W c2 ф 0. Then C2 С W cx - Since C2 is incompressible in 
Wei i ^2 is parallel to a surface С ' С C { in W cx. Let C\ x I  be a regular 
neighborhood of C\ in W cx such that C\ x {0 } — C\. Now there are two 
cases:

Case 1. C i x (0,1] С in tV .
Now D i x [0,1] is disjoint from C i x { l }  for each 1 < i < n. Since 

C2 С W cx, S f )  M  is not connected, contradicting to Claim 3.
Case 2. C x x I  с  W  U?=1 D { x [0,1].
Now let C i x [—1,0] be a regular neighborhood of C i in V  such that 

C i x [—1,0) С in tV . Then D i x [0,1] is disjoint from C i x { — l } .  Hence 
either all the components of S v  lie in W cx or S  П M ' is not connected. 
Suppose now that all the components of S v  lie in W cx • Then 5 can be 
isotoped to be disjoint from J ,  a contradiction. Q.E.D. (Claim 4)

By Claim 4, each component of S v  is parallel to a component of J — 50^, 
say Ci,, which lies in V . Similarly, each component of Sw  is parallel to a 
component of J — 5ПУ which lies in W .

Let S [ = (5 n M ;)U (Jn y ), and S 2 = (S n M ^ U ^ rW ). Then S [ and S 2 
are two Heegaard surfaces of M ' . By Lemma 3.1(2), g {S [),g {S 2) > g (S  ). 
Note that x(30= x (Fx) + X(F2) = 2X(F ), x № =  x ( ^ V )  + x ( W ) -  Now
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we may assume that x (7 n V ) > l/2*(3) = X(F ). Hence * (S ) = х(5ПМ ')+  
X (S П N (F ) )  < X (S'2) -  x (F ) + X ( S П N (F )). Hence g (S ) > g (M ') -  g (F ). 
Thus Theorem 1 holds.

Now suppose that F  is a torus. Then each component of Jn V  and 
3TW  is an annulus. In this case, d (S [),d (S2) < 2. For details, see [10]. 
Hence g {S [),p (S ') > g (S ') + 1. Thus Corollary 2 holds. Q.E.D.
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1. Introduction

The term categorification was invented by Crane.5,6 It refers to the process 
of finding category-theoretic analogues of set-theoretic concepts, so that 
one recovers the set-theoretic structures from the Grothendieck group of 
the categories involved.

Listed below are some typical examples of abelian categorification. See 
Ref. 15 for a recent review.

set category
Z vector spaces

Z [M _1] graded vector spaces
abelian group abelian category

module abelian category & exact endofunctors

More precisely, categorification of a module M  over an algebra A  means 
lifting the module M  to an additive or abelian category Q and, accordingly, 
lifting the algebra A to a collection of endofunctors of С as well as functor 
isomorphisms among them, in such a way that the Grothendieck group of С 
recovers the module M  and the endofunctors and the isomorphisms among 
them recover the module structure of M .

The possibility of categorifying representations of quantum envelop
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ing algebras was first observed from their canonical bases introduced by 
Lusztig16 and Kashiwara:12 canonical bases have many pretty nice proper
ties necessary for categorification, such as integrality and positivity.

However, the categorification task turned out to be a rather difficult 
one. For treatments of tensor products of the fundamental Uq(sl2)-rnodule, 
see Bernstein-Frenkel-Khovanov2 and Chuang-Rouquier.4

Very recently, Frenkel-Khovanov-Stroppel8 succeeded in categorifying 
tensor products of general finite-dimensional Uq{sl2)-nlodules, by using at 
full length many deep results in representation theory of Lie algebras.

Later, in Ref. 18 the author fulfilled two tasks in a purely geometric 
way. One is the same as Frenkel-Khovanov-Stroppel’s work; the other is 
the categorification of Я -matrices among the tensor products of Uq(sl2)- 
modules. In this note we will give an elementary description of the first 
part of this work.

2. Quantum sl2

The quantum enveloping algebra13 Uq(sl2 ) is the Q(g)-algebra defined by 
the generators

K ,K ~ \ E ,F

and the relations

K K ~ l = K ~ 1I< = 1, 
K E  = q2E K , 
K F  = q~2F K ,

e f _ f e = !L i J £ 1 .
q - q - 1

We can rewrite the last relation in an equivalent form

q E F  + q~l F E  + K ~ l = q~l E F  + q F E  + K .

The simple t/g(sZ2)-modules are parameterized by their dimensions. 
More precisely, for a nonnegative integer d, let Ad be the Q(g)-linear space 
spanned by

{u0,V i,...,V d }.

Then the followings endow Ad with a C/9(ŝ 2)-niodule structure (we define
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V - i = Vd+i = 0).

K v r = qd~2rvr ,
E v r = [d - T  + l],V r_ i, 
F v r = [r + l]^ r+ l,

where

For a composition d = (d\, d2}. • •, di) of d (i.e. a sequence of nonnegative 
integers summing up to d), we have a tensor product of С/д-modules

A<i — A^j <8> A^j (££>••• A ^ .

It has a standard basis

{vn ®  vr2 <8> • • • <8> vr, I 0 < г» < <ij}.

3. A  toy model: simple U q(s l2 )-modu\es

As a warm-up, we illustrate by a simple example how to categorify Uq(sl2 )~ 
modules through geometric approaches.

The geometric settings is as follows. Recall that Ad is the Q((/)-linear 
space spaned by

Correspondingly, we have Grassmannian varieties,

X rd = {V  С Cd | dim V = r }, 0 < r < d.

Consider the partial flag varieties

x r/ +1 = {V i c v 2 c c d \ dimV = r, dimVb = r  + l } .

The obvious projections

X rdi----P---- X r/ +1--- ---- >Xrd+1

endow X dr+l with a Pd_r_1-bundle structure over X J  and a P r-bundle 
structure over X J+1. In this way, both cohomology rings # * (X J,C ) and 
H * (X d+ l,C) act on the cohomology groups fT * (X jr+ l,C ).

To categorify the simple Uq(sl2)-modu\e Ad, we need to construct an 
abelian category as well as a collection of exact endofunctors.
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First, we define a finite-dimensional graded C-algebra

A" = e rH *(xrdi C).

The abelian category involved is the category >le-mof of finite-dimensional 
graded >l*-modules. By the Grothendieck group of >l*-mof, we mean the 
Q(<7)-linear space G(j4e-mof) which is defined by the generators each for 
an isomorphism class of graded Л’-modules and the relations

• [M *] = [M '*] + [M "e], for a short exact sequence M '* «-» M * -» M "*;
• [M *+1] = for M e € A*-mof.

Notice the isomorphism

Ad G(A*-mof) 
vr ~  [Я *(*5 ,С )].

Next, we describe the exact endofunctors. Recall that each flat Am- 
bimodule defines an exact functor of A*-mof by tensoring on the left. We 
have following flat (indeed projective) >l*-bimodules

X* = 0 rt f - d+2rpQ ,C ),
X~u  = ®rH0+d~2r(Xd,C),

Г  = ®rH*+d~r~l(X2r+1, C),
т  = егн9+г(хг/ +\с)1

in which H*(Xr/ +\C) is regraded as an Я в(Х£ ,С )-Я *р ^ +1,С)- 
bimodule for £* and as an Я *(Х ^ +1,С )-Я*(X^CJ-bimodule for J* . These 
are the exact endofunctors we need.

A straightforward computation shows the following isomorphisms of A*- 
bimodules (hence isomorphisms of endofunctors of yl*-mof)

X ' ®  3C-1* = 3C_1* О ЭС* = A ’ ,
X * ® £ *  Л * _ 2 ® £ * ® Э С * ,

and

л*-1 ®  £* ®  5 ’ ®  л ,+1® э - ® г *  e  3c*
=* л*+1 ® г* ® e a —l ®?*®£* ® 3c_1*



K K ~ l = K ~ l K  = 1, 
K E  = q2E I<, 
K F  = g "2F/f,
? F F  + q~l F E  + i f " 1 = g - ^ F  + q F E  + if, 

we conclude that the abelian category v4*-mof and the exact functors 

X*<g>- DC” 1*® - , £• <g> —, T ( g>-

categorify the [^(s^-module Ad-
Before proceeding to categorify tensor products of C/g(si2)-modules, we 

give a sheaf-theoretic interpretation of the above constructions.
Notice the algebra isomorphism

H ’ {X TdX )  = Ex fSM X :){C X r,C x : ).

where Sh(-) denotes the category of C-sheaves, Сд-r denotes the constant 
sheaf on The multiplication in the right hand side is given by the 
Yoneda product.

Besides, we have a linear isomorphism

H -(X r/ +\C) = Ext* h( x r,r+i} (C x r,r+i, C x r,r+1)

= ^ xtSh(X2r+1)(P *^ X d 'P  CX^+1)

such that the canonical actions of the algebras H * (X ^  С), Н *(Х ^ +1, C) 
on the left hand side and the canonical actions of the algebras 

E x t^ x r+î (Cx r+i,Cx r+i) on the right hand side 
are compatible with the above algebra isomorphisms.

To summarize, we can rewrite as follows.

A* = ©rExtg^xj^Cxj.Cxj),

3C* = ©rE x t * ^ ( € x ; ,Cx;),

£• = ®rE x t^ ;p +11)(P*€x; ,P,*Cx r 0-
7* = ©rExt*^x ,,r+1j(p"€xr+i ,р*Сх$),

W ith slight modifications to the expressions above, we will use them in 
Section 5 to categorify tensor products of £/3(5/2)-modules.
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Comparing them with the defining relations of Ugish)
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4. Intersection complex

The notion of intersection complex backdated to Goresky-MacPherson10,11 
trying to seek a new homology theory for singular spaces such that impor
tant properties of usual homology theory for smooth manifolds, such as the 
Poincare duality, still hold.

Intersection complexes of certain singular varieties (Shurbert varieties) 
will provide us key ingredients for our geometric categorification.

For simplicity, we assume X  is a projective complex variety of pure 
dimension n. Choose a stratification

X  = S0 U S i U • • • U Sn

in which each stratum Si is a smooth subvariety of dimension n — i. One 
obvious choice is that So is the regular part of X  and, inductively, Si is the 
regular part of X  \ S i- 1.

Let C * (X ) be the chain complex for computing the usual cohomology 
H * (X ,C ) (either the simplicial chain complex or the singular chain com
plex). We say a cochain £ G С г(Х ) is allowable if the following transversality 
condition is satisfied.

dimR(|f| П Sk) < i — k — 1, for к = 1,2,.. . ,n.
The intersection chain complex is the subcomplex of C * (X ) formed by

IC l (X )  = {£ e C l (X ) | both d£ are allowable}.
Its homology defines the intersection cohomology IH * (X )  of X .

For example, the usual cohomology groups and the intersection coho
mology groups of P 1 V P 1 are computed as follows.

i tf^ P 1 V P \ C ) / tf^ P1 V P 1)
0 С c e c
1 0 0
2 c e c C 0  с

Note that the Poincare duality is violated in the usual cohomology but 
persists in the intersetion cohomology.

This phenomenon is indeed a general fact.

Theorem  4.1 (Goresky-M acPherson10’11). (1) IH l (X ) is indepen
dent of the stratification {Si}o<t<n, hence ™ a topological invariant of X .

(2) Poincare duality holds

1Н1(Х) ^  IH2n~\X).
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Corollary 4.1. IH l (X )  = Н г(Х , С) if  X  is smooth.

The intersection cohomology can be better understood and treated in 
the sheaf-theoretic setting. Recall that the usual cohomology H * (X , C) is 
the hyper-cohomology of the constant sheaf C x  € S h (X ). It turns out that 
the intersection cohomology IH * (X )  is the hyper-cohomology of a perverse 
sheaf JG (X ) G Pe rv (X ), the intersection complex of X . More generally, for 
every closed subvariety S  of X , there is a perverse sheaf 36(5) € P e rv (X ) 
(supported on 5), whose hyper-cohomology computes IH * (S ).

The subject of perverse sheaf has been too far from the scope of this 
note. We refer the readers to Refs. 7,9 for accessible introductions and 
to Refs. 1,3 for further details. We only mention here that the category 
of perverse sheaves P e rv (X ) has many resemblance with S/ i(X ), so it is 
helpful to keep in mind that P e rv (X ),3 £ (X ) are analogues of S h (X ),C x  
just as IH * (X )  is an analogue of H * (X , C).

5. Tensor products of modules

Let the varieties X d, X dr+1 and the morphismsp,p' be the same as Section
3. We fix a composition d = (<2i,d2,. • • ° f  d = Y^di. Recall that the 
tensor product

Ad = 0  A  d2 0  • • • 0  A  di

has a standard basis

{tVi 0  ^r2 0  ’ ’ ' 0  r̂j | 0 ^ — d i } .

The general linear group G L (C d) acts on the Grassmannians X d, 0 < 
r  < d and so does its parabolic subgroup

/P i *\
P2

Pi6GL(Cdi)}.

\0  P j
A key observation is the obvious one-one correspondence

{Pd-orbits of UrX d } <-» the standard basis of Ad-
The closures of the Pd-orbits are specific examples of Schubert varieties; 
they are singular varieties, in general.

Let L r denote the direct sum of the intersection complexes of the Pd-
orbits of X  J

L r = 0s3e(S) € P e rv (X rd).



Define a finite-dimensional graded (non-commutative in general!) C-algebra 
A* = ® rExtperu(X r)(L r , L r), 

as well as -4*-bimodules

ЭС* = ® rE x t^ + £ J ) (Z,r>L r),

£* = ©rExt • ^ r+1)(p * ir,p '* i^ 1),

T  = ® rE x t ^ (^ .r+1)(p'*Lr+1,p*Lr).

The main result of [18, Section 3] can be stated as follows.

Theorem  5.1. There is a canonical linear isomorphism

Ad — G (A * -mof) (*)
and isomorphisms of projective A*-bimodules

%• ®  X~u “ X ~l* ®  3C* = A #,

DC* ®  £* = Л*-2 ®  £* ®  3C#,
Х Ш® Т  2  Л*+2®  Г Г ® Х #,

and

A — 1 <8> S* ®  5** 0  Л*+1 ®  ®  £* 0  ОС*
а  л*+1 ® £• <s> у  e  л—:1 ® т  <s> г* 0  к - 1*.

Therefore, the abelian category A*-mof and the exact functors

X'®-, ЗГ1*®-, г*®-, 3 - ® -

categorify the Uq(sl2)-module Ad<

We conclude this note by several remarks. The linear isomorphism (*) 
from the above theorem is non-trivial. It can be expressed in terms of 
parabolic Kazhdan-Lusztig polynomials. The elements

[Extperv(/Yr)(LT, 3e(5))], 0 < r < d, S 6 {Pc-orbits of X rd}
form a basis of Ad, which coincides with the canonical basis introduced by 
Lusztig.17

The bimodule isomorphisms from the above theorem were proved by 
reduction to sheaf isomorphisms. The main technique involved is the usage 
of the Decomposition Theorem of Beilinson-Bernstein-Deligne-Gabber.1

The work Ref. 18 was partly motivated by a desire to understand 
Khovanov homology14 of knots and links. The treatment was inspired by 
Lusztig’s geometric construction of canonical basis of quantum enveloping 
algebras.16
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356 Я. Zheng

Acknowledgement

I am grateful to the organizers of the conference in memory of Lin Xiao-Song 
held at Nankai University, both for their invitation and the opportunity to 
make a contribution to this proceeding. It was Lin Xiao-Song that first 
introduced to me Khovanov homology of knots and links, which eventually 
led me to the present work on categorification.

References
1. A. Beilinson, J .  Bernstein and P. Deligne, Faisceaux pervers, Asterisque 100, 

(1982).
2. J .  Bernstein, I. Frenkel and M . Khovanov, A  categorification of the 

Temperley-Lieb algebra and Schur quotients of U (sl2 ) v ia  projective and 
Zuckerman functors, Selecta Math. (N .S .) 5, 199-241 (1999).

3. A. Borel, Intersection Cohomology (Birkhauser, Boston, 1984).
4. J .  Chuang and R . Rouquier, Derived equivalences for sym m etric groups and 

s^-categorification, arXiv:math/0407205.
5. L. Crane, Clock and category: is quantum gravity algebraic?, J . Math. Phys. 

36, 6180-6193 (1995).
6. L. Crane and I. Frenkel, Four dimensional topological quantum field the

ory, Hopf categories, and the canonical bases, J . Math. Phys. 35, 5136-5154 
(1994).

7. A. Dimca, Sheaves in Topology (Springer, Berlin  2004).
8. I. Frenkel, M. Khovanov and C. Stroppel, A  categorification of finite

dimensional irreducible representations of quantum sl(2) and their tensor 
products, arXiv:math.QA/0511467.

9. S. I. Gelfand and Yu. I. M anin, Homological algebra (Springer, Berlin , New 
York, 1999).

10. M . Goresky and R . MacPherson, Intersection homology theory, Topology 19, 
135-162 (1980).

11. M . Goresky and R . MacPherson, Intersection homology I I,  Invent. Math. 72, 
77-129 (1983).

12. M . Kashiwara, On crystal bases of the (/-analogue of universal enveloping 
algebras, Duke Math. J. 63, 465-516 (1991).

13. C. Kassel, Quantum Groups (Springer-Verlag, New York, 1995).
14. M . Khovanov, A  categorification of the Jones polynomial, Duke Math. J. 

101, 359-426 (2000).
15. M . Khovanov, V . Mazorchuk and C. Stroppel, A  brief review of abelian cat- 

egorifications, arXiv:math/0702746.
16. G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. 

Amer. Math. Soc. 4, 365-421 (1991).
17. G. Lusztig, Introduction to Quantum Groups (Birkhauser, Boston, 1993).
18. H. Zheng, A  geometric categorification of tensor products of Uq(sl2 )-modu\es, 

arXiv:math/0705.2630.



