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Introduction

It is common for a college student to stand in awe of the professor and perhaps to
regard a textbook writer as a person with some kind of superhuman knowledge.
What is often overlooked is the fact that we professors were once students ourselves
and many of us thought that we would never attain to the lofty heights of under-
standing that our teachers displayed so casually during the course of their lectures.
Many of us were right! Let it be known right now that a substantial number of
readers of this book are much brighter and faster than we ever were. If we have
an advantage over them, it is merely due to experience, not to innate ability. The
purpose in writing this book is simply to share some things that we have learned
over the years; ideas and techniques we have found helpful and which we believe can
help students to progress faster and further along the road to deeper mathematical
understanding.

There are students who have done quite well in mathematics up to and including
calculus but who find that their first encounter with upper division math is a
somewhat traumatic experience. The main reason for these difficulties may be the
fact that excelling in the purely computational aspects of math is not sufficient for
the rigors of thinking things through very carefully and writing arguments down
and proving theorems in a way that would be recognizable to the professor, showing
a deep understanding of what was going on.

One of us (Pfaff) has spent a substantial part of his career teaching classes for
those who intend to be secondary school teachers. This experience tells us that the
gap between elementary and advanced math is, for most persons, more of a yawning
chasm than a gap. The problem seems to be that very few really understand the
mechanics and processes that constitute a correct mathematical proof. To progress
towards mathematical maturity, it is necessary to be trained in two aspects: the
ability to read a proof and the ability to write a proof.

The emphasis in this book, as you may have guessed, will be on proof. But
we intend to do more than simply prove a bunch of theorems. All mathematically
literate persons should be conversant with the basics of math, including a knowledge

xi



xii Introduction

of logic, sets, functions, relations and the different kinds of numbers and their
properties. So, we intend to cover the fundamentals of abstract mathematics, but
with special attention paid to its logical structure and especially with an emphasis
on how the theorems are proved.

Many of the individual facts and examples presented in this book may be
already familiar to you. This is deliberate. By dealing with material that you have
already been exposed to, you will be in a better position to concentrate on the
underlying thought processes and practice in a variety of applications the many
theorem-proving techniques that should be part of every mathematician’s arsenal.

There will be of course numerous new concepts and facts. We have in mind all
the tools that will be necessary to make the transition from lower division courses
like Calculus, Differential Equations and Linear Algebra to upper division classes
like Abstract Algebra, Real and Complex Analysis and Topology. We assume some
knowledge about basic algebra and calculus; in particular the notation N for the set
of natural numbers, Z for the set of integers, Q for the set of rationals and R for the
set of reals appear in many Calculus textbooks. A word of caution: different books
may use different notation for the same notion. Also, the same symbol may have
different meanings in different contexts. This is sometimes for historical reasons,
sometimes from laziness, but many times because it is difficult to invent new and
meaningful signs that will please everybody. For example, (a, b) is often used to
denote an open interval, but also to denote an ordered pair or a vector in the plane;
[a, b] sometimes means a closed interval, but other times means an equivalence class;
∧ is a logical connector, but is also used to denote the greatest lower bound, etc.

We begin our journey with elements of logic and techniques of proof, then
with elementary set theory, relations and functions, giving many examples, some
of them contained in exercises. Then we discuss the Peano axioms for positive
integers and natural numbers, in particular mathematical induction and other forms
of induction. We give the construction of integers, using an equivalence relation on
pairs of natural numbers, including some elementary number theory. We continue
with the notions of finite and infinite sets, cardinality of sets and then we discuss
counting techniques and combinatorics, illustrating more techniques of proof. We
conclude with a rigorous construction of the sets of rational numbers, the set of reals
and the set of complex numbers, which is intended for more advanced readers. We
included some other advanced topics, like Zorn’s lemma and the axiom of choice;
some of our discussions are incomplete, and we direct the interested reader to other
books. Also, we included some more challenging exercises. All these materials are
optional, depending on the instructor and the goals of the reader.

Throughout this book, we will emphasize creative thinking, and we will learn
new tricks related to lots of abstract ideas and concepts. We will learn the lan-
guage of axioms and theorems and we will write convincing and cogent proofs using
quantifiers. We will solve many puzzles and encounter some mysteries and unsolved
problems. Many times you will ask yourself: what can I assume to be known? what
exactly do I have to show? what method and strategy should I use? Only lots of
practice will help you to find good answers to these questions.



Chapter 1

Elements of logic

1.1. Statements, Propositions and Theorems

We can use words and symbols to make meaningful sentences, also called state-
ments. For example

a) Mary snores.
b) A healthy warthog has four legs.
c) 2 + 3 = 5.
d) x+ 5 = 7.

e)
∫ π

0

sinx dx = 2.

f) ∀x ∈ R ∃ y ∈ R such that y2 = x.
g) x/x = 1.
h) 3 ∈ [1, 2).
i) Dr. Pfaff is the president of the United States.
Some of these statements have eccentric formats, using symbols that you may

not have seen before. By the way, ∀ means for all, ∈ means belongs to (or is an
element of) and ∃ means there exists. The statements could be true (b, c, e), false
(f, h, i) or neither (a, d, g). The last possibility occurs because we don’t have
enough information. For statement a, which Mary are we talking about? Is she
snoring now or in general? For statement d, do we know that x = 2? For statement
g, do we know x to be a nonzero number? We don’t, but these kind of ambiguous
statements (neither true or false) also appear in mathematics.

To make our life easier, let’s agree that a proposition is a statement which is
either true or false. Each proposition has a truth value denoted T for true or F for
false. All statements b,c,e,f,h,i are propositions, but a,d,g are not. We can modify
statements d and g as

d’) ∀x : x+ 5 = 7

1



2 1. Elements of logic

g’) ∃x : x/x = 1,
which become propositions. Of course, the proposition d’ is false and the propo-

sition g’ is true.
A statement proved to be true is called a theorem. A proof could be straight-

forward, by just doing a computation. For example, e) is a true proposition, and
becomes a theorem after we compute using the Fundamental Theorem of Calculus∫ π

0

sinx dx = − cosx

∣∣∣∣π0 = − cos(π) + cos(0) = −(−1) + 1 = 2.

The statement “There is a positive integer n such that 22n

+ 1 is not a prime" is a
proposition, but not a theorem, unless we prove it. Try!

Many times a proof could be long and complicated, requiring smart ideas and
tricks. One way or the other, a proof should follow the rules of logic, which will
be developed below. We will illustrate in the next chapter many methods and
examples of proofs. The symbol � indicates the end of a proof.

In constructing a mathematical theory, we often start with some statements
called axioms which are accepted to be true, and using certain rules we prove new
true statements, the theorems. In the process, we may have to prove auxiliary
results, called lemmas. A consequence of a theorem is called a corollary.

Example 1.1. As an abstract example of a theory, suppose that we construct
statements which are words using only the symbols a, b, S. Suppose S is the only
axiom, and the rules are that we can replace S by aSb, and that we can delete an
S. Is aabb a true statement? How about SS? It can actually be proved that the
only theorems are a...a︸︷︷︸

n

S b...b︸︷︷︸
n

and a...a︸︷︷︸
n

b...b︸︷︷︸
n

for n ≥ 0. Therefore, aabb is a true

statement, and SS is false.

We will give later examples of axioms used to define positive integers and to
prove their properties. Also, we will give axioms for set theory.

An open sentence (or predicate) is a sentence depending on one or more vari-
ables, which could be true or false. For example, consider the sentence P (a): the
real function f(x) = |x| is differentiable at a. Then P (1) is a true proposition, but
P (0) is false. Can you explain why? Recall that

|x| =
{

x, x ≥ 0
−x, x < 0.

We will use the universal quantifier ∀ and the existential quantifier ∃ to form new
propositions, using open sentences like

∀x P (x), ∃y Q(y), ∀x ∃y R(x, y).

The expression ∃! x P (x) means that there is a unique x such that P (x).

1.2. Logical connectives and truth tables

It is important to understand the meanings of key words that will be used through-
out mathematics. Primary words which must be clarified are the logical terms “not",
“and", “or",“if...then", and “if and only if". The word “and" is used to combine two
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sentences to form a new sentence which is always different from the original ones.
For example, combining sentences c and h above we get

2 + 3 = 5 and 3 ∈ [1, 2),

which is false, since 3 does not belong to the interval [1, 2). The meaning of this
compound sentence can be determined in a straightforward way from the meanings
of its component parts. Similar remarks hold for the the other basic logical terms,
called also connectives. We will think of the above basic logical terms as operations
on sentences. Though there are linguistic conventions which dictate the proper
form of a correctly constructed sentence, we will find it convenient to write all
our compound sentences in a manner reminiscent of algebra and arithmetic. Thus,
irrespective of where the word “not" should appear in a sentence in order the placate
the grammarians, we will write it at the beginning. For example, though a grammar
book would tell us that “not Pfaff is the president of the United States" is improper
usage, and that the correct way is to write “Pfaff is not the president of the United
States", it will prove easier for us to work with the first form. We regard the two
as the same for our purposes.

We will use the symbolic notation. The negation of a statement P is denoted
by ¬P , verbalized as “not P". The operation of negation always reverses the truth
value of a sentence. We summarize this in the truth table

P ¬P
T F
F T

We will write P ∧Q for “P and Q", the conjunction of two sentences. This is
true precisely when both of the constituent parts are correct, but false otherwise.
This is in line with normal everyday usage of the word “and”. Nobody would deny
that I am telling the truth if I say

(2 + 2 = 4) ∧ (3 + 3 = 6)

nor would anyone hesitate to call me a liar if I boldly announced that

(2 + 2 = 4) ∧ (3 + 3 = 5).

Here is the truth table for the conjunction P ∧Q:

P Q P ∧Q
T T T
T F F
F T F
F F F

We write P ∨Q for “P or Q". The symbol ∨ is called disjunction. There is a
bit of a surprise when we consider the mathematical usage of the word “or”. This
is because it is often used in ordinary language to mean the same as “either...or”,
excluding the possibility of two things being true at the same time. In mathematics,
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however, we use the word “or” in the sense of “at least one, possibly both”. Thus
all three statements

(2 + 2 = 4) ∨ (3 + 3 = 5)

(2 + 2 = 5) ∨ (3 + 3 = 6)

(2 + 2 = 4) ∨ (3 + 3 = 6)

are true. The only “or” statement that is false is the one with both component
parts false, as for example

(2 + 2 = 5) ∨ (3 + 3 = 5).

In ordinary conversation, if I say “I will take you to the movies or buy you a candy
bar”, you would be probably satisfied if I did either one, but I’m sure you wouldn’t
call me a liar if I did both. That is an illustartion of the proper usage of “or” in the
mathematical sense. The truth table of the disjunction P ∨Q is

P Q P ∨Q
T T T
T F T
F T T
F F F

You may detect a note of arbitrariness in our cavalier description of how the
word “or” is to be used. There are, however, good reasons for this choice, and most
mathematicians use this interpretation in textbooks and journal articles. Also,
this particular way of employing the disjunction allows for some nice relationships
between the logical connectives, much like the basic identities and laws of algebra
that you may be familiar from previous experience.

A sentence of the form “if P then Q" is written symbolically P ⇒ Q and it is
called a conditional or implication. We can also read P implies Q, P only if Q, P
is sufficient for Q, or Q is necessary for P . Some authors use the notation P → Q.
The sentence P is called the hypothesis or the antecedent , and Q is the conclusion
or the consequent.

An “if...then” statement is more precisely defined when used in a logical context
than when casually bandied about in ordinary speech. For our purposes, it is
most important to understand that any two statements can be joined together to
form a conditional; the individual parts can be true or false. We will say that a
conditional is false when the antecedent is true and the consequent is false (and
these two eventualities eventuate, not eventually, but simultaneously!). In all other
situations, the conditional is taken to be true. Thus a conditional is understood to
be true whenever the sentence following “if” and preceding “then” is false. As this
convention may shock your tender sensibilities, we will try to motivate our reasons
for choosing it by relating to some examples.

Perhaps it will help if you think of a statement of the form P ⇒ Q as a promise
with a condition (in fact, this is why such statements are called conditionals). The
promised end need not be true unless the condition is met. Suppose I promise that
you will get an A in the class IF you have an average which is 90% or greater. If
I am not lying, then you will certainly expect an A if your average is 92.3%. You
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will, of course, be upset and complain if you breeze through with a 90% average
and I give you a B. And you will justified in your reaction. But if your average is
89%, I can give you any grade I want without breaking my promise. The question
of what will occur for an average under 90% is simply not addressed by the promise
as stated. To be more specific, suppose P is the statement “your average is 90% or
better” and Q represents “your grade is A”. The promise is symbolized as P ⇒ Q.
Consider the four possible outcomes at semester’s end:

1. Your average is 92.3% and your grade is A.
2. Your average is 92.3% and your grade is B.
3. Your average is 89% and your grade is A.
4. Your average is 89% and your grade is B.
In the context of my promise, the only blatant lie arises from sitution number

2. I have kept my promise in all three of the other cases. When you fail to fulfill
your part in the bargain, as when your average is 89%, you may be resigned to
the fact that you will get a B, but I do not suddenly become a liar if, because of
generosity or because I’m such a swell guy, I choose to give you the A.

Comedians have known about and used the mathematical interpretation of a
conditional statement for a long time. Here it is:

“If you had two million dollars, would you give me one million?”
“Of course!”
“If you had two thousand dollars, would you give me one thousand?”
“Certainly!”
“If you had twenty dollars, would you give me ten?”
“No way!”
“Why not?”
“Because I have twenty dollars!”
The whole point is the idea that, without lying, one can promise anything in

a conditional fashion, provided that the condition is not fulfilled. An important
point is that the statement P ⇒ Q does NOT guarantee anything about the truth
of P or Q individually. The truth of a conditional merely expresses a connection
between a hypothesis and a conclusion. Even if the conditional is true, you know
that Q is correct ONLY after you have determined that P is correct.

Here is another example to illustrate that a false statement implies anything:
let’s prove both

(1) if 2 + 2 = 5, then 3 = 0, and (2) if 2 + 2 = 5, then 3 = 3.
We start with the antecedent and, applying valid algebraic principles, we try to

reach the conclusion. Let’s start with (1): If 2 + 2 = 5, then 4 = 5. By subtracting
5 from both sides, we get −1 = 0. Multiplying both sides with −3, we get 3 = 0.
What do you think? Did we prove that 3 = 0? Of course not. We proved it from
a false assumption. The entire statement (1) must be regarded as true.

For (2), we have the hypothesis 2 + 2 = 5. Multiply both sides by 0 and add 3
to both sides. We obtain a valid result 3 = 3 from an erroneous assumption.
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To summarize, the truth table for the conditional P ⇒ Q is

P Q P ⇒ Q
T T T
T F F
F T T
F F T

We write P ⇔ Q for “P if and only if Q", and call it a biconditional or equiv-
alence. We can also read P is equivalent to Q or P is necessary and sufficient for
Q. Some people use the notation P ↔ Q. The expression “if and only if” is often
abreviated as “iff”. A biconditional is used when we intend to express the idea
that two statements surrounding it say the same thing, albeit in different ways.
Since, at this stage, we are concerned only with truth and falsity, we agree that the
statement P ⇔ Q asserts that P and Q are both true or both false. As usual, we
must understand that merely stating a biconditional does not make it true. Also,
we do not make any a priori restrictions on the kinds of sentences which may be
joined by the symbol ⇔. There may or may not be a perceivable relation between
the component parts of such a sentence. For our purposes, the decision as to truth
or falseness of the whole is determined solely by an examination of the constituent
parts. Thus the statement

(2 + 2 = 4)⇔ (7 divides 1001)

is true. Never mind that you see no rhyme or reason for putting the two parts
together. When two true sentences are made one by using the words “if and only
if”, the result is understood to be true. What do you think about the following
sentence? True or false?

(7 < 5)⇔ (Don Pfaff played Han Solo in Star Wars).

Both component parts are false. Thus they convey the same information, even
though that information is wrong in both cases. The entire statement is true. It
asserts nothing about whether the individual parts are correct, only that they are
equivalent with respect to their truth values.

The sentence
(2 + 2 = 4)⇔ (1 = 0)

is false, since the parts have not the same truth value. A biconditional is false just
in case one of the component parts is right and the other is wrong. We have the
following truth table for P ⇔ Q:

P Q P ⇔ Q
T T T
T F F
F T F
F F T
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1.3. Logical equivalence

A truth table will show us that P ⇒ Q is logically equivalent to (¬P ) ∨Q, in the
sense that they have the same truth values in all cases. It is also logically equivalent
to (¬Q)⇒ (¬P ). Indeed,

P Q ¬P ¬Q (¬P ) ∨Q (¬Q)⇒ (¬P ) P ⇒ Q
T T F F T T T
T F F T F F F
F T T F T T T
F F T T T T T

The statement (¬Q)⇒ (¬P ) is called the contrapositive of P ⇒ Q.
A truth table shows that P ⇔ Q is logically equivalent to (P ⇒ Q)∧ (Q⇒ P ).

The statement Q ⇒ P is called the converse of P ⇒ Q. The contrapositive and
the converse of a statement will be illustrated in the next chapter, when we talk
about several techniques of proof.

Let A be a proposition formed from propositions P,Q,R, ... using the logical
connectives. The proposition A is called a tautology if A is true for every assignment
of truth values to P,Q,R, .... For example, P ∧ Q ⇒ P is a tautology. The
proposition A is called a contradiction if A is false for every assignment of truth
values to P,Q,R, .... For example, P ∧ (¬P ) is a contradiction. The negation of
any tautology is a contradiction.

By definition, two statements S1 and S2 are logically equivalent exactly when
S1 ⇔ S2 is a tautology. We will write S1 ≡ S2 if S1 and S2 are logically equivalent.
For example, P ∧ P ≡ P and P ∧Q ≡ Q ∧ P .

Theorem 1.2. We have the following basic logical equivalences:
a) associative laws: P ∧ (Q ∧R) ≡ (P ∧Q) ∧R, P ∨ (Q ∨R) ≡ (P ∨Q) ∨R
b) commutative laws: P ⇔ Q ≡ Q⇔ P , P ∧Q ≡ Q ∧ P , P ∨Q ≡ Q ∨ P
c) idempotency laws: P ∧ P ≡ P , P ∨ P ≡ P
d) absorption laws: P ∧ (P ∨Q) ≡ P , P ∨ (P ∧Q) ≡ P
e) distributive laws: P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R), P ∨ (Q ∧ R) ≡

(P ∨Q) ∧ (P ∨R)

f) law of double negation ¬(¬P ) ≡ P
g) De Morgan laws: ¬(P ∧Q) ≡ (¬P ) ∨ (¬Q), ¬(P ∨Q) ≡ (¬P ) ∧ (¬Q).
h) Contrapositive law P ⇒ Q ≡ (¬Q)⇒ (¬P ).

Proof. Indeed, we can check that the truth tables are the same. We will illustrate
this with part g; the other parts are similar.
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P Q P ∧Q ¬(P ∧Q) ¬P ¬Q (¬P ) ∨ (¬Q)
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

P Q P ∨Q ¬(P ∨Q) ¬P ¬Q (¬P ) ∧ (¬Q)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

�

When a long sentence contains one or more parts that are themselves compound
sentences, parentheses may be needed. For example, (¬P ) ∧ (P ∨ Q) is different
form ¬(P ∧ (P ∨Q)). You can check this by looking at their truth tables.

Remark 1.3. We have the following negation rules for quantifiers:

¬(∀x P (x)) ≡ ∃x ¬P (x), ¬(∃x P (x)) ≡ ∀x ¬P (x).

Remark 1.4. If ∀x (P (x)⇒ Q(x)) is false, then ∃x ¬(P (x)⇒ Q(x)) is true.
Let a such that ¬(P (a)⇒ Q(a)) is true. This a will be called a counterexample

for ∀x (P (x)⇒ Q(x)).
Note also that ∃!x P (x) is equivalent to (∃x P (x)) ∧ (∀y (P (y) ⇒ y = x)).

Therefore, the negation of ∃!x P (x) is (∀x(¬P (x))) ∨ (∃y(P (y) ∧ y 6= x)).

When we write proofs, it is important to make valid arguments. We say that B
is a valid consequence of A1, A2, ..., An if for every assignment of truth values that
makes all the A1, A2, ..., An true, B is also true.

For example, if A1 is the statement “x is odd", A2 is “y is odd" and B is “x+ y
is even", then A1 ∧ A2 ⇒ B. Of course, if we start with wrong premises or we use
wrong reasoning, we may end with wrong conclusions.

Example 1.5. Consider the statement “If x = 1 then x = 0" with the following
“proof": Multiplying both sides of the equation x = 1 by x we obtain x2 = x, hence
x2 − x = 0. Factoring we get x(x − 1) = 0. Dividing by x − 1 yields the desired
conclusion x = 0. The flaw in the argument comes from the fact that for x = 1,
x− 1 becomes 0 and we cannot divide by 0.

Exercise 1.6. Consider the sentence

If 2 < 3 then 1 + 1 = 2 or 3 + 2 = 6 and 5 > 7.

This is impossible to read accurately in this form. Use parentheses to construct
four meaningful sentences, and determine if they are true or false.

Exercise 1.7. Assume x to be a real number. The statement “If x < 0, then
x2 > 0 is certainly correct. Now substitute x = −1, x = 0, and x = 1 to obtain
three conditionals, and explain why they are true.
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Exercise 1.8. Find truth tables for each of the following
a) ¬(P ∧Q);
b) ¬[(P ∨Q) ∧ ((¬P ) ∨ (¬Q))];
c) ¬(P ∨Q) ∨ ¬(Q ∧ P );
d) P ⇒ (Q⇒ P );
e) (P ⇒ Q)⇒ ((¬Q)⇒ (¬P ));
f) (P ⇒ Q)⇔ ((¬P ) ∨Q).

Exercise 1.9. Prove the following and find counterexamples for the converse:
a) (∀x P (x) ∨ ∀x Q(x))⇒ ∀x (P (x) ∨Q(x)).
b) ∃x (P (x) ∧Q(x))⇒ ∃x P (x) ∧ ∃x Q(x).
c) ∀x (P (x)⇒ Q(x))⇒ (∀x P (x)⇒ ∀xQ(x)).
d) (∃x P (x)⇒ ∃x Q(x))⇒ ∃x(P (x)⇒ Q(x)).

Exercise 1.10. Show that the following are tautologies: P ∨¬P , P ⇒ P , P ⇔ P .

Exercise 1.11. Are the following tautologies?
a)((P ⇒ Q) ∧ P )⇒ Q,
b)(P ⇒ Q) ∨ (Q⇒ P ),
c)((P ⇒ Q)⇒ Q)⇒ P ,
d)(P ⇒ Q)⇒ ((¬P )⇒ (¬Q)).

Exercise 1.12. Construct a truth table for (P ∨Q)⇒ (P ∧ ¬Q). Find a simpler
proposition that is logically equivalent.

Exercise 1.13. Are the following arguments valid?
a) If a function f is differentiable, then f is continuous. Assume f is continuous.

Therefore, f is differentiable.
b) If f is not continuous, then f is not differentiable. Assume f is differentiable.

Therefore, f is continuous.
c) If a function f is differentiable, then f is continuous. Assume f is not

differentiable. Therefore f is not continuous.

Exercise 1.14. Suppose we are given the following facts:
(a) I will be admitted to Greatmath University only if I am smart.
(b) If I am smart then I do not have to work hard.
(c) I have to work hard.
What can be deduced?





Chapter 2

Proofs: Structures and
strategies

In this chapter, we discuss different methods of proofs, illustrating the rules
of logic that we learned in the previous chapter. We will consider many simple
examples of proofs; more involved examples will appear in the subsequent chapters,
after new concepts will be introduced.

2.1. Direct proof

The pattern of a direct proof is as follows: suppose P is true and P ⇒ Q is
true. Then Q is true. This is also called the rule of modus ponens. If we deal with
theorems in the form of conditional statements, a direct proof might be appropriate.

Example 2.1. If two integers are odd, then their product is odd.

Proof. Let a = 2m+1, b = 2n+1 for some integersm,n. Then a·b = (2m+1)(2n+
1) = 4mn+2m+2n+1 = 2(2mn+m+n)+1 = 2k+1, where k = 2mn+m+n. �

Exercise 2.2. Use the above example to prove: If x is odd, then x2 is odd.

Example 2.3. If x, y are positive real numbers, then x+ y ≥ 2
√
xy.

Proof. We rewrite the inequality as x + y − 2
√
xy ≥ 0. This is equivalent to

(
√
x)2 + (

√
y)2 − 2

√
x
√
y ≥ 0 or (

√
x−√y)2 ≥ 0, which is true. �

Notice that we used the fact that x, y are positive. For x = y = −1, check that
the inequality is false.

Example 2.4. Let a 6= 0. If b2 − 4ac ≥ 0, prove that the quadratic equation
ax2 + bx+ c = 0 has real roots.

11
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Proof. Dividing by a we get x2 +
b

a
x+

c

a
= 0. The idea is to complete the square:

x2 + 2
b

2a
x+

(
b

2a

)2

+
c

a
−
(
b

2a

)2

= 0,

(
x+

b

2a

)2

=
b2 − 4ac

4a2
.

Since b2 − 4ac ≥ 0, we can solve the last equation and get

x+
b

2a
= ±
√
b2 − 4ac

2a
, x = − b

2a
±
√
b2 − 4ac

2a
.

�

Exercise 2.5. Use a direct proof to prove the statements
a. If x is odd, then x3 is odd.
b. If a divides b and a divides c, then a divides b+ c (recall that a divides b if

b = au for some integer u).
c. If x2 + 5y = y2 + 5x, then x = y or x+ y = 5.

2.2. Contrapositive proof

A conditional statement of the form P ⇒ Q may also be proved using a contrapos-
itive proof. The idea is to prove the logically equivalent statement (¬Q) ⇒ (¬P ),
which sometimes is easier.

Example 2.6. Let n be an integer. If n2 is odd, then n is odd.

Proof. We prove: if n is even, then n2 is even, which is easier. Indeed, n = 2k
implies n2 = 4k2 = 2 · 2k2. �

Try to give a direct proof of the same statement and compare.

Example 2.7. Let x, y be integers. If 3 does not divide xy, then 3 does not divide
x and 3 does not divide y.

Proof. By De Morgan laws of negation (see Theorem 1 part g in Logic), we prove:
if 3 divides x or 3 divides y, then 3 divides xy. In the case x = 3a, we get xy = 3ay
and 3 divides xy. In the second case, y = 3b and xy = 3xb, so 3 divides xy. �

Exercise 2.8. Use the method of contrapositive proof to prove the following. In
each case, think also of a direct proof, and compare them:

a. If x2 + 5x < 0, then x < 0.
b. If both ab and a+ b are even, then both a and b are even.
c. If a2 is not divisible by 4, then a is odd.
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2.3. Proof by contradiction

Another method of proving conditional statements P ⇒ Q is the proof by contra-
diction. We assume that P ⇒ Q is false, and try to get a contradiction, usually a
statement like R∧ (¬R). Recall that P ⇒ Q is logically equivalent to (¬P )∨Q, so
its negation is P ∧ (¬Q).

Example 2.9. If a, b are integers, then a2 − 4b can not be equal to 2.

Proof. Assume the implication is false, namely that there exist integers a, b such
that a2 − 4b = 2. We get a2 = 4b + 2 = 2(2b + 1), so a must be even, say a = 2c.
Plugging back in the equality a2 − 4b = 2 we get 4c2 − 4b = 2 or 4(c2 − b) = 2,
which says that 2 is a multiple of 4, contradiction. Something went wrong, so it
must be that there are no integers a, b such that a2 − 4b = 2. �

In fact, the proof by contradiction can be applied to other statements, not
necessarily conditional statements.

Example 2.10.
√

2 is irrational (not of the form a/b with a, b integers and b 6= 0).

Proof. First recall that
√

2 is a positive number such that (
√

2)2 = 2. Assume√
2 is rational, hence

√
2 = a/b, with a, b integers and b 6= 0. By simplifying the

fraction, we may assume that a and b are relatively prime (the greatest common
divisor is 1). We get a = b

√
2. Squaring both sides, a2 = 2b2, which implies a to

be even, say a = 2n. But then 4n2 = 2b2, hence b2 = 2n2 and b must also be even,
contradiction. �

Example 2.11. There are infinitely many prime numbers (here an integer p is
prime if p ≥ 2 and the only divisors are 1 and p).

Proof. For the sake of contradiction, suppose there are only finitely many primes,
call them p1, p2, ..., pn, where p1 < p2 < ... < pn, so pn is the largest. Consider the
number a = p1p2 · · · pn + 1. Like any natural number, a has a prime divisor, say
pk. We get

p1p2 · · · pk · · · pn + 1 = cpk.

Dividing both sides by pk, it follows
p1p2 · · · pn

pk
+

1

pk
= c,

which implies that 1/pk is an integer, contradiction. �

Exercise 2.12. Prove by contradiction the following statements. In each case,
think also about a direct proof or a contrapositive proof, if possible.

a. If a, b are integers, then a2 − 4b 6= 3.
b.
√

6 is irrational.
c.
√

2 +
√

3 is irrational.
d. If a is rational and ab is irrational, then b is irrational.
e. If a, b,

√
a+
√
b are rational numbers, then

√
a,
√
b are also rational.

Exercise 2.13. Prove that
√

2 +
√

6 <
√

15 by contradiction.
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2.4. Combining the methods of proof

How about the proof of a biconditional statement P ⇔ Q? There are two steps: we
prove first P ⇒ Q and then Q⇒ P . For these,we may use any method we learned
so far: direct proof, contrapositive proof or proof by contradiction.

Example 2.14. Suppose a, b are integers. Then 10 divides a − b if and only if 2
divides a− b and 5 divides a− b.

Proof. We use a direct proof for both implications. If 10 divides a − b, then
certainly 2 divides a− b and 5 divides a− b, since 2 and 5 divide 10.

Assuming that 2 divides a− b and 5 divides a− b, we get a− b = 2c = 5d for
some c, d. Since 2 and 5 are relatively prime, it must be that 5 divides c, hence
c = 5e and a− b = 10e. �

Sometimes, we may have to prove that several statements are equivalent, like

P ⇔ Q⇔ R⇔ S.

We can use a circle of implications like P ⇒ Q ⇒ R ⇒ S ⇒ P or split the
equivalences into smaller groups.

Example 2.15. In Linear Algebra we have the following theorem
Suppose A is an n× n matrix with real entries. The following are equivalent
1) A is invertible
2) The equation Ax = b has a unique solution for every b ∈ Rn

3) The equation Ax = 0 has only the trivial solution
4) The reduced row echelon form of A is In
5) det(A) 6= 0

6) 0 is not an eigenvalue for A.

Proof. The pattern of proof is the following:

1⇒ 2⇒ 3⇒ 6⇒ 4⇒ 1; 1⇔ 5.

For all terminology, consult your Linear Algebra book.
1⇒ 2. Assume A has an inverse A−1. By multiplying with A−1 on the left the

equation Ax = b we get A−1Ax = b or x = A−1b, so indeed the equation Ax = b
has a unique solution, namely x = A−1b.

2 ⇒ 3. We consider b = 0 in the equation Ax = b. We get that the equation
Ax = 0 has only the solution x = A−10 = 0, namely the trivial solution.

3⇒ 6. Indeed, the equation Ax = 0 ·x = 0 has only the solution x = 0, which
is not acceptable as an eigenvector. Hence 0 is not an eigenvalue for A.

6⇒ 4. Since 0 is not an eigenvalue for A, it follows that A has n pivots, so the
reduced row echelon form is In.

4 ⇒ 1. Suppose that A has reduced row echelon form In. That means that
there are elementary matrices E1, ..., Ep corresponding to row operations such that
Ep · · ·E1A = In. Then A−1 = Ep · · ·E1, so A is invertible.
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1 ⇒ 5. Suppose A is invertible. Then by performing row operations, we can
find un upper triangular matrix U which is the row echelon form of A. Using
the properties of the determinant, we get detA = ±detU 6= 0, since detU is the
product of the diagonal entries and A has n pivots.

5 ⇒ 1. We prove the contrapositive. Assume A not invertible. Then in the
row echelon form U there is a zero diagonal entry, and hence detA = ±detU = 0.

Exercise 2.16. Let a 6= 0. Prove that the quadratic equation ax2 + bx+ c = 0 has
distinct real roots if and only if b2 − 4ac > 0.

�

2.5. Proof by cases

Some proofs are based on analyzing all possible cases.

Example 2.17. Prove that the set of real solutions of |x− 1| < |x− 3| is (−∞, 2).

Proof. Recall that for a real number x the absolute value is defined by

|x| =
{

x if x ≥ 0
−x if x < 0.

Case x ≥ 3. The inequality becomes x− 1 < x− 3, so −1 < −3, which is false.
This case gives no solution.

Case 1 ≤ x < 3. The inequality becomes x − 1 < 3 − x, so 2x < 4, or x < 2.
We get [1, 2) as a solution set.

Case x < 1. We obtain 1 − x < 3 − x, or 1 < 3, which is true. We also get
(−∞, 1) as part of the solution.

The conclusion is that x ∈ [1, 2) or x ∈ (−∞, 1), so x ∈ (−∞, 2). �

Example 2.18. Show that n4 ends in 0, 1, 5 or 6 for any positive integer n.

Proof. Indeed, let’s first find the last digit of n4 for n ∈ {0, 1, 2, ..., 9}. We have
04 = 0, 14 = 1, 24 = 16, 34 = 81, 44 = 256, 54 = 625, 64 = 36 · 36 ends in 6,
74 = 49 · 49 ends in 1, 84 = 64 · 64 ends in 6, 94 = 81 · 81 ends in 1. We conclude
that the last digit of n4 is 0, 1, 5 or 6 for any positive integer n. �

Exercise 2.19. Solve the inequality |x+ 2| < |x2 − 1|.

2.6. Existence proofs

To prove a statement of the form ∃xP (x), where x is a number, one can try to
construct directly a value x0 such that the statement P (x0) is valid. If this is not
possible, we can try proving that the negation of ∃xP (x) is false.

Example 2.20. Show that there is a real number x such that x2 = 3.

Proof. We can directly check that x0 =
√

3 works. Of course, x1 = −
√

3 is another
choice. �

Exercise 2.21. Prove that there is a prime number between 100 and 200.
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Another method to prove ∃xP (x) is by contradiction: we assume that the
negation of the statement holds, in other words assume that ∀x ¬P (x), and derive
a contradiction.

Example 2.22. Let a be a positive real number. Prove that there is x0 such that
x2

0 = a.

Proof. Suppose that for any real number x we have x2 6= a. Consider the contin-
uous function f(x) = x2 − a. The assumption implies that f(x) 6= 0 for all x. But
f(a+ 1) = a2 + a+ 1 > 0 while f(0) = −a < 0, which contradicts the Intermediate
Value Theorem from Calculus. �

Example 2.23. Prove that there is a positive integer n such that 22n

+ 1 is not a
prime.

Proof. It turns out that

221

+ 1 = 5, 222

+ 1 = 17, 223

+ 1 = 257, 224

+ 1 = 65537

are primes (verify!) but

225

+ 1 = 4294967297 = 641 · 6700417

is not, so the statement is true for n = 5. The numbers Fn = 22n

+ 1 are called
Fermat numbers. �

Exercise 2.24. Prove that there is a positive integer n such that 2n−1 is divisible
by 11.

Remark 2.25. Although an example is sufficient to prove an existence statement,
this is not the case for a conditional statement. The fact that you can find a
particular x such that P (x)⇒ Q(x) holds true does not mean that it is true for all
x.

2.7. Proof by counterexample

To prove the negation of the statement ∀xP (x), in other words to prove that
∃x ¬P (x), we must find at least one x0 such that P (x0) does not hold. Such
an object is called a counterexample to P (x).

Example 2.26. Prove that the following statement is false: Every continuous
function on an interval [a, b] is differentiable on (a, b).

Proof. It suffices to consider f(x) = |x| on the interval [−1, 1] which is continuous,
but not differentiable at 0 ∈ (−1, 1). �

Exercise 2.27. Prove the negation of the following statements by giving coun-
terexamples.

a. The sum of two irrational numbers is irrational.
b. The product of two irrational numbers is irrational.
c. If a and b are positive integers and a · b is a perfect square (there is k with

a · b = k2), then a and b are perfect squares.

d. We have
√
a+ b =

√
a+
√
b for all a, b ≥ 0.
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2.8. Proof by induction

Recall that the principle of mathematical induction refers to the following: to prove
that a sequence of statements S(1), S(2), ..., S(n), ... is true, it suffices to prove two
steps

1. Basis step: S(1) is true,
2. Inductive step: For any (fixed) positive integer k ≥ 1, if S(k) is true, then

S(k + 1) is true.
This principle is based on the properties of positive integers, discussed in a sep-

arate chapter. We will consider there other forms of induction, like strong induction
or complete induction, with more examples.

Example 2.28. For all n ≥ 1 we have 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Proof. We call S(n) the statement to be proved. For n = 1 the statement becomes

1 =
1 · 2

2
, which is true.

Assume S(k) is true, i.e. 1 + · · ·+ k =
k(k + 1)

2
. Then

1 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ k + 1 =

(k + 1)(k + 2)

2
,

hence S(k + 1) is also true.
Since both steps were verified, it follows by induction that S(n) is true for all

n ≥ 1. �

Example 2.29. Suppose x is a real number with x 6= 1. Prove that for any positive
integer n we have

1 + x+ · · ·+ xn =
1− xn+1

1− x
.

Proof. The basis step is 1 + x =
1− x2

1− x
, true since (1 + x)(1− x) = 1− x2.

Assume 1 + x+ · · ·+ xk =
1− xk+1

1− x
for a fixed k ≥ 1. Adding xk+1 both sides

we get

1 + x+ · · ·+ xk + xk+1 =
1− xk+1

1− x
+ xk+1 =

1− xk+1 + xk+1(1− x)

1− x
=

=
1− xk+1 + xk+1 − xk+2

1− x
=

1− x(k+1)+1

1− x
.

�

Example 2.30. Prove that for each n ≥ 1 we have | sin(nx)| ≤ n · sin(x) for all
x ∈ [0, π].

Proof. For n = 1 we need to show that | sin(x)| ≤ sin(x). Since x ∈ [0, π], we have
sin(x) ≥ 0, hence | sin(x)| = sin(x) and the inequality is true.
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Assume | sin(kx)| ≤ k sin(x) for a fixed k ≥ 1 and x ∈ [0, π]. Then

| sin((k + 1)x)| = | sin(kx+ x)| = | sin(kx) cos(x) + cos(kx) sin(x)| ≤

| sin(kx)|| cos(x)|+ | cos(kx)|| sin(x)| ≤ k sin(x) + sin(x) = (k + 1) sin(x).

We used the fact that sin(a+b) = sin(a) cos(b)+cos(a) sin(b), the triangle inequality
|u+v| ≤ |u|+|v| and the fact that | cos(kx)| ≤ 1 for all k ≥ 1. The proof by induction
is complete. �

Example 2.31. Find the sum of the first n odd positive integers.

Proof. This exercise has two parts: first we need to look for a pattern and guess
the formula, and second we prove the formula by induction. We have 1 = 1 =
12, 1 + 3 = 4 = 22, 1 + 3 + 5 = 9 = 32, 1 + 3 + 5 + 7 = 16 = 42, so a good guess for
the sum of the first n odd integers looks like

1 + 3 + 5 + · · ·+ (2n− 1) = n2,

and indeed, there are n terms on the left hand side. Obviously, we already know
that this is true for n = 1 : 1 = 12. Assume now that 1 + 3 + · · · + (2k − 1) = k2

for a fixed arbitrary k ≥ 1. Adding 2k + 1 both sides, we get

1 + 3 + · · ·+ (2k − 1) + (2k + 1) = k2 + 2k + 1 = (k + 1)2.

We conclude that the conjectured formula is true for any n ≥ 1. �

Exercise 2.32. Prove by induction that 1 + 5 + 9 + · · ·+ (4n− 3) = 2n2 − n.

Exercise 2.33. Prove by induction that 12 + 32 + · · ·+ (2n− 1)2 = (4n3 − n)/3.

Exercise 2.34. For n ≥ 1, let sn = 12 + 22 + · · ·+ n2.
a. Compute s1, s2, s3, s4 and conjecture a general formula for sn.
b. Prove your formula for sn by induction.

Exercise 2.35. Consider the Fibonacci numbers fn, where f1 = f2 = 1, fn =
fn−2 + fn−1 for n ≥ 3. Prove that

a. f2
n+1 + 2fnfn+1 = fnfn+1 + fn+1fn+2.

b. f2
1 + f2

2 + · · ·+ f2
n = fnfn+1.

Exercise 2.36. For each positive integer n and any real number x ≥ −1 prove by
induction that (1 + x)n ≥ 1 + nx.

Exercise 2.37. Here is a “proof” by induction that any two positive integers are
equal. Find the mistake:

For a, b positive integers, max(a, b) is defined to be the largest of a and b if
a 6= b, and max(a, a) = a. Let P (n) be the statement: if a and b are positive
integers such that max(a, b) = n, then a = b. We use induction to prove that P (n)
is true for n ≥ 1. For n = 1, since max(a, b) = 1, we get a = b = 1. Assume P (n)
true. Let a, b such that max(a, b) = n + 1. Then max(a − 1, b − 1) = n. Since we
are assuming P (n) true, we get a − 1 = b − 1, hence a = b. Therefore P (n + 1)
is true, and by induction P (n) is true for all n ≥ 1. As a consequence, any two
positive integers a, b are equal.
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Exercise 2.38. Suppose f is a function defined on the set of real numbers such that
f(x+ y) = f(x) + f(y) for all x, y. Prove by induction that f(kx) = kf(x) for any
positive integer k. Conclude that f(x/n) = f(x)/n and that f(mx/n) = mf(x)/n
for all positive integers m,n.

Exercise 2.39. Prove by induction that

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

Exercise 2.40. Prove by induction that

(1 + 25 + · · ·+ n5) + (1 + 27 + · · ·+ n7) = 2

[
n(n+ 1)

2

]4

.

