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Holliday junctions for the HC (cycle) Blume-Capel model
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Abstract. In this article, we look at DNA as a configuration of the Blume-Capel
model and insert it in the path of the Cayley tree. To study the thermodynamic
properties of the DNA model, we describe the corresponding translational-invariant
Gibbs measure (TIGM) of the model on the Cayley tree. It is shown that, for k ≥ 2,
for any temperature T > 0 there is a unique TIGM. Using these results, we study the
distributions of the Holliday junctions DNA. For very high and very low temperatures,
we give stationary distributions and typical configurations of Holliday junctions.
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1 Introduction and Definitions
It is known that each DNA molecule is a double helix formed by two complementary
strands of nucleotides held together by hydrogen bonds between G - C and A - T base
pairs, where cytosine (C), guanine (G), adenine (A) and thymine ( T). The genetic
information, stored in an organism’s DNA, contains instructions for all proteins the
organism will ever synthesize [1].

Holliday junctions [4] are a cruciform structure that forms during genetic
recombination when two double-stranded DNA molecules split into four strands to
exchange segments of genetic information.

In articles [10, 11] the Ising and Potts DNA models are considered for
studying their thermodynamics. Note that the non-uniqueness of the Gibbs measure
corresponds to phase coexistence in the DNA system. By the properties of Markov
chains (corresponding to TIGM) Holliday junctions and DNA branches are studied.

On the Cayley tree, the results for DNA were obtained only for cases k = 2.
In this paper, the results are obtained for the case k ≥ 2. For other results on the
Blume-Capel model see [2, 5, 6].

In our model, we consider a set of DNAs that "live"on a tree graph. Let the l
edge of this graph have a function σ(l) with three possible values -1,0, 1 (an analog
of the spin values in physical systems), in the case σ(l) = 0 it is said that the edge l
does not belong to DNA. If this l separates two DNAs, then a value of σ(l) = 1 or
σ(l) = −1 means that the two DNAs have a Holliday junction.

Now from the following [9, 10, 11], we recall some definitions.



88 Khatamov N.M.

The Cayley tree Γk of order k ≥ 1 is an infinite tree, i.e., a graph without cycles,
such that exactly k+ 1 edges originate from each vertex. Let Γk = (V,L, i), where V
is the set of vertices Γk, L is the set of edges and i is the incidence function setting
each edge l ∈ L into correspondence with its endpoints x, y ∈ V . If i(l) = {x, y},
then the vertices x and y are called the nearest neighbors, denoted by l = 〈x, y〉. The
distance d(x, y), x, y ∈ V on the Cayley tree is the number of edges of the shortest
path from x to y:

d(x, y) = min{d|∃ x = x0, x1, ..., xd−1, xd = y ∈ V such that
〈x0, x1〉, ..., 〈xd−1, xd〉}.

For a fixed x0 ∈ V we set Wn = {x ∈ V : d(x0, x) = n},

Vn = {x ∈ V : d(x0, x) ≤ n}, Ln = {l = 〈x, y〉 ∈ L|x, y ∈ Vn}. (1.1)

For any x ∈ V denote

Wm(x) = {y ∈ V : d(x, y) = m,m ≥ 1}.

Let Z = {...,−2,−1, 0, 1, 2, ...}. It was proved in [8] that all vertices of a Cayley
tree can be partitioned into equivalence classes labeled by integers and that through
each vertex belonging to the m-th equivalence class, there passes a unique path such
that the labels of the equivalence classes to which successive vertices belong form
an integer sequence ...,m − 2,m − 1,m,m + 1,m + 2, ..., which is infinite in both
directions. Each such path is called a Z− path.

Let L be the set of edges of a Cayley tree. Consider function σ which assigns to
each edge l ∈ L, values σ(l) ∈ {−1, 0, 1}. Value σ(l) = −1 (resp. +1) means that
edge l is ’occupied’ by -1 ="A with T"(resp. 1 ="C with G"), and σ(l) = 0 that l is
’vacant’.

A configuration σ = {σ(l), l ∈ L} on edges of the Cayley tree is given by a function
from L to {−1, 0, 1}. The set of all configurations in L is denoted by Ω. Configurations
in Ln are defined analogously and the set of all configurations in Ln is denoted by
Ωn.