PART В

Xiao-Song Lin’s Unpublished Papers
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Ed ito rs’ Notes

In this part, we included 5 unpublished papers of Xiao-Song Lin. The 
recent paper on the motion group of the unlink and its representations starts 
an interesting generalization of the braid groups to higher dimensions. It has 
been used by other mathematicians to study statistics of extended objects in 
dimension 4. Some papers dated back to 1991. We did not correct mistakes 
or update the papers. Readers may continue to find ideas in these papers 
interesting and discover new theorems following his ideas, which will be the 
best way to remember Xiao-Song.
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Markov Theorems for Links in 3-Manifolds

We describe here a Markov theorem for links in S 2 x S l using the braid groups 
corresponding to the Coxeter groups of type Вg. See the theorem in section
3. We w ill work on a more general setting. The only reason here to single out 
S2 x S 1 is its sim plicity. It  is possible that all the other A rtin  groups w ill turn 
out to be useful in the study of links in 3-manifolds.

1. Coxeter groups and their corresponding braid groups

Let W  be a Coxeter group. It has presentation

W  = (re R - ,r2 = ,(rs)m™ = 1)

where mrs = mST > 3 for r,s e Я  and г Ф s. Then, B\v , the braid group 
corresponding to W , is given by

B w  = (ov; r € Я, aras • • • = asa r  • • •).

These groups have been studied extensively (see,BrD). They are called Artin 
groups by some authors.

The classical braid group with n strands, *Bn, is the braid group corre
sponding to the Coxeter group whose Dynkin diagram is of the type A n-\- 
We will study the braid group corresponding to the Coxeter group with the 
type B n Dynkin diagram (or the braid group of type B n for simplicity).

Denote the generators of the braid group of type B n by сто, 0\,. •., &n-i- 
Then the generating relations are

(1) (Ti<jj = Gj(Ji if |г -  j | > 2;
(2) <7icri+1<7i = <7i+i04<7j+i for г = 1 ,... ,n  -  2; and
(3) <J0<J1<J0CJ1 = <Ji<7o<Ji0'o.

We will denote by Cn the braid group of type B n. Then it is easy to see 
that we have natural inclusions

£2 С  C3 С  ■ • • С  Cn С  <tn+ 1 С  •
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We define a homomorphism ф : £n —► Cn+i which will be useful later. 
We define

Ф{&о) = cn& о^ь 
Ф(о-1) = cr2

0(̂ 71—l) = On-

Lem m a 1.1. ф extends to a homomorphism <tn —> £n+i.

Proof. It is easy to check that the relations (1) and (2) are preserved under 
the map ф. Let us check the relation (3). We have

Ф{ОО°\0ПО\) — 0\CFq0\(J20\0§0\02 
=  СГ \<7qG 2&  102&0&l<72

— (J\O2O0O\(Jq(T2O\O2 
=  0‘i0 r2<70crl (70<7l<720'lj

and

Ф(О\°О(Л0О) — 0’20'l0'o0ri0r20'icro<jl 
=  <J2O\O0G2O i O2O0O\

— 02&1СГ2&0СГ1СГ0(720'1 

=  G\G20\OQO\GQa20\

— <y\(J20Q<J\(JQ(7iG2(y\’

So ф extends to a homomorphism (£n —»■ £n+i □

We will see that this homomorphism ф : <£n —» £n+i is quite natural 
when the following geometrical interpretation of the group Cn is established. 
And it turns out that ф is a homomorphism.

Let 93n+i be the classical braid generated by a o ,a i, . . . ,  a n_ i. The gen
erator ^  is represented by a braid.

It is easy to see that the two braids are isotopic where the left braid 
represents a ^ a ^ a i and the right braid represents aiagaiag. Thus, we 
can define a homomorphism Cn —► ® n+i by sending ao to а% and sending 
Vi to a,- for i = 1 ,2 ,..., n — 1.

Prop osition  1.1. The homomorphism <£n —► 93n+i defined above is a 
monomorphism, i.e. the subgroup of ©n+i generated by a § ,a i, ... ,a n_ i 
is the braid group of type B n
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Proof. For any finite Coxeter group W  of rank t , let Л  be the set of 
complexified reflecting hyperplanes of W  of C e. Write

M w = C e\ у  Я  
нел

for the corresponding hyperplane complement on which W  acts freely. Then, 
we have B\y = 7Ti(M w/W ). SeeBr or.D

Let W  be the Coxeter group of type B n generated by r*o,ri,. . . ,  rn_ i. 
The action of W  of Cn is generated by

ro : (zu z2, . . . ,z n) i-> (- z 1,z2, . . . ,z n)

and permutations of the coordinates given by

. ( .  . . , Z i+ i , . . . )  I > ( .  . . , Zi+ 1 , Zi) . . . )

for i = 1 ,... ,n  — 1. So

M w  = {{z i, -.., zn) € (C*)n; Zi Ф ± Z j  if i Ф j }

where С* = С \ {0}.
The normal subgroup N  of W  generated by (z i,z2, — , zn) ь-» 

(—z i,z2, .. . ,  zn) is abelian and W /N  is isomorphic to the symmetric group 
S n. Thus, S n acts freely on M w /N . Let C*/ ~  be the quotient of C* by 
the reflection г i-> —z. Then the space M w /N  is the product of n copies of 
C*/ ~  and Sn acts on it by permuting the factors.

Let

^  = { ( n , . . . , * » ) € ( C T ; ^ ^ * j i f M i } -
Then the symmetric group Sn also acts freely on X . The diffeomorphism 
С */ » C* extends to an 5n-equivalent diffeomorphism M w /N  —* X . 
Thus, we get an isomorphism

w i{M w /W )- + id {X /Sn ).
If we interpret a classical braid in *Bn+i as an ambient isotopy of n + 1 

distinct points in the complex plain C, and element in ir i(X / S n) can be 
thought of as a braid in 93n+i with the point 0 € С keeping fixed. Thus 
v i(X / S n) is the subgroup of Q3n+i generated by а$, a i , . . . ,  a n-i- It is also 
quite clear that « 0,0:1, . •. ,a n_ i are the standard generators of the braid 
group of type B n. This proves our theorem П

It seems that X / S n is a more natural configuration space for £n. And it 
is not hard to write down directly a presentation of 7ri(X/5n)* To illustrate 
this, let us work out the case n = 2 explicitly.
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In the case n = 2, X  is the complement of the complex curves z\ = 0, 
z2 = 0 and z\ = Z2 in C2 = {(z i, гг)}. The symmetric group S2 is generated 
by the reflection r  : (z i,z2) >—► (22, 21).

Let £ 4 = { ( 21,2:2); №  + I-2̂212 < 1} be the unit ball and д Вл = S3 = 
{{z i,z 2)-, \zi\2 -I- \z2\2 = 1} be the unit sphere. Let

Y  = E 3 \ (S 3 П ({*1 = 0} U {*2 = 0} U {z ! = гг})).

Then X  and Y  are equivariantly homotopy equivalent. So we have

7Г1(Х/Т)~7Г1(У/Т).

Notice that Y  is the complement of the link in the left part of Figure 1.3 
in S 3. Moreover, r  restricted on S 3 is the standard rotation of 180 degrees 
with S 3 П {z\ = z2} as the axis. Thus Y /т is the complement of the link in 
the right part of Figure 1.3 in S 3.

Let us write down the Wirtinger presentation for 7Ti(Y/r). In this pre
sentation, we have generators a, b, c, d, e and relations

(1) bca~~l c~l — 1,
(2) eb~1e~1a = 1,
(3) c~1a~ l da = 1,
(4) cd~1c~l e — 1,
(5) ae~1a~1c = 1.

From the relations (1), (3) and (4), we get

b = cac-1, 
d = aca-1,
e = cdc~l = caca~lc~l .

So (2) becomes

1 = eb~1e~1a 
= caca~1c~1ca~1c~1cac~1a~1c~1a 
= caca“ 1c_1a“ 1c” 1a,

or

caca = acac.

Similarly, (5) is equivalent to

caca = acac.
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Back to 7Ti[Х /т ), we have а% = с and a i = a. So tti(X / t ) has a 
presentation

(cx l,a i : Qoaiagal = a i^ a ia o ).

Now the homomorphism ф : Cn —> £n+i can be obtained from the fol
lowing geometrical operation: First split the 0-th strand into two strands 
without twisting, and name the resulting two endpoints by 0 and 1. Then 
rename the original г-th endpoint by i + 1 for г = 1,2, . . . ,n  — 1. This 
operation changes an n-braid into an (n -I- l)-braid and gives rise to the 
homomorphism ф : £n —» £n+i- It is easy to see now that ф is a monomor
phism.

2. Study links via  open book decompositions

Let M  be a closed, connected 3-manifold. An open book decomposition 
of M  consists of a collection A  of disjoint circles, called the binding, and 
a fibration p : M  \ A  —» S'1. The fibres are called the pages. We also 
assume that the fibration is well-behaved near Л, i.e. that A  has a tubular 
neighborhood A  x D 2 so that p restricted to A  x (D 2 \ {0}) is the map 
(x, y) —► y/\y\. Thus, a fibred link in M  is a special case of an open book 
decomposition. The difference here is that for an open book decomposition, 
more than one component of the boundary of a page (fibre) may meet a 
single component of the binding (link).

On S 3, there is a standard open book decomposition with disk pages. 
The binding of this open book decomposition is an unknot in S 3.

In,s R. Skora developed a theory of braids in an arbitrary 3-manifold 
with respect to a fibred link in that 3-manifold. There is no essential diffi
culty in adapting Skora’s theory for the general case.

Let M  be a closed, connected 3-manifold with an open book decompo
sition. Denote by A it ...,A k  the circles in the binding of this open book 
decomposition.

Defin ition 2.1. A piecewise transverse link in M  is an oriented link L  С 
М \ Ц  Ai together with a decomposition of L  into closed segments s i , . . . ,  sn 
such that

(1) L = ll**;
(2) Int(si) П In t(sj) = 0 for г ^ j\ and
(3) each Si is transverse to the pages.
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Each segment Si inherits an orientation from L. A segment is called 
increasing if its orientation is consistent with that of S l under the projection 
p, and is called decreasing otherwise.

The height of a piecewise transverse link is the number of decreasing 
segments.

Let us reconstruct M  as follows: There is a compact surface F  and an 
automorphism ф : F  -*• F  such that

i

is the mapping torus of F , i.e.

M \ ( J ( A <x£)2)= •F X J ° ’ 1̂ 
i

where (x, 0) ~  ('ф(х), 1) for all x £ F .
Let 6i, . . . ,  be be the boundary components of F . Let D{ be a meridian 

disk of x D 2. Then it is clear that dDi intersects some bj x 0 at least 
once. From this observation, the following lemma is obvious.

Lem m a 2.1. With an appropriate orientation, we can decompose dD i to 
get a piecewise transverse link with zero height

We have some special isotopies between two piecewise transverse links.

Definition 2.2. Let L,Z/ be two piecewise transverse links. Let s be an 
increasing segment of L  and , s2 increasing segments of V , such that 
L ' = (L \ s )  U (sj U s;). Assume further that there is a disk D  in M  \ U* Ai 
such that D D L  = s and D H L ' = s^Us^. Then we say that L ' results from 
L  by an isotopy of type CK

Definition 2.3. Let L, L ' be two piecewise transverse links. Let s be an 
increasing segment of L  and s' an increasing segment of L\  such that V  = 
(L  \ s) U s'. Assume further that there is a disk D  as shown in Figure 2.2 
which intersects the binding transversally at a single point on Ai. Then we 
say that V  results from L  by an isotopy of type W*.

With these definitions, we have the following propositions.

Proposition 2.1. Let L  be an oriented link in M , then L  is isotopic to a 
link which can be decomposed into a piecewise transverse link of zero height.



366 X.-S. Lin

Proposition 2.2. Let L, L ' be two piecewise transverse links of zero height. 
Suppose they are isotopic in M . Then there is a sequence of piecewise trans
verse links

L  = L i , . . . ,  L j , . . . ,  L m = I/

such that for each j  — 1,... ,m — 1, L j+ i results from L j by an isotopy of 
type 3t± or W f , i = 1,... ,n.

The proof of these two propositions is basically the same as in.s So we 
will omit it and only point out the following key observation.

Let L  and L ' be two piecewise transverse links. Suppose there are in
creasing segments s and s' of L  and L ' separately such that L \ s  = L ' \ s' 
and there is a disk D  with D  C\L — s and D  П L ' = s'. Moreover, D  inter
sects the binding transversally at two points, one is on Ai and the other on 
Aj. Then L ' results from L  by two isotopies, one is of type W ” 1 and the 
other of type W 7*. Actually, D  can be decomposed into two disks D\ and 
D 2. The disk D\ gives us an isotopy of type W* whereas the disk D 2 gives 
us an isotopy of type W j.

The advantage here of using open book decompositions rather than 
fibred knots is that for any closed, orientable 3-manifold, there is an open 
book decomposition whose pages are planar surfaces. This makes it quite 
easy to formulate Markov theorems for links in such manifolds using various 
braid groups, at least in some special cases such as S 2 x S 1. Let us discuss 
the general case first.

Let M  be a closed, connected and orientable 3-manifold. Then, M  can 
be obtained by performing Dehn surgery on a link К  in S'3. We can assume 
that the surgery coefficients are all integers. Denote by K *  the link in M  
dual to К .

Consider the standard open book decomposition of S 3 wth an unknot 
J  as the binding. We can assume К  s a closed braid with respect to the 
braid axis J .  Then

S 3 \ ((I< x D 2) U ( J  x D 2))

is a fibration on S 1 whose fibre is a compact, connected planar surface. 
The boundary of a fibre consists of meridians of К  x D 2 and J  x {z } with 
z € dD 2. Notice that the surgery on К  with the resulting manifold M  is 
done by gluing a disk to each component of d (K  x D 2 along longitudes of 
К  x D 2 (i.e. a simple closed curve on a component of d (K  x D 2) which 
intersects a corresponding meridian transversally at a single point) and then
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fill up the sphere boundary components with balls. Thus, the fibration on 
S 3 \ ((К  x D 2) U (J  x D 2)) can be extended to

M  \ (.К * U J )

which satisfies the requirement for an open book decomposition near I< *U J. 
So we get an open book decomposition of M  with the binding K *  U J .  The 
pages are connected planar surfaces. We now have the following theorem.

Theorem  2.1. Each link in M  is isotopic to a transverse link in 
S 3 \ (K  U J ) ,  i.e. it intersects each fibre transversally. Two transverse links 
are isotopic in M  if  and only if  one results from the other by a sequence of 
the following two operations or their inverses:

(1) An isotopy in S 3 \ (K  U J )  preserving the fibration;
(2) An operation on transverse links described in Figure 2.4•

The operation on transverse links described in Figure 2.4 is analogous to 
the classical Markov move in the way that the usual braid axis is replaced 
by any circle in the binding К  U J  of the open book decomposition. Notice 
that when К  is empty, M  = S 3. In this case, our theorem is the classical 
Markov theorem (see8).

3. The case of S 2 x S 1
S 2 x S l can be obtained by performing a 0-framing surgery on an unknot 
in S 3. Call this unknot K . Let J  be another unknot in S 3 such that К  U J  
is the Hopf link. Then S 3 \ (К  U J )  is the product of an open annulus 
with S 1. Let L  be a transverse link in S 3 \ (K  U J ) .  Let n be the number of 
intersection points of L  with a fibre. Then we can think of L  as representing 
an element in Cn where К  corresponding to the 0-th strand. The theorem 
in section 2 leads to the following definition.

Defin ition 3.1. A Markov move on
oo

I K
n = 2

is one of the following operations or its inverse:

(1) change (3 € C„ to one of its conjugates in <£„;
(2) change /? € £n to (3a±l e Cn+i; and
(3) change (3 € Cn to а^ 1ф((3) 6 <£n+i ■
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Definition 3.2. Let
oo 

n=2

then /3 and /?' are Markov equivalent if there is a sequence of elements in 
IK n :

such that 0j+i results from by a Markov move for each j  = 1 ,..., m  — 1.

Now we have

Theorem  3.1. Isotopy classes of oriented links in S 2 x S 1 are in one-to- 
one correspondence with Markov equivalent classes o f { j£ n.

We end up with some remarks.
For links in the lens space L (p , 1), we can also get a Markov theorem 

using U  €n just by replacing the third type Markov move with the following 
operation:

(3)p change /3 6  <tn to a g a f 1 <£(/?) €  C„+i-
In particular, L ( l,  ±1) = S'3. So we can get a Markov theorem for links 

in S 3 using \ j€ n instead of |J®n-
Let us call the equivalence relation on IJ^n  generated by (1), (2) and

(3)p the p-Markov equivalence relation. Using link polynomials for links 
in S 3, we can get a class function for (±l)-Markov classes of j j£ n- W ith 
some modifications, it is possible that this class function will give rise to a 
class function for p-Markov classes of IJ^n- This wil give us polynomials 
invariants for links in L(p, 1).

On the other hand, C. SquierSq has generalized the classical Burau rep
resentations fo the braid groups to all other Artin groups. In particu
lar, we have concrete matrix representations for the groups Cn. W ith some 
modifications, it is also possible that the characteristic polynomials of these 
matrix representations will give rise to polynomials invariants for links in 
L(p, 1).

One more posisble further approach is to construct “Ocneanu trace” 
for the other Hecke algebras, in particular, for the Hecke algebras of type 
Be. Also, a detailed study of representations f the braid groups of type Be 
which arise from the Hecke algebra of type Be is desirable. See.J

We understand that E. Witten has already constructed polynomial in
variants for links in 3-manifolds using the machinery of quantum field the
o ry^  Our purpose here is to point out that it is possible to find some more



accessible ways of constructing such invariants, at least for some simple 
3-manifolds.
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Vertex Models, Quantum Groups, and Vassiliev’s Knot
Invariants

1. Introduction

In,2 a deep connection between the seminal work of V. F. R. Jones4 and 
that of V. A. Vassiliev12 has been established. We will try to explore the 
full extent of this connection in the present paper.

