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Abstract. This paper is the continuation of [7]. We study the antiferromagnetic
q-state Potts model on the Cayley tree. Under certain conditions, for this model on a
Cayley tree of order k ≥ 3 the exact number of the periodic (non translation-invariant)
Gibbs measures is found.
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1 Introduction
It is known that each limit Gibbs measure is associated with one phase of a

physical system. Therefore, a challenging problem in the theory of Gibbs measures is
the problem of the existence of a phase transition, i.e., a change in the state of the
physical system as the temperature varies. This occurs when the Gibbs measure is
not unique. In this case, the temperature at which the state of the physical system
changes is usually called the critical temperature (see f.e. [1]-[3]).

In [4] the uniqueness of the translation-invariant Gibbs measure of the
antiferromagnetic Potts model with an external field was proved. Periodic Gibbs
measures were studied in [5], where it was proved that under certain conditions,
all periodic Gibbs measures are translation-invariant. In particular, under certain
conditions, for the ferromagnetic Potts model with three states on a Cayley tree of
an arbitrary order and for the antiferromagnetic Potts model with three states on
a second-order Cayley tree, all periodic Gibbs measures are translation-invariant.
Moreover, the conditions were found under which the Potts model with a nonzero
external field has periodic Gibbs measures. The results in [5] were followed up in [6],
where the existence of at least three periodic Gibbs measures with the period two on
a third- or fourth-order Cayley tree for the antiferromagnetic Potts model with three
states and a zero external field was proved.

In [7], the antiferromagnetic Potts model with q states on a Cayley tree of order
k ≥ 3 was studied, and on certain invariant sets, the existence of periodic (not
translation-invariant) Gibbs measures was shown under certain conditions on the
model parameters. Moreover, the lowest bound of the number of the existing periodic
Gibbs measures was shown. In [8] previously obtained results that the exact number
of periodic Gibbs measures with the period two on a Cayley tree of order k ≥ 3 that
are defined on invariant set Im from [7] are improved. In [9] for the antiferromagnetic
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Potts model with q states on a Cayley tree order of two and for the ferromagnetic
Potts model with q states on a Cayley tree order of k, was shown that all periodic
Gibbs measures are translation-invariant for all parameter values. Other properties
of the Potts model on a Cayley tree were studied in [3] (p.105-121).

In this paper, we improved one of the results in [7]. For the antiferromagnetic
q-state Potts model on the Cayley tree of order k ≥ 3 the exact number of periodic
Gibbs measures with the period two that are defined on invariant set I

′
m in [7] is

found.

2 Definitions and known facts

The Cayley tree =k of order k ≥ 1 is an infinite tree, i.e., a graph without cycles,
such that exactly k + 1 edges originate from each vertex. Let =k = (V,L, i), where
V is the set of vertices =k, L the set of edges and i is the incidence function setting
each edge l ∈ L into correspondence with its endpoints x, y ∈ V . If i(l) = {x, y},
then the vertices x and y are called the nearest neighbors, denoted by l = 〈x, y〉. The
distance d(x, y), x, y ∈ V on the Cayley tree is the number of edges of the minimum
path connecting the vertices x and y.

For a fixed x0 ∈ V we set

Wn = {x ∈ V | d(x, x0) = n}, Vn =

n⋃
m=0

Wm, Ln = {l = 〈x, y〉 ∈ L | x, y ∈ Vn}.

We assume that Φ = {1, 2, . . . , q}, q ≥ 2, and σ ∈ Ω = ΦV is a configuration,
i.e., σ = {σ(x) ∈ Φ : x ∈ V }. For the subset A ⊂ V , we define ΩA as the set of
all configurations defined on A and taking values in Φ; the set of all configurations
coincides with Ω = ΦV .

The Hamiltonian of the Potts model is defined as

H(σ) = −J
∑
〈x,y〉∈L

δσ(x)σ(y), (2.1)

where J ∈ R, 〈x, y〉 are nearest neighbors and δij is the Kronecker symbol:

δij =

{
0, if i 6= j

1, if i = j.

