Extremality of translation-invariant Gibbs measures for the Potts-SOS model on the Cayley tree

M M Rahmatullaev ${ }^{1,2, *}$ and M A Rasulova ${ }^{2}$
${ }^{1}$ Uzbekistan Academy of Sciences, V.I. Romanovskiy Institute of Mathematics, Tashkent, Uzbekistan
${ }^{2}$ Namangan State University, Namangan, Uzbekistan
E-mail: mrahmatullaev@rambler.ru

Received 2 April 2021
Accepted for publication 11 May 2021
Published 16 July 2021

Online at stacks.iop.org/JSTAT/2021/073201
https://doi.org/10.1088/1742-5468/ac08ff

Abstract

In this paper, we consider the Potts-SOS model where the spin takes values in the set $\{0,1,2\}$ on the Cayley tree of order two. We describe all the translation-invariant splitting Gibbs measures (GMs) for this model in some conditions. Moreover, we investigate whether these GMs are extremal or non-extremal in the set of all GMs.

Keywords: classical phase transitions, extreme value, phase diagrams, nonlinear dynamics

[^0]
Contents

1. Introduction 2
2. Main definitions and known facts 3
3. The model and a system vector-valued functional equations 3
4. Translation-invariant GMs 4
5. Tree-indexed Markov chains of TISGMs 11
5.1. Conditions of non-extremality 12
5.2. Conditions for extremality 13
Acknowledgments 17
References 18

1. Introduction

One of the central problems in the theory of Gibbs measures (GMs) is to describe infinite-volume (or limiting) GMs corresponding to a given Hamiltonian. The existence of such measures for a wide class of Hamiltonians was established in the ground-breaking work of Dobrushin (see, e.g. [2]). However, a complete analysis of the set of limiting GMs for a specific Hamiltonian is often a difficult problem.

In this paper, we consider the Potts-SOS model, with spin values $0,1,2$ on the Cayley tree (CT). Models on a CT were discussed in [3, 4-7]. A classical example of such a model is the Ising model, with two values of spin -1 and 1 . It was considered in $[1,3,7,16,17]$ and became a focus of active research in the first half of the 90 s and afterwards; see [1, 8-14].

In [18] all translation-invariant splitting Gibbs measures (TISGMs) for the Potts model on the CT are described. In [19, 20] periodic GMs are studied, and in [21-23] weakly periodic GMs for the Potts model are studied.

In $[25,26]$ translation-invariant and periodic Gibbs measures for the SOS model on the CT are studied.

The model considered in this paper (Potts-SOS model) is a generalization of the Potts and SOS (solid-on-solid) models. In [15] some translation-invariant GMs for the Potts-SOS model on the CT are studied. Periodic GMs are studied for the Potts-SOS model on the CT in [24]. In this paper we will study all the TISGMs for this model under some conditions. Next we investigate whether these GMs are extremal or non-extremal in the set of all GMs.

Figure 1. The $\mathrm{CT} \tau^{2}$ and elements of the group G_{2} representation of vertices.

2. Main definitions and known facts

The $\operatorname{CT} \Gamma^{k}$ (see [1]) of order $k \geqslant 1$ is an infinite tree, i.e. a graph without cycles, from each vertex of which exactly $k+1$ edges issue. Let $\Gamma^{k}=(V, L, i)$, where V is the set of vertices of Γ^{k}, L is the set of edges of Γ^{k} and i is the incidence function associating each edge $l \in L$ with its endpoints $x, y \in V$. If $i(l)=\{x, y\}$, then x and y are called nearest neighboring vertices, and we write $l=\langle x, y\rangle$.

The distance $d(x, y), x, y \in V$ on the CT is defined by the formula

$$
\begin{gathered}
d(x, y)=\min \left\{d \mid \exists x=x_{0}, x_{1}, \ldots, x_{d-1}, x_{d}=y \in V \quad\right. \text { such that } \\
\left.\left\langle x_{0}, x_{1}\right\rangle \cdots\left\langle x_{d-1}, x_{d}\right\rangle\right\} .
\end{gathered}
$$

For the fixed $x^{0} \in V$, we set $W_{n}=\left\{x \in V \mid d\left(x, x^{0}\right)=n\right\}$,

$$
\begin{equation*}
V_{n}=\left\{x \in V \mid d\left(x, x^{0}\right) \leqslant n\right\}, \quad L_{n}=\left\{l=\langle x, y\rangle \in L \mid x, y \in V_{n}\right\} \tag{1}
\end{equation*}
$$

Denote $|x|=d\left(x, x^{0}\right), x \in V$.
A collection of the pairs $\left\langle x, x_{1}\right\rangle \cdots\left\langle x_{d-1}, y\right\rangle$ is called a path from x to y and we write $\pi(x, y)$. We write $x<y$ if the path from x^{0} to y goes through x.

It is known (see [1]) that there exists a one-to-one correspondence between the set V of vertices of the CT of order $k \geqslant 1$ and the group G_{k} of the free products of $k+1$ cyclic groups $\left\{e, a_{i}\right\}, i=1, \ldots, k+1$ of the second order (i.e. $a_{i}^{2}=e, a_{i}^{-1}=a_{i}$) with generators $a_{1}, a_{2}, \ldots, a_{k+1}$, see figure 1 .

