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1 Introduction
It is well known that the completion of the field Q of rational numbers with respect

to the p-adic norm defines a field of p-adic numbers, which is denoted by Qp (see [8]).
The algebraic closure Qacp of Qp is an infinite extension, this follows from the fact
that there exist irreducible polynomials of any degree over Qp. Unfortunately, Qacp
is not complete with the metric induced by the extended p-adic absolute value. We
complete Qacp and obtain a new field Cp which is algebraically closed. We call Cp the
field of complex p-adic numbers.

We study discrete-time dynamical systems generated by a rational function
given on the field of p-adic numbers. For basic definitions and motivations of such
investigations see [1]-[19] and references therein.

A function is called a (n,m)-rational function if and only if it can be written
in the form f(x) = Pn(x)

Qm(x)
, where Pn(x) and Qm(x) are polynomial functions with

degree n and m respectively, Qm(x) is non zero polynomial.
In [6] the trajectories of (2, 1)-rational p-adic dynamical system with the form

f(x) = ax2

bx+1
in a complex p-adic field Cp are studied.

In [1] the (2, 1)-rational dynamical systems on the field of p-adic complex numbers
Cp are studied. In this study, the cases in which a function has a unique fixed point,
two fixed points, and no fixed point have been studied in detail separately.

In [19] it is considered (2, 1)-rational dynamical systems with unique fixed point on
Qp. It is founded all invariant spheres, and investigated ergodicity of such dynamical
system on invariant sphere.

In this paper we consider a (1, 2)-rational function with two distinct fixed points
on the field Cp.
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2 (1, 2)-rational function with two distinct fixed
points

In this paper we consider the dynamical system associated with the (1, 2)-rational
function f : Cp → Cp defined by

f(x) =
ax+ b

x2 + cx+ d
, a 6= 0, a, b, c, d ∈ Cp. (2.1)

where x 6= x̂1,2 =
−c±
√
c2−4d

2
.

We study p-adic dynamical systems generated by the rational function (2.1).
The equation f(x) = x for fixed points of function (2.1) is equivalent to the

equation

x3 + cx2 + (d− a)x− b = 0. (2.2)

Since Cp is algebraic closed the equation (2.2) may have three solutions with one
of the following relations:

(i). One solution having multiplicity three;
(ii). Two solutions, one of which has multiplicity two;
(iii). Three distinct solutions.
In this paper we assume that equation (2.2) has two distinct solutions x1 and

x2, such that x2 has multiplicity two. Then we have x3 + cx2 + (d − a)x − b =
(x− x1)(x− x2)2 and 

x1 + 2x2 = −c,

x2
2 + 2x1x2 = d− a,

x1x
2
2 = b,

(2.3)

Let homeomorphism h : Cp → Cp is defined by h(t) = t + x2. Note that, the
function f is topologically conjugate to function h−1 ◦ f ◦ h. We have

(h−1 ◦ f ◦ h)(t) =
−x2t

2 +Bt

t2 +Dt+B
, (2.4)

where B = x2
2 + cx2 + d and D = 2x2 + c.

In (2.4), the case x2 6= 0 is studied in [17].
Thus in this paper we consider the case x2 = 0 in (2.4). If x2 = 0, then B = d = a

and D = c. Thus we have the following proposition

Proposition 2.1. Any (1,2)-rational function having two distinct fixed points is
topologically conjugate to one of the functions in the following forms

f(x) =
ax2 + bx

x2 + cx+ b
, ab 6= 0, a 6= c, a, b, c ∈ Cp, (2.5)
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and

f(x) =
ax

x2 + cx+ a
, a 6= 0, a, c,∈ Cp. (2.6)

where x 6= x̂1,2 =
−c±
√
c2−4a

2
.

Thus we study the dynamical system (Cp, f) with f given by (2.6).

3 Behavior of dynamical systems
Note that, function (2.6) has two fixed points x1 = −c and x2 = 0. So we have

f ′(x1) =
a− c2

a
, f ′(x2) = 1.

Thus, the point x2 is an indifferent point for (2.6).
For any x ∈ Cp, x 6= x̂1,2, by simple calculations we get

|f(x)|p = |x|p ·
|a|p

|x− x̂1|p|x− x̂2|p
. (3.1)

Denote

P = {x ∈ Cp : ∃n ∈ N ∪ {0}, fn(x) ∈ {x̂1, x̂2}}, α = |x̂1|p and β = |x̂2|p.

