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1. Introduction

One of the central problems in the theory of Gibbs measures (GMs) is to describe
infinite-volume (or limiting) GMs corresponding to a given Hamiltonian. The existence
of such measures for a wide class of Hamiltonians was established in the ground-breaking
work of Dobrushin (see, e.g. [2]). However, a complete analysis of the set of limiting GMs
for a specific Hamiltonian is often a difficult problem.

In this paper, we consider the Potts—SOS model, with spin values 0,1,2 on the
Cayley tree (CT). Models on a CT were discussed in [3, 4-7]. A classical example of
such a model is the Ising model, with two values of spin —1 and 1. It was considered
in [1, 3, 7, 16, 17] and became a focus of active research in the first half of the 90s and
afterwards; see [1, 8-14].

In [18] all translation-invariant splitting Gibbs measures (TISGMs) for the Potts
model on the CT are described. In [19, 20] periodic GMs are studied, and in [21-23]
weakly periodic GMs for the Potts model are studied.

In [25, 26] translation-invariant and periodic Gibbs measures for the SOS model on
the CT are studied.

The model considered in this paper (Potts—SOS model) is a generalization of the
Potts and SOS (solid-on-solid) models. In [15] some translation-invariant GMs for the
Potts—SOS model on the CT are studied. Periodic GMs are studied for the Potts—SOS
model on the CT in [24]. In this paper we will study all the TISGMs for this model under
some conditions. Next we investigate whether these GMs are extremal or non-extremal
in the set of all GMs.
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aaa;  aaa, a,q;a, a,aa, a,a,a, a,a,a, a,aa, a,a,a;

aa, aa,

Figure 1. The CT 72 and elements of the group G5 representation of vertices.

2. Main definitions and known facts

The CT I'* (see [1]) of order k > 1 is an infinite tree, i.e. a graph without cycles, from
each vertex of which exactly k + 1 edges issue. Let T* = (V, L, i), where V is the set of
vertices of T, L is the set of edges of I'* and i is the incidence function associating each
edge | € L with its endpoints z,y € V. If i(l) = {z,y}, then x and y are called nearest
neighboring vertices, and we write | = (x,y).

The distance d(x,y),z,y € V on the CT is defined by the formula

d(z,y) = min{d|3x = x¢, 21, ..., 241,24 =y € V  such that

(To,21) - (Ta—1,Ta) } -
For the fixed 2° € V, we set W,, = {z € V|d(z,2") = n},
V, = {z € Vl]d(z,2") < n}, L,={l=(z,y) € Llx,y € V,}. (1)

Denote |z| = d(z,2°), z € V.

A collection of the pairs (x, 1) - - - (x4_1,y) is called a path from x to y and we write
7(x,y). We write x < y if the path from 2" to y goes through .

It is known (see [1]) that there exists a one-to-one correspondence between the set V
of vertices of the CT of order k£ > 1 and the group G of the free products of k + 1 cyclic
groups {e,a;},i=1,...,k+ 1 of the second order (i.e. a? = e, a; ' = a;) with generators
ai, as, . .., ap. 1, see figure 1.

Denote the set of ‘direct successors’ of x € Gy by S(x). Let Si(x) be the set of
all nearest neighboring vertices of = € Gy, ie. Si(z) ={y € G :(x,y)} and {z,} =

Si(x)\S(x).
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3. The model and a system vector-valued functional equations

Here, we shall give main definitions and facts about the model. Consider a model where
the spin takes values in the set ® = {0,1,2,...,m},m > 1. For A C V', a spin configu-
ration o4 on A is defined as a function x € A — o 4(x) € ®; the set of all configurations
coincides with Q4 = ®*. Denote Q = Qy and ¢ = oy

A configuration that is invariant with respect to all shifts is called
translational-invariant.

