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1. Introduction

One of the central problems in the theory of Gibbs measures (GMs) is to describe
infinite-volume (or limiting) GMs corresponding to a given Hamiltonian. The existence
of such measures for a wide class of Hamiltonians was established in the ground-breaking
work of Dobrushin (see, e.g. [2]). However, a complete analysis of the set of limiting GMs
for a specific Hamiltonian is often a difficult problem.

In this paper, we consider the Potts–SOS model, with spin values 0, 1, 2 on the
Cayley tree (CT). Models on a CT were discussed in [3, 4–7]. A classical example of
such a model is the Ising model, with two values of spin −1 and 1. It was considered
in [1, 3, 7, 16, 17] and became a focus of active research in the first half of the 90s and
afterwards; see [1, 8–14].

In [18] all translation-invariant splitting Gibbs measures (TISGMs) for the Potts
model on the CT are described. In [19, 20] periodic GMs are studied, and in [21–23]
weakly periodic GMs for the Potts model are studied.

In [25, 26] translation-invariant and periodic Gibbs measures for the SOS model on
the CT are studied.

The model considered in this paper (Potts–SOS model) is a generalization of the
Potts and SOS (solid-on-solid) models. In [15] some translation-invariant GMs for the
Potts–SOS model on the CT are studied. Periodic GMs are studied for the Potts–SOS
model on the CT in [24]. In this paper we will study all the TISGMs for this model under
some conditions. Next we investigate whether these GMs are extremal or non-extremal
in the set of all GMs.
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Figure 1. The CT τ 2 and elements of the group G2 representation of vertices.

2. Main definitions and known facts

The CT Γk (see [1]) of order k � 1 is an infinite tree, i.e. a graph without cycles, from
each vertex of which exactly k + 1 edges issue. Let Γk = (V ,L, i), where V is the set of
vertices of Γk, L is the set of edges of Γk and i is the incidence function associating each
edge l ∈ L with its endpoints x, y ∈ V . If i(l) = {x, y}, then x and y are called nearest
neighboring vertices , and we write l = 〈x, y〉.

The distance d(x, y), x, y ∈ V on the CT is defined by the formula

d(x, y) = min {d|∃x = x0, x1, . . . , xd−1, xd = y ∈ V such that

〈x0, x1〉 · · · 〈xd−1, xd〉} .

For the fixed x0 ∈ V , we set Wn = {x ∈ V |d(x, x0) = n},

Vn = {x ∈ V |d(x, x0) � n}, Ln = {l = 〈x, y〉 ∈ L|x, y ∈ Vn}. (1)

Denote |x| = d(x, x0), x ∈ V .
A collection of the pairs 〈x, x1〉 · · · 〈xd−1, y〉 is called a path from x to y and we write

π(x, y). We write x < y if the path from x0 to y goes through x.
It is known (see [1]) that there exists a one-to-one correspondence between the set V

of vertices of the CT of order k � 1 and the group Gk of the free products of k + 1 cyclic
groups {e, ai}, i = 1, . . . , k + 1 of the second order (i.e. a2i = e, a−1

i = ai) with generators
a1, a2, . . . , ak+1, see figure 1.

Denote the set of ‘direct successors’ of x ∈ Gk by S(x). Let S1(x) be the set of
all nearest neighboring vertices of x ∈ Gk, i.e. S1(x) = {y ∈ Gk :〈x, y〉} and {x↓} =
S1(x)\S(x).
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3. The model and a system vector-valued functional equations

Here, we shall give main definitions and facts about the model. Consider a model where
the spin takes values in the set Φ = {0, 1, 2, . . . ,m},m � 1. For A ⊆ V , a spin configu-
ration σA on A is defined as a function x ∈ A→ σA(x) ∈ Φ; the set of all configurations
coincides with ΩA = ΦA. Denote Ω = ΩV and σ = σV .

A configuration that is invariant with respect to all shifts is called
translational-invariant.