It was soon realized after Jones’ revolutionary discovery of his famous 
knot polynomial in 1985 that behind it there stands a fast developing alge
braic theory, namely, the theory of quantum groups. Via the machinery of 
quantum groups, not only can the original Jones, HOM FLY, and Kauffman 
polynomials be derived, there actually is a way of systematically producing 
families of knot polynomials (see, for example,,11,6 and7). It is unfortunate, 
though, that in this approach, knots, rather than being viewed as imbed
ded circles in the 3-space in the most natural perspective, are taken to be 
equivalence classes of certain combinatorial objects, namely knot diagrams. 
Vassiliev in12 introduced a new way to look at knots as topological objects 
which led to a scheme of producing (finite, in a certain sense) numerical 
knot invariants relying on firm topological foundations. In,2 it was shown 
that the HOM FLY polynomial and Kauffman polynomial (thought of as 
families of knot polynomials, with the original Jones polynomial as a mem
ber of the HOM FLY family) can be put into Vassiliev’s picture in a very 
natural way. However, the proof there relies heavily on the recursive formu
lae of the HOM FLY and Kauffman polynomials. It reveals no connection 
between the algebraic structure behind the HOM FLY and Kauffman poly
nomials and Vassiliev’s theory. Such a connection is what we want to study 
in this paper.

Recall the notion of (circular) [zj-configurations in.2 They are patterns 
of pairing 2i points on an oriented circle. Let Vi be the vector space (over 
C, say) spanned by all [г]-configurations and V = 0  V*. A VBL-funtional is 
a linear functional on V satisfying two conditions. The first condition says 
that if an [̂ -configuration contains a pair consisting of two adjacent points
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on the circle, then the value of a VBL-functional on this [^-configuration 
should be zero. The second condition is more substantial. It plays a role 
just like the one played by the Yang-Baxter equation in Jones’ theory. See 
Definition 3.1 for details. In Vassiliev’s theory, if / is a VBL-functional, 
then f\Vi determines an element of the term Е\'г in a spectral sequence 
constructed for the cohomology of the so-called knot space. We have the 
following theorem.

Theorem  1.1. There is a VBL-functional associated to every irreducible 
representation of a simple Lie algebra.

One approach to this theorem already appeared in the thesis of Dror 
Bar-Natan,1 which studied the perturbative theory of Witten’s Chern- 
Simons path integrals.13 This seems to tell the other aspect of a whole 
story. Notice that in W itten’s theory of Chern-Simons path integrals, knots 
are also treated as topological (geometric) objects.

Our approach to this theorem is based on the representation theory of 
quantum universal enveloping algebras of simple Lie algebras. The similar
ity between Bar-Natan’s approach and ours will be transparent. Whereas 
Bar-Natan deals with the first-order approximations of Chern-Simons path 
integrals, we will deal with the first-order approximations of quantum uni
versal enveloping algebra of simple Lie algebras. On the other hand, our 
approach seems to be more direct and simpler. It will also suggest a states 
model for VBL-functionals.

The states model for VBL-functionals seems to provide a nice way of 
understanding the underlying algebraic structure of Vassiliev’s theory. W ith 
this states model, we can produce VBL-functionals directly from finite di
mensional irreducible representations of quantum universal enveloping al
gebras of simple Lie algebras without going through the formalism of con
structing the generalized Jones polynomials. In spite of that, the proof of 
Theorem 0.1 is best understood in terms of the relation between generalized 
Jones polynomials and VBL-functionals established in this paper.

There are two minor problems which will not be discussed in detail 
in this paper. In the terminology of,2 if / is a VBL-functional, then J|V j 
corresponds to the top row of an actuality table of order i. An actuality 
table of order i determines a Vassiliev knot invariant of order г. Our first 
problem is for a VBL-functional f  given by Theorem 0.1, whether /|Vj can 
always be extended to a Vassiliev knot invariant of order г, or whether we 
can complete an actuality table if its top row is given as /|Vt-. In Bar-Natan’s 
approach, the answer to this problem is yes in a lot of concrete cases. In
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general, an affirmative answer requires the related Л-matrix to satisfy an 
additional equation. See the discussion after Theorem 2.11. Another minor 
problem is whether the VBL-functionals provided by Bar-Natan’s approach 
and our approach are essentially the same. Direct calculation is possible but 
tedious. Yet it seems to be hard to believe that these two approaches would 
not produce essentially the same VBL-functionals.

The major problem here is whether the set of all VBL-functionals is 
spanned by those produced via the theory of quantum groups or the theory 
of Chern-Simons path integrals. This problem seems to be very difficult and 
a new insight is certainly needed if one wants to make a breakthrough. One 
anticipation is that our states model for VBL-functionals would probably 
play an important role in the solution of this problem. After all, we tend 
to believe that Vasiliev’s theory is the topological counterpart of the quan
tum group formalism (algebraic) and W itten’s formalism (geometric and 
analytic) of constructing knot invariants.

This paper is organized as follows. In section 1, we will review some 
basic facts about quantum groups and their finite dimensional irreducible 
representations. We will make an observation (Lemma 1.3) about the uni
versal Я -matrix which turns out to be quite important in the following 
discussion. In section 2, we will discuss Jones’ vertex models and establish 
some facts about vertex models derived from irreducible representations of 
simple Lie algebras. These facts will be useful in section 3. Finally, in sec
tion 3, a states model for VBL-functionals will be introduced and we will 
show how to get VBL-functionals from the knot invariants derived via the 
machinery of quantum groups.

2. The quantum group UhQ and its finite dimensional 
representations

For every simply complex Lie algebra g, there is a natural deformation of 
its universal enveloping algebra Ug as a Hopf algebra over the formal power 
series over C. We denote this deformation by t/дд, which is called a quantum 
universal enveloping algebra or quantum group. Following,3 we define UhQ 
in terms of generators and relations.

Let д be a simple Lie algebra of rank Z, (a^) its Cartan matrix, and di 
the length of the ith root.

As а С [[/г]]-algebra, UhQ is generated by dl elements Hi,X^>  1 < i < I
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and, for г ф j , let qi = ехр(Ы*/2):

where

The comultiplication A  is defined by

А(Нг) = Hi 0  1 + 1 0  Hi,
Д (Х± ) = X ?  ®  exp((h/4)Hi) + exp((h/4)Hi) ®

This comultiplication gives rise to a Hopf algebra structure on UhQ- This 
Hopf algebra is certainly non-commutative and non-cocommutative. Notice 
that Uh$ = U q mod h (by which we mean UhQ/hUhQ — U q) whereas 
the reduced Hopf algebra structure on U q is still non-commutative but 
cocommutatative. Nevertheless, UhQ is quasitriangle (quasitriangular?) in 
the sense that there is an invertible element R  G UhQ 0  UhQ such that

where R i2 = £  <71 0  g2 ®  1 € (UhQ)®3 if R  = ®  g2 and so forth. 
Here the property (1.2) implies the Yang-Baxter equation

Lem m a 2.1. R  = 1 0  1 mod h.

Proof. We have an explicit formula for R  £ UhQ ®  UhQ given by 
Kirillov-Reshetikhin and Levendorskii-Soibelman (see10). From that for-

R A (g )R ~ 1 = Р А (д )У д е  UhQ, 

where P  G End(£//i0 0  UhQ) is the permutation; and

(A  0  id )(i?) = Д13Я 23, (id 0 Д)(Я ) = Л 13Д12, (2)

(1)

# 1 2 # 1 3 # 2 3  =  ^23^i3i?i2-

mula, Lemma 1.3 is quite easy to see. □
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Notice that Lemma 1.3 is consistent with the cocommutativity of the 
Hopf algebra Uq.

Finite dimensional representations of UhQ have been studied by several 
authors. See the references in.10 Here we think of h as a generic complex 
variable so that UhQ is an algebra over C. Rosso8 showed that every finite 
dimensional representation of UhQ is completely reducible. Moreover, we can 
deform every finite dimensional irreducible representation of Uq to a finite 
dimensional irreducible representation of UhQ and all finite dimensional 
irreducible representations of UhQ are essentially obtained by deforming 
finite dimensional irreducible representations of Uq (after possibly tensoring 
by a 1-dimensional representation).

Let (p, V) be a finite dimensional irreducible representation of UhQ- As 
indicated by Rosso,9 there is a basis e of V such that

Mat(p(Tg),e) = Mat(p(p), e), V# G UhQ, 

where T : UhQ —>► UhQ is the antiautomorphism defined by

ТЩ = Щ,
. sinh(/i/2)

* sinh(Mi/2) * ' 
smh(hdj/2) .

* sinh(/i/2) £ '

Such a basis is unique up to a scalar. We call it a privileged basis with 
respect to p.

3. Vertex models and quantum groups
In,5 Jones introduced the notion of vertex models and indicated how to 
derive regular isotopy invariants of knots from vertex models. See also.11

A vertex model consists of a vector space V together with a privileged 
basis e, two families of linear operations R±{X) = i?±(A,/i) G End(K <g> 
V) where Л € (0,7r) is called the spectral parameter and L(Л) € End(^) 
which is diagonal over the basis e. The triple v — {e, R±(A), L(A)} has the 
following properties:

(3.1) R±(A + S) = {L(-S) (8) id)i?±(A)(L(-<5) (8) id) ' 1 = 
(id<g>L05))#±(A)(id®L(<5))-1.

(3.2) Я_(0)Д+(0) = id, where Д±(А) = PR±{A) and P  G End(V <g> V) 
is the permutation.



(3.3) Let e = { ... , a, 6, . . . ,  x, y , ...} . We write A G End(V* ® V) as

A(a <g> x) = ^  A(a, 6|x, y)b <8> y.
b,y

The linear operators Atl and A12 are then defined to be 

Ah (a® x) = ^ 2  a\x, y)b <8> у ,
b,y

At2 (a <S> x) = ^  Л(а, 6)|y, rr)6 <g> y.
b,y

We should have

РЯ^(тг)РЯ12(тг) = id.

(3.4) For A e End(l/(g) V) as in (2.3), we write A 12, A13, A23 € End(V”<8>
V <8> V) as

^ 12(0 <g> x ® с) = ^  Л(а, 6|x, y)b®y<8>c
b,y

and so forth. Then we should have

Ri2W R 13(X + S)R23(S) = R23(S)Ri3(X + 6)R12{\).

From (3.1) and (3.2), we see that R±(A) is determined by R± = R±(0) 
and /£_ is determined by R+.

Proposition 3.1  (Rosso). Let (p, V) be a finite dimensional irreducible 
representation ofUhQ- Let e be the privileged basis of V with respect to p. 
Let

(1) Я+ = p <S> p(R); and
(2) L(A) = p(exp(-(/i/27r)Atfa )), where a  is a half of the sum of all posi

tive roots.

Then v — {e, R±, L(A)} is a vertex model.

See.9 
We write

R±(a® x) = ^ Я ± ( а ,6|ж,у)(А)&®у,
ь, у

L(X)(a) = exp(—(/i/27r)Afa)a.

Let
R±(a,b\x,y)(X,h) = y)(X) + Rl±(a,b\x,y)(\)(h) + 0{h2).

Vertex Models, Quantum Groups, and Vassiliev’s Knot Invariants 375



376 X.-S. Lin 

Lemma 3.1. We have

R°±(a,b\x,y)(X) =6(a,b\x,y) =
1 if a = b and x = y,
0 otherwise.

Proof. This is just a corollary of Lemma 1.1 that R = 1 0  1 mod h. □ 

Let

Г(а,b|x,j/)(A) = Urn R + M * ,v )W  ~ »,у)(Ц
h—*0 fl

Lemma 3.2. Г(а,Ь|х, г/)(Л) = Г(а, b\x,y)(0) 

Proof. By (2.1) we have 

R±(a,b\x,y)(\) = Я±(а,Ь|х,2/)(0)ехр(-(/1/2тг)(Са ~£б)л)- 

So 
Д+ (а, 6| s, у)(А) -  (а, Ь|ж, у)(А) 

л—о /г
= Ит Д+(а.Ь|х.У)(0)-Л -(а ,Ь | х ,У)(0) )(ед_ 6 )л )

h-+ о h
_  lim д+ (а, Ь|х, у)(0) -  Д_ (а, Ь|д, у)(0) D

/l-о  h

We will denote R±(a, b\x,y) = Д±(а, Ь|ж, y)(0) and R±(a, b\x,y) = 
R±{a, 6|x,y)(0). We also denote Г(а, b\x,y) = Г(а, b|rc,y)(0). Then

T(a,b\x,y){0) = Д+(а,6|х,?/) -  Д?_(а, b\x, у).

Lemma 3.3. R\(a,b\x,y) — R 1_(a,b\x,y) = 0.

Proof. From (2.2), we have 

^  Я+(а, 6|x, у)Я_ (у, z\b, с) = <5(а, с|ж, z). 
ь, у 

Since 

Я±(а,6|х,у) = 6(а,Ь\х,у) + Я±(а, b\x,y)h + 0(/г), 

we get

[Я+(а, Ь|ж, 2/)<5(y, г|Ь, с) 4- 5(а, 6|ж, y)Rl_ (у , г|6, с)] = 0
Ь,у
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0 Г

R}+(a,b\x,y) + Rl_(x,y\a,b) = 0. □

Corollary 3.1. We have

T(a,b\x,y) = Rl+(a,b\x,tj) + Rl+(x,y\a,b).

In particular,

T(a,b\x,y) = F(x,y\a,b).

Proposition 3.2. If the vertex model is derived from an irreducible repre
sentation of UhQ which is the deformation of an irreducible representation 
°fUQ> then the contraction ofT(a,b\x,y) is a scalar matrix, i.e.

^ 2  Г(а,Ь\Ь,у) = ц6(а,у)
Ь

for a certain constant fi.

Proof. Let p be an irreducible representation of UhQ which is the defor
mation of an irreducible representation p' of Uq. If we write

p <g> p(R)(a <g> ж) = ^>2R+{a,b\x,y)b®,
ь,у

then

Thus,

p® p(P(R))(a®x) = ^ 2 R +(x,y\a,b)b®y. 
b,y

Q(a <g) ж) = p <8> p(P(R)R)(a ® x)

= ^2  R+(y,z\byc)R+(a>b\x>y)c ® z
b,c,y,z

and

Q(atc\x,z) = ^ 2 R +(y,z\b,c)R+(a,b\x,y) 
b,y

= ^25(y,z\b,c)6(a,b\x,y) 
b,y

+ h ^ 2  [<%, г|6, с)Я+(а, Ь|х, у) + R+ (у , z\b, c)S(a, Ь|х, у)] + 0(h 2)
Ь,у

= 8(а,с\х, z) + h  [Д+(а,с|ж,г) + Rl+(x,z\a, с)] + 0 (h 2).
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Therefore,

Q = id+r7i + 0(/i2).

The condition

ЯЛЫ # -1  = РА (д)У д  € Uh9

implies

We have

P(R)RA(g) = A(g)P(R)R,\/g e UhQ.

p 0  p(A(g)) = G 0  id -f id 0 G + 0(h) 

where G = p'(g) and g € t/g. Thus

P(G 0  id + id 0 G) = (G 0  id + id 0 С’)Г.

Let the matrix of G be G(a,x). Then the identity

^  G(a, Ь)Г(6, x|x, z) = Г(а, 6|6, x)G(x, 2)
6,я b,x

can be easily verified using the previous identity. Since pf is irreducible, we 
see that Г(а, 6|6, ж) is a scalar matrix by Schur’s lemma. □

Given a vertex model v = {e, R±,L(\)}) Jones defined in5 a partition 
function associated with a knot diagram К which turns out to be a regular 
isotopy invariant of K.

A state of the knot diagram К is an assignment of an element of e to 
each edge of K. At each crossing of K, denote the “ingoing” angle measured 
in radians by A € (0 , 7r). We then can define the partition function

z k = E (  П  д ±м 1*,»)(а) ] « ф ( А /?«<*>). а )
states ĉrossings J  '

Here £a defines a locally constant function on К for each state, and d6 is 
the pull-back to К of the angle form on S l via the Gauss mapping К —> S l .

Theorem 3.1 (Jones). ZUK is independent of A and defines a regular iso
topy invariant of К .

As pointed out by Jones, if the vertex model satisfies the following 
additional condition that

^ # + (a , 6|z, a)eĥ a = ^  Л+(я, a|a, 6)e“/l̂ e = 5(6, ж),



then Zfc is an isotopy invariant of K. It is reasonable to conjecture that if 
the vertex model is derived from an irreducible representation of Uq, then 
the above equation should always be true provided that 6(b,x) is replaced 
by a constant multiple of it. This occurs quite often, and Proposition 2.10 
provides evidence for this conjecture. If this conjecture is true, we would 
always be able to change the vertex model multiplying R+(a,b\x,y) by a 
constant factor so that the resulting partition function is an isotopy invari
ant.

4. VBL-functionals and their states models
Let us first recall the definition of (circular) [^-configurations and (i)- 
configurations in.2 A [^-configuration is a pairing of 2z points on the ori
ented circle, and a (z)-configuration consists of a [z — 2]-configuration and 
a triple of points on the circle distinct from the underlying 2z — 4 points of 
that [z — 2]-configuration. Two [г]- or (z)-configurations are the same if they 
match up to an orientation-preserving homeomorphism of the circle.

The diagram of a [^-configuration a  consists of an oriented circle with 
2z points on it representing the underlying point set of a  and, for each pair 
of a, a line segment connecting the two points in that pair. The diagram 
of a (z)-configuration /3 is similar with the exception that the points in the 
triple of (3 have nothing to be attached to.

Denote by V* the vector space (over C) spanned by all [^-configurations, 
and let V = 0 V f . We will consider linear functionals on V.

Suppose /? is a (z)-configuration. One can obtain six [^-configurations 
from (3 by first splitting a point in the triple of (3 into two adjacent points 
and then pairing the resulting points with the remaining two points in 
that triple, where we use 0 rs to denote the resulting [^-configuration. It is 
understood that there is a common underlying [z — 2]-configuration in each 
picture and all the circles are oriented counterclockwise.