Exercise 2.41. Prove by induction that the sum of internal angles in an n-sided
polygon is (n− 2)π.

Exercise 2.42. If we draw n straight lines in the plane, no three going through
the same point, and no two parallel, how many regions do they determine in the
plane? Prove by induction that the formula is (n2 + n+ 2)/2.

Exercise 2.43. Some straight lines are drawn in the plane, forming regions. Show
that it is possible to color each region either red or blue, in such a way that no
two neighboring regions (regions separated by a line segment or a halfline) have the
same color.





Chapter 3

Elementary theory of sets

When you study physics, economics, psychology, mathematics, or any other subject,
there are certain key words which you must learn to use correctly. You may not
completely understand them when you begin, but continued usage helps you become
familiar with them. In some cases, a perfectly precise definition of a term may never
be available, but with experience you may be able to understand and use the idea
represented by the term. For example, it is very difficult to pin down exactly what
“force” is, but enough is known about force that all sorts of things can be proved
about it.

In the same way, when we investigate the structure of a mathematical theory,
there are always some concepts which are so basic that they do not admit any
simple definition. They can really only be understood by the properties they have
or, putting it another way, by statements which use them correctly. These basic
concepts are referred to by words or symbols that we call “primitive” or “undefined”
terms.

The most basic statements we write down (using the undefined terms) are the
Postulates or Axioms. These are often understood to be so obvious that no proof is
required, though in a sense that is inadequate as a description. More specifically,
we will here understand postulates as statements which are not necessarily true or
false, but which are the basis for an ongoing reasoning process.

In a sense, while we are developing a theory, we regard the postulates as true,
but whether they really are or not is generally irrelevant to the theory. The typical
daily project in mathematics is to discover a consequence of one or more hypotheses
and, hopefully, to prove it. In practice, that’s what mathematics is all about.

3.1. Axioms for set theory

The notion of a set is a relatively recent development in mathematical history. Cre-
ated at the end of nineteenth century, the idea of a set has become the cornerstone

21
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for virtually all contemporary mathematics. In its simplest form, a set is simply a
bunch of things gathered together to form a new entity which is considered to be
a single object. The English language is rich in words that could be regarded as
synonymous with the word “set”; among them are: collection, group, family, class,
club, flock, herd, or team. Note that when we refer to a club, for example, we are
not generally thinking of the individual members, but of the totality of all mem-
bers, presumed to be a single entity. In fact, a club (or team, family, class, etc.) is
always referred to in the singular.

We will usually denote the sets by capital letters and we will mostly be inter-
ested in sets of mathematical entities like numbers, functions, etc. The fact that
an element x belongs to a set A is written x ∈ A. The sets can be specified by
the roster notation using braces, like A = {a, b, c}, an enumeration of its elements,
or by the set-builder notation, which will be explained below after the Axiom of
Separation. When we enumerate the elements, a repetition should count only once.
For example, the set {1, 2, 3, 1, 2} is the same as {1, 2, 3}.

Example 3.1. The following are examples of sets

A = {a, b, c, d, ..., z}, B = {{1, 2, 5},+,−, A},

C = {2, 4, 6, ...}, D = {...,−2,−1, 0, 1, 2, ...}.
Note that 10 ∈ C but 3 /∈ C. The dots here indicate that the list continues
indefinitely. You may recognize that C is the set of even positive integers, and D
is the set of integers, also denoted by Z.

A set could be an element of another set. For example, notice that {1, 2, 5} ∈ B
and A ∈ B.

The main things that are needed in talking about sets are knowledge as to when
sets are really the same and how to form sets. These are addressed in Axioms 1
and 2 below. Later, we will add a third axiom, called the Axiom of Choice. This
will be explained in the next chapter.

Axiom 1 (The Axiom of Extent).

(A = B)⇔ ∀x (x ∈ A⇔ x ∈ B).

This axiom asserts that equality of sets is determined by the members of the sets
and by no other criteria. Thus if A is described as the set of even integers and B
is the set of all numbers that are obtained by increasing odd numbers by 1, then
we are really dealing with the same set, even though the definitions of A and B are
different.

In view of the Axiom of Extent, in order to prove that two sets are equal we
must show two separate things, namely that each element of one set is also in the
other and vice versa. This will usually be accomplished by breaking the proof into
two parts. The first part will begin with a hypothesis of the form x ∈ A, from which
the conclusion x ∈ B will be drawn. The second part amounts to the converse of
this. A proof of equality for sets is incomplete until the sentences x ∈ A and x ∈ B
are shown to be equivalent.

Axiom 2 (The Axiom of Set Formation, or Axiom of Separation). If S(x) is
an open sentence in x (or predicate), then there is a set whose elements are exactly
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those x for which S(x) is true. In symbols,

∃A ∀x (x ∈ A⇔ S(x)).

Because Axiom 2 allows formation of a set by collecting together all objects
that make an open sentence true, you can see why the set formed is often called
the truth set or solution set of the open sentence. Notice, however, that uniqueness
of the solution set is not explicitly stated in Axiom 2.

As it happens, though, putting our two axioms together does show that the set
formed in Axiom 2 is unique.

Theorem 3.2. ∃!A ∀x (x ∈ A⇔ S(x)).

The fact that there is a set A satisfying the condition x ∈ A ⇔ S(x) follows
directly from Axiom 2. Now suppose A1 and A2 are any sets like A. Then we have

x ∈ A1 ⇔ S(x)⇔ x ∈ A2.

Since the relation ⇔ is transitive, in the sense that P ⇔ Q and Q ⇔ R implies
P ⇔ R, we get A1 = A2 by Axiom 1.

In mathematics, when we know that something of interest exists and is unique,
it is usually appropriate to give it a name. Thus we now introduce the standard
notation for the truth set of an open sentence.

Definition 1. If S(x) is an open sentence, the set A mentioned in the above
theorem is denoted by A = {x : S(x)}. This is the set-builder notation (read: the
set of all x such that S(x)).

Remark 3.3. The idea of set builder notation works two ways. First, if you know
that a is an element such that the sentence S(a) is true, then it follows that a is
an element of A. For example, since 23− 2 = 6, we know that 2 ∈ {x : x3−x = 6}.
Second, if you are presented with an element of A, then you know that the condition
defining the set A is true. An example of this is that if you happen to run across
an object, say b, which is definitely in {x : x3 − x− 1 = 0}, even if you don’t know
a precise value for it, you can say with confidence that b3 − b− 1 = 0.

Here is another, more symbolic way, of expressing what was said above:

Theorem 3.4. ∀a (a ∈ {x : S(x)} ⇔ S(a)).

3.2. Inclusion of sets

As we have seen, Axiom 1 deals with equality of sets. We define now the notion of
subset, which illustrates the idea of a smaller set sitting inside a bigger set. More
precisely,

Definition 2. We say that A is a subset of B or that A is contained in B whenever
∀x(x ∈ A ⇒ x ∈ B). We write A ⊆ B. We may also express this by saying that
B is a superset of A and write B ⊇ A. If A ⊆ B and A 6= B, we say that A is a
proper subset of B, and we write A ⊂ B.

Example 3.5.
{1, 2, 3} ⊆ {1, 2, 3, 5}, N ⊆ Z.



24 3. Elementary theory of sets

Our choice of notation is parallel with inequality ≤ and strict inequality < of
numbers. Warning: some authors use ⊂ for inclusion, and ( for proper inclusion.

Note how the definition of subset resembles Axiom 1; the only difference is that
the biconditional has been replaced by a single conditional. This means that being
a subset of is a weaker notion than being equal to. In fact, A will be a subset of B
if and only if all the elements of A are also elements of B. Note that the converse
may not be true.

Here are the fundamental properties about the notion of subset.

Theorem 3.6. The inclusion of sets has properties
1. Reflexivity: For all A, A ⊆ A.
2. Antisymmetry: (A ⊆ B) ∧ (B ⊆ A)⇔ A = B.
3. Transitivity: (A ⊆ B) ∧ (B ⊆ C)⇒ A ⊆ C.

Proof. 1. This is clear, since x ∈ A implies x ∈ A.
2. This is exactly the double implication used in Axiom 1 to conclude that two

sets are equal.
3. Suppose x ∈ A. We can apply the subset definition to the first hypothesis

and conclude that x ∈ B. But now this new assertion can be used with the second
hypothesis to deduce that x ∈ C. This establishes the conditional x ∈ A⇒ x ∈ C
for every x, so the result follows. �

Since Axiom 2 guarantees that there is a set associated with any open sentence,
in particular we can define a set from a condition that can never be satisfied. And
why not? After all, sets are often used to describe the solutions of various problems,
and some problems have no solutions whatever. In the next definition we use a
standard universally false statement to define the set we will refer to as the empty,
null, or void set, denoted ∅.

Definition 3. By definition, ∅ = {x : x 6= x}.

To understand the empty set, it might help if you consider the fact that a
subset can be gotten from a set by removing some of its elements. If you take them
all out, what do you get? Of course, you reach ∅.

Theorem 3.7. We have
1. ∀x (x /∈ ∅).
2. For all A, ∅ ⊆ A.

Proof. 1. This is true since ∅ has no element.
2. Substitute ∅ for A and A for B in the definition of inclusion. Since the

right side of the biconditional is a universal statement about an implication whose
hypothesis is always false (by Theorem 3.6), it is itself automatically true. Thus
we can say that ∅ ⊆ B.

For another proof, suppose that the empty set is not a subset of a certain set
A. That means that for some choice of x the sentence x ∈ ∅ ⇒ x ∈ A is false. This
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can only occur if, for this x, we have both x ∈ ∅ and x /∈ A. As there is no element
of the empty set, this is a contradiction. It must follow that ∅ ⊆ A.

�

Definition 4. Given a set X, the power set P(X) is defined as

P(X) = {A : A ⊆ X},
the set of all subsets of X.

Note that ∅, X ∈ P(X) since ∅ ⊆ X and X ⊆ X.

Example 3.8. P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Exercise 3.9. Prove by induction that if X has n elements, then P(X) has 2n

elements.

Remark 3.10. Obviously, some sets do not contain themselves. For example, let
X be the set of integers. Then X is not an element of X, since X is not an intger.
A set which contains itself must be a set containing sets as elements. Consider for
example the set Y of sets which can be defined using 15 words or less. Clearly Y
contains itself. Here is a surprising result, which will convince us that is best to
avoid sets which contain themselves.

Theorem 3.11. (Russell’s Paradox) The set X = {A : A /∈ A} is contradictory.

Proof. Indeed, if the set X exists, then let’s check if X ∈ X or not. If we assume
X ∈ X, then by definition X /∈ X, contradiction. If we assume X /∈ X, then we
conclude X ∈ X, contradiction. �

In particular, there is no set containing all sets. Such a thing is a new concept,
usually called the class of all sets or the category of sets. We are not discussing
category theory in this book. For those interested, there is an extensive literature
on classes and category theory.

In the next sections, we will define several operations with sets, give examples,
and prove the rules of algebra with sets. To avoid Russell’s Paradox, it is convenient
to assume that all the sets we work with are subsets of a fixed large set U , called
the universe. Many times, this set U will be understood from the context.

3.3. Union and intersection of sets

The two basic operations with sets are the union and the intersection. In the first,
we gather together all those objects which appear in at least one of the sets. The
second is obtained by putting together the common members of both sets into a
single set. Recall that we assume our sets to be subsets of a fixed universe U .

Definition 5. The union of the sets A and B is

A ∪B = {x ∈ U : x ∈ A ∨ x ∈ B}.

The intersection of A and B is the set

A ∩B = {x ∈ U : x ∈ A ∧ x ∈ B}.
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A BA ∩B A B

A ∪B

Figure 1. A ∩B and A ∪B.

Note especially the conditions written within braces that determine the qual-
ifications required for an object to be a member. Sometimes we visualize these
operations with pictures, called Venn diagrams. When we prove theorems about
operations with sets, Venn diagrams are a useful visual aid, see Figure 1.

Definition 6. Two sets A,B are called disjoint if A ∩B = ∅.

Example 3.12. Let A = {1, 2, c}, B = {a, b, c} and C = {1, x}. Then
A ∪B = {1, 2, a, b, c}, A ∪ C = {1, 2, c, x}, A ∩B = {c},

A ∩ C = {1}, B ∪ C = {1, a, b, c, x}, B ∩ C = ∅.
In particular, B and C are disjoint.

Example 3.13. Consider the sets

A = {n ∈ Z : n = 2k for some k ∈ Z}, B = {n ∈ Z : n = 3m for some m ∈ Z}.
Then

A ∪B = {n ∈ Z : (n = 2k) ∨ (n = 3m) for some k,m ∈ Z},
A ∩B = {n ∈ Z : n = 6r for some r ∈ Z}.

Here are some properties about intersection of sets.

Theorem 3.14. For arbitrary sets A,B,C we have
1. A ∩A = A

2. A ∩B = B ∩A.
3. (A ∩B) ∩ C = A ∩ (B ∩ C).

Proof. The first thing to realize is that right now, as well as in many other situ-
ations, the only way to establish equality of sets is by a two pronged attack. We
must, in view of Axiom 1, prove the validity of a biconditional statement, and, as
we already mentioned, this is typically done by proving two conditional statements
separately.

1. Suppose that x ∈ A∩A. By definition, x ∈ A and x ∈ A. Thus x ∈ A. This
establishes the implication x ∈ A ∩ A ⇒ x ∈ A, and one direction of the desired
biconditional is established. Note the logical principle used here: whenever you
have a statement of the form P ∧ Q in a proof, you are entitled to simply write
down P as a consequence. Of course, you may also properly infer the statement Q.
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For the other direction of the biconditional, we now suppose that x ∈ A and try
to prove that x ∈ A ∩A. But this amounts to stating our hypothesis twice (which
is surely valid; if a sentence P is true, then forming its conjunction with itself P ∧P
will also produce a true sentence), and then using the definition of intersection.

The two steps used in the above proof are typical of the pattern used to prove
equality of sets. You will generally divide the proof into two parts. In the first,
introduce a symbol to stand for an arbitrary member of the left-hand set and
proceed to show that it must also be in the right-hand set. Then do the reverse by
considering a typical element of the right-hand set and proving that it must be in
the other set. This technique will be called proof by double inclusion, see also part
two in Theorem 3.6.

2. Suppose that x ∈ A ∩ B. From the definition of intersection, we may infer
that x ∈ A and x ∈ B. But since asserting that two statements are both true can
be done by mentioning either one first, it follows that x ∈ B and x ∈ A (see the
commutative property in Theorem 1 in Logic). Thus x ∈ B ∩ A. This completes
the first part of the proof, and normally we would write the details of the other
direction. This time, however, the proof can be written by simply interchanging
the letters A and B in the previous part, so it will be omitted.

3. The proof uses the fact that there is an associative type law for the word
“and”, see part a) in the same Theorem 1 in Logic, and it will also be omitted. �

Theorem 3.15. We have
1. A ∪A = A.
2. A ∪B = B ∪A.
3. (A ∪B) ∪ C = A ∪ (B ∪ C).

Proof. Exercise. �

As you can see from the preceding results, union and intersection obey some
of the more common laws of algebra (think addition and multiplication). In the
next theorem, you will see that there are some more similarities, but also some
significant differences between real number algebra and set algebra.

Theorem 3.16. We have
1. A ∩ (A ∪B) = A.
2. A ∪ (A ∩B) = A.
3. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
4. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. 1. Suppose x ∈ A ∩ (A ∪ B). Then x ∈ A and x ∈ A ∪ B. In particular,
x ∈ A, which means that A ∩ (A ∪ B) ⊆ A. On the other hand, assume x ∈ A.
By definition of union, we have x ∈ A ∪ B. Hence x ∈ A ∩ (A ∪ B), and we get
A ⊆ A ∩ (A ∪B), hence equality by part 2 of Theorem 3.6.

2. Exercise.
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3. Let us examine an element of A ∩ (B ∪ C), call it x. Clearly x ∈ A and
x ∈ B ∪ C. Since the last part of the preceding sentence implies that x ∈ B or
x ∈ C, we consider two cases.

a) If x ∈ B, then since we already know that x ∈ A, we clearly have that
x ∈ A ∩B. But then the statement

x ∈ A ∩B ∨ x ∈ A ∩ C

is also true. Thus, by definition of union,

x ∈ (A ∩B) ∪ (A ∩ C).

b) If x ∈ C, then we have virtually the same argument as in part a). Check it
out and see for yourself that this is so. Thus in any case, x appears in the right-hand
set.

Now choose an element x of (A∩B)∪ (A∩C). Clearly x ∈ A∩B or x ∈ A∩C.
In either case, we have x ∈ A. However, in the first case x is in B, while in the
second case x is an element of C; thus, no matter what, x ∈ B ∪ C. Evidently we
now know that x ∈ A ∩ (B ∪ C), and the second part of the biconditional needed
to apply Axiom 1 has been proved.

4. Exercise. �

Exercise 3.17. We have
a. A ∩ ∅ = ∅.
b. A ∪ ∅ = A.

The parts of the following theorem give some relationships between the various
concepts described so far. They are fairly useful in everyday reasoning about sets.

Theorem 3.18. We have
1. A ⊆ B ⇔ A ∩B = A.
2. A ⊆ B ⇔ A ∪B = B.
3. A ⊆ A ∪B.
4. A ∩B ⊆ A.
5. A ⊆ C ∧B ⊆ C ⇒ A ∪B ⊆ C.
6. A ⊆ B ∧A ⊆ C ⇒ A ⊆ B ∩ C.

Proof. We will prove part 1 and leave the others as exercise. Notice first that the
first statement is expressed as a biconditional, so there will be two parts to the
proof. First we will assume that A ⊆ B and use this to prove that A ∩ B = A.
Then we will assume the truth of the equation and prove the inequality without
referring to anything we did in the first part. Here goes!

i) Suppose A ⊆ B. Since we are trying to establish the equality of two sets, it
behooves us to divide this portion of the proof into two parts.

a) Suppose x ∈ A ∩B. Then x ∈ A and x ∈ B. Hence, x ∈ A.
b) Now suppose x ∈ A. Because we know that A ⊆ B, we can invoke the

definition of inclusion to conclude x ∈ B. Thus x ∈ A ∩B.
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Steps a) and b) together show that
x ∈ A ∩B ⇔ x ∈ A, so by Axiom 1 we see that the sets are equal.
ii) Now assume that A ∩ B = A. We wish to show that A ⊆ B. Let x ∈ A.

Because A is exactly the same as A∩B, we then know that x ∈ A∩B. By definition
of intersection, we have x ∈ B, and we are done. �

3.4. Complement, difference and symmetric difference of sets

Recall that all our sets are subsets of a universe U .

Definition 7. The complement of the set A is A′ = {x ∈ U : x /∈ A}.

A

A′

Another notation for the complement is Ac. The complement of A consists of
all those objects in U which are not elements of A. For our purposes, it is usually
understood what the largest set U under consideration is, and complements are
taken with respect to that set. Thus if we were studying the positive integers and
we would consider {x : x < 5}′, then we would be referring to the set {5, 6, 7, ...},
whereas in a discussion of the set of digits in base eight {0, 1, 2, ..., 7}, then {x : x <
5}′ would be the set {5, 6, 7}.

The next theorem is the set-theoretic analogue of the double negation law of
logic.

Theorem 3.19. We have (A′)′ = A.

Proof. x ∈ (A′)′ ⇔ x /∈ A′ ⇔ ¬(x ∈ A′) ⇔ ¬(¬(x ∈ A)) ⇔ x ∈ A.
By the Axiom of Extent, (A′)′ = A.

�

We prove now other properties of the complement.

Theorem 3.20. We have
1. (A ∩B)′ = A′ ∪B′.
2. (A ∪B)′ = A′ ∩B′.
3. A ⊆ B ⇔ B′ ⊆ A′.
4. A ∩A′ = ∅.
5. ∀x (x ∈ A ∪A′).
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Proof. The first two parts of this theorem are often called the De Morgan’s Laws
for complements. They are much like the laws of logic in Theorem 1.2 which show
what happens when you negate a conjunction or disjunction. In fact, if you know
that the sentence ¬(P ∧Q) ⇔ (¬P ) ∨ (¬Q) is a tautology (i.e., it is always true),
then a simple proof of part 1 is:

x ∈ (A ∩B)′

⇔ ¬(x ∈ A ∩B)

⇔ ¬(x ∈ A ∧ x ∈ B)

⇔ ¬(x ∈ A) ∨ ¬(x ∈ B)

⇔ x ∈ A′ ∨ x ∈ B′

⇔ x ∈ A′ ∪B′.
Let’s prove part 2 in a more standard fashion. Suppose x ∈ (A ∪ B)′. Then

x is not an element of the set A ∪ B. There doesn’t seem to be any direct way to
continue, but we can always ask and try to answer questions as we go. Right here
a good question would be: “is x a member of A”? The answer, naturally, is “no”,
because otherwise x would also be in A ∪ B. In answering this question, we have
discovered some useful information about x. Since the same process obviously leads
to the conclusion that x /∈ B, we can conclude that x ∈ A′∧x ∈ B′, so x ∈ A′∩B′.

Now suppose that x ∈ A′ ∩ B′. Then x is not in A and also x is not in B.
Could x be in the union of two sets if it is known that it is in neither? Of course
not. Thus x /∈ (A∪B), so by the definition of the complement, we get x ∈ (A∪B)′.

We leave the other properties as exercise. �

Definition 8. The dual of a formula involving set variables, unions, and intersec-
tions, is the formula obtained by interchanging ∪ and ∩. The dual of an equation
is the equation obtained by dualizing both sides.

For example: the dual of A∪B is A∩B, the dual of B∩ (A∪B) is B∪ (A∩B),
and the dual of A is A itself. Looking back at some of the theorems of the algebra
of sets, it is hard not to be struck by the fact that many of them appear in dual
pairs. This is not an accident. To see why, let’s look at the equation

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C). We have already proved this to be true for
all sets A, B, and C by a simple element argument. But if it is true for all sets,
then we can replace the letters in it by symbols denoting any set and still obtain a
valid statement. In particular, the following is true:

A′ ∩ (B′ ∪ C ′) = (A′ ∩ B′) ∪ (A′ ∩ C ′). By taking complements of both sides
and using De Morgan’s Laws, we obtain

(A′ ∩ (B′ ∪ C ′))′ = ((A′ ∩B′) ∪ (A′ ∩ C ′))′,

and

(A′)′ ∪ ((B′)′ ∩ (C ′)′) = ((A′)′ ∪ (B′)′) ∩ ((A′)′ ∪ (C ′)′).

This clearly reduces to

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
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In other words, we have a mechanical method for proving the dual of the original
statement. This always works for every union-intersection identity. This fact is
summarized in the next

Metatheorem. (Principle of Duality) The dual of any identity involving only
set variables and union or intersection symbols is also an identity.

Definition 9. Let X be a set and let A,B ∈ P(X). The difference of A and B,
denoted by A \B, is the set {x : x ∈ A ∧ x /∈ B}.

A \B

A B

Example 3.21.

{1, 2, 4, 5} \ {3, 4, 6} = {1, 2, 5}, {3, 4, 6} \ {1, 2, 4, 5} = {3, 6}.

Note that A\B may be different from B \A. In particular we have A′ = X \A.
Another notation for the set difference is A−B. We prefer A \B since, for A and
B sets of numbers,

A−B = {a− b : a ∈ A, b ∈ B}
has a different meaning. For example,

{1, 2, 3} − {1} = {0, 1, 2}.

An object is in A \B if and only if it is in A and it is not in B. Looking at the
other side of the coin, how will an element fail to be in A\B? Clearly there are two
ways: 1) if x /∈ A, then x doesn’t satisfy the first requirement, so x is not an element
of A \ B; or 2) if x ∈ B, then x is not in the difference because the second part of
the definition is wrong. Thus we have the equivalence x /∈ A\B ⇔ [x /∈ A∨x ∈ B].

Theorem 3.22. For arbitrary sets A,B,C we have
1. A \B = A ∩B′.
2. (A ∪B) \ C = (A \ C) ∪ (B \ C).
3. A \ (B \ C) = (A \B) ∪ (A ∩ C).
4. A \ (B ∪ C) = (A \B) \ C.

Proof. 1. by definition.
2. (A ∪B) \ C = (A ∪B) ∩ C ′ = A ∩ C ′ ∪B ∩ C ′ = (A \ C) ∪ (B \ C).
3. A\(B\C) = A∩(B∩C ′)′ = A∩(B′∪C) = (A∩B′)∪(A∩C) = (A\B)∪(A∩C).
4. A \ (B ∪C) = A∩ (B ∪C)′ = A∩B′ ∩C ′ and (A \B) \C = (A∩B′)∩C ′ =

A ∩B′ ∩ C ′. �

Exercise 3.23. For sets A,B,C prove that A \ (B ∩ C) = (A \B) ∪ (A \ C).



32 3. Elementary theory of sets

Remark 3.24. Let A1, A2 be arbitrary sets. Then there are disjoint sets B1, B2

such that
A1 ∪A2 = B1 ∪B2.

(Recall that X,Y are disjoint if X ∩ Y = ∅).

Proof. Take B1 = A1, B2 = A2 \A1. �

Exercise 3.25. Let A1, A2, ..., An be arbitrary sets. Prove that there are disjoint
sets B1, B2, ..., Bn such that

n⋃
k=1

Ak =

n⋃
k=1

Bk.

Definition 10. The symmetric difference of two sets A and B is defined as

A∆B = (A \B) ∪ (B \A).

Another notation for the symmetric difference is A⊕B.

A

A∆B

B

Example 3.26. Let A = {a, b, c, d}, B = {c, d, e, f}. Then
A∆B = {a, b, e, f}.

Theorem 3.27. The symmetric difference has the following properties:
1. A∆B = B∆A (commutativity).
2. (A∆B)∆C = A∆(B∆C) (associativity).
3. A∆∅ = ∅∆A = A and A∆A = ∅.
4. A∆B = C ⇔ A∆C = B.
5. A ∩ (B∆C) = (A ∩B)∆(A ∩ C) (distributivity).

Proof. 1. A∆B = (A \B) ∪ (B \A) = (B \A) ∪ (A \B) = B∆A.
2. We have

(A∆B)∆C = [((A ∩B′) ∪ (B ∩A′)) ∩ C ′] ∪ [C ∩ ((A ∩B′) ∪ (B ∩A′))′] =

(A ∩B′ ∩ C ′) ∪ (B ∩A′ ∩ C ′) ∪ [C ∩ ((A ∩B′)′ ∩ (B ∩A′)′)] =

(A ∩B′ ∩ C ′) ∪ (B ∩A′ ∩ C ′) ∪ [C ∩ ((A′ ∪B) ∩ (B′ ∪A))] =

(A ∩B′ ∩C ′) ∪ (B ∩A′ ∩C ′) ∪ [C ∩ ((A′ ∩B′) ∪ (B ∩B′) ∪ (A′ ∩A) ∪ (B ∩A))] =

(A ∩B′ ∩ C ′) ∪ (B ∩A′ ∩ C ′) ∪ (C ∩A′ ∩B′) ∪ (C ∩B ∩A)

since B∩B′ = A′∩A = ∅. Notice that the expression for (A∆B)∆C is symmetric in
A,B,C. Starting with the right hand side A∆(B∆C), we get the same expression
(convince yourself!).

3. It follows from the definition.
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4. Assume A∆B = C. Taking the symmetric difference with A we get
A∆(A∆B) = A∆C. Using associativity, (A∆A)∆B = A∆C. Since A∆A = ∅
and ∅∆B = B, we get B = A∆C. The converse is proved similarly (convince
yourself!).

5. A ∩ (B∆C) = A ∩ ((B ∩C ′)∪ (B′ ∩C)) = (A∩B ∩C ′)∪ (A ∩B′ ∩C). On
the other hand, (A ∩B)∆(A ∩C) = ((A ∩B) ∩ (A ∩C)′) ∪ ((A ∩B)′ ∩ (A ∩C)) =
(A∩B∩A′)∪(A∩B∩C ′)∪(A′∩A∩C)∪(B′∩A∩C) = (A∩B∩C ′)∪(B′∩A∩C). �

Other properties related to the symmetric difference are

Theorem 3.28. We have
a. A∆B = (A ∪B) \ (A ∩B).
b. A ∪B = (A∆B) ∪ (A ∩B).
c. A \B = A∆(A ∩B).

Proof. Exercise. �

Exercise 3.29. (Ecuations with sets). Find sets X and Y satisfying all the condi-
tions

a. X ∪ Y = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
b. X ∩ Y = {4, 6, 9}.
c. X ∪ {3, 4, 5} = {1, 3, 4, 5, 6, 8, 9}.
d. Y ∪ {2, 4, 8} = {2, 4, 5, 6, 7, 8, 9}.

Solution. We know that

{4, 6, 9} ⊆ X,Y ⊆ {1, 2, 3, 4, 5, 6, 7, 8, 9}.

From part c it follows that 1, 8 ∈ X and from d we get that 5, 7 ∈ Y . Now
2, 3 ∈ X ∪ Y , so they belong to one of the sets, but not to both since 2, 3 /∈ X ∩ Y .
It follows that there are several soutions:

X1 = {1, 2, 3, 4, 6, 8, 9}, Y1 = {4, 5, 6, 7, 9},

X2 = {1, 2, 4, 6, 8, 9}, Y2 = {3, 4, 5, 6, 7, 9},

X3 = {1, 3, 4, 6, 8, 9}, Y3 = {2, 4, 5, 6, 7, 9},

X4 = {1, 4, 6, 8, 9}, Y4 = {2, 3, 4, 5, 6, 7, 9}.

Exercise 3.30. Find sets X and Y satisfying all the conditions
a. X ∪ Y = {1, 2, 3, 4, 5, 6}.
b. X ∩ Y = {1, 2, 3, 4}.
c. {4, 6} is not a subset of X.
d. {5, 6} is not a subset of Y \X.

Exercise 3.31. Find all sets X and Y satisfying X∆Y = {1, 2, 3, 4} and X ∩ Y =
{5, 6}. How many solutions do we have?
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Exercise 3.32. Solve each of the equations for X:
a. A ∪ (B \X) = B ∪X if A = {1, 2, 3}, B = {3, 4, 5};
b. {1, 2}∆X = {1, 2, 3};
c. ({1, 2}∆X)∆{1, 2, 3} = {1, 2, 3, 4}

3.5. Ordered pairs and the Cartesian product

Definition 11. The ordered pair of x and y, denoted by 〈x, y〉, is the set {{x}, {x, y}}.

Many books will use (x, y) for the ordered pair. We prefer 〈x, y〉 over (x, y)
because of the conflict with the open interval notation (a, b) for a, b ∈ R.

Theorem 3.33. 〈y, z〉 = 〈u, v〉 ⇔ y = u and z = v.

Proof. Assuming 〈y, z〉 = 〈u, v〉, we get {{y}, {y, z}} = {{u}, {u, v}}. It follows
that either {y} = {u} and {y, z} = {u, v}, or {y} = {u, v} and {y, z} = {u}. In the
first case it follows that y = u and z = v. In the second case we get u = v = y = z.
The converse is trivial. �

Definition 12. The Cartesian product of two sets X and Y is

X × Y = {〈x, y〉 : x ∈ X, y ∈ Y }

i.e., the set of all ordered pairs with first component taken from X and second
component taken from Y .

Example 3.34. If X = {1, 2, 3} and Y = {a, b}, then

X × Y = {〈1, a〉, 〈2, a〉, 〈3, a〉, 〈1, b〉, 〈2, b〉, 〈3, b〉}.

You probably already used R2 for R×R and R3 for R2×R or Cartesian products
of intervals like [0, 1]×[1, 3] in Calculus. You can visualize [0, 1]×[1, 3] as a rectangle
in the plane R2:

x

y

1

1

3

0

Exercise 3.35. FindX×Y ifX = {x ∈ Z : x2 = 16} and Y = {y ∈ R : |y−1| ≤ 5}.
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Solution. We have X = {−4, 4} and Y = [−4, 6]. It follows that

X × Y = {〈x, y〉 : x = ±4, y ∈ [−4, 6]}.
We can visualize this Cartesian product as a union of two segments in the plane:

x

y

−4 4

6

−4

Here are some properties of the Cartesian product in regards to other set op-
erations:

Theorem 3.36. We have
1. (A ∪B)× C = (A× C) ∪ (B × C).
2. (A ∩B)× C = (A× C) ∩ (B × C).
3. (A \B)× C = (A× C) \ (B × C).

Proof. 1. We have 〈x, y〉 ∈ (A ∪B)×C equivalent to x ∈ A ∪B and y ∈ C. This
is the same as x ∈ A and y ∈ C or x ∈ B and y ∈ C, in other words 〈x, y〉 ∈ A×C
or 〈x, y〉 ∈ B × C, which means 〈x, y〉 ∈ (A× C) ∪ (B × C).

2. The proof is similar to the proof of 1.
3. We have 〈x, y〉 ∈ (A \ B) × C ⇔ x ∈ A \ B ∧ y ∈ C ⇔ x ∈ (A ∩ B′) ∧ y ∈

C ⇔ x ∈ A ∧ x /∈ B ∧ y ∈ C ⇔ 〈x, y〉 ∈ A × C ∧ 〈x, y〉 /∈ B × C ⇔ 〈x, y〉 ∈
(A× C) \ (B × C). �

Exercise 3.37. Are the following statements true?
1. A× (B ∪ C) = (A×B) ∪ (A× C).
2. A× (B ∩ C) = (A×B) ∩ (A× C).
3. A× (B \ C) = (A×B) \ (A× C).

Exercise 3.38. Prove the following
a. (A ∪B)× (C ∪D) = (A× C) ∪ (B × C) ∪ (A×D) ∪ (B ×D).
b. (A ∩B)× (C ∩D) = (A× C) ∩ (B × C) ∩ (A×D) ∩ (B ×D).

Definition 13. The disjoint union of two sets X,Y , denoted X t Y is defined as
(X × {1}) ∪ (Y × {2}).
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The idea is that if X ∩ Y 6= ∅, the elements in the intersection need new labels
to be distinguished. For example,

{a, b, c} t {b, c, d} = {〈a, 1〉, 〈b, 1〉, 〈c, 1〉, 〈b, 2〉, 〈c, 2〉, 〈d, 2〉}.
The sets X,Y can be identified with the subsets X × {1}, Y × {2} of X t Y .



Chapter 4

Functions

The notion of function is central in many branches of Mathematics. You already
met real functions of real variables in Calculus, like f(x) = x2, f(x) = lnx or
f(x) = tanx. Here the domain and the set of values for these functions were subsets
of R, and a function was defined as a formula (or algorithm) which associates to
each input a precise output. We will need to work with more general functions
between all kinds of sets, not just subsets of the reals.

Even though a function is a particular case of a relation, we first study functions
and define relations in the next chapter.

4.1. Definition and examples of functions

Definition 14. A function from a set X to a set Y is a subset f of the Cartesian
product X × Y such that for all x ∈ X there is a unique y ∈ Y with 〈x, y〉 ∈ f .

The set X is called the domain of f , denoted dom(f), and the set

{y ∈ Y : ∃x ∈ X with 〈x, y〉 ∈ f}
is called the range of f , denoted ran(f). The set Y is the set where f takes values,
called also the codomain of f . Note that the range ran(f) may be a proper subset
of the codomain Y . We write f : X → Y , and for each x ∈ X the unique element
y ∈ Y such that 〈x, y〉 ∈ f is denoted f(x).

The set of ordered pairs 〈x, f(x)〉 is called the graph of f . Note that in the
general definition of a function, we define f using its graph, which is a subset of
X × Y .

Two functions are equal if they have the same domain, the same codomain and
the same graph.

Example 4.1. Let X = {1, 2, 3}, Y = {a, b, c} and f = {〈1, c〉, 〈2, a〉, 〈3, a〉}. Then
f is a function from X to Y such that f(1) = c, f(2) = a, f(3) = a and ranf =
{a, c}.

37
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We can visualize this function by a diagram:

fX Y

1

2

3

a

b

c

Example 4.2. For X a set we define the identity function idX : X → X, idX(x) =
x. Its graph is the diagonal

{〈x, x〉 : x ∈ X}.

Remark 4.3. In Calculus a function was specified by a formula, like f(x) =
√
x,

with the understanding that the domain is the largest set of real numbers for which
f(x) makes sense. In this case, dom(f) = [0,∞), ran(f) = [0,∞) and we can write

f : [0,∞)→ R, f(x) =
√
x

or
f : [0,∞)→ Y, f(x) =

√
x,

where Y is any set such that [0,∞) ⊆ Y ⊆ R. By changing Y we get different
functions, since they have different codomains. The graph of f : [0,∞)→ R, f(x) =√
x is a subset of [0,∞)× R:

x

y
f(x) =

√
x

Exercise 4.4. Explain what is wrong with the following ”functions“:

a. Let f : R→ R, f(x) =
1

x2 − 1
.

b. Let g : [0, 5]→ [0, 2], g(x) = x− 1.
c. Let h : [−1,∞)→ [3, 4), h(x) =

√
x− 1.

Solution. a. Note that x can not be ±1, since these values vanish the denominator.
The correct domain of f should be R \ {±1} or (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

b. When x ∈ [0, 5], g(x) = x − 1 ∈ [−1, 4], so the correct codomain of g is
[−1, 4] or any set containing this interval.

c. The square root
√
x− 1 is defined only for x ≥ 1 and it takes values in

[0,∞). The correct domain of h is [1,∞) and the correct codomain is [0,∞) or any
set containing this interval.
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Exercise 4.5. The equation f(x) =
x2 + 9

x2 − 9
is used to define a real function of real

variable. Find the largest domain and the range of f .

Exercise 4.6. Given two functions f, g with real values, define f + g, f − g, f · g
and f/g to be new functions such that

(f + g)(x) = f(x) + g(x), (f − g)(x) = f(x)− g(x),

(f · g)(x) = f(x) · g(x), (f/g)(x) = f(x)/g(x),

whenever this makes sense. Find f + g, f − g, f · g, f/g and their domains if

f, g : R→ R, f(x) =

{
x+ 2 if x ≤ 3
−x+ 3 if x > 3

, g(x) =

{
x− 2 if x ≤ 0
x+ 1 if x > 0

.

Exercise 4.7. Find all functions from {a, b, c} to {1, 2} and specify their diagrams
as in Example 4.1. Note that there are 8 such functions.

Definition 15. For any real number x, denote by bxc the largest integer k such
that k ≤ x. For example, b1.2c = 1, b−5.3c = −6. Then f : R → Z, f(x) = bxc is
a function, called the integer part function or the floor function, with the following
graph. There is also a ceiling function, denoted dxe, the smallest integer larger or
equal to x.

x

y

−1−2−3 0 1 2 3 4

1

2

3

−1
−2
−3

Definition 16. Let f : R→ [0, 1), f(x) = x− bxc. Then f is called the fractional
part function. It has the following graph

x

y

−2 −1 0 1 2

1

Exercise 4.8. Prove that x − 1 < bxc ≤ x. Use this inequality to show that for
x ≥ 1 we have

1

2
<
bxc
x
≤ 1.
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Exercise 4.9. Graph the ceiling function f : R→ Z, f(x) = dxe.

Example 4.10. (Characteristic function) For X a set and A ⊆ X, denote by χA
the function

χA : X → {0, 1}, χA(x) =

{
1 if x ∈ A
0 if x /∈ A.

This is called the characteristic (or indicator) function of A.

The characteristic function has the following properties

Theorem 4.11. Consider a set X and A,B ∈ P(X). Then
a. A = B iff χA = χB.
b. χA∩B = χA · χB.
c. χA∪B = χA + χB − χA · χB.
d. χA′ = 1− χA.
e. χA\B = χA − χA · χB.
f. χA∆B = χA + χB − 2χA · χB.

Proof. a. If A = B, then it is clear that χA, χB : X → {0, 1} have the same values,
so χA = χB . Conversely, assume χA = χB and suppose x ∈ A. This happens if
and only if χA(x) = 1 = χB(x) i.e. x ∈ B. By double inclusion we get A = B.

b. We can directly check that χA(x)χB(x) = 1 precisely when χA(x) =
χB(x) = 1 i.e. when x ∈ A ∩B, and otherwise χA(x)χB(x) = 0.

c. We have χA∪B(x) = 1 when x ∈ A or x ∈ B, and otherwise χA∪B(x) = 0.
Now χA(x) + χB(x) = 2 precisely when x ∈ A ∩ B. It follows that in any case
χA∪B = χA + χB − χA · χB .

d. We have x ∈ A′ precisely when x /∈ A, so χA′(x) = 1 when χA(x) = 0 and
χA′(x) = 0 when χA(x) = 1. It follows that χA′ = 1− χA.

e. We have A \B = A ∩B′ and we can apply properties b and d.
f. We have A∆B = (A ∪B) \ (A ∩B), so

χA∆B = χA∪B − χA∪BχA∩B = χA + χB − χAχB − (χA + χB − χAχB)χAχB =

χA + χB − χAχB − χ2
AχB + χAχ

2
B − χ2

Aχ
2
B = χA + χB − 2χA · χB

since χ2
A = χA, χ

2
B = χB . �

Exercise 4.12. Use the above properties of the characteristic function to prove
that A∆(B∆C) = (A∆B)∆C for arbitrary sets A,B,C ∈ P(X).

Definition 17. For x, y ∈ R define the maximum and the minimum functions by

max(x, y) =

{
x if x ≥ y
y if x < y

and

min(x, y) =

{
x if x ≤ y
y if x > y,

respectively. Here the domain of both functions is R× R and the range is R.
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Remark 4.13. Sometimes we use the notation max{x, y} and min{x, y} for the
same functions. This notation is particularly useful when we will take the maximum
and minimum of more than two numbers.

Exercise 4.14. Prove that

max(x, y) =
x+ y + |x− y|

2
, min(x, y) =

x+ y − |x− y|
2

,

where |x| =
{

x if x ≥ 0
−x if x < 0.

Example 4.15. The sign function is sgn : R→ {−1, 0, 1} such that

sgn(x) =

 −1 if x < 0
0 if x = 0
1 if x > 0.