The Hamiltonian of the Potts–SOS model with nearest-neighbor interaction has the
form

H(σ) = −J
∑

〈x,y〉∈L

|σ(x)− σ(y)| − Jp

∑
〈x,y〉∈L

δσ(x)σ(y), (2)

where J , Jp ∈ R are nonzero coupling constants.
It is known [15] that any SGM of the model (2) corresponds to a solution of the

following equation:

h∗
x =

∑
y∈S(x)

F
(
h∗
y,m, θ, r

)
, (3)

where x ∈ V \{x0},

θ = exp(Jβ), r = exp(Jpβ) (4)

and also β = 1/T is the inverse temperature. Here, h∗
x represents the vector (h0,x −

hm,x, h1,x − hm,x, . . . , hm−1,x − hm,x) and the vector function F (.,m, θ, r) :Rm → Rm is
defined as follows

F (h,m, θ, r) = (F0(h,m, θ, r),F1(h,m, θ, r), . . . ,Fm−1(h,m, θ, r)) ,

where

Fi(h,m, θ, r) = ln

∑m−1
j=0 θ

|i−j|rδij ehj + θm−irδmi∑m−1
j=0 θ

m−jrδmjehj + r
, (5)

h = (h0, h1, . . . , hm−1), i = 0, 1, 2, . . . ,m− 1.
Namely, for any collection of functions satisfying the functional equation (3) there

exists a unique splitting GM, the correspondence being one-to-one.

4. Translation-invariant GMs

Definition 1. For an SGM μ, if hj,x is independent from {x :hj,x ≡ hj, x ∈ V , j ∈ Φ}, μ
is called translation-invariant(TI).

Let m = 2, that is Φ = {0, 1, 2}. In this case, for the TISGMs (3) has the form

h = kF (h, θ, r),
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where h = (h0, h1). Introducing the notation l0 = eh0 , l1 = eh1 , we obtain the following
the system of equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
l0 =

(
rl0 + θl1 + θ2

θ2l0 + θl1 + r

)k

,

l1 =

(
θl0 + rl1 + θ

θ2l0 + θl1 + r

)k

.

(6)

Let k = 2. Denote
√
l0 = x,

√
l1 = y. Then from (6) we get⎧⎪⎪⎨

⎪⎪⎩
x =

rx2 + θy2 + θ2

θ2x2 + θy2 + r
,

y =
θx2 + ry2 + θ

θ2x2 + θy2 + r
.

(7)

After simplifying the system of equation (7) above, we have{
θ2x3 − rx2 + (θy2 + r)x− θy2 − θ2 = 0,

θy3 − ry2 + (θ2x2 + r)y − θx2 − θ = 0.
(8)

The system of equation (8) can be rewritten as{
(x− 1)(θ2x2 + θ2x+ θ2 − rx+ θy2) = 0,

θy3 − ry2 + (θ2x2 + r)y − θx2 − θ = 0.
(9)

Obviously, the solutions of (9) are the solutions of the following system of equations{
x− 1 = 0,

θy3 − ry2 + (θ2x2 + r)y − θx2 − θ = 0,
(10)

or the solutions of the following system of equations{
θ2x2 + θ2x+ θ2 − rx+ θy2 = 0,

θy3 − ry2 + (θ2x2 + r)y − θx2 − θ = 0.
(11)

Let us consider (10). Substituting x = 1 into the second equation of (10), we get

θy3 − ry2 + (θ2 + r)y − 2θ = 0. (12)

For

y = z +
r

3θ
, (13)

we reduce (12) to the equation

z3 +

(
r

θ
+ θ − r2

3θ2

)
z +

(
r

3
+

r2

3θ2
− 2r3

27θ3
− 2

)
= 0. (14)
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Denote

p =
r

θ
+ θ − r2

3θ2
, q =

r

3
+

r2

3θ2
− 2r3

27θ3
− 2. (15)

After solving the equation p = 0 in terms of r, we have the solutions r1,2 =
3±

√
9+12θ
2

θ.

Since r > 0, θ > 0, we get r1 =
3+

√
9+12θ
2

θ. Putting r1 into q in (15) and solving the

equation q = 0 in terms of θ, we have the solution θ1 = 3 3
√
2( 3
√
2− 1).

Substituting r1, θ1 into equation (14), we get the equation z3 = 0. It follows that
equation (12) has one positive root y = r1

3θ1
.