Define a finite-dimensional distribution of a probability measure µ in the volume Vn
as

µn(σn) = Z−1
n exp

{
−βHn(σn) +

∑
x∈Wn

hσ(x),x

}
, (2.2)
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where β = 1/T , T > 0-temperature, Z−1
n is the normalizing factor, {hx =

(h1,x, . . . , hq,x) ∈ Rq, x ∈ V } is a collection of vectors and

Hn(σn) = −J
∑

〈x,y〉∈Ln

δσ(x)σ(y)

is the restriction of Hamiltonian on Vn.
We say that the probability distributions (2.2) are compatible if for all n ≥ 1 and

σn−1 ∈ ΦVn−1 : ∑
ωn∈ΦWn

µn(σn−1 ∨ ωn) = µn−1(σn−1).

Here σn−1∨ωn is the concatenation of the configurations. In this case, there exists
a unique measure µ on ΦV such that, for all n and σn ∈ ΦVn

µ({σ|Vn = σn}) = µn(σn).

Such a measure is called a splitting Gibbs measure corresponding to the Hamiltonian
(2.1) and vector-valued function hx, x ∈ V .

The following statement describes conditions on hx, guaranteeing compatibility
of µn(σn).

Theorem 2.1. [4] The probability distributions µn(σn), n = 1, 2, . . . in (2.2) are
compatible for Potts model iff, for any x ∈ V the following equation holds:

hx =
∑

y∈S(x)

F (hy, θ), (2.3)

where F : h = (h1, . . . , hq−1) ∈ Rq−1 → F (h, θ) = (F1, . . . , Fq−1) ∈ Rq−1 is defined
as

Fi = ln

(
(θ − 1)ehi +

∑q−1
j=1 e

hj + 1

θ +
∑q−1
j=1 e

hj

)
,

and θ = exp(Jβ), S(x) is the set of direct successors of x and hx = (h1,x, . . . , hq−1,x)
with

hi,x = h̃i,x − h̃q,x, i = 1, . . . , q − 1.

It is known that there exists a one-to-one correspondence between the set of
vertices V of the Cayley tree =k and the group Gk that is the free product of k + 1
cyclic groups of second order with the generators a1, a2, . . . , ak+1.

Let Ĝk be a subgroup of the group Gk.

Definition 2.2. The set of vectors h = {hx, x ∈ Gk} is said to be Ĝk-periodic if
hyx = hx for all x ∈ Gk, y ∈ Ĝk.

The Gk-periodic sets are said to be translation-invariant.
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Definition 2.3. The measure µ is said to be Ĝk-periodic if it corresponds to the
Ĝk-periodic set of vectors h.

The following theorem characterizes periodic Gibbs measures.

Theorem 2.4. [5] Let K be a normal divisor of finite index of the group Gk. Then for
the Potts model, all K-periodic Gibbs measures are either G(2)

k -periodic or translation-
invariant, where G(2)

k = {x ∈ Gk : the length of x is even}.

3 Periodic Gibbs measures

We consider case q ≥ 3, i.e. σ : V → Φ = {1, 2, 3, ..., q}. By Theorem 2, we have
only G

(2)
k -periodic Gibbs measures corresponding to the set of vectors h = {hx ∈

Rq−1 : x ∈ Gk} of the form

hx =

{
h, if |x| − is even,
l, if |x| − is odd,

where h = (h1, h2, ..., hq−1), l = (l1, l2, ..., lq−1). From equality (2.3), we then obtain
hi = k ln

(θ−1) exp(li)+
∑q−1
j=1 exp(lj)+1∑q−1

j=1 exp(lj)+θ
,

li = k ln
(θ−1) exp(hi)+

∑q−1
j=1 exp(hj)+1∑q−1

j=1 exp(hj)+θ
,

i = 1, q − 1.

We introduce the notations exp(hi) = xi, exp(li) = yi. We can then rewrite the
last system of equations for i = 1, q − 1 as

xi =

(
(θ−1)yi+

∑q−1
j=1 yj+1∑q−1

j=1 yj+θ

)k
,

yi =

(
(θ−1)xi+

∑q−1
j=1 xj+1∑q−1

j=1 xj+θ

)k
.

(3.1)

Remark 3.1. 1) In the case q = 2, the Potts model coincides with the Ising model
which was studied in [4].

2) In the case k = 2, q = 3 and J < 0, it was proved that all G(2)
k -periodic

Gibbs measures on invariant set I = {(x1, x2, y1, y2) ∈ R4 : x1 = x2, y1 = y2} are
translation-invariant (see [5]).