Exercise 4.16. Graph the sign function.

Sometimes a function f : X → Y can be defined using a certain property
satisfied by ordered pairs 〈x, y〉. More precisely, we have

Theorem 4.17. Suppose X,Y are sets and suppose P (x, y) is an open sentence
depending on 〈x, y〉 ∈ X × Y such that ∀x ∈ X ∃!y ∈ Y such that P (x, y). Then
{〈x, y〉 : x ∈ X ∧ P (x, y)} is a function with domain X and codomain Y .

Proof. Since for all x ∈ X there is a unique y ∈ Y satisfying P (x, y), by taking
f(x) = y we get a function f : X → Y . �

Example 4.18. Consider P (x, y) to be 2x + y = 1 for x, y ∈ Z. Then, since we
can solve for y and there is a unique solution y = 1−2x, we can define the function
f : Z→ Z, f(x) = 1− 2x.

Exercise 4.19. Let X = {1, 3, 5, 6}, and let Y = {0, 1, 2, 3, 5}. Which of the
following open sentences with x ∈ X, y ∈ Y define a function from X to Y ? How
about a function from Y to X?

a. x+ y = 6;
b. y − x = 1;
c. y = x2;
d. x = y.

4.2. Direct image, inverse image

Definition 18. (Direct image function) Given f : X → Y , we define a new function
fP : P(X)→ P(Y ) such that

fP(A) = {f(a) : a ∈ A}.
Many times we drop the subscript P and denote the new function also by f , even
though this is now a function of sets. The set f(A) is called the direct image of
A. In particular note that f(X) =ran(f). It should be clear from the context if we
talk about f : X → Y or about f : P(X)→ P(Y ).
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Example 4.20. If X = {a, b, c}, Y = {1, 2, 3} and f(a) = 2, f(b) = f(c) = 1,
then f(∅) = ∅, f({a}) = {2}, f({b}) = f({c}) = {1}, f({a, b}) = f({a, c}) =
{1, 2}, f({b, c}) = {1}, f(X) = {1, 2}.

fX Y

a

b

c

1

2

3

Definition 19. (Inverse image function) Given f : X → Y , we define f−1
P :

P(Y )→ P(X) such that

f−1
P (B) = {x ∈ X : f(x) ∈ B}.

Again, this new function is often denoted by f−1, not to be confused with the
inverse function of a bijection (which will be defined later). The set f−1(B) is
called the inverse image of B. In particular f−1({y}) is in general a subset of X.

Example 4.21. If X = {a, b, c}, Y = {1, 2, 3} and f(a) = 2, f(b) = f(c) = 1,
then f−1({1}) = f−1({1, 3}) = {b, c}, f−1({2}) = f−1({2, 3}) = {a}, f−1({3}) =
f−1(∅) = ∅, f−1({1, 2}) = f−1(Y ) = {a, b, c}.

Theorem 4.22. Let f : X → Y be a function, let A,B ∈ P(X), and let C,D ∈
P(Y ). Then

a. f(A ∪B) = f(A) ∪ f(B).
b. f(A ∩B) ⊆ f(A) ∩ f(B).
c. f−1(C ′) = (f−1(C))′.
d. f−1(C ∪D) = f−1(C) ∪ f−1(D).
e. f−1(C ∩D) = f−1(C) ∩ f−1(D).

Proof. a. Let y ∈ f(A ∪ B). Then there is x ∈ A ∪ B such that f(x) = y. If
x ∈ A, then f(x) ∈ f(A) and if x ∈ B then f(x) ∈ f(B). In any case y = f(x) ∈
f(A) ∪ f(B). We proved that f(A ∪B) ⊆ f(A) ∪ f(B).

Let y ∈ f(A) ∪ f(B). Then y ∈ f(A) or y ∈ f(B). There is x ∈ A such that
f(x) = y or there is x ∈ B such that f(x) = y. We found x ∈ A ∪ B such that
f(x) = y, hence y ∈ f(A∪B). By double inclusion we get f(A∪B) = f(A)∪f(B).

b. Let y ∈ f(A ∩ B). Then there is x ∈ A ∩ B with f(x) = y. It follows that
f(x) = y ∈ f(A) ∩ f(B). Note that the inclusion may be strict. For X = Y = R,
A = {−1}, B = {1} and f(x) = x2 we have f(A∩B) = f(∅) = ∅ but f(A)∩f(B) =
{1}.

c. Let x ∈ f−1(C ′). Then f(x) = y ∈ C ′, so for any z ∈ C we have f(x) 6= z.
This means that x /∈ f−1(C) or x ∈ (f−1(C))′.
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Let x ∈ (f−1(C))′. Since x /∈ f−1(C), it follows that f(x) /∈ C or f(x) ∈ C ′
and therefore x ∈ f−1(C ′). By double inclusion we get equality.

d. Let x ∈ f−1(C ∪D). Then f(x) ∈ C ∪D, so f(x) ∈ C or f(x) ∈ D which
means that x ∈ f−1(C)∪f−1(D). For the other inclusion, let x ∈ f−1(C)∪f−1(D).
It follows that f(x) ∈ C or f(x) ∈ D, therefore f(x) ∈ C ∪D or x ∈ f−1(C ∪D).

e. Exercise. �

Example 4.23. Let

f : R→ R, f(x) =

{
x− 1 if x ≤ 1
x2 if x > 1

Let’s find f([−2, 3]). We have [−2, 3] = [−2, 1] ∪ (1, 3] and f([−2, 1]) = [−3, 0],
f((1, 3]) = (1, 9], hence f([−2, 3]) = [−3, 0] ∪ (1, 9].

Example 4.24. For

f : R→ R, f(x) =

{
x− 1 if x ≤ 1
x2 if x > 1

let us find f−1([−3, 4]). We have [−3, 4] = [−3, 0] ∪ (0, 4], f−1([−3, 0]) = [−2, 1]
and f−1((0, 4]) = (1, 2], hence f−1([−3, 4]) = [−2, 2]. A look at the following graph
is helpful.

x

y

−2 0 1 3

9

1

−3

4

2

Exercise 4.25. Let A = {1, 2, 3, 4} and let B = {a, b, c, d, e}. For
f : A→ B, f = {〈1, e〉, 〈2, c〉, 〈3, a〉, 〈4, e〉},

determine the sets
a. f({1, 3})
b. f−1({a, b, c})
c. f−1(f({2, 4}))
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d. f(f−1({b, d, e})).

Exercise 4.26. Let f : R→ R, f(x) = |x− 2|+ 3. Calculate
a. f((−2, 5])

b. f((−2,−1) ∪ (3, 6))

c. f−1([0, 2))

d. f−1([4, 7))

e. f−1(f((−1, 3)))

f. f(f−1([−1, 5])).

4.3. Restriction and extension of a function

Suppose f : X → Y and g : Z → W are two functions. Recall that they are equal
and we write f = g if and only if X = Z, Y = W and ∀x ∈ X we have f(x) = g(x).
In particular, if we change the codomain of a function, we obtain a new function.

Example 4.27. f : [0,∞) → R, f(x) =
√
x and g : [0,∞) → [0,∞), g(x) =

√
x

are two different functions, even though they have the same domain and the same
formula.

Example 4.28. Let f : {−1, 1, 2} → R, f(x) = x2 − 1, g : {−1, 1, 2} → R, g(x) =
x3 − x2 − x+ 1. Then f(−1) = g(−1) = 0, f(1) = g(1) = 0, f(2) = g(2) = 3, hence
f = g, even though their formulas are different. Notice that the domain has only
three points. If the domain was R, then they would be different functions.

Definition 20. Let f : X → Y be a function. A restriction of f is a function
g : A→ Y such that A ⊆ X and g(a) = f(a) for all a ∈ A. This function g is also
denoted by f |A. An extension of f is a function h : Z → Y such that X ⊆ Z and
h(x) = f(x) for all x ∈ X. Sometimes an extension of f is denoted f̃ . If g is a
restriction of f , then f is an extension of g.

Example 4.29. Let f : R → [−1, 1], f(x) = sinx. Then g : [−π/2, π/2] → [−1, 1]
is a restriction of f . The function h : [−π, π]→ [−1, 1], h(x) = sinx is an extension
of g.

Example 4.30. Consider f : R \ {0} → R, f(x) =
sinx

x
. We know from Calculus

that lim
x→0

sinx

x
= 1. We can define an extension of f by

f̃ : R→ R, f̃ =

{
sin x
x for x 6= 0

1 for x = 0.

Exercise 4.31. Let f : {1, 2} → R, f(1) = 2, f(2) = 4. Find an extension g : R→
R of f of the form g(x) = ax+ b.

Exercise 4.32. Let f : {1, 3, 5} → R such that f(1) = 0, f(3) = 2, f(5) = 12. Find
an extension g : R→ R of f of the form g(x) = ax2 + bx+ c.

We may also shrink or enlarge the codomain of a function. The new functions
are sometimes called corestriction and coextension, respectively. Some people use
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the name restriction or extension for the new function obtained by shrinking or
enlarging either the domain or codomain (or both).

Example 4.33. Let f : [0,∞)→ R, f(x) =
√
x. Then g : [0,∞)→ [0,∞), g(x) =√

x is a corestriction of f .

4.4. One to one and onto functions. Composition and inverse functions

Definition 21. A function f : X → Y is one-to-one or injective if and only if for
all x, x′ ∈ X, x 6= x′ ⇒ f(x) 6= f(x′).

Example 4.34. The function f : {1, 2} → {a, b, c}, f(1) = b, f(2) = a is one-to-
one.

fX Y

1

2

a

b

c

Note that no two arrows arrive at the same spot.
The function g : R → R, g(x) = x2 is not; in fact it is two-to-one because

g(−x) = g(x), except at zero. The restriction g1 : [0,∞) → R, g1(x) = x2 is
one-to-one. Another one-to-one restriction is g2 : (−∞, 0]→ R, g2(x) = x2.

Remark 4.35. A function f is one-to-one if and only if for all x, x′ ∈ X, f(x) =
f(x′) ⇒ x = x′. Indeed, this is the contrapositive of the statement x 6= x′ ⇒
f(x) 6= f(x′).

Example 4.36. Let’s check if the function f : R → R, f(x) = max(x + 1, 2 − 3x)
is one-to-one by looking at its graph. Since x + 1 ≥ 2 − 3x for x ≥ 1/4 and
2− 3x > x+ 1 for x < 1/4, we get

f(x) =

{
x+ 1 if x ≥ 1/4

2− 3x if x < 1/4,

which has the graph

x

y

1
4

1

2

0
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Notice that a horizontal line may cut the graph in two different points, so f is
not one-to-one. Indeed, there are x1 6= x2 such that f(x1) = f(x2), for example
x1 = 0, x2 = 1.

Exercise 4.37. Which of the following functions are injective?
a. g(x) = min(−x, x), x ∈ R.
b. h(x) = max(x+ 1, 2x− 1), x ∈ R.
c. k(x) = min(−2x,−x+ 1), x ∈ R.

Exercise 4.38. Let A ⊂ R and let f : A → R defined below. Determine two
different sets A so that f |A is one-to-one. Choose them as large as possible.

a. f(x) =
2

(x− 3)2

b. f(x) = cotx.

Definition 22. A function f : X → Y is onto or surjective if for all y ∈ Y there is
x ∈ X with f(x) = y. This is equivalent to ranf = Y or f(X) = Y .

Example 4.39. Let f : X = {1, 2, 3}, Y = {a, b}, f(1) = f(2) = b, f(3) = a with
diagram

fX Y

1

2

3

a

b

Note that at each point in the codomain arrives at least one arrow.
The function g : R → R, g(x) = x2 is not onto since it does not take negative

values.

Remark 4.40. Given any function f : X → Y , by shrinking the codomain to
ran(f), we can construct a surjective function g : X → ran(f) such that g(x) = f(x)
for all x ∈ X. We distinguish between the functions f and g if f is not onto.

Definition 23. Suppose f and g are functions. We define a new function f ◦ g
called the composition of f and g with domain {x ∈ dom(g) : g(x) ∈ dom(f)} such
that (f ◦ g)(x) = f(g(x)).

Example 4.41. Let f : [0, 4] → [0, 2], f(x) =
√
x and let g : R → [−1,∞), g(x) =

x2 − 1. Then

f ◦ g : [−
√

5,−1] ∪ [1,
√

5]→ [0, 2], (f ◦ g)(x) =
√
x2 − 1

and
g ◦ f : [0, 4]→ [−1, 3], (g ◦ f)(x) = x− 1.
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Remark 4.42. Sometimes the domain of f ◦ g may be the empty set, in which
case f ◦ g is the empty function (not so interesting). To avoid this situation, many
times we assume ran(g)=dom(f). Also, if f : X → X and g : X → X, then both
functions f ◦ g and g ◦ f may be defined. In general, f ◦ g 6= g ◦ f .

Example 4.43. Let

f : R→ R, f(x) =

{
x− 1 if x ≤ 1
x2 if x > 1

, g : R→ R, g(x) =

{
x/2 if x ≥ 2
x3 if x < 2

.

Let us find f ◦ g and g ◦ f . We have

(f ◦ g)(x) =

{
g(x)− 1 if g(x) ≤ 1
(g(x))2 if g(x) > 1

.

Notice that g(x) ≤ 1 for x ≤ 1 and for x = 2; otherwise g(x) > 1. It follows that

(f ◦ g)(x) =


x3 − 1 if x ≤ 1
x6 if 1 < x < 2
0 if x = 2
x2

4
if x > 2

.

On the other hand,

(g ◦ f)(x) =

{
f(x)

2
if f(x) ≥ 2

(f(x))3 if f(x) < 2
.

We have f(x) ≥ 2 for x ≥
√

2 and f(x) < 2 for x <
√

2, hence

(g ◦ f)(x) =


x2

2
if x ≥

√
2

x6 if 1 < x <
√

2
(x− 1)3 if x ≤ 1

.

Theorem 4.44. Let f : Y → Z and g : X → Y . If f and g are one-to-one
functions, then so is f ◦ g : X → Z. If f and g are onto, then f ◦ g : X → Z is also
onto.

Proof. Assume (f ◦ g)(x) = (f ◦ g)(x′), so f(g(x)) = f(g(x′)) for x, x′ ∈ X. Since
f is one-to-one, we get g(x) = g(x′). Since g is one-to-one, we get x = x′, hence
f ◦ g is one-to-one.

Assume now that z ∈ Z. Since f is onto, we can find y ∈ Y with f(y) = z.
Since g is onto, there is x ∈ X with g(x) = y. We conclude that (f ◦ g)(x) = z,
hence f ◦ g is onto. �

Exercise 4.45. Prove by counterexample that the converse of each statement of
the above theorem is false.

Exercise 4.46. Given three functions f, g, h, prove that f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Definition 24. A function f : X → Y is called bijective if it is one-to-one and
onto.

Exercise 4.47. Prove that the function f : R→ R, f(x) = x3 is bijective.
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Definition 25. We say that a function f : X → Y is invertible (or has an inverse)
if there is g : Y → X such that g ◦ f = idX and f ◦ g = idY . The inverse of f is
unique, is denoted f−1 and satisfies

f−1(y) = x⇔ f(x) = y.

Remark 4.48. Recall that we already used the notation f−1 = f−1
P : P(Y ) →

P(X) for any function f : X → Y and we called it the inverse image function.
In the case f is a bijection, we have f−1({y}) = f−1(y). You must be careful to
distinguish from the context between the two meanings of f−1.

Theorem 4.49. A function f : X → Y is invertible if and only if it is bijective.

Proof. If f : X → Y is invertible, let g : Y → X its inverse. To prove that f
is one-to-one, assume f(x1) = f(x2). Applying g both sides, we get (g ◦ f)(x1) =
(g ◦ f)(x2), hence x1 = x2 since g ◦ f = idX . To prove that f is onto, let y ∈ Y .
Then f(g(y)) = y, so we found x = g(y) ∈ X such that f(x) = y.

Conversely, given f : X → Y bijective, define g : Y → X such that g(y) = x⇔
f(x) = y. Then it is easy to verify that g ◦ f = idX and f ◦ g = idY , so g is the
inverse of f . �

Example 4.50. Let f : (2,∞) → (−1,∞), f(x) =
3− x
x− 2

. Then f is one-to-one

since f(x1) = f(x2),
3− x1

x1 − 2
=

3− x2

x2 − 2
implies

3x2 − x1x2 − 6 + 2x1 = 3x1 − 6− x1x2 + 2x2,

hence x1 = x2. It is onto since given y ∈ (−1,∞), the equation y =
3− x
x− 2

has

solution x =
2y + 3

y + 1
which belongs to (2,∞). Indeed, when y → −1 we have x→∞

and when y →∞, x→ 2. The last computation gives the formula for the inverse

f−1 : (−1,∞)→ (2,∞), f−1(y) =
2y + 3

y + 1
.

If we graph f and f−1 in the same system of coordinates, we notice that their
graphs are symmetric with respect to the first quadrant bisector y = x.

x

y

y = 3−x
x−2

y = 2x+3
x+1

2−1

2

−1

y = x
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Exercise 4.51. Let f : [1/e, e] → [− sin 1, sin 1], f(x) = sin(lnx). Prove that f is
a bijection and find the formula for f−1.

Remark 4.52. 1. If f, g are bijections, then (f ◦ g)−1 = g−1 ◦ f−1.
2. For an invertible function f : X → Y , we have f−1({y}) = {x}, where

f(x) = y.
3. Recall that a function f : X → Y was defined as a set of ordered pairs

〈x, f(x)〉 in the Cartesian product X × Y . If f is invertible, then f−1 is the set of
ordered pairs 〈f(x), x〉 in the Cartesian product Y ×X.

Definition 26. Given f : X → Y , a retract of f is a function r : Y → X such
that r ◦ f = idX (a left inverse). A section of f is a function s : Y → X such that
f ◦ s = idY (a right inverse).

Example 4.53. Let f : {1, 2} → {a, b, c}, f(1) = b, f(2) = c. Then r : {a, b, c} →
{1, 2}, r(a) = 1, r(b) = 1, r(c) = 2 is a retract for f . Notice that r(a) can be any
element of {1, 2}.

Let g : {1, 2, 3} → {a, b}, g(1) = g(2) = b, g(3) = a and s : {a, b} → {1, 2, 3}, s(a) =
3, s(b) = 2. Then s is a section for g. Notice that to define s(b), we may choose
any element from the set g−1({b}).

Remark 4.54. Any injective function has a retract. Conversely, if f has a retract,
then f is injective.

Proof. Given f : X → Y injective, define r : Y → X as follows. For y ∈ f(X), say
y = f(x) define r(y) = x. This is well defined since there is a unique x such that
f(x) = y. For y ∈ Y \ f(X), define r(y) = x0 for a fixed arbitrary element of X.
Then we have r ◦ f = idX since r(f(x)) = x for all x ∈ X. Conversely, assume f
has a retract r : Y → X and let’s prove that f is one-to-one. Suppose f(x) = f(x′).
By applying r we get r(f(x)) = r(f(x′)) or x = x′, hence f is one-to-one. �

Exercise 4.55. Which of the following subsets of {a, b, c, d} × {a, b, c, d} are func-
tions? For those that fail, give a reason why.

a. f = {〈a, b〉, 〈c, d〉};
b. g = {〈a, a〉, 〈b, c〉, 〈c, a〉, 〈d, b〉};
c. h = {〈a, b〉, 〈b, c〉, 〈c, d〉, 〈d, a〉, 〈a, c〉};
d. k = {〈a, b〉, 〈b, c〉, 〈c, d〉, 〈d, d〉};
e. ` = {〈a, b〉, 〈b, c〉, 〈c, d〉, 〈d, a〉}.

Exercise 4.56. Which of the functions from {a, b, c, d} to {a, b, c, d} that you found
above are onto? Which are one-to-one?

Exercise 4.57. If f : X → X is injective, prove by induction that the composition
fn = f ◦ f ◦ · · · ◦ f is injective for all n ≥ 1. Same for surjective.

Exercise 4.58. Let f : R→ R be a function such that f(2x+ 1) = x2 + x− 2 for
all x. Find f(x).

Exercise 4.59. Prove that g = {〈x, y〉 ∈ R× R : x2 = y2} is not a function.
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Exercise 4.60. Let f : X → Y be a function, let A,B ∈ P(X), and let C,D ∈
P(Y ). Prove that

a. f(A ∩B) = f(A) ∩ f(B) for f one-to-one.
b. f(A′) ⊆ (f(A))′ for f one-to-one.
c. f(A′) ⊇ (f(A))′ for f onto.
In parts b and c find f and A such that the inclusions are strict.

Exercise 4.61. Show that if g ◦f is injective, then f is injective. Show that if f ◦g
is surjective, then f is surjective. Prove that the converse statements are false.

Exercise 4.62. Find two injective restrictions of f : R→ R, f(x) = x2 − 3x+ 1.

Exercise 4.63. Determine which of the following functions is bijective and find its
inverse:

a. f : R→ R, f(x) = 7x+ 1;
b. g : (−∞, 0]→ [0,∞), g(x) = x2;
c. h : [2,∞)→ (−∞, 0], h(x) = −x2 + 4x− 4;
d. k : [−3, 1]→ [−6, 3], k(x) = max(2x, 3x).

Exercise 4.64. Show that f : R→ R, f(x) = x2−6x+2 has invertible restrictions
defined on

a. (−∞, 3];
b. [3,∞);
c. (−∞, 0] ∪ [3, 6).
Find these inverses and graph them.

Exercise 4.65. Let

f : R→ [0,∞), f(x) = x2, g : R→ [−1, 1], g(x) =
2x

1 + x2
, h : [1,∞)→ [0,∞), h(x) =

√
x− 1.

Compute f ◦ g ◦ h and specify its domain and range.

Exercise 4.66. Let

f : R→ R, f(x) =

{
x if x ≤ 0
x+ 1 if x > 0

, g : R→ [0,∞), g(x) =

{
x2 if x < 0
x if x ≥ 0

.

Find f ◦ g and g ◦ f .

Exercise 4.67. Two functions f, g : R→ R are such that for all x ∈ R,

g(x) = x2 + x+ 3, (g ◦ f)(x) = x2 − 3x+ 5.

Find all possibilities for f .

4.5. *Family of sets and the axiom of choice

Definition 27. Consider I,X arbitrary sets. A family of subsets of X is a function
f : I → P(X). We denote it by {Xi}i∈I , where Xi = f(i), i ∈ I. The set I is called
the index set.
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Many times the set X is understood, so we just talk about the family of sets
{Xi}i∈I . There is an ambiguity in this notation, since in an arbitrary family {Xi}i∈I
we may have i1 6= i2 and still Xi1 = Xi2 . This ambiguity comes from the fact that
for example if A ⊆ X and I = {1, 2} the family with two elements {Ai}i=1,2 where
A1 = A2 = A, as a set is just {A}.

We define the union and the intersection of the family of sets {Xi}i∈I by⋃
i∈I

Xi = {x ∈ X : ∃j ∈ I, x ∈ Xj},
⋂
i∈I

Xi = {x ∈ X : ∀j ∈ I, x ∈ Xj}.

If I = {1, 2, 3, ..., n}, then we will often use the more familiar notation
n⋃
i=1

Xi or
n⋂
i=1

Xi.

Example 4.68. Suppose, for each positive integer n, that Xn = {1, 2, 3, ..., n}.
The index set I in this case is the set of all positive integers. Then

⋃
n∈I

Xn = I and⋂
n∈I

Xn = {1}.

Example 4.69. Let I = (0,∞) and let Xi = (−i, i) for each i ∈ I. In this case⋃
i∈I

Xi = (−∞,∞) and
⋂
i∈I

Xi = {0}.

Theorem 4.70. We have
1. x ∈

⋃
i∈I

Xi ⇔ ∃j ∈ I such that x ∈ Xj.

2. If {Xi}i∈I and {Xj}j∈J are two family of sets, then
⋃
i∈I

Xi ∪
⋃
j∈J

Xj =⋃
k∈I∪J

Xk.

3. A ∩ (
⋃
i∈I

Xi) =
⋃
i∈I

(A ∩Xi) for any set A.

4. (
⋃
i∈I

Xi)
′ =

⋂
i∈I

X ′i.

Proof. 1. By definition, if x ∈
⋃
i∈I

Xi, we can find j ∈ I with x ∈ Xj . Conversely,

if x ∈ Xj , then x ∈
⋃
i∈I

Xi by the definition of the union.

2. Let x ∈
⋃
i∈I

Xi ∪
⋃
j∈J

Xj . Then x ∈
⋃
i∈I

Xi or x ∈
⋃
j∈J

Xj . By definition,

there is i0 ∈ I such that x ∈ Xi0 or there is j0 ∈ J with x ∈ Xj0 . In any case,
there is k0 ∈ I ∪ J (take k0 = i0 or k0 = j0) such that x ∈ Xk0 . We conclude that
x ∈

⋃
k∈I∪J

Xk, hence
⋃
i∈I

Xi ∪
⋃
j∈J

Xj ⊆
⋃

k∈I∪J

Xk . The other inclusion is similar.
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3. Let x ∈ A ∩ (
⋃
i∈I

Xi). Then x ∈ A and x ∈
⋃
i∈I

Xi, hence there is j ∈ I

with x ∈ A and x ∈ Xj . This means x ∈ A ∩ Xj , hence x ∈
⋃
i∈I

(A ∩ Xi) and

A ∩ (
⋃
i∈I

Xi) ⊆
⋃
i∈I

(A ∩Xi) for any set A. The other inclusion is similar.

4. Let x ∈ (
⋃
i∈I

Xi)
′. This means that for all i ∈ I we have x /∈ Xi, hence that for

all i ∈ I we have x ∈ X ′i. We conclude that x ∈
⋂
i∈I

X ′i and that (
⋃
i∈I

Xi)
′ ⊆

⋂
i∈I

X ′i.

Similarly, we can prove the other inclusion.
�

Exercise 4.71. a. Prove that
⋃
i∈I

Xi is the smallest set containing all the sets Xi.

b. Show that
⋂
i∈I

Xi is the largest set contained in all the sets Xi.

c. State and prove the dual statements of parts 2,3 and 4 of the above Theorem.

Exercise 4.72. Consider a family of sets {An}n≥1. Prove that there is a family of
disjoint sets {Bn}n≥1 such that

∞⋃
n=1

An =

∞⋃
n=1

Bn.

Hint. Take B1 = A1, B2 = A2 \A1, B3 = A3 \ (A1 ∪A2) etc.

Exercise 4.73. Consider a family of sets {En}n≥1 and define

lim supEn =

∞⋂
k=1

∞⋃
n=k

En, lim inf En =

∞⋃
k=1

∞⋂
n=k

En.

Prove that
lim supEn = {x : x ∈ En for infinitely many n},

lim inf En = {x : x ∈ En for all but finitely many n}.

Exercise 4.74. Compute lim supEn and lim inf En for the following families of
sets

a) En = [n, n+ 1), n ≥ 1.
b) En = {1, 2, ..., n}, n ≥ 1.

Definition 28. The Cartesian product of a family of sets {Xi : i ∈ I} is∏
i∈I

Xi = {x : I →
⋃
i∈I

Xi : x(j) ∈ Xj for all j ∈ I}.

Exercise 4.75. For I = {1, 2}, compare the new definition of
2∏
i=1

Xi = X1 × X2

with the old one.
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We are now in the position to add a new axiom to our set theory axioms:
Axiom 3 (Axiom of choice). Let F be any family of nonempty sets. Then

there is a function f defined on F such that f(A) ∈ A for all A ∈ F . The function
f is called a choice function, and its existence may be thought of as the result of
choosing for each of the sets A in F an element in A.

There is, of course, no difficulty in constructing the function f if the family F
is finite; also, if for example F is made of subsets of natural numbers, we can define
f(A) to be the minimum of A. For F infinite we may need the axiom of choice in
general. (Recall that a set is finite if it is empty or it is in bijection with {1, 2, ..., n}
for some positive integer n. A set is infinite if it is not finite).

The Axiom of choice can be stated as: For each nonempty set X there is a
function c : P(X) \ {∅} → X satisfying c(A) ∈ A for every A ∈ P(X) \ {∅}.

Remark 4.76. The axiom of choice is equivalent to the fact that if none of the sets
of a nonempty family {Xi : i ∈ I} are empty, then the Cartesian product

∏
i∈I Xi

is not empty.

Proof. Indeed, assuming the axiom of choice, given {Xi}i∈I , we can define a func-
tion x : I →

⋃
i∈I Xi such that x(i) ∈ Xi. Conversely, given a family F of nonempty

sets, the fact that the cartesian product of all members in F is nonempty means
that we can choose for each A ∈ F an element in A. �

We will mention other equivalent statements with the Axiom of choice, like
Zorn’s Lemma and the Hausdorff maximal principle, in the next chapter. Many
proofs in mathematics require the Axiom of choice. For example,

Theorem 4.77. The function f : X → Y has a section iff f is surjective.

Proof. If f : X → Y has a section s : Y → X, then given y ∈ Y we can take
s(y) ∈ X such that f(s(y)) = y, hence f is surjective. Conversely, if f : X → Y is
surjective, we can construct a section s : Y → X as follows: for each y ∈ Y choose
an element x in the nonempty set f−1(y), and define s(y) = x. This is possible by
the Axiom of choice. Moreover, f(s(y)) = f(x) = y, so s is a section for f . �

Notation 1. Given sets X,Y , the set of all functions from X to Y is denoted by
Y X .

This notation will be useful when we will discuss cardinalities and counting
techniques.

Exercise 4.78. Find {a, b}{1,2,3}. How many elements are in this set? How many
are one-to-one? How many are onto?





Chapter 5

Relations

You already heard about relations like the order relation between real numbers or
the relation of inclusion between sets. Since we will need other kinds of relations,
in this chapter we will define this concept in general, using the theory of sets.

5.1. General relations and operations

Definition 29. Consider two sets X and Y . A relation R from X to Y is a subset
of the Cartesian product X × Y . If X = Y , we say that R is a relation on X.

We often write xRy to express the fact that 〈x, y〉 ∈ R.

Example 5.1. Consider X = {1, 2, 3, 6} and the relation xRy if x divides y. As a
subset of X ×X,

R = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 6〉, 〈2, 2〉, 〈2, 6〉, 〈3, 3〉, 〈3, 6〉, 〈6, 6〉}.

The domain of R, denoted by dom(R), consists of all first components of pairs
in R. Specifically,

dom(R) = {x ∈ X : ∃y ∈ Y such that 〈x, y〉 ∈ R}.

Note that the domain of R may be a proper subset of X.
The range of R, written ran(R), is the set of all second components of pairs in

R:

ran(R) = {y ∈ Y : ∃x ∈ X such that 〈x, y〉 ∈ R},

a subset of Y .

Remark 5.2. Given a relation R from X to Y , if we let Z =dom(R) ∪ ran(R),
then R ⊆ Z × Z, so R can be viewed as a relation on Z.

55
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Definition 30. Consider a relation R from X to Y and subsets A ⊆ X,B ⊆ Y .
The direct image R(A) is defined as

R(A) = {y ∈ Y : ∃a ∈ A with 〈a, y〉 ∈ R},

and the inverse image R−1(B) is defined as

R−1(B) = {x ∈ X : ∃b ∈ B with 〈x, b〉 ∈ R}.

Example 5.3. Consider X = {1, 2, 3, 6} and the relation xRy if x divides y. Then
dom(R) = ran(R) = X,

R({1, 3}) = {1, 2, 3, 6}, R−1({2, 3}) = {1, 2, 3}.

Example 5.4. Consider X = {1, 2, 3} and Y = {a, b, c}. Then S = {〈1, b〉, 〈2, a〉}
is a relation with domain {1, 2} and range {a, b}. We have

S({2, 3}) = {a}, S−1({b, c}) = {1}.

Of course, R(A) is a subset of Y , R−1(B) is a subset of X and ran(R) = R(X).
This way, R defines a function R : P(X) → P(Y ) and a function R−1 : P(Y ) →
P(X). Again we abuse the notation, since R has now two different meanings. Note
that here R−1 denotes a set function; the inverse of a relation is defined below.

Example 5.5. Any function f : X → Y is a relation from X to Y , with domain X
and range a subset of Y . But of course not every relation is a function. The direct
image and the inverse image of a function viewed as a relation coincide with those
from the previous chapter.

Definition 31. Let P (x, y) be a property depending on x ∈ X and y ∈ Y . We can
form

{〈x, y〉 ∈ X × Y : P (x, y) is true}
as the set of ordered pairs satisfying the property.

Example 5.6. Let P (x, y) be x2 + y2 ≤ 1 for x, y ∈ R. Then

T = {〈x, y〉 ∈ R× R : x2 + y2 ≤ 1}

is a relation on R. Note that dom(T ) = ran(T ) = [−1, 1]. We can visulize T as a
disc in the plane

x

y
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Remark 5.7. Given a relation R ⊆ X ×X and a set Y such that X ⊂ Y , R can
be considered as a relation on Y . Notice that even though we may have the same
set of ordered pairs, we are dealing with a different concept. For example, suppose
R is the relation

{〈x, y〉 : x ≤ y and x, y are integers},
X is the set of integers, and Y is the set of rational numbers. If R is considered as
a relation on X, we can properly infer that for all x ∈ X, 〈x, x〉 ∈ R. However if
we assume that R is a relation on Y , then for example 〈 12 ,

1
2 〉 /∈ R.

Remark 5.8. Given relations Ri from Xi to Yi, i = 1, 2, we can take their union
R1∪R2, intersection R1∩R2 or differences R1\R2, R2\R1, and we get new relations
as subsets of (X1 ∪X2)× (Y1 ∪ Y2). Also, given a relation R from X to Y , we may
consider its complement R′ ⊆ X × Y , which is another relation from X to Y .

Example 5.9. Consider R1 = {〈u, u〉, 〈v, v〉, 〈u, v〉} as a relation on {u, v} and
R2 = {〈v, v〉, 〈w,w〉, 〈v, w〉, 〈w, v〉} as a relation on {v, w}. Then

R1 ∪R2 = {〈u, u〉, 〈v, v〉, 〈u, v〉, 〈v, v〉, 〈w,w〉, 〈v, w〉, 〈w, v〉},

R1 ∩R2 = {〈v, v〉}, R1 \R2 = {〈u, u〉, 〈u, v〉}, R2 \R1 = {〈w,w〉, 〈v, w〉, 〈w, v〉}
as relations on {u, v, w}. Moreover, R′1 = {〈v, u〉} and R′2 = ∅.

Definition 32. The inverse of a relation R ⊆ X × Y is the relation

R−1 = {〈y, x〉 ∈ Y ×X : 〈x, y〉 ∈ R},
a subset of Y ×X.

Remark 5.10. If R is a relation from X to Y , then R−1 is a relation from Y to X
and yR−1x ⇔ xRy. In particular, the inverse of a relation is defined always. For
example, given any function f , we can form f−1 as a relation. This relation is a
function only in the case that f is bijective.

Example 5.11. For the relation R1 = {〈1, b〉, 〈2, a〉} we have R−1
1 = {〈b, 1〉, 〈a, 2〉}

and for the relation R2 = {〈v, v〉, 〈w,w〉, 〈v, w〉, 〈w, v〉} we have R−1
2 = R2.

Example 5.12. Let f : R → R, f(x) = x2. We know that f is not one-to-one, in
particular is not an invertible function. Then the relation f−1 is

f−1 = {〈x2, x〉 : x ∈ R}.
We can visualize f, f−1 as subsets of R2:

x

y
f

f−1

Note that f−1 is the reflection of f into the line y = x.
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Theorem 5.13. If R and S are relations from X to Y , then:
1. (R−1)−1 = R.
2. (R ∪ S)−1 = R−1 ∪ S−1.
3. (R ∩ S)−1 = R−1 ∩ S−1.
4. (R \ S)−1 = R−1 \ S−1.

Proof. 1. follows from the definition of the inverse: 〈x, y〉 ∈ (R−1)−1 iff 〈y, x〉 ∈
R−1 iff 〈x, y〉 ∈ R.

For 2,3,4 recall that R ∪ S,R ∩ S,R \ S are also relations from X to Y and by
taking the inverses we reverse the ordered pairs. �

Definition 33. If R and S are relations, the composition of R and S is the relation

{〈x, y〉 : ∃z such that 〈x, z〉 ∈ S and 〈z, y〉 ∈ R}.

We denote the composition by R ◦ S.

Remark 5.14. Some people prefer the notation S ◦ R, but this clashes with the
notation for composition of functions, introduced in the previous chapter. Indeed,
〈x, y〉 ∈ f ◦ g if there is 〈x, z〉 ∈ g and 〈z, y〉 ∈ f , hence we have z = g(x) and
y = f(g(x)). Notice that dom(R ◦ S) ⊆ dom(S) and ran(R ◦ S) ⊆ ran(R). In
general R ◦ S 6= S ◦R.

Example 5.15. With R1 = {〈1, b〉, 〈2, a〉} and R2 = {〈x, y〉 ∈ R×R : x2 +y2 = 1},
R1◦R1 = ∅, R2◦R2 = R2. In particular notice that the composition of two relations
may be empty.

Example 5.16. Let xPy if x is a parent of y, and xSy if x is a sister of y. Then
P ◦ P = G where xGy if x is a grandparent of y and P ◦ S = A, where xAy if x is
an aunt of y.

Theorem 5.17. If R and S are relations, then:
1. (R ◦ S) ◦ T = R ◦ (S ◦ T ).
2. (R ◦ S)−1 = S−1 ◦R−1.
3. R ◦ (S ∩ T ) ⊆ (R ◦ S) ∩ (R ◦ T ).
4. R ◦ (S ∪ T ) = (R ◦ S) ∪ (R ◦ T ).

Proof. 1. Let 〈x, y〉 ∈ (R ◦ S) ◦ T . Then there is z such that 〈x, z〉 ∈ T and
〈z, y〉 ∈ R◦S. We can find w ∈ dom(R)∩ran(S) such that 〈z, w〉 ∈ S and 〈w, y〉 ∈ R.
It follows that 〈x,w〉 ∈ S ◦ T , and we conclude that 〈x, y〉 ∈ R ◦ (S ◦ T ). The other
inclusion is proved similarly.

2. Let 〈x, y〉 ∈ (R ◦S)−1. Then 〈y, x〉 ∈ R ◦S, so there is z with 〈y, z〉 ∈ S and
〈z, x〉 ∈ R. But then 〈x, z〉 ∈ R−1 and 〈z, y〉 ∈ S−1, so 〈x, y〉 ∈ S−1 ◦ R−1. The
other inclusion is similar.

3. Let 〈x, y〉 ∈ R ◦ (S ∩ T ). We can find z with 〈x, z〉 ∈ S ∩ T and 〈z, y〉 ∈ R.
It follows that 〈x, y〉 ∈ R ◦ S and 〈x, y〉 ∈ R ◦ T , hence 〈x, y〉 ∈ (R ◦ S) ∩ (R ◦ T ).
Note that the reversed inclusion may be false. Where does the proof break down?

4. We leave this for the reader. �
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Theorem 5.18. If R and S are relations, then:
1. dom(R ∩ S) ⊆ dom(R) ∩ dom(S).
2. ran(R ∩ S) ⊆ ran(R) ∩ ran(S).
3. dom(R ∪ S) = dom(R) ∪ dom(S).
4. ran(R ∪ S) = ran(R) ∪ ran(S).
5. dom(R) = ran(R−1).

Proof. 1. Let x ∈ dom(R∩S). Then there is y such that 〈x, y〉 ∈ R∩S. This means
that 〈x, y〉 ∈ R and 〈x, y〉 ∈ S, hence x ∈ dom(R)∩dom(S). The reversed inclusion
is false. Here is a counterexample: let R = {〈a, b〉, 〈b, a〉}, S = {〈a, b〉, 〈b, c〉}. Then
R ∩ S = {〈a, b〉}, dom(R ∩ S) = {a} and dom(R) ∩ dom(S) = {a, b}.

We leave the others for the reader. �

Exercise 5.19. Consider two relations R and S.
a. What can you say about dom(R ∩ S)−1?
b. What can you say about dom(R ∪ S)−1?
c. What can you say about dom(R ◦ S)−1?

Exercise 5.20. Let A = {2, 3, 4} and let B = {2, 6, 12, 17}. List the elements of

R = {〈x, y〉 ∈ A×B : x divides y}.
Find R−1, dom(R) and ran(R).

Exercise 5.21. Let A = {1, 2, 3, 4} and consider

R = {〈x, y〉 ∈ A×A : y − x is an even natural number}.
Find the elements of R and find R ◦R.

Exercise 5.22. Let S be the relation from {a, b, c, 2, 3} to {a, b, e, f, 3, 6},
S = {〈c, a〉, 〈b, 3〉, 〈3, e〉, 〈2, b〉, 〈a, f〉, 〈b, 6〉}.

Find dom(S), ran(S) and S−1.

Exercise 5.23. Find the domain and range for the following relations on R and
then graph them:

a. R1 = {〈x, y〉 ∈ R× R : x = −2y2 + 3}
b. R2 = {〈x, y〉 ∈ R× R : x =

√
1− y2}

c. R3 = {〈x, y〉 ∈ R× R : x = −3 ∨ |y| < 4}
d. R4 = {〈x, y〉 ∈ R× R : x = −3 ∧ |y| < 4}
e. R5 = {〈x, y〉 ∈ R× R : x2 + y2 < 9}
f. R6 = {〈x, y〉 ∈ R× R : |x|+ |y| ≤ 9}.

Exercise 5.24. Find the inverse of the following relations
a. R = {〈a, 1〉, 〈2, b〉, 〈3, 4〉, 〈x, y〉}
b. S = {〈x, y〉 ∈ Z× Z : x2 + y2 = 1}
c. T = {〈x, y〉 ∈ R× R : 3x2 − 4y2 = 9}
d. V = {〈x, y〉 ∈ R× R : y < 2x− 5}
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e. W = {〈x, y〉 ∈ R× R : y(x+ 3) = x}.