From (15), we obtain

Q(r, θ) =
(p
3

)3

+
(q
2

)2

=
1

27

(
−1

3

r2

θ2
+

r

θ
+ θ

)3

+
1

4

(
− 2

27

r3

θ3
+

1

3

r2

θ2
+

1

3
r − 2

)2

= − 1

108θ4
(
r4 + 2r3θ2 + r2θ4 − 12r3θ − 12r2θ3 − 12θ5r − 4θ7 + 36θ2r2

+ 36θ4r − 108θ4
)
. (16)

For θ = θ1 = 3 3
√
2( 3
√
2− 1), we have

Q(r, θ1) =
116 + 73 3

√
4 + 92 3

√
2

34 992

(
−r2 + 36(1− 2

3
√
2 +

3
√
4)r + 324(13− 4

3
√
2− 5

3
√
4)
)
·

·
(
r − 18 + 9

3
√
4
)2

Using Cardano’s formula, one can prove the following

Lemma 1. Let θ = 3 3
√
2( 3
√
2− 1). There exists rc(≈ 4.221 293 186) such that

• If r ∈ (0, rc) then the equation (12) has one positive solution.

• If r = rc then the equation (12) has two positive solutions.

• If r ∈ (rc,∞) then the equation (12) has three positive solutions.

Now we consider (11). From (11), we get

x =
θy(θ2 − y + ry − r)

−θ3y + θ2 + θry − r
. (17)

Substituting (17) into the first equation of (11), we obtain

f(y, r, θ) = θ2(θ + 1)(r2 − 2θr + θ3 − θ2 + θ)y4 − θ(r − θ2)(r2 + (θ2 + 1)r − 3θ2)y3

+ ((θ + 1)r + θ3)(r − θ2)2y2 − (r + θ2)(r − θ2)2y + θ(r − θ2)2 = 0.

(18)

Equation (18) can be rewritten as

f(y, r, θ) = (ay2 + by + c)(dy2 + ey + f),
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where

ad = θ2(θ + 1)(r2 − 2θr + θ3 − θ2 + θ),

ae+ bd = −θ(r − θ2)(r2 + (θ2 + 1)r − 3θ2),

af + be+ cd = ((θ + 1)r + θ3)(r − θ2)2,

bf + ce = −(r + θ2)(r − θ2)2,

cf = θ(r − θ2)2.

Let D1(r, θ) = b2 − 4ac and D2(r, θ) = e2 − 4df .
We denote the following sets

B1 = {(r, θ) ∈ R
2
+ :D1(r, θ) > 0,D2(r, θ) > 0},

B2 = {(r, θ) ∈ R
2
+ :D1(r, θ) > 0,D2(r, θ) = 0 ∨D1(r, θ) = 0,D2(r, θ) > 0},

B3 = {(r, θ) ∈ R
2
+ :D1(r, θ) = 0,D2(r, θ) = 0 ∨D1(r, θ) > 0,D2(r, θ)

< 0 ∨ ∨D1(r, θ) < 0,D2(r, θ) > 0} ,

B4 = {(r, θ) ∈ R
2
+ :D1(r, θ) = 0,D2(r, θ) < 0 ∨D1(r, θ) < 0,D2(r, θ) = 0},

B5 = {(r, θ) ∈ R
2
+ :D1(r, θ) < 0,D2(r, θ) < 0}.

Thus, we can prove the following

Lemma 2. Let θ = 3 3
√
2( 3
√
2− 1), then the following assertions hold

• If r ∈ B1(r) then the equation (18) has four solutions which are positive.

• If r ∈ B2(r) then the equation (18) has three positive solutions.

• If r ∈ B3(r) then the equation (18) has two positive solutions.

• If r ∈ B4(r) then the equation (18) has one positive solution.

• If r ∈ B5(r) then the equation (18) has no solution.

With respect to (15) and (16) we denote the following sets

A1 = {(r, θ) ∈ R
2
+ : r � 3θ2,Q > 0} ∪ {(r, θ) ∈ R

2
+ : r � 3θ2, p = 0, q = 0},

A2 = {(r, θ) ∈ R
2
+ : r � 3θ2,Q = 0} ∩ {(r, θ) ∈ R

2
+ : p �= 0 ∨ q �= 0},

A3 = {(r, θ) ∈ R
2
+ : r � 3θ2,Q < 0}, A4 = {(r, θ) ∈ R

2
+ : r > 3θ2,Q > 0},

A5 = {(r, θ) ∈ R
2
+ : r > 3θ2,Q = 0} ∩ {(r, θ) ∈ R

2
+ : p �= 0 ∨ q �= 0},

A6 = {(r, θ) ∈ R
2
+ : r > 3θ2,Q < 0}.
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Let N be the number of TISGMs for the Potts–SOS model.