The Hamiltonian of the Potts—SOS model with nearest-neighbor interaction has the
form

H(o)=—J Y lo@) =)=, > bowotm (2)
(z,y)eL (z,y)eL

where J, J, € R are nonzero coupling constants.
It is known [15] that any SGM of the model (2) corresponds to a solution of the
following equation:

Wy =Y F(hy,m,6,r), (3)
yesS(z)

where z € V\{z°},

0 =exp(JB), 1 =exp(Syh) (4)

and also = 1/T is the inverse temperature. Here, h} represents the vector (ho, —
s Pie — Pnay -« oy Bon—1.2 — hun ) and the vector function F(.,m,6,r): R™ — R™ is
defined as follows

F(h,m,0,r) = (Fo(h,m,0,r), Fi{(h,m,0,r),..., F, 1(h,m,0,r)),
where
St 1 g

S e

Fi(h,m,0,r) =In (5)

h = (ho,hl,...,hm_l),i :0,1,2,...,m— 1.
Namely, for any collection of functions satisfying the functional equation (3) there
exists a unique splitting GM, the correspondence being one-to-one.

4. Translation-invariant GMs

Definition 1. For an SGM v, if h;, is independent from {x:h;, =h;,z € V,j € O}, p
is called translation-invariant(TT).

Let m = 2, that is ® = {0, 1, 2}. In this case, for the TISGMs (3) has the form
h=kF(h,6,r),
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where h = (hg, hy). Introducing the notation [y = e™,l; = €™, we obtain the following
the system of equations

l . Tl0+0l1+02 F
0 0%04-0114-7“ ’

o (Otrh+0 ’
L= 0210+011+T '

Let k = 2. Denote /Iy = x,v/l; = 3. Then from (6) we get

a4+ 0yt + 62

xr = 02x2+9y2+7“7 (7)
B Ox® +ry> 4+ 0

222 Gy 4

Y

After simplifying the system of equation (7) above, we have
0*x® — ra® + (0y* +1)x — 0y* — 6° = 0,
{9y3 —ry* 4+ (0% + 1)y — 02> — 0 = 0.
The system of equation (8) can be rewritten as
(z — 1)(0%2* + 0*x + 0° — ra + 0y*) = 0,
{9y3 —ry? + (02 + 1)y — 02> — 0 = 0.

(9)

Obviously, the solutions of (9) are the solutions of the following system of equations
r—1=0,
, (10)
0y* —ry? + (0°2° +r)y — 02> — 0 =0,
or the solutions of the following system of equations
0?2 4+ 0%z + 6% —rz + 0y* = 0, a1
11
0y — ry* + (60°2° + 1)y — 02° — 6 = 0.

Let us consider (10). Substituting x = 1 into the second equation of (10), we get

0y* —ry* + (6% +r)y — 20 = 0. (12)
For
— 2t (13)
y =z 397
we reduce (12) to the equation

2 2 3

3 r r roor 2r
T LA —2) =o. 14
z+<0+9 392>z+(3+302 2763 > (14)
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Denote

r r? roor 273

= vo- ST ) 15
P=g 073 973 32 arpp (15)

After solving the equation p = 0 in terms of r, we have the solutions r;, = V212 “‘%*1299.
Since 7 > 0,60 > 0, we get r = 3329 Putting ry into ¢ in (15) and solving the
equation ¢ = 0 in terms of #, we have the solution 6, = 3v/2(v/2 — 1).

Substituting 71,6, into equation (14), we get the equation z* = 0. It follows that
equation (12) has one positive root y = .