Exercise 5.25. Let R = {〈1, 4〉, 〈2, 3〉, 〈5, 4〉, 〈3, 2〉}, let S = {〈5, 1〉, 〈2, 4〉, 〈3, 3〉}
and let T = {〈1, 2〉, 〈2, 1〉}. Compute R ◦S, S ◦ T,R ◦R, T ◦ T,R ◦ (S ◦ T ), (R ◦S) ◦
T, (R ◦ S)−1, R−1 ◦ S−1.

Exercise 5.26. Use set-builder notation to describe S ◦R for the given relations
a. R = {〈x, y〉 ∈ R× R : y = 2x− 1}, S = {〈x, y〉 ∈ R× R : 2x2 + 3y2 = 5}
b. R = {〈x, y〉 ∈ R× R : y =

√
x}, S = {〈x, y〉 ∈ R× R : y = sinx}.

Exercise 5.27. Let P be the set of all living people, and consider the relations

B = {〈x, y〉 ∈ P × P : y is a brother of x},

F = {〈x, y〉 ∈ P × P : y is the father of x},

M = {〈x, y〉 ∈ P × P : y is the mother of x}
and

S = {〈x, y〉 ∈ P × P : y is a sister of x}.
Describe the relations F ◦ F,M ◦ F, F ◦M,M ◦B,B ◦M,F ◦ S, S ◦M,M ◦ S.

Exercise 5.28. Let R,S be relations on A. Provide counterexamples to the state-
ments

a. dom(R) ⊆dom(S ◦R)

b. ran(S) ⊆ ran(S ◦R).

Exercise 5.29. Consider R,S, T relations on X. Does R ◦ S = R ◦ T imply that
S = T? Does R ◦ (T ∩ T ) = (R ◦ S) ∩ (R ◦ T )?

Exercise 5.30. Specify the inverse relations for the functions
a. {〈x, x2 + 1〉 : x ∈ R},
b. {〈x, eex〉 : x ∈ R}.

5.2. Equivalence relations

Definition 34. Suppose R is a relation on X. We say:
1. R is reflexive iff ∀x ∈ X we have xRx.
2. R is symmetric iff ∀x, y ∈ X we have xRy ⇒ yRx.
3. R is transitive iff ∀x, y, z ∈ X we have xRy ∧ yRz ⇒ xRz.
4. R is an equivalence relation if and only if R is reflexive, symmetric, and

transitive.

Example 5.31. Let X = {a, b, c} and let

R = {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉, 〈c, c〉}.

ThenR is an equivalence relation onX. Indeed, it is reflexive since 〈a, a〉, 〈b, b〉, 〈c, c〉 ∈
R. It is symmetric since 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R. Transitivity follows easily by
inspection.
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Example 5.32. Let X be a nonempty set, and consider the equality relation on X:
xRy iff x = y. Then R is obviously reflexive, symmetric and transitive, so equality
is an equivalence relation.

Example 5.33. Let X = {a, b, c} and let S = {〈a, a〉, 〈a, b〉, 〈b, c〉}. Then S is not
reflexive, since 〈b, b〉 /∈ S, is not symmetric since 〈a, b〉 ∈ S but 〈b, a〉 /∈ S, and it is
not transitive since 〈a, b〉, 〈b, c〉 ∈ S, but 〈a, c〉 /∈ S.

Exercise 5.34. Consider R a relation on X. Fill in the blank and prove the
resulting statement:

a) We have R ◦R ⊆ R iff .
b) R is symmetric iff the complement R′ .

Example 5.35. Let X = Z \ {0} and D = {〈x, y〉 ∈ X ×X : x divides y}. Then
D is reflexive and transitive, but not symmetric because 〈2, 4〉 ∈ D but 〈4, 2〉 /∈ D.

Exercise 5.36. Find two relations on {1, 2, 3} which are not reflexive, but their
composition is reflexive.

Exercise 5.37. Let S = {1, 2, 3, 4}, and suppose that ∼ is an equivalence relation
on S. You know that 1 ∼ 2 and 2 ∼ 3. Describe all possibilities for ∼.

Example 5.38. For X = Z and n a positive integer, let xRy if and only if n
divides x − y. Then R is an equivalence relation on X, called congruence modulo
n. Another notation for this relation is x ≡ y(mod n).

Indeed, R is reflexive since for all x ∈ X, n divides x − x = 0. If n divides
x − y, then n divides y − x, so R is symmetric. If n divides x − y and n divides
y − z, then n divides x− y + y − z = x− z, hence R is transitive.

Exercise 5.39. Let A 6= ∅ and let R be an equivalence relation on A which is also
a function on A. Describe the relation R.

Definition 35. Suppose X is a set and P is a family of subsets of X. We say that
P is a partition of X if and only if:

1. A ∈ P ⇒ A 6= ∅,
2. P is disjointed (any two different members of P have empty intersection),

and
3.
⋃
A∈P

A = X.

Example 5.40. The family of sets {{1, 2, 3}, {4, 5}, {6}} is a partition of the set
{1, 2, 3, 4, 5, 6}, but not of the set {1, 2, 3, 4, 5}.

Example 5.41. The family {{1, 2, 3}, {4, 5, 6}, {6}} is not a partition of the set
{1, 2, 3, 4, 5, 6}; in fact, it is not a partition of any set, since {4, 5, 6}∩{6} = {6} 6= ∅.

Theorem 5.42. Suppose P = {Xi}i∈I is a partition of X. Then there is an
equivalence relation R on X such that:

xRy ⇔ ∃i ∈ I such that x, y ∈ Xi.
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Proof. Let x ∈ X. Since X =
⋃
i∈I

Xi, there is an i0 ∈ I with x ∈ Xi0 . Hence xRx,

and R is reflexive. Obviously R is symmetric by definition. Let x, y, z ∈ X with
xRy and yRz. There is i ∈ I with x, y ∈ Xi and there is j ∈ I with y, z ∈ Xj .
Since y ∈ Xi ∩Xj and P is a partition, we have i = j and Xi = Xj , so x, z ∈ Xi

and xRz, hence R is transitive. �

Definition 36. Suppose X is a set and R is an equivalence relation on X. The
equivalence class of x ∈ X, denoted [x], is the set

[x] = {y ∈ X : xRy}.
An element a ∈ [x] is called a representative of the class of x. The set of (distinct)
equivalence classes is denoted by X/R, and it is called the quotient set.

Theorem 5.43. Consider an equivalence relation R on X. Then the family of
equivalence classes

X/R = {[x] | x ∈ X}
forms a partition of X.

Proof. Notice that each [x] is a nonempty subset of X, since x ∈ [x]. Moreover,
X =

⋃
x∈X

[x].

We want to show that two equivalence classes are either equal or disjoint. If
xRy, then for any x′ ∈ [x] we have xRx′, and by transitivity we get x′Ry, hence
x′ ∈ [y] and [x] ⊆ [y]. Similarly we get the other inclusion, hence for xRy we have
[x] = [y].

Suppose 〈x, y〉 /∈ R. If there is z ∈ [x] ∩ [y], from zRx and zRy we get xRy,
contradiction. Hence [x] ∩ [y] = ∅, and we are done.

�

Example 5.44. Consider R = {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉, 〈c, c〉} the equivalence re-
lation on X = {a, b, c}. Then [a] = [b] = {a, b}, [c] = {c} and the corresponding
partition of X is {{a, b}, {c}}. The quotient set X/R is {[a], [c]} = {{a, b}, {c}}.

Example 5.45. Consider R the congruence modulo n on Z, where n ≥ 2. Then
Z/R has n elements, denoted [0], [1], [2], ..., [n− 1]. The set of equivalence classes is
denoted Zn. When we want to emphasize n we write [x]n for the congruence class
of x modulo n.

Example 5.46. Given a function f : X → Y , consider the relation Rf on X
defined by

aRfb⇔ f(a) = f(b).

Then Rf is an equivalence relation. Indeed, since f(x) = f(x) for all x ∈ X, Rf
is reflexive. For xRfy we have f(x) = f(y) which is the same as f(y) = f(x),
therefore Rf is symmetric. Transitivity follows since f(x) = f(y) and f(y) = f(z)
implies f(x) = f(z).

In particular, let f(x) = x2, x ∈ [−1, 1]. Let’s describe the equivalence classes
for Rf and let’s identify the quotient set. Since f(−x) = f(x) it follow that
[x] = {−x, x} and [−1, 1]/Rf can be identified with [0, 1].
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Exercise 5.47. For x, y ∈ Z define xRy if 4 divides x + 3y. Prove that R is an
equivalence relation and describe its quotient set Z/R.

Exercise 5.48. For g(x) = sinx, x ∈ [0, 2π], determine Rg and [0, 2π]/Rg.

Remark 5.49. Given an equivalence relation R on X, there is a canonical sur-
jection π : X → X/R, π(x) = [x]. In order to define functions on X/R, usually
we start with a function on X, say f : X → Y and check if f does not depend
on representatives, i.e. if x1Rx2 implies f(x1) = f(x2). If this is the case for all
x1, x2 ∈ X, then f induces a well defined function f̄ : X/R→ Y such that f̄ ◦π = f .
If the values of f depend on representatives, we say that f̄ is not well defined.

Example 5.50. For X = {a, b, c} and R = {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉, 〈c, c〉}, let
f : X → {1, 2, 3}, f(a) = f(b) = 2, f(c) = 1. Since f(a) = f(b), we get a well
defined function f̄ : X/R→ {1, 2, 3}, f̄([a]) = 2, f̄([c]) = 1.

Exercise 5.51. Prove that f : Z4 → Z2, f([x]4) = [x]2 is a well defined function.

Exercise 5.52. Prove that f : Z3 → Z5, f([x]3) = [x]5 is not a well defined
function.

Exercise 5.53. Let f : Z5 → Z5, f([x]) = [2x + 3]. Prove that f is well defined
and determine whether f is one-to-one and onto.

Definition 37. Let R be an equivalence relation on X. A subset A ⊆ X is
called saturated if it is the union of some equivalence classes, in other words (a ∈
A ∧ aRb)⇒ b ∈ A.

Exercise 5.54. Given an equivalence relation on X and B ⊆ X an arbitrary
subset, prove that there is A ⊆ X saturated such that B ⊆ A.

Example 5.55. For the congruence modulo 5 on Z, the set A = {5k : k ∈ Z}
is saturated, since A = [0], but B = {0, 1, 2} is not. The smallest saturated set
containing B is [0] ∪ [1] ∪ [2].

Exercise 5.56. Let D be the set of differentiable functions on R. Define f ∼ g iff
f ′ = g′. Prove that ∼ is an equivalence relation and describe D/ ∼.

Exercise 5.57. Construct all quotient sets of {1, 2, 3}.

Exercise 5.58. Let T be the set of triangles in the plane and define the relation
∼ on T by t1 ∼ t2 if t1, t2 are similar. Prove that ∼ is an equivalence relation and
describe T / ∼.

Exercise 5.59. Let X be the unit circle {〈x, y〉 ∈ R2 : x2 + y2 = 1} and define R
on X by 〈x1, y1〉R〈x2, y2〉 if 〈x1, y1〉 = ±〈x2, y2〉. Prove that R is an equivalence
relation and describe X/R. Answer the same question if X is the unit sphere
{〈x, y, z〉 ∈ R3 : x2 + y2 + z2 = 1} and 〈x1, y1, z1〉R〈x2, y2, z3〉 if 〈x1, y1, z1〉 =
±〈x2, y2, z3〉.

5.3. Order relations

Definition 38. A relation R on X is called antisymmetric if ∀x, y ∈ X, xRy ∧
yRx⇒ x = y. A relation R is an order relation if it is reflexive, antisymmetric and
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transitive. An order relation R on X is called a total order if for all x, y ∈ X we
have xRy or yRx. In this case we also say that x, y are comparable elements. If
neither xRy or tRx are true, then x, y are incomparable.

Remark 5.60. Since not every order is total, a general order relation R on X is
also called a partial order. The pair (X,R) is called a partially ordered set (to keep
in mind that it may not be a totally ordered set) or a p.o. set for short. Many
times a partial order is denoted � or ≤.

Example 5.61. In Calculus we already used the usual order ≤ on the set of real
numbers R. This is a total order relation on R. Unless specified otherwise, when we
talk about real numbers, ≤ denotes the usual order relation. Warning: the notation
≤ may have a different meaning in a different context.

Example 5.62. Let X be a set, and let R be the relation on P(X) such that ARB
iff A ⊆ B. Then R is reflexive, antisymmetric and transitive, hence a partial order.
Therefore, (P(X),⊆) is a p.o. set.

In general, ⊆ is not a total order, since for X = {a, b, c}, {a, b} and {a, c} are
incomparable: neither {a, b} ⊆ {a, c} nor {a, c} ⊆ {a, b} is true.

Example 5.63. Let X = R and define xRy iff x < y. Then R is neither reflexive
or symmetric, but R is transitive. Such a relation is called a strict order. It can be
shown that ⊂ is also a strict order on P(X).

Example 5.64. Consider X = R ∪ {−∞,∞} with the usual ordering on R and
such that by definition −∞ < x <∞ for all x ∈ R. Then X with this order relation
becomes a totally ordered set. The set X is denoted sometimes by R̄.

Exercise 5.65. Given an order relation R, we can define a new relation S such
that xSy if xRy and x 6= y. Prove that the relation S is transitive. It is called the
strict order associated to R.

Remark 5.66. Consider P a relation on X which is reflexive and transitive (such a
relation is called a preorder relation). Consider R defined by xRy ⇔ xPy and yPx.
Then R is an equivalence relation.

Define now the relation S on the quotient set X/R such that [x]S[y] ⇔ ∃x′ ∈
[x] ∃y′ ∈ [y] such that x′Py′. Then S is an order relation on X/R.

Proof. It is easy to check using the definition that R is reflexive, symmetric and
transitive, so R is an equivalence relation.

Let’s prove now that S is an order relation. We have [x]S[x] since xPx, so S
is reflexive. Assume [x]S[y] and [y]S[x]. By definition, there are x′ ∈ [x], y′ ∈ [y]
such that x′Py′ and there are y′′ ∈ [y], x′′ ∈ [x] such that y′′Px′′. By definition
of R, we have y′Py′′, y′′Py′, x′Px′′ and x′′Px′. In particular, y′Py′′, y′′Px′′ and
x′′Px′. By transitivity of P , it follows that y′Px′, hence since also x′Py′, we get
x′Ry′ and [x] = [y]. This proves that S is antisymmetric. Transitivity of S is left
as an exercise.

�

Example 5.67. Let | be the divisibility relation on Z \ {0}, i.e. x | y if there
is z ∈ Z \ {0} such that y = xz. Then | is a preorder relation. The associated
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equivalence relation has classes [x] = {−x, x}, and Z/R can be identified with the
set of positive integers, denoted P. The associated partial order is divisibility on P.

Remark 5.68. Given an order relation R on X, we can define a new order relation
by taking R−1. This is called the opposite order. For example, if ≤ is the usual
order on R, then ≤−1 is the same as ≥.

Exercise 5.69. Which of the following relations on R are reflexive? Which are
symmetric? Which are transitive?

a) xRy iff x− y ∈ Q.
b) xRy iff x− y ∈ R \Q.
c) xRy iff |x− y| ≤ 2.

Exercise 5.70. On a set of your choice, give examples of relations that possess
exactly one or exactly two of the properties: reflexivity, symmetry, transitivity.

Exercise 5.71. Let U be a nonempty set. Describe the properties (reflexivity,
symmetry, transitivity) of the following relations on P(U)

a) ARB iff A ∩B = ∅.
b) ARB iff A ∩B 6= ∅.
c) ARB iff A∆B = ∅
d) ARB iff A \B is finite.
e) ARB iff A∆B is finite.

Exercise 5.72. Let R and S be relations on X. Prove or disprove:
a) If R and S are reflexive, then R ∩ S,R ∪ S are reflexive.
b) If R and S are symmetric, then R ∩ S,R ∪ S are symmetric.
c) If R and S are antisymmetric, then R ∩ S,R ∪ S are antisymmetric.
d) If R and S are transitive, then R ∩ S,R ∪ S are transitive.

Exercise 5.73. Let R and S be partial orderings on X. Prove or disprove
a) R ◦ S is a partial ordering on X.
b) R ∪ S is a partial ordering on X.
c) R ∩ S is a partial ordering on X.

Exercise 5.74. On R define xRy to mean x ≤ y (usual order) and xSy to mean
y = x2. Find S ◦R and R ◦ S and graph them.

Exercise 5.75. On R2 we define the relation R such that 〈x, y〉R〈x′, y′〉 if x ≤ x′

or y ≤ y′. Is R an order relation?

Exercise 5.76. How many total order relations can be defined on {1, 2, 3, 4}?

Exercise 5.77. Let (X,≤) be a p.o. set and let Y be an arbitrary set. On XY

(the set of all functions f : Y → X) we define � by f1 � f2 iff f1(y) ≤ f2(y) for all
y ∈ Y . Prove that (XY ,�) is a p.o. set.
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5.4. *More on ordered sets and Zorn’s lemma

In this section, unless otherwise specified, � denotes an order relation, and ≺ is the
corresponding strict order.

Definition 39. Let (X,�) be a p.o. set.
A least element or minimum is y ∈ X such that y � x for all x ∈ X.
A minimal element is y ∈ X such that there is no z ∈ X with z ≺ y.
A greatest element or maximum is y ∈ X such that x � y for all x ∈ X.
A maximal element is y ∈ X such that there is no z ∈ X with y ≺ z.
An upper bound for A ⊆ X is x ∈ X with a � x for all a ∈ A.
A lower bound for A ⊆ X is x ∈ X with x � a for all a ∈ A.
The least upper bound or supremum of set A ⊆ X is x ∈ X such that a � x

for all a ∈ A and if a � y for all a ∈ A, then x � y. The greatest lower bound or
infimum is defined similarly.

Remark 5.78. The minimum and the maximum in a p.o. set (X,�) (if they
exist) are unique. In that case the minimum is the only minimal element, and the
maximum is the only maximal element. A p.o. set (X,�) may have several minimal
and maximal elements. One can define the minimum, the maximum, minimal and
maximal elements of an arbitrary subset A ⊆ X. A subset A ⊆ X may have several
upper bounds and several lower bounds (if any). The least upper bound of A (if it
exists) is unique and is denoted lub A or supA. The greatest lower bound is also
unique (if it exists) and is denoted glb A or inf A.

Example 5.79. (P({1, 2, 3}) \ {∅},⊆) is a p.o. set. There is no minimum, and
{1}, {2}, {3} are minimal elements. The maximum is {1, 2, 3}. The upper bounds
of A = {{1}, {2}} are {1, 2}, {1, 2, 3} and the supremum of A is {1, 2}. The set A
has no lower bounds and no infimum.

Example 5.80. Let X = {2, 3, 4, 6, 8, 12} with the divisibility relation |. Find the
minimal elements and the maximal elements in the p.o. set (X, |). Find the lower
bounds and the upper bounds of A = {3, 4} ⊆ X (if any). Does (X, |) have a
minimum or a maximum?

Solution. The minimal elements are 2, 3 because there is no x ∈ X with x | 2
or x | 3 and x 6= 2, x 6= 3. The maximal elements are 8, 12 since there is no y ∈ X
other than 8 and 12 such that 8 | y or 12 | y. The set A = {3, 4} has no lower
bound since there is no a ∈ X with a | 3 and a | 4. The only upper bound of A is
12. There is no minimum or maximum.

A good way to visualize (X, |) is the graph:
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2 3

4 6

8 12

Note the position of the minimal elements and of the maximal elements.

Exercise 5.81. Consider the relation � on N2, where (x, y) � (x′, y′) iff x ≤ x′

and y ≤ y′. Prove that � is a partial order. Find minimal elements. Find a set
A ⊆ N2 such that any two elements of A are incomparable.

Definition 40. Let (X,�) be a p.o. set. If {x, y} ⊆ X has a least upper bound,
this element is denoted x∨y (not to be confused with the logic disjunction symbol).
Similarly, x ∧ y denotes the greatest lower bound of {x, y}. We say that a p.o. set
(X,�) is a lattice if x ∨ y and x ∧ y exist for all x, y ∈ X.

Example 5.82. The p.o. set (P(X),⊆) is a lattice with A∨B = A∪B,A∧B = A∩
B for A,B ∈ P(X). The set (N, |) is a lattice with a∨ b =lcm(a, b), a∧ b =gcd(a, b),
where lcm denotes the least common multiple, and gcd denotes the greatest common
divisor (more about lcm and gcd in the chapter about integers).

Exercise 5.83. Show that X = {1, 2, 3, 4, 6, 8, 12, 24} with the divisibility relation
is a lattice. How about (Y, |) where Y = {2, 3, 4}?

Exercise 5.84. Prove that the sets Z× Z and R× R with product order

(x1, x2) � (y1, y2) whenever x1 ≤ y1 and x2 ≤ y2

are lattices, but Z × Z and R × R are not totally ordered. If instead we use the
lexicographic or dictionary order,

(x1, x2) � (y1, y2) if either x1 < y1 or x1 = y1 and x2 ≤ y2,

prove that Z× Z and R× R become totally ordered.

Definition 41. Consider (X,�) and (X ′,�′) two p.o. sets. A function f : X → X ′

is called increasing if x1 � x1 implies f(x1) �′ f(x2) for all x1, x2 ∈ X. An
isomorphism of p.o. sets is a function f : X → X ′ which has an increasing inverse
f−1 : X ′ → X.

Example 5.85. The function f : R → R, f(x) = x3 is increasing. In fact f is an
isomorphism of ordered sets, since its inverse f−1 : R → R, f−1(y) = 3

√
y is also

increasing. The function g : R → R, g(x) = x2 is not increasing, but it has an
increasing restriction g1 : [0,∞)→ [0,∞).

Example 5.86. Consider the p.o. sets (P({a, b}),⊆) and ({1, 2, 3, 6}, |). Then
f : P({a, b}) → {1, 2, 3, 6}, f(∅) = 1, f({a}) = 2, f({b}) = 3, f({a, b}) = 6 is an
isomorphism of p.o. sets.
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Example 5.87. We have seen that R̄ = R∪{−∞,∞}, where R has the usual order
and −∞ < x < ∞ for all x ∈ R is a totally ordered set. In this set, every subset
has an upper bound and a lower bound. Indeed, −∞ is a minimum, and ∞ is a
maximum. As a consequence, the totally ordered sets R and R̄ are not isomorphic,
since for example [0,∞) has no upper bound in R.

Definition 42. We say that (X,�) is well-ordered if every nonempty subset A of
X has a minimum (a lower bound for A belonging to A). This element is also called
the first element of A or the smallest element of A.

Remark 5.88. It is easy to see that a well-ordered set (X,�) is totally ordered.
Indeed, given x, y ∈ X, the set {x, y} has a smallest element, say x. Then x � y.

Example 5.89. Any subset of N (including N itself) with the natural order is
well ordered. We will prove this in the chapter about positive integers, using an
axiomatic theory.

Example 5.90. The sets Z and R with the usual order are totally ordered, but not
well-ordered, since for example {...,−3,−2,−1, 0} has no smallest element. Also R̄
is not well ordered.

Example 5.91. Consider X = N ∪ {ω}, where ω /∈ N. Consider the natural
order on N and let n < ω for all n ∈ N. Then X becomes a well ordered set, not
isomorphic to N, since X has a maximum.

Exercise 5.92. Prove that N× N with the lexicographic order,

(x1, x2) � (y1, y2) if either x1 < y1 or x1 = y1 and x2 ≤ y2,

is well ordered.

Theorem 5.93. (Principle of induction for well ordered sets) Let (X,�) be well
ordered and let A ⊆ X such that for all x ∈ X, whenever a ≺ x for all a ∈ A, we
have x ∈ A. Then A = X.

Proof. Assume A 6= X and let B = X \A 6= ∅. Then B has a smallest element, call
it b0. It follows that a ≺ b0 for all a ∈ A, so by hypothesis b0 ∈ A, contradiction. �

Exercise 5.94. Prove that the sets Z×Z and R×R with the lexicographic order,

(x1, x2) � (y1, y2) if either x1 < y1 or x1 = y1 and x2 ≤ y2,

are not well-ordered.

We state without proof

Theorem 5.95. (Zermelo’s well-ordering theorem). Every nonempty set X has an
order � such that (X,�) is well-ordered.

This seems very reasonable for finite sets and even for some countable sets (we
already mentioned that N is well-ordered), but for sets like the interval (1,∞), it
seems entirely unreasonable, and can be proved only using the Axiom of Choice.
We know that with the usual order, there is no smallest element in (1,∞).

Definition 43. A p.o. set (X,�) is inductively ordered if every totally ordered
subset of X has an upper bound in X.
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Example 5.96. Consider X a nonempty set. Then (P(X),⊆) is inductively or-
dered. Indeed, given a totally ordered family {Ci}i∈I of P(X), we can take the
union C =

⋃
i∈I

Ci, which is an upper bound for {Ci}i∈I .

Theorem 5.97. (The Hausdorff maximal principle) Every p.o. set (X,�) has a
maximal totally ordered subset.

A consequence of the Hausdorff maximal principle is

Theorem 5.98. (Zorn’s lemma). Every inductively ordered set X has a maximal
element.

Proof. Indeed, an upper bound for a maximal totally ordered subset of X is a
maximal element of X. �

Remark 5.99. In fact, the two results are equivalent. Applying Zorn’s lemma to
the collection of totally ordered subsets ofX, which is partially ordered by inclusion,
we can prove the Hausdorff maximal principle.

Zorn’s lemma is a very important tool in various parts of Mathematics. For
example, it is used to prove the existence of maximal ideals in a commutative ring
with identity, the existence of a basis in an arbitrary vector space and the existence
of a spanning tree in a graph.

In fact, we have

Theorem 5.100. The following are equivalent
(i) The Axiom of choice(in the form: if {Xi}i∈I is a nonempty collection of

nonempty sets, then
∏
i∈I

Xi is nonempty).

(ii) Zermelo’s well-ordering theorem.
(iii) The Hausdorff maximal principle.
(iv) Zorn’s Lemma.

Proof. (partial) We have seen already that (iii) and (iv) are equivalent. We prove
now the implication (iv) ⇒ (ii). Let W be the collection of well orderings of
subsets of X, and define a partial ordering � on W as follows. If R1 and R2 are
well orderings on the subsets E1, E2 ⊆ X, then R1 � R2 if E1 ⊆ E2, R2 restricted
to E1 agrees with R1, and if y ∈ E2 \ E1, then xR2y for all x ∈ E1. It is easy to
see that W is not empty and that (W,�) satisfies the hypotheses of Zorn’s lemma.
Indeed, if T ⊆ W is totally ordered, by taking the union of all sets in T with the
appropriate well ordering, we get an upper bound for T . We deduce that W has a
maximal element (E,R). We must have E = X, since if x0 ∈ X \ E, then R can
be extended to a well order R̃ on E ∪ {x0} by taking R̃ = R on E and xR̃x0 for all
x ∈ E.

For (ii) ⇒ (i), let X =
⋃
i∈I

Xi and choose a well ordering on X. For i ∈ I, let

f : I → X such that f(i) is the minimal element of Xi. Then f ∈
∏
i∈I

Xi.
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�

Remark 5.101. We have now in our toolbox these equivalent statements from
the previous theorem. We can use either one of them when we need. Not all
mathematicians assume the Axiom of choice, but this would limit drastically our
horizons in Mathematics.

Definition 44. A directed set (or filtered set) is a preordered set (X,�) (recall
that � is reflexive and transitive) such that for any a, b ∈ X there is c ∈ X with
a � c and b � c.

Example 5.102. The ordered set (N, |) is directed, since given a, b ∈ N we can
take c =lcm(a, b). Let X = {−2, 2, 3, 4}. Then the preordered set (X, |) is not
directed, since the elements −2, 3 have no upper bound in X.

Example 5.103. Given a set X, (P(X),⊆) is a directed set, since given A,B ∈
P(X), we can take C = A ∪B.

Remark 5.104. Note that in a directed set (X,�), any finite subset has an upper
bound.

Proof. Let A ⊆ X with n elements. We use induction. For n = 2, we have an upper
bound by definition. Assume that this is true for subsets with k elements, and let
us prove it for {x1, x2, ..., xk, xk+1}. Consider y an upper bound for {x1, x2, ..., xk}.
By definition, the set {y, xk+1} has un upper bound z. By transitivity, we get that
z is an upper bound for {x1, x2, ..., xk, xk+1}. �

Definition 45. A net (or generalized sequence) in a set Y is given by a function
x : (I,�)→ Y , where (I,�) is a directed set. If I = N with the usual order, then x
is called a sequence in Y . We denote a net by (xi)i∈I , where xi = x(i) for all i ∈ I.
When I = N, we also write (xn)n≥0 or just (xn).

Example 5.105. Let I = R with the usual order and for i ∈ I let xi = [i − 1, i).
Then (xi)i∈I is a generalized sequence in P(R).

Example 5.106. A constant sequence is x : I → Y such that xi = y0 for all i ∈ I
for some fixed element y0 ∈ Y . Note that we distinguish the constant sequence
(y0)i∈I from the set {y0}.

Generalized sequences are used in general topology and in functional analysis.



Chapter 6

Axiomatic theory of positive
integers

6.1. Peano axioms and addition

The Positive Integers 1, 2, 3, ..., sometimes called the Counting Numbers or the
(nonzero) Natural Numbers, are undoubtedly the oldest numbers known to us.
They are the first numbers we learn about in elementary school and their properties
and the ways in which we calculate with them are among the most familiar of
mathematical notions. Even so, if pressed to actually define them, most of us
would find it difficult to come up with an adequate description without resorting
to handwaving or merely giving examples. We will say enough about the positive
integers through the axioms such that all their basic properties can be proved
as theorems. In fact, as you will see, even though the axioms involve no explicit
operation, we will be able to define and prove theorems about addition, subtraction,
multiplication, division, etc. In the process, you should learn more about what
constitutes a valid proof, some useful techniques in theorem proving, and some
things to think about when attempting to prove something yourself.

The objects 1, 2, 3, ... called positive integers relate to the notion of cardinality,
a notion defined in a separate chapter. To get a flavor of this, some people associate
1 with the set {∅}, 2 with the set {∅, {∅}}, 3 with the set {∅, {∅, {∅}}}, and in general
n+ 1 with the set n∪{n}. The idea is that n represents all sets containing exactly
n elements.

We denote here the set of positive integers by P. Some people prefer the
notation N, but we will reserve this for P∪ {0}. The set of positive integers satisfy
the following five axioms, known as the Peano axioms.

Axiom 1. There exists 1 ∈ P.
Axiom 2. For each n ∈ P, there is an element s(n) ∈ P, called the successor

of n.

71
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Axiom 3. For each n ∈ P, s(n) 6= 1

Axiom 4. If m,n ∈ P and s(m) = s(n), then m = n.
Axiom 5. If Q is a subset of P such that 1 ∈ Q and s(n) ∈ Q whenever n ∈ Q,

then Q = P.
The first axiom implies that P is not empty. Axioms 2,3,4 say that there is a

function s : P → P which is one-to-one and 1 is not in the range of s. In fact 1 is
the only element not belonging to the range of s. We define 2 as s(1), 3 as s(2), in
general n+ 1 as s(n). We get that P = {1, s(1), s(s(1)), ...} = {1, 2, 3, ...}. Indeed,
P has no other elements by axiom 5. Later we will add the number 0 to P to get
the set of natural numbers, denoted by N.

Axiom 5 is also called the Principle of Mathematical Induction. As we already
mentioned in the chapter about proofs, it gives us a method to prove many state-
ments of the form ∀n S(n). The basic idea behind its use is as follows. First, realize
that whether or not an open sentence S(n) is true always, sometimes, or never, it
makes sense to discuss the set of all values of n for which it is true; this “truth set”
of the open sentence may consist of all, some, or no integers at all, but it is at least a
definite mathematical object which can be investigated. Second, if Q = {n : S(n)},
then the statements Q = P and ∀n ∈ P S(n) are equivalent. Thus, to prove that
S(x) is true for all positive integers x, form the set Q of all x for which it is true,
establish that the hypotheses of axiom 5 are valid, and conclude that Q = P.
Remark 6.1. There are other sets satisfying the Peano axioms, for example the
set {1, 3, 5, 7, ...} of odd positive integers with s(1) = 3, s(3) = 5, s(5) = 7, .... It
can be proved that any two sets satisfying the Peano axioms are in bijection, and
we view them as the same object (we call them isomorphic models).

You may wonder what happens if we drop some of the axioms. Do we still deal
with the set of positive integers? For example, if we drop Axiom 3 and allow 1 to
be in the range of s, we can take the finite set {1, 2, ..., n} such that s(1) = 2, s(2) =
3, ..., s(n) = 1. For example, on a usual clock, 12 is followed by 1. This set with
this successor function satisfies the other four axioms. It can be proved that Axiom
3 forces P to be infinite. More about infinite sets in a separate chapter.

How do we know that P is not too big? If we drop the last axiom, we may
consider A = P∪{ω}, where ω /∈ P is a new element and we can extend s to A such
that s(ω) = ω. The new set A satisfies the first four axioms, but not the last one
(take Q = P which is a proper subset of A).

Definition 46. We define the operation + on P called addition such that

m+ 1 = s(m), m+ s(k) = s(m+ k).

In other words, for a fixed m, we need to know how to define m+ 1, and, once
we know m + k, we define m + s(k) as s(m + k). Since any positive integer other
than 1 is of the form s(k) for some k, we are done. We say that we defined the
addition inductively. This way, for each m,n ∈ P there is a unique m+ n ∈ P.
Example 6.2. Let us show that 2 + 2 = 4.

Proof. We give a direct proof. Indeed, 2+2 = 2+s(1) (definition of 2) = s(2+1) =
s(s(2)) (definition of addition) = s(3) (definition of 3) = 4 (definition of 4). �
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Theorem 6.3. The addition of positive integers has the properties
1. ∀n (n+ 1 6= n).
2. ∀n (n = 1) ∨ (∃m(n = m+ 1)).
3. ∀m∀n∀p [(m+ n) + p = m+ (n+ p)] (addition is associative).

Proof. 1. This says that for all n, s(n) 6= n. This is true for n = 1, since
1+1 = 2 = s(1) can not be equal to 1 by axiom 3. Consider a k such that s(k) 6= k.
Since the successor function is one-to-one (axiom 4), we get s(s(k)) 6= s(k), or
s(k + 1) 6= k + 1. We proved by induction that for all n ∈ P we have s(n) 6= n.

2. Given n ∈ P \ {1}, we know that there is m ∈ P with s(m) = n, in other
words such that n = m+ 1.

3. We fix m,n ∈ P and use induction on p. For p = 1,

(m+ n) + 1 = s(m+ n) = m+ s(n) = m+ (n+ 1).

Assume that (m+ n) + q = m+ (n+ q), and let’s prove associativity for p = s(q).
We have

(m+ n) + p = (m+ n) + s(q) = s((m+ n) + q) = s(m+ (n+ q)) =

= m+ s(n+ q) = m+ ((n+ q) + 1) = m+ (n+ (q + 1)) = m+ (n+ p).

�

Lemma 1. ∀n (n+ 1 = 1 + n).

Proof. For n = 1 this is clear. Assume k+1 = 1+k for a fixed k, and let n = s(k).
We have

1 + n = 1 + s(k) = s(1 + k) = s(k + 1) =

= k + s(1) = k + (1 + 1) = (k + 1) + 1 = s(k) + 1 = n+ 1.

�

Theorem 6.4. The addition is commutative, more precisely ∀m∀n (m+n = n+m).

Proof. We know this to be true for n = 1 by the lemma. Assume m+ k = k+m,
and let’s prove it for n = s(k). We have

m+ s(k) = s(m+ k) = s(k +m) = k + s(m) =

= k + (m+ 1) = k + (1 +m) = (k + 1) +m = s(k) +m = n+m,

using the associativity of addition. �

Theorem 6.5. The addition of positive integers satisfies the cancellation law.
∀m∀n∀p (m+ p = n+ p⇒ m = n).

Proof. For p = 1, assuming m + 1 = n + 1, we get s(m) = s(n), which implies
m = n since s is one-to-one. Assume that m + k = n + k implies m = n for some
k, and let’s prove that m+ s(k) = n+ s(k)⇒ m = n. Since m+ s(k) = s(m+ k)
and n+ s(k) = s(n+ k), from s(m+ k) = s(n+ k) we obtain m+ k = n+ k, hence
m = n. �



74 6. Axiomatic theory of positive integers

6.2. The natural order relation and subtraction

Definition 47. For x, y ∈ P, we say that x < y if and only if there exists a positive
integer u such that x + u = y. Other ways of expressing the relation x < y are: x
is less than y, x is smaller than y, or y is greater than x.

Recall that P = {1, s(1), s(s(1)), s(s(s(1))), ...}. The relation x < y can be
understood like this: in the sequence 1, s(1), s(s(1)), ... the number x appears first,
and y later. That is, y is obtained by applying s or s composed to s a number of
times to x. As a consequence, 1 < 2 < 3 < ... and there is no positive integer m
such that x < m for all x ∈ P.

Theorem 6.6. The relation < is transitive: (x < y) ∧ (y < z)⇒ x < z.

Proof. Since x < y and y < z, there are u, v with y = x+ u and z = y + v. Then

z = y + v = (x+ u) + v = x+ (u+ v),

hence x < z. �

Lemma 2. For x, y ∈ P, we have
1. x = 1 or 1 < x.
2. x = y or x < y or y < x.
3. ¬(x < x).

Proof. 1. If x 6= 1, we have seen that x = s(k) for some k, hence x = k+ 1 = 1 +k
and 1 < x.

2. If x 6= y, suppose that in the sequence 1, s(1), s(s(1)), ... the number x
appears first. This means that there is u such that y = x + u and x < y. If y
appears first, then y < x.

3. If x < x, we get that x = x+ u for some u ∈ P, contradiction. �

Corollary 1. (law of trichotomy) For all positive integers x and y, exactly one of
the following three statements is true:

a. x = y

b. x < y,
c. y < x.

Remark 6.7. We proved above that the relation< is transitive, hence it is a strict
order relation. If we define x ≤ y if x < y or x = y, then it is easy to prove that ≤
is reflexive, antisymmetric and transitive, hence an order relation.

Theorem 6.8. For x, y, z ∈ P we have x < y ⇔ x+ z < y + z.

Proof. If x < y, there is u with x+ u = y. Adding z we get (x+ u) + z = y+ z or
(x+ z) + u = y + z, hence x+ z < y + z. The converse uses cancellation. �

Theorem 6.9. For x, y, z ∈ P we have x+ y < z ⇒ (x < z) ∧ (y < z).

Proof. Since x+y < z, we get z = x+y+u for some u. In particular, z = x+(y+u),
hence x < z and z = y + (x+ u), hence y < z. �
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Theorem 6.10. For x, y, z, u ∈ P we have (x < z) ∧ (y < u)⇒ x+ y < z + u.

Proof. Since x < z and y < u we get z = x+ v and u = y+w for some v, w. Then
z + u = x+ v + y + w = (x+ y) + (v + w), therefore x+ y < z + u. �

Theorem 6.11. For x, y, z, u ∈ P we have x+ y < z + u⇒ (x < z) ∨ (y < u).

Proof. From x+ y < z + u we get z + u = x+ y + v for some v. If x < z, we are
done. Assume z ≤ x. Then x = z or x = z + w for some w. In the first case, by
cancellation u = y + v, so y < u. In the second case, z + u = z + w + y + v and
u = y + (v + w), so y < u as well. �

Exercise 6.12. Prove the following properties of the relation ≤ for x, y, z ∈ P.
a) x ≤ y ⇔ x+ z ≤ y + z.
b) (x ≤ y) ∨ (y ≤ x).
c) y ≤ x⇔ y < x+ 1.

It is sometimes convenient to use the opposite of <, the greater than relation,
denoted >. This is defined symbolically by x > y ⇔ y < x. Clearly, any statement
using < has a natural counterpart using > and all the theorems about less than can
be converted into theorems about greater than. We can also define x ≥ y if x = y
or x > y. The relation ≥ is also reflexive, antisymmetric and transitive, so it is an
order relation on P.

Theorem 6.13. (Archimedean property): For all m,n ∈ P ∃ k ∈ P with m < kn.

Proof. If m < n, we can take k = 1. For m = n, k = 2 works. For n < m we can
take k = m+ 1 since m < mn+ n. �

Theorem 6.14. (Well-ordering Principle) If A is a non-empty subset of P, then
A has a smallest element. More specifically, there is an element x ∈ A such that
x ≤ y for all y ∈ A. The smallest element is unique.

Proof. Suppose there is a subset A 6= ∅ with no smallest element. We shall prove
by induction on n that x ∈ A ⇒ x ≥ n. For n = 1 this is obvious. Assume that
the property holds for some k ≥ 1. Then we can not have k ∈ A, since this would
be the smallest element. Hence k /∈ A and every x ∈ A has the property that
x ≥ k+ 1. By induction we got x ∈ A⇒ x ≥ n for all n ≥ 1. Since A is not empty,
let m ∈ A be some element. Using the inequality for n = m+ 1 we get m ≥ m+ 1,
contradiction. It remains that all nonempty subsets have a smallest element.

Uniqueness follows from the fact that if a, b ∈ A are both smallest elements,
then a ≤ b and b ≤ a implies a = b. �

Remark 6.15. The well-ordering Principle says that P with the natural order is
a well-ordered set. This is not to be confused with Zermelo’s well-ordering Theo-
rem, equivalent with the Axiom of choice and with Zorn’s Lemma discussed in the
previous chapter. Warning: some authors call Zermelo’s theorem the well-ordering
Principle.

Theorem 6.16. The well-ordering Principle implies the Principle of Mathematical
induction.
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Proof. Indeed, assume that for each positive integer n, a statement P (n) is given.
We assume that P (1) is true, and that P (k)⇒ P (k + 1). Let’s prove that P (n) is
true for all n. If not, let Q 6= ∅ be the subset of P consisting of those m for which
P (m) is false. By the Well-ordering Principle, Q contains a smallest element d.
Since P (1) is true, we must have d > 1. But then there is e with d = s(e) = e+1 and
e cannot be in Q, so P (e) must be true. From hypothesis, we get P (e+ 1) = P (d)
true, contradiction. Therefore Q must be empty and P (n) is true for all n. �

Remark 6.17. For any x, y ∈ P with x < y there exists a unique z ∈ P such that
x+ z = y.