In the case of a ’cycle’, the configuration σ = {σ(l), l ∈ L} is called admissible, if

1) σ(l) 6= 0 for any l ∈ Z− path;

2) {σ(l), σ(t)} ∈ {{−1, 0}, {−1,+1}, {0,+1}} ;

The restriction of an admissible configuration on a Z− path is called a DNA.
The most common discrete models regard DNA as a set of rigid subunits

that represent base pairs [12]. This description has long been used by chemists to
characterize DNA crystal structures. We consider the following Blume-Capel model
of energy configuration σ of a DNA set:

H(σ) = J
∑

〈l,t〉∈L×L;

(σ(l)− σ(t))2, (1.2)
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where J > 0 is a coupling constant, σ(l) ∈ {−1, 0, 1} and 〈l, t〉 stands for the
nearest neighbor edges, i.e. edges which have a common endpoint.

Let Ωan (resp. Ωa) be the set of all admissible configurations on Ln (resp. L).
Denote

En = {〈x, y〉 ∈ L : x ∈Wn−1, y ∈Wn},

Ωban =the set of admissible configurations on En.

For l ∈ En−1 denote
S(l) = {t ∈ En : 〈l, t〉)}.

It is easy to see that

S(l) ∩ Z− path =

{
{l0, l1} ⊂ L, if l /∈ Z-path,
{l1} ⊂ L, if l ∈ Z-path.

We denote
S0(l) = S(l) \ {l0, l1}, l /∈ Z− path,
S1(l) = S(l) \ {l1}, l ∈ Z− path.

Let L̃(G) be the set of "edge"of G. We define an adjacency matrix of G by
A ≡ AG = (αij)i,j=−1,0,+1, i.e.

αij ≡ αGij =

{
1, if {i, j} ∈ L̃(G),
0, if {i, j} /∈ L̃(G).

In a standard way (see [9, 10, 11]), one can reduce the study of the Gibbs measures
of the Blume-Capel model to the problem of finding solutions to the following system
of functional equations:

z0,l =
α0,+1λzl0 + α0,−1λ

a−1,+1λ4zl0 + α−1,−1
· α0,+1λzl1 + α0,−1λ

α−1,+1λ4zl1 + α−1,−1
·

∏
t∈S0(l)

α0,+1λz+1,t + α0,−1λ+ α0,0z0,t

α−1,+1λ4z+1,t + α−1,−1 + α−1,0λz0,t
, l /∈ Z− path,

z1,l =
α+1,+1zl0 + α+1,−1λ

4

α−1,+1λ4zl0 + α−1,−1
· α+1,+1zl1 + α+1,−1λ

4

α−1,+1λ4zl1 + α−1,−1
·

∏
t∈S0(l)

α+1,+1z+1,t + α+1,−1λ
4 + α+1,0λz0,t

α−1,+1λ4z+1,t + α−1,−1 + α−1,0λz0,t
, l /∈ Z− path,

zl =
α+1,+1zl + α+1,−1λ

4

α−1,+1λ4zl + α−1,−1
·
∏

t∈S1(l)

α+1,+1z+1,t + α+1,−1λ
4 + α+1,0λz0,t

α−1,+1λ4z+1,t + α−1,−1 + α−1,0λz0,t
, l ∈ Z− path.

(1.3)
Here

λ = exp(−Jβ). (1.4)
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Moreover, this implies that for any set of vectors z = {(z0,l, z1,l, zt), l /∈ Z −
path, t ∈ Z− path satisfying the system of functional equations (1.3), there exists the
only Gibbs measure µ and vice versa. However, the analysis of solutions (1.3) is not
easy. Here are some solutions (1.3).

2 Translation Invariant Gibbs Measures of the
Set of DNAs

A translation invariant Gibbs measure corresponds a solution zl of the system of
functional equations (1.3), which does not depend on l, i.e.,

z0,l = u, z1,l = v,∀l /∈ Z− path; zl = w,∀l ∈ Z− path. (2.1)

where u, v, w > 0 (by (1.3)) satisfy

u =

(
α0,+1λv + α0,−1λ+ α0,0u

α−1,+1λ4v + α−1,−1 + α−1,0λu

)k−2(
α0,+1λw + α0,−1λ

α−1,+1λ4w + α−1,−1

)2

,

v =

(
α+1,+1v + α+1,−1λ

4 + α+1,0λu

α−1,+1λ4v + α−1,−1 + α−1,0λu

)k−2(
α+1,+1w + α+1,−1λ

4

α−1,+1λ4w + α−1,−1

)2

,

w =

(
α+1,+1v + α+1,−1λ

4 + α+1,0λu

α−1,+1λ4v + α−1,−1 + α−1,0λu

)k−1(
α+1,+1w + α+1,−1λ

4

α−1,+1λ4w + α−1,−1

)
. (2.2)