Definition 4.1 . A VBL-functional / is a linear functional on V with the 
following properties:

(4.1) For each [z]-configuration a  with a pair consisting of two adjacent 
points on the circle, f(a )  = 0; and

(4.2) For each (z)-configuration ft, we have

f(Pio) -  № i)  = /№o) -  № i) = f(Pso) -  f(031).

The condition (4.2) was derived by Birman-Lin2 from the work of Vas
siliev12 on the topology of the discriminant of the space of maps S 1 —* K3. If
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f  is a VBL-functional, then /|v, determines a stabilized relative homology 
class in th discriminant. See2 for details.

Let e = { ..., a, b,. . . ,  ж, y , . . .  } be a finite set, and a  an [г]-configuration. 
We will call the pairs in a vertices and the arcs between points in the 
underlying point set on the circle edges. A state of a  is an assignment of 
elements in e to edges of a.

Definition 4.2. The pair v = {e, П} is called a vertex model for configura
tions, or simply vertex model, where Q is a matrix with entries f£(a, b\x, y), 
if it satisfies the following conditions:

(4.4) Q(a,fr|x,y) = Q(x,y|a,6);
(4.5) £ ьП(а,&|6,ж) = 0;
(4-6) 2̂ 6[П(а, 6|а;,,г)П(6, c|r, £) — П(а, 6|r, £)£7(6, c|a;, 2)] = 

]Гь[^(а, c|r, 6)П(6, z) -  П(а, c|6, t)Q(r, b\x, z)\.

Remark 4.1. Let V be the vector space spanned by e and Q € End( V 0 ^). 
Then we can write the conditions (4.4), (4.5), and (4.6) in an invariant form. 
In particular, (4.6) can be written as

П12ШЗ — П13Л12 = П13П2З — ^23^13-

Suppose we have a matrix Г with entries Г(а, b\x, y) satisfying (4.4) and 
(4.6). Instead of (4.5), it satisfies the following condition:

(4-5’) £ 6r (M |M ) = nS{a,x)
with n a certain constant. Then we can let

ft(a, 6|c, d) = Г(а, b\x, y) -  fiS(a, 6|rc, у ),

and it should be easy to verify that П(а, b\x,y) satisfy (4.4), (4.5) and (4.6).
Let v = {e, £1} be a vertex model. Let a  be an [^-configuration. We 

may define a partition function on a  in the following way. For a state of a, 
the weight of a vertex shown in Figure 3.3 is Q(a, b\xy y). Then define

Za = Л  П n (a<b\x,y).
states vertices

Notice that this partition function is well-defined because of (4.4).

Remark 4.2. If a vertex model for configurations is given in the invariant 
form v — {V, 0 }, it should be easy to see that is independent of the 
choice of basis of V.

Proposition 4.1. The linear functional f  on V defined by
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is a VBL-functional.

Proof. The equation (4.5) is used for verifying the first condition in the 
definition of VBL-functionals and (4.6) for the second. □

Now suppose v = {e, if!±,L(A)} is a vertex model for knot diagrams 
derived from an irreducible representation of Uq. Let

Г(а, b\x, y) = R+(a,b\x,y) -  R-(a,b\x,y).

Then Г (а,6|я, у) satisfy (4.4), (4.5’) and (4.6). The first two equations fol
low from Corollary 2.9 and Proposition 2.10. The last equation, as it can 
be verified directly, is just a consequence of the Yang-Baxter equation. This 
shows that we can get a VBL-functional from each irreducible representa
tion of U q as we stated in Theorem 0.1.

We will not present the direct verification of (4.6) for Г(а, b\x, y) since 
it is quite tedious. The proof of Theorem 0.1 seems to be best under
stood in terms of the relation, which we are going to establish, between 
the VBL-functional and the knot invariant both obtained from the vertex 
*/ = {е,Д±,£( A)}.

Let К be a knot diagram. We can collapse i crossings of К into dou
ble points to get a diagram of an immersed S 1. Denote the resulting dia
gram by K. This diagram of immersed S l determines an [^-configuration 
as follows. Consider the preimage of the double points of that immersion. 
It consists of 2i points on S l . There is a natural pairing among these 2i 
points: Two points are paired if they are mapped to a common double 
point. This gives rise to an [^-configuration a. We say that К  respects a. 
For any [^-configuration a, there is a diagram of immersed S 1 respecting
a. For details, see.2

For each double point of К , there are two ways to resolve it to crossings. 
Depending on whether the resulting crossing is positive or negative, we will 
call such a resolution positive or negative, respectively. Thus, we can resolve 
К  into 2l knot diagrams. Denote them by K p, p = 1 , . . . ,  2*. Let

 ̂ ^_jjnum ber 0 f negative resolutions in K p

and we will call epK p a signed resolution of K.

Proposition 4.2. Let }(a) = Estates Писп.см Г(а> f’l1 - y)< where the sum 
is over all states of a. Then, we have

2 > г £ / = Д а )Л Ч О (Л ^ ) .
P = 1
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As a consequence, the linear functional f  on V satisfies (4-2).

Proof. We can express the left hand side of (3.11) in another form:

E ePZ £ P =  E l  П  ( A f (eIb|*>v ) ( A ) - J M e , 4 * , y ) ( A ) )
p states ydouble points

• Ц  R±(a, 6|x, y)(X) j ехр((/1/2тг) [_£ad9).
crossings J  К

It is understood that the sum is over all states of К  and a state of К  is as 
usual an assignment of elements of e to edges of К . We say that a state of 
К  induces a state of the [г]-configuration a  if it respects it at every crossing 
of К , the two edges on the over-crossing strand have the same assignment 
and so do the edges on the under-crossing strand. Since

R+(a, b\x, y)(А) -  Я_(а, 6|x, j/)(A) = hT(a, b\x, y) + 0{h 2)

and

#±(a,6|x,t/)(A) =6(a,b\x,y) + 0 (h )t

we see that a state of К  may contribute to the right hand side of (3 .12) 
mod hl+1 only when it induces a state of a. Moreover, the contribution of 
such a state made to the coefficient of hl in the right hand side of (3 .12) 
is the same as the contribution the induced state of a  made to f(a ). Also, 
the set of all states of a  is the same as the set of these induced by states of 
K . Thus, (3.11) is true.

Now it becomes quite easy to verify (4.2) for /. We only need to com
pare the eight signed resolutions of the diagrams in Figure 3.4(a) and (b) 
respectively. These two sets of signed resolutions are the same module Rei
demeister moves of type III. This verifies (3.3) for /. □

We notice that (3.11) was derived in2 for the special cases of the HOM
FLY and Kauffman polynomials using recursive formulae.

Now since Г(а, b\x,y) satisfy (4.5’), we may change R± to

R'± = e ^ 2R±.

Then i/ = {e, R'±, L(A)} is still a vertex model with

Г'(а, b\x, у) = Г(а, b\x, у) -  /х<5(а, 6|ж, у).
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Thus,

/(<*) = 5Z П Г/(“’ 6IX’ У)
states vertices

is the desired VBL functional.
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Knot Invariants and Iterated Integrals

We give precise formulae for the coefficients of Drinfeld’s KZ associator in 
terms of iterated integrals over the unit interval. These formulae are used to 
calculate Kontsevich’s universal knot invariant for (2, p)-torus knots up to the 
4th order.

There are already several combinatorial descriptions of Kontsevich’s 
universal knot invariantKo in terms of Drinfeld’s work on quasi-triangular 
quasi-Hopf algebras. See,B2,c ,LM3 and.p Drinfeld’s work was presented 
in,0102 We only mention here that the category of representations of a 
quasi-triangular quasi-Hopf algebra is a tensorial category, from which one 
can construct framed link invariants (see e.g.,AC andRT). The essential 
structure of a quasi-triangular quasi-Hopf algebra A  is determined by two 
objects. One is an element R G called the R-matrix, which measures
the non-commutativity of A  and the other is an element Ф G A  0  A  <g> A, 
called the associator, which measures the non-associativity of A. For the 
purpose of constructing link invariants, one can always choose R to be 
very simple; all of the difficulties lie in constructing Ф. In,02 Drinfeld con
structed an associator Okz using the monodromy of the formal Knizhnik- 
Zamolochikov connection. He also suggested a combinatorial construction 
which would yield an associator with rational coefficients. A detailed dis
cussion of a combinatorial construction of such a pair (R , Ф) appeared in.B2 
Also, it was proved inLM2 that the coefficients of Фкг are determined by 
multiple C-mimbers.

In Section 1 of this note, we give precise formulae expressing the coef
ficients of Фкг as iterated integrals on the unit interval. Our calculation of 
the first few coefficients of Фкг using these formulae suggests that log Фкг 
might admit a very beautiful expression. In Section 2, we review briefly 
the combinatorial formalism of Kontsevich’s universal knot invariant, es
sentially following the approach via non-associative tangles (see82 andLM3). 
Finally, in Section 3, we exhibit some calulations in simple cases. Hopefully, 
these calculations will stimulate further interest in this subject.

We would like to thank Dror Bar-Natan for his comments.
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1 . The associator $kz
In,01,02 Drinfeld considered the following differential equation

( 1 )

where A , В are commuting symbols, G{t) is a formal power series in A, В 
with coefficients that are analytic functions of t,0 < t < 1. Geometrically, a 
solution to (1) is the monodromy of a flat formal connection (the so-called 
Knizhnik-Zamolochikov connection) on the configuration space of 3 distinct 
points in С along the path (0,£, 1), 0 < t < 1. Or it is the monodromy of 
the connection

. dz _ dz A -  + B-
z z — 1

on С \ {0,1} with values in С[[Л, B]\ along the path z = t, 0 < t < 1.
Let Gi(t) and G2W be solutions to (1) with the following fixed asymp

totic behaviors when t —> 0 and t —> 1 respectively:

Gxit) ~ tA = eMogt as* —0,
G2(t) ~ (1 -  t)B = eBlog(1-1) as t -  1.

Then Drinfeld’s KZ associator is defined to be

$kz = $kz(A  B) = G 2l (t)Gi(t)

as formal power series in A, В independent of t.
We use another expression for Фкг, which appeared in.LM2 For a € 

(0 ,1), there is a unique solution to (1) with G(a) = 1. We denote the value 
of this solution at 6 € (0,1) by Ъьа. Then

$ KZ = lim e-Blog£Z j V og£. (2)£—*0

Suppose f i , f 2)•••>&: are 1-forms 011 [a,6] with values in C[[A, £]]. As 
the usual iterated integrals (seeCh), we denote

[  ik " - Ы 1 = [  Ы*к) А---А&(*2) A fi( ii)

= j j k{tk) I*1"' •• • j f*  &(*>)/ *»(*»>€ С(И'

Notice that our order of integrands is reversed compared with that in.Ch
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Let
Adt 

UQ = — '
e -B lq g ( l- t)A d t

U* = --------- ----------
В dt

uji =
t - Г  
BeA'°e idtu i =

t -  1
For = APn Bqn • • • .APl f?91, we denote

Iw (a,b)= j  Vonu l 
Ja

Then

= 1 + y^Iwja^b),?b

w
where W  runs over all monomials in A, В . 

Lemma 1 .1 . We have

“ + E  f  / V - ? '
«1#0 V е

;b = e Alog(»e - / l l o g a +  y -  / ^ . . . ^ - 15 , ,

•6
=  e B lo g ( l-b )e B lo g ( l - a ) +  £  log(l—6) / ^ P n - 1 ^

Pn̂ O \Л
, ,pi, ,9i- ■ • u0

Proof. These expressions for Z£ are derived from the formulae

/  шо = log 6 -  Л log a)k

j f w f  = i (B to g ( l  -  6) -  B log(l -  a))k 

and integration by parts.

Lemma 1 .2 . We have Zba = Z£Z£.

Proof. This is the usual property of iterated integrals. 

We now use these two lemmas to calculate (2).
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First, we choose an arbitrary w 6 (0 ,1). Then,

= ^eBlogee-Blog(1-“') + eBlog£ ^  • • -w SX ’)

+ E  ( /  wcN i" e~Al° ^  .

. I еЛ log log £

Therefore,

Фкг = lim eBI°8£z ! “ £e/,log£e—>0 e

Pn̂ O

Л log it»

=  [e  B lo g ( l - « , ) +  £  f  Г щ шР п - 1 шЯ п . ' ' ШР1шЧ 1 - 1 й \  e - A l o g w

pn/0,7i /0 '

+ ^ 1 woe-4'og^ e- /llog’"]. ^eAlogu’ +

=  [e - B io g ( i- « ) e^log«, +  £  (  f  ■ • •wJ‘ < - 1C7l >)

Pn^O.,,/0 '>•'«’ '

+ f 1 u>oeA,°et] • ( l  + e-^iog-» V  .

•/ш V «^ o -70 /
Notice that

e —B lo g (l—u;)e /Uogti/ _J_ f  —QeAlogt  

J  W
=  (e - slt>g(1“ w) — 1 ) ( е Л1о£и; — 1 )  +  g - 5 1 0 ^ 1-™) -j- e >iiogtu _  j  

/•1 - - S l o g ( l - 0  _  i /*1 л
+ I  - ---------------- iy le '41og‘ (ft + j  j e A'os‘ dt

Jw  ̂ J w t
— (e - B  lo g (l-w ) _  - Q ^ lo g tu  _  _|_ e -B lo g ( l- tt f)

/*1 e - B lo g ( l - t )  _  1
+ / ----------------- -j4e g ctt

JlL) t
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and that the limit of the last expression above when w —> 0 is

■1 g -B lo g ( l - t )  _  i

1 + /J  с
Moreover,

1 + / C- — -A eA]oetdt.
Jo t

'W
lim e~Alogww—>0

лги
I / >̂n/ _ ОI Ic>q • • • UJq CJj lo о — U.

Jo
Combining all of these calculations, we obtain the following theorem.

Theorem 1 .1 . We have
•1 e -B io g ( i - t )  _  ^

ФKZ
r i  - t f lo g ( l - t )  _  л

= 1+ / ----------------- -A e  gt dt (3)
Jo t

P n ^  o,gi?oJo

Before we present our calculation of the first few coefficients of Фкъ 
using (3), we recall the so-called multiple (-numbers. They are defined as

С (*i>-■•»£*)= ~Ti ЦГ*
0<m ^<m k ml ' " mk

If we write

f 1 up0'u>l' - •. up u?  = ( - 1)«1+ -+*»T(pni qn,...  ,Pl, 91 )A*» в**... APl Bqi, 
Jo
then

r (Pn, 9n.j ■ • • iPi>9i) С(1 1 > 9n"b1 ? 1 1 ^  ) 1 ) l j  • • •) 1) ) 1 )
P n - l  P n - 1 - 1  p 1 - 1

See.LM1 The following result is obtained by a straightforward calculation 
using (3).

Theorem 1 .2 . Же have

*KZ= 1 -  С(2)[ЛВ] -  С(3)[Д, и,В]] -  С(3)[В, [А, В]] (4)
-  С(4)[Л, [А, [А, В)]] -  С(4)[В, [В, [А, В]]]

-  С(1,3)[Л, [В, [Л, В]]] + |с(2)2[Л В]2 

+ higher order terms.
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It is known that log$Kz is a Lie element in A, B. Theorem 1.4 implies 
that

1оё Фкг =-С(2)[Л ,Б] ^С(3)И ,[ДВ]] -C (3 )[£ ,H f£]] (5)
-  C(4)[A, [А, [Д B}]} -  C(4)[B, [B} [.A, B}}]
— C(l, 3)[Л, [В , [A, £]]] + higher order Lie elements.

It will be interesting to see how far this pattern can be sustained. In fact, 
it is proved inLM2 that all coefficients of log<I>Kz are Q-linear combinations 
of multiple ^-numbers. R. Hain also has a direct proof of this fact.H

2. Non-associative tangles
We set up the combinatorial formalism for calculating Kontsevich’s uni
versal knot invariant in this section. Although we essentially follow the 
approach using non-associative tangles, 82,LM3 we would like to empha
size here the distinction between concordance and cobordism. A tangle 
is a concordance between two O-dimensional compact submanifolds of R2. 
The underlying 1-dimensional compact manifold of this concordance is a 
cobordism between those two O-dimensional manifolds. Certainly, a cobor
dism can be realized by many different concordances. Nevertheless, we may 
think of the underlying cobordism as the “Oth order approximation” of the 
concordance in question. We may also have “higher order approximations” 
using the functor between the category of tangles and the category of chord 
diagrams originated in Kontsevich’s construction of his universal knot in
variant. Our account here will be very brief and the reader is referred to82 
andLM3 for more details.

The objects in the category of non-associative tangles NAT are finite 
ordered sets of oriented points t#i,. . . ,  vn in the plane together with a paren- 
thesization on the word w = v\.. .vn. There is only one parenthesization 
on the empty word or words of length 1. Inductively, if w\ and W2 are 
parenthesized words of length к and I respectively, then [W\W2) is a paren
thesization of the word vj\W2 (forgetting the parenthesizations) of length 
к 4-Z. For example, there are exactly two different parenthesizations on the
word V1V2V3 , namely ((t>iu2)i>3) and (vi(v2v3)). _

The morphisms in NAT are generated by elementary tangles П, U, N , 
AT, X +, and X~ . Their domains and targets are specified below:

П: domain «/ = (■■• (vjWi+i) • • •), target w' is obtained from w by deleting 
(vjvi+i) with the inherited parenthesization;

U: the reverse of П;
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N: domain w = (• • • {{w\w2)w3) ■ ■ •) where W2 , and W3 are parenthe
sized words, target ti/ = (• • • (w\(w2wz)) • • •);

N: the reverse of N\
X +: domain w = (• • • (W i+i) • • •), target w' = w with the orientations of 

Vi and Vi+i switched;
X~: the reverse of X +.

Moreover, the strands in an elementary tangle are oriented consistently 
with the orientations of points in its domain and target.