Since x̂1 + x̂2 = −c and x̂1x̂2 = a, we have |c|p ≤ max{α, β} and |a|p = αβ.

Remark 3.1. It is easy to see that x̂1 and x̂2 are symmetric in (3.1), i.e., if we replace
them then RHS of (3.1) does not change. Therefore we consider the dynamical system
(Cp \ P, f) for cases α = β and α < β.

By using (3.1) we define the following functions.
1. For α = β define the function ϕ : [0,+∞)→ [0,+∞) by

ϕα(r) =


r, if r < α,

α∗, if r = α,

α2

r
, if r > α,

where α∗ is a positive number with α∗ ≥ α.
2. For α < β define the function ϕα,β : [0,+∞)→ [0,+∞) by

ϕα,β(r) =



r, if r < α,

α̂, if r = α,

α, if α < r < β,

β̂, if r = β,

αβ
r
, if r > β.
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where α̂, β̂ are some positive numbers with α̂ ≥ α and β̂ ≥ α.
Using formula (3.1) we easily get the following:

Lemma 3.2. If x ∈ Sr(0), x 6= x̂1,2 then the following formula holds for function
(2.6)

|fn(x)|p =

{
ϕnα(r), if α = β

ϕnα,β(r), if α < β.

Proof. We will give the proof for the case α = β. Since |x|p = r, |a|p = αβ,
using formula (3.1) and the strong triangle inequality of the p-adic norm, we get the
following

|f(x)|p = |x|p ·
|a|p

|x− x̂1|p|x− x̂2|p
= ϕα(r) =


r, if r < α,

≥ α, if r = α,

α2

r
, if r > α.

(3.2)

Now consider the case n = 2. Since |f(x)|p = ϕα(r) (by (3.2)), we obtain

|f2(x)|p = |f(x)|p ·
|a|p

|f(x)− x̂1|p|f(x)− x̂2|p
= ϕα(ϕα(r))

=


ϕα(r), if ϕα(r) < α,

≥ α, if ϕα(r) = α,

α2

ϕα(r)
, if ϕα(r) > α.

Iterating this argument for any n ≥ 1 and any x ∈ Sr(0) \ P, we obtain the following
formula

|fn(x)|p = ϕnα(r), if α = β.

The other case can be similarly proved.
Thus the p-adic dynamical system fn(x), n ≤ 1, x ∈ Cp \ P is related to the real

dynamical systems generated by functions (2.5)-(2.6) and we have two cases.

3.1 Case: α = β.
Lemma 3.3. If α = β, then the dynamical system generated by ϕα(r) has the
following properties:

1. Fix(ϕα) = {r : 0 ≤ r < α} ∪ {α: if α∗ = α}.

2. If r > α, then ϕnα(r) = α2

r
for any n ≥ 1.

3. If r = α and α∗ > α, then ϕnα(r) = α2

α∗ for any n ≥ 2.

Proof.
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1. This is the result of a simple analysis of the equation ϕnα(r) = r.

2. If r > α, then ϕα(r) = α2

r
.

Consequently,

r > α, ⇒ α2

r
< α ⇒ ϕα(r) < α.

Thus ϕα(ϕα(r)) = ϕα(r), i.e., ϕα(r) is a fixed point of ϕα for any r > α.
Consequently, for each n ≥ 1 we have

ϕnα(r) =
α2

r
.

3. Part 3 easily follows from parts 1 and 2.

Now we shall apply these lemmas to study the p-adic dynamical system generated
by the function (2.6).

For α = β denote the following

α∗(x) = |f(x)|p, if x ∈ Sα(0).

Then using Lemmas 3.2 and 3.3, we obtain the following

Theorem 3.4. If α = β, then the p-adic dynamical system generated by the function
(2.6) has the following properties:

1. 1.1) SI(x2) = Uα(0).

1.2) P ⊂ Sα(0).

2. If r > α and x ∈ Sr(0), then for any n ≥ 1, fn(x) ∈ Sα2

r

(0).

3. If α∗(x) > α and x ∈ Sα(0), then for any n ≥ 2, fn(x) ∈ S α2

α∗(x)
(0).

4. If |c|p < α, then |f ′(x1)|p = 1 and

SI(x1) = SI(x2).

5. Let |c|p = α. Then x1 ∈ Sα(0) and

5.1) if |a − c2|p < α2, then x1 is an attractive fixed point for f and its basin
of attraction is

A(x1) = Uα(x1) ⊂ Sα(0).