Consider the case of cycle:

α−1,−1 = 0, α−1,0 = 1, α−1,+1 = 1,

α0,−1 = 1, α0,0 = 0, α0,+1 = 1,

α+1,−1 = 1, α+1,0 = 1, α+1,+1 = 0, (2.3)

then system (2.2) we obtain

u =

(
v + 1

λ3v + u

)k−2

·
(
w + 1

λ3w

)2

,

v =

(
λ3 + u

λ3v + u

)k−2

· 1

w2
,

w =

(
λ3 + u

λ3v + u

)k−1

· 1

w
. (2.4)
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We have the equation

w2 =

(
λ3 + u

λ3v + u

)k−1

(2.5)

from the last equation of the system (2.4). Then, from the second equation of the
system (2.4), v = 1. From equation (2.5) we obtain w = 1. If we put them to the first
equation of the system (2.4), then we have

u =
4

λ6
·
(

2

λ3 + u

)k−2

. (2.6)

At k = 2, the equation (2.6) has a unique solution

u =
4

λ6

for any λ > 0. Then, the system of the equation (2.4) has for k = 2 a unique solution
for any λ > 0 too,

z = (u, v, w) = (
4

λ6
, 1, 1).

For k ≥ 2 true the following.

Lemma 2.1. If k ≥ 2 and 0 < λ < 1, then the system (2.4) has a unique solution

z = (u, v, w) = (u∗, 1, 1),

where u∗ is a solution of the equation (2.6).

Proof. We have seen above that at k = 2, the equation (2.6) has a unique solution.
Let k > 2. Denote

u =
xk−2

λ6
, x > 0. (2.7)

Then the equation (2.6) has the form

xk−1 + λ9x− 2
k
k−2 λ6 = 0. (2.8)

Note that the signs of the coefficients of this equation change only once. Then by
the well-known property [7] that the number of positive roots of a polynomial does
not exceed the number of changes in the signs of its coefficients, we obtain that the
equation (2.8) has a unique positive solution. According to (2.7) equation (2.6) also
has a unique positive solution. From this and the above comments (2.4) it follows
that the system has a unique solution. Lemma 2.1 is proved.

For some values of k one can give explicit form of the unique solution to (2.6).
For example, if k = 2 then the unique solution of equation (2.4) is with

u(2)
∗ =

4

λ6
(2.9)
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i.e.,
z = (u, v, w) = (u(2)

∗ , 1, 1).

For k = 3 the system of equation (2.4) has a unique solution for any λ > 0

z = (u, v, w) = (u(3)
∗ , 1, 1),

where

u(3)
∗ =

√
λ12 + 32− λ6

2λ3
. (2.10)

For k = 4 the system of equation (2.4) has a unique solution

z = (u, v, w) = (u(4)
∗ , 1, 1),

where

u(4)
∗ =

3
√
λ15 + 216 + 12

√
3λ15 + 324 + λ10

3
√
λ15+216+12

√
3λ15+324

− 2λ5

3λ2
. (2.11)

On the cases k > 4, it is not possible to find an explicit form of the solution to
equation (2.6).

Denote by µ the Gibbs measure which, by (1.3), correspond to the solution z.
Thus we obtain the following.

Theorem 2.2. For the HC (cycle) Blume-Capel model of DNAs on the Cayley tree
of order k ≥ 2 at the T = J

ln 1
λ

> 0 there is a unique translation-invariant Gibbs
measure µ.