Denote the set of 'direct successors' of $x \in G_{k}$ by $S(x)$. Let $S_{1}(x)$ be the set of all nearest neighboring vertices of $x \in G_{k}$, i.e. $S_{1}(x)=\left\{y \in G_{k}:\langle x, y\rangle\right\}$ and $\left\{x_{\downarrow}\right\}=$ $S_{1}(x) \backslash S(x)$.

3. The model and a system vector-valued functional equations

Here, we shall give main definitions and facts about the model. Consider a model where the spin takes values in the set $\Phi=\{0,1,2, \ldots, m\}, m \geqslant 1$. For $A \subseteq V$, a spin configuration σ_{A} on A is defined as a function $x \in A \rightarrow \sigma_{A}(x) \in \Phi$; the set of all configurations coincides with $\Omega_{A}=\Phi^{A}$. Denote $\Omega=\Omega_{V}$ and $\sigma=\sigma_{V}$.

A configuration that is invariant with respect to all shifts is called translational-invariant.

The Hamiltonian of the Potts-SOS model with nearest-neighbor interaction has the form

$$
\begin{equation*}
H(\sigma)=-J \sum_{\langle x, y\rangle \in L}|\sigma(x)-\sigma(y)|-J_{p} \sum_{\langle x, y\rangle \in L} \delta_{\sigma(x) \sigma(y)}, \tag{2}
\end{equation*}
$$

where $J, J_{p} \in R$ are nonzero coupling constants.
It is known [15] that any SGM of the model (2) corresponds to a solution of the following equation:

$$
\begin{equation*}
h_{x}^{*}=\sum_{y \in S(x)} F\left(h_{y}^{*}, m, \theta, r\right), \tag{3}
\end{equation*}
$$

where $x \in V \backslash\left\{x^{0}\right\}$,

$$
\begin{equation*}
\theta=\exp (J \beta), \quad r=\exp \left(J_{p} \beta\right) \tag{4}
\end{equation*}
$$

and also $\beta=1 / T$ is the inverse temperature. Here, h_{x}^{*} represents the vector ($h_{0, x}-$ $\left.h_{m, x}, h_{1, x}-h_{m, x}, \ldots, h_{m-1, x}-h_{m, x}\right)$ and the vector function $F(., m, \theta, r): R^{m} \rightarrow R^{m}$ is defined as follows

$$
F(h, m, \theta, r)=\left(F_{0}(h, m, \theta, r), F_{1}(h, m, \theta, r), \ldots, F_{m-1}(h, m, \theta, r)\right),
$$

where

$$
\begin{equation*}
F_{i}(h, m, \theta, r)=\ln \frac{\sum_{j=0}^{m-1} \theta^{|i-j|} r^{\delta_{i j}} e^{h_{j}}+\theta^{m-i} r^{\delta_{m i}}}{\sum_{j=0}^{m-1} \theta^{m-j} r^{\delta_{m j}} e^{h_{j}}+r} \tag{5}
\end{equation*}
$$

$h=\left(h_{0}, h_{1}, \ldots, h_{m-1}\right), i=0,1,2, \ldots, m-1$.
Namely, for any collection of functions satisfying the functional equation (3) there exists a unique splitting GM, the correspondence being one-to-one.

4. Translation-invariant GMs

Definition 1. For an SGM μ, if $h_{j, x}$ is independent from $\left\{x: h_{j, x} \equiv h_{j}, x \in V, j \in \Phi\right\}, \mu$ is called translation-invariant(TI).

Let $m=2$, that is $\Phi=\{0,1,2\}$. In this case, for the TISGMs (3) has the form

$$
h=k F(h, \theta, r),
$$

where $h=\left(h_{0}, h_{1}\right)$. Introducing the notation $l_{0}=e^{h_{0}}, l_{1}=e^{h_{1}}$, we obtain the following the system of equations

$$
\left\{\begin{array}{l}
l_{0}=\left(\frac{r l_{0}+\theta l_{1}+\theta^{2}}{\theta^{2} l_{0}+\theta l_{1}+r}\right)^{k} \tag{6}\\
l_{1}=\left(\frac{\theta l_{0}+r l_{1}+\theta}{\theta^{2} l_{0}+\theta l_{1}+r}\right)^{k}
\end{array}\right.
$$

Let $k=2$. Denote $\sqrt{l_{0}}=x, \sqrt{l_{1}}=y$. Then from (6) we get

$$
\left\{\begin{array}{l}
x=\frac{r x^{2}+\theta y^{2}+\theta^{2}}{\theta^{2} x^{2}+\theta y^{2}+r} \tag{7}\\
y=\frac{\theta x^{2}+r y^{2}+\theta}{\theta^{2} x^{2}+\theta y^{2}+r}
\end{array}\right.
$$

After simplifying the system of equation (7) above, we have

$$
\left\{\begin{array}{l}
\theta^{2} x^{3}-r x^{2}+\left(\theta y^{2}+r\right) x-\theta y^{2}-\theta^{2}=0 \tag{8}\\
\theta y^{3}-r y^{2}+\left(\theta^{2} x^{2}+r\right) y-\theta x^{2}-\theta=0
\end{array}\right.
$$