3) In the case k ≥ 1, q = 3 and J > 0, it was proved that all G(2)
k -periodic Gibbs

measures are translation-invariant (see [5]).
4) In [7] two invariant sets Im, I

′
m have been introduced and the lowest bounder

of the number of periodic Gibbs measures on Im and I
′
m are found.

5) In [8] an exact number of periodic Gibbs measures on invariant set Im is found.
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The case I
′
m. We consider the invariant set I

′
m defined in [7]:

I
′
m = {z = (u, v) ∈ Rq−1 ×Rq−1 : xi = x, i = 1,m, xi = 1, i = m+ 1, q − 1−m,

xi = y, i = q −m, q − 1, yi = y, i = 1,m, yi = 1, i = m+ 1, q − 1−m,

yi = x, i = q −m, q − 1},

i.e.,

u = (x, x, ..., x︸ ︷︷ ︸
m

, 1, 1, ..., 1, y, y, ..., y︸ ︷︷ ︸
m

), v = (y, y, ..., y︸ ︷︷ ︸
m

, 1, 1, ..., 1, x, x, ..., x︸ ︷︷ ︸
m

),

where 2m ≤ q − 1.
We rewrite the system of equations (3.1) on this set as

x =
(

(θ−1)y+my+(q−2m−1)+mx+1
θ+mx+my+(q−2m−1)

)k
y =

(
(θ−1)x+mx+(q−2m−1)+my+1

θ+mx+my+(q−2m−1)

)k
.

(3.2)

Proposition 3.2. [7] Let k ≥ 3, 3 ≤ q < k + 1, θcr = k−q+1
k+1

< 1. For the system of
equations (3.1) on I

′
m

(i) For 0 < θ < θcr has at least three solutions;
(ii) For θ = θcr has at least one solution;
(iii) For θ > θcr has only one solution.

Remark 3.3. 1) For m = 0 we obtain u = (1, 1, ..., 1), v = (1, 1, ..., 1), which
corresponds to the translation-invariant Gibbs measure. Thus we consider the case
m ≥ 1.

2) In the case k = 2, q = 3, m = 1 on I
′
m it was proved that all G(2)

k -periodic
Gibbs measures are translation-invariant (see [5]).

In the last system substituting k
√
x = z, k

√
y = t we obtain

z = (θ+m−1)tk+mzk+q−2m

θ+mzk+mtk+q−2m−1

t = (θ+m−1)zk+mtk+q−2m

θ+mzk+mtk+q−2m−1
.

(3.3)

We have the following

Proposition 3.4. Let k ≥ 3, 3 ≤ q < k + 1, θcr = k−q+1
k+1

< 1. For the system of
equations (3.1) on I

′
m

1. If 0 < θ < θcr, then there exist exactly three solutions;
2. If θ ≥ θcr, then there is only one solution.
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Proof. Subtracting the second equation in (3.3) from the first, we obtain :

z − t =
(1− θ)(zk − tk)

mtk +mzk + q − 2m− 1 + θ
.

After simplifications we get

(z− t)
[
mtk +mzk + q− 2m− 1 + θ− (1− θ)

(
zk−1 + zk−2t+ . . .+ tk−1

)]
= 0 (3.4)

If z = t, then it corresponds to a translation-invariant Gibbs measure. More precisely,
taking into account [9] we have z = t = 1. For the second multiplication of (3.4) we
have

F (z, t) = mtk +mzk + q− 2m− 1 + θ− (1− θ)(zk−1 + zk−2t+ zk−3t2...+ tk−1) = 0.

We rewrite above equation in the following form:{
F (z) = h(z) + d(t)
F (t) = h(t) + d(z)

(3.5)

where
h(z) = mzk − (1− θ)(zk−1 + zk−2t+ zk−3t2...+ ztk−1),

d(t) = mtk − (1− θ)tk−1 + q − 2m− 1 + θ.