From (15), we obtain

_(P\? g\* 1 172 7 5 253 12 1 2
Q(Tve)—(§> +(§> —2,7(—392+9+9) +1 _277§+§@+§T_2

1 . ,
= ~ 10891 (r4 + 2307 + r20* — 12130 — 12020° — 1260°r — 46" + 360%>

+ 366" — 1086") . (16)

For 0 =0, = 3\75(\‘75 — 1), we have

11 /4 + 92v/2 3 3 3 5
Q(r,0,) = 6”;{);;9 V2 (—r2 +36(1 — 2V2 + V4)r + 324(13 — 4V2 — 5@)) :

. (T—18+9\%_1>2

Using Cardano’s formula, one can prove the following
Lemma 1. Let 6 = 33/2(v/2 — 1). There exists r,(~ 4.221 293 186) such that

o Ifr e (0,r.) then the equation (12) has one positive solution.
e Ifr =r. then the equation (12) has two positive solutions.

o Ifr e (r.,o00) then the equation (12) has three positive solutions.
Now we consider (11). From (11), we get

. Oy(0* —y +ry —r)
By + 02+ Ory —

(17)
Substituting (17) into the first equation of (11), we obtain

fly,r,0) =020+ 1)(r* —20r + 6° — 0> + 0)y* — 0(r — 0*)(r* + (6° + 1)r — 30%)y*

+((0+ 1) +0°)(r — 0°)°y" — (r +6%)(r — 0°)"y + 0(r — 6°)* = 0.
(18)
Equation (18) can be rewritten as

f(y,r,0) = (ay® + by + c)(dy* + ey + f),
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where
ad = 0*(0 + 1)(r* — 20r + 6> — 6> +0),
ae +bd = —0(r — 0% (r* + (0> + 1)r — 36%),
af +be+cd=((0+1)r+6%)(r— 62>
bf +ce = —(r+6%)(r — 6%)?,
of = 0(r — 6%)

Let D(r,0) = b* — 4dac and Ds(r,6) = e* — 4df .
We denote the following sets

B1 = {(r,&) S Ri :Dl(rae) > 07D2(r70) > 0}7

By = {(r,0) € R : Dy(r,0) > 0, Dy(r,0) = 0V Dy(r,0) = 0, Dy(r,6) > 0},

Bs = {(r,0) € RZ: Dy(r,0) = 0, Dy(r,0) = 0V Dy (r,0) > 0, Dy(r,0)
<0V VD(r,0) <0,Dy(r,0) >0},

By = {(r,0) € R%:Dy(r,0) =0, Dy(r,0) < 0V Dy(r,0) < 0, Dy(r,0) = 0},

B5 = {(T‘, 0) S R%— :Dl(rae) < 07 D2(r7 0) < 0}
Thus, we can prove the following
Lemma 2. Let 0 = 3\‘75(\75 — 1), then the following assertions hold

o Ifr € By(r) then the equation (18) has four solutions which are positive.
e Ifr € By(r) then the equation (18) has three positive solutions.

(

(

e Ifr € B3(r) then the equation (18) has two positive solutions.

o If r € By(r) then the equation (18) has one positive solution.
(

e Ifr € B5(r) then the equation (18) has no solution.
With respect to (15) and (16) we denote the following sets

A ={(r,0) e R>:r <30%,Q >0 U{(r,f) e R :+ <36, p=0,¢ =0},
+ +

A2:{(T,H)E]Ri:réBHQ,Q:O}ﬂ{(T,@)eRi:p%O\/q%O},
Ay ={(r,0) e RL:r <30%,Q <0}, Ay = {(r,0) e RZ :r > 36*,Q > 0},
As={(r,0) e R :7 >30*,Q =0} N{(r,0) eRY:p#0Vq# 0},

Ag = {(r,0) € R2 :7 > 36%,Q < 0}.
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Let N be the number of TISGMs for the Potts—SOS model.
Theorem 1. Let k=2, m = 2. The following statements hold for the N
0) € Ay,
0) € Ay U (AyN By) U (A5 N Bs),
r,0) € A3 U (AyN Bs) U (A5N By),
r,0) € (AN By) U (A5 N B3) U (Ag N By), (19)
0)
0)
0)

¢
Y r’

r,

(AyN By) U (A5 N By) U (Ag N By),
(A5 N B1) U (4 N By),
€ Ag N By.