The system of equation (8) can be rewritten as

$$
\left\{\begin{array}{l}
(x-1)\left(\theta^{2} x^{2}+\theta^{2} x+\theta^{2}-r x+\theta y^{2}\right)=0 \tag{9}\\
\theta y^{3}-r y^{2}+\left(\theta^{2} x^{2}+r\right) y-\theta x^{2}-\theta=0
\end{array}\right.
$$

Obviously, the solutions of (9) are the solutions of the following system of equations

$$
\left\{\begin{array}{l}
x-1=0 \tag{10}\\
\theta y^{3}-r y^{2}+\left(\theta^{2} x^{2}+r\right) y-\theta x^{2}-\theta=0
\end{array}\right.
$$

or the solutions of the following system of equations

$$
\left\{\begin{array}{l}
\theta^{2} x^{2}+\theta^{2} x+\theta^{2}-r x+\theta y^{2}=0 \tag{11}\\
\theta y^{3}-r y^{2}+\left(\theta^{2} x^{2}+r\right) y-\theta x^{2}-\theta=0
\end{array}\right.
$$

Let us consider (10). Substituting $x=1$ into the second equation of (10), we get

$$
\begin{equation*}
\theta y^{3}-r y^{2}+\left(\theta^{2}+r\right) y-2 \theta=0 \tag{12}
\end{equation*}
$$

For

$$
\begin{equation*}
y=z+\frac{r}{3 \theta} \tag{13}
\end{equation*}
$$

we reduce (12) to the equation

$$
\begin{equation*}
z^{3}+\left(\frac{r}{\theta}+\theta-\frac{r^{2}}{3 \theta^{2}}\right) z+\left(\frac{r}{3}+\frac{r^{2}}{3 \theta^{2}}-\frac{2 r^{3}}{27 \theta^{3}}-2\right)=0 \tag{14}
\end{equation*}
$$

Denote

$$
\begin{equation*}
p=\frac{r}{\theta}+\theta-\frac{r^{2}}{3 \theta^{2}}, \quad q=\frac{r}{3}+\frac{r^{2}}{3 \theta^{2}}-\frac{2 r^{3}}{27 \theta^{3}}-2 . \tag{15}
\end{equation*}
$$

After solving the equation $p=0$ in terms of r, we have the solutions $r_{1,2}=\frac{3 \pm \sqrt{9+12 \theta}}{2} \theta$. Since $r>0, \theta>0$, we get $r_{1}=\frac{3+\sqrt{9+12 \theta}}{2} \theta$. Putting r_{1} into q in (15) and solving the equation $q=0$ in terms of θ, we have the solution $\theta_{1}=3 \sqrt[3]{2}(\sqrt[3]{2}-1)$.

Substituting r_{1}, θ_{1} into equation (14), we get the equation $z^{3}=0$. It follows that equation (12) has one positive root $y=\frac{r_{1}}{3 \theta_{1}}$.

From (15), we obtain

$$
\begin{align*}
Q(r, \theta)= & \left(\frac{p}{3}\right)^{3}+\left(\frac{q}{2}\right)^{2}=\frac{1}{27}\left(-\frac{1}{3} \frac{r^{2}}{\theta^{2}}+\frac{r}{\theta}+\theta\right)^{3}+\frac{1}{4}\left(-\frac{2}{27} \frac{r^{3}}{\theta^{3}}+\frac{1}{3} \frac{r^{2}}{\theta^{2}}+\frac{1}{3} r-2\right)^{2} \\
= & -\frac{1}{108 \theta^{4}}\left(r^{4}+2 r^{3} \theta^{2}+r^{2} \theta^{4}-12 r^{3} \theta-12 r^{2} \theta^{3}-12 \theta^{5} r-4 \theta^{7}+36 \theta^{2} r^{2}\right. \\
& \left.+36 \theta^{4} r-108 \theta^{4}\right) . \tag{16}
\end{align*}
$$

For $\theta=\theta_{1}=3 \sqrt[3]{2}(\sqrt[3]{2}-1)$, we have

$$
\begin{aligned}
Q\left(r, \theta_{1}\right)= & \frac{116+73 \sqrt[3]{4}+92 \sqrt[3]{2}}{34992}\left(-r^{2}+36(1-2 \sqrt[3]{2}+\sqrt[3]{4}) r+324(13-4 \sqrt[3]{2}-5 \sqrt[3]{4})\right) \\
& \cdot(r-18+9 \sqrt[3]{4})^{2}
\end{aligned}
$$

Using Cardano's formula, one can prove the following
Lemma 1. Let $\theta=3 \sqrt[3]{2}(\sqrt[3]{2}-1)$. There exists $r_{c}(\approx 4.221293186)$ such that

- If $r \in\left(0, r_{c}\right)$ then the equation (12) has one positive solution.
- If $r=r_{c}$ then the equation (12) has two positive solutions.
- If $r \in\left(r_{c}, \infty\right)$ then the equation (12) has three positive solutions.