In general, morphisms of NAT are products of elementary tangles mod
ulo isotopies of tangles. Forgetting the parenthesizations, morphisms in 
NAT are simply concordances of compact, oriented O-dimensional sub
manifolds of the plane with ordered points. It is easy to see that NAT 
is equivalent to the usual category of tangles.

We have another category, CD, the category of chord diagrams. The 
objects in CD are compact, oriented O-dimensional manifolds with ordered 
points. A chord diagram is a cobordism by a compact, oriented 1-manifold 
between two objects of CD together with an ambient isotopy class of finitely 
many pairs of distinct points in the interior of this cobordism. A pair of 
points in a chord diagram is indicated by a dashed chord connecting these 
points. Morphisms of CD will then be elements of the completed, graded 
(with grading coming from the number of chords) C-vector spaces generated 
by chord diagrams subject to the so-called 4-term relations and framing- 
independence relations (seeB1 andBL).

Let Di С Mor(0,0) be the completed subspace generated by chord 
diagrams on a single oriented circle. Suppose 5 is a chord diagram with a 
marked component of the underlying cobordism. Then, for every ф € V  i , we 
may join ф to the marked component of <5 to get a well-defined connected 
sum 5#ф thought of as a morphism of CD. In particular, V\ itself is a 
completed, graded C-algebra.

There is a functor from NAT to CD. It sends objects in NAT to objects 
in CD by forgetting the parenthesization. For morphisms, we only need to 
define a functor

Z : Mor(NAT) -> Mor(CD)

for elementary tangles. Some more notation is needed in order to de
scribe the images of elementary tangles under the functor Z.

For a tangle T, we denote by \T\ the underlying cobordism of T . We 
have \X+\ = X~\ and \N\ = \N\. A trivial cobordism is simply a product

HIV
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cobordism. We will denote by the signed chord diagram on a trivial 
cobordism (5 with exactly one chord connecting its ith and jth  components, 
г Ф j . To determine the sign, think of (3lj as a morphism from {vi,. . .  ,u„} 
to itself. If the orientations of Vi and Vj are the same, the sign of will 
be +. Otherwise, it is —.

We now define:

(1) Z{n) = |_n I, Z(U) = I и I;
(2) let /3 = |JV| = |ЛГ|, then

where Ф = Фкг and /, J, К  are sets of indices of tt/i, w2, respectively.
(3) let <7 = \X+\ = \X~\ e  Mor({t>i,...,-yn}dom,{vb - -4 t;n}tar), where 

the target is obtained from the domain by switching the orientations of 
Vi and vi+1, and let r  be the trivial cobordism of {vi,. . . , ^n}dom, then

Z(X ±) = ae± r̂i(i+l).

For a tangle T = E\ • • • Ek represented as a product of elementary 
tangles Ely . . . ,  £*, we define

Z(T) = Z(E\) • • • Z(Ek)-

It turns out that Z is invariant under isotopy of tangles preserving the 
number of maximal points. To get invariants under isotopy, we have to 
normalize Z in the following way.

Let oo be the tangle and

фо = Z(oo) G Di-

Now for an arbitrary tangle T, we first mark its components by 1, 2, . . . ,  r. 
Let Si be the number of maximal points on the ith component. Then

Z(T) = Z(T)#0o- Si# ---# 0oSr 

where фф$ Si is the connected sum onto the zth component of T . 

Theorem 2 .1 . Z : Moi(NAT) -> Mor(CD) is well-defined.
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A fundamental problem in this field is the question of whether the func
tor Z is faithful.

Notice that the functor Z will send the morphism in Mor(0,0) repre
sented by a round circle to фц 1 G Di. This does not agree with the usual 
normalization. If one is only interested in knot invariants, it is better to use 
the following normalization:

H(K) = Z(I<)#<i>os+1

where s is the number of maximal points on the knot К  thought of as a 
morphism in Mor(0,0). This is Kontsevich’s universal knot invariant (seeKo 
andB1).

3. Some calculations

Let be the subspace of T>i spanned by chord diagrams on an oriented 
circle with n chords. We list bases for n < 4. We will denote by T>^  
the chord diagram encoded by (г, j) .  See,BL Figures 9, 10, 11 for how to 
reduce every chord diagram with < 4 chords to a linear combination of 
these base chord diagrams. For example,

-p(2,l)^.^)(2,l) _  £>(4,1) 2D̂ 4,2) — 31)(4,3\

Consider the knot K 2iP, where p is an odd integer. We calculate Z(K2,P) 
using (4):

* < * « ,)  -  |n>* | ■ | n »  | *  ( j ^ * ,

= £)(<u) + ( - __ р (2>1Л  + ( - _______-pt3»1) -i—  .\ 8 27Г2 / \24 47Г2 J
Notice that K 2,i and K 2,-\ are isotopic via a level-preserving isotopy. 

Thus, the coefficient of D̂ 3’1) in Z(K2tP) must be zero when p = dbl. As a 
consequence, we get the value of ( (2):

< W - T '

See,LM1LM2 for more about the relationship between values of multiple C- 
numbers and the HOMFLY and Kauffman polynomials.
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Since the tangle oo is isotopic to #2,1 via a level-preserving isotopy, we
get

Фо = Z{00) = Ф(од> + ^ ф (2д) mod 0  ©<п).
n> 4

Thus we have

Z(K2,p) = D*0,1' + + p(p2 ~ ^ D(3,I) + . . .
8 24

To calculate the order 4 term in Z(I<2tP), let us make the following 
observation. If

0o =D(o.i) + iD (2 , i )+ a  + . . .  ,

where then

ф- 1 = Ф(0,1) _  _ e  + j' ± . y  D(!M)#2)»1 ) + . . .

= d(o.i) _ _ a + f -L'i (D*4-1) + 2D(4,2) -  3D(4’3)) 4---.
24 \24y

Thus, when calculating the order 4 term in Z(K2,P), we don’t need to 
take care of terms having nothing to do with r 12 since they appear in 
both Z(K2,P) and 1 with opposite signs. Also, the “imaginary” part of 
the order 4 term, i.e. the part consisting of those chord diagrams whose 
coefficients are imaginary numbers, is zero. So, the order 4 term in Z(K2,P) 
is

I nU II П23 Г 2,/?23М т12)2 + *(r12)2[723,7 12])

+ ̂ ff(Tl2)4l|U23||U141

+ ' ( ( s ) ’  -  Ш  ( 7  -  s ) )  (®“ +mM> -  и > м )

= м W (21)(4,l)"  2C(4,3)) + 4 ^ (4,1)

+ 1 ~ j?2 (!D(4>1) + 2D(4’2) -  3D{4,3))
24 • 8
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Therefore we have

Z(I<2,p) = Ф(од) + ^D<2’4  + p(p2 ~l_1) «pt3,i)
8 24

P +  2p — 3 (4 1 ) _  p - 1 ^ 4 ,2 )  , P ~ 1 r£)(4,3) ,___
384 96 192

When p = 3, /<"2,3 is the right trefoil knot. When p = — 3, /<2,P is the
left trefoil knot. We have

Z (I < 2,3 ) =  D ((U) +  D (2,1) +  D (3,1) +  1 d (4,1) -  ^ ^ (4,2) +  ^ ® (4,3) H------

and

£ ( # 2  - 3) =  D (0,1) +  D *2'1 ) -  H- 1 d C 4 ,i)  _  J _ d ( 4 ,2 )  +  J _ j ) ( 4 ,3 )  +  . . . .
4 12 24
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Invariants of Legendrian Knots

1 . Introduction

Legendrian knots are imbeddings of a circle in a contact 3-manifold which 
is tangent to the contact plane at every point. For certain standard com
pact 3-manifolds, invariants of Legendrian knots other than the ordinary 
knot type are available. Usually, one my have “index-type” invariants which 
characterize the homotopy types of Legendrian curves. One may also have 
a “self-linking number” coming from the fact that a Legendrian knot ad
mits a natural framing. So the key question in the study of Legendrian 
knots seems to be whether two Legendrian knots with the same ordinary 
framed knot type and the same “indices” are necessarily Legendrian iso
topic. See.E This question is still open and the purpose of this article is 
to offer a new approach to this question. This new approach leads to a 
combinatorial question (Question 7.1) of the same natural as the geometric 
question about Legendrian knots. It is very likely that these two questions, 
the geometric one and the combinatorial one, are in fact equivalent. We pro
vide also some evidence supporting a negative answer to the combinatorial 
question.

We will only deal with Legendrian knots in the space of cooriented con
tact elements in the plane here. In this case, as index-type invariants, we 
have the winding number of the normal angel and the so-called Maslov 
index. The self-linking number was defined only recently by Arnold, who 
denoted it by J +. See.A Our approach is based on the construction of a 
Legendrian isotopy invariant generalizing the Kontsevich integral.Kon The 
invariant takes values in the completion of a graded vector space spanned by 
“dotted chord diagram”. One may recover the Maslov index and Arnold’s 
J + from our invariant. Although we don’t have a Vassiliev-type theory 
for Legendrian knots yet, the relations among dotted chord diagrams may 
be visualized through some local moves on fronts (projections) of Legen
drian knots. Moreover, these relations imply magically the flatness of a 
formal connection generalizing the formal Knizhnik-Zamolodchikov con
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nection. We therefore believe that these relations must have some deep 
topological origin. (Our relations include the so-called 4-term relations in 
the theory of Vassiliev knot invariants whose topological meaning is quite 
clear by now.)

The generalization of the formal Knizhnik-Zamolodchikov connetion 
takes into account cusp points on a general front (projection) of a Leg
endrian knot by using the delta function. A discussion about the so-called 
Mathai-Quillen formalism with S. Wu was of great help for us to perceive 
such a generalization of the formal Knizhnik-Zamolodchikov connection. 
We are also grateful to O. Viro for some helpful discussions in the early 
stage of this work and to J. Birman and Y. Eliashberg for their interest in 
this work.

This article presents only a sketch of our construction. A detailed expo
sition will appear elsewhere.

2 . Legendrian knots and Legendrian braids

We start with some definitions. According to Arnold,A a contact element 
on the plane is a line in a tangent plane. The coorientation of a contact 
element is the choice of one of two half-planes into which it divides the 
tangent plane. Thus, the manifold M  of all cooriented contact elements of 
the plane can be identified with R2 x S 1, where (х,у,ф (mod 2tt)) € R2 x S 1 
is identified with the tangent line of R2 at (x, у) € R2 perpendicular to its 
normal vector n = (cos<£,sin$).

The manifold M  of all coordinated contact elements of the plane is 
naturally a contact manifold. Under the identification M  = M2 x S 1, the 
contact form on M  can be written as

lj = (cos ф)с1х + (sin ф)с1у.

A Legendrian curve in M is an immersion I : S 1 —► M  such that the 
tangent vector of I is annihilated by lj everywhere. We will also sometimes 
call a segment of such an immersion a Legendrian curve. Two Legendrian 
curves are Legendrian homotopic if they can be connected by a (smooth) 
path of Legendrian curves.

If a Legendrian curve is an imbedding, it is called a Legendrian knot. 
Two Legendrian knots are Legendrian homotopic if they can be connected 
by a (smooth) path of Legendrian knots. A Legendrian isotopic class of a 
Legendtrian knot is called a Legendrian knot type.

The notion of Legendrian curves and Legendrian knots can certainly be 
applied to any contact 3-manifold.
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There are two basic integer invariants of Legendrian curves in the man
ifold M  of all cooriented contact elements of the plane. One is called the 
index and the other the Maslov index. They are defined as follows.

Let I : S 1 —> M = Ш2 x S 1 be an immersion. Composing the map I with 
the projection of K2 x S 1 onto the S l factor, we get a map S l —» S l . Then 
the index of /, ind(/), is simply the degree of this map S 1 —* S 1.

To define the Maslov index fi(l) of a Legendrian curve I, we consider 
the completely non-integrable plane field ker(o>) on M. It is oriented by 
the orientation of M  and coorientations of contact elements (their normal 
vectors). The union of projective spaces of each plane in ker(cj) is a (trivial) 
S^-bundle over M. The tangent field along the Legendrian curve I deter
mines a section of this S 1-bundle over I and ц{1) is the Euler number of 
this section.

Theorem 2.1  (Gromov). Two Legendrian curves are Legendrian homo
topic if and only if they have the same index and Maslov index.

Let I : S 1 —» M  = R2 x S 1 be a Legendrian knot. The composition of a 
map I and the projection of R2 x S 1 onto the R2 factor is called the front, 
f  = f(l)i of I. The front / of a Legendrian knot is generic if

(1) the only singular points (where / fails to be an immersion) are of cusp 
form, i.e. f(t) = (t2,t3) near t = 0 up to local diffeomorphism;

(We will then call /(0) a cusp point and f  will have only finitely many cusp 
points. An open curve between neighboring cusp points is called a branch.)

(2) cusp points are all different;
(3) branches are transverse to each other;
(4) no triple intersections among branches;
(5) no cusp points lie on branches.

In the case of the standard contact structure on R3, the following basic 
theorems were formulated by Eliashberg and their proofs were given by 
Swiatkowski.s Here, we use their parallel versions in the case of the space 
of all cooriented contact elements in the plane. We refer the reader tos for 
more detailed statements of these theorems.

Theorem 2 .2 . The space of Legendrian knots with generic fronts is open 
and dense in the space of all Legendrian knots with topology induced from 
C °°(S\M ).
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Theorem 2.3. Two generic fronts represent the same Legendrian knot type 
iff we can pass from one to the other by a finite sequence of moves of the 
following four types:

(0) composition with an orientation preserving diffeomorphism of the plane 
or reparametrization;

(1) creation or elimination of a “swallow tail”;
(2) passage of a cusp point through a branch;
(3) passage of double points through a branch.

Along a generic front / = /(/), we have a smooth normal field given by 
n(£) = (cos <£(£), sin 0 (£)) if l(t) = (x(i),y(t), </>(£)). This is called a coorien
tation of the front. It can be lifted to a normal field along the Legendrian 
knot I. Thus a Legendrian knot type determines a ordinary framed knot 
type. The following seems to be the major question in the study of Legen
drian knots.

Is it true that two Legendrian knots are Legendrian isotopic if 
and only if they are isotopic as ordinary framed knots and have 
the same index and Maslov index?

It is known that Question 2.1 has a positive answer when the ordinary 
knot type is trivial. SeeE and.F

The winding number of the normal field n(£) of a cooriented front / = 
f( l)  is the index of the Legendrian knot I. Certainly, a front / also has an 
orientation coming form the orientation of its domain S 1. A branch of a 
front is positive (or negative) if

—xf sin ф + y' cos ф > 0 (or < 0)

on that branch.
Walking along a front in the direction of its orientation, the sign of 

branches will change when we pass through a cusp point. Also, the normal 
angle ф(£) may increase or decrease when we pass through a cusp point. 
The sign of a cusp point is determined by the following rules:

sign change of branches normal angle sign of cusp point
-  -»  + increase +
----- * + decrease -
+ -» - increase -
+ -> - decrease +

Let fjL+ (or д_) be the number of positive (or negative) cusp points on 
a front / = /(I). Then

ix{l) = Ц + - Ц-.
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Recently, Arnold defined a “self-linking number” J + for Legendrian 
knots in the contact manifold of ail cooriented contact elements in the 
plane. See.A Up to a certain normalization, the invariant J + is character
ized by the local property that J + changes by a constant ±2 only under 
a “dangerous self-tangency perestrokia”. Here a self-tangency is a point 
where two branches of a front are tangent to each other with distinct cur
vatures. It is dangerous if the coorientations of these two branches agree 
at that point. And a “perestrokia” here means the process of changing one 
generic cooriented front to another by passing through the hyperplane of a 
certain kind of non-generic cooriented front once transversely. A combina
torial description of the Legendrian knot invariant J + has been given by 
Polyak.Po

We now identify R2 with the complex plane C. Suppose z = z(t) € С is 
a smooth curve which is an immersion everywhere except at finitely many 
places where it has cusp points. We assume further that z" is never zero in 
the interior of the curve, i.e. there is no inflection point in the interior of 
this curve. Then we can reparametrize this curve by its normal angle and 
we will have

и(ф) = - i e ^  € К (1)

where i = \/—I- Write z(<f>) = х(ф) + гу(ф)- Then

^  = - и(ф) sin ф, ^  = и(ф) cos ф. (2)
аф аф

So the curve z = г(ф) is determined by the real valued function и(ф) up 
to the initial position. Moreover, the condition that z' = 0 only at finitely 
many places and z" is never zero is equivalent to the condition that и = 0 
only at finitely many places and v! Ф 0 when и = 0. We will call such a 
curve regular if in addition z' = 0 only in the interior of the curve.

Let фо,ф! G S 1. Denote by S^o^  the arc on S l corresponding to angles 
between ф0 and ф\ in the direction of S l . We denote

М[Фо>0i] — ^  X 
under the identification M = С x S 1.

Definition 2 .1 . A Legendrian braid in М[ф0^ ]  is a collection b = 
{&i,. . . ,  6n} of n strands

ba =  {(2а(Ф),Ф) : Фо < Ф < } c Щ фо,Ф1]>

a  = 1 , . . .  ,n , such that
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(1) Z aiphi) Ф zB(4>) for all ф € if а ф 0;
(2) га (ф) € С is a regular curve for each a.

Notice that each strand in a Legendrian braid is a Legendrian curve.
In the following definition, zrev refers to the curve obtained form going 

backward along the curve z.

Definition 2 .2 . A generalized Legendrian braid in М[ф0)ф1 j is a collection 
b = {bi, . . . ,  bn} of n strands

ba = {(zQ (Ф),Ф) -Фо<Ф<Ф\} с  М[фоМ, 

а — 1 , . . .  ,7i, such that

(1) these strands are all disjoint except for some distinct pairs ba and bp, 
we may have га (ф0) = гр(ф0) or zQ(0 i) = гр(ф{)\

(2) if га {фi) = гр(ф{) (or za (<£0) = zp^ 0)), then the curve * zT0ev (or 
za V * zp) is a smooth curve with an inflection point га (ф\) (or гр(фо))\

(3) 2a (0 ) 6 С is a regular curve for each i.