r,

f(
f o
f(
f(
f o
f(

r,

1
2
3
N=.4
)
6
7

\ "’ (T,

Proof. We consider the first equation of (11). We write this in the following form
02z + (0% —r)x + 0% = —0y>. (20)
The rhs of (20) is negative, thus
0?2 + (6> —r)z + 6% < 0. (21)
For the lhs of (21), we calculate its discriminant D = (6% — r)? — 46", If the discrim-
inant is positive, then the inequality (21) has real solutions. Therefore, we should solve
(—r — 6%)(36° —r) > 0.

Since —r — 6 < 0, it follows that r > 36%
Inequality (21) has a positive solution as soon as 6> —r < 0 or r > 6% If r > 36,
then 7 > 6 also holds. If 7 > 36*, the solutions of the inequality (21) belong to

<r—92—\/5 r—92+\/5>

20? ’ 20?

Moreover, (20) holds in this interval.

Consequently, if r > 36 then the first equation of (11) has a positive real solution,
and if r < 36 then the first equation of (11) cannot have a positive solution, i.e. any
positive real pair (x, y), which is the solution of the first equation of (11), does not satisfy
r < 30%. Then the TISGM’s corresponding roots of (11) do not exist under condition
r < 36%

According to the Descartes theorem, the number of positive roots of equation (12)
is at least 1 and at most 3.

If @ > 0, then equation (14) has one positive real root and two conjugate complex
roots. If @) = 0, then all roots of equation (14) are positive real and two of them are
equal or if p = ¢ = 0, then (14) has one positive real root (one real zero of multiplicity
three). If @) < 0, then equation (14) has three distinct positive real roots. Hence, we can
say this about the number of TISGM’s corresponding positive roots from equation (12).

https://doi.org/10.1088/1742-5468 /acO8ft 8
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From lemmas 1 and 2, we can see that
{(T,G) € R*:0=3V2(V2—-1),r € (r,00) N Bl(r)} C Ag N By.

Thus, the set Ag[) B; is not empty, i.e. the number of TISGMs corresponding positive
solutions of (8) for the Potts—SOS model is up to seven. O

Remark 1. Note that theorem 1 (for kK = m = 2) generalizes results of [18, 26].

If J = 0, then the Potts—SOS model changes to the Potts model. In this case, theorem
1 can be restated as follows

Theorem 2. Let k=2, m= 2. The following statements hold for the number n of the
TISGMs for the Potts model
1, ifre(0,1+2v2),
n=<4, ifr=1+2V2o0rr=4, (22)
7, ifre(1+2v2,4)U(4,00)

(see [18] for more details).
If J,=0, then the Hamiltonian (2) of the Potts-SOS model changes to the
Hamiltonian of the SOS model. In this case, theorem 1 can be restated as follows

Theorem 3. Let k=2, m = 2. The following statements are appropriate for the number
n of the TISGMs for the SOS model

7

, if 0 € (6,00),

if 0 =05,

if 0€(01,0,), (23)
, if 0=0,

, if 0€(0,01),

1

3
n=495
6

L7

where 0, ~ 0.1414 and 6, ~ 0.2956

(see [26] for more details).

Now we study the extremality of the TISGMs for the Potts—SOS model. In general, a
complete analysis of extremality or non-extremality of the TISGMs is a difficult problem.
Therefore, we assume 7 = 6.

Lemma 3. Let r= 6. There exists a unique 0,(~ 7.729814) such that

e If0 € (0,0.) then system (7) has one positive Toot.
o If0 = 0. then system (7) has two positive roots.
o [f € (0., 00) then system (7) has three positive roots.

https://doi.org/10.1088/1742-5468 /acO8ft 9
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12

10

Figure 2. The graphs of functions y, = y,(0),i = 1,2, 3.