Now we consider (11). From (11), we get

$$
\begin{equation*}
x=\frac{\theta y\left(\theta^{2}-y+r y-r\right)}{-\theta^{3} y+\theta^{2}+\theta r y-r} . \tag{17}
\end{equation*}
$$

Substituting (17) into the first equation of (11), we obtain

$$
\begin{align*}
f(y, r, \theta)= & \theta^{2}(\theta+1)\left(r^{2}-2 \theta r+\theta^{3}-\theta^{2}+\theta\right) y^{4}-\theta\left(r-\theta^{2}\right)\left(r^{2}+\left(\theta^{2}+1\right) r-3 \theta^{2}\right) y^{3} \\
& +\left((\theta+1) r+\theta^{3}\right)\left(r-\theta^{2}\right)^{2} y^{2}-\left(r+\theta^{2}\right)\left(r-\theta^{2}\right)^{2} y+\theta\left(r-\theta^{2}\right)^{2}=0 . \tag{18}
\end{align*}
$$

Equation (18) can be rewritten as

$$
f(y, r, \theta)=\left(a y^{2}+b y+c\right)\left(\mathrm{d} y^{2}+e y+f\right),
$$

where

$$
\begin{aligned}
& a d=\theta^{2}(\theta+1)\left(r^{2}-2 \theta r+\theta^{3}-\theta^{2}+\theta\right), \\
& a e+b d=-\theta\left(r-\theta^{2}\right)\left(r^{2}+\left(\theta^{2}+1\right) r-3 \theta^{2}\right), \\
& a f+b e+c d=\left((\theta+1) r+\theta^{3}\right)\left(r-\theta^{2}\right)^{2}, \\
& b f+c e=-\left(r+\theta^{2}\right)\left(r-\theta^{2}\right)^{2}, \\
& c f=\theta\left(r-\theta^{2}\right)^{2} .
\end{aligned}
$$

Let $D_{1}(r, \theta)=b^{2}-4 a c$ and $D_{2}(r, \theta)=e^{2}-4 d f$.
We denote the following sets

$$
\begin{aligned}
B_{1} & =\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: D_{1}(r, \theta)>0, D_{2}(r, \theta)>0\right\}, \\
B_{2} & =\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: D_{1}(r, \theta)>0, D_{2}(r, \theta)=0 \vee D_{1}(r, \theta)=0, D_{2}(r, \theta)>0\right\}, \\
B_{3} & =\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: D_{1}(r, \theta)=0, D_{2}(r, \theta)=0 \vee D_{1}(r, \theta)>0, D_{2}(r, \theta)\right. \\
& \left.<0 \vee \vee D_{1}(r, \theta)<0, D_{2}(r, \theta)>0\right\}, \\
B_{4} & =\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: D_{1}(r, \theta)=0, D_{2}(r, \theta)<0 \vee D_{1}(r, \theta)<0, D_{2}(r, \theta)=0\right\}, \\
B_{5} & =\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: D_{1}(r, \theta)<0, D_{2}(r, \theta)<0\right\} .
\end{aligned}
$$

Thus, we can prove the following
Lemma 2. Let $\theta=3 \sqrt[3]{2}(\sqrt[3]{2}-1)$, then the following assertions hold

- If $r \in B_{1}(r)$ then the equation (18) has four solutions which are positive.
- If $r \in B_{2}(r)$ then the equation (18) has three positive solutions.
- If $r \in B_{3}(r)$ then the equation (18) has two positive solutions.
- If $r \in B_{4}(r)$ then the equation (18) has one positive solution.
- If $r \in B_{5}(r)$ then the equation (18) has no solution.

With respect to (15) and (16) we denote the following sets

$$
\begin{aligned}
& A_{1}=\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: r \leqslant 3 \theta^{2}, Q>0\right\} \cup\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: r \leqslant 3 \theta^{2}, p=0, q=0\right\}, \\
& A_{2}=\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: r \leqslant 3 \theta^{2}, Q=0\right\} \cap\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: p \neq 0 \vee q \neq 0\right\},
\end{aligned}
$$

$$
A_{3}=\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: r \leqslant 3 \theta^{2}, Q<0\right\}, A_{4}=\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: r>3 \theta^{2}, Q>0\right\}
$$

$$
\begin{aligned}
& A_{5}=\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: r>3 \theta^{2}, Q=0\right\} \cap\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: p \neq 0 \vee q \neq 0\right\}, \\
& A_{6}=\left\{(r, \theta) \in \mathbb{R}_{+}^{2}: r>3 \theta^{2}, Q<0\right\} .
\end{aligned}
$$

Let N be the number of TISGMs for the Potts-SOS model.
Theorem 1. Let $k=2, m=2$. The following statements hold for the N

$$
N= \begin{cases}1, & \text { if }(r, \theta) \in A_{1}, \tag{19}\\ 2, & \text { if }(r, \theta) \in A_{2} \cup\left(A_{4} \cap B_{4}\right) \cup\left(A_{5} \cap B_{5}\right), \\ 3, & \text { if }(r, \theta) \in A_{3} \cup\left(A_{4} \cap B_{3}\right) \cup\left(A_{5} \cap B_{4}\right), \\ 4, & \text { if }(r, \theta) \in\left(A_{4} \cap B_{2}\right) \cup\left(A_{5} \cap B_{3}\right) \cup\left(A_{6} \cap B_{4}\right), \\ 5, & \text { if }(r, \theta) \in\left(A_{4} \cap B_{1}\right) \cup\left(A_{5} \cap B_{2}\right) \cup\left(A_{6} \cap B_{3}\right), \\ 6, & \text { if }(r, \theta) \in\left(A_{5} \cap B_{1}\right) \cup\left(A_{6} \cap B_{2}\right), \\ 7, & \text { if }(r, \theta) \in A_{6} \cap B_{1} .\end{cases}
$$