Theorem 1. Let k = 2,m = 2. The following statements hold for the N

N =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if (r, θ) ∈ A1,

2, if (r, θ) ∈ A2 ∪ (A4 ∩B4) ∪ (A5 ∩B5),

3, if (r, θ) ∈ A3 ∪ (A4 ∩B3) ∪ (A5 ∩B4),

4, if (r, θ) ∈ (A4 ∩B2) ∪ (A5 ∩B3) ∪ (A6 ∩B4),

5, if (r, θ) ∈ (A4 ∩B1) ∪ (A5 ∩B2) ∪ (A6 ∩B3),

6, if (r, θ) ∈ (A5 ∩B1) ∪ (A6 ∩B2),

7, if (r, θ) ∈ A6 ∩B1.

(19)

Proof. We consider the first equation of (11). We write this in the following form

θ2x2 + (θ2 − r)x+ θ2 = −θy2. (20)

The rhs of (20) is negative, thus

θ2x2 + (θ2 − r)x+ θ2 < 0. (21)

For the lhs of (21), we calculate its discriminant D = (θ2 − r)2 − 4θ4. If the discrim-
inant is positive, then the inequality (21) has real solutions. Therefore, we should solve

(−r − θ2)(3θ2 − r) > 0.

Since −r − θ2 < 0, it follows that r > 3θ2.
Inequality (21) has a positive solution as soon as θ2 − r < 0 or r > θ2. If r > 3θ2,

then r > θ2 also holds. If r > 3θ2, the solutions of the inequality (21) belong to(
r − θ2 −

√
D

2θ2
,
r − θ2 +

√
D

2θ2

)
.

Moreover, (20) holds in this interval.
Consequently, if r > 3θ2 then the first equation of (11) has a positive real solution,

and if r � 3θ2 then the first equation of (11) cannot have a positive solution, i.e. any
positive real pair (x, y), which is the solution of the first equation of (11), does not satisfy
r � 3θ2. Then the TISGM’s corresponding roots of (11) do not exist under condition
r � 3θ2.

According to the Descartes theorem, the number of positive roots of equation (12)
is at least 1 and at most 3.

If Q > 0, then equation (14) has one positive real root and two conjugate complex
roots. If Q = 0, then all roots of equation (14) are positive real and two of them are
equal or if p = q = 0, then (14) has one positive real root (one real zero of multiplicity
three). If Q < 0, then equation (14) has three distinct positive real roots. Hence, we can
say this about the number of TISGM’s corresponding positive roots from equation (12).
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From lemmas 1 and 2, we can see that{
(r, θ) ∈ R2 : θ = 3

3
√
2(

3
√
2− 1), r ∈ (rc,∞) ∩B1(r)

}
⊂ A6 ∩B1.

Thus, the set A6

⋂
B1 is not empty, i.e. the number of TISGMs corresponding positive

solutions of (8) for the Potts–SOS model is up to seven. �

Remark 1. Note that theorem 1 (for k = m = 2) generalizes results of [18, 26].

If J = 0, then the Potts–SOS model changes to the Potts model. In this case, theorem
1 can be restated as follows

Theorem 2. Let k = 2,m = 2. The following statements hold for the number n of the
TISGMs for the Potts model

n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if r ∈ (0, 1 + 2

√
2),

4, if r = 1 + 2
√
2 or r = 4,

7, if r ∈ (1 + 2
√
2, 4) ∪ (4,∞)

(22)

(see [18] for more details).
If Jp = 0, then the Hamiltonian (2) of the Potts–SOS model changes to the

Hamiltonian of the SOS model. In this case, theorem 1 can be restated as follows

Theorem 3. Let k = 2,m = 2. The following statements are appropriate for the number
n of the TISGMs for the SOS model

n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if θ ∈ (θ2,∞),

3, if θ = θ2,

5, if θ ∈ (θ1, θ2),

6, if θ = θ1,

7, if θ ∈ (0, θ1),

(23)

where θ1 ≈ 0.1414 and θ2 ≈ 0.2956

(see [26] for more details).
Now we study the extremality of the TISGMs for the Potts–SOS model. In general, a

complete analysis of extremality or non-extremality of the TISGMs is a difficult problem.
Therefore, we assume r = θ2.