Proof. Substituting r = 6* into (7) we have

r=1,
_2+0y2 (24)
Yooy

Simplifying the second equation of (24), we obtain the cubic equation

y? —0y® +20y —2=0. (25)
We calculate its discriminant

D = 4(6* — 100° + 186> — 27). (26)

Denote 0, ~ 7.729814. If D <0 (0 < 6.) equation (25) has one real and two conju-
gate complex roots. If D =0 (0 = 6.) then all roots of equation (25) are real, in which
two of them are equal. If D >0 (6 > 6,.) then equation (25) has three distinct real
roots (see figure 2). The obtained real roots are positive due to the Descartes theorem
(see [5]). O

The lower curve is y,, the middle curve is y,, and the upper curve is y;.
Using lemma 3, we have the following

https://doi.org/10.1088/1742-5468 /acO8ft 10
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Theorem 4. Let k= m=2. If r= 6* then the following statements hold for the N
1, if 0€(0,0.),
N=<2, if6=460, (27)
3, if0e(b,o0),
where 0, ~ 7.729 814.

Remark 2. Note that theorem 4 is a particular case of theorem 1.

We denote the obtained TISGMs corresponding to y, in theorem 4 by u,,i = 1,2, 3,
respectively.

5. Tree-indexed Markov chains of TISGMs

A tree-indexed Markov chain is defined as follows. Suppose we are given with a ver-
tices set V' both a probability measure v and a transition matrix P = (p; ;)i jes on the
single-site space, which is the finite set here ® = {0, 1,...,m}. We can obtain a tree-
indexed Markov chain X : V' — ® by choosing X (z) according to v and choosing X (v),
for each vertex v # 2°, using the transition probabilities given the value of its parent,
independently of everything else. See definition 12.2 in [4] for a detailed definition.

We note that a TISGM corresponding to a vector v = (x,y) € R*> (which is the

solution to system (7)) is a tree-indexed Markov chain with states {0, 1,2} and transition
probabilities matrix:

ra? 0> 62
ra 4+ 0y*+ 02 ra?+40y* 462 ra? 4+ 0y? + 62
Ox? ry? 0
P= 0> +ry>+0 0x2+ry>?+60 02>+ ry>+0 (28)
0>2* Oy r

0?22 + 0y +r 0?22+ 0y> +r 22> +0y>+r

Since (z,y) is a solution to the system (7), this matrix can be written in the following
form

0y>  6?
rxr - ;
1 2
p=—| "0 0 (29)
[ /”‘y — Y
4 Y Y
0%x* Oy* r

where Z = 6%2% + 0y* + r.
Simple calculations show that the matrix (29) has three eigenvalues: 1 and

(r+y+1)r—Z+VD*

(r+y+1r—2Z—+vD*
27 ’

>\1(x7y7037n): 27

)\2(33, Y, 97 T) =

(30)

https://doi.org/10.1088/1742-5468 /acO8ft 11
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where A\; and A, are solutions to
3N 4 (Z — (1 + 2 +y)r) 22\ + (20* — 0*r — 20*r 4+ 132y = 0 (31)
and D* = (1 + x4+ y)r — 2)* — dayZ (20" — 6*r — 20%r +12).

5.1. Conditions of non-extremality

In this subsection we are going to find the regions of the parameter 6 where the
TISGMs p,,7 =1,2,3 are not extreme in the set of all GMs (including the non-
translation invariant ones).

It is known that a sufficient condition (Kesten—Stigum condition) for non-extremality
of a GM p corresponding to the matrix P on a CT of order k > 1 is that kA2, > 1,
where Ay is the second largest (in absolute value) eigenvalue of P [27]. We are going
to use this condition for TISGMs p,,7 = 1,2,3 in theorem 4. We have all solutions of
the system (7) in condition 7 = #* (see theorem 4) and the eigenvalues of the matrix P
in the explicit form.