Proof. We consider the first equation of (11). We write this in the following form

$$
\begin{equation*}
\theta^{2} x^{2}+\left(\theta^{2}-r\right) x+\theta^{2}=-\theta y^{2} \tag{20}
\end{equation*}
$$

The rhs of (20) is negative, thus

$$
\begin{equation*}
\theta^{2} x^{2}+\left(\theta^{2}-r\right) x+\theta^{2}<0 \tag{21}
\end{equation*}
$$

For the lhs of (21), we calculate its discriminant $D=\left(\theta^{2}-r\right)^{2}-4 \theta^{4}$. If the discriminant is positive, then the inequality (21) has real solutions. Therefore, we should solve

$$
\left(-r-\theta^{2}\right)\left(3 \theta^{2}-r\right)>0
$$

Since $-r-\theta^{2}<0$, it follows that $r>3 \theta^{2}$.
Inequality (21) has a positive solution as soon as $\theta^{2}-r<0$ or $r>\theta^{2}$. If $r>3 \theta^{2}$, then $r>\theta^{2}$ also holds. If $r>3 \theta^{2}$, the solutions of the inequality (21) belong to

$$
\left(\frac{r-\theta^{2}-\sqrt{D}}{2 \theta^{2}}, \frac{r-\theta^{2}+\sqrt{D}}{2 \theta^{2}}\right) .
$$

Moreover, (20) holds in this interval.
Consequently, if $r>3 \theta^{2}$ then the first equation of (11) has a positive real solution, and if $r \leqslant 3 \theta^{2}$ then the first equation of (11) cannot have a positive solution, i.e. any positive real pair (x, y), which is the solution of the first equation of (11), does not satisfy $r \leqslant 3 \theta^{2}$. Then the TISGM's corresponding roots of (11) do not exist under condition $r \leqslant 3 \theta^{2}$.

According to the Descartes theorem, the number of positive roots of equation (12) is at least 1 and at most 3 .

If $Q>0$, then equation (14) has one positive real root and two conjugate complex roots. If $Q=0$, then all roots of equation (14) are positive real and two of them are equal or if $p=q=0$, then (14) has one positive real root (one real zero of multiplicity three). If $Q<0$, then equation (14) has three distinct positive real roots. Hence, we can say this about the number of TISGM's corresponding positive roots from equation (12).

From lemmas 1 and 2, we can see that

$$
\left\{(r, \theta) \in R^{2}: \theta=3 \sqrt[3]{2}(\sqrt[3]{2}-1), r \in\left(r_{c}, \infty\right) \cap B_{1}(r)\right\} \subset A_{6} \cap B_{1}
$$

Thus, the set $A_{6} \bigcap B_{1}$ is not empty, i.e. the number of TISGMs corresponding positive solutions of (8) for the Potts-SOS model is up to seven.

Remark 1. Note that theorem 1 (for $k=m=2$) generalizes results of [18, 26].
If $J=0$, then the Potts-SOS model changes to the Potts model. In this case, theorem 1 can be restated as follows

Theorem 2. Let $k=2, m=2$. The following statements hold for the number n of the TISGMs for the Potts model

$$
n= \begin{cases}1, & \text { if } r \in(0,1+2 \sqrt{2}) \tag{22}\\ 4, & \text { if } r=1+2 \sqrt{2} \text { or } r=4, \\ 7, & \text { if } r \in(1+2 \sqrt{2}, 4) \cup(4, \infty)\end{cases}
$$

(see [18] for more details).
If $J_{p}=0$, then the Hamiltonian (2) of the Potts-SOS model changes to the Hamiltonian of the SOS model. In this case, theorem 1 can be restated as follows

Theorem 3. Let $k=2, m=2$. The following statements are appropriate for the number n of the TISGMs for the SOS model

$$
n= \begin{cases}1, & \text { if } \theta \in\left(\theta_{2}, \infty\right) \tag{23}\\ 3, & \text { if } \theta=\theta_{2}, \\ 5, & \text { if } \theta \in\left(\theta_{1}, \theta_{2}\right) \\ 6, & \text { if } \theta=\theta_{1}, \\ 7, & \text { if } \theta \in\left(0, \theta_{1}\right)\end{cases}
$$

where $\theta_{1} \approx 0.1414$ and $\theta_{2} \approx 0.2956$
(see [26] for more details).
Now we study the extremality of the TISGMs for the Potts-SOS model. In general, a complete analysis of extremality or non-extremality of the TISGMs is a difficult problem. Therefore, we assume $r=\theta^{2}$.

Lemma 3. Let $r=\theta^{2}$. There exists a unique $\theta_{c}(\approx 7.729814)$ such that

- If $\theta \in\left(0, \theta_{c}\right)$ then system (7) has one positive root.
- If $\theta=\theta_{c}$ then system (7) has two positive roots.
- If $\theta \in\left(\theta_{c}, \infty\right)$ then system (7) has three positive roots.