Lemma 3. Let r = θ2. There exists a unique θc(≈ 7.729814) such that

• If θ ∈ (0, θc) then system (7) has one positive root.

• If θ = θc then system (7) has two positive roots.

• If θ ∈ (θc,∞) then system (7) has three positive roots.

https://doi.org/10.1088/1742-5468/ac08ff 9
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Figure 2. The graphs of functions yi = yi(θ), i = 1, 2, 3.

Proof. Substituting r = θ2 into (7) we have⎧⎪⎨
⎪⎩
x = 1,

y =
2 + θy2

2θ + y2
.

(24)

Simplifying the second equation of (24), we obtain the cubic equation

y3 − θy2 + 2θy − 2 = 0. (25)

We calculate its discriminant

D = 4(θ4 − 10θ3 + 18θ2 − 27). (26)

Denote θc ≈ 7.729814. If D < 0 (θ < θc) equation (25) has one real and two conju-
gate complex roots. If D = 0 (θ = θc) then all roots of equation (25) are real, in which
two of them are equal. If D > 0 (θ > θc) then equation (25) has three distinct real
roots (see figure 2). The obtained real roots are positive due to the Descartes theorem
(see [5]). �

The lower curve is y1, the middle curve is y2, and the upper curve is y3.
Using lemma 3, we have the following

https://doi.org/10.1088/1742-5468/ac08ff 10
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Theorem 4. Let k = m = 2. If r = θ2 then the following statements hold for the N

N =

⎧⎪⎪⎨
⎪⎪⎩
1, if θ ∈ (0, θc),

2, if θ = θc,

3, if θ ∈ (θc,∞),

(27)

where θc ≈ 7.729 814.

Remark 2. Note that theorem 4 is a particular case of theorem 1.

We denote the obtained TISGMs corresponding to yi in theorem 4 by μi, i = 1, 2, 3,
respectively.

5. Tree-indexed Markov chains of TISGMs

A tree-indexed Markov chain is defined as follows. Suppose we are given with a ver-
tices set V both a probability measure ν and a transition matrix P = (pi,j)i,j∈Φ on the
single-site space, which is the finite set here Φ = {0, 1, . . . ,m}. We can obtain a tree-
indexed Markov chain X :V → Φ by choosing X(x0) according to ν and choosing X(v),
for each vertex v �= x0, using the transition probabilities given the value of its parent,
independently of everything else. See definition 12.2 in [4] for a detailed definition.

We note that a TISGM corresponding to a vector v = (x, y) ∈ R2 (which is the
solution to system (7)) is a tree-indexed Markov chain with states {0, 1, 2} and transition
probabilities matrix:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

rx2

rx2 + θy2 + θ2
θy2

rx2 + θy2 + θ2
θ2

rx2 + θy2 + θ2

θx2

θx2 + ry2 + θ

ry2

θx2 + ry2 + θ

θ

θx2 + ry2 + θ
θ2x2

θ2x2 + θy2 + r

θy2

θ2x2 + θy2 + r

r

θ2x2 + θy2 + r

⎞
⎟⎟⎟⎟⎟⎟⎠

. (28)

Since (x, y) is a solution to the system (7), this matrix can be written in the following
form

P =
1

Z

⎛
⎜⎜⎜⎜⎝
rx

θy2

x

θ2

x
θx2

y
ry

θ

y

θ2x2 θy2 r

⎞
⎟⎟⎟⎟⎠ , (29)

where Z = θ2x2 + θy2 + r.
Simple calculations show that the matrix (29) has three eigenvalues: 1 and

λ1(x, y, θ, r) =
(x+ y + 1)r − Z +

√
D∗

2Z
, λ2(x, y, θ, r) =

(x+ y + 1)r − Z −
√
D∗

2Z
,

(30)
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where λ1 and λ2 are solutions to

Z3λ2 + (Z − (1 + x+ y)r)Z2λ+ (2θ4 − θ4r − 2θ2r + r3)xy = 0 (31)

and D∗ = ((1 + x+ y)r − Z)2 − 4xyZ−1(2θ4 − θ4r − 2θ2r + r3).

5.1. Conditions of non-extremality

In this subsection we are going to find the regions of the parameter θ where the
TISGMs μi, i = 1, 2, 3 are not extreme in the set of all GMs (including the non-
translation invariant ones).