Two (generalized) Legendrian braids are Legendrian isotopic if they 
can be connected by a path of (generalized) Legendrian braids, such that 
throughout the isotopy, the za (0o,i)’s remain fixed.

We will call a real valued function и(ф) defined on [фо,ф\} regular if it 
passes и = 0 transversely in (фа,ф\). A deformation of a regular function 
и(ф,t) is admissible if и(ф,t) is regular for each fixed t and u(</>o,i,£) = 
u(0o,i,O) for all t.

A regular front г(ф) determines a regular function и(ф). Moreover, a 
Legendrian isotopy z ^ ,t)  of the Legendrian braid (г(ф),ф) except a cre
ation or elimination of a swallow tail determines an admissible deformation
и(фЛ)-

Let I be a Legendrian knot with a generic front f .  We may perturb / 
a little so that it remains generic and f"  = 0 (or ф' = 0) only at finitely 
many places. There are inflection points on f  and they must lie in branches. 
Then we have

Lemma 2 .1 . We may decompose M into

M  — U  М[фу̂ ф2j U  * • • U  М[фк1ф0]

such that l П is a (generalized) Legendrian braid for each i mod
k.
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We will call the decomposition of a Legendrian knot described in the 
above lemma a braid decomposition of L Such a braid decomposition of a 
generic front is basically determined by the position of inflection points on 
the front.

Let / be a generic front with finitely many inflection points. An inflec
tion point on / is called a local maximum point if ф" < 0 at this point. 
Otherwise, it is a local minimum point

Theorem 2.4. We may change one braid decomposition of a Legendrian 
knot type to another by a finite sequence of moves of the following types:

(1) Legendrian isotopy of a (generalized) Legendrian braid;
(2) combine two (generalized) Legendrian braids into one or vice versa;
(3) change the normal angle or the position of an inflection point on a 

branch slightly;
(4) creation or elimination of a pair of inflection points on the same branch 

which are close enough to each other.

3. Extended configuration spaces and a flat formal 
connection

Let и G R be a real variable. Let

if u > 0
H W  , 1

if it < 0

be (a shifted version of) the unit step function. Let S(u) be the delta func
tion. Then H'(u) = <5(u) in the sense of distributions.

Consider the distribution-valued 1-form 6(u)du on R. It can be thought 
of as a representative of the Thom class of (R, R \ 0).

Let и = и(ф) be a regular function on [фо, ф{]. Let

4  =

Then we have

1 if и(ф) = 0 and и'(ф) > 0 
—1 if и(ф) = 0 and и'(ф) < 0.

I
J  (bt

8(u)du =
и(ф)=0

where the left side is a Lebesgue integral.
Let

Cn = {(zu . . . ,z a , . . . , z n)<BCn -.za ? z 0 , l < a < P < n }
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be the configuration space of n distinct ordered points in the complex plane 
C. The extended configuration space is simply

Cn x Kn.

Let XQp = XpQ and Ya be formal non-commutative variables and con
sider the following formal 1-form on Cn x Mn with values in the algebra 
C[[XQ.0 , Ŷ ]] of formal power series:

fi = £  TT-x °* dZa — + E  Ya6(ua)dua
z° - ze i£?<n

+ E r\ • \ L 7 ----J ------------V — /

l<a<j0<n 2“ - 2̂

+ {Y0 ,X a0]H(ut3)dZa~ dZl3).
%ос

We may calculate the holonomy of Cl on paths in Cn x Rn whose com
ponents are regular functions using the Lebesgue integral. The following 
theorem shows that when the holonomy takes values in an appropriate 
quotient algebra of C[[XQp, Уа]], it is invariant under a deformation which 
induces an admissible deformation of the Rn components.

Theorem 3.1. Assume that the formal non-commutative variables X ap 
and Ya satisfy the following relations:

[Xap, X pr ] = 0] if a , (3, p, r  are distinct
[Xap, X Qp + X pp] = 0 if a , (3, p are distinct

(i)

[Ya ,Yp] = 0 i/o;,/? are distinct
[Xap,Yp\ = 0 г/а,/3,р are distinct (2)
[[Yp,X ap lY T}=  0 i/{p,r} = {a,/3}

Then is flat.

The relation (3.1) is Kohno’s infinitesimal pure braid relation.Koh It 
is closely related with the 4-term relation in the theory of Vassiliev invari- 
antsB'L.v Both the infinitesimal pure braid relation and the 4-term relation 
reflect local structures of discriminants of some function spaces. We don’t 
know the topological meaning of the relation (3.2).

Let 6 be a Legendrian braid. It determines a path in Cn:

b = {(zi (<£),..., 2nW>)) - Фо<Ф< Ф\}■
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Let

then

В = {(zi(0 ) , . . .  ,zn(0 ) ,u i(0 ) , . .. ,ii„(0 )) : 00 < Ф < 01} 

is a path in Cn x Mn whose Rn components are regular functions. Let
OO -

Z(b) = 1 + E  / (B*n)(w »)A—A(B*n)(w H C | [Jr^ ,y e]]

(3)be the holonomy of Г2 along B. Since is flat, Z(6) is invariant under 
an admissible deformation of the na ’s. One may also show that Z(b) is 
invariant under a creation or elimination of a swallow tail on b. So Z(b) is 
invariant under Legendrian isotopy of Legendrian braids.

We may use “dotted chord diagrams” to depict monomials in X Qp and 
Yq. Take a collection L of n ordered line segments, say, of the same length
1. We may think of them as a collection of vertical line segments from 
height 0o to height 0i. A dotted chord diagram on L is a decoration on 
L by finitely many horizontal chords running from one line segment in L 
to another and finitely many dots on line segments in L. Assume, for the 
moment, that different objects in this decoration have different heights. We 
will denote by a dot on the ath segment by YQ and a chord from the ath 
segment to the Pth one by X Qp, for а  Ф /3. Then, we may record such a 
decoration by a monomial in X ap and YQ. To have a 1-1 correspondence 
between decorations and monomials, we should be allowed to shift dots 
and chords up and down as long as there is no such time when two objets 
have the same height. Furthermore, for being able to view a dotted chord 
diagram as an element in the algebra generated by XQp and Ya subject to 
the relations (3.1) and (3.2), we should be able to

(1) shift dots and chords up and down as long as dots and end points of 
chords do not touch each other (corresponding to the first equation in
(3.1) and the first and second equations of (3.2)); and

(2) have linear relations in the vector space spanned by decorated diagrams 
(corresponding to the second equation in (3.1) and the third equation 
in (3.2)).

Notice that if b is a Legendrian braid in a braid decomposition of a 
Legendrian knot, each strand of b has an orientation coming from the ori
entation of the Legendrian knot. On the other hand, each strand has a
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natural orientation along which ф is increasing. Let sign(a) be 1 or —1
according to whether these two orientations on the ath strand agree or 
not.

Taking the matter of different orientations on strands of b into consid
eration, we may modify П by a change of the formal variables:

We will always use this modified Q from now on, except in Section 6 where 
we will sketch a proof of Theorem 3.1.

When 6 is a generalized Legendrian braid, some integrals in (3.3) will 
diverge. One way to deal with those divergent terms is to identify them 
first and then simply drop them off.

Let us look at the degree m term in (3.3):

This quantity is a homogeneous polynomial in X Qp, Ya , [Ya , X ap\ and 
[Ypy X ap] of degree m with iterated integrals as coefficient. Let b be a gen
eralized Legendrian braid. If

then the iterated integral corresponding to a monomial is divergent if and 
only if the right-most (or left-most) variable in this monomial is either X ap 
or \Ya ,X Qp\ or \YpyXap]. So we will drop off these terms and still denote 
the resulting formal power series in С[[Ха/з,Уа]] by Z(b) for a generalized 
Legendrian braid b. We summarize the discussion here into the following 
theorem.

Theorem 3.2. Z(b) € C[[Xaig, Уа]] is a Legendrian isotopy invariant of 
(generalized) Legendrian braids.

4. An invariant of Legendrian knots

Assume now that I is a Legendrian knot with a braid decomposition. We 
apply the invariant Z to each (generalized) Legendrian knot in this decom
position. In a way similar to the construction of Kontsevich’s integral, we 
may form the “cyclic product” of these Z(6) ’s, keeping the cyclic order of 
(generalized) Legendrian braids 6’s in the braid decomposition of I. The 
result of this cyclic product, denoted by Z(l), is a formal series in dotted 
chord diagrams on an oriented circle.

-> sign(a) sign(/?)Xa/3

2а{Фо) = г0 (фо) (or zQ(0 i) = (̂</>i))
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By a dotted chord diagram on an oriented circle, we mean a decoration 
of the circle by finitely many dots and chords running from one point on the 
circle to the other. The dots and end points of chords are all distinct. We 
are allowed to move these dots and the end points of chords on the circle 
as long as they remain distinct. We define the degree of a dotted chord 
diagram to be the sum of the number of dots and the number of chords 
on the circle. Let D be the completion of the graded vector space spanned 
by these decorated circles subject to some relations, where we should think 
of these line segments now as disjoint arcs on the circle. Then, if Ms a 
Legendrian knot with a braid decomposition, Z(l) € T>.

The last thing we need to do in constructing an invariant of Legendrian 
knots is the stabilization corresponding to the last move in Theorem 2.4 : 
creation or elimination of a pair of inflection points on the same branch 
which are close enough to each other. We have to distinguish the cases on 
positive and negative branches.

Let I be a Legendrian knot with a braid decomposition. We may as
sume that different cusp points lie in different Legendrian braids in the 
braid decomposition. Moreover, we may assume that if a Legendrian braid 
b contains a cusp point, then

m  = e±,a. (1)

The notation #a stands for a doted chord diagram on the collection of line 
segments in Z(b) where the only decoratino is a dot on the fine segment 
corresponding to the stand bQ having a cusp point on it. The sign is the 
sign of that cusp point.

Assume that Z(l) is in such kind of a particular form where cusp points 
are concentrated as in (4.1). Let oo± be generalized Legendrian braids where 
the sign is the sign of the front (there is no cusp point on it). We may assume 
that oo± is very thin such that Z(oo±) can be thought of as concentrated 
at a point. Consider a branch of I and let s be the number of local maxi
mum points on that branch. Then in the stabilization of Z(l), we will stick 
Z(oo±)~s to that branch for every dotted chord diagram in Z(l), where 
the sign in oo± should agree with the sign of the branch it is stuck to. 
More precisely, for every dotted chord diagram in Z(l) where cusp points 
are concentrated as in (4 .1), we cut a branch open at a point away form 
dots and end points of chords on that branch and glue in Z(oo±)~s to get 
the circle back. It turns out that the stabilization is independent of where 
we stick Z(oo±)~s to on a branch. Stabilize all other branches in the same
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way and we eventually get an element

Z(l) € V.

Theorem 4.1. Z(l) e V is a Legendrian isotopy invariant of Legendrian 
knots.

It is easy to see that the Maslov index of a Legendrian knot I, is 
the coefficient of the dotted chord diagram on a circle with a single dot. 
Moreover, the coefficient in Z(l) of the dotted chord diagram changes by a 
constant under a “dangerous self-tangency perestrokia”, it is proportional 
to J + up to a constant summand. We expect that the non-commutativity 
of XQp and Yq (see relation (3.2)) indicates that Z(l) may contain more 
information than the Maslov index and the ordinary framed knot type of
I. See the discussion in the last section.

5. Relation w ith Kontsevich integral

It is clear that if a (generalized) Legendrian braid b has no cusp point on 
it, Z(b) is just the usual Kontsevich integral with each chord X ap replaced 
by

X ap + sign(ba ) i [ r a , X ap\ + sign(bp)^[Yp, X ap]

where sign(6a ) is the sign of ba as a branch. In particular, Z(oo±) is com
pletely determined by Drinfeld’s associator.

Compare with Kontsevich integral, e.g., see,BN1,BN2,c ,p,L'M1,L"M2,Kas 
it will be desirable to have answers to the following questions.

Is there a combinatorial construction of the Legendrian knot 
invariant Z?

Is there a theory of weight system s on dotted chord diagram s?
We hope that positive answers to these two questions will make the com

putation of our invariant Z(l) easy and eventually lead to an (presumably 
negative) answer to Question 2 .1 .

To complete the whole picture, we hope to have a positive answer to 
the following question (compare withVB'L):

Is there a  theory of finite type invariants for Legendrian knots?

6 . A sketch of the proof of Theorem 3.1

We will sketch a proof of the flatness of the formal connection П here, 
assuming the relations (3.1) and (3.2).
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To get d f l  — ПлГ2 = 0, it suffices to check that each part of dQ — Q Aft in 
the following three cases vanishes. For simplicity, we will use 1,2,3 instead 
of general a, /Зр for indices. Also we will denote

1 d z i — dz2
v i 2 = — ------------, etc.

2 m  z\ — Z2

in the following calculation.
Case I.

[Pi,*12], X 23]H (u i)u > i2  Л Ct>23+ (1)

P̂ 23> [Yu X l3 }]H (U l) u 23 A a;i3+

[[Y\, X  1з\, X i2\H(ui)ui3 Л u;i2+

[ X l3 , P i,  X i2 ]]H (U i)u Ji3  A UJi2 =  0.

First we have

[[Yu X n l  X 23] = У Л 2Х 23 ~ X l2YiX 23 ~ * 23* 1 * 1 2  +  * 23* 12^
=  * 1 * 1 2 * 2 3  ~  * 12* 23^1 -  ^ 1* 2 3 * 1 2  -  X 23X 12Yi 

=  Y l [ X 12 t X 2z ] - [ X l 2 ,X 2 3 ]Y l 

=  [Y i, [ * 12, X 23]]

Similarly we have

[X23, P i,  X i 3]] =  [Fi, [^ 2 3 , ^ 13]].

Thus,

[Х 2 3 Л П ,Х 13]] =  [[У1,Х12],Х23]. (2)

Next, we have

[ P i , * i 3],*i2] +  [ * 13, [ Y i, * i2]]

=  Y 1 X 13X 12 — * 13* 1 * 1 2  — * 12* 1 * 1 3  +  * 12* 13*!

+  * 13* 1 * 1 2  — * 13* 12 * 1  — * 1 * 1 2 * 1 3  +  X  12* 1 * 1 3  

=  * 1 * 1 3 * 1 2  — * 13* 12 * 1  — * 1 * 1 2 * 1 3  +  * 12* 13 * 1  

=  [li, [ * 1 3 ,* 12]]

Thus

Р ъ * ,з ] ,Х 12] + [Xis.IKi.Xia]] = l[Yu X 12],X2i). (3)

Combining (6.2), (6.3) and Arnold’s identity

U \ 2 A UJ23 +  î 23 A CJ13 +  и  13 A W12 =  0 ,
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we get (6.1).
Case II.

[[YuXl2], [У2, Х2з\}Н{и1)Н(и2)и12 Ли>23+  (4)
[[У2, X23], [Yi, Xiz]\H(ui)H(u2)w23 A ^i3+

[[YuXnl [Y\, X\2]\H(u\)H(u2)wi3 Лш12 = 0.
We have

[[КЬ Х12],[>2,Х2з]]

= [Yi,X12)r2X23 -  [YUX 12)X23Y2 -  К2ЛГ23[УьХ12] + X23Y2 [YltX 12] 
= У2[П,.Х12]*2з -  [У1,Х 12]Х23К2 -  Y2X23[Yu X l2] + X23[Yu X23}Y2

= У2ЦУ1, * 12] ,* 2з] -  Pi,-ATia],XasW
and

[[1'2,Х 2з],[У ь*1з]]

= V-2X23[yi,X13] -  X23Y2 [YuXl3] -  \Yu Xl3)Y2X23 + [YuX l3)X23Y2 

= Y2x 23\Yu x l3] -  X23[YUX 13]Y2 -  Y2 [Yu Xl3)X23 + [Yu Xl3]X23Y2 

= У2[ * 2з, [Yux 13]} -  [X23t [Vj, J4T13]]>2.

Therefore

Р ъ  ^12], [Y2, X 23]] =  [[^2,^23], [Уь ^ i 3]]- (5)

Similarly

[[УЬ Х12],[У2,Х 23]] = [[Ki,X13],[*2, * 12]]. (6 )
We see that (6.5) and (6 .6) together with Arnold’s identity imply (6.4). 
Case III.

P 2, x 12), [Y2, Х23\]Н{и2)Н(и2)ш12 Л u>23 = 0. (7)
We have

p 2, x l2], [Y2, X23}} +  [[У2, x 12], [У2, X23}]
= [Y2,Xn]Y2X23 -  [Y2,X12]X23Y2 -  Y2X23[Y2,Xx2] + X23Y2 [Y2 ,X23] 

+ Y2X 12[Y2 ,X23] -  Xl2Y2 [Y2,X23) -  [Y2,X23)Y2X 12 

+ [Y2,X23]X23Y2 

= У2ЦУ2, x 12], X23] -  [[y2, X12) ,X23]Y2 

+ У2рС12, [У2, x 23]] -  [X12, [Y2, X23]]Y2 

= У2[^13, [У2, *12]] -  1* 13, [У2,*12р2 = о.
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7. An irreducible weight system on dotted chord diagrams
By a weight system, we mean a linear functional on (the completion of) 
the graded vector space V  of dotted chord diagrams on the circle. In the 
following definition, if С is a dotted chord diagram, then С will be the 
chord diagram obtained from С by deleting all dots. We will call С the 
underlying chord diagram of C.

Definition 7.1. A weight system w is called reducible if for any two dotted 
chord diagrams C\ and C2 with the same number of dots, w(Ci) = w(C2 ) 
implies w(C\) = w(C2)- Otherwise, w is called irreducible.

Thus, a reducible weight system is completely determined by its restric
tion on chord diagrams without dots and the number of dots. The existence 
of irreducible weight systems is related with the question of whether the 
graded vector space T> is “decomposable” in the following sense.