Rewriting (3.3) as  z − 1 = (θ−1)(tk−1)

θ+mzk+mtk+q−2m−1

t− 1 = (θ−1)(zk−1)

θ+mzk+mtk+q−2m−1

(3.6)

Recall q ≥ 2m+ 1 and 0 < θ < k−q+1
k+1

< 1. It follows from (3.6) that if t < 1 then
z > 1 and if t > 1 then z < 1. Also, d(t) > 0 for t > 1. The existence of roots satisfying
the condition z 6= t in (3.5) ensures the existence of roots satisfying the condition z 6= t
in (3.3). If z < 1 and t > 1, the number of sign changes of the first equation of the
system (3.5) is two. Similarly, if z > 1 and t < 1, the number of sign changes of the
second equation of the system (3.5) is two. Due to the Descartes theorem, F (t, z) = 0
has at most two solutions. Consequently, the system of equations (3.3) has up to three
solutions. Moreover, it was proved that under the condition θ < k−q+1

k+1
, the system of

equations (3.3) has at least three solutions. Therefore, the system of equations (3.3)
has exactly three positive solutions.

In [7], the system of equations (3.3) are rewritten after some algebra in the
following form

f(z) = [(θ + 2m− 1)zk −mzk+1 +mz + q − 2m]k(θ +m− 1−mz)−

−(mzk + q −m− 1 + θ)k[mzk+1 −mzk + (θ + q − 2m− 1)z − q + 2m] = 0. (3.7)



116 Makhammadaliev M.T.

We are aiming to prove that the system of equations (3.3) has a unique solution
when θ = θcr = k−q+1

k+1
. For this, it is sufficient to show z = 1 is a solution having

multiplicity of three in (3.7). For the sake of simplicity, we denote

A(z) = (θ + 2m− 1)zk −mzk+1 +mz + q − 2m, B(z) = θ +m− 1−mz,

C(z) = mzk+q−m−1+θ and D(z) = mzk+1−mzk+(θ+q−2m−1)z−q+2m.

Then due to notations we have

f(z) = AkB − CkD. (3.8)

According to the theorem about zeroes of holomorphic functions, if z = 1 is a three-
fold solution of f(z), then f ′(1) = 0 and f ′′(1) = 0. Let’s compute derivatives of
(3.8):

f ′(z) = kAk−1BA′ +AkB′ − kCk−1DC′ − CkD′

f ′′(z) = Ak−2(k(k − 1)BA′2 + 2kAA′B′ + kAA′′B +A2B′′)−
−Ck−2(k(k − 1)DC′2 + 2kCC′D′ + kCC′′D + C2D′′)

where
A(1) = θ + q − 1, B(1) = θ − 1, C(1) = θ + q − 1, D(1) = θ − 1,

A′(1) = k(θ +m− 1), B′(1) = −m,C′(1) = mk,D′(1) = θ + q −m− 1,

A′′(1) = k(θ(k−1)+(m−1)k−3m+1), B′′(1) = 0, C′′(1) = mk(k−1), D′′(1) = 2mk

f ′(1) = k2(θ + q − 1)k−1(θ − 1)2 − (θ + q − 1)k+1.

Taking into account that θ = θcr = k−q+1
k+1

and A(1) = C(1), we have

f ′(1) = (θ + q − 1)k−1

(
k2q2

(k + 1)2
− k2q2

(k + 1)2

)
= 0.

f ′′(1) = Ak−2(k3(k − 1)(θ − 1)[(θ +m− 1)2 −m2]− 2mk2(θ + q − 1)(2(θ − 1) + q)+

+k2(θ− 1)(θ+ q − 1)(θ(k− 1) + k(m− 1)− 3m+ 1−m(k− 1))− 2mk(θ+ q − 1)2).

Putting θ = θcr = k−q+1
k+1

into the last equation and after dividing to Ak−2 k3q2

(k+1)2
we

obtain

f ′′(1) = −(k − 1)(
q

k + 1
− 2m)− 2m(k − 1) +

k − 1

k + 1
q + 2m− 2m = 0,

i.e., z = 1 is the three-fold solution.
The following theorem follows from Theorem 3 in [7].

Theorem 3.5. For the Potts model for k ≥ 3, 3 ≤ q < k+ 1 and 0 < θ < θcr on the
sets

⋃q
m=1 Im and

⋃q
m=1 I

′
m there are exactly

2 ·

2q − 1 +

[q/2]∑
m=1

(
q

m

)
·

(
q −m
m

)
G

(2)
k -periodic (non translation-invariant) Gibbs measures.
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