It is known that a sufficient condition (Kesten–Stigum condition) for non-extremality
of a GM μ corresponding to the matrix P on a CT of order k � 1 is that kλ2

max > 1,
where λmax is the second largest (in absolute value) eigenvalue of P [27]. We are going
to use this condition for TISGMs μi, i = 1, 2, 3 in theorem 4. We have all solutions of
the system (7) in condition r = θ2 (see theorem 4) and the eigenvalues of the matrix P
in the explicit form.

Let us denote

λmax,i(θ, r) = max{|λ1(xi, yi, θ, r)|, |λ2(xi, yi, θ, r)|}, i = 1, 2, 3.

Using a computer, we have

λmax,i(θ) =

⎧⎪⎪⎨
⎪⎪⎩
|λ2(1, y1, θ)|, if i = 1, θ < 1,

|λ1(1, y1, θ)|, if i = 1, θ > 1,

|λ1(1, yi, θ)|, if i = 2, 3.

Denote

ηi(θ) = 2λ2
max,i(θ)− 1, i = 1, 2, 3.

Let θ < θc. Using the Cardano formula, we solve equation (25). It has one real
solution

y1 =
1

3

(
θ +

3

√
θ3 − 9θ2 + 27 + 1.5

√
−3D +

θ2 − 6θ
3
√

θ3 − 9θ2 + 27 + 1.5
√
−3D

)
, (32)

where D is defined in (26). In this case, we are aiming to check the Kesten–Stigum
condition of the non-extremality of the measure μ1. To determine the non-extremality
interval of TISGM μ1, we should check the condition

2λ2
max,1 − 1 > 0.

Using a Maple program, one can see that the last inequality holds for θ ∈ (0, θ1)(θ1 ≈
0.166 699 3311), which implies that the TISGM μ1 is not-extreme in this interval (see
figure 3).

To check that the TISGMs μi, i = 2, 3 are non-extreme, we should solve the following
inequality: ηi(θ) > 0, i = 2, 3 (see figure 4).

Proposition 1. Let r = θ2. Then the following statements hold
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Figure 3. The graphs of functions η1(θ) for θ ∈ (0, 1) (left) and for θ ∈ (1,∞)
(right).

Figure 4. The graphs of functions η2(θ) (left) and η3(θ) (right).

(a) There exists θ1(≈ 0.166 699 3311) such that the measure μ1 is non-extreme if θ ∈
(0, θ1);

(b) There exists θ2(≈ 9.706 301 628) such that the measure μ2 is non-extreme if θ ∈
(θ2,∞).
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5.2. Conditions for extremality

In [26, 28] the key ingredients are two quantities, κ and γ, which bound the rates of
percolation of disagreement down and up the tree, respectively.

For two measures μ1 and μ2 on Ω, ‖μ1 − μ2‖x denotes the variation distance between
the projections of μ1 and μ2 onto the spin at x, i.e.

‖μ1 − μ2‖x =
1

2

2∑
i=0

|μ1(σ(x) = i)− μ2(σ(x) = i)|.

Let ηx,s be the configuration η with the spin at x set to s. Following [26, 28] define

κ ≡ κ(μ) = sup
x∈Γk

max
x,s,s′

‖μs
τx
− μs′

τx
‖x ;

γ ≡ γ(μ) = sup
A⊂Γk

max ‖μηy,s

A − μηy,s
′

A ‖x,

where the maximum is taken over all boundary conditions η, all sites y ∈ ∂A, all
neighbors x ∈ A of y, and all spins s, s′ ∈ {0, 1, 2}.

The criterion of extremality of a TISGM is kκγ < 1 [26, 28]. Note that κ has the
particularly simple form κ = 1

2
maxi,j

∑
l|Pi,l − Pj,l| and γ is a constant which does not

have a clear general formula.
Let r = θ2. For the solution (1, y), we shall compute κ

κ =
2 · |1− θy|+ y2 · |θ − y|

2y(2θ + y2)
. (33)

For θ < 1 from the system (7), we get the following inequalities

1− θy =
θ(1− θ2)y2

Z
> 0, y − θ =

2θ(1− θ2)

Z
> 0.

Using these inequalities, we obtain

κ =

⎧⎪⎪⎨
⎪⎪⎩
y3 − θy2 − 2θy + 2

2y(2θ + y2)
, if 0 < θ < 1,

−y3 + θy2 + 2θy − 2

2y(2θ + y2)
, if θ � 1.