There are two graded subspaces in T): one is spanned by chord diagrams 
without dots and the other is spanned by dotted chord diagrams without 
chords. We denote the former by T>c and the latter by T)d.

Is it true that T) = Dc 0  Dd as graded vector spaces?
We are unable to answer this question. On the other hand, it is quite 

easy to come up with a Z2-valued irreducible weight system on the graded 
abelian group Dz, where T>z is the abelian group generated by dotted chord 
diagrams on the circle subject to some relations. This weight system is 
analogous to the weight system of the Alexander polynomial for ordinary 
knots.

Let С be a dotted chord diagram on the circle. Think of the circle as 
one of the boundary components of an oriented annulus with consistent 
orientation. Then replace each chord by a very thin riboon such that

(1) there is no dot in the region where these ribbons are stuck to the circle;
(2) these ribbons are all disjoint; and
(3) the resulting compact surface is orientable.

The circle now splits into a collection s(C) of circles decorated with dots. 
Let A be an abelian group. Pick an element dp € A for each p = 0,1,2, —  
We define

So (6.7) holds.

iv(C) = Y . dP & A,
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where in the summation there is a dp for each circle decorated with p dots 
in s(C).

Theorem 7.1. If dp+2 — 2dp+i + dp G A is a 2-torsion independent of p, 
then the linear extension w : T>z —> A is well-defined.

For example, we may take A = Z2 and dp+2 + dp = 1 6 Ъ2. It is quite 
easy to find two dotted chord diagrams C\ and C2 with the same underlying 
chord diagram and w(C\) =  d2 +  do =  1 but w(C2) =  d\ +  d\ = 0 .  In other 
words, the weight system w is irreducible.
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The Motion Group of the Unlink and its Representations

A loop braid is formed by an isotopy of a finite collection of disjoint “small 
loops” in the 3-space. We show that loop braids form a finitely presented group, 
called the loop braid group. This extends the phenomenon of braiding from 2+1 
dimension to 3 + 1 dimension.

1 . Introduction
The braid group was introduced by E. Artin in the 1926.1 In the last 30 
or more years, the notion of braiding has become indispensable for many 
fields of mathematics and mathematical physics including number theory, 
representation theory, algebraic geometry, and conformal and quantum field 
theory. The classical book2 presents a thorough treatment of the braid 
group and its applications in knot theory. See3 for a survey of the current 
state of the art in the study of the braid group and its role in knot theory, 
as well as an extensive list of references to the literature. In recent years, 
the braid group has also played a prominent role in the study of quantum 
Hall effect and quantum computing.

Recall that the braid group describes the topology of the motion of 
distinct points in the 2-dimensional plane. A basic fact is that there are in
finitely many ways, non-homotopic to each other, to exchange the positions 
of two particles in the plane. In the presence of n particles in the plane, 
the totality of topologically different ways to exchange the position of these 
particles is given by the braid group Bn. The braid group Bn is an infinite 
extension of the symmetric group Sn. When we have at least three particles 
in the plane, some different combinations of various ways to exchange the 
position of particles turn out to be topologically equivalent, which gives rise 
to braiding relations. Figure 1 describes the most important basic braiding 
relation. In the picture, the vertical direction is the direction of the time of 
the motion. So what we see are world lines in 2+1 dimensional space-time 
traveled by particles as they move in the plane to exchange their positions.

Contrary to the plane, the topology of the motion of distinct points in 
the 3-space is trivial, in the sense that up to homotopy, there is only one



412 X.-S. Lin

way to exchange the positions of two particles in the 3-space. The basic 
and simple idea of this paper is that in dimension 3, one should replace 
distinct points by disjoint small loops in order to have non-trivial topology. 
To be more specific, we consider a collection of disjoint loops in the 3-space 
such that they bound disjoint disks. These disks will allow us to shrink 
the loops to be arbitrarily small without touching each other. It is in this 
sense that we call them small loops. In the motion of such a collection of 
disjoint small loops, we allow a small loop to pass through the interior of the 
disks bounded by other small loops. We introduce the loop braid group to 
describe precisely topologically different ways to exchange the positions of 
these small loop under admissible motion. The loop braid group LBn for n 
disjoint small loops is determined by a finite set of elementary loop braids as 
generators and a finite set of relations among these elementary loop braids. 
In order words, the loop braid group LBn has a finite presentation. This 
is the main result of this paper. Figure 2 illustrates the most basic loop 
braid relation in the loop braid group. See Theorem 3.1 and Remark 3.1. 
Once again, the vertical direction is the direction of the time of the motion, 
and what we see are world lines in 3+1 dimensional space-time traveled by 
small loops in the 3-space.

t f t

Fig. 1.1. Braid relation

2. Configuration space of disjoint small loops
We denote by S l and D2 the unit circle and unit disk, respectively, such 
that dD2 = SK

Let 6 : D2 —* R3 be a smooth embedding. We call I = 5JS1 : S l —» R3 
a small loop in R3. Note that by definition, a small loop I : S 1 —* R3 has 
an embedding 5 : D2 — ► R3 as its extension. But such an extension is far 
from unique. Let (Zi, h , . . .  , ln) be a collection of small loops in R3. We say
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Fig. 1.2. Loop braid relation.

that this is a collection of disjoint small loops if each li : S l —♦ R3 has an 
extension Si : D2 —» R3 and Si(D2) fl Sj(D2) = 0 for i Ф j.

Denote by the space of all collections of disjoint small loops in R3 
with n components equipped with the usual compact-open topology. A 
continuous path in this space бп corresponds to an isotopy of a collection 
of disjoint small loops (l\,l2 , • • • ,In) in R3- Let Si be the defining extension 
of li. Then this isotopy can be thought of as to move the disks Si(D2) in 
R3 with the condition Si(dD2) D Sj(dD2) = 0 for i ф j  kept preserved all 
the time. A path in Cn or an isotopy of (^,/2 • • • Jn)  will be denoted by
{I1J 2, • • • ,ln)t-

Let (ж, ?/, z) be a Cartesian coordinate system of R3. A collection of 
disjoint small loops {I1J 2 , • • • An) is called horizontal if each 6{(D2) lies in 
a horizontal plane z = constant. Furthermore, we require that the positive 
normal direction of 6i(D2) agrees with the positive z-direction form every i. 
A path (Ji, l2, . . . ,  ln)t is horizontal if (Zi, Z2, .. •, ln)t is horizontal for every 
t.

Lemma 2 .1 . Suppose that (l\,l2, . . .  ,ln)t, t £ [0,1], is a path in Cn such 
that both (li,I2 , . . .  J n)o and (Z-i, h r . • •, ln)i are horizontal. Then the path 
is path-homotopic to an horizontal path in Qn.

Let (Zi,Z2, . . . ,Jn)t be a path in Cn corresponding to an isotopy of 
(Zi, Z2, . • • ,/n) = (I1J 2, • • ■ Jn )o- Let Si be the defining extension of li. We 
assume that during the entire isotopy, we have Si(D2)C\Sj(D2) = 0 for i ф j.  
If at the end of the isotopy, /, is moved to lT{i), i = 1 ,2 ,... ,n, for some 
r  € 5n, then we call this path (Zi, Z2 • • • ,ln)t a permutation path associated 
with r.
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Lemma 2 .2 . Two 'permutation paths in Cn associated with the same per
mutation т are path-homotopic.

Lemma 2.3. Consider an isotopy that moves (h ,l2, • • • , Zn) to 
(/r (i),ZT(2) , . . .  ,lT(n))> T £ Sn, as a path in Cn. Then, this path is path- 
homotopic to the joint of a closed path and a pei'mutation path, and such a 
decomposition is unique up to path-homotopy.

Lemma 2.4. Up to path-homotopy in Cn, the joint of a closed path from 
(l\,l2i • • • Jn) to itself and a pei'mutation path associated with т € Sn 
can change order after renaming that closed path as a closed path from 
(^r(i)i ̂ r(2)> • • • >̂ r(n)) to itself.

A loop braid is an isotopy from (Zi, l2, . . . ,  ln) to (ZT(i), Zr(2), • • • > Цп))> 
for т e Sn, of collections of disjoint small loops. Loop braids are in one-one 
correspondence with path in Qn from {I1J 2 , • • • > In) to (/r (i) J r ( 2)> • • • > Цп))- 
Two loop braids from (Zi, Z2, . . . ,  ln) to (Zr(i)> ZT(2)> ■ • • > ^r(n)) are isotopic if 
the corresponding paths in Cn are path-homotopic. By the previous lemmas, 
it suffices to consider only loop braids from (Zi, Z2, . . .  , ln) to itself, and we 
may further assume that (Zi, Z2, . . . ,  ln)t is horizontal for all t. The set of 
isotopy classes of such loop braids is the same as the fundamental group of 
Cn with the base point (Zi, Z2, . . . ,  Zn). We will call this group the loop braid 
group and denote it by LBn.

3. E lem entary loop braids and relations among them

We will also use (Zi,Z2, . . . , Zn) to denote the subset h (S l ) U l2(S l ) U • • • U 
Zn(5 J) of R3, and (Zi Z2, . . . ,  Z*,. . . ,  Zn) means to drop the г-th component of 
this collection of disjoint small loops. Note that 7Ti(R3\(Zi Z2, . . . ,  Z*,. . . ,  Zn)) 
is a free group of rank n — 1. Denote by Xij, j  e {1,2  . . . ,  г , . . . ,  n}, the set 
of standard generators of this free group. An elementary loop braid dij is 
an isotopy of (Zi, Z2, . . . ,  Zn) to itself specified by (1) it moves li to itself such 
that the trajectory of 5 (̂0) represents , and (2) it does not move all other 
components of (l\, l2, . . . ,  Zn).

Theorem 3.1. Elementary loop braids crij, г -ф j ,  i , j  € {1,2, . . .  ,n}, sat
isfy the following relations:

(1) (JijGkm = VkmCTij, if i,j,h ,m  are all distinct;
(2) (JikVjk = Vjk&ik, if i , j ,  к are all distinct; 

and
(3) (JijGkjOik = OikGkjOij, i f i , j ,k  are all distinct.
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Proof. The first two sets of relations (1) and (2) are easy to see. We 
check the third set of relations. Without loss of generality, we consider 
only (/ь/2,4з)‘

Denote by x, у the generators of 7T i ( M 3 \ (/2 , /3 ) ) ,  where . t  is represented 
by a path going through I2 and у a path going through /3. The elementary 
loop braid (T32 is the isotopy from {1о ,1з) to itself where I3 goes through 
h- This isotopy induces an automorphism ф of 7Ti(R3 \ (12,1з)). We have 
ф(х) = x and ф(у) = xyx~l .

The joint of elementary loop braids 012^32^x3 can be written intuitively 
as x * ф* y. We calculate as follows:

х * ф * у  = х * ф * у *  ф~1 * ф = x * (x~lyx) *ф = у * х * ф  = у*ф*х.

In the above line of calculation, t he first equality is to insert a trivial loop 
braid ф~1 * ф, the second equality is to comb у through ф on its left side 
and delete ф*ф~l , the third equality is to delete .та;-1 , and the last equality 
comes from the relation (2): cr 12032 = сгз2&12- Thus we have

O\2O32Cf 13 — 0 13032^X2' П

Rem ark 3.1. Since closed paths and permutation paths in Cn commute 
with each other up to path-homotopy and renaming of closed paths by 
permutation paths involved, it is easy to see that relation (3) in Theorem 
3.1 depicted in Figure 3 and the loop braid relation depicted in Figure 2 
are equivalent.

Fig. 3.1. Relation (3) in Theorem 3.1.
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Remark 3.2. Let Fn be the free group generated by x \,x2, . . .  ,x n. Each 
elementary loop braid a^ induces an automorphism of Fn given by

ФчЫ) = x fc, к Ф i , j
Фч(х{) = XjXiXj\

Ф4 {Xj  ) = Xj •
One can check directly that these automorphisms of Fn satisfy the relations
(1), (2), and (3) in Theorem 3.1.

4. Presentation of loop braid group

We may follow the classical approach to show that the loop braid group 
LBn admits a finite presentation where the generators are elementary loop 
braids cry , i ф j ,  and relations are these given in Theorem 3.1.

If we drop the first small loop li in (ii, l2i. . . ,  ln), we get a epimorphism

LBn > LBn-\.

Let G be the kernel of this epimorphism. Note first that а ц , i = 2 , . . .  ,n, 
generate a free group G' of rank n — 1 . Second, ац, i = 2 , . . .  ,n  generate a 
free abelian group G" of rank n — 1 .

Lemma 4.1. G is isomorphic to the free product of G' and G" .

We illustrate the situation by consider the loop braids of {I2J 3) use<̂  m 
the proof of Theorem 3.1. The loop braid 0-32 induces an automorphism ф 
of the free group generated by rc, у:

ф(х) = x and ф(у) = xyx~l .

Similarly, the loop braid а2з induces an automorphism ?/>:

ip(x) = yxy~l and ip{y) = y.

Let фп1,0mi • • • фПг‘фТПг be a reduced word in ф and ф. Then

фП} -0mi • • • фПг‘фТПг{х)
— xni ymi • • • хПгуГПгху~ГПгх~Пг • • ■ y~mi x~ni.

Thus, if mr ф 0, then * ■ • ф^гр^ ф 1. Similarly, let
1фт 1 фп1 • • *1{)т г фПг be a reduced word in ф and гр such that nr Ф 0, then 
фпцфгц . ..^тгфпг ф i means that ф and <ф generate a free group.
This proves the case of Lemma 4.1 when n = 2.
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Theorem 4.1. The loop braid group LBn admits a presentation with gen
erators Vij, г ф j } i , j  = 1 , 2 . . . ,n and relations (1), (2), and (3) in Theo
rem 3.1.

Proof. Consider the exact sequence

1 —* G — » LBn —» LBn- i  —* 1.
We can think of LBn- i  naturally as a subgroup of LBn. The conjugation 
action of LBn- i  on G is by combing. Since a presentation of G is known by 
Lemma 4.1, and inductively, LBn-\ admits the presentation given by this 
theorem, the loop group LBn is generated by cr^, i ф j  and г, j  = 1 , 2 . . . ,  n, 
and subject to relations in G, relations in LBn- 1, and the relations describ
ing the conjugation action of LBn-\ on G. By the calculation in the proof 
of Theorem 3.1, the relations describing the conjugation action of LBn-\ 
on an  and <7,1 are equivalent to the relations (1), (2), and (3) that involve 
суц and cr̂ i, respectively. Thus, LBn has the given presentation. □
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Lin Award at Beijing University

The Xiao-Song Lin Award at Beijing University was established by the 
family of Xiao-Song Lin in 2007. A cash prize is awarded each year to a 
graduating undergraduate student at Beijing University who has demon
strated exceptional scholarship in mathematics. The first recipient of the 
Xiao-Song Lin Award was Hongbin Sun.

1. Goal
Xiao-Song Lin was an alumnus of Beijing University. For many years, 

he played an active role in the growth and development of the mathemat
ics community at Beijing University and in China. During the 1990s, he 
returned in China to deliver lectures every year. In remembrance of Xiao- 
Song Lin, his accomplishments, and his contributions to mathematics, es
pecially in low-dimensional topology and knot theory, his family established 
the Xiao-Song Lin award in the College of Mathematics, Beijing Univer
sity. The goal of the Xiao-Song Lin Award is to encourage undergraduate 
students to work hard, to pursue mathematics passionately, and to make 
their own contributions to the development of mathematics in China, like 
Xiao-Song Lin did.

2. Eligibility
Every year, two or three graduates will be recommended by the profes

sors of the College of Mathematics at Beijing University. The recipient of 
the award will be chosen by the selection committee. Upon the approval 
of the Xiao-Song Lin fund members, a certificate and financial award from 
the Xiao-Song Lin fund will be presented by the provost of the College of 
Mathematics at Beijing University.

3. Xiao-Song Lin fund members

Jian-Pin He — Wife of Xiao-Song Lin
Kevin Lin — Son of Xiao-Song Lin
Zhiwen Li — Former Ph.D student of Xiao-Song Lin
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4. Timeline and cash prize
The award will be presented for 51 years, from 2007 to 2057. The year 

2057 will be the 100th anniversary of Xiao-Song Lin’s birth. The financial 
award for the nth year will be 1000 + 50(n -  1) US dollars.
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Selected Speeches at the Funeral

A farewell/funeral service held by Xiao-Song's family, friends, and col
leagues took place on Friday, Jan. 19 from 2:00pm to 3:30pm at Bobbitt 
Memorial Chapel, 1299 E. Highland Ave. Michael Freedman, Gang Tian, 
and Zhenghan Wang spoke at the funeral, and their speeches were included 
below.

M ichael Freedm an’s Speech:
Thank you...thank you for letting me be here. We knew Lin as a man 

of really wonderful and great courage, a very gentle man, firm on principle, 
but extraordinarily kind and careful to detail. Very easy going. But when 
things mattered, he was firm.

I apologize for my speaking voice it’s hard to follow “Amazing Grace” 
(a song).

You know, I’ll call Xiao-Song, Lin, and I’ll tell you why at the end, but 
Lin would tell me about his past in China when he was a graduate student. 
And for me it was incredible, I couldn’t visualize this, his teen years. He was 
apparently, in the Cultural Revolution, he was working in a steel factory, 
and he would manipulate these huge ladles of molten metal above his head. 
He would have metal bars sliding along a track and poured them, you know 
. . . it sounded like Dickens through the 19th century. And I sometimes 
thought that some of the steel got into him and became the strength of 
him.

I felt with Lin, he was one of my first PhD students, but I felt toward 
him more like my mountaineering colleagues, because we kind of ignored 
his thesis and we went off on an expedition; an intellectual one. We were 
trying to do something that in the end we couldn’t do; which is very risky 
business for young mathematicians. If you try as hard as you can to do 
something, this was called the A-В slice problem. If you try very hard and 
you fail, there was a risk. I mean, you know just as in mountaineering, 
you can fall off a cliff. In mathematics you can as good as fall off a cliff. If 
you try something very difficult and you fail, that can be the end. So we
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started to crawl down from this mountain alive. We started going through 
the snowstorms. But it was an adventure. It’s still an open problem for 
students in the audience who maybe want to think about. It was a real 
bonding experience with Lin.