Proof. Recall that since x < y, there is z with x + z = y. If z′ also satisfies
x+ z′ = y, we get x+ z = x+ z′, so z = z′ by cancellation. �

Definition 48. Suppose that x, y ∈ P with x < y. We define the subtraction
operation and write y − x to denote the unique z ∈ P such that x+ z = y. We say
that we have subtracted x from y. In other words, y − x stands for the positive
integer such that x+ (y − x) = y.

Example 6.18. Let’s prove that
a. 4− 2 = 2.
b. (x+ y)− x = y.
c. [x+ (y + z)]− z = x+ y.
d. x+ y < z ⇒ y < z − x.
e. (x < y) ∧ (y < z)⇒ y − x < z.

Proof. Indeed, for a we have seen that 2+2 = 4. Equation b follows since x+y > x
and x + y = x + y. Part c is using associativity of addition. For d, notice that
z = x+ y + u and therefore z − x = y + u. For e, let y = x+ u, z = y + v for some
u, v ∈ P. Then u = y − x and z = x+ u+ v, in particular u < z. �

Theorem 6.19. For x, y, z ∈ P we have
1. z < y ⇒ (x+ y)− z = x+ (y − z).
2. x+ y < z ⇒ z − (x+ y) = (z − x)− y.
3. (x < y) ∧ (y < z)⇒ z − (y − x) = (z − y) + x.
4. (x < y) ∧ (z < x)⇒ x− z < y − z.
5. (x < y) ∧ (y < z)⇒ z − y < z − x.

Proof. 1. Since z < y, we have z+(y−z) = y. Adding x we get (z+(y−z))+x =
y + x or ((y − z) + x) + z = x+ y, hence (y − z) + x = (x+ y)− z.

2. Note that x+ y < z implies x < z and y < z − x. Using part 1 and the fact
that (x+y)−x = y, we get (x+y)+[(z−x)−y] = (x+y+z−x)−y = (y+z)−y = z.

3. We have [(z − y) + x] + (y − x) = (z − y) + [x+ (y − x)] = (z − y) + y = z,
so (z − y) + x = z − (y − x).

4. Since z < x < y, we get z < y. We have y − z = (y − x) + (x − z), hence
x− z < y − z.

5. Again x < z, and z − x = (z − y) + (y − x), so z − y < z − x. �
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6.3. Multiplication and divisibility

Definition 49. We define inductively the operation of multiplication (denoted by
a dot ·, which sometimes is omitted) on P as follows:

x · 1 = x and x · s(y) = x · (y + 1) = x · y + x.

Theorem 6.20. Multiplication on P has properties
1. x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z (distributivity).
2. x · y = y · x (commutativity).
3. x · (y · z) = (x · y) · z (associativity).
4. x < y ⇒ x · z < y · z.
5. x · z = y · z ⇒ x = y (cancellation).
6. x · z < y · z ⇒ x < y.
7. x < y ⇒ z · (x− y) = z · y − z · x.
8. x < y ∧ u < v ⇒ x · u < y · v.
9. y 6= 1⇒ x < x · y.
10. x ≤ x · y.

Proof. 1. By induction on z. For z = 1,

x · (y + 1) = x · y + x = x · y + x · 1.

Assume x · (y + k) = x · y + x · k. Then

x · (y + (k + 1)) = x · [(y + k) + 1] = x · (y + k) + x =

= x · y + x · k + x · 1 = x · y + x · (k + 1).

The other equality is proved similarly.
2. First we prove by induction on x that 1 · x = x. This is certainly true for

x = 1. Assume 1 · k = k. Then

1 · (k + 1) = 1 · k + 1 · 1 = k + 1.

Now we use induction on y to show that x · y = y · x. This is true for y = 1 since
x · 1 = x = 1 · x. Assume x · k = k · x. Then

x · (k + 1) = x · k + x = k · x+ x = (k + 1) · x.

3. By induction on z. We have

x · (y · 1) = x · y = (x · y) · 1.

Assume x · (y · k) = (x · y) · k. Then

x · (y · (k + 1)) = x · (y · k + y) = x · (y · k) + x · y =

= (x · y) · k + x · y = (x · y) · (k + 1).

4. For z = 1 it is true: x < y ⇒ x < y. Assume that x < y ⇒ x · k < y · k for
some k, and let’s prove it for k+1. By adding the inequalities x < y and x ·k < y ·k
we get x · (k + 1) < y · (k + 1).
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5. We prove the contrapositive: x 6= y ⇒ x · z 6= y · z. By trichotomy, if x 6= y,
there are two possibilities: x < y or x > y. In the first case we get x · z < y · z and
in the second case x · z > y · z, hence x · z 6= y · z.

We leave the other properties as exercise. �

Definition 50. Given x, y ∈ P, we say that x divides y, x is a factor or divisor
of y or y is a multiple of x if and only if ∃u such that x · u = y. We write this
symbolically as x | y, and we obtain the divisibility relation on P.
Theorem 6.21. We have

1. (x | y) ∧ (y | z)⇒ x | z(transitivity).
2. (x | y) ∧ (y | x)⇒ x = y(antisymmetry).
3. x | y ⇒ x ≤ y.
4. (1 | x) ∧ (x | x).
5. x | y ⇔ x · z | y · z.
6. (x | y) ∧ (x | z)⇒ x | (y + z).
7. (x | y) ∧ (x | z) ∧ (y < z)⇒ x | (z − y).

Proof. 1. We have y = x ·u and z = y ·v for some u, v. It follows that z = x · (uv),
hence x | z.

2. We have y = x · u and x = y · v, hence y = y · (uv). It follows that uv = 1,
so u = v = 1 and x = y.

3. Since y = x · u for some u and x ≤ x · u, we get x ≤ y.
4. We have x = 1 · x = x · 1.
5. ”⇒“ Suppose x | y. Then there exists a positive integer u such that x ·u = y.

Multiplying by z we get (x · u) · z = y · z. Using associativity and commutativity
on the left side, we can write the equation in the form (x · z) · u = y · z. Thus by
Definition 50, x · z | y · z.

”⇐“ If x · z | y · z, then for some u, (x · z) · u = y · z. As above, this can be
rewritten as (x · u) · z = y · z, and by multiplicative cancellation, x · u = y. Thus
x | y.

We leave parts 6 and 7 as exercises. �

Corollary 2. Divisibility is an order relation on P.

Proof. Indeed, it is reflexive, antisymmetric and transitive. �

Remark 6.22. Unlike the relation ≤, the order relation | is not a total order. For
example 2 - 3 and 3 - 2, so not any two elements are comparable.

Recall that given x, y ∈ P with y | x, there exists a unique u ∈ P such that
x = y · u. Indeed, if x = y · u = y · v, we get u = v by part 4 in theorem 6.20.

Definition 51. If y | x, then the unique u such that y · u = x is denoted by x÷ y
and is called the quotient of x by y. This defines the division operation for selected
positive integers. Later we will also use x/y or

x

y
for x÷ y. Note that:

y | x⇒ y · (x÷ y) = x and y · u = x⇒ u = x÷ y.
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Theorem 6.23. The division operation has properties
1. (y | x) ∧ (z | y)⇒ (y ÷ z) | (x÷ z).
2. z | y ⇒ (x · y)÷ z = x · (y ÷ z).
3. (y | x) ∧ (x | z)⇒ (z ÷ x) | (z ÷ y).
4. x · y | z ⇒ z ÷ (x · y) = (z ÷ x)÷ y.
5. (x | y) ∧ (x | z)⇒ (y + z)÷ x = (y ÷ x) + (z ÷ x).
6. (x | y) ∧ (x | z) ∧ (z < y)⇒ (y − z)÷ x = (y ÷ x)− (z ÷ x).

Proof. 1. We have x = y · u and y = z · v for some u, v, so x = z · uv. Moreover,
y ÷ z = v and x÷ z = uv, hence (y ÷ z) | (x÷ z).

2. Since z | y, we have y = zu for some u, hence y ÷ z = u. We get xy = xzu
and (x · y)÷ z = x · u.

We leave the other parts as exercise. �

6.4. Natural numbers

The set N = P ∪ {0} of natural numbers satisfies the following axioms:
Axiom 1. There exists an element 0 ∈ N.
Axiom 2. For each n ∈ N, there is an element s(n) ∈ N, called the successor

of n.
Axiom 3. For each n ∈ N we have s(n) 6= 0.
Axiom 4. If m,n ∈ N and s(m) = s(n), then m = n.
Axiom 5. If A is a subset of N such that 0 ∈ A and s(n) ∈ A whenever n ∈ A,

then A = N.
The number 0 was discovered later, and it could be thought as the number of

elements in the empty set. Axiom 5 implies the Principle of Mathematical Induction
for N: If P (n) is a statement for each n ∈ N and we prove

1. P (0) true
2. P (k) true implies P (k + 1) true for all k ≥ 0,
then P (n) is true for all n ∈ N.

Example 6.24. Let us prove by induction that a set with n elements has 2n

subsets.

Proof. The empty set ∅ has only one subset, namely itself. So the property holds
for n = 0 since 20 = 1. Assume that any set X with k elements has 2k subsets. Let
Y be a set with k+ 1 elements. We can write Y = X ∪{y} where X has k elements
and y /∈ X. The subsets of Y are of two kinds: subsets which are included in X
(there are 2k of these) and subsets which contain y. The last type of subsets are of
the form A∪ {y} where A ⊆ X, hence a total of another 2k. All together there are
2k + 2k = 2k+1 subsets of Y and we are done. �

Exercise 6.25. Prove that the set {0, 2, 4, 6, ...} of even natural numbers is another
set satisfying the Peano axioms for N, defining an appropriate successor function.
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Exercise 6.26. For n ∈ N, define the set of descendants D(n) as the smallest
subset of N such that n ∈ D(n) and it is closed under the successor function:
m ∈ D(n)⇒ s(m) ∈ D(n). Prove the following properties:

1. D(n) = {n} ∪D(s(n)).
2. D(s(n)) ⊆ s(D(n)).
3. n /∈ D(s(n)).
4. D(m) = D(n)⇒ m = n.
5. If ∅ 6= A ⊆ N and A is closed under s, in the sense that s(A) ⊆ A, then

there is a unique k ∈ N such that A = D(k).
6. For m,n ∈ N,m ≤ n⇔ n ∈ D(m).

We can extend the addition and multiplication operations to the set of natural
numbers, with the new rules x + 0 = x, x · 0 = 0. When we define divisibility, we
exclude 0 as a divisor.

We list the major properties of the natural numbers, especially those that we
will use later when we study the integers. All the proofs are similar to the ones for
positive integers.

Theorem 6.27. For the set N of natural numbers
1) Addition and multiplication are commutative and associative.
2) Multiplication is distributive with respect with addition.
3) We have cancelation properties: x+y = x+z ⇒ y = z and (x ·y = x ·z∧x 6=

0)⇒ y = z.
4) There is a natural order defined by x < y ⇔ ∃u ∈ N\{0} such that x+u = y

and we define x ≤ y ⇔ (x < y) ∨ (x = y).
5) The trichotomy property holds: ∀x, y ∈ N, exactly one of the following is

true: x < y, x = y, or y < x.
6) We have the Archimedean property: ∀m,n ∈ N with n 6= 0 there exists

k ∈ P with m < kn.
7) We have x < y ⇔ x + z < y + z for all z ∈ N and if z 6= 0, then x < y ⇔

xz < yz.
8) The well-ordering Principle is: If A ⊆ N, A 6= ∅, then A contains a unique

smallest element.

Definition 52. For x ∈ P and y ∈ N we define the power xy inductively by: x0 = 1,
xy+1 = xy · x. The number x is called the base and y is called the exponent.

Exercise 6.28. Prove that for x ∈ P and y, z ∈ N,
a. xy+z = xy · xz.
b. xyz = (xy)z.

Definition 53. For n ∈ N, the factorial function n! is defined by 0! = 1 and
(n+ 1)! = (n+ 1) · n!.

Note that 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. and for m ≥ 1 we have m ≤ n⇒
m | n!.
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Example 6.29. Show by induction that the sum of the cubes of three consecutive
natural numbers is divisible by 9.

Proof. Indeed, 03 + 13 + 23 = 9 which is divisible by 9. Assume

(k − 1)3 + k3 + (k + 1)3 = 9m

for some k,m ≥ 1 and let us prove that k3 + (k + 1)3 + (k + 2)3 is a multiple of 9.
Since

(k − 1)3 = k3 − 3k2 + 3k − 1 and (k + 2)3 = k3 + 6k2 + 12k + 8,

we get
k3 + (k + 1)3 + (k + 2)3 = 9m+ 9k2 + 3k + 9,

which is a multiple of 9. �

Example 6.30. For n ≥ 1 prove that

1 +
1√
2

+
1√
3

+ · · ·+ 1√
n
< 2
√
n.

Proof. For n = 1 the inequality becomes 1 < 2, which is true. Assume

1 +
1√
2

+
1√
3

+ · · ·+ 1√
k
< 2
√
k

for some k ≥ 1 and let’s prove the inequality for k + 1. We have

1 +
1√
2

+
1√
3

+ · · ·+ 1√
k

+
1√
k + 1

< 2
√
k +

1√
k + 1

=
2
√
k2 + k + 1√
k + 1

< 2
√
k + 1

because 2
√
k2 + k < 2k + 1 and we are done. �

Exercise 6.31. Prove by induction that for n ≥ 1

2 · 6 · 10 · ... · (4n− 2) =
(2n)!

n!
.
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Remark 6.32. (Generalized induction) Consider k0 ∈ N and for each n ≥ k0 a
statement P (n). To prove that P (n) is true for all n ≥ k0 it suffices to check two
steps

1. P (k0) is true
2. For each integer k ≥ k0, P (k) true implies P (k + 1) true.

Example 6.33. For any n ≥ 2 prove that
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
≥ 7

12
.

Proof. For n = k0 = 2 we have
1

3
+

1

4
=

7

12
, so the statement is true. It is easy to

check that the inequality fails for n = 1. Assume
1

k + 1
+

1

k + 2
+ · · ·+ 1

2k
≥ 7

12
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for some k ≥ 2 and let’s prove the inequality for its successor k + 1. We have
1

k + 1 + 1
+

1

k + 1 + 2
+ · · ·+ 1

2k
+

1

2k + 1
+

1

2k + 2
=

=

(
1

k + 1
+

1

k + 2
+ · · ·+ 1

2k

)
− 1

k + 1
+

1

2k + 1
+

1

2k + 2

and it suffices to notice that

− 1

k + 1
+

1

2k + 1
+

1

2k + 2
=
−2(2k + 1) + (2k + 2) + (2k + 1)

(2k + 1)(2k + 2)
=

=
1

(2k + 1)(2k + 2)
> 0.

�

Example 6.34. Show that n2 ≤ 2n for all n ≥ 4.

Proof. Here k0 = 4. Note that 32 = 9 > 23 = 8, so there is a good reason to take
k0 = 4. For n = 4 the inequality becomes 42 = 16 ≤ 24 and the statement is true.
Assume k2 ≤ 2k for some k ≥ 4. We want to show that (k + 1)2 ≤ 2k+1. Since
2k+1 = 2 · 2k, we multiply the inequality k2 ≤ 2k by 2 and we get 2k2 ≤ 2k+1.
This is not yet what we wanted, but if we show that (k + 1)2 ≤ 2k2 for k ≥ 4, we
are done by transitivity. This last inequality is equivalent to k2 + 2k + 1 ≤ 2k2 or
k2 − 2k ≥ 1. If we write this as k(k − 2) ≥ 1, we see that it is true, since k ≥ 4. It
follows that n2 ≤ 2n for all n ≥ 4. �

Exercise 6.35. For n ≥ 10 prove by generalized induction that 2n ≥ n3.

Theorem 6.36. (Strong induction or Complete induction) If A is a subset of N
such that

1. 0 ∈ A and
2. ∀n ≥ 1, {0, 1, 2, ..., n} ⊆ A⇒ n+ 1 ∈ A.
Then A = N.

Proof. Consider the statement 0, 1, 2, ..., n ∈ A, denoted P (n). Since 0 ∈ A, P (0)
is true. Assume P (k) to be true, so 0, 1, 2, ..., k ∈ A. From part 2. we get that
k+ 1 ∈ A, hence P (k+ 1) is true. By induction, it follows that P (n) is true for all
n, in particular A = N. �

Note that in fact the strong induction implies the usual induction, hence they
are equivalent. Using strong induction and generalized induction, we get

Corollary 3. If A is a subset of N such that k0 ∈ A and (m ≤ n ⇒ m ∈ A) ⇒
n+ 1 ∈ A, then A = {k0, k0 + 1, ...}.

Definition 54. A positive integer x is a prime if and only if x 6= 1 and y | x implies
(y = 1) ∨ (y = x).

Theorem 6.37. 1. A positive integer x is prime if and only if x 6= 1 and

∀r∀s(x = r · s⇒ (r = 1) ∨ (r = x)).

2. If y 6= 1, then there is a prime p such that p | y.



6.5. Other forms of induction 83

Proof. The first part follows directly from the definition. For part 2 we use com-
plete induction. If y = 2, then 2 is a prime and 2 | y. Assume the statement to be
true for 2, 3, ..., y and let’s prove it for y + 1. If y + 1 is prime, we are done. If not,
then it has a divisor 2 ≤ d ≤ y. Since d has a prime divisor, it follows that y + 1
also has a prime divisor.

�

It is worth noting that, in the set of positive integers, a prime is a number
which has exactly two divisors: 1 and itself. However, in the larger set Z consisting
of all integers, we will see that a prime is a number with exactly four divisors.

Theorem 6.38. (Fundamental theorem of arithmetic) Each positive integer n ≥ 2
is either a prime or is a product of primes.

Proof. The basis step is true, since 2 is a prime. Suppose that the integers 2, 3, ..., k
are either primes or product of primes, and let’s prove that k + 1 also has this
property. If it happens that k+ 1 is a prime, we are done. If not, then k+ 1 = a · b,
where 2 ≤ a, b ≤ k. By hypothesis, both a and b are either primes or product of
primes. It follows that k + 1 = a · b is a product of primes as well, and we are
done. �

Exercise 6.39. Suppose u0 = 2, u1 = 3 and un+1 = 3un − 2un−1 for all n ≥ 1.
Prove by strong induction that un = 2n + 1.

Exercise 6.40. Prove that any positive integer can be written as a product of an
odd integer and a power of 2.

Exercise 6.41. Let B be a set with n ≥ 3 elements. Prove that the number of
subsets with three elements is n(n− 1)(n− 2)/3!.

Theorem 6.42. *(Induction with bigger steps) Consider a statement P (n) for each
n ≥ k0. Suppose

1. P (k0), P (k0 + 1), ...P (k0 + k1 − 1) are true for a fixed integer k1 ≥ 1 called
step;

2. P (k) true implies P (k + k1) true for all k ≥ k0.
Then P (n) is true for all n ≥ k0.

Proof. Indeed, by the division algorithm (see next chapter for a proof), any integer
n ≥ k1 is of the form n = qk1 + r where q ≥ 1 and 0 ≤ r ≤ k1 − 1. �

Example 6.43. For n ≥ 6, any square can be partitioned into n squares using
segments parallel with its sides.

Proof. Obviously a square can be partitioned into 4 equal squares using segments
through the midpoints of the sides.
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We prove now that we can partitioned a square into 6, 7 or 8 squares, and then
we will prove the induction step from k to k + 3. Here k0 = 6 and k1 = 3. Indeed,
the following picture illustrates the cases n = 6, 7 and 8:

Suppose we know how to divide a square into k squares for k ≥ 6. Take one of
the small squares and divide it into four squares. This way, we get a partition of
the initial square into k + 3 squares. �

Exercise 6.44. *Prove that any cube can be partitioned into n ≥ 58 cubes using
planes parallel with its faces. (Hint: use the fact that a cube can be partitioned
into 8 cubes and into 27 cubes to verify the statement for 58, 59, ..., 64 and then use
induction with step 7).



Chapter 7

The construction of integers

The invention or discovery of the set of integers Z = {−3,−2,−1, 0, 1, 2, 3, ...} was
based on pragmatic concerns. Specifically, there were equations, such as x+ 6 = 2,
which mathematicians could not solve using the natural numbers, but which cried
out for solution. As a result, a new set of numbers was developed. This set, referred
to as the set of integers, was initially considered by many as, at best, a necessary
evil. Negative integers were relegated to second class status and used only when
absolutely necessary. Ultimately, however, their usefulness could not be denied and
they gradually gained acceptance over the course of the years.

In these more enlightened times, there are lots of ways to model the idea of a
negative integer, so that most people can tie the concept down to something more or
less concrete. For example, a football buff’s attention can be directed towards the
idea of a fullback gaining or losing yardage; the accountant type can think in terms
of owing money or being owed; the game player can consider the difference between
having points or being in the hole (negative numbers often make an appearance
on Jeopardy!); and the geometrically inclined individual can perceive the difference
between motion to the right and motion to the left. Also, the weather man uses
positive and negative temperatures.

It is possible to introduce the concept of integer by announcing that we are
inventing a new kind of number, denoted by −n, and specifying how such a number
will interact with the already known natural numbers. This can be a bit unwieldy,
so we prefer a different approach.

Our introduction to the theory of integers is based on the idea of using pairs of
natural numbers to represent integers. Intuitively, the first component of a pair will
describe how much plus stuff is involved, while the second component will count
the number of minuses. Thus, when we write the pair 〈5, 2〉, we will think of the net
result of combining 5 pluses with 2 minuses, which of course is 3 pluses. Likewise
〈3, 8〉 will be thought of as 3 pluses and 8 minuses together, which is equivalent to
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5 minuses. Notice that these thoughts entail our regarding of the pairs 〈7, 9〉, 〈0, 2〉,
and 〈37, 39〉 as representing the same integer.

To make all this precise, we will introduce an equivalence relation on the set
N × N of ordered pairs of natural numbers and define an integer to be one of the
equivalence classes determined by this relation. In addition, we will define the
addition, multiplication, subtraction and division operations. We will extend the
usual order relation ≤ from N to Z. We will then proceed to prove divisibility
properties of integers from the new definitions.

7.1. Definition and operations

We begin by defining the basic relation between ordered pairs of natural numbers
that will in effect determine when the pairs really represent the same integer. In
contrast with our previous practice, we will not use a letter to stand for the relation,
but will denote it by the symbol ∼.
Definition 7.1. If 〈a, b〉, 〈c, d〉 ∈ N× N, then 〈a, b〉 ∼ 〈c, d〉 iff a+ d = b+ c.

Notice that the objects that are related are themselves ordered pairs. The
elements of the actual relation are thus pairs whose components are also ordered
pairs. An actual element of the relation ∼ on N×N will have the form 〈〈a, b〉, 〈c, d〉〉,
but since we will generally utilize the xRy notation, this symbolic complexity will
not be troublesome.

As usual, the definition can be used in two distinct ways. First, if we know that
〈a, b〉 ∼ 〈c, d〉, then we can immediately assert that a+ d = b+ c. If the hypothesis
of a theorem is 〈6, b〉 ∼ 〈c, 12〉, then an immediate conclusion is 6 + 12 = b + c. If
you know that 〈4a, a〉 ∼ 〈10, 4〉, then you also have 4a+ 4 = a+ 10, so a = 2.

Second, whenever you see the expression a + d = b + c, you may immediately
write the equivalent statement 〈a, b〉 ∼ 〈c, d〉. Thus, since 5 + 4 = 2 + 7, we have
〈5, 2〉 ∼ 〈7, 4〉. Also, if 2a + 1 = 4b + 3, then 〈2a, 3〉 ∼ 〈4b, 1〉. These ideas figure
prominently in the proofs of the next few theorems.

Theorem 7.2. The relation ∼ is an equivalence relation on N× N.

Proof. We must separately verify each of the three conditions that appear in the
definition of equivalence relation.

1) Suppose 〈a, b〉 ∈ N × N. Since a + b = b + a, it follows that 〈a, b〉 ∼ 〈a, b〉.
Thus ∼ is reflexive.

2) Suppose 〈a, b〉 ∼ 〈c, d〉. Then a + d = b + c. Hence, by the commutative
property of addition in N, together with the symmetry property of equality, we get
c+ b = d+ a . Thus, by definition, 〈c, d〉 ∼ 〈a, b〉 and ∼ is symmetric.

3) Suppose 〈a, b〉 ∼ 〈c, d〉 and 〈c, d〉 ∼ 〈e, f〉. Then a+d = b+c and c+f = d+e.
Adding these equations produces a+ d+ c+ f = b+ c+ d+ e. Clearly c and d

cancel, so a+ f = b+ e. We get 〈a, b〉 ∼ 〈e, f〉, hence ∼ is transitive. �

The equivalence class [〈a, b〉] containing the pair 〈a, b〉 is denoted simply by
[a, b]. In other words,

[a, b] = {〈e, f〉 : 〈e, f〉 ∼ 〈a, b〉}.
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Definition 7.3. Each equivalence class [a, b] will be called an integer. The set of all
integers will be called Z (in case you wonder, the letter Z comes from the German
word Zahl). Thus:

Z = {[a, b] : a, b ∈ N}.

Note that each integer has infinitely many representations, in the sense that we
can choose different representatives; we can write [13, 15] = [8, 10] = [259, 261] =
[a, a+ 2], among many others.

Exercise 7.4. a. Show that 〈6, 12〉 ∈ [8, 14].
b. Prove: if 〈c, c〉 ∈ [a, b], then a = b.
c. Prove: if 〈c, c+ 5〉 ∈ [4, b], then b = 9.

Theorem 7.5. If [a, b] = [a′, b′] and [c, d] = [c′, d′], then [a+c, b+d] = [a′+c′, b′+d′]
and [ac+ bd, ad+ bc] = [a′c′ + b′d′, a′d′ + b′c′].

Proof. Since a+b′ = b+a′ and c+d′ = d+c′, we get a+b′+c+d′ = b+a′+d+c′,
hence [a + c, b + d] = [a′ + c′, b′ + d′]. In order to prove [ac + bd, ad + bc] =
[a′c′+b′d′, a′d′+b′c′], we need to show that ac+bd+a′d′+b′c′ = ad+bc+a′c′+b′d′.
Multiplying the equality a+ b′ = b+ a′ by c and d, using distributivity and adding
together we get

(1) ac+ bd+ b′c+ a′d = ad+ bc+ a′c+ b′d.

Similarly, multiplying the equality c+ d′ = d+ c′ by a′ and b′, we get

(2) a′d′ + b′c′ + a′c+ b′d = a′c′ + b′d′ + a′d+ b′c.

Adding (1) and (2) we get

ac+ bd+ b′c+a′d+a′d′+ b′c′+a′c+ b′d = ad+ bc+a′c+ b′d+a′c′+ b′d′+a′d+ b′c,

and by cancellation, ac+ bd+ a′d′ + b′c′ = ad+ bc+ a′c′ + b′d′. �

Definition 7.6. We define the addition and multiplication operations on Z denoted
⊕ and � (to distinguish from the old operations +, · on N) by

[a, b]⊕ [c, d] = [a+ c, b+ d],

[a, b]� [c, d] = [ac+ bd, ad+ bc],

which by the previous theorem do not depend on representatives. After we get used
to the new operations, we will of course go back to the usual + and ·.

Using the definitions we can easily prove

Theorem 7.7. We have
1. [a, b] = [0, 0]⇔ a = b.
2. [a, b]⊕ [0, 0] = [0, 0]⊕ [a, b] = [a, b].
3. [0, 0]� [a, b] = [0, 0].
4. [1, 0]� [a, b] = [a, b].
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Theorem 7.8. The operations ⊕ and � on Z have the following properties (here
a, b, c, d, e, f are natural numbers):

1. [a, b]⊕ [c, d] = [c, d]⊕ [a, b] (commutativity).
2. ([a, b]⊕ [c, d])⊕ [e, f ] = [a, b]⊕ ([c, d]⊕ [e, f ]) (associativity).
3. [a, b]� [c, d] = [c, d]� [a, b] (commutativity).
4. ([a, b]� [c, d])� [e, f ] = [a, b]� ([c, d]� [e, f ]) (associativity).
5. [a, b]� ([c, d]⊕ [e, f ]) = [a, b]� [c, d]⊕ [a, b]� [e, f ] (distributivity).
6. [a, b]⊕ [c, d] = [a, b]⊕ [e, f ]⇒ [c, d] = [e, f ] (cancellation).
7. If [a, b] 6= [0, 0] and [a, b]� [c, d] = [a, b]� [e, f ], then [c, d] = [e, f ] (cancella-

tion). (Note that the first hypothesis could be written in the form a 6= b).

Proof. 1. This follows from the commutativity of the addition of natural numbers.
2. This follows from the associativity of the addition of natural numbers.
3. Indeed, [ac+ bd, ad+ bc] = [ca+ db, cb+ da].
4. We compute ([a, b]� [c, d])� [e, f ] = [ac+ bd, ad+ bc]� [e, f ] = [ace+ bde+

adf+bcf, acf+bdf+ade+bcf ] and [a, b]�([c, d]�[e, f ]) = [a, b]�[ce+df, cf+de] =
[ace+ adf + bcf + bde, acf + ade+ bce+ bdf ].

5. We have [a, b]� ([c, d]⊕ [e, f ]) = [a, b]� [c+e, d+f ] = [ac+ae+bd+bf, ad+
af + bc+ be], [a, b]� [c, d]⊕ [a, b]� [e, f ] = [ac+ bd, ad+ bc]⊕ [ae+ bf, af + be] =
[ac+ bd+ ae+ bf, ad+ bc+ af + be].

6. From [a, b]⊕ [c, d] = [a, b]⊕ [e, f ] we get [a+ c, b+ d] = [a+ e, b+ f ], hence
a + c + b + f = b + d + a + e. Using cancellation for natural numbers, we get
c+ f = d+ e and therefore [c, d] = [e, f ].

7. Indeed, [a, b] 6= [0, 0] ⇔ a + 0 6= b + 0 ⇔ a 6= b. Assuming a 6= b, there
are two cases: either a < b or b < a. From [a, b] � [c, d] = [a, b] � [e, f ] we get
[ac+ bd, ad+ bc] = [ae+ bf, af + be], hence ac+ bd+ af + be = ad+ bc+ ae+ bf
and a(c + f) + b(d + e) = a(d + e) + b(c + f). Assuming a < b, b − a ∈ P and
the last equality could be put in the form (b − a)(d + e) = (b − a)(c + f). Using
the cancellation for multiplication of natural numbers, we get d + e = c + f and
therefore [c, d] = [e, f ]. The case b < a is similar. �

7.2. Order

Definition 7.9. We define the relations ≺ and � on Z by
1. [a, b] ≺ [c, d]⇔ a+ d < b+ c.
2. [a, b] � [c, d] ⇔ [c, d] ≺ [a, b]. We use this notation to distinguish form the

old < and > for natural numbers. Again, eventually we will also use < and > for
integers.

Exercise 7.10. a. Show that ≺ is well defined, in other words prove that if
〈a, b〉 ∼ 〈a′, b′〉, 〈c, d〉 ∼ 〈c′, d′〉, and a+ d < b+ c, then a′ + d′ < b′ + c′.

b. Suppose we defined [a, b] ≺ [c, d] to mean a < c. Would this be well-defined?
Why or why not?



7.2. Order 89

Theorem 7.11. (Trichotomy) For all natural numbers a, b, c, d, exactly one of the
following is true in Z: [a, b] ≺ [c, d] or [a, b] = [c, d] or [c, d] ≺ [a, b].

Proof. This follows from trichotomy in N. �

Theorem 7.12. (Transitivity) [a, b] ≺ [c, d] ∧ [c, d] ≺ [e, f ]⇒ [a, b] ≺ [e, f ].

Proof. We have a+ d < b+ c and c+ f < d+ e. Adding together, a+ d+ c+ f <
b+ c+ d+ e. Canceling c+ d, we get a+ f < b+ e, hence [a, b] ≺ [e, f ]. �

From now on, when we wish to refer to an integer without mentioning an equiv-
alence class, we will use lower case letters near the end of the alphabet. Sometimes
we will be able to prove theorems without having to bring equivalence classes into
the picture at all, but when we can’t, we are always able to fall back on the definition
of an integer.

Theorem 7.13. For all integers x, y, z we have
1. (x � y) ∧ (y � z)⇒ x � z.
2. x ≺ y ⇔ x⊕ z ≺ y ⊕ z.
3. (x ≺ y) ∧ ([0, 0] ≺ z)⇒ x� z ≺ y � z.
4. (x ≺ y) ∧ ([0, 0] � z)⇒ x� z � y � z.

Proof. 1. This follows from transitivity of < on N.
2. We need to work with representatives: let x = [a, b], y = [c, d], z = [e, f ].

Then x⊕ z = [a+ e, b+ f ], y⊕ z = [c+ e, d+ f ]. We have a+ d < b+ c and adding
e+ f both sides, a+ d+ e+ f < b+ c+ e+ f , hence x⊕ z ≺ y ⊕ z.

3. Let x = [a, b], y = [c, d], z = [e, f ] with e > f . We have [e, f ] = [e − f, 0].
Without loss of generality we may assume z = [e, 0] with e > 0. In this case
x� z = [ae, be] and y � z = [ce, de]. From a+ d < b+ c, multiplying both sides be
e we get ae+ de < be+ ce, hence x� z ≺ y � z.

4. Let x = [a, b], y = [c, d], z = [e, f ]. Since z ≺ [0, 0], we may assume z = [0, f ]
with f > 0. In this case x� z = [bf, af ] and y � z = [df, cf ]. From a+ d < b+ c,
we get af + df < bf + cf , hence y � z ≺ x� z. �

Definition 7.14. An integer x is called positive if and only if x � [0, 0]. An integer
x is called negative if and only if x ≺ [0, 0].

Corollary 7.15. If x is any integer, then exactly one of the following is true: x is
positive, x is negative, or x = [0, 0].

Proof. Indeed, if x = [a, b], then either a < b, b < a, or a = b. �

Theorem 7.16. If x and y are positive integers, then x⊕ y and x� y are positive
integers. For any x ∈ Z there is a unique y ∈ Z such that x ⊕ y = [0, 0]. In fact
[a, b]⊕ [b, a] = [0, 0] for all a, b ∈ N.

Proof. If x = [a, 0] and y = [c, 0] with a > 0 and c > 0, then x⊕ y = [a+ c, 0] and
x� y = [ac, 0], hence x⊕ y and x� y are positive.

For x = [a, b], we can take y = [b, a] and x⊕ y = [a + b, a + b] = [0, 0]. If y′ is
another integer with x⊕ y′ = [0, 0] = x⊕ y, by cancellation we get y = y′. �
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Definition 7.17. The class [b, a] is called the additive inverse or opposite of [a, b]
and is denoted by 	[a, b]. We define the subtraction operation on Z by x 	 y =
x⊕ (	y).

Remark 7.18. We have
1. ∀x, y ∈ Z ∃!z ∈ Z such that x = y ⊕ z, namely z = x	 y.
2. For all x ∈ Z, 	(	x) = x.

Exercise 7.19. Prove that for x, y, z ∈ Z
a. 	(x⊕ y) = (	x)⊕ (	y).
b. 	(x	 y) = y 	 x.
c. x� (	y) = (	x)� y = 	(x� y).
d. (	x)� (	y) = x� y.
e. [0, 1]� x = 	x.
f. x� y = [0, 0]⇒ (x = [0, 0]) ∨ (y = [0, 0]).
g. x� (y 	 z) = (x� y)	 (x� z).

Theorem 7.20. For a, b ∈ N we have
1. a > b⇒ ∃!n ∈ P such that [a, b] = [n, 0].
2. a < b⇒ ∃!m ∈ P such that [a, b] = [0,m].

Proof. We can take n = a− b in the first case, and m = b− a in the second. �

Definition 7.21. If A is a subset of Z, we say that N is isomorphic with A if and
only if there exists a one-to-one function f with domain N and range A such that
for all a, b ∈ N we have

f(a+ b) = f(a)⊕ f(b), f(a · b) = f(a)� f(b), and a < b⇒ f(a) ≺ f(b).

Such a function f is called an isomorphism between N and A.

Theorem 7.22. If A = {[a, 0] : a ∈ N}, then N is isomorphic with A.

Proof. Define f : N → A, f(n) = [n, 0]. Then f is a bijection and preserves the
addition, multiplication and the strict order. �

Exercise 7.23. For each of the following functions f : N→ Z, determine which, if
any, of the properties of an isomorphism are valid. In each case, assume that A is
the range f(N) ⊆ Z.

a. f(a) = [a, a].
b. f(a) = [a, a+ 1].
c. f(a) = [a, 2a].
d. f(a) = [0, a].
e. f(a) = [a+ 1, 2].
f. f(a) = [2a, a].
g. f(a) = [5a, 0].
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Because there is an isomorphism between N and the set of nonnegative integers,
we will henceforth consider the class [a, 0] to be the same as the natural number a
unless there is something to be gained by making a distinction between them. In
addition, if x, y are integers, from now on we will ordinarily write: x+ y for x⊕ y,
x · y or xy for x� y, x < y for x ≺ y, −x for 	x, etc.

Remark 7.24. If we repeat the construction of integers as above using pairs of
integers instead of pairs of positive integers, we don’t get anything new.

Definition 7.25. The set of all positive integers will be denoted by Z+ or P. The
set of all negative integers will be denoted by Z−.

Using the properties of P and N, we obtain

Corollary 7.26. 1. If A ⊆ Z+, 1 ∈ A, and x ∈ A⇒ x+ 1 ∈ A, then G = Z+.
2. If A ⊆ Z+ and A 6= ∅, then A contains a unique smallest member.
In part 1, the conclusion remains valid if Z+ is replaced by the set of all non-

negative integers Z+ ∪ {0} = N and the hypothesis 1 ∈ A is changed to 0 ∈ A.

7.3. Absolute value and divisibility

Definition 7.27. If x is any integer, then the absolute value of x is the natural
number defined by:

|x| =
{

x if x ≥ 0
−x if x < 0

Theorem 7.28. We have the following properties of the absolute value
1. | − x| = |x|.
2. x ≤ |x| and −x ≤ |x|.
3. |x| = |y| ⇔ (x = y) ∨ (x = −y).
4. |xy| = |x| · |y|.
5. a > 0⇒ (|x| ≤ a⇔ −a ≤ x ≤ a).
6. |x| < |y| ⇔ −|y| < x < |y|.
7. |x+ y| ≤ |x|+ |y| (triangle inequality).
8. |x− y| ≤ |x|+ |y|.
9. |x| − |y| ≤ |x− y|.

Proof. 1 and 2 follow from the definition, considering the cases x ≥ 0 and x < 0.
3. There are four cases to consider: x ≥ 0 and y ≥ 0, x ≥ 0 and y < 0, x < 0

and y ≥ 0, x < 0 and y < 0. In each case we get: x = y, x = −y,−x = y and
−x = −y, respectively.

4. We consider the four cases as in 3 and compute.
5. For x ≥ 0 we get x ≤ a. For x < 0 we get −x ≤ a, hence x ≥ −a.
6. We take a = |y| and use 5.
7. If x ≥ 0 and y ≥ 0 this is clear. If x ≥ 0 and y < 0, there are two subcases

x+ y ≥ 0 and x+ y < 0. In the first subcase, x+ y ≤ x− y is true since y < −y.
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In the second subcase, −x − y ≤ x − y is true since −x ≤ x. If x < 0 and y ≥ 0,
we treat similarly the subcases x+ y ≥ 0 and x+ y < 0. If x < 0 and y < 0, then
−x− y ≤ −x− y is clearly true.

8. We write x− y = x+ (−y), use 7 and 1.
9. We have |x| = |x− y + y| ≤ |x− y|+ |y|, hence |x| − |y| ≤ |x− y|. �

Exercise 7.29. Prove that
a. |x| = max(x,−x).
b.
∣∣|x| − |y|∣∣ ≤ |x− y|.

c. a ≥ 0⇒ (|x| > a⇔ (x > a) ∨ (x < −a))

Definition 7.30. Let x, y be integers. We say that y is divisible by x, x divides
y, or x is a factor of y if and only if x 6= 0 and there exists an integer z such that
x · z = y. We will write x | y when x divides y. The integer z is also denoted by
y/x or

y

x
.

Theorem 7.31. If x and y are nonzero integers, then:
1. x | y ⇒ |x| ≤ |y|.
2. x | y ⇒ |x|

∣∣|y|.
3. x | 1⇒ x = ±1.
4. (x | y) ∧ (y | x)⇒ x = ±y.
5. (x | y) ∧ (y | z)⇒ x | z (transitivity).
6. (x | y) ∧ (x | z)⇒ x | (y ± z).

Proof. 1. If x | y, then y = xa for a ∈ Z \ {0} and |y| = |xa| = |a||x| ≥ |x| since
a| ≥ 1.

2. As above, if x | y, then |y| = |a||x|, hence |x|
∣∣|y|.

3. If 1 = ax, then a = x = 1 or a = x = −1.
4. Assuming x | y ∧ y | x, we get y = ax and x = by for some integers a, b. It

follows that y = aby, hence ab = 1 and therefore a = b = 1 or a = b = −1. In the
first case y = x, and in the second y = −x.

5. Assuming x | y ∧ y | z, we get y = ax and z = by, hence z = abx and x | z.
6. Assuming x | y∧x | z, let y = ax and z = bx. Then y±z = ax±bx = (a±b)x,

hence x | y ± z. �

Remark 7.32. The divisibility relation | on Z \ {0} is reflexive and transitive, but
not symmetric because −2 | 4 and 4 - −2 or antisymmetric because −2 | 2 and
−2 6= 2.

Theorem 7.33. (Division Algorithm) For any integer y and any nonzero integer
x there exist unique integers q and r such that y = qx+ r and 0 ≤ r < |x|.