For the solution (1, y), we shall calculate γ.

γ = max
{
‖μηy,0

A − μηy,1

A ‖x, ‖μηy,0

A − μηy,2

A ‖x, ‖μηy,1

A − μηy,2

A ‖x
}
,

where

‖μηy,0

A − μηy,1

A ‖x =
1

2

∑
s∈{0,1,2}

|μηy,0

A (σ(x) = s)− μηy,1

A (σ(x) = s)|

=
1

2
(|P0,0 − P1,0|+ |P0,1 − P1,1|+ |P0,2 − P1,2|)
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=

⎧⎪⎪⎨
⎪⎪⎩
y3 − θy2 − 2θy + 2

2y(2θ + y2)
, if 0 < θ < 1,

−y3 + θy2 + 2θy − 2

2y(2θ + y2)
, if θ � 1,

‖μηy,0

A − μηy,2

A ‖x =
1

2

∑
l∈{0,1,2}

|P0,l − P2,l| = 0,

‖μηy,1

A − μηy,2

A ‖x =
1

2

∑
l∈{0,1,2}

|P1,l − P2,l|

=

⎧⎪⎪⎨
⎪⎪⎩
y3 − θy2 − 2θy + 2

2y(2θ + y2)
, if 0 < θ < 1,

−y3 + θy2 + 2θy − 2

2y(2θ + y2)
, if θ � 1.

Hence, when 0 < θ < 1

γ = max

{
0,

y3 − θy2 − 2θy + 2

2y(2θ + y2)

}
=

y3 − θy2 − 2θy + 2

2y(2θ + y2)
,

and when θ � 1

γ = max

{
0,

−y3 + θy2 + 2θy − 2

2y(2θ + y2)

}
=

−y3 + θy2 + 2θy − 2

2y(2θ + y2)
.

Now for TISGMs μi, i = 1, 2, 3 we want to check the extremality condition 2κγ < 1.
When θ > 0, this condition has the form

2κγ − 1 = 2

(
y3i − θy2i − 2θyi + 2

2yi(2θ + y2i )

)2

− 1 < 0.

We check this condition for the TISGM μ2. Denote

U2(θ) =
(y32 − θy22 − 2θy2 + 2)2

2y22(2θ + y22)
2

− 1.

The function U 2(θ) only depends on θ and has no additional parameters. From its graph,
one can see the region of θ where the function is negative. Thus, looking at the graph
of U 2(θ) (see figure 5) completes the arguments.

We check extremality of TISGMs μ1, μ3. Thus, consider the following functions

U1(θ) =
(y31 − θy21 − 2θy1 + 2)2

2y21(2θ + y21)
2

− 1,

U3(θ) =
(y33 − θy23 − 2θy3 + 2)2

2y23(2θ + y23)
2

− 1.

The extremality interval of TISGMs μ1, μ3 are seen from figure 6.
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Figure 5. The graph of function U 2(θ).

Figure 6. The graphs of functions U 1(θ) (left) and U 3(θ) (right).

Proposition 2. Let r = θ2. Then the following statements hold

(a) There exists θ1(≈ 0.166 699 3311) such that the measure μ1 is extreme if θ ∈ (θ1,∞);
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Figure 7. The graphs of functions yi(θ), i = 1, 2, 3. The bold curves correspond
to regions of the functions where the corresponding TISGM is extreme. The thin
curves correspond to regions of the functions where the corresponding TISGM is
non-extreme.

(b) There are values θ∗(≈ 7.729 813 675) and θ2(≈ 9.706 301 628) such that the measure
μ2 is extreme if θ ∈ [θ∗, θ2);

(c) The measure μ3 is extreme (where it exists, that is θ ∈ [θ∗,∞)).

From propositions 1 and 2, we have the following

Theorem 5. Let r = θ2. Then the following statements hold

(a) There exists θ1(≈ 0.166 699 3311) such that the measure μ1 is non-extreme if θ ∈
(0, θ1) and is extreme if θ ∈ (θ1,∞);

(b) There are values θ∗(≈ 7.729 813 675) and θ2(≈ 9.706 301 628) such that the measure
μ2 is extreme if θ ∈ [θ∗, θ2) and is non-extreme if θ ∈ (θ2,∞);

(c) The measure μ3 is extreme (where it exists, that is θ ∈ [θ∗,∞)) (see figure 7).
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