Let us denote

Amaxi (0, 7) = max{ |\ (x;, v, 0,7)|, | No(zs, 93,0, 7)|}, i=1,2,3.
Using a computer, we have
Ao(1,91,0)], ifi=1,0<1,
Amaxi(0) = ¢ [M(Ly,0)], ifi=1,0>1,
A (1, 9:,0)], ifi=2,3.
Denote

mi(0) = 2

max,i

0)—1, i=1,2,3.

Let 6 < 0.. Using the Cardano formula, we solve equation (25). It has one real
solution

. ) 6% — 60
g1 = [0+ /63 —96% + 27+ 1.5v/—3D + - ) 32
1 3( \/ V63 — 902 + 27 + 1.5v/—3D 32)

where D is defined in (26). In this case, we are aiming to check the Kesten—Stigum
condition of the non-extremality of the measure p,. To determine the non-extremality
interval of TISGM p,, we should check the condition

2)\?

max,1

—-1>0.

Using a Maple program, one can see that the last inequality holds for 6 € (0, 6,)(6; ~
0.166 699 3311), which implies that the TISGM g, is not-extreme in this interval (see
figure 3).

To check that the TISGMs p;, 7 = 2, 3 are non-extreme, we should solve the following
inequality: 7,(6) > 0,7 = 2, 3 (see figure 4).

Proposition 1. Let r= 6°. Then the following statements hold

https://doi.org/10.1088/1742-5468 /acO8ft 12
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8
08
06 -0.93
04 P
02
-0.95
0
-0.96
-02
-0.97
-04
06 -0.98
-0.8 -0.99
-1 =]
Figure 3. The graphs of functions n,(f) for 0 € (0,1) (left) and for 6 € (1,00)
(right).
]
. s 10 12 14 16 18 20
04
03 -0.6
02
0.1 -0.7
0
8 10 12 14 16 18
-0.1 0 -0.8
-02
-03 -0.9
-04

Figure 4. The graphs of functions 1,(0) (left) and 7;(0) (right).

(a) There ezists 0;(~ 0.166699 3311) such that the measure p, is non-extreme if 0 €
(0701);

(b) There exists 05(~ 9.706301628) such that the measure p, is non-extreme if 0 €
(02, OO) .
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https://doi.org/10.1088/1742-5468/ac08ff

Extremality of translation-invariant Gibbs measures for the Potts—SOS model on the Cayley tree

5.2. Conditions for extremality

In [26, 28] the key ingredients are two quantities, x and 7, which bound the rates of
percolation of disagreement down and up the tree, respectively.

For two measures p; and p, on €, ||p; — || denotes the variation distance between
the projections of p; and pu, onto the spin at z, i.e.

i =l = 53 o) = 1) = o) = ).

Let n™* be the configuration n with the spin at = set to s. Following [26, 28] define

Kk = k(p) = sup max ||} — /‘;lr
selh 58

x )

|z,

y.s y.s'
v =7(p) = sup max|[p} — ul
Acr*

where the maximum is taken over all boundary conditions 7, all sites y € 0A, all
neighbors = € A of y, and all spins s, s" € {0, 1, 2}.
The criterion of extremality of a TISGM is kky < 1 [26, 28]. Note that x has the

particularly simple form x = %maxi_jzlﬁju — P;,| and + is a constant which does not
have a clear general formula.

Let r = 6. For the solution (1,y), we shall compute &

2-11-0yl+y* [0 —y
- . 33
2y(20 + ?) (33)

For § < 1 from the system (7), we get the following inequalities

0(1 — 6%)y? 20(1 — 6?)
1—0y=———"" —g="" ") .
Yy 7 >0, Yy 7 >0
Using these inequalities, we obtain
3 2
Y —0y" —20y+2 |
f 0 <1
2@y St
) R Oy + 20y — 2 £0>1
2y(20 +y?) T

For the solution (1,y), we shall calculate .