Proof. Assume first that x > 0. Consider the set S of natural numbers of the
form y − kx where k ∈ Z. Notice that S is not empty: for example y + |y|x ∈ S.
Indeed, since x ≥ 1 and |y| ≥ −y, we get y+ |y|x ≥ 0 and we can take k = −|y|. By
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the well-ordering Principle, S contains a smallest element of the form r = y − qx.
We found integers q and r with y = qx + r and we know that r ≥ 0. To show
that r < x, by way of contradiction assume that r ≥ x. Then r − x ≥ 0 and
r−x = y−qx−x = y− (q+1)x ∈ S. We found an element in S, namely r−x such
that r − x < r, which contradicts the fact that r was the smallest. Hence r < x.

To show uniqueness, suppose that q′ and r′ are some integers such that y =
q′x+r′ and 0 ≤ r′ < x. We will show that q′ = q and r′ = r. From qx+r = q′x+r′

we get (q − q′)x = r′ − r. By adding the inequalities −x < −r ≤ 0 and 0 ≤ r′ < x,
we obtain −x < r′ − r < x, so using r′ − r = (q − q′)x we get −x < (q − q′)x < x.
Canceling x, we obtain −1 < q − q′ < 1, which means that q − q′ = 0 or q = q′.
Substituting q = q′ in the equation r′ − r = (q − q′)x, we get r = r′.

It remains to prove the theorem for x < 0. Let x′ = |x| = −x > 0. Applying
the division algorithm for y and x′, we find unique q1 and r such that y = q1x

′ + r
and 0 ≤ r < x′. Take q = −q1. We conclude that y = qx+ r with 0 ≤ r < |x|, and
q, r are unique. �

Exercise 7.34. Suppose it is now 8 a.m. in Boston. What time will be in 6538
hours ?

7.4. Greatest common divisor and least common multiple

Definition 7.35. An integer z 6= 0 is a common divisor of x and y if and only if
z | x and z | y.

An integer z is a common multiple of x and y if and only if x | z and y | z.

Definition 7.36. We say that z is a greatest common divisor of x and y if and
only if z is a common divisor of x and y and for all t such that t | x and t | y,
it follows that t | z. For x, y 6= 0, the positive greatest common divisor of x and
y is denoted by gcd(x, y). Of course, gcd(0, 0) is undefined, and for nonzero x,
gcd(x, 0) =gcd(0, x) = |x|.

We say that z is a least common multiple of x and y if and only if z is a common
multiple of x and y and for all t such that x | t and y | t it follows that z | t. The
positive least common multiple of x and y is denoted by lcm(x, y). If one of x and
y is zero, then lcm(x, y) is undefined.

Example 7.37. gcd(4, 6) = 2, lcm(4, 6) = 12, gcd(30,−45) = 15, lcm(30,−45) =
90, gcd(−4,−33) = 1, lcm(−4,−33) = 132.

Exercise 7.38. Prove that for nonzero integers x, y, z, t we have
a) 1 is a common divisor of x and 1.
b) x is a common divisor of x and x.
c) 1 is a common divisor of x and y.
d) If z is a common divisor of x and y and t | z, then t is a common divisor of

x and y.
e) If z is a common divisor of x and y and t | z, then z/t is a common divisor

of x/t and y/t.
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Exercise 7.39. Prove that for nonzero integers x, y, z, t we have
a) x is a common multiple of x and 1.
b) x is a common multiple of x and x.
c) x · y is a common multiple of x and y.
d) If z is a common multiple of x and y and z | t, then t is a common multiple

of x and y.
e) If z is a common multiple of x and y, t | x, t | y, and t | z, then z/t is a

common multiple of x/t and y/t.

Theorem 7.40. If ∅ 6= G ⊆ Z and G is closed under subtraction, then there exists
an element d ∈ G such that G = {x · d : x ∈ Z}.

Proof. If G = {0}, we can take d = 0. Assume that G has nonzero elements.
Consider S = {|x| : x ∈ G, x 6= 0}. Then S ⊆ P is not empty, therefore has a least
element a > 0. For any x ∈ G there are q, r such that x = qa + r and 0 ≤ r < a.
Since r = x− qa and G is closed under subtraction, it follows that r ∈ G. It must
be that r = 0 and x = qa, since a was the smallest element and r < a. We can take
d = a and we conclude G = {q · d : q ∈ Z}. �

Theorem 7.41. If x and y are nonzero integers, then gcd(x, y) and lcm(x, y) exist.
Moreover, there are a, b ∈ Z such that gcd(x, y) = ax+ by.

Proof. Consider the set S = {xm+ yn : m,n ∈ Z}. Note that 1 ≤ x ·x+ y · y ∈ S,
hence S ∩ P 6= ∅. By the well-ordering Principle, S ∩ P contains a smallest element
t ≥ 1. We claim that t =gcd(x, y). Let’s show first that t | x.

By the Division Algorithm, there are q, r ∈ Z such that x = tq + r with
0 ≤ r < t. We know that t ∈ S and that there are a, b ∈ Z such that t = ax + by.
By an easy computation, it follows that

r = x− tq = x− (ax+ by)q = (1− aq)x+ (−bq)y,
hence r ∈ S. Since r < t, the only possibility is r = 0, hence x = tq and t | x.

A similar argument shows t | y, hence t is a common divisor. Let z be another
common divisor, and let x = zu, y = zv. Then t = ax+by = auz+bvz = (au+bv)z,
hence z | t. It follows that t =gcd(x, y).

Since there is at least one positive common multiple for each pair of nonzero
integers x, y (for example |xy|), by the well-ordering Principle the set of positive
common multiples has a smallest element. This proves that lcm(x, y) exists. �

Lemma 7.42. Let a, b, c be integers such that a | bc and gcd(a, b) = 1. Then a | c.

Proof. Let bc = ad. Since gcd(a, b) = 1, there are integers u, v such that 1 =
au+ bv. Therefore c = c · 1 = cau+ cbv = cau+ adv = a(cu+ dv) and a | c. �

Remark 7.43. Let x, y be nonzero integers. If gcd(x, y) = 1, then lcm(x, y) = |xy|.

Proof. Let m = |xy|. It is clear that x | m and y | m, so m is a common multiple.
Suppose x | k and y | k. Then k = xk′ for some integer k′. Since y | xk′ and
gcd(x, y) = 1, by Lemma 7.42 we get y | k′. It follows that |xy| = m | k, hence
lcm(x, y) = |xy|. �
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Corollary 7.44. For nonzero integers x, y we have lcm(x, y)·gcd(x, y) = |xy|.

Proof. Let d =gcd(x, y). Then x = dx′, y = dy′ for some integers x′, y′ and
gcd(x′, y) = 1. We will prove that lcm(x, y) = |xy|

d . Let m = |xy|
d = ±x′y = ±xy′.

It is clear that x | m and y | m, so m is a common multiple. Assume x | k and
y | k. Then x′ | k and y | k, so as in the above Remark we conclude that x′y | k, so
m | k. It follows that m =lcm(x, y). �

Exercise 7.45. Prove that gcd(6n+ 8, 4n+ 5) = 1.

Exercise 7.46. Prove by induction that it is possible to pay without requiring
change any whole number of roubles greater than 7 with banknotes of value 3
roubles and 5 roubles.

Theorem 7.47. We have the properties
1. (x | z) ∧ (y | z)⇒ lcm(x, y) | z.
2. lcm(lcm(x, y), z) = lcm(x, lcm(y, z)) (associativity).
3. z | x ∧ z | y ⇒ z | gcd(x, y).
4. gcd(gcd(x, y), z) = gcd(x, gcd(y, z)) (associativity).
5. x | y ⇒ gcd(x, y) = |x|.
6. y = q · x+ r ⇒ gcd(x, y) = gcd(r, x).

Proof. Parts 1 and 3 follow from the definition.
2. Both are equal to lcm(x, y, z), the least common multiple of x, y, z, defined

as the smallest positive integer divisible by x, y, z.
4. Both sides are equal to gcd(x, y, z), the largest positive integer that divides

x, y, z.
5. Since |x| | x and |x| | y, we get |x| ≤ gcd(x, y). Since also gcd(x, y) ≤ |x|,

we get equality.
6. If d divides x and y, then d | y− q · x = r, hence d | gcd(r, x). Conversely, if

d | r and d | x, then d | q · x+ r = y, hence d | gcd(x, y). By double inequality, we
get gcd(x, y) = gcd(r, x).

�

Theorem 7.48. (Euclidean Algorithm) Let a, b be positive integers with a ≥ b. If
b | a, then gcd(a, b) = b. If b - a, apply the division algorithm repeatedly as follows:

a = bq0 + r0, 0 < r0 < b

b = r0q1 + r1, 0 ≤ r1 < r0

r0 = r1q2 + r2, 0 ≤ r2 < r1

...
This process ends when we get a zero remainder, say rn−1 = rnqn+1 + 0. Then rn,
the last nonzero remainder is the greatest common divisor of a, b. Moreover, using
these equations backwards, we may express rn in the form of a linear combination
au+ bv for some integers u, v.
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Proof. The case b | a is clear. For b - a, the process ends since r0 > r1 > r2 · · · ≥ 0.
The fact that the last nonzero remainder rn is the greatest common divisor follows
from part 6 in Theorem 7.47. Putting rn in the form au + bv is a straightforward
computation. �

Example 7.49. Let’s find gcd(306, 657). We have

657 = 306 · 2 + 45

306 = 45 · 6 + 36

45 = 36 · 1 + 9

36 = 9 · 4 + 0,

hence gcd(306, 657) = 9. Moreover,

9 = 45− 36 = 45− (306− 45 · 6) = 306 + 45 · 7 =

= 306 + (657− 306 · 2) · 7 = (−13) · 306 + 7 · 657.

Corollary 7.50. The algorithm may be used to find the greatest common divisor
of any two nonzero integers a, b.

Proof. Indeed, we may reduce to the case of positive integers since

gcd(a, b) = gcd(a,−b) = gcd(−a, b) = gcd(−a,−b).
�

Definition 7.51. An integer p is prime if and only if p has exactly four divisors.

For example, ±2,±13,±19 are primes; 0, ±1, ±6 are not. An integer other
than 0 or ±1 that is not prime is called composite. For example, 45 = 3 · 3 · 5 is
composite.

Remark 7.52. If p is prime and p | xy, then (p | x) ∨ (p | y).

Proof. Assume p is prime and p | xy. Let d = gcd(p, x). Since p is prime, there
are two possibilities: d = |p| or d = 1. In the first case p | x. In the second case, by
Lemma 7.42, p | y. �

Theorem 7.53. (Fundamental Theorem of Arithmetic) Each integer except 0 and
±1 is either a prime, or it can be written in a unique way as a product of primes
if we disregard signs and order of factors.

Proof. We proved part of this theorem by complete induction for positive integers,
see Theorem 6.38 in the previous chapter. If n is negative, then −n is prime or
−n = p1p2 · · · pk with pj primes j = 1, ..., k. Then n is prime or n = (−p1)p2 · · · pk.

For the uniqueness part, assume that n = p1p2 · · · pk = q1q2 · · · qm with pi, qj
primes for i = 1, ..., k, j = 1, ...,m. We want to show that k = m and that, after
reordering and relabeling, if necessary, p1 = ±q1, p2 = ±q2, ..., pk = ±qk. We have
that p1 | q1q2 · · · qm. By Remark 7.52, p1 must divide one of the qj . By reordering
and relabeling, we may assume p1 | q1. It follows that p1 = ±q1. Canceling p1, we
get p2p3 · · · pk = ±q2q3 · · · qm (assuming k ≥ 2), hence p2 | q2q3 · · · qm. Repeating
the argument, we eliminate one prime on each side at a time. If k < m, then after k
steps, we get 1 = ±qk+1 · · · qm, which is impossible, since qj are primes. A similar
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argument shows that k > m does not work either. It remains that k = m and
pi = ±qi for all i = 1, ..., k. �

Corollary 7.54. Consider two integers a, b with |a|, |b| ≥ 2 and decompose them
into a product of primes. Then gcd(a, b) is the absolute value of the product of
the common primes from the decomposition with the least exponent, and lcm(a, b)
is the absolute value of the product of all primes from the decomposition with the
largest exponent.

Example 7.55. Let a = −10140, b = 2600. We have

−10140 = −22 · 3 · 5 · 132 and 2600 = 23 · 52 · 13.

Then gcd(−10140, 2600) = 22 ·5 ·13 = 260 and lcm(−10140, 2600) = 23 ·3 ·52 ·132 =
101400.

Exercise 7.56. Prove that for each integer x, there exists a prime p such that
x < p.

Exercise 7.57. Find the greatest common divisor of the following pairs of numbers
and express it as a linear combination au + bv: a = 56, b = 72; a = 24, b = 138;
a = 143, b = 227; a = 272, b = 1479.

Exercise 7.58. Prove or disprove: If a | (b+ c), then a | b or a | c.

Exercise 7.59. Prove that gcd(n, n+ 1) = 1 for any integer n.

Exercise 7.60. What are the possible values for gcd(n, n+ 6)?

Exercise 7.61. Use induction to show that if gcd(a, b) = 1, then gcd(a, bn) = 1
for all n ≥ 1.

Exercise 7.62. For a, b, c ∈ Z\{0} we defined gcd(a, b, c) to be the largest positive
integer which divides a, b, c. Prove that there are integers s, t, u such that

gcd(a, b, c) = sa+ tb+ uc.

Example 7.63. Find all integer solutions to the (Diophantine) equations

a) x2 = y3, b) x2 = y4 − 77.

Solution. a) Notice that y ≥ 0 since x2 ≥ 0. The obvious solutions are
x = y = 0, x = y = 1, x = −1, y = 1. To find all solutions, assume y ≥ 2,
therefore |x| ≥ 2. Since x and y have the same prime factors and in x2 each prime
has exponent a multiple of 2 and in y3 each prime has exponent a multiple of 3, it
follows that each exponent is a multiple of 6. Hence x2 = n6 = y3 and all solutions
are of the form x = ±n3, y = n2 for n ∈ Z.

b) The equation is equivalent to y4 − x2 = 77 or (y2 − x)(y2 + x) = 77. Since
the only divisors of 77 are ±1,±7,±11 and ±77 there are the following possibilities

1) y2 − x = 1, y2 + x = 77, which gives y2 = 39, no solution;
2) y2 − x = −1, y2 + x = −77, no solution;
3) y2 − x = 7, y2 + x = 11, which gives y = ±3, x = 2 ;
4) y2 − x = −7, y2 + x = −11, no solution;
5) y2 − x = 11, y2 + x = 7, which gives y = ±3, x = −2;
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6) y2 − x = −11, y2 + x = −7, no solution;
7) y2 − x = 77, y2 + x = 1, no solution;
8) y2 − x = −77, y2 + x = −1, no solution.

Exercise 7.64. Find the integer solutions of x4 = 4y2 + 4y − 23.

Exercise 7.65. Verify that x2 +x+ 41 is prime for all integers −40 ≤ x ≤ 40, but
for x = 41 it is not prime.

Example 7.66. Prove that for all n ≥ 0, 52n − 3n is divisible by 11.

Proof. This is true for n = 0 since 11 | 0. Assume 11 | 52k − 3k for some k ≥ 0
and let’s prove that 11 | 52k+2 − 3k+1. We have

52k+2 − 3k+1 = 25 · 52k − 3 · 3k = 25(52k − 3k) + 22 · 3k.
Since 11 | 52k − 3k and 11 | 22 it follows that 11 | 52k+2 − 3k+1. �

Exercise 7.67. *Suppose n is a positive integer such that both 2n+ 1 and 3n+ 1
are perfect squares. Prove that n is divisible by 40.

7.5. Decimal representation and divisibility tests

We are used to the decimal notation, i.e. to write numbers in base 10. When we
write 4712, we mean 4 · 103 + 7 · 102 + 1 · 101 + 2 · 100. Any positive integer n has
a decimal representation

n = akak−1 · · · a0 = ak · 10k + ak−1 · 10k−1 + · · ·+ a1 · 10 + a0,

where each ai is a digit from 0 to 9 and we omit the leading zeros. This represen-
tation extends easily to all integers, by adding the number 0 and by using a minus
sign for negative integers.

Fix n a positive integer. Recall that two integers a, b are congruent modulo n
if n divides a− b. We write a ≡ b(mod n). We proved in Example 5.38 that this is
an equivalence relation on Z.

Theorem 7.68. If a ≡ b(mod n) and c ≡ d(mod n), then a+ c ≡ b+d(mod n) and
ac ≡ bd(mod n).

Proof. Exercise. �

Theorem 7.69. Every positive integer akak−1 · · · a0 written in base 10 is congruent
modulo 9 to the sum of its digits ak + · · ·+ a0.

Proof. Since 10 ≡ 1(mod 9), we get 10i ≡ 1(mod 9), hence ai · 10i ≡ ai(mod 9)

for all 0 ≤ i ≤ k. We get
k∑
i=0

ai · 10i ≡
k∑
i=0

ai(mod 9). �

Corollary 7.70. An integer is a multiple of 9 iff the sum of its digits is a multiple
of 9.

Exercise 7.71. An integer is a multiple of 3 iff the sum of its digits is a multiple
of 3.
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Theorem 7.72. An integer with decimal representation akak−1 · · · a0 is divisible

by 11 iff the alternating sum of the digits
k∑
i=0

(−1)iai is divisible by 11.

Proof. We use the congruence 10 ≡ −1(mod 11) to get ai · 10i ≡ (−1)iai(mod 11)

and
k∑
i=0

ai · 10i ≡
k∑
i=0

(−1)iai(mod 11). �

Remark 7.73. It is easy to state divisibility tests by 2, 4, 5, 6, 8, 10:
A number n = akak−1 · · · a0 is divisible by 2 iff the last digit a0 is even;
n = akak−1 · · · a0 is divisible by 4 iff the number formed by the last two digits

a1a0 is divisible by 4;
n = akak−1 · · · a0 is divisible by 5 iff the last digit a0 is 0 or 5;
n = akak−1 · · · a0 is divisible by 6 iff it is divisible by 2 and 3;
n = akak−1 · · · a0 is divisible by 8 iff the number formed by the last three digits

a2a1a0 is divisible by 8;
n = akak−1 · · · a0 is divisible by 10 iff the last digit a0 is 0.

Proof. For example, n = akak−1 · · · a2 · 102 + a1a0 and 4 | 100. Also, n =
akak−1 · · · a3 · 103 + a2a1a0 and 8 | 1000. We leave the other cases as exercise. �

Remark 7.74. There are different ways of representing integers, using a base other
than 10. For example, in base 2 we use only the digits 0 and 1 and the number 7
is binary represented as 111. An integer with binary representation akak−1 · · · a0

is divisible by 2 iff the last digit a0 is 0. It is divisible by 4 iff the last two digits
a1, a0 are 0.

It would be interesting to state some divisibility tests for positive integers rep-
resented in a base other than 10.

Exercise 7.75. Prove that if n is odd, then n2 ≡ 1(mod 8).

Exercise 7.76. Prove that for any integer n we have n3 ≡ n(mod 6).

Exercise 7.77. For the following congruence equations, either find a solution x ∈ Z
or show that no solution exists:

99x ≡ 18 (mod 30), 91x ≡ 84 (mod 143), x2 ≡ 2 (mod 5),

x2 + x+ 1 ≡ 0 (mod 5), x2 + x+ 1 ≡ 0 (mod 7).





Chapter 8

Cardinality. Finite sets,
infinite sets

Learning how to count the elements of a set is a great achievement. Of course,
this is easy for (small) finite sets like {a, b, c} or {1, 3, 5, 7}. What if the sets are
infinite? We will see that there are different flavors of infinity, something that
puzzled people for many years. The correct way to compare infinite sets is a notion
called cardinality and is based on the existence of bijective functions.

8.1. Equipotent sets

Definition 8.1. Fix a universe U . Two sets A,B ⊆ U have the same cardinality
or are equipotent, written A ≈ B if there is a bijection f : A→ B.

Remark 8.2. Using the empty bijection, we have ∅ ≈ ∅.

Example 8.3. Let X be a set with ten elements, let S be the set of all six-element
subsets of X, and let T be the set of all four-element subsets of X. Then S ≈ T .
Indeed, define f : S → T, f(A) = X \A. Then f is one-to-one and onto. Its inverse
is f−1 : T → S, f−1(B) = X \ B. We will see later how many elements are in the
sets S and T .

Example 8.4. Let E denote the set of even integers, and define f : Z→ E, f(n) =
2n. Then f is a bijection, hence E ≈ Z. This example illustrates the fact that Z is
equipotent with a proper subset.

Example 8.5. Let a, b ∈ R with a < b. Then f : (a, b)→ (0, 1), f(x) =
x− a
b− a

is a

bijection and hence (a, b) ≈ (0, 1).

101
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Example 8.6. The function arctan : R → (−π/2, π/2) is a bijection, so R ≈
(−π/2, π/2).

Theorem 8.7. The relation ≈ is an equivalence relation on P(U). The equivalence
class of A is denoted |A| and is called the cardinality of A.

Proof. It suffices to consider nonempty subsets. Indeed, ≈ is reflexive, since idA :
A → A is a bijection. If A ≈ B, let f : A → B be a bijection. Then f−1 : B → A
is also a bijection, hence B ≈ A, so ≈ is symmetric. Assume A ≈ B and B ≈ C.
Then there are bijections f : A→ B and g : B → C. Consider g ◦f : A→ C. Then
g ◦ f is a bijection, hence A ≈ C, and ≈ is transitive. �

Corollary 8.8. We have |R| = |(0, 1)|.

Remark 8.9. Cardinals are generalizing natural numbers. Indeed, we can think
of 0 as |∅|, 1 as |{∅}|, 2 as |{∅, {∅}}|, and in general n+ 1 as |n ∪ {n}|. The idea is
that all sets containing exactly n elements have cardinality n.

Theorem 8.10. Let A,B,C,D be sets such that A ≈ C and B ≈ D. Then
A×B ≈ C ×D.

Proof. Let f : A → C and g : B → D be bijections. Define f × g : A × B →
C ×D, (f × g)(〈a, b〉 = 〈f(a), g(b)〉). Then f × g is a bijection. �

Theorem 8.11. Let A,B,C,D be sets such that A ≈ B,C ≈ D,A ∩ C = ∅ and
B ∩D = ∅. Then A ∪ C ≈ B ∪D.

Proof. Consider bijections f : A→ B and g : C → D and define

f ∪ g : A ∪ C → B ∪D, (f ∪ g)(x) =

{
f(x) if x ∈ A
g(x) if x ∈ C.

Then f ∪ g is well defined since A ∩ C = ∅. It is one-to-one since f and g are
one-to-one. It is onto since f, g are onto and B ∩D = ∅. �

Definition 8.12. For arbitrary sets A,B in a fixed universe U , we write |A| ≤ |B|
if there is a one-to-one function f : A→ B and |A| < |B| if |A| ≤ |B| and A 6≈ B.

Theorem 8.13. (Cantor) If A is a set, then |A| < |P(A)|.

Proof. This is clear for A = ∅ because |∅| = 0 < 1 = |{∅}|. Assume A 6= ∅ and
define f : A → P(A) by f(a) = {a}. Then f is injective, since f(a1) = f(a2)
implies {a1} = {a2}, hence a1 = a2. We deduce that |A| ≤ |P(A)|. To prove the
strict inequality, assume that there is a bijection g : A→ P(A), and define

B = {a ∈ A : a /∈ g(a)}
(recall that g(a) ⊆ A). Then B ⊆ A, hence B ∈ P(A). Since g is onto, there is
b ∈ A with g(b) = B. Let’s determine if b ∈ B or not. If b ∈ B, then b /∈ g(b) = B,
contradiction. If b /∈ B, then b ∈ g(b) = B, contradiction. It follows that g can
not be onto, hence |A| < |P(A)|. Notice the similarity of this proof with Russell’s
paradox. �

Theorem 8.14. (Cantor-Bernstein) If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.
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Proof. Since |A| ≤ |B| and |B| ≤ |A|, there are B′ ⊆ B with A ≈ B′ and A′ ⊆ A
with B ≈ A′. Consider bijections f : A → B′ and g : B → A′ with inverses
f−1 : B′ → A, g−1 : A′ → B. We will construct a bijection h : A→ B. Let a ∈ A.
If a ∈ A′, then g−1(a) ∈ B. Let’s call g−1(a) the first ancestor of a. If g−1(a) ∈ B′,
then f−1(g−1(a)) ∈ A, which we call the second ancestor of a. If f−1(g−1(a)) ∈ A′,
then g−1(f−1(g−1(a))) ∈ B, the third ancestor. We continue this process.

For each a ∈ A, one of the three possibilities holds
1) a has infinitely many ancestors;
2) a has a last ancestor belonging to A;
3) a has a last ancestor belonging to B.
Define

A∞ = {a ∈ A : a has infinitely many ancestors}
A0 = {a ∈ A : a has an even number of ancestors}
A1 = {a ∈ A : a has an odd number of ancestors}.

Note that A∞ ⊆ A′, A\A′ ⊆ A0, and A = A∞∪A0∪A1 with A∞, A0, A1 mutually
disjoint. In a similar way we decompose B = B∞ ∪B0 ∪B1. We claim that f takes
A∞ onto B∞, and takes A0 onto B1, while g−1 sends A1 onto B0. Indeed, if a ∈ A
has infinitely many ancestors, then f(a) ∈ B has infinitely many ancestors; if a ∈ A
has an even number of ancestors, then f(a) ∈ B has an odd number of ancestors,
and if a ∈ A has an odd number of ancestors, then g−1(a) ∈ B has an even number
of ancestors. We can define

h : A→ B, h(x) =

{
f(x) x ∈ A∞ ∪A0

g−1(x) x ∈ A1.

Since f |A∞ : A∞ → B∞, f |A0
: A0 → B1 and g−1 |A1

: A1 → B0 are bijections, we
conclude that h is a bijection and |A| = |B|. �

Exercise 8.15. Let A be a set. Recall that {0, 1}A denotes the set of all functions
f : A→ {0, 1}. Using characteristic functions, prove that |{0, 1}A| = |P(A)|.

8.2. Finite and infinite sets

Definition 8.16. Let N0 = ∅ and for n ≥ 1, denote Nn = {0, 1, 2, ..., n− 1}. A set
A is finite iff A ≈ Nn for some n ∈ N. In this case we say that A has n elements
and write |A| = n. (Note in particular that ∅ is finite and it has 0 elements). A set
is infinite if it is not finite. The sets P,N,Z,Q,R,R \Q,C are infinite.

Theorem 8.17. If A,B are finite and disjoint, then A∪B is finite and |A∪B| =
|A|+ |B|.

Proof. Let |A| = n, |B| = m. We can find a bijection f : A → {1, 2, ..., n} and a
bijection g : B → {n+ 1, n+ 2, ..., n+m}. Then

h : A ∪B → {1, 2, ..., n+m}, h(x) =

{
f(x) if x ∈ A
g(x) if x ∈ B

is a well defined bijection and shows that |A ∪B| = n+m. �
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Theorem 8.18. If A ⊂ B and B is finite nonempty, then A is finite and |A| < |B|.

Proof. Let |B| = n. If n = 1, then A = ∅ and |A| = 0 < 1. Suppose that the
result is true for n = k. Consider A ⊂ B with |B| = k + 1. We can assume
B = {b1, b2, ..., bk, bk+1}. There are two cases: bk+1 /∈ A and bk+1 ∈ A. In the
first case, A ⊂ {b1, b2, ...bk} and we are done. In the second case, it follows that
A1 = A∩{b1, b2, ...bk} ⊂ {b1, b2, ...bk} and A = {bk+1}∪A1. We know that |A1| < k
and therefore |A| = 1 + |A1| < k + 1. �

Theorem 8.19. Every set containing an infinite subset is infinite. An infinite set
is equipotent to a proper subset.

Proof. If A ⊆ B and A is infinite, then B is infinite. Indeed, we already proved
the contrapositive: if B finite and A ⊆ B, then A is finite.

For the second part, assume A is infinite. First we use the Axiom of choice to
prove that it contains an infinite set of the form C = {x1, x2, x3, ...}. Since A is
infinite, it is non-empty. Choose x1 ∈ A. The set A \ {x1} is also infinite; choose
x2 ∈ A \ {x1}. Inductively we can choose xn ∈ A \ {x1, x2, ..., xn−1} for all n ≥ 2.
At each step, the set A \ {x1, x2, ..., xn−1} is not empty since A is infinite. Define
f : A → A by f(xi) = x2i for all xi ∈ C and f(a) = a for all a /∈ C. Then f is a
bijection of A onto the proper subset A′ = A \ {x1, x3, x5, ...}. �

Remark 8.20. In fact, if a set A is equipotent to a proper subset, then A is infinite.
This property is taken sometimes as the definition of an infinite set.

8.3. Countable and uncountable sets

Definition 8.21. A set is called countable iff A ≈ N. A set is called at most
countable if it is finite or countable. A set which is not at most countable is called
uncountable. The cardinality of N is denoted by ℵ0 (read aleph zero), so |N| = ℵ0.

Examples 8.22. 1. The set P of positive integers is countable, since f : P →
N, f(n) = n− 1 is a bijection.

2. The set Z is countable. Indeed, the function

f : N→ Z, f(n) =

{
k if n = 2k
−k if n = 2k + 1

is a bijection (exercise!).
3. The set E of even integers is countable. Indeed, f : Z → E, f(k) = 2k is a

bijection.

Theorem 8.23. Let A be a nonempty set. The following are equivalent:
(1) There is an onto function f : N→ A.
(2) There is one-to-one function g : A→ N.
(3) A is at most countable.

Proof. (1) ⇒ (2). Let f : N → A be a surjection. Define g : A → N by g(a) =
the least element of f−1(a). The function g is well defined because f is onto, so
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f−1(a) 6= ∅. To show that g is one-to-one, notice that for a1 6= a2, the sets f−1(a1)
and f−1(a2) are disjoint, so g(a1) 6= g(a2).

(2) ⇒ (3). Fix g : A → N one-to-one. To prove that A is at most countable,
notice that it suffices to show that any subset B of N is at most countable, since A
is in bijection with g(A). If B is finite, it is at most countable by definition. Assume
B ⊆ N infinite, and let’s construct a bijection h : N → B. Let h(0) be the least
element of B, let h(1) be the least element of B \ {h(0)}, and in general let h(n) be
the least element of B \{h(0), ..., h(n−1)}. For all n, the set B \{h(0), ..., h(n−1)}
is not empty since B is infinite, and the least element exists by the Well ordering
Principle. Notice that by construction h is one-to-one since for m < n the element
h(m) belongs to {h(0), ..., h(n− 1)}, so h(m) 6= h(n). In particular h(N) is infinite.
To show that h is onto, let b ∈ B and choose n ∈ N such that h(n) > b. Let m be
the smallest natural number such that h(m) ≥ b. Then for all j < m we must have
h(j) < b, so b /∈ h({0, 1, ...,m− 1}). By definition, h(m) is the smallest element of
B \ h({0, 1, ...,m− 1}), so h(m) ≤ b. It follows that h(m) = b and h is onto.

(3)⇒ (1). Suppose A is at most countable. If A is infinite, there is a bijection
f : N → A by definition; in particular this f is onto. If A is finite, we can find a
bijection f : Nn → A for some n ≥ 1. We can extend f to a surjection f̃ : N → A
by defining f̃(m) = f(0) for m ≥ n. �

Corollary 8.24. A subset of a countable set is at most countable.

Theorem 8.25. If A is finite and B is at most countable, then A ∪ B is at most
countable.

Proof. If B is finite, then A ∪ B is finite, hence at most countable. Assume B
infinite. Since A∪B = (A\B)∪B and A\B is finite, it suffices to consider disjoint
sets. Consider bijections f : A → Nn for some n ≥ 0 and g : B → N. Define
h : A∪B → N, h(a) = f(a) if a ∈ A and h(b) = n+ g(b) if b ∈ B. Since A∩B = ∅,
h is well defined and it is bijective (exercise!). �

Theorem 8.26. If A,B are at most countable sets, then A∪B is at most countable.

Proof. As before, we may assume A,B disjoint and infinite. To show that A ∪ B
is countable, we first define bijections f : A→ E and g : B → Z\E, where E is the
set of even integers. Define h : A ∪B → Z as h = f ∪ g. Then h is a bijection. �

Corollary 8.27. A finite union of at most countable sets is at most countable.

Theorem 8.28. The set N× N is countable. If we define the product of cardinals
as |A| · |B| = |A×B|, then ℵ0 · ℵ0 = ℵ0.

Proof. Let f : N×N→ P, f(〈m,n〉) = 2m(2n+1). Then f is a bijection. Indeed, if
f(〈m,n〉) = f(〈m′, n′〉), then 2m

′
(2n′+ 1) = 2m(2n+ 1), hence m = m′ and n′ = n

and f is one-to-one. Given a positive integer k, then write k = 2m(2n+ 1) for some
m ≥ 0 and n ≥ 0, hence f is onto. Since P ≈ N, we get that N× N ≈ N. �

Theorem 8.29. The set Q+of positive rational numbers is countable.
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Proof. Write
Q+ =

{
p

q
: p, q ∈ P and gcd(p, q) = 1

}
and define f : Q+ → N×N, f(p/q) = 〈p, q〉. Then f is one-to-one, hence |Q+| ≤ ℵ0.
Since g : P→ Q+, g(p) =

p

1
is also one-to-one, we get ℵ0 ≤ |Q+|, hence equality. �

Corollary 8.30. The set of rational numbers Q is countable.

Proof. If Q− denotes the set of negative rational numbers, then f : Q+ →
Q−, f(x) = −x is a bijection. Now use the fact that Q = Q+ ∪ {0} ∪Q−. �

Exercise 8.31. Consider a bijection φ : Q→ N and define a relation R on Q such
that xRy iff φ(x) ≤ φ(y). Prove that (Q, R) is an well-ordered set.

Theorem 8.32. The interval (0, 1) is uncountable.

Proof. Suppose f : P → (0, 1) is a bijection. We list all real numbers in (0, 1) in
decimal form, not ending with an infinite string of nines:

f(1) = 0.a11a12a13...

f(2) = 0.a21a22a23...

f(3) = 0.a31a32a33...

...
f(n) = 0.an1an2an3...

...
Define

bk =

{
2, if akk 6= 2
4, if akk = 2.

Notice that the number b = 0.b1b2b3... ∈ (0, 1) does not appear on the list because
bk 6= akk and bk 6= 9. This is a contradiction with the fact that f is a bijection, so
(0, 1) is uncountable. This proof technique is called the Cantor’s diagonal argument.

�

The cardinality of (0, 1) or R is denoted by c, called the continuum.

Exercise 8.33. Denote by Pf (N) the set of finite subsets of N. Prove that Pf (N)
is countable.

Exercise 8.34. Prove that the set of irrational numbers is uncountable.

Exercise 8.35. A real number α is called algebraic if it satisfies a polynomial
equation with integer coefficients

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

For example, 1 +
√

2 is algebraic since it satisfies x2 − 2x− 1 = 0. Assuming that
each polynomial equation has finitely many roots, prove that the set of algebraic
numbers is countable.

Exercise 8.36. Let S be the set of all infinite sequences of 0s and 1s. Use Cantor’s
diagonal argument to prove that S is uncountable.
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Exercise 8.37. Show that a countable union of countable sets is countable.

Exercise 8.38. Find a bijection f : (0, 1) → [0, 1]. (Hint: choose a countable
subset {x0, x1, x2, ...} of (0, 1) and define f(x0) = 0, f(x1) = 1 and for n ≥ 2 let
f(xn) = xn−2. Extend f to a bijection).

Exercise 8.39. Suppose there are injective functions f : A → B, g : B → C and
h : C → A. Prove that A ≈ B ≈ C.

Remark 8.40. We have ℵ0 < |P(N)| = 2ℵ0 , where for a set A we define 2|A| as
|P(A)|.

We accept the Continuum hypothesis. There is no set X with ℵ0 < |X| < c.

Corollary 8.41. We have c = 2ℵ0 .





Chapter 9

Counting techniques and
combinatorics

In this chapter we will learn how to count the number of elements in certain finite
sets, using inclusion-exclusion principle, multiplication principle and more. We will
introduce permutations and combinations, binomial coefficients, recursive sequences
and recurrence relations.

Theorem 9.1. Let A1, ..., An be disjoint finite sets. Then

|A1 ∪ ... ∪An| = |A1|+ ...+ |An|.

Proof. We have seen in Theorem 8.17 that for A,B disjoint we have |A ∪ B| =
|A|+ |B|. The proof now proceeds by induction. �

Example 9.2. Let A be the set of all integers n from 1 to 100 which have at
least one digit of 4. Then |A| = 19. Indeed, we have A = A1 ∪ ... ∪ A10, where
A1 = {4}, A2 = {14}, A3 = {24}, ..., A5 = {41, 42, ..., 49}, ..., A10 = {94}. Then
|A5| = 10 and |Ai| = 1 for 1 ≤ i ≤ 10, i 6= 5. Thus |A| = |A1|+ ...+ |A10| = 19.

9.1. Counting principles

Theorem 9.3. (Inclusion-exclusion principle) Let A,B be finite sets. Then

|A ∪B| = |A|+ |B| − |A ∩B|.

Proof. We can write A = (A \B) ∪A ∩B and B = (B \A) ∪A ∩B and the sets
A \B,B \A and A ∩B are disjoint. It follows that

|A ∪B| = |A \B|+ |B \A|+ |A ∩B| =

= |A| − |A ∩B|+ |B| − |A ∩B|+ |A ∩B| = |A|+ |B| − |A ∩B|.
�

109
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Corollary 9.4. Let A1, A2, ..., An be finite sets. Then

|A1 ∪A2 ∪ · · · ∪An| =

=

n∑
i=1

|Ai|−
∑
i<j

|Ai ∩Aj |+
∑
i<j<k

|Ai ∩Aj ∩Ak|− · · ·+ (−1)n+1|A1 ∩A2 ∩ · · · ∩An|.

Proof. By Induction. �

Exercise 9.5. Suppose |A ∪B| = 7, |A| = 5 and |B| = 4. Find |A ∩B|.

Example 9.6. How many positive integers from 1 to 100 are divisible by 2, 3 or
5?

Solution. There are 50 integers divisible by 2, 33 divisible by 3, 20 divisible by
5, 16 divisible by 6, 10 divisible by 10, 6 divisible by 15 and 3 divisible by 30. Using
the inclusion-exclusion principle, the number of integers from 1 to 100 divisible by
2, 3 or 5 is

50 + 33 + 20− 16− 10− 6 + 3 = 74.

Exercise 9.7. Three sets have 100 elements each. Any two of them have exactly
50 elements in common. Exactly 25 elements are in all three. How many elements
are in the union?

Exercise 9.8. 73% of British people like cheese, 76% like apples and 10% like
neither. What percentage like both cheese and apples?

Exercise 9.9. Find the number of integers between 1 and 5000 which are divisible
by neither 3 nor 4. Find the number of integers between 1 and 5000 which are
divisible by one or more of the numbers 4, 5 and 6.

Theorem 9.10. (Multiplication principle) For A1, A2, ..., An finite we have |A1 ×
...×An| = |A1| · ... · |An|.

Proof. Indeed, |A×B| = |A| · |B| and we may use induction on n. �

Theorem 9.11. (Exponential principle) Recall that AB denotes the set of functions
f : B → A. For A,B finite sets we have |AB | = |A||B|.

Proof. We use induction on |B|. For |B| = 1, the set AB has exactly |A| elements.
Assume that the formula is true for |B| = k. Then for |B| = k + 1, let’s assume
B = {b1, b2, ..., bk, bk+1}. A function f : B → A is determined by f |{b1,b2,...,bk} and
f(bk+1). Since there are |A|k possibilities for the restriction f |{b1,b2,...,bk} and |A|
possibilities for f(bk+1), we obtain that |AB | = |A|k · |A| = |A|k+1 = |A||B|.

�

Remark 9.12. For infinite sets A,B, we define |A||B| to be |AB |. This is consistent
with the exponential principle.

Exercise 9.13. How many integers between 1 and 1000 have distinct digits?

Exercise 9.14. In a certain state, a license plate consists of three uppercase English
letters followed by three digits from 0 to 9. How many license plates can be issued?
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Exercise 9.15. Suppose 2000 people are at a gathering. Then some people have
the same birthday. Find the minimum number of such people.

9.2. Permutations and combinations

Definition 9.16. A permutation of A = {a1, ..., an} is a bijection π : A→ A.

Theorem 9.17. There are n! = 1 · 2 · 3 · · ·n permutations of a set with n ≥ 1
elements.

Proof. Let A = {a1, ..., an} be a set with n ≥ 1 elements. For a bijection π :
A → A, there are n possibilities for π(a1). Once we fix π(a1), there are n − 1
possibilities for π(a2). Once we fix π(a2), there are n − 2 possibilities for π(a3).
Continuing in this way, there is only one possibility for π(an). Multiplying, we get
n(n− 1) · · · 1 = n! bijections π : A→ A. �

Definition 9.18. A permutation of size k of n objects with 1 ≤ k ≤ n is an ordered
list of length k of elements of a set A with n elements.

Theorem 9.19. If we denote by P (n, k) the number of permutations of length k
of a set with n elements, then

P (n, k) = n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
,

where by definition 0! = 1.

Proof. Indeed, for the first position there are n choices, for the second position
there are n− 1 choices,..., for the kth position there are n− k + 1 choices. �

Definition 9.20. Let A be a set with n elements, and let k with 0 ≤ k ≤ n. A
subset of A with k elements is called a combination of size k chosen from A. The
number of such combinations is denoted by C(n, k). Another notation is Ckn or(
n
k

)
(read n choose k).

Theorem 9.21. For n ≥ 1, we have

C(n, k) =
P (n, k)

k!
=

n!

k!(n− k)!
.

Proof. Since we relax the condition that in the list of k elements the order counts,

we get P (n, k) = C(n, k) · k!, hence C(n, k) =
P (n, k)

k!
. �

Exercise 9.22. From a club with 20 members, a president, a vice-president and a
secretary are to be chosen. In how many ways can this be done?

Exercise 9.23. In how many ways can the letters of the word land be rearranged?
Same question for mara and llama.