3 Markov Chains of TIGMs and Holliday
Junction of DNA

For marginals on the two-edge sets which consist of two neighbor edges l, t,
considering a boundary law {(z0,l, z1,l, zt, l /∈ Z − path, t ∈ Z − path)}, i.e., the
solutions of system (1.3). This boundary law is normalized at -1, i.e., z−1,l = 1,
that is h−1,l = 0. We have

µ(σ(l) = a, σ(t) = b) =
1

Z
za,lexp(β(a− b)2)zb,t, a, b = −1, 0,+1,

where Z is normalizing factor.
Hence, the connection between the boundary law and the transition matrix for the

associated tree-indexed Markov chain (Gibbs measure) is immediately obtained from
the conditional probability formula. Indeed, if we have ha,l (given in formula (1.3))
which does not depend on l , we define a (inhomogeneous) Markov chain indexed by a
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tree (inhomogeneous) with states {−1, 0,+1} with transition matrix P[l,t] =
(
P

[l,t]
ij

)
,

depending on 〈l, t〉 with

P
[l,t]
ij =



αi,jexp(−Jβ(i−j)2+hj)

αi,−1exp(−Jβ(i+1)2+h−1)+αi,0exp(−Jβi2+h0)+αi,+1exp(−Jβ(i−1)2+h1)
,

if l, t /∈ Z− path, i, j = −1, 0, 1
αi,jexp(−Jβ(i−j)2+hj)

αi,−1exp(−Jβ(i+1)2+h−1)+αi,+1exp(−Jβ(i−1)2+h1)
,

if l /∈ Z− path, t ∈ Z− path, i = −1, 0, 1; j = −1, 1
αi,jexp(−Jβ(i−j)2+hj)

αi,−1exp(−Jβ(i+1)2+h−1)+αi,0exp(−Jβi2+h0)+αi,+1exp(−Jβ(i−1)2+h1)
,

if l ∈ Z− path, t /∈ Z− path, i = −1, 1; j = −1, 0, 1
αi,jexp(−Jβ(i−j)2+hj)

αi,−1exp(−Jβ(i+1)2+h−1)+αi,+1exp(−Jβ(i−1)2+h1)
,

if l, t ∈ Z− path, i, j = −1, 1

Here P [l,t]
ij is the probability to go from a state i at edge l to a state j at the neighbor

edge t.
From this, using formulas (1.4) and (2.1) for solutions (u, v, w) to (2.4) we write

the matrices of the tree-indexed Markov chains (related to Gibbs measures, see [3])
P[l,t] =

(
P

[l,t]
ij

)
:

P[l,t] = P[l,t]

(3→3) =

 0 u
u+λ3v

λ3v
u+λ3v

1
1+v

0 v
1+v

λ3

λ3+u
u

λ3+u
0

 , if l, t /∈ Z− path.

P[l,t] = P[l,t]

(3→2) =

 0 0 1
1

1+w
0 w

1+w

1 0 0

 , if l /∈ Z− path, t ∈ Z− path.

P[l,t] = P[l,t]

(2→3) =

 0 u
u+λ3v

λ3v
u+λ3v

∗ ∗ ∗
λ3

λ3+u
u

λ3+u
0

 , if l ∈ Z− path, t /∈ Z− path.

where ∗ means that P [l,t]
0j is not defined, because σ(l) 6= 0 for any l ∈ Z− path.

P[l,t] = P[l,t]

(2→2) =

(
0 1
1 0

)
, if l ∈ Z− path, t ∈ Z− path.

We note that each matrix P[l,t]

(n→m), n,m = 2, 3 is homogenous on the corresponding

set of neighbor edges 〈l, t〉 where it is given, i.e., P[l,t]

(n→m) does not depend on 〈l, t〉
itself but only depends on its relation with Z− path.

It is easy to find the following stationary distributions

π(n→m) = (π(n→m),−1, π(n→m),0, π(n→m),1)



94 Khatamov N.M.

of the matrix P[l,t]

(n→m), n = m.

π(3→3) =
1

N

 (λu+ λ4v)
(λ+ λv)u
(λ4 + λu)v

t

,

where N is the normalizing factor

π(2→2) =

(
1

2
,

1

2

)
.

Using the ergodic theorem (see [3]) for positive stochastic matrices and the above
formulas for matrices and stationary distributions, we obtain.

Theorem 3.1. In a stationary state of the set of DNAs, independently on l /∈ Z −
path, a Holliday junction through l does not occur with the following probability (with
respect to measure µ∗)

π(3→3),0 = π
(∗)
(3→3),0 =

1

N
(2λu∗).