5.2) if |a− c2|p = α2, then x1 is an indifferent fixed point for f and

SI(x1) = Uα(x1) ⊂ Sα(0).
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Proof. We will prove part 1, by using parts 2 and 3.
Parts 2 and 3 easily follow from Lemma 3.2 and part 2 of Lemma 3.3.
1. By parts 2 and 3 of the theorem we know that Sr(0) is not invariant for f if

r ≥ α. Consequently, SI(x2) ⊂ Uα(0).
By Lemma 3.2 and part 1 of Lemma 3.3 if r < α and x ∈ Sr(0) then |fn(x)|p =

ϕnα(r) = r, i.e., fn(x) ∈ Sr(0). Hence Uα(0) ⊂ SI(x2) and thus SI(x2) = Uα(0).
Since |x̂1|p = |x̂2|p = α, we have x̂i 6∈ Uα(0), i = 1, 2. From f(Uα(0)) ⊂ Uα(0) it

follows that

Uα(0) ∩ P = {x ∈ Uα(0) : ∃n ∈ N ∪ {0}, fn(x) ∈ {x̂1, x̂2}} = ∅.

By part 2 of the theorem for r > α we have f(Sr(0)) ⊂ Uα(0). Let Vα(0) be the closed
ball with the center 0 and radius α. Then

(Cp \ Vα(0)) ∩ P = ∅,

i.e., P ⊂ Sα(0).
4. Note that |c|p ≤ α. If |c|p < α, then |x1|p = |−c|p < α. So x1 ∈ Uα(0) = SI(x2)

and

|f ′(x1)|p =
|a− c2|p
|a|p

=
α2

α2
= 1.

Consequently, x1 is an indifferent fixed point for f and

SI(x1) ⊂ SI(x2). (3.3)

By simple calculation we get

|f(x)− x1|p = |x− x1|p ·
|c(x− x1) + cx1 + a|p

|(x− x1) + (x1 − x̂1)|p|(x− x1) + (x1 − x̂2)|p
. (3.4)

If x ∈ Sρ(x1) ⊂ Uα(0), for some ρ < α, then in (5.2) we have |c(x − x1) + cx1 +
a|p = α2. Moreover, |x1 − x̂1|p = |x̂2|p = α and |x1 − x̂2|p = |x̂1|p = α. Therefore,
|f(x)−x1|p = |x−x1|p, i.e. f(x) ∈ Sρ(x1) holds for every x ∈ Sρ(x1) ⊂ Uα(x1). Then
Uα(x1) = Uα(0) = SI(x2) ⊂ SI(x1) and by (3.3) we have SI(x1) = SI(x2).

5. If |c|p = α, then |x1|p = | − c|p = α, i.e., x1 ∈ Sα(0). Moreover, if x ∈ Uα(x1),
then |x|p = |(x− x1) + x1|p = α, i.e., Uα(x1) ⊂ Sα(0).

Note that

|f ′(x1)|p =
|a− c2|p
|a|p

.

We have |a− c2|p ≤ α2 and |a|p = α2.
5.1. If |a − c2|p < α2, then |f ′(x1)|p < 1, i.e., x1 is an attractive fixed point

for f . If x ∈ Uα(x1), then in (5.2) we have |c(x − x1) + cx1 + a|p < α2. Therefore,
|f(x)− x1|p < |x− x1|p for all x ∈ Uα(x1). So

Uα(x1) ⊂ A(x1).
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If x ∈ Sα(0) \ (Uα(x1) ∪ P), then |x− x1|p = α and by (5.2) we have |f(x)− x1|p ≥
|x− x1|p, i.e., x 6∈ A(x1). Consequently,

A(x1) = Uα(x1).

5.2. If |a − c2|p = α2, then |f ′(x1)|p = 1, i.e., x1 is an indifferent fixed point for
f . If x ∈ Sρ(x1) ⊂ Uα(x1), then in (5.2) we have |c(x − x1) + cx1 + a|p = α2 and
|f(x) − x1|p = |x − x1|p. Therefore, f(x) ∈ Sρ(x1) for all x ∈ Sρ(x1). So Uα(x1) ⊂
SI(x1).

If x ∈ Sα(0) \ (Uα(x1)∪P), then |x− x1|p = α and by (5.2) we have |f(x)− x1|p
is some given number with |f(x) − x1|p > 0, i.e., the sphere Sα(x1) is not invariant
for f . Consequently,

SI(x1) = Uα(x1).