Exercise 9.24. In how many ways can eight identical rooks be placed on a 8× 8
chessboard so that no rook attacks another rook?
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Remark 9.25. We have C(n, k) = C(n, n−k), C(n+ 1, k) = C(n, k) +C(n, k−1)
and (n− k)C(n, k) = nC(n− 1, k).

Proof. Indeed,
n!

k!(n− k)!
=

n!

(n− k)!(n− (n− k))!
,

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!
=

(n− k + 1)n! + kn!

k!(n+ 1− k)!
=

=
(n+ 1)n!

k!(n+ 1− k)!
=

(n+ 1)!

k!(n+ 1− k)!
,

(n− k)
n!

k!(n− k)!
=

n!

k!(n− k − 1)!
= n

(n− 1)!

k!(n− 1− k)!
.

�

The numbers
(
n
k

)
are also called binomial coefficients. They have a trian-

gular representation, called the Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

· · ·

In each row, we use the identity C(n+ 1, k) = C(n, k) + C(n, k − 1).

Theorem 9.26. We have the binomial formula

(x+ y)n =

(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n
n

)
yn

=

n∑
m=0

(
n
m

)
xn−mym.

Proof. For n = 1 this is clear, since (x + y)1 = x + y =

(
1
0

)
x +

(
1
1

)
y.

Assume

(x+ y)k =

k∑
m=0

(
k
m

)
xk−mym.
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Then

(x+ y)k+1 = (x+ y)(x+ y)k =

= xk+1 +

k∑
m=1

(
k
m

)
xk−m+1ym +

k−1∑
m=0

(
k
m

)
xk−mym+1 + yk+1 =

= xk+1 +

k∑
m=1

[(
k
m

)
+

(
k

m− 1

)]
xk+1−mym + yk+1 =

=

k+1∑
m=0

(
k + 1
m

)
xk+1−mym.

�

Corollary 9.27. We have

(9.1)
n∑
k=0

(
n
k

)
= 2n.

(9.2)
n∑
k=1

k

(
n
k

)
= n2n−1.

(9.3)
(

2n
n

)
=

n∑
k=0

(
n
k

)2

.

Proof. For (9.1), take x = y = 1 in the binomial formula.

For (9.2), differentiate (1 + x)n =

n∑
k=0

(
n
k

)
xk and then take x = 1.

For (9.3), write (1 + x)2n = (1 + x)n(1 + x)n and identify the coefficient of xn both
sides. �

Exercise 9.28. Expand the binomials (2x+ y)3, (2x+ 3y)4, (2x− y)5.

Exercise 9.29. Find a such that

1 +
1

2

(
n
1

)
+

1

3

(
n
2

)
+ · · · 1

n+ 1

(
n
n

)
=

a

n+ 1
.

Exercise 9.30. Twelve balls are placed in a jar. Four are white, three are red, and
five are blue. Five balls are taken from the jar. How many selections are possible
that contain exactly three white balls?

Exercise 9.31. Prove that
k∑
r=0

(
m

k − r

)(
n
r

)
=

(
m+ n
k

)
.

Exercise 9.32. The digits 1, 2, 3, 4, 5, 6 are written down in some order to form a
six digit number.

a) how many such numbers are there?
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b) how many such numbers are even?
c) how many are divisible by 4? By 8? By 11?

9.3. Recursive sequences and recurrence relations

Definition 9.33. Given a sequence s : N → R, we write s = (sn)n≥0, where
sn = s(n). The sequence (sn)n≥0 is called recursive if there is n0 ∈ N such that
for all n > n0, the term sn can be expressed as a function of s0, s1, ..., sn−1. That
function is called the recurrence relation.

Example 9.34. Let s0 = 1 and let sn = 2sn−1 for n ≥ 1. Then by induction we
can prove that sn = 2n.

Example 9.35. The Fibonacci sequence (fn)n≥0, where f0 = f1 = 1, fn = fn−1 +
fn−2 for n ≥ 2. The Fibonacci sequence appears in nature and is related to the
golden ratio. A formula for the general term is given below.

Example 9.36. Consider n straight lines in the plane such that no two are parallel
and no three meet at a point (they are in general position). The number of regions
rn determined in the plane by the n lines satisfies r0 = 1, rn+1 = rn + n+ 1.

We will use the following result, which reminds you about solving linear differ-
ential equations of second order:

Theorem 9.37. Let (xn)n≥0 be a recursive sequence such that

xn = bxn−1 + cxn−2,

where b, c ∈ R are fixed. If the characteristic equation

t2 − bt− c = 0

has distinct (complex) roots r1, r2, then

xn = αrn1 + βrn2

for some α, β, determined by x0, x1.
If the equation t2 − bt − c = 0 has repeated roots r1 = r2 = r, then xn =

αrn + βnrn for some α, β.

Example 9.38. (the Fibonacci sequence) The characteristic equation t2−t−1 = 0
has roots

r1 = (1 +
√

5)/2, r2 = (1−
√

5)/2.

Since
α+ β = 1 and αr1 + βr2 = 1,

we get

α =
1 +
√

5

2
√

5
, β =

√
5− 1

2
√

5
,

hence

fn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 .
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Definition 9.39. (Generating functions) Let (an)n≥0 be a sequence of real num-
bers. The power series

f(X) = a0 + a1X + · · ·+ anX
n + · · ·

is called the generating function of the sequence, defined for those values of X such
that the series converges.

Remark 9.40. The generating function of a recursive sequence can be sometimes
used to find the general term of the sequence. In this case, we say that we solved
the recurrence. Recall the sum of a geometric series

1 +X +X2 + · · ·+Xn + · · · = 1

1−X
for |X| < 1. By differentiation, we get

1 + 2X + 3X2 + · · ·+ (n+ 1)Xn + · · · = 1

(1−X)2
.

Differentiating again, we get
1

(1−X)3
= 1 +

3 · 2
2
X +

4 · 3
2
X2 + · · · (n+ 2)(n+ 1)

2
Xn + · · · .

Example 9.41. Consider the sequence (an)n≥0 with an = 2an−1, a0 = 1. The
generating function is

f(X) = a0+a1X+a2X
2+· · ·+anXn+· · · = a0+2a0X+2a1X

2+· · ·+2an−1X
n+· · · =

= a0 + 2X(a0 + a1X + · · ·+ an−1X
n−1 + · · · ) = 1 + 2Xf(X),

hence
f(X) =

1

1− 2X
= 1 + 2X + 22X2 + · · ·+ 2nXn + · · ·

for |X| < 1/2. We get an = 2n for n ≥ 0.

Example 9.42. Let (rn)n≥0 be the recursive sequence with rn+1 = rn+n+1, r0 =
1. Then

f(X) = r0 + r1X + r2X
2 + · · ·+ rn+1X

n+1 + · · · =
= 1 + (r0 + 1)X + (r1 + 2)X2 + · · ·+ (rn + n+ 1)Xn+1 + · · · =
= (1 +X + 2X2 + · · ·+ (n+ 1)Xn+1 + · · · ) +X(r0 + r1X + · · ·+ rnX

n + · · · ) =

= 1 +
X

(1−X)2
+Xf(X)

for |X| < 1. We get

f(X) =
1

1−X
+

X

(1−X)3
.

Since
1

(1−X)3
= 1 +

3 · 2
2
X +

4 · 3
2
X2 + · · · (n+ 2)(n+ 1)

2
Xn + · · · ,

we obtain

f(X) = 1 +X +X2 + · · ·Xn + · · ·+X +
3 · 2

2
X2 +

4 · 3
2
X3 + · · · (n+ 1)n

2
Xn + · · ·
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and
rn = 1 +

n(n+ 1)

2
.

Exercise 9.43. Solve the recurrence relations
a) an = an−1 + 2an−2, a0 = 3, a1 = 2.
b) an = 2an−2, a0 = 1, a1 = 2.
c) 2an = 3an−1 − an−2, a0 = 1, a1 = 2.
d) an = 2an−1 + n/2, a0 = 1.

Exercise 9.44. Use generating functions to solve the recurrence an = 4an−1, a0 =
2.

Exercise 9.45. Let bn be the number of strings of 0 and 1 of length n having no
two consecutive 0’s. Find a recurrence relation for bn and solve it.

Exercise 9.46. Consider n straight lines in the plane such that no two are parallel
but exactly three are concurrent. In how many regions is the plane divided?

Exercise 9.47. Let (an) be a sequence of positive integers such that for all n ≥ 1
we have an+1 > an and aan = 3n. Find a1, a2, a3. Find a100. What else can you
say about the sequence?

Exercise 9.48. The Catalan numbers are defined by c0 = 1 and for n ≥ 1, cn
represents the number of triangulations of a polygon with (n + 2) vertices. It is
easy to see that c1 = 1, c2 = 2, c3 = 5.

a) Find a recurrence formula for cn.

b) Compute the generating function f(X) =

∞∑
n=0

cnX
n.

c) Derive a formula for cn.



Chapter 10

The construction of rational
numbers

Rational numbers were invented since an equation like 3x = 2 has no integer solu-
tion; you need fractions. People worked with fractions since long time ago: if you
want to share a loaf of bread with three other people, each will get one quarter.
The modern definition of rational numbers uses the set of integers Z and an equiv-
alence relation. This construction is generalized in Abstract Algebra to obtain the
so-called field of fractions of an integral domain.

10.1. Definition, operations and order

Definition 10.1. Let Z∗ = Z \ {0}. Define a relation on Z× Z∗ by

〈a, b〉 ∼ 〈c, d〉 if and only if ad = bc.

Theorem 10.2. The relation ∼ is an equivalence relation on Z× Z∗.

Proof. The relation is reflexive 〈a, b〉 ∼ 〈a, b〉, since ab = ba. It is symmetric
since 〈a, b〉 ∼ 〈c, d〉 implies 〈c, d〉 ∼ 〈a, b〉. Indeed, ad = bc implies cb = da. For
transitivity, assume 〈a, b〉 ∼ 〈c, d〉 and 〈c, d〉 ∼ 〈e, f〉, hence ad = bc and cf = de.
Multiplying the first equation by f , we get adf = bcf = bde. Canceling d 6= 0 we
get af = be, hence 〈a, b〉 ∼ 〈e, f〉. �

Definition 10.3. The set of rational numbers Q is the set of equivalence classes
determined by ∼. The class containing 〈a, b〉 is denoted by [a, b] (later this will be
denoted in the more traditional fashion by

a

b
or by a/b). The integer a is called

numerator, and the integer b 6= 0 is called denominator.

117
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Theorem 10.4. 1. We have [a, b] = [c, d]⇔ ad = bc.
2. If [a, b] = [c, d] and [e, f ] = [g, h], then:
a. [af + be, bf ] = [ch+ dg, dh] and
b. [ae, bf ] = [cg, dh].

Proof. The first part follows from definition. For the second, assume ad = bc and
eh = fg. For part a, we compute (af + be)dh = adfh + bdeh = bcfh + bdfg =
bf(ch+dg), hence [af + be, bf ] = [ch+dg, dh]. For part b we just multiply the two
equations to get adeh = bcfg, hence [ae, bf ] = [cg, dh]. �

Corollary 10.5. We define the addition and multiplication on Q by

[a, b]⊕ [c, d] = [ad+ bc, bd]

and
[a, b]� [c, d] = [ac, bd].

This definition does not depend on representatives.

Theorem 10.6. 1. We have [a, b] = [c, b]⇔ a = c.
2. If a 6= 0, then [a, b] = [a, d]⇔ b = d.
3. We have [0, 1]⊕ [a, b] = [a, b] and [0, 1]� [a, b] = [0, 1]

4. The operations ⊕ and � are commutative and associative.
5. The multiplication � is distributive with respect to the addition ⊕.
6. For x, y, z ∈ Q we have x⊕ y = x⊕ z ⇒ y = z (cancellation).
7. If x, y, z ∈ Q and x 6= [0, 1], then x� y = x� z ⇒ y = z (cancellation).
8. For each x ∈ Q there is a unique y ∈ Q such that x⊕ y = [0, 1].

Proof. 1. From ab = bc we cancel b and get a = c.
2. We have ad = ab and we can cancel a since a 6= 0.
3. By definition [0, 1]⊕ [a, b] = [0 · b + 1 · a, 1 · b] = [a, b]. Also, [0, 1]� [a, b] =

[0 · a, 1 · b] = [0, b] = [0, 1].
4. Straightforward computations:

[a, b]⊕ [c, d] = [ad+ bc, bd] = [c, d]⊕ [a, b],

[a, b]⊕ ([c, d]⊕ [e, f ]) = [a, b]⊕ [cf + de, df ] = [adf + bcf + bde, bdf ],

([a, b]⊕ [c, d])⊕ [e, f ] = [ad+ bc, bd]⊕ [e, f ] = [adf + bcf + bde, bdf ],

[a, b]� [c, d] = [ac, bd] = [c, d]� [a, b],

[a, b]� ([c, d]� [e, f ]) = [a, b]� [ce, df ] = [ace, bdf ],

([a, b]� [c, d])� [e, f ] = [ac, bd]� [e, f ] = [ace, bdf ].

5. We have

[a, b]� ([c, d]⊕ [e, f ]) = [a, b]� [cf + de, df ] = [acf + ade, bdf ]

([a, b]�[c, d])⊕([a, b]�[e, f ]) = [ac, bd]⊕[ae, bf ] = [abcf+abde, b2df ] = [acf+ade, bdf ].

6. Let x = [a, b], y = [c, d] and z = [e, f ]. From x ⊕ y = x ⊕ z we get
[ad + bc, bd] = [af + be, bf ], so [adf + bcf, bdf ] = [adf + bde, bdf ]. From 1 we get
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adf + bcf = adf + bde, hence by cancelation of integers, cf = de and therefore
y = z.

7. Let x = [a, b] with a 6= 0, y = [c, d] and z = [e, f ]. From x � y = x � z we
get [ac, bd] = [ae, bf ], so [acf, bdf ] = [ade, bdf ]. From 1 it follows that acf = ade,
hence cf = de since a 6= 0 and therefore y = z.

8. For x = [a, b], we can take y = [−a, b], so such a y exists. If a⊕ y = x⊕ y′ =
[0, 1], by cancellation we get y = y′, so y is unique. �

Definition 10.7. The rational number y such that x ⊕ y = [0, 1] is called the
additive inverse or opposite of x and is denoted by 	x. We define the operation of
subtraction on Q by z 	 x = z ⊕ (	x).

Theorem 10.8. We have
1. 	[a, b] = [−a, b] = [a,−b].
2. [a, b]	 [c, d] = [ad− bc, bd].
3. [1, 1]� [a, b] = [a, b].
4. For each x ∈ Q with x 6= [0, 1] there is a unique y ∈ Q such that x�y = [1, 1].

Proof. Parts 1-3 follow from straightforward computation. For 4, let x = [a, b]
with a 6= 0. We can take y = [b, a]. Uniqueness follows from cancellation. �

Definition 10.9. The rational number y such that x � y = [1, 1] is called the
reciprocal or multiplicative inverse of x. It is denoted by x−1 or 1/x. We define
the operation of division on Q by x÷ y = x/y = x� y−1 for y 6= 0.

Theorem 10.10. 1. For [a, b] ∈ Q with a 6= 0 we have [a, b]−1 = [b, a].
2. For c 6= 0 we have [a, b]/[c, d] = [ad, bc].

Proof. 1. This follows from the computation [a, b]� [b, a] = [ab, ab] = [1, 1].
2. Indeed, [a, b]/[c, d] = [a, b]� [c, d]−1 = [a, b]� [d, c] = [ad, bc]. �

Definition 10.11. We say that [a, b] ∈ Q is positive if and only if ab > 0 and that
[a, b] is negative if and only if ab < 0. We write x � y if and only if x	y is positive,
and x ≺ y iff y � x.

Theorem 10.12. We have
1. [a, b] is positive iff [a, b] � [0, 1] .
2. [a, b] is negative iff [−a, b] is positive.
3. If x and y are positive, then x� y and x⊕ y are positive.
4. (Trichotomy) Exactly one of the following is true: x ≺ y , y ≺ x, or x = y.
5. (Transitivity) x ≺ y and y ≺ z implies x ≺ z .
6. x ≺ y ⇒ x⊕ z ≺ y ⊕ z.
7. (x ≺ y) ∧ (z ≺ w)⇒ x⊕ z ≺ y ⊕ w.
8. ([0, 1] ≺ x) ∧ (y ≺ z)⇒ x� y ≺ x� z.

Proof. 1. Indeed, [a, b]	 [0, 1] = [a, b] is positive iff ab > 0.
2. We have ab < 0⇔ (−a)b > 0.
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3. Let x = [a, b] and y = [c, d] with ab > 0, cd > 0. Then x � y = [ac, bd] and
acbd > 0. Also, x⊕ y = [ad+ bc, bd] and (ad+ bc)bd = abd2 + b2cd > 0.

4. Let x	 y = [a, b] ∈ Q. Then we have either ab = 0 or ab > 0 or ab < 0. In
the first case, x = y, in the second, x ≺ y, and in the third, y ≺ x.

5. If y 	 x = [a, b] and z 	 y = [c, d] are positive, then z 	 x = [a, b] ⊕ [c, d] is
also positive.

6. Assume x ≺ y. We have (y ⊕ z)	 (x⊕ z) = y 	 x, which is positive, hence
x⊕ z ≺ y ⊕ z.

7. Assume x ≺ y and z ≺ w. Then (y ⊕ w) 	 (x ⊕ z) = (y 	 x) ⊕ (w 	 z) is
positive since y 	 x and w 	 z are.

8. Assume [0, 1] ≺ x and y ≺ z. Then (x�z)	 (x�y) = x� (z	y) is positive,
as the product of positives. �

Definition 10.13. We say that a pair 〈a, b〉 ∈ Z × Z∗ is in lowest terms iff b > 0
and gcd(a, b) = 1.

Remark 10.14. Every nonzero rational number can be represented uniquely by a
pair in lowest terms.

Proof. Let x = [a, b] with a 6= 0 and b > 0. Let d = gcd(a, b) and let a′ = a/d, b′ =
b/d. Then [a, b] = [da′, db′] = [a′, b′], where b′ > 0 and gcd(a′, b′) = 1. The numbers
a′, b′ are unique. Indeed, let [a′′, b′′] another representation of [a, b] in lowest terms.
Then [a′, b′] = [a′′, b′′] implies a′b′′ = a′′b′, hence b′ | a′b′′. Since gcd(a′, b′) = 1, it
follows from Lemma 7.42 that b′ | b′′. A similar argument shows that b′′ | b′, hence
b′ = b′′ because they are positive. We also get a′ = a′′, hence we got uniqueness. �

Theorem 10.15. The subset W = {[a, 1] : a ∈ Z} ⊂ Q is isomorphic with Z.

Proof. Define f : Z→ Q, f(a) = [a, 1]. Then f is one-to-one and onto, f(a+ b) =
f(a)⊕ f(b), f(ab) = f(a)⊗ f(b) and a < b⇒ f(a) ≺ f(b). �

From now on, we will write +,−, ·, <,> instead of ⊕,	,�,≺,�. Also, a ratio-
nal number [a, b] will be denoted by

a

b
or a/b. An integer k is identified with the

rational number [k, 1] = k/1. The notation a/b for division of rational numbers is
consistent with the case when a, b are integers.

Exercise 10.16. Is f : Q → Z, f([a, b]) = a − b a well defined function? (Hint:
check if the formula depends on representatives).

Theorem 10.17. Between any two distinct rational numbers there is another ra-
tional number.

Proof. Suppose r, s ∈ Q with r < s and consider
r + s

2
∈ Q. Then r <

r + s

2
< s

since r + r < r + s < s+ s. �

Exercise 10.18. Prove that between two rational numbers there are infinitely
many rationals.

Theorem 10.19. (Archimedean Property) If r, s are positive rational numbers,
then there is a positive integer n such that nr > s.
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Proof. Let r = a/b, s = c/d, where a, b, c, d are positive integers. For n an arbitrary
positive integer, the inequality nr > s is equivalent with

na

b
>
c

d
or nad > bc. We

may pick n = 2bc and the inequality is satisfied since ad ≥ 1. �

Definition 10.20. The absolute value of a rational number is defined as

|x| =
{

x if x ≥ 0
−x if x < 0

Exercise 10.21. For x, y ∈ Q we have the properties:
a. |x| ≥ 0 and |x| = max(x,−x).
b. |x+ y| ≤ |x|+ |y|.
c. |xy| = |x||y|.
d.
∣∣|x| − |y|∣∣ ≤ |x− y|.

Remark 10.22. If we repeat the construction of rationals using pairs of rationals
instead of pairs of integers, we get back the rationals.

We summarize the properties of the rational numbers by saying that (Q,+, ·, <)
is an ordered field with the Archimedean property, containing the set of integers Z.
Since the equation x2 = 2 has no rational solution, the field Q is not complete. It
is riddled with ”holes“ that will be filled by constructing the field of real numbers.

10.2. Decimal representation of rational numbers

A decimal fraction is a rational number of the form
a

10n
where a ∈ Z and n ≥ 1.

For example,
−7

103
is a decimal fraction equal to −0.007. You must be familiar with

decimal numbers, say from a pocket calculator.

Each rational number
a

b
can be represented as a decimal number with finitely

many nonzero decimals or with repeating decimals. For example
1

2
=

5

10
= 0.5,

5

6
= 0.8333... =

8

10
+

3

102
+

3

103
+ · · · = 0.83̄,

−2

7
= −0.285714285714... =

−2

10
+
−8

102
+
−5

103
+
−7

104
+
−1

105
+
−4

106
+ · · · = −0.285714.

We overline the group of repeating decimals. The trailing zeros are omitted. The
decimal representation is not unique, for example

1

5
= 0.2 = 0.19999... = 0.19̄.

If we avoid repeated nines, then it is unique. In fact, the following is true.

Theorem 10.23. Any rational number in lowest terms such that the only prime
factors of the denominator are 2 and/or 5 can be expressed as a decimal fraction
and has a finite decimal representation. Any rational number in lowest terms such
that its denominator has prime factors other than 2 and 5 has a unique infinite
periodic decimal representation and the period starts right after the decimal point.
If the denominator has prime factors 2 or 5 and other primes, then it has a unique
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infinite periodic decimal representation where the period starts later. In the last two
cases, we exclude repeated nines.

Proof. Of course, the integers have no nonzero decimals (we exclude the repeated
nines), so we assume that we deal with rational numbers which are not integers.
Suppose

a

b
is in lowest terms and the only prime factors of b are 2 and 5, say b =

2m5n. If m = n, then we are done, since
a

b
=

a

10n
. If m < n, then by multiplying

both the numerator and the denominator of
a

b
by 2n−m, we get

a

b
=

2n−ma

10n
.

Similarly, if m > n, then
a

b
=

5m−n

10m
.

Suppose now that
a

b
is in lowest terms and that b is not divisible by 2 or by

5. We may assume 0 < a < b. The decimals are obtained by the long division
algorithm,

a = b · 0 + a, 10a = b · q1 + r1, 10r1 = b · q2 + r2, ...

Since there are at most b−1 possible remainders, the first remainder a will reappear
after at most b − 1 steps, forcing the decimals to repeat from that step on. The
length of the period is at most b− 1.

Finally, if
a

b
is in lowest terms and b has prime factors 2 and/or 5 together with

other primes, then b = 2m5nb′ where b′ is not divisible by 2 or by 5. If m ≤ n and

n ≥ 1, then 10n
a

b
=
a′

b′
with a′, b′ relatively prime, and as above

a′

b′
is a periodic

decimal number. To get back
a

b
, we divide by 10n. This amounts to a shift of the

decimal point, obtaining a decimal number where the period starts n digits after
the decimal point. The case m > n is similar. �

Remark 10.24. We can use any base b ≥ 2 to express rational numbers as a finite
or infinite sum of fractions of the form

an
bn

, where the prime factors of b play a
similar role as 2 and 5 in the case b = 10.

Example 10.25. We can express
2

7
as an infinite sum of fractions of the form

an
9n

,
using the base b = 9 = 3 · 3. Indeed,

2

7
=

2

9
+

5

92
+

1

93
+

2

94
+

5

95
+

1

96
+ · · · .

Here the period 251 starts right away since 7 is not divisible by 3.

Exercise 10.26. Express
4

21
as a sum of fractions of the form

an
9n

.



Chapter 11

The construction of real
numbers

Though they are structurally the most complicated of all number systems, examples
of real numbers were discovered quite early in the mathematical game. In fact, the
existence of

√
2 is implied by the Pythagorean Theorem, which has been known

for well over two thousand years. We already proved that
√

2 is not rational. In
the decimal representation,

√
2 = 1.41421356237... you notice no periodicity, no

matter how far you may go. The same will happen for the decimal representation
of the number π, the length of a circle of radius 1/2. The fact that π is irrational is
more difficult to prove. In fact, an irrational number can be thought as an infinite
decimal number with no periodicity. We will make this more precise later.

Our first approach to the development of Real Number theory is based on
ideas first propounded by the German mathematician R. Dedekind more than a
hundred years ago, called Dedekind cuts. The idea of a cut is to split the rational
numbers in two halves whenever there is a ”hole“. Even though it is strongly related
to the order relation, it has certain advantages over our second approach using
Cauchy sequences. First, it allows us to construct a specific set of objects and
define operations and relations that match our intuitive ideas of how real numbers
work. Second, and perhaps even more important, it gives the student a lot of
practice in working with inequalities and quantifiers. This experience is almost
vital to one who wishes to really understand mathematics. On the other hand,
the Cauchy sequences approach has the advantage that it can be used in other
situations, a process called completion.

123
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As before, we begin with a specific system of numbers, in this case the rational
numbers, and construct a new system from it. We will freely use any known prop-
erties of rationals as we try to prove theorems about reals. We denote by Q+ the
set of positive rational numbers, and by Q− the set of negative rational numbers.

11.1. Dedekind cuts approach

There is an intuitive idea underlying the notion of a real number, namely, that each
real number is uniquely determined by its position relative to the rational numbers.
In other words, if we are given a number and we know exactly which rationals are
less than it, then the number is not only known, it can be calculated to an arbitrary
degree of precision using rational approximations. Thus, in order to define certain
objects which will eventually be called real numbers, we shall begin by considering
sets of rationals that, in effect, can be thought of as consisting of all rationals “to the
left of” somewhere. Of course, we could choose to talk about all rational numbers
“to the right of somewhere”, but the situation would be perfectly symmetric. These
sets of rationals will be called cuts, and their formal definition is below.

In this chapter, unless specifically stated otherwise, capital letters such as
A,B,C, and so forth will always stand for cuts. Also lowercase letters x, y, z, p, q, r, s,
etc., will generally refer to rational numbers.

Definition 11.1. Suppose C ⊆ Q. We say that C is a Dedekind cut if and only if:
1. C 6= ∅,
2. C 6= Q,
3. x ∈ C ⇒ ∃y ∈ C with x < y,
4. x ∈ C and y ∈ Q with y < x implies y ∈ C.

If C is a cut, then we know four things about C. It contains at least one rational
number, because it is non-empty. The fact that C is not equal to the entire set Q
guarantees that there is at least one rational number which is not in C. Condition
3 asserts that C contains no largest member, for no matter what element of C we
might choose, there always exists another number in C which is greater. Finally, if
x is known to be in C, then every number less than x is also in C.

On the other hand, if we wish to prove that a certain set is a cut, we must
establish that all four of the listed criteria are satisfied for the set. This means, for
example, that to verify property 1 we must actually describe a rational number in
the set or else show that the assumption “the set is empty” leads to a contradiction.

Example 11.2. Let C = {x ∈ Q : x < 7}. We claim that C is a cut.

Proof. To back up the claim we provide a proof in four parts.
1. We need to show that C is non-empty, and this can be done simply by

taking a wild guess and checking that the guess is correct. Since 3 < 7, we see by
definition that 3 ∈ C. Thus C 6= ∅. There is nothing special about 3. If we had
selected −387, 17/16, or any other definite rational number less than 7 we would
have drawn the same conclusion.
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2. In a similar way, as soon as we note that, for example, 8 /∈ C, we have
proved that C 6= Q.

3. Since this property is phrased as a conditional, we must begin by examining
some arbitrary but definite element of C. Suppose x ∈ C. Then x < 7. How can
we find something in C which is greater than x? Here, of course, we cannot write
down a definite number value since we don’t know exactly what x is. But we can
do the next best thing. We can write a formula in terms of x which will always
generate a number of the desired sort. Recalling that the arithmetic mean of two
numbers lies between them is helpful here. In fact, suppose we let y = x+7

2 . Then
certainly x < y and y < 7. The second of these inequalities tells us that y ∈ C,
while the first one gives us the rest of the existential statement to be proved.

4. Suppose x ∈ C, y ∈ Q, and y < x. By the definition of C, we have x < 7, so
by transitivity it is also true that y < 7. Hence y ∈ C. �

The argument given above can obviously be modified to apply to any similar
type of sets of the form {y ∈ Q : y < r}.

Corollary 11.3. For each r ∈ Q, the set {y ∈ Q : y < r} is a cut.

Definition 11.4. For each r ∈ Q, we define the cut r̂ = {y ∈ Q : y < r}.

Exercise 11.5. Show that C = {x ∈ Q : x ≥ 1} is not a cut.

The following example is a different type of cut.

Example 11.6. The set

D = {x ∈ Q+ : x2 < 2} ∪ {x ∈ Q : x ≤ 0}
is a cut.

Proof. 1. Since 0 ∈ D, D is nonempty.
2. For example 2 /∈ D since 22 = 4 > 2, hence D 6= Q.
3. Let x ∈ D and let us find y ∈ D with x < y. If x ≤ 0, we can take y = 1.

Let x > 0 with x2 < 2 and consider y = x +
2− x2

x+ 2
=

2x+ 2

x+ 2
. It is clear that

y ∈ Q and that y > x. An easy computation shows that y2 − 2 =
2x2 − 4

(x+ 2)2
< 0,

hence y ∈ D.
4. If x ∈ D and r < x, then there are two cases: r > 0 or r ≤ 0. In the first

case, x > 0 and r2 < x2 < 2, so r ∈ D. In the second case clearly r ∈ D.
�

Definition 11.7. If C and D are cuts, then we write C ≺ D iff C ⊂ D (strict
inclusion). Also, we write C � D if C ≺ D or C = D.

Remark 11.8. 1. If x /∈ C then for all y ∈ C we have y < x.
2. For all cuts C and D, exactly one of the following is true: C ≺ D,C =

D,D ≺ C.
3. (C ≺ D) ∧ (D ≺ E)⇒ C ≺ E.
4. C ≺ D ⇒ ∃B with C ≺ B ≺ D.
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Proof. 1. Suppose the conclusion is false. Then there is a y ∈ C such that x ≤ y.
But x < y is false by part 4 of the definition of a cut and x = y is false since x /∈ C.
Either way we have a contradiction.

Parts 2 and 3 follow from the properties of set inclusion.
4. By hypothesis, there is an r in D such that r /∈ C. Use property 3 of a cut

to find an element r′ of D such that r < r′. We claim that C ≺ r̂′ ≺ D, which
means that we may take B = r̂′. Indeed, since r < r′, we clearly have r ∈ r̂′. This,
together with the fact that r /∈ C, tells us that C ≺ r̂′. Let r′′ ∈ D such that
r′ < r′′. Then clearly r′′ /∈ r̂′, so by definition r̂′ ≺ D.

Note that the second part of the previous proof could be made easier by ob-
serving that r′ itself is not an element of r̂′. �

Definition 11.9. A cut C is positive if ∃r ∈ Q+ with r ∈ C. A cut C is negative
if ∃r ∈ Q− with r /∈ C.

Theorem 11.10. If C is a cut, then exactly one of the following is true:
C is positive, C is negative, or C = 0̂.

Proof. Suppose C 6= 0̂. If there is r ∈ Q+ with r ∈ C, then C is positive. If C
does not contain any positive rational, it must be made only of negative irrationals.
Since C 6= 0̂, we can find r ∈ Q− with r /∈ C, hence C is negative. �

Exercise 11.11. Prove the following
a. If C is a cut, then C is positive if and only if 0 ∈ C.
b. If C is a positive cut and D is a negative cut, then D ≺ C.
c. If C is a negative cut and D ≺ C, then D is a negative cut.
d. C ≺ 0̂ if and only if C is a negative cut.

We want to define the operation of addition for cuts. To find the sum of the
cuts r̂ and ŝ, we can just take r̂ + s, but since there are other types of cuts, this
idea will not suffice.

Definition 11.12. Given cuts C,D, define their sum by

C +D = {x+ y : x ∈ C and y ∈ D}.

Theorem 11.13. If C and D are cuts, then C +D is a cut.

Proof. Naturally, there are four parts to the proof because there are four separate
properties we need to establish.

1. By property 1 of cuts, there is an x in C and there is a y in D. Thus
x+ y ∈ C +D, so C +D is not empty.

2. Let u /∈ C and v /∈ D. Suppose x ∈ C and y ∈ D. We have x < u and
y < v. Thus, by adding the inequalities, x+y < u+v. This shows that the rational
number u+ v is not in C +D, because it is not equal to any element of that set.

3. Suppose z ∈ C +D. Then there exist x ∈ C and y ∈ D such that z = x+ y.
By property 3 of cuts, there is a y′ ∈ D for which y < y′. By adding x to both sides
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of this inequality we obtain x + y < x + y′. Since x + y′ ∈ C + D and z < x + y′,
we have determined an element of C +D which is larger than z.

4. Consider an arbitrary member of C + D. It has the form x + y, for some
x ∈ C and y ∈ D. If r < x + y, then certainly r − x < y. Hence r − x ∈ D by
property 4 of cuts. But r = x+ (r − x), so r is an element of C +D. �

Theorem 11.14. We have
1. Addition of cuts is commutative and associative.
2. For any cut C, C + 0̂ = C.

Proof. Part 1 follows from the corresponding properties of rational numbers. For
part 2, let c ∈ C and z ∈ 0̂. Then c + z < c + 0 = c, hence C + 0̂ ⊆ C. For
the other inclusion, let c ∈ C and choose d ∈ C with c < d. Then c − d ∈ 0̂ and
c = d+ (c− d) ∈ C + 0̂. �

Definition 11.15. If C is a cut, define −C = {x ∈ Q : x+ c < 0 for all c ∈ C}.

Remark 11.16. We could also define −C as −C = {x ∈ Q : x < −y for some y /∈
C}. Notice that −C is not the set {−c : c ∈ C}.

Lemma 11.17. Let r > 0 be rational and let C be a cut. Then there are y ∈ C
and z /∈ C such that z − y = r.

Proof. Let x ∈ C. By the Archimedean property there is a smallest positive
integer n such that x+ nr /∈ C. Let z = x+ nr and y = x+ (n− 1)r. Then y ∈ C
and z − y = r. �

Theorem 11.18. We have the following
1. If C is a cut, then −C is a cut and C + (−C) = 0̂.
2. If C is a positive cut, then −C is a negative cut.
3. If C is a negative cut, then −C is a positive cut.
4. C +D = C + E ⇒ D = E.

Proof. 1. First we show that −C is a cut, by verifying the four defining properties.
If x > c for all c ∈ C, then −x ∈ −C, hence −C is not empty. Given c ∈ C we
have −c /∈ −C since (−c) + c = 0 ≥ 0, hence −C 6= Q. Given x ∈ −C let us find
y ∈ −C with x < y. We have x + c < 0 for all c ∈ C. Fixing c ∈ C arbitrary, let
d ∈ Q+ with c+ d ∈ C. Then x+ d+ c < 0, hence y = x+ d ∈ −C and x < x+ d.
Finally, if x ∈ −C and y ∈ Q with y < x, we have y + c < x+ c < 0 for all c ∈ C,
hence y ∈ −C.

By definition, C+ (−C) ⊆ 0̂. If z ∈ 0̂, then by lemma 11.17 there is c ∈ C with
c− z /∈ C. Then z − c ∈ −C and z = c+ (z − c) hence 0̂ ⊆ C + (−C) and we have
equality.

2. Let r ∈ C with r > 0. Then −r < 0 and −r /∈ −C, hence −C is negative.
Parts 3 and 4 are left as exercise.

�

We now define the operation of multiplication.
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Definition 11.19. If C and D are positive cuts, we define their product by

C ·D = {x ∈ Q : x ≤ c · d for some positive c ∈ C, d ∈ D}.

If C = 0̂ or D = 0̂, then we define C ·D = 0̂;
if C � 0̂ and D ≺ 0̂, then we define C ·D = −(C · (−D));
if C ≺ 0̂ and D � 0̂, then we define C ·D = −((−C) ·D);
if C ≺ 0̂ and D ≺ 0̂, then we define C ·D = (−C) · (−D).

Exercise 11.20. Prove that for r, s ∈ Q we have r̂ · ŝ = r̂s.

Exercise 11.21. Prove that for the cut D in Example 11.6 we have D ·D = 2̂.

Theorem 11.22. We have
1. The product of two positive cuts is a positive cut.
2. Multiplication of cuts is commutative and associative.
3. Multiplication is distributive over addition of cuts.
4. If C is a cut, then C · 1̂ = C.

Proof. 1. To show that C ·D is a cut, first observe that C ·D is not empty and
not equal to Q. Also, given x ∈ C · D, there are c ∈ C and d ∈ D positive with
x ≤ c ·d. Let c′ > 0 with c+c′ ∈ C. Then x+c′d ≤ (c+c′) ·d, hence x+c′d ∈ C ·D
and x < x + c′d. The fourth property is obvious. To show that C ·D is positive,
observe that for c ∈ C and d ∈ D positive, c · d is positive and c · d ∈ C ·D.

2. For positive cuts, C ·D = D · C and C · (D · E) = (C ·D) · E by definition
and the properties of multiplication of rational numbers. If for example C � 0̂,
D ≺ 0̂ and E ≺ 0̂, then C · D = −(C · (−D)) and D · C = −((−D) · C), hence
C · D = D · C. Also C · (D · E) = C · ((−D) · (−E)) = (C · (−D)) · (−E) and
(C ·D) ·E = (−(C · (−D))) ·E = (C · (−D)) · (−E), hence C · (D ·E) = (C ·D) ·E.
The other cases are treated similarly.

3. Let us show that C · (D + E) = C · D + C · E for positive cuts. Let
x ∈ C · (D+E). Then x ≤ c · (d+ e) for some positive c ∈ C, d ∈ D, e ∈ E. We get
x ≤ c · d+ c · e with c · d ∈ C ·D, c · e ∈ C ·E, hence x ∈ C ·D+C ·E. Conversely,
let x ∈ C · D + C · E. Then x = y + z with y ∈ C · D, z ∈ C · E, so y ≤ c1 · d
and z ≤ c2 · e for positive c1, c2 ∈ C, d ∈ D, e ∈ E. Let c = max(c1, c2). Then
x ≤ c · d+ c · e = c · (d+ e), hence x ∈ C · (D + E).

If for example C � 0̂, D ≺ 0̂ and D+E � 0̂, then E = (D+E)+(−D). We get
C ·E = C ·(D+E)+C ·(−D) = C ·(D+E)−C ·D, hence C ·D+C ·E = C ·(D+E).
The other cases are similar.

4. It suffices to consider the case C � 0̂. Let x ∈ C · 1̂. Then x ≤ y · z for some
positive y ∈ C and z ∈ 1̂. Since z < 1, we get y · z < y and x < y, so x ∈ C by
the properties of cuts. Conversely, let x ∈ C. Consider y ∈ C positive with y > x.
Then x = y · xy with x

y ∈ 1̂, hence x ∈ C · 1̂. �

Definition 11.23. If C is a positive cut, define

C−1 = {y ∈ Q : y <
1

x
for some x /∈ C}.
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Lemma 11.24. If C is a positive cut, then C−1 is a positive cut.

Proof. To show that C−1 is a cut, we follow the four steps:
1) By definition, there is an x /∈ C. Since C � 0̂, we have x > 0. Since

x + 1 > x, we have 1
x+1 <

1
x , so

1
x+1 ∈ C

−1 and 1
x+1 > 0. Thus C−1 6= ∅ and it

contains a positive element.
2) Let y ∈ C such that y > 0. Then 1

y /∈ C
−1. Indeed, if 1

y ∈ C
−1, then 1

y <
1
z

for some z /∈ C. But then z < y, and hence z ∈ C, contradiction.
3) Let x ∈ C−1. Then x < 1

y for some y /∈ C. Take x′ ∈ Q with x < x′ < 1
y ,

for example their average. Since, in particular, x′ < 1
y , we have x′ ∈ C−1.

4) If x ∈ C−1 and r < x, then x < 1
y for some y /∈ C. By transitivity, r < 1

y ,
so r ∈ C−1.

Since C−1 contains the positive element 1
x+1 , it is a positive cut. �

Theorem 11.25. If C is a positive cut, then C · C−1 = 1̂.

Proof. Since both C ·C−1 and 1̂ contain all rationals less or equal to 0, it suffices
to show that they contain the same positive rationals. Suppose t ∈ C · C−1 and
t > 0. Then for some positive x ∈ C and y ∈ C−1 we have t ≤ x · y. Since y < 1/z
for some z /∈ C, we get z > x. Taking reciprocals yields 1/z < 1/x, which implies
y < 1/x. Hence x · y < 1, so, since t ≤ x · y, clearly t ∈ 1̂. We get C · C−1 ⊆ 1̂.

On the other hand, if x ∈ 1̂, with x > 0, we can select an a ∈ C such that
a > 0 and by lemma 11.17 (with r = a(1− x)) we can find y ∈ C and z /∈ C such
that z − y = a(1 − x). Since a ∈ C, we have a < z, so a(1 − x) < z(1 − x) since
1− x > 0. We obtain z − y < z(1− x), hence z − y < z − zx, −y < −zx, y > zx,
and therefore y/x > z. Thus x/y < 1/z, so x/y ∈ C−1. Since x = y · xy with y ∈ C,
we get x ∈ C · C−1, so 1̂ ⊆ C · C−1. �

Corollary 11.26. If C, D, and E are positive cuts, and C ·D = C ·E, then D = E.
If C is a positive cut, then (C−1)−1 = C.
If D is a positive cut and C � 1̂, then C ·D � D.