Figure 2. The graphs of functions $y_{i}=y_{i}(\theta), i=1,2,3$.

Proof. Substituting $r=\theta^{2}$ into (7) we have

$$
\left\{\begin{array}{l}
x=1 \tag{24}\\
y=\frac{2+\theta y^{2}}{2 \theta+y^{2}}
\end{array}\right.
$$

Simplifying the second equation of (24), we obtain the cubic equation

$$
\begin{equation*}
y^{3}-\theta y^{2}+2 \theta y-2=0 . \tag{25}
\end{equation*}
$$

We calculate its discriminant

$$
\begin{equation*}
D=4\left(\theta^{4}-10 \theta^{3}+18 \theta^{2}-27\right) \tag{26}
\end{equation*}
$$

Denote $\theta_{c} \approx 7.729814$. If $D<0\left(\theta<\theta_{c}\right)$ equation (25) has one real and two conjugate complex roots. If $D=0\left(\theta=\theta_{c}\right)$ then all roots of equation (25) are real, in which two of them are equal. If $D>0\left(\theta>\theta_{c}\right)$ then equation (25) has three distinct real roots (see figure 2). The obtained real roots are positive due to the Descartes theorem (see [5]).

The lower curve is y_{1}, the middle curve is y_{2}, and the upper curve is y_{3}.
Using lemma 3, we have the following

Theorem 4. Let $k=m=2$. If $r=\theta^{2}$ then the following statements hold for the N

$$
N= \begin{cases}1, & \text { if } \theta \in\left(0, \theta_{c}\right) \tag{27}\\ 2, & \text { if } \theta=\theta_{c}, \\ 3, & \text { if } \theta \in\left(\theta_{c}, \infty\right)\end{cases}
$$

where $\theta_{c} \approx 7.729814$.
Remark 2. Note that theorem 4 is a particular case of theorem 1.
We denote the obtained TISGMs corresponding to y_{i} in theorem 4 by $\mu_{i}, i=1,2,3$, respectively.

5. Tree-indexed Markov chains of TISGMs

A tree-indexed Markov chain is defined as follows. Suppose we are given with a vertices set V both a probability measure ν and a transition matrix $P=\left(p_{i, j}\right)_{i, j \in \Phi}$ on the single-site space, which is the finite set here $\Phi=\{0,1, \ldots, m\}$. We can obtain a treeindexed Markov chain $X: V \rightarrow \Phi$ by choosing $X\left(x_{0}\right)$ according to ν and choosing $X(v)$, for each vertex $v \neq x^{0}$, using the transition probabilities given the value of its parent, independently of everything else. See definition 12.2 in [4] for a detailed definition.

We note that a TISGM corresponding to a vector $v=(x, y) \in R^{2}$ (which is the solution to system (7)) is a tree-indexed Markov chain with states $\{0,1,2\}$ and transition probabilities matrix:

$$
P=\left(\begin{array}{ccc}
\frac{r x^{2}}{r x^{2}+\theta y^{2}+\theta^{2}} & \frac{\theta y^{2}}{r x^{2}+\theta y^{2}+\theta^{2}} & \frac{\theta^{2}}{r x^{2}+\theta y^{2}+\theta^{2}} \tag{28}\\
\frac{\theta x^{2}}{\theta x^{2}+r y^{2}+\theta} & \frac{r y^{2}}{\theta x^{2}+r y^{2}+\theta} & \frac{\theta}{\theta x^{2}+r y^{2}+\theta} \\
\frac{\theta^{2} x^{2}}{\theta^{2} x^{2}+\theta y^{2}+r} & \frac{\theta y^{2}}{\theta^{2} x^{2}+\theta y^{2}+r} & \frac{r}{\theta^{2} x^{2}+\theta y^{2}+r}
\end{array}\right) .
$$

Since (x, y) is a solution to the system (7), this matrix can be written in the following form

$$
P=\frac{1}{Z}\left(\begin{array}{ccc}
r x & \frac{\theta y^{2}}{x} & \frac{\theta^{2}}{x} \tag{29}\\
\frac{\theta x^{2}}{y} & r y & \frac{\theta}{y} \\
\theta^{2} x^{2} & \theta y^{2} & r
\end{array}\right),
$$

where $Z=\theta^{2} x^{2}+\theta y^{2}+r$.
Simple calculations show that the matrix (29) has three eigenvalues: 1 and

$$
\begin{equation*}
\lambda_{1}(x, y, \theta, r)=\frac{(x+y+1) r-Z+\sqrt{D^{*}}}{2 Z}, \quad \lambda_{2}(x, y, \theta, r)=\frac{(x+y+1) r-Z-\sqrt{D^{*}}}{2 Z} \tag{30}
\end{equation*}
$$

where λ_{1} and λ_{2} are solutions to

$$
\begin{equation*}
Z^{3} \lambda^{2}+(Z-(1+x+y) r) Z^{2} \lambda+\left(2 \theta^{4}-\theta^{4} r-2 \theta^{2} r+r^{3}\right) x y=0 \tag{31}
\end{equation*}
$$

and $D^{*}=((1+x+y) r-Z)^{2}-4 x y Z^{-1}\left(2 \theta^{4}-\theta^{4} r-2 \theta^{2} r+r^{3}\right)$.

