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Calculation of the energy levels and wave functions of electrons in
nanowires by the shooting method
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In this work, the energy levels and wave functions in rectangular and cylindrical nanowires with a finite
potential well are calculated. The Schrödinger equation in Cartesian and cylindrical coordinate systems was
solved by the shooting method. The calculations take into account the nonparabolicity of the energy spectrum
of electrons. The graphs of the dependence of the energy levels on the sizes of nanowires are obtained. When
calculating the energy levels and wave functions, changes in the effective mass of electrons were taken into
account. The calculations were performed for the quantum well of the InP/InAs/InP heterostructure.
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1. Introduction

In recent years, ongoing miniaturization of electronic cir-
cuits led to an emerging interest in nanoscaled materials.
These unique properties can be attributed to the limited
motion of electrons in the confined dimensions of the nano-
material. The study of semiconducting one-dimensional
structures has been an important problem in the physics
of solid state. At present, the energy spectrum of electrons
and holes in quantum wells of InP/InAs/InP heterostruc-
tures is being intensively calculated.

In works [1, 2], technologies for growing nanowires are
given and nanowires with various sizes are obtained. In [3],
the relaxation time of the electron spin in a semiconductor
quantum wire was experimentally investigated. The spec-
trum of optical absorption in quantum wires of different
radii is investigated. To determine the energy spectrum
and wave function of electrons in rectangular quantum
nanowires in [4–6], the Schrödinger equation was solved by
various mathematical methods. For a cylindrical quantum
wire with a finite potential and parabolic dispersion, the

Schrödinger equations were solved analytically [7, 8]. The
Schrödinger equation was solved by the shooting method
for rectangular [9] and cylindrical [10, 11] quantum wires.
This work is devoted to calculating the energy of electrons
in a quantum wire with a finite potential using the shooting
method.

2. Calculation of the energy and wave function of
electrons in a quantum wire with a finite poten-
tial well by the shooting method

We will solve the Schrödinger equation for electrons with
variable effective mass using the shooting method [10]. In
this case, the effective mass is a function of the electron
coordinate, the Schrödinger equation can be written in the
following form.
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Equations (1) and (2) can be rewritten in the following
form.
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We divide the left sides of equations (3) and (4) into
separate parts.
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The derivatives of the wave function and effective mass
are replaced by the following transformations.
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Substituting expressions (7a), (7b), and (7c) into equa-
tions (5) and (6), we obtain the following equations
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Using these equations, one can calculate the wave func-
tions and energy levels of electrons in a potential well from
a finite depth.

3. Calculation of the energy levels of electrons of a
cylindrical quantum wire with a finite depth of
the potential well by the method of Shooting

The Schrödinger equation in a cylindrical coordinate sys-
tem is as follows:
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We seek the solution of this equation in the following
form.

f (r) = eikzzeilϕψ(ρ) (11)

Here the parameters kx and l do not depend on coordi-
nates. Therefore, equation (10) will be solved for the radial
wave function. Taking into account the coordinate depen-
dence of the effective mass, the Schrödinger equation takes
the following form.
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Equation (12) is solved by the finite difference method
[10]. In this case, we will use expressions (7a), (7b), (7c) for
the derivatives of the effective mass and wave functions of
electrons. Then equation (12) takes the following form.
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If the values of ψ(ρ− δρ) and ψ(ρ) are known for the

wave functions, then using equation (14) it is possible to
determine the value of ψ(ρ− δρ) for an arbitrary energy.
To calculate the wave function and energy of electrons and
holes, it is necessary to take into account the following
three boundary conditions.

ψ(∞)→ 0, ψ(0) = 1, ψ(δρ) = 1

4. Findings and conclusions

It is known that the lattice constant for InP is 0.5869 nm
and this value is close to the value of the lattice constant
for InAs 0.6058 nm [12]. This makes it possible to obtain an
ideal heterostructure using these materials. Figure 1 shows
the band diagram of the InP / InAs heterostructure. Table
1 shows the required parameters for InAs and InP obtained
by various authors. The potential well depth for the InP /
InAs / InP heterostructure is 0.52 eV. When studying the
energy spectrum, the radius of the nanowire was taken
from 5 to 20 nm. In [13] for the relationship between the
radius and length of nanowires is given. The length of the
nanowire is many times greater than its radius [13]. This
allows you to solve a one-dimensional problem.To take
into account the nonparabolicity of the zone, we use the
Kane model [14]. In [11], [15, 16] various approximations
for the effective mass are given, we will use the following
expression for the effective mass.
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Fig. 1. InP/InAs zone diogram

Fig. 2. Dependence of the electron energy in a rectangu-
lar nanowire with a finite potential well on the size of the
well

where i = e, hh, lh
Usually, the electron wave function as ρ → ∞ is equal

to zero. If at the size of the potential well R, we choose that
the wave function at a distance inside the barrier is R/2,
and then the error in calculating the energy was 0,001 meV
compared to ρ→ ∞.

Using the above equations (8) and (9) for the heterostruc-
ture of InP / InAs / InP nanowires with a rectangular cross
section, we determine the energy levels and wave functions
of electrons. Fig. 2 shows the energies of the first and sec-
ond levels for a rectangular nanowire with a finite depth of
the potential well when the side of the well changes from 5
nm to 50 nm. An increase in the size of the well leads to a
decrease in the values of the energy levels.

Fig. 3 shows the wave functions of electrons correspond-
ing to the energy levels (1; 1), (1; 2), (2; 1), and (2; 2) in a
rectangular nanowire with a side of 10 nm. Solving equa-
tion (14), we find the energy levels and wave functions
of electrons in a cylindrical nanowire. Fig. 4 shows the
change in energy levels with an increase in the radius of
a cylindrical nanonite from 5 to 20 nm. Fig. 5 shows the
wave functions of electrons of the first four energy levels
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Table 1. Material parameters of InAs and InP

Parameter InAs InP
Eg, (eV) 0.35[12] 1.35[12, 17]

0.36[17] 1.424[18]

0.417[18] 1.42[19, 20]

me/m0 0.022[12] 0.077[12, 18]

0.023[18] 0.079[19]

χ, (eV) 4.92[12] 4.38[12]

4.9[17] 4.4[17]

of a nanowire with a radius of 8 nm.
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Fig. 5. Dependence of the wave function of electrons of a cylindrical nanowire with a finite potential well on the size of
the well
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