Proof. We prove the last part. Suppose C ·D is not greater thanD. By trichotomy,
either C ·D = D or C ·D ≺ D.

Case 1) If C ·D = D, then C ·D ·D−1 = D ·D−1. This implies that C · 1̂ = 1̂,
hence C = 1̂, contradiction.

Case 2) Suppose C · D ≺ D. Then there is an x ∈ D such that x /∈ C · D.
Clearly x > 0, since C · D is positive. But since 1 ∈ C, we have 1 · x ∈ C · D,
contradiction.

Here is another proof of the same statement. Suppose x ∈ D. Then 1 ·x = x ∈
C ·D, because 1 ∈ C. Thus D ⊆ C ·D, so D � C ·D. If equality held, we could
multiply both sides by D−1 and obtain 1̂ = C, an obvious contradiction. �

Theorem 11.27. If x > 1 and x ∈ C, then C−1 ≺ 1̂.
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Proof. Since x ∈ C and x > 0, we have 1/x /∈ C−1. But since x > 1, it follows
that 1/x < 1, so 1/x ∈ 1̂. By definition, C−1 ≺ 1̂. �

Definition 11.28. The absolute value of a cut is defined as |C| = max(C,−C).

Definition 11.29. If C is a negative cut, then we define C−1 = −(−C)−1.

Theorem 11.30. 1. Given C 6= 0̂ we have C · C−1 = 1̂.
2. If A+ C = B and C is a positive cut, then A ≺ B.
3. A ≺ B ⇔ A+ C ≺ B + C.
4. If C ≺ D and E is positive, then C · E ≺ D · E.

Proof. 4. Let p ∈ D \ C and let q ∈ D with q > p. For c ∈ E positive, set

cn = c
qn−1

pn−1
. Consider m the positive integer such that cm ∈ E and cm+1 /∈ E.

We have pcm+1 = qcm. Moreover, pcm+1 > uv for all u ∈ C and v ∈ E and
pcm+1 /∈ C · E. We found qcm ∈ C · E \ C ·D, hence C · E ≺ D · E. �

Definition 11.31. Each Dedekind cut will be called a real number. The set of real
numbers will be denoted by R.

Theorem 11.32. If S = {r̂ : r ∈ Q} ⊆ R, then Q is isomorphic with S. In
particular the set of rational numbers Q can be viewed as a subset of R.

Proof. Define f : Q → S, f(r) = r̂. Then f is one-to-one and onto, f(r + s) =
f(r) + f(s), f(rs) = f(r) · f(s) and r < s⇒ f(r) ≺ f(s). �

As a result, we shall feel free to make the same simplifying conventions as
before. In other words r and r̂ will be regarded as the same for each rational
number r.

Theorem 11.33. Suppose that Ci is a cut for each i ∈ I 6= ∅. If C =
⋃
i∈I Ci and

C 6= Q, then C is a cut.

Proof. Clearly C is not empty and C 6= Q by hypothesis. Let x ∈ C. There is
i0 ∈ I with x ∈ Ci0 . Since Ci0 is a cut, there is y ∈ Ci0 with x < y. But then y ∈ C
and x < y. If r < x, then r ∈ Ci0 , hence r ∈ C. �

Suppose S ⊆ R is a set of real numbers. Recall that
A real number a is an upper bound for S iff a ≥ x for all x ∈ S.
A real number a is a lower bound for S iff a ≤ x for all x ∈ S.
A real number a is a least upper bound or supremum for S iff a is an upper

bound for S and t < a⇒ ∃x ∈ S with t < x).
A real number a is a greatest lower bound or infimum for S iff a is a lower

bound for S and t > a⇒ ∃x ∈ S with x < t.

Corollary 11.34. 1. If S is a nonempty subset of R that has an upper bound,
then S has a least upper bound.

2. If S is a nonempty subset of R that has a lower bound, then S has a greatest
lower bound.
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Proof. Let T =
⋃
C∈S

C. Then T is a cut and it is an upper bound for S. To show

that T is the least upper bound, let U ≺ T , hence there is q ∈ T \U . By definition,
there is C ∈ S with q ∈ C, hence C � U and U cannot be an upper bound for S.
Hence T is the least upper bound of S.

2. We use glbS = −lub(−S), where −S = {−s : s ∈ S}. We leave the proof as
an exercise. �

Remark 11.35. The above property of R is called the least upper bound property.
The set Q does not have this property. Indeed, the set {x ∈ Q+ : x2 < 2} has no
least upper bound in Q, since

√
2 is irrational.

We summarize the properties of the set of real numbers in the following

Theorem 11.36. The set R with the addition and multiplication operations and
with the order defined above contains a copy of Q and satisfies the properties

1. R is closed under addition and multiplication.
2. Addition and multiplication are commutative and associative.
3. R contains 0 and x+ 0 = x ∀x ∈ R.
4. Each x ∈ R has an opposite −x such that x+ (−x) = 0.
5. R contains 1 such that 1 6= 0 and x · 1 = x ∀x ∈ R.
6. Any x ∈ R \ {0} has an inverse x−1 such that x · x−1 = 1.
7. The multiplication is distributive over the addition.
8. We have (x > 0) ∧ (y > 0) ⇒ (x + y > 0) ∧ (xy > 0) and for any x ∈ R

exactly one is true: x > 0,−x > 0 or x = 0.
9. Any nonempty subset of R which has an upper bound has a least upper bound.

We say that R is an ordered field with the least upper bound property, or a
complete ordered field.

Theorem 11.37. The set of real numbers also has the properties
1. (Archimedean property) If x, y ∈ R and x > 0, then there is a positive integer

n such that nx > y.
2. If x, y ∈ R and x < y, then there is r ∈ Q such that x < r < y.

Proof. 1. Let A = {nx : n ∈ P}. If the assertion is false, then y would be an upper
bound for A. Let α = supA. Since x > 0, we get α− x < α and α− x is no longer
an upper bound for A. Hence there is m with α − x < mx, so α < (m+ 1)x ∈ A,
contradiction.

2. Since x < y, we have y − x > 0 and from 1 we can find n ∈ P such that
n(y− x) > 1. Similarly, we obtain positive integers m1 and m2 such that m1 > nx
and m2 > −nx. We get −m2 < nx < m1 and we can find an integer m such that
m − 1 ≤ nx < m. Combining the inequalities we get nx < m ≤ 1 + nx < ny.
Dividing by n we get x <

m

n
< y. �

It follows that R is a complete ordered field with the Archimedean property.
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Exercise 11.38. Prove that between any two real numbers there is a rational and
an irrational number.

Theorem 11.39. For any real x > 0 and any positive integer n there is a unique
real y such that yn = x. We write y = n

√
x.

Proof. Let A be the set of all positive real numbers t such that tn < x. To prove
that A is not empty, consider t =

x

x+ 1
. Then 0 < t < 1 and tn < t < x, hence

t ∈ A. It is easy to see that 1 + x is an upper bound for A. We conclude that
y = supA exists. Let us prove that yn = x.

Assume yn < x. Choose h such that 0 < h < 1 and h <
x− yn

n(y + 1)n−1
. Then

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x− yn,
hence (y+h)n < x and y+h ∈ A, contradiction. Similarly, the assumption yn > x
leads to a contradiction. We conclude that yn = x. �

Remark 11.40. It can be proved that for b > 1 and x ∈ R there is a real number
bx such that for x, y ∈ R we have bx+y = bxby. Also, given y > 0 there is a unique
real number x such that bx = y. This is called the logarithm of y in base b, denoted
logb y.

Exercise 11.41. Let C = {x ∈ Q : x3 < 5}. Prove that C is a cut. (Hint: Given

s ∈ C, show that t =
15s

s3 + 10
belongs to C and that s < t.)

Exercise 11.42. Let C be a cut and let s ∈ Q such that s > t for all t ∈ C. Prove
that s /∈ C.

Exercise 11.43. Prove that there is no rational number x such that x3 = 7.
Construct a real number x with this property.

Exercise 11.44. Prove that
√

2 +
√

3−
√

5 + 2
√

6 is rational.

Remark 11.45. There are irrational numbers x, y such that xy is rational. Indeed,

consider
√

2
√

2
. If this is rational, take x = y =

√
2. If not, then

(
√

2

√
2
)
√

2 =
√

2
2

= 2,

so we can take x =
√

2
√

2
and y =

√
2.

11.2. Cauchy sequences approach

The set of real numbers can be constructed using equivalence classes of certain
sequences of rational numbers. You may think of the real numbers as being limits
of sequences of rational numbers. This is an analytic process and the proofs might
be more involved, but the construction illustrates the more general concept of com-
pletion, which you may encounter later in Functional Analysis and other branches
of mathematics.

Recall that a sequence in a set S is a function x : N→ S. The element x(n) ∈ S
is denoted xn. We also write a sequence as x = (xn)n≥0 or just (xn). Sometimes a
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sequence (xn) is defined only for n ≥ k for k ∈ N. You have studied sequences and
limits in Calculus. We will prove that the limit of a sequence of rational numbers
is not necessarily a rational number. The real numbers, containing both rational
and irrational numbers, are filling those gaps.

Definition 11.46. A Cauchy sequence of rational numbers is a sequence x = (xn)
such that for every positive rational ε there is a positive integer N such that for
every m,n ≥ N we have |xn − xm| < ε.

Note that this definition retains the flavor of the definition of the limit. Recall
that L = lim

n→∞
xn if for any ε > 0 there is n such that |xn − L| < ε for all n ≥ N .

However, we will see that a Cauchy sequence in Q is not necessarily convergent in
Q.

Example 11.47. Obviously, a constant sequence r, r, r, ... is a Cauchy sequence.
For any r ∈ Q, denote by r̂ the constant sequence r, r, r, ...

Example 11.48. Let xn = n+1
n , n ≥ 1. Then (xn) is a Cauchy sequence. Indeed,

|xn − xm| =
∣∣∣∣m− nmn

∣∣∣∣ =

∣∣∣∣ 1n − 1

m

∣∣∣∣ < 1

min(m,n)
.

Given ε > 0, take N = b1/εc+ 1. For m,n ≥ N we have

|xn − xm| <
1

N
< ε.

Example 11.49. The sequence such that x1 = 0, x2 = 1 and xn = 1
2 (xn−1 +xn−2)

for n ≥ 3 is a Cauchy sequence.

Proof. First, let’s prove by induction that

xn+1 − xn =
(−1)n−1

2n−1
, n ≥ 1.

For n = 1, x2 − x1 = 1 − 0 = 1 = (−1)0

20 . Suppose xk+1 − xk = (−1)k−1

2k−1 for a fixed
k ≥ 1. Then

xk+2 − xk+1 =
1

2
(xk+1 + xk)− xk+1 = −1

2
(xk+1 − xk) =

(−1)k

2k
.

From the recurrence formula, it is clear that for m > n, xm lies between xn and
xn+1. Given a positive ε, choose N such that 2N−1 < 1/ε. Then for all m,n ≥ N ,

|xm − xn| ≤ |xn+1 − xn| =
1

2n−1
<

1

2N−1
< ε.

�

Example 11.50. Let x1 =
1

2
, xn+1 =

1

2 + xn
, n ≥ 1. Then (xn) is a Cauchy

sequence of rational numbers.

Proof. It is clear that xn ∈ Q and xn > 0 for all n. We compute

xn+1 − xn+2 =
1

2 + xn
− 1

2 + xn+1
=

xn+1 − xn
(2 + xn)(2 + xn+1)

.
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Since xn > 0, we get (2 + xn)(2 + xn+1) > 4 and therefore

|xn+1 − xn+2| <
1

4
|xn − xn+1|

for all n ≥ 1. By induction we can prove that |xn − xn+1| < 1
4n−1 . Indeed,

|x1 − x2| = |
1

2
− 2

5
| = 1

10
< 1.

Assume |xk − xk+1| < 1
4k−1 . Then

|xk+1 − xk+2| <
1

4
|xk − xk+1| <

1

4k
.

To prove that (xn) is Cauchy, fix ε > 0 rational and choose N such that
1

4N−1
<

3

4
ε.

For m > n ≥ N we have

|xm−xn| ≤ |xm−xm−1|+|xm−1−xm−2|+· · ·+|xn+1−xn| <
1

4m−2
+

1

4m−3
+· · ·+ 1

4n−1
=

1

4n−1
(1 +

1

4
+ · · ·+ 1

4m−n−1
) =

1

4n−1

1− 1
4m−n

1− 1
4

<
4

3

1

4n−1
<

4

3

1

4N−1
< ε.

For n > m ≥ N we similarly obtain |xm− xn| < ε, hence (xn) is Cauchy. It can be
proved that lim

n→∞
xn =

√
2− 1, an irrational number.

�

Exercise 11.51. Prove that the sequences x, y with

xn = 1− 1

3
+

1

5
− · · ·+ (−1)n

2n+ 1
, yn = 1 +

1

1!
+

1

2!
+ · · ·+ 1

n!

are Cauchy sequences of rational numbers.

Definition 11.52. We define addition and multiplication of sequences of rational
numbers x = (xn) and y = (yn) by

x+ y = u where un = xn + yn; xy = v where vn = xnyn.

Clearly, if x and y are sequences of rational numbers, then so are x+ y and xy.

Theorem 11.53. If x and y are Cauchy sequences of rational numbers, then x+ y
and xy are Cauchy sequences of rational numbers.

Proof. . Let ε > 0. There exist N1 and N2 such that for all m,n ≥ N1 we
have |xn − xm| < ε/2 and for all m,n ≥ N2 we have |yn − ym| < ε/2. Let
N = max{N1, N2}. For m,n ≥ N we have

|xn+yn−(xm+ym)| = |(xn−xm)+(yn−ym)| ≤ |xn−xm|+|yn−ym| < ε/2+ε/2 = ε.

For the product, we need to show first that a Cauchy sequence x is bounded,
i.e. there exists a positive rational number α such that |xn| ≤ α for all n. Indeed,
for ε = 1, there is N such that |xn − xm| < 1 for all m,n ≥ N . Let

α = max{|x1|, |x2|, · · · , |xN |}+ 1.

Clearly, for n ≤ N we have |xn| ≤ α. For n > N we have |xn − xN | < 1, hence
|xn| ≤ |xn − xN |+ |xN | ≤ 1 + |xN | and for all n we get |xn| ≤ α.
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Given ε > 0, there are α1 and α2 positive such that |xn| ≤ α1 and |yn| ≤ α2

for all n. There are integers N1 and N2 such that for all m,n ≥ N1 we have
|xn − xm| < ε/(2α2) and for all m,n > N2 we have |yn − ym| < ε/(2α1). Let
N = max{N1, N2}. For all m,n ≥ N we have

|xnyn − xmym| = |xnyn − xmyn + xmyn − xmym| ≤
≤ |yn||xn − xm|+ |xm||yn − ym| <

< α2
ε

2α2
+ α1

ε

2α1
= ε.

�

Theorem 11.54. Addition and multiplication of Cauchy sequences are commuta-
tive and associative. Multiplication is distributive over addition. Each sequence x
has an opposite −x, the sequence 0̂ satisfies x+ 0̂ = x and the sequence 1̂ satisfies
x · 1̂ = x.

Proof. Exercise. �

Definition 11.55. We define the relation ∼ on the set of Cauchy sequences of
rational numbers by x ∼ y iff for any positive rational number ε there is an integer
N such that |xn − yn| < ε for all n ≥ N .

Example 11.56. Let xn =
n+ 1

n
and yn = 1 for all n. Clearly, x ∼ y since

xn − yn =
1

n
.

Theorem 11.57. The relation ∼ is an equivalence relation.

Proof. Indeed, it is reflexive since x ∼ x and it is symmetric since x ∼ y ⇒ y ∼ x.
Let x ∼ y and y ∼ z. Given ε > 0, there are N1, N2 such that |xn − yn| < ε/2
for n ≥ N1 and |yn − zn| < ε/2 for n ≥ N2. Let N = max{N1, N2}. Then
|xn − zn| ≤ |xn − yn| + |yn − zn| ≤ ε/2 + ε/2 = ε for all n ≥ N , hence ∼ is
transitive. �

Definition 11.58. A Cauchy sequence x = (xn) is called positive iff there is ε > 0
and an integer N such that xn > ε for all n ≥ N .

Lemma 11.59. If x, y, u, v are Cauchy sequences in Q such that x ∼ u and y ∼ v,
then x+ y ∼ u+ v and xy ∼ uv. Moreover, if x is positive, then u is positive.

Proof. Exercise. �

Theorem 11.60. 1. The sum and the product of two positive Cauchy sequences
are positive.

2. If x is any Cauchy sequence, then exactly one of the following holds true: x
is positive, x ∼ 0̂, or −x is positive.

3. If the Cauchy sequence x is not equivalent to 0̂, there is a Cauchy sequence
z with xz ∼ 1̂.
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Proof. 1. Let x, y be positive Cauchy sequences. There are εi > 0 and integers
Ni for i = 1, 2 such that xn > ε1 for n ≥ N1 and yn > ε2 for n ≥ N2. Then
xn + yn > ε1 + ε2 and xnyn > ε1ε2 for n ≥ max{N1, N2}.

2. If x � 0̂, then there is ε > 0 such that for any integer N there is n > N
such that |xn| > ε. Since x is Cauchy, there is N1 such that |xn − xm| < ε/2 for
m,n ≥ N1. In particular for N = N1 there is p > N1 such that |xp| > ε. To make
a choice, let xp > 0, hence xp > ε. We have |xn − xp| < ε/2 for all n ≥ p, hence
xn ≥ xp − ε/2 > ε − ε/2 = ε/2 and x is positive. If xp < 0 a similar argument
shows that −x is positive.

3. Since x � 0̂, from 2 we get that there is a positive rational ε′ and an integer
N such that |xn| ≥ ε′ for all n ≥ N . Consider x′ such that x′n = ε′ for n < N and
x′n = xn for n ≥ N . It is easy to show that x′ is Cauchy and obviously |x′n| ≥ ε′

for all n. Define the sequence z such that zn = 1
x′n

. Given ε > 0, consider N such
that |x′m − x′n| < εε′2 for all m,n ≥ N . Such an N exists since x′ is Cauchy. Since

|x′n| ≥ ε′ for all n, we have
1

|x′mx′n|
≤ 1

ε′2
for all m,n. We obtain

|zm − zn| =
∣∣ 1

x′m
− 1

x′n

∣∣ =
|x′m − x′n|
|x′mx′n|

<
εε′2

ε′2
= ε

for all m,n ≥ N , therefore z is Cauchy. It is clear that zx′ ∼ 1̂, and since x′ ∼ x
we conclude that zx ∼ 1̂. �

Definition 11.61. A real number is an equivalence class [x] of Cauchy sequences
of rational numbers. We say that [x] is positive iff it contains a positive Cauchy
sequence. Define addition and multiplication by

[x] + [y] = [x+ y], [x] · [y] = [xy].

Define [x] ≺ [y] iff [y]− [x] is positive.

Remark 11.62. There is a one-to-one function f : Q → R such that f(r) = [r̂]
which preserves the order and the operations. This allows us to make an identifi-
cation of Q with a subset of R. From now on, we will use x instead of [x], x < y

instead of [x] ≺ [y], 0 instead of 0̂ and 1 instead of 1̂. As usual, the absolute value
function is defined as |x| = max(x,−x).

We summarize the properties of real numbers so far. The set R with the
operations of addition and multiplication, 0, 1 and < satisfy the following:

1) x+ (y + z) = (x+ y) + z.
2) x+ y = y + x.
3) 0 + x = x.
4) For each x there is z with x+ z = 0.
5) x(yz) = (xy)z.
6) xy = yx.
7) 1 · x = x.
8) If x 6= 0, there exists z such that xz = 1.
9) x(y + z) = xy + xz.
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10) x, y > 0 implies x+ y, xy > 0.
11) Exactly one of x > 0, x = 0, −x > 0 holds.

Theorem 11.63. Between any two distinct real numbers there is a rational number.

Proof. Let x < y, and let a, b be Cauchy sequences of rational numbers rep-
resenting x, y. Since x < y, we can find a rational ε and an integer N1 such
that bn − an > 4ε for all n ≥ N1. Since a, b are Cauchy sequences, there are
N2, N3 such that |an − am| < ε for m,n ≥ N2 and |bn − bm| < ε for m,n ≥ N2.
Let N = max{N1, N2, N3} + 1 and let s = 3ε/2. Consider z = aN + s. We
claim that x < z < y. Indeed, an − aN < ε for every n ≥ N and therefore
z − an = (aN + s)− an > ε/2 > 0, so z − x > 0. Similarly, y − z > 0. �

Theorem 11.64. (Archimedean property). If x, y are positive real numbers, then
there exists a positive integer n such that nx > y.

Proof. Let b be a representative of y. Since Cauchy sequences of rational numbers
are bounded, there is β > 0 such that bm ≤ β for all m. Let d = β̂. We have y ≤ d.
Since x > 0 we can find rational numbers s, t such that 0 < s < x and y < t < d.
From the Archimedean property for rational numbers, there is a positive integer n
such that ns > t. We get nx > ns > t > y. �

Theorem 11.65. A nonempty set of real numbers which has an upper bound has
a least upper bound.

Proof. Let A be a set satisfying the hypothesis. Inductively we construct a se-
quence of rational numbers (bn) such that bn is an upper bound for A but bn − 1

2n

is not. Indeed, let b0 be an integer such that b0 is an upper bound for A while b0−1
is not. For n ≥ 1 we define

bn =

{
bn−1 − 1

2n if bn−1 − 1
2n is an upper bound

bn−1 if bn−1 − 1
2n is not an upper bound.

For m ≥ n we have bn− 1
2n < bm ≤ bn, hence |bn− bm| < 1

2n . We conclude that for
any fixed N and m,n ≥ N we have |bn − bm| < 1

2N , therefore b = (bn) is a Cauchy
sequence of rational numbers. Consider u = [b] ∈ R. We claim that u =lubA. It
is easy to prove that bn − 1

2n ≤ u ≤ bn(exercise!). If there is a ∈ A with a > u,
then we can find n with 1

2n < a− u which gives bn < a, contradiction. This proves
that u is an upper bound for A. If v is an upper bound with v < u, choose n such
that 1

2n < u − v. Since bn − 1
2n is not an upper bound, there is a ∈ A such that

bn − 1
2n < a, which gives bn − 1

2n < v. Adding this with 1
2n < u − v, we obtain

bn < u, contradiction. �

Corollary 11.66. A nonempty subset of real numbers which has a lower bound
has a greatest lower bound.

Proof. Exercise. �

Definition 11.67. A sequence x = (xn) of real numbers is Cauchy if for any
positive real number ε there exists a positive integer N such that |xm−xn| < ε for
all m,n ≥ N . A real number L is a limit of a sequence x = (xn) of real numbers if
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for any ε > 0 there is N such that |xn−L| < ε for all n ≥ N . We write L = lim
n→∞

xn

and we say that x = (xn) is convergent.

Example 11.68. Let x1 = 1, xn+1 =
1

2

(
xn +

√
2

xn

)
. Then x is a Cauchy sequence

of real numbers. In fact, xn → 4
√

2.

Proof. We have

xn+1 − xn =
1

2
xn +

√
2

2xn
− xn =

√
2− x2

n

2xn
.

By induction we will prove that xn ≥ 4
√

2 for all n ≥ 2, hence xn+1 ≤ xn for n ≥ 2.

Indeed, x2 =
1 +
√

2

2
≥ 4
√

2. Assume xk ≥ 4
√

2 for some k ≥ 2. Then

xk+1 =
1

2

(
xk +

√
2

xk

)
≥ 4
√

2

since xk > 0 and (xk− 4
√

2)2 ≥ 0. It follows that (xn)n≥2 is decreasing and bounded
bellow by 4

√
2, hence convergent. Since any convergent sequence is Cauchy, we

conclude that (xn) is Cauchy. Let L = lim
n→∞

xn. We have L = 1
2 (L +

√
2
L ), hence

L = 4
√

2.
�

Exercise 11.69. Prove that
1. A sequence of real numbers has at most one limit.
2. A convergent sequence of real numbers is Cauchy.

Exercise 11.70. A decreasing sequence of real numbers which is bounded below
is convergent. Similarly, an increasing sequence of real numbers which is bounded
above is convergent.

Lemma 11.71. Let a = (an) be a Cauchy sequence of rational numbers and let L
be the real number which it defines. Then a can be viewed as a Cauchy sequence of
real numbers and lim

n→∞
an = L.

Proof. The first assertion is clear. Let ε > 0 and let δ ∈ Q with 0 < δ < ε. Since a
is Cauchy, there is N such that |am − an| < δ for all m,n ≥ N . Consider xn = ân.
Then xn − L ≤ δ for n ≥ N . Similarly, L − xn ≤ δ for n ≥ N . We conclude that
for all n ≥ N we have |xn − L| ≤ δ < ε, hence lim

n→∞
an = lim

n→∞
xn = L. �

Theorem 11.72. Any Cauchy sequence of real numbers is convergent.

Proof. Assume that x = (xn) is a Cauchy sequence of real numbers. For each
positive integer n we have xn < xn + 1/n, hence we may find an ∈ Q with xn <
an < xn + 1/n. Given ε > 0 let N1 be an integer with N1 > ε/3. For n ≥ N1 we
have |xn − an| < ε/3. The inequality

|am − an| ≤ |am − xm|+ |xm − xn|+ |xn − an|
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proves that a = (an) is a Cauchy sequence, hence it defines a real number L such
that lim

n→∞
an = L. For the fixed ε > 0 there is N2 such that |an − L| < ε/2 for all

n ≥ N2. It follows that for n ≥ max{N1, N2} we get

|xn − L| ≤ |xn − an|+ |an − L| < ε/3 + ε/2 < ε,

hence L = lim
n→∞

xn. �

Remark 11.73. This property of real numbers is called completeness. We have
seen that the set of rational numbers does not have this property, since there are
Cauchy sequences of rational numbers converging to irrational numbers. We say
that the set of real numbers was obtained by completing the set of rational numbers.
The set of real numbers forms an Archimedean complete ordered field.

Remark 11.74. The set of rational numbers can be completed in a different way
to obtain what is called the field of p-adic numbers denoted Qp (here p is a prime
number). This field is not Archimedean. We sketch now the construction of the
p-adic numbers.

Fix a prime p. Each nonzero x ∈ Q can be written in a unique way as x = pn · a
b

where n, a, b ∈ Z and a, b are not divisible by p. Define

|x|p = p−n.

By definition |0|p = 0. For example,
∣∣∣∣34
∣∣∣∣
2

= 22. It can be proven that

|x+ y|p ≤ max{|x|p, |y|p} ≤ |x|p + |y|p
and that

|xy|p = |x|p|y|p
for all x, y ∈ Q.

A sequence of rational numbers x = (xn) is Cauchy with respect to |·|p if for any
positive rational ε > 0 there is n ∈ N such that |xm−xn|p < ε for allm,n ≥ N . The
set Qp is defined as the set of equivalence classes of Cauchy sequences of rational
numbers with respect to | · |p.

11.3. Decimal representation of real numbers

Theorem 11.75. (Decimal representation). Given a real number x there is a
sequence d0, d1, d2, ... of integers uniquely determined by x such that

(i) d0 = bxc, the largest integer less than or equal to x;
(ii) 0 ≤ dn ≤ 9 for all n ≥ 1, in fact dn = b10nxc − 10b10n−1xc for n ≥ 1;
(iii) The sequence defined inductively by

y0 = d0, yn+1 = yn +
dn+1

10n+1

is Cauchy and lim
n→∞

yn = x. We write

x = d0.d1d2 · · · dn · · · .
The terminating zeros are usually omitted.
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Proof. It suffices to consider the case x ≥ 0. Since d0 = bxc, we have 10x =
10d0 + x1, where 0 ≤ x1 < 10. Let d1 = bx1c, so 10x1 = 10d1 + x2 for some x2

with 0 ≤ x2 < 10. In general we can find xn such that 10xn−1 = 10dn−1 + xn and
we set dn = bxnc. We can write

x = d0 +
d1

10
+

d2

102
+ · · ·+ dn

10n
+

xn+1

10n+1
,

where 0 ≤ xn+1 < 10, hence

0 ≤ x−
(
d0 +

d1

10
+

d2

102
+ · · ·+ dn

10n

)
= x− yn <

1

10n
.

We conclude that |x − yn| < 10−n and that lim
n→∞

yn = x. Uniqueness is left as
exercise. �

Remark 11.76. Note that of the two possible decimal representations of numbers
of the form

a

10b
where a, b are non-negative integers, the theorem chooses that one

which consists of all zeros after a certain step. For example,
2

10
= 0.2 as opposed

to 0.1999...

Theorem 11.77. A real number is rational if and only if its decimal representation
terminates or has an infinitely repeating group of digits.

Proof. We have seen in Theorem 10.23 in the previous chapter that any rational
number has a decimal representation which terminates or has periodicity.

Conversely, if the decimal expansion of r ∈ R terminates, say r = 0.a1a2 · · · ak
where ai are digits and ak 6= 0, then

r =
a110k−1 + a210k−2 + · · · ak

10k

is a rational number. If r has a repeating group of decimals b1b2 · · · bm right after
the decimal point, say r = 0.b1b2 · · · bm, then

10mr = b1b2 · · · bm + r, r =
b1b2 · · · bm
10m − 1

∈ Q.

If r = 0.a1a2 · · · akb1b2 · · · bm, then

10kr = a1a2 · · · ak + 0.b1b2 · · · bm,

r =
b1b2···bm
10m−1 + a1a2 · · · ak

10k
=
a1a2 · · · akb1b2 · · · bm − a1a2 · · · ak

(10m − 1)10k
∈ Q.

�

Example 11.78.

0.1234 =
1234

9999
, 0.1234567 =

1234567− 123

9999000
=

1234444

9999000
.
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11.4. Algebraic and transcendental numbers

Definition 11.79. A real number α is algebraic if there is a polynomial p(x) =
anx

n + an−1x
n−1 + · · · a1x + a0 with integer coefficients such that p(α) = 0. A

number which is not algebraic is called transcendental.

Example 11.80. Rational numbers are algebraic. Indeed,
a

b
is a root of the

polynomial p(x) = bx− a. Some irrational numbers are algebraic, for example
√

2
is a root of p(x) = x2 − 2. The numbers e and π are transcendental. It can be
proved that the set A of algebraic numbers is countable (in bijection with N).

Exercise 11.81. Show that 1−
√

3,
√

5−
√

2 are algebraic.

Exercise 11.82. Prove that if α is algebraic, then kα is algebraic for any integer
k. Also, if α 6= 0 is algebraic, then the inverse 1/α is algebraic.

Exercise 11.83. Prove that if β is transcendental, then 1/β is also transcendental.

Remark 11.84. Euler’s constant γ = lim
n→∞

(1 +
1

2
+ · · · + 1

n
− lnn) is not known

to be rational or irrational, algebraic or transcendent. (The existence of the limit
can be proved using the Mean value Theorem).





Chapter 12

The construction of complex
numbers

Complex numbers were invented to be able to solve polynomial equations like x2 +
1 = 0. You may be familiar with the quadratic formula for solving ax2 + bx+ c = 0
for a 6= 0. If b2 − 4ac < 0, you get something negative under the square root, and
the solutions are complex numbers. We give a formal definition and prove some
elementary properties of the set C of complex numbers. It turns out that C is an
algebraically closed field: any polynomial equation with complex coefficients has
all the roots in C. This statement is proved in Galois Theory, part of Abstract
Algebra.

12.1. The algebraic definition and properties

Definition 12.1. The set of complex numbers is

C = R× R = {〈a, b〉 : a, b ∈ R}

with operations

〈a, b〉+ 〈c, d〉 = 〈a+ c, b+ d〉 and 〈a, b〉 · 〈c, d〉 = 〈ac− bd, ad+ bc〉.

Theorem 12.2. The addition + and multiplication · are commutative and asso-
ciative. The multiplication is distributive with respect to addition. For z ∈ C, we
have

z + 〈0, 0〉 = z, z · 〈0, 0〉 = 〈0, 0〉, z · 〈1, 0〉 = z.

For each z ∈ C there is a unique w such that z + w = 〈0, 0〉. We have cancellation
w + z = u+ z ⇒ w = u.

Proof. Commutativity and associativity of addition are easy verifications. We
have

〈a, b〉 · 〈c, d〉 = 〈ac− bd, ad+ bc〉 = 〈ca− db, da+ cb〉 = 〈c, d〉 · 〈a, b〉.

143
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(〈a, b〉 · 〈c, d〉) · 〈e, f〉 = 〈ac− bd, ad+ bc〉 · 〈e, f〉 =

= 〈ace− bde− adf − bcf, acf − bdf + ade+ bce〉 =

〈a, b〉 · 〈ce− df, cf + de〉 = 〈a, b〉 · (〈c, d〉 · 〈e, f〉).
〈a, b〉 · (〈c, d〉+ 〈e, f〉) = 〈a, b〉 · 〈c+e, d+f〉 = 〈ac+ae− bd− bf, ad+af + bc+ be〉 =

〈ac− bd, ad+ bc〉+ 〈ae− bf, af + be〉 = 〈a, b〉 · 〈c, d〉+ 〈a, b〉 · 〈e, f〉.
We leave the remaining properties as exercise. �

Definition 12.3. If z = 〈a, b〉 ∈ C, define the conjugate z̄ = 〈a,−b〉 and the
absolute value of z by |z| =

√
a2 + b2. Note that |z| ∈ [0,∞).

Remark 12.4. A complex number 〈a, b〉 can be identified with a point in the
euclidean plane R2. The operations have geometric interpretation. For example,
the sum of two complex numbers is obtained by the parallelogram rule used for
addition of vectors.

Theorem 12.5. We have
1. |z| = 0 iff z = 〈0, 0〉.
2. |z · w| = |z| · |w|.
3. zz̄ = |z|2 and |z| = |z̄|.
4. z · w = 〈0, 0〉 iff z = 〈0, 0〉 or w = 〈0, 0〉.
5. z + w = z̄ + w̄.
6. zw = z̄w̄

7. |a| = |〈a, 0〉| ≤ |〈a, b〉|.
8. |z + w| ≤ |z|+ |w|.

Proof. The first six properties are easy to check using the definition.
7. We have |a| =

√
a2 ≤

√
a2 + b2.

8. Let z = 〈a, b〉 and w = 〈c, d〉. We have

|z + w|2 = (z + w)(z̄ + w̄) = zz̄ + zw̄ + z̄w + ww̄ =

= |z|2 + 〈ac+ bd, bc− ad〉+ 〈ac+ bd, ad− bc〉+ |w|2 =

|z|2 + 2〈ac+ bd, 0〉+ |w|2 ≤ |z|2 + 2|zw̄|+ |w|2 =

= |z|2 + 2|z||w|+ |w|2 = (|z|+ |w|)2.

The inequality follows by taking square roots. �

Theorem 12.6. For each z 6= 〈0, 0〉 there exists a unique w such that z ·w = 〈1, 0〉.
If z 6= 〈0, 0〉 and z · w = z · u, then w = u.

Proof. Let z = 〈a, b〉 with a2 + b2 6= 0. Consider w = 〈 a

a2 + b2
,− b

a2 + b2
〉. Then

z · w = 〈1, 0〉. Note that w =
z̄

|z|2
. This w is called the inverse of z, denoted z−1.

For the second property, multiply both sides by z−1. �

Theorem 12.7. We have 〈a, 0〉+ 〈b, 0〉 = 〈a+ b, 0〉 and 〈a, 0〉 · 〈b, 0〉 = 〈ab, 0〉.

Proof. Exercise. �
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Corollary 12.8. The field (R,+, ·) is isomorphic with the subset {〈a, 0〉 : a ∈ R}
of C under addition and multiplication. We identify a real number a with the pair
〈a, 0〉 ∈ C.

Remark 12.9. Denote by i the element 〈0, 1〉 of C. Then we have

i2 = 〈0, 1〉 · 〈0, 1〉 = 〈−1, 0〉 = −1.

Any complex number 〈a, b〉 can be written as 〈a, b〉 = 〈a, 0〉+ 〈b, 0〉 · 〈0, 1〉 = a+ bi.
Note that a+ bi = a − bi. The real numbers a and b are called the real part and
the imaginary part of z = a+ bi. We write a = Re(z), b = Im(z).

Exercise 12.10. Determine in for n ∈ N.

Remark 12.11. There is no order relation on C that extends the usual order
relation on R, hence C it not an ordered field.

Proof. Indeed, if such an order � exists, then z2 � 0 for all z ∈ C. But i2 = −1 �
0, contradiction. �

Exercise 12.12. Prove that
a. z + z̄ = 2Re(z) and z − z̄ = 2iIm(z).
b. |Re(z)| ≤ |z| and |Im(z)| ≤ |z|.

Exercise 12.13. Let z = 3 + 4i and w = 5− 2i. Evaluate and simplify

|z|, |w|, z + w, zw, z/w, iz − 3w.

Where applicable, determine the real part and the imaginary part.

Remark 12.14. The quadratic equation ax2 +bx+c = 0 with complex coefficients
can be solved using the quadratic formula,

x1,2 =
−b+

√
b2 − 4ac

2a
,

except this involves the square root of a complex number, which in general has two
possible complex values.

Example 12.15. Let’s find
√

2 + i = a+bi with a, b ∈ R. We have (a+bi)2 = 2+i,
so a2 − b2 + 2abi = 2 + i. The system

a2 − b2 = 2

2ab = 1

has two real solutions

a = ±

√
2 +
√

5

2
, b = ± 1√

4 + 2
√

5
.

Exercise 12.16. Solve the quadratic equations

x2 − ix+ 2 = 0, ix2 + (1− i)x+ 1 = 0.
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12.2. The trigonometric form of a complex number

Sometimes it is useful to write a complex number in trigonometric form, similar to
polar coordinates in the plane.

Theorem 12.17. (Trigonometric form) If z ∈ C \ {0}, then there is r > 0 and
w ∈ C with |w| = 1 such that z = rw. The number w is of the form cos t + i sin t
with t ∈ [0, 2π), so

z = |z|(cos t+ i sin t).

Proof. Consider r = |z| and w =
z

|z|
. Then |w| = 1 and w is on the trigonometric

circle x2 +y2 = 1, hence there is t ∈ [0, 2π) such that w = cos t+i sin t. The number
r ≥ 0 is the distance from z to the origin, sometimes called the polar radius, and
the angle t is the polar angle, also called the argument of z. �

Example 12.18. Let’s find the trigonometric form of z = −2 + 2i. We have

|z| =
√

4 + 4 = 2
√

2,
z

|z|
= − 1√

2
+

1√
2
i,

so t =
3π

4
and

−2 + 2i = 2
√

2

(
cos

3π

4
+ i sin

3π

4

)
.

x

y

z

0

|z|
t

Corollary 12.19. Two complex numbers in trigonometric form zn = rn(cos tn +
i sin tn), n = 1, 2 can be multiplied by the formula

z1z2 = r1r2(cos(t1 + t2) + i sin(t1 + t2)).

Proof. Indeed,
(cos t1 + i sin t1)(cos t2 + i sin t2) =

= (cos t1 cos t2 − sin t1 sin t2) + i(sin t1 cos t2 + sin t2 cos t1) =

= cos(t1 + t2) + i sin(t1 + t2).

�

Theorem 12.20. We have the formula (De Moivre)

(cost+ i sin t)n = cosnt+ i sinnt.



12.2. The trigonometric form of a complex number 147

Proof. By induction. Clearly this is true for n = 1. Assume

(cost+ i sin t)k = cos kt+ i sin kt

for some k ≥ 1. Then

(cost+i sin t)k+1 = (cos t+i sin t)k(cos t+i sin t) = (cos kt+i sin kt)(cos t+i sin t) =

= (cos kt cos t− sin kt sin t) + i(cos kt sin t+ sin kt cos t) = cos(k+ 1)t+ i sin(k+ 1)t.

�

Theorem 12.21. The field C is complete (every Cauchy sequence is convergent).

Proof. Let (zn) with zn = an + bni be a Cauchy sequence in C. This means
that ∀ε > 0 there is N ∈ N such that |zm − zn| < ε for all m,n ≥ N . Since
|am − an|, |bm − bn| ≤ |zm − zn|, we conclude that the sequences (an) and (bn) are
Cauchy. Since R is complete, we get an → a and bn → b. Then zn → a+ bi. �

Exercise 12.22. Let z = a + bi, w = c + di. Define z ≺ w if a < c or a = c
and b < d (lexicographic strict order). Does this order have the least upper bound
property?

Exercise 12.23. If z ∈ C such that |z| = 1, compute |1 + z|2 + |1− z|2.

Exercise 12.24. Suppose z ∈ C such that z+
1

z
= 1. Find z2 +

1

z2
and in general

zn +
1

zn
.

Remark 12.25. It is possible to extend the complex number field to a larger system
of numbers H. In fact, one can define addition and multiplication on H = C×C to
get a number system called the quaternions, invented by Hamilton. More precisely,

〈z1, w1〉+〈z2, w2〉 = 〈z1+z2, w1+w2〉, 〈z1, w1〉·〈z2, w2〉 = 〈z1z2−w1w̄2, z1w2+z̄2w1〉.
We can identify z ∈ C with 〈z, 0〉 ∈ H. It can be proved that the multiplication
of quaternions is associative but not commutative. Any non-zero quaternion has a
multiplicative inverse. The set H becomes a structure called division ring or skew
field.

Exercise 12.26. Denote j = 〈0, 1〉 and k = 〈0, i〉 as elements in H. Prove that

j · j = k · k = 〈−1, 0〉, i · j = k, j · k = i, k · i = j, j · i = −k, k · j = −i, i · k = −j.

Exercise 12.27. Any quaternion 〈z, w〉 ∈ H can be written in the form z + wj.

Remark 12.28. It is possible to give H × H an additive and multiplicative op-
erations, obtaining the octonions or Cayley numbers. The multiplication is both
non-commutative and non-associative. The quaternions and the Cayley numbers
are used in Mathematical Physics, Group Representation and Algebraic Topology.
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