5.1. Conditions of non-extremality

In this subsection we are going to find the regions of the parameter θ where the TISGMs $\mu_{i}, i=1,2,3$ are not extreme in the set of all GMs (including the nontranslation invariant ones).

It is known that a sufficient condition (Kesten-Stigum condition) for non-extremality of a GM μ corresponding to the matrix P on a CT of order $k \geqslant 1$ is that $k \lambda_{\max }^{2}>1$, where $\lambda_{\max }$ is the second largest (in absolute value) eigenvalue of P [27]. We are going to use this condition for TISGMs $\mu_{i}, i=1,2,3$ in theorem 4 . We have all solutions of the system (7) in condition $r=\theta^{2}$ (see theorem 4) and the eigenvalues of the matrix P in the explicit form.

Let us denote

$$
\lambda_{\max , i}(\theta, r)=\max \left\{\left|\lambda_{1}\left(x_{i}, y_{i}, \theta, r\right)\right|,\left|\lambda_{2}\left(x_{i}, y_{i}, \theta, r\right)\right|\right\}, \quad i=1,2,3 .
$$

Using a computer, we have

$$
\lambda_{\max , i}(\theta)= \begin{cases}\left|\lambda_{2}\left(1, y_{1}, \theta\right)\right|, & \text { if } i=1, \theta<1, \\ \left|\lambda_{1}\left(1, y_{1}, \theta\right)\right|, & \text { if } i=1, \theta>1, \\ \left|\lambda_{1}\left(1, y_{i}, \theta\right)\right|, & \text { if } i=2,3\end{cases}
$$

Denote

$$
\eta_{i}(\theta)=2 \lambda_{\max , i}^{2}(\theta)-1, \quad i=1,2,3 .
$$

Let $\theta<\theta_{c}$. Using the Cardano formula, we solve equation (25). It has one real solution

$$
\begin{equation*}
y_{1}=\frac{1}{3}\left(\theta+\sqrt[3]{\theta^{3}-9 \theta^{2}+27+1.5 \sqrt{-3 D}}+\frac{\theta^{2}-6 \theta}{\sqrt[3]{\theta^{3}-9 \theta^{2}+27+1.5 \sqrt{-3 D}}}\right) \tag{32}
\end{equation*}
$$

where D is defined in (26). In this case, we are aiming to check the Kesten-Stigum condition of the non-extremality of the measure μ_{1}. To determine the non-extremality interval of TISGM μ_{1}, we should check the condition

$$
2 \lambda_{\max , 1}^{2}-1>0 .
$$

Using a Maple program, one can see that the last inequality holds for $\theta \in\left(0, \theta_{1}\right)\left(\theta_{1} \approx\right.$ 0.166699 3311), which implies that the TISGM μ_{1} is not-extreme in this interval (see figure 3).

To check that the TISGMs $\mu_{i}, i=2,3$ are non-extreme, we should solve the following inequality: $\eta_{i}(\theta)>0, i=2,3$ (see figure 4).
Proposition 1. Let $r=\theta^{2}$. Then the following statements hold

Figure 3. The graphs of functions $\eta_{1}(\theta)$ for $\theta \in(0,1)$ (left) and for $\theta \in(1, \infty)$ (right).

Figure 4. The graphs of functions $\eta_{2}(\theta)$ (left) and $\eta_{3}(\theta)$ (right).
(a) There exists $\theta_{1}(\approx 0.1666993311)$ such that the measure μ_{1} is non-extreme if $\theta \in$ $\left(0, \theta_{1}\right)$;
(b) There exists $\theta_{2}(\approx 9.706301628)$ such that the measure μ_{2} is non-extreme if $\theta \in$ $\left(\theta_{2}, \infty\right)$.

5.2. Conditions for extremality

In $[26,28]$ the key ingredients are two quantities, κ and γ, which bound the rates of percolation of disagreement down and up the tree, respectively.

For two measures μ_{1} and μ_{2} on $\Omega,\left\|\mu_{1}-\mu_{2}\right\|_{x}$ denotes the variation distance between the projections of μ_{1} and μ_{2} onto the spin at x, i.e.

$$
\left\|\mu_{1}-\mu_{2}\right\|_{x}=\frac{1}{2} \sum_{i=0}^{2}\left|\mu_{1}(\sigma(x)=i)-\mu_{2}(\sigma(x)=i)\right| .
$$

Let $\eta^{x, s}$ be the configuration η with the spin at x set to s. Following [26,28] define

$$
\begin{aligned}
& \kappa \equiv \kappa(\mu)=\sup _{x \in \Gamma^{k} k, s, s^{\prime}} \max _{\tau_{\tau_{x}}}-\mu_{\tau_{x}}^{s^{\prime}} \|_{x} \\
& \gamma \equiv \gamma(\mu)=\sup _{A \subset \Gamma^{k}} \max \left\|\mu_{A}^{\eta^{\eta, s}}-\mu_{A}^{\eta_{y} s^{\prime}}\right\|_{x},
\end{aligned}
$$

where the maximum is taken over all boundary conditions η, all sites $y \in \partial A$, all neighbors $x \in A$ of y, and all spins $s, s^{\prime} \in\{0,1,2\}$.