(Consequently, a Holliday junction occurs with probability 1 − π(∗)
(3→3),0) where u∗ is

defined in Lemma 2.1.

One can see that π(∗)
(3→3),0 is a function of temperature only.

Now we are interested to calculate the limit of stationary distribution vectors
π(3→3), π(2→2) (which correspond to the Markov chain generated by the Gibbs
measure µ) in case when temperature T → 0 (i.e. β → ∞ and λ → 0) and when
temperature T → +∞ (i.e. β → 0 and λ → 1). To calculate the limit observe that
value u∗ varies with T = 1/β.

Lemma 3.2. The following equalities hold on k = 2, 3, 4
- The case of low temperature:

lim
T→0

π
(k)

(3→3) =

(
1

4
,

1

2
,

1

4

)
, k = 2, 3, 4.

lim
T→0

π
(k)

(2→2) =

(
1

2
,

1

2

)
, k = 2, 3, 4.

-The case of high temperature:

lim
T→+∞

π
(2)

(3→3) =

(
5

18
,

4

9
,

5

18

)
≈ (0.277777778, 0.444444444, 0.277777778) ,

lim
T→+∞

π
(3)

(3→3) =

(√
33

132
+

1

4
,

1

2
−
√

33

66
,

√
33

132
+

1

4

)
≈
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≈ (0.293519414, 0.412961172, 0.293519414) ,

lim
T→+∞

π
(4)

(3→3) = (A,B,A) = (0.302059899, 0.395880202, 0.302059899) ,

lim
T→+∞

π
(k)

(2→2) =

(
1

2
,

1

2

)
, k = 2, 3, 4,

where

A =
(12
√

327 + 217)
2
3 + (12

√
327 + 217)

1
3 + 1

4(12
√

327 + 217)
2
3 − 2(12

√
327 + 217)

1
3 + 4

≈ 0.302059899,

B =
(12
√

327 + 217)
2
3 − (12

√
327 + 217)

1
3 + 1

2(12
√

327 + 217)
2
3 − (12

√
327 + 217)

1
3 + 2

≈ 0.395880202.

By Lemma 3.2 we have the following structures of the set of DNAs:

(i) In case T → 0 the set of DNAs have the following stationary states
(configurations):

Case µ (k = 2, 3, 4). All neighboring DNAs have Holliday junction with probability
1/2 (more precisely, a junction through state −1 or +1 with equiprobable 1/4)
and no junction with probability 1/2. The sequence of ±1s, in a DNA on the
Z− path, is free, with iid and equiprobable (= 1/2), of −1 and +1s.

(ii) In case T → +∞ the set of DNAs have the following stationary states
(configurations):

Case µ (k = 2). All neighboring DNAs have Holliday junction with probability
0.555555556 (more precisely, a junction through state −1 or +1 with
equiprobable 0.277777778) and no junction with probability 0.444444444. The
sequence of ±1s, in a DNA on the Z− path, is free, with iid and equiprobable
(= 1/2), of −1 and +1s.

Case µ (k = 3). All neighboring DNAs have Holliday junction with probability
0.587038828 (more precisely, a junction through state −1 or +1 with
equiprobable 0.293519414) and no junction with probability 0.412961172. The
sequence of ±1s, in a DNA on the Z− path, is free, with iid and equiprobable
(= 1/2), of −1 and +1s.

Case µ (k = 4). All neighboring DNAs have Holliday junction with probability
0.604119798 (more precisely, a junction through state −1 or +1 with
equiprobable 0.302059899) and no junction with probability 0.395880202. The
sequence of ±1s, in a DNA on the Z− path, is free, with iid and equiprobable
(= 1/2), of −1 and +1s.
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4 Conclusions
On the Cayley tree, the results for DNA were obtained only for cases k = 2. In this

paper, the results are obtained for the case k ≥ 2. Following [10] for the HC (cycle)
Blume-Capel model in DNA on a Cayley tree of order k ≥ 2, we proved that at a
temperature T > 0 there is a unique TIGM.

Since each such measure describes the phase of DNA recruitment. Our results
refer to the Gibbs measure allowed us to study the distributions of Holliday junctions
DNA compounds. In the previous section, for very high and very low temperatures,
we gave stationary distributions and typical configurations of Holliday junctions.
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