And I used to call him up, sometimes late at night, because I had an idea 
that I wanted to bounce off him. He was very good at certain calculations 
I didn’t really know how to do and he could know something and I would 
feel like it and I could write them up.

Now I will tell you why I call him Lin: because if I called, and somebody 
answered his house and I said to them “can I speak to Xiao-Song?” They 
wouldn’t know who I was talking about because my intonation wouldn’t 
be correct. Even Lin wouldn’t work too well. I tell you, “Can I speak to 
Lin?”; “Who?” “Lin,” (in different pronunciation), “who?” “Lin, Lin, Lin, 
Lin, Lin.” Eventually, I get it. And they would get it. That’s probably Tian. 
was it? (Someone in the audience said something).

So I have to apologize for this actually, when I was a small child I had 
a high fever, a pneumatic fever. Well the fever would improve my ability to 
do math and damage my hearing a little bit. Not very much, but enough 
that the subtleties. So you know I was never able to penetrate Chinese as 
slight as the first two names. Lin was as close as I could come. Lin very 
graciously allowed me to use his surname and I think he thought we were 
always close for it.

I just wanted to say a couple more words about those early days. So in 
the math department in UCSD where we were; of course Yau was there, 
Professor Yau. And you know I was an observing young man; I looked 
around and I realized that Yau was onto something. That if you had these 
incredibly smart students, well that was good. It leveraged what you could 
do quite a bit. Heck you didn’t need to think quite so much. So Lin was sort 
of my Rick Schoen, my Tian. You know I could turn over the worse of it to 
him and expect by morning that something would have happened. There 
would be real progress as well. I don’t want to give the impression that’s all 
the work that we did, but what sticks in my mind is that expedition that 
we completed.

So I just want to say that I love Lin, and thank you for letting me be 
here.
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Like all of you, I feel very sad to lose a special friend: Xiao-Song Lin.
I met Xiao-Song in early 1982 when we both went to Beijing University 

for our graduate studies. I was lucky to have shared a dormitory room with 
Xiao-Song in Building 29. It was a small room, so there were only three of 
us in the room, rather than the usual four. In fact, Xiao-Song and I shared 
a bunk bed. To my surprise, we all came from Nanjing, although we have 
never previously met. Xiao-Song and Ying-Qing Wu (the other person in 
the room) studied topology. I was doing calculus of variations. As we all 
know, Xiao-Song is a very pleasant person to be with. At that time, we did 
not know much and were all eager to gain new mathematical knowledge. 
We talked a lot. Of course, Xiao-Song became fond of knots. I remember 
that he often lay in bed and thought about mathematics. I guess that he 
was trying to visualize various knots.

In the Fall of 1983, the mathematics department of Beijing University 
recommended four people to study for their PhDs abroad. Xiao-Song and 
I were selected. I chose to study geometry with Prof. Yau, while Xiao-Song 
chose to study topology with Prof. Freedman. They were both then in UC 
San Diego. On September 10, 1984, we took the same flight to San Diego.
I had the luck to go studying with Xiao-Song in San Diego for three more 
years. There were so many memorable moments and events.

When we just arrived in San Diego, the university arranged for us to 
stay in a host family house for one week. The host was a very kind, old lady. 
Her house sat on the top of a hill close to downtown La Jolla. It had an 
incredible view of Pacific Ocean. We often stood in the yard and watched 
the beautiful sunset. We talked. It was a completely new continent. There 
were many unknowns ahead of us. We missed our families. China was not 
fully open at that time. We did not know when we could go back to our 
home country and see our families again. A few months later, Xiao-Song 
told me that his wife, Jian-Pin, had been pregnant before he came to the 
States. I thought that Xiao-Song must have also wondered when he would 
see his son, Hai-Jian. But we both agreed that the future would be bright 
and felt hopeful.

During the day, we took the bus to school. One day after dinner at 
school, we decided to walk back to the host house. Quickly, we discovered 
that it was not so trivial. It was not because of the distance. Since we did 
not have a map and were in a totally new place, we found that many paths 
were topologically equivalent. Of course, we did not have any cell phones 
then. Even though we tried to use our memory to find a geodesic back

Gang Tian’s Speech:
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home, it was only theoretically easy and very difficult in practice. Many 
small roads we tried ended up in someone else’s home or back to where we 
started. After many failures, we eventually got home. It was already 2AM. 
We felt so ashamed to wake up the lady to let us in.

During the first year in San Diego, we shared an apartment in UCSD’s 
student housing. Our lives then were simple, but pleasant and full of won
derful things. We made many friends. We learned a lot of mathematics. 
We adapted to a new life in America. Xiao-Song often told me his new 
findings in topology, knots, the A-В slice problem, and so on. I tried to tell 
him about some geometric analysis. Apparently, I did not do a good job 
because Xiao-Song never really got involved in doing much analysis in his 
research.

Each weekend we spent half a day to write a long letter to our wives. 
Of course, I never knew what Xiao-Song wrote to his wife, but we did often 
share with each other the good news we received from our families back at 
home. Xiao-Song had his first son in that year. I remember that he was so 
excited and offered to cook a few dishes for dinner. In fact, for two and half 
a years as graduate students at Beijing University, even though we shared 
a dormitory room, we did not talk much else other than mathematics. In 
the August of 1984, Xiao-Song invited me to visit his family in Suzhou. 
There I met his wife Jian-Pin. One month later, when Jian-Pin came to see 
Xiao-Song off at the airport, our families met. Since then, we all became 
friends. After one year, China opened its door fully and my wife was able 
to join me in San Diego. So I had to move to a bigger apartment. It was the 
end of our primitive social lives. My classmate Fangyang Zheng joked that 
the disappearance of the primitive societies was due to the appearance of 
families.

Xiao-Song always did things in his own way. It took him five tries to 
pass his driving license’s road test. In fact, his driving skill was very good. 
Maybe he was thinking about knots during the tests. He bought a Fort 
Pinto as his first car. It was an interesting car with a funny shape. It was 
very unpopular among Chinese students, but Xiao-Song didn’t seem to 
mind. In fact, I did not remember anyone else who bought the same car 
among graduate students at UCSD.

Xiao-Song was a very responsible person and a trustable friend. Last 
June, I forwarded to him a paper submitted to the journal Communication 
in Contemporary Mathematics. Shortly after, I heard that he was diagnosed 
with cancer. I wondered what I should do with the paper. To my surprise, 
in a few days, he processed the paper. I was moved. He did it after taking so
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many exhausting medical tests, not to mention the stress of learning that 
he had a life-threatening disease. Later, when he realized that he would no 
longer have the energy to continue as a chief editor, he thought carefully 
who could replace him and wrote us a long email about it. He made an 
excellent arrangement for continuing the journal which he had founded.

We all know that Xiao-Song was a very pleasant friend. Every time we 
met, after a brief standard conversation, he always said “I found something 
interesting”, usually in mathematics. For many years, I learned many new 
things from him this way. Last November, when I came to see him, lying 
in the bed and suffering great pain caused by the spreading of cancer, 
he again told me that he found something interesting in mathematics. He 
had a few math books next to him. He talked about quantum computing. 
He suggested a few names to give lecture series. I admired his incredible 
courage and love for mathematics. I thought that Xiao-Song would win in 
his fighting against the terrible disease. He is a hero in my mind.

Xiao-Song did outstanding research in topology. He also did an excellent 
job in spreading mathematical knowledge. For many years, he went back to 
China to give lecture series. He was involved in organizing many summer 
schools in mathematics. He was also involved in organizing summer camps 
for talented high school students in China and taught classes. Many young 
people there benefited from his efforts. He made very significant contribu
tions in the development of Chinese mathematics. His contributions will be 
remembered.

Xiao-Song, we miss you, your smile, your friendship and the interesting 
mathematics that you shared with us. Your mathematics and achievements 
will be with us forever.

May Xiao-Song rest in peace.
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Zhenghan W ang’s Speech:
We are here to celebrate Xiao-Song’s life. He brings us together today, 

just as he brought so many people together during his life. I speak for Feng 
Luo, Zhengxu He, Wenxiang Wang, and Yiping Wang, who are very close 
friends of Xiao-Song.

Xiao-Song was much more than a friend, he was like a big brother to 
us. When we came to America decades ago, we left behind our parents and 
friends. In Xiao-Song’s home—a home of mathematics and love, we found 
a new home with a big brother to lean on. Xiao-Song is a man of few words 
with a famous smile, a smile that warmed your heart instantly and melted 
away your worries. His few words could brighten an entire room.

His passion for mathematics did not diminish even during the most 
difficult time of his life. When I came back from China last summer, I went 
to visit him in September. At that time, he already had trouble walking. It 
took him 30 minutes to walk from the bedside to the bathroom. While Jian- 
Pin was preparing lunch, we were talking about mathematics. He showed 
me a letter from an amateur mathematician which explained a wood knot 
puzzle. Then he gave me a wood knot puzzle to solve that he bought during 
a trip. I failed the challenge. He took the puzzle, and quickly unknotted the 
arcs. His signature hand movements painted the world’s most beautiful 
knots.

Xiao-Song dedicated his life to the discovery of new mathematics. In 
the dictionary of Xiao-Song Lin, life is the same as mathematics. During 
the last week of his life, he only woke up intermittently. During a moment 
of consciousness, he mumbled, “I had solved the problem”.

Words are not enough to describe Xiao-Song’s humbleness and kindness. 
In November Xiao-Song was bed-bound at this critical juncture of his life, 
and I went to visit him again. I would drive back from Riverside to Santa 
Barbara during the night. About 9:00pm, he reminded me to leave as he 
worried that it might be too late. As I left, and before I closed the hallway 
door, I turned around. There again, he was looking at me smiling. But his 
right hand was clutching hard onto the bed sidebar, and his face was red. 
Both were indications of acute pain. He told Jian-Pin not to keep me long. 
This was my last sight of Xiao-Song.

Xiao-Song drew people to him like a magnet. In December we solicited 
writings from friends to encourage him. We were privileged to read so many 
letters written to him. The number of lives that have been touched by Xiao- 
Song is just astounding. The book, when finished, will show you the love 
that all kinds of friends poured out for him.
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In September Xiao-Song wrote a letter to a friend.
“ When I first came to America from a closed society, I experienced many 

culture shocks. But it was the spirit of freedom that shocked me the most. 
Over the years, I became convinced that in order to pursue something of 
eternal value, you have to free yourself from other irrelevant thoughts. Only 
then can you be creative and original. I think it is reasonable to call such 
a spirit the American spirit, because it could be seen in all aspects of life 
throughout American history. ”

Xiao-Song was the finest combination of this American spirit and the 
ancient Chinese culture. He came from a paradise on earth-Suzhou, and he 
would go to heaven for a rest.

Nothing said more about the bravest woman I know, a proud mathe
matician’s wife, Jian-Pin, than Xiao-Song’s own words: I have no regrets in 
life.

Xiao-Song, you live in our hearts forever!
Thank you all.
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Freedman’s Writings on Lin

Xiao-Song studied under Michael Freedman from 1984-1988 at UCSD. 
In September 2006, Freedman wrote Xiao-Song on the inside cover of the 
Soviet book, How the S tee l was Tempered, to encourage him. Then in 
December 2006, he wrote Xiao-Song again during the a'itical juncture of 
Xiao-Song’s life. Below are the letters.

1. On the inside cover of: How the Steel was Tempered
Dear Lin,
This seems to be one of the many great stories of struggle and passion. 

I’ve read dozens in the mountaineering genera—the pacifist’s field of battle. 
But I think all this Human struggle—scurrying to and fro—on what at the 
time seem critical missions, is cut from a single cloth. Very little of what is 
won survives, but maybe the stone of our world is eventually polished down 
a fraction by Millennia of our discordant efforts. You and I can take pleasure 
in having carved into a more durable medium—mathematics. There will 
ever after be string links and finite type invariants. As I learn physics I 
become increasingly religious in the sense of feeling connected to all other 
things. It feels as if we are ripples on a lake rather than separate entities. 
Even time-as Einstein wrote-is “only a stubbornly persistent illusion.”

Best Wishes,
Mike

2 . For the LinBook
Dear Lin,
Permit me to write you, your friends, and Family all at the same time 

a kind of “open letter”. If I count correctly you were the second student 
that I took on for a Ph.D. (Fred Hickling being my first), but I recall 
that you and he may have graduated in the same year so you are also 
my “first student”. Well, I probably gave you a lot of useless advice being 
inexperienced. This was a problem I had my whole life: since I didn’t have 
a normal education, I never quite felt comfortable dispensing education - I 
had no idea, particularly in the beginning, what was normal, expected or
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proper. So we just winged it, you and I, and it did turn out fine. You wrote 
a great thesis, invented string links, collaborated with Nathan Habbeger, 
and did as much as anyone else has in the last 25 years to unravel the 
A-В slice problem. Sometimes when I think of our work on that problem 
I feel like an old time mountaineer stormed off a high peak just short of 
the summit. Intense efforts have a cost, I don't know how the experience 
affected you, but the effort, like a marathon run too hard, left me unable 
to concentrate fully on topology. I felt beaten. Happily we both recovered 
and found good things to think about. I’m glad we both ended up in the 
quantum world. I appreciated your coming up to Redmond - was that 1998?
- and reversing the roles. Then you were my teacher as I was trying to catch 
up in quantum topology in order to think about computing. Some people 
generate a mythology. You have some unintended talent in this area. I 
think my stories about you have some foundation in truth but perhaps 
I have exaggerated the imagery, or perhaps not. Often in explaining to 
students that they should not be discouraged, how that can catch and 
exceed their child prodigy peers (if the mood blows hard into their sails)
I like to mention Kevin Walker growing up in South Carolina where, in 
his assessment, “no one knew calculus within a fifty mile radius of my 
high school.” But my favorite image in young Lin weathering the cultural 
revolution: As my story goes you are this tiny human figure in a chthonian 
steel foundry manipulating with tongs and pikes giant buckets of molten 
metal gimbaled precariously over your head. I think this is true.

When I think of what you have accomplished I am awed: getting to 
America, adapting to America, raising your beautiful family, instilling in
quiry and insight into your sons, developing your university and your jour
nal, your beautiful work in mathematics, and all the while staying close 
and available to your many friends. All these things reflect your courage 
and imagination. These are the values in which I continue to trust. With 
all my respect and love and the best wishes of my family,

Mike
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Jian-Pin He’s Speech on July 27, 2007

We are here today to commemorate Xiao-Song’s 50th birthday. I feel 
very honored that all of you are here to remember Xiao-Song and to cel
ebrate his birthday with me and my family. Since 1993, Xiao-Song spent 
almost every summer in China, and so I was unable to be with him on his 
birthday for many years.

I still have difficulty believing that Xiao-Song has actually left us. Some
times I feel like it is just a dream that he is gone. I feel like Xiao-Song is 
just on a trip, giving a lecture at a far away university, and that he will be 
home soon.

I vividly remember the day that Xiao-Song first received his diagnosis. 
We were shocked, but at the same time, he was so brave and calm. In the 
months that followed, he showed us an amazing amount of strength and 
courage. He was able to enjoy life and to maintain a positive outlook, even 
as he accepted that the end of his life was near. I admired Xiao-Song so 
much! Everyone agreed that Xiao-Song deserved a miracle and deserved to 
live. All of your support helped to keep Xiao-Song going during the final 
period of his life, and has helped me to get through this most difficult time 
of my life.

Xiao-Song was a wonderful husband, the best husband I could have 
possibly asked for. While we were dating, he told me that his dream was 
to become a successful mathematician, and that he believed that we were 
the perfect match and that our marriage would be one that everyone would 
look up to.

Xiao-Song and I both grew up in Suzhou, China. Due to the Cultural 
Revolution, we did not get the chance to enter college after graduating 
from high school. Instead, we were both assigned to work at the same 
factory on the same day. That was the day we first met. We worked in 
that same factory for three years. After the Cultural Revolution ended, 
and after taking many difficult college entrance exams, we were assigned 
by the government to the same college. The funny thing about this was that 
neither of us even applied to that college. But it was a fortunate coincidence.
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We were married on January 18, 1984. During our 23 years of marriage, 
we loved, respected, understood, supported, and relied on each other un
conditionally. We talked about everything, and the level of trust between 
us was incredible. We were meant for each other; we were truly soul mates.

Xiao-Song was a dedicated mathematician. He told me that when he was 
writing papers and doing research, his goal was to make his work accessi
ble and to help others enjoy the beauty of math. He also told me that the 
greatest reward for him was that his work could create new research paths 
for students and other mathematicians. Xiao-Song also loved teaching. He 
was a patient teacher who always made sure to spend extra time explaining 
subtle and difficult concepts. He was known by his students to draw beau
tiful geometric pictures and diagrams during his lectures. I believe that 
anyone who attended his lectures could see his passion for teaching.

During the last period of his life, he was still thinking about math. While 
he was unconscious, his hands would sometimes move about in the air, as 
if he was writing on a chalkboard. On January 1, 2007, he awoke for a few 
seconds and murmured, “I solved that problem.” We can only now wonder 
what problem he managed to solve.

I would like to thank the Chern Institute of Mathematics for organizing 
and hosting this conference in memory of my beloved husband. Special 
thanks go to Professor Mo-Lin Ge and Professor Weiping Zhang for their 
efforts and their hospitality. I would also like to thank Professor Zhenghan 
Wang and the organizing committee for making this meeting so memorable. 
This meeting is truly a wonderful tribute to Xiao-Song and I appreciate it 
very much.

Xiao-Song left us prematurely, and there are no words that can express 
my deep sadness and sorrow from this tragic loss. All good memories of 
Xiao-Song will carry me and keep me going. I am so proud of Xiao-Song’s 
accomplishments and proud of being his wife, a mathematician’s wife.

Xiao-Song will live in our hearts forever!

Jian-Pin He
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