Y2

y,0 y,1 y,0 y,1 Y,2
v = masc {1 = s ey = s ey = 0
where
ny0 P 1 ny0 P
i —rix e =5 > Ik (o) = 5) = iy (o(x) = 5)|
s€{0,1,2}

(|1Poo — Pio|l + |Pogx — Pra| + |Poa — Pi2l)

N | —

https://doi.org/10.1088/1742-5468 /acO8ft 14
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Y3 — 0y® — 20y + 2

, if0<O<1,
_ 2y(20 + 12) 1
) P 40y 20y — 2 0> 1
ifo>1,
2y (20 + y?) ’
y,0 Y,2 1
Iy — i e = B Z \Po; — Py| =0,
1€{0,1,2}
ny:1 nv-2 1
Il — |z:§ Z [Py — Pyl
1€{0,1,2}
3 2
y?— 0y — 20y +2 |
, if0<0 <1,
29(20 + 12) '
) =R+ Oy 20y — 2 0> 1
if 6 > 1.
2y (20 + y?) ’

Hence, when 0 < 0 < 1

'y:max{O y3—9y2—20y+2}:y3—9y2—20y+2

21(20 + 32) 29(20 +y2)
and when 6 > 1

'y:max{O —y3+9y2+20y—2}: —y® + 0y* + 20y — 2

2y(20 + y?) 2y (20 + y?)

Now for TISGMs pu,,7 = 1,2,3 we want to check the extremality condition 2ky < 1.
When 6 > 0, this condition has the form

5 0y? — 20y, + 2\ °
2u:(20 + y?)

We check this condition for the TISGM p,. Denote

(3 — Oy3 — 20y, +2)*
202(20 + y2)?

The function Us(6) only depends on 6 and has no additional parameters. From its graph,

one can see the region of 6 where the function is negative. Thus, looking at the graph

of Uy(0) (see figure 5) completes the arguments.
We check extremality of TISGMs p;, ws. Thus, consider the following functions

(yi — Oyi — 20y +2)*
2y%(260 + 2)?

2&7—1:2(

Us(0) = 1.

Ul(e) =

L,

ys — 0ys — 20y; +2)°
212(20 + 12)2

The extremality interval of TISGMs p,, s are seen from figure 6.

1.

Us(0) = (

https://doi.org/10.1088/1742-5468 /acO8ft 15
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0.5
0.4
0.3
0.2

0.1

-0.1

-0.2

-0.3

-0.4

Figure 5. The graph of function Usy(6).

1 9
8 10 12 14 16 18 20
0.5 -06
-0.7
0

-0.8

-0.5

Figure 6. The graphs of functions U,(0) (left) and Us(6) (right).

Proposition 2. Let r= 6>. Then the following statements hold
(a) There exists 01(~ 0.166 699 3311) such that the measure i, is extreme if 0 € (01, 00);

https://doi.org/10.1088/1742-5468 /acO8ft 16
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16
14
12

10

Figure 7. The graphs of functions y;(6),7 = 1,2,3. The bold curves correspond
to regions of the functions where the corresponding TISGM is extreme. The thin
curves correspond to regions of the functions where the corresponding TISGM is
non-extreme.

(b) There are values 0" (= 7.729813675) and 05(~ 9.706 301 628) such that the measure
Ly is extreme if 0 € [67,0,);

(¢) The measure py is extreme (where it exists, that is 6 € [0, 0) ).
From propositions 1 and 2, we have the following

Theorem 5. Let r= 6. Then the following statements hold

(a) There exists 01(~ 0.166 699 3311) such that the measure i, is non-extreme if 6 €
(0,01) and is extreme if 0 € (0;,00);

(b) There are values 6" (= 7.729813675) and 05(~ 9.706 301 628) such that the measure

o is extreme if 0 € [0%,6,) and is non-extreme if 0 € (6y, 00);

(c) The measure pg is extreme (where it exists, that is 0 € [0",00)) (see figure 7).
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