Theorem is proved.

3.2 Case: α < β.
Lemma 3.5. If α < β, then the dynamical system generated by ϕα,β(r) has the
following properties:

1. Fix(ϕα,β) = {r : 0 ≤ r < α} ∪ {α: if α̂ = α} ∪ {β: if β̂ = β}.
2. If α < r < β, then ϕα,β(r) = α.

3. If r > β, then ϕnα,β(r) = αβ
r

for any n ≥ 1.

4. Let r = α.

4.1) If α < α̂ < β, then ϕ2
α,β(α) = α.

4.2) If α̂ = β, then ϕα,β(α) = β.

4.3) If α̂ > β, then ϕnα,β(α) = αβ
α̂

for any n ≥ 2.

5. Let r = β.

5.1) If α < β̂ < β, then ϕ2
α,β(β) = α.

5.2) If β̂ > β, then ϕnα,β(β) = αβ

β̂
for any n ≥ 2.

Proof.
1. This is the result of a simple analysis of the equation ϕα,β(r) = r.
2. If there is α < r < β, then function ϕα,β will be ϕα,β(r) = α by definition.
3. If r > β, then ϕα,β(r) = αβ

r
. Consequently,

β < r ⇒ αβ

r
< α ⇒ ϕα,β(r) < α.

Thus ϕα,β(ϕα,β(r)) = ϕα,β(r), i.e., ϕα,β(r) is a fixed point of ϕα,β for any r > β.
Consequently, for each n ≥ 1 we have ϕnα,β(r) = αβ

r
.
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Parts 4 and 5 easily follow from parts 1, 2 and 3.
For α < β we denote the following

α̂(x) = |f(x)p| if x ∈ Sα(0) \ {x̂1, x̂2}; β̂(x) = |f(x)|p if x ∈ Sβ(0) \ {x̂1, x̂2}.

Then using Lemma 3.2 and Lemma 3.5, we obtain the following

Theorem 3.6. If α < β and x ∈ Sr(0) \ P, then the p-adic dynamical system
generated by function (2.6) has the following properties:

1. SI(x2) = Uα(0).

2. If α < r < β, then f(x) ∈ Sα(0).

3. Let r > β, then for any n ≥ 1, fn(x) ∈ Sαβ
r

(0).

4. Let x ∈ Sα(0) \ P.

4.1) If α̂(x) = α, then f(x) ∈ Sα(0).

4.2) If α < α̂(x) < β, then f2(x) ∈ Sα(0).

4.3) If α̂(x) = β, then f(x) ∈ Sβ(0).

4.4) If α̂(x) > β, then for any n ≥ 2, fn(x) ∈ Sαβ
α̂

(0).

5. Let x ∈ Sβ(0) \ P.

5.1) If β̂(x) = α, then f(x) ∈ Sα(0).

5.2) If α < β̂(x) < β, then f2(x) ∈ Sα(0).

5.3) If β̂(x) = β, then f(x) ∈ Sβ(0).

5.4) If β̂(x) > β, then for any n ≥ 2, fn(x) ∈ S αβ

β̂(x)

(0).

6. 6.1) x1 ∈ Sβ(0).

6.2) The fixed point x1 is repeller and the inequality |f(x) − x1|p > |x − x1|p
holds for x ∈ Uβ(x1), x 6= x1.

Proof. Parts 1-5 of this theorem can be shown by Lemma 3.2 and Lemma 3.5.
6. In this case we note that α < β = |c|p. Then |x1|p = |−c|p = β, i.e., x1 ∈ Sβ(0),

and we have

|f ′(x2)|p =

∣∣∣∣a− c2a

∣∣∣∣
p

=
max{αβ, β2}

αβ
=
β

α
> 1.

So, x1 is a repelling fixed point for f .
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In (5.2) we have |x1 − x̂1|p = β and |x1 − x̂2|p = α. Indeed, |x1 − x̂1|p =
max{α, β} = β and |x1 − x̂2|p = |x̂1|p = α. Moreover, by formula (5.2) we have

|f(x)− x1|p =



β
α
|x− x1|p, if |x− x1|p < α

≥ β, if |x− x1|p = α

β, if α < |x− x1|p < β

β0, if |x− x1|p = β

β, if |x− x1|p > β,

where β0 > 0.
That is the inequality |f(x) − x1|p > |x − x1|p is satisfied for |x − x1|p < β, i.e.,

for x ∈ Uβ(x1), x 6= x2. Theorem is proved.
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