The criterion of extremality of a TISGM is $k \kappa \gamma<1$ [26, 28]. Note that κ has the particularly simple form $\kappa=\frac{1}{2} \max _{i, j} \sum_{l}\left|P_{i, l}-P_{j, l}\right|$ and γ is a constant which does not have a clear general formula.

Let $r=\theta^{2}$. For the solution $(1, y)$, we shall compute κ

$$
\begin{equation*}
\kappa=\frac{2 \cdot|1-\theta y|+y^{2} \cdot|\theta-y|}{2 y\left(2 \theta+y^{2}\right)} . \tag{33}
\end{equation*}
$$

For $\theta<1$ from the system (7), we get the following inequalities

$$
1-\theta y=\frac{\theta\left(1-\theta^{2}\right) y^{2}}{Z}>0, \quad y-\theta=\frac{2 \theta\left(1-\theta^{2}\right)}{Z}>0
$$

Using these inequalities, we obtain

$$
\kappa= \begin{cases}\frac{y^{3}-\theta y^{2}-2 \theta y+2}{2 y\left(2 \theta+y^{2}\right)}, & \text { if } 0<\theta<1, \\ \frac{-y^{3}+\theta y^{2}+2 \theta y-2}{2 y\left(2 \theta+y^{2}\right)}, & \text { if } \theta \geqslant 1\end{cases}
$$

For the solution $(1, y)$, we shall calculate γ.

$$
\gamma=\max \left\{\left\|\mu_{A}^{\eta^{y, 0}}-\mu_{A}^{\eta^{y, 1}}\right\|_{x},\left\|\mu_{A}^{\eta^{\eta, 0}}-\mu_{A}^{\eta^{y, 2}}\right\|_{x},\left\|\mu_{A}^{\eta^{\eta, 1}}-\mu_{A}^{\eta^{\eta, 2}}\right\|_{x}\right\}
$$

where

$$
\begin{aligned}
& \left\|\mu_{A}^{\eta^{\eta, 0}}-\mu_{A}^{\eta_{, 1,1}}\right\|_{x}=\frac{1}{2} \sum_{s \in\{0,1,2\}}\left|\mu_{A}^{\eta^{\eta, 0}}(\sigma(x)=s)-\mu_{A}^{\eta^{\eta, 1}}(\sigma(x)=s)\right| \\
& =\frac{1}{2}\left(\left|P_{0,0}-P_{1,0}\right|+\left|P_{0,1}-P_{1,1}\right|+\left|P_{0,2}-P_{1,2}\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}\frac{y^{3}-\theta y^{2}-2 \theta y+2}{2 y\left(2 \theta+y^{2}\right)}, \quad \text { if } 0<\theta<1, \\
\frac{-y^{3}+\theta y^{2}+2 \theta y-2}{2 y\left(2 \theta+y^{2}\right)}, \quad \text { if } \theta \geqslant 1,\end{cases} \\
& \left\|\mu_{A}^{\eta^{\eta, 0}}-\mu_{A}^{\eta^{\prime, 2}}\right\|_{x}=\frac{1}{2} \sum_{l \in\{0,1,2\}}\left|P_{0, l}-P_{2, l}\right|=0, \\
& \left\|\mu_{A}^{\eta^{y, 1}}-\mu_{A}^{\eta^{y, 2}}\right\|_{x}=\frac{1}{2} \sum_{l \in\{0,1,2\}}\left|P_{1, l}-P_{2, l}\right| \\
& = \begin{cases}\frac{y^{3}-\theta y^{2}-2 \theta y+2}{2 y\left(2 \theta+y^{2}\right)}, \quad \text { if } 0<\theta<1, \\
\frac{-y^{3}+\theta y^{2}+2 \theta y-2}{2 y\left(2 \theta+y^{2}\right)}, & \text { if } \theta \geqslant 1 .\end{cases}
\end{aligned}
$$

Hence, when $0<\theta<1$

$$
\gamma=\max \left\{0, \frac{y^{3}-\theta y^{2}-2 \theta y+2}{2 y\left(2 \theta+y^{2}\right)}\right\}=\frac{y^{3}-\theta y^{2}-2 \theta y+2}{2 y\left(2 \theta+y^{2}\right)}
$$

and when $\theta \geqslant 1$

$$
\gamma=\max \left\{0, \frac{-y^{3}+\theta y^{2}+2 \theta y-2}{2 y\left(2 \theta+y^{2}\right)}\right\}=\frac{-y^{3}+\theta y^{2}+2 \theta y-2}{2 y\left(2 \theta+y^{2}\right)} .
$$

Now for TISGMs $\mu_{i}, i=1,2,3$ we want to check the extremality condition $2 \kappa \gamma<1$. When $\theta>0$, this condition has the form

$$
2 \kappa \gamma-1=2\left(\frac{y_{i}^{3}-\theta y_{i}^{2}-2 \theta y_{i}+2}{2 y_{i}\left(2 \theta+y_{i}^{2}\right)}\right)^{2}-1<0 .
$$

We check this condition for the TISGM μ_{2}. Denote

$$
U_{2}(\theta)=\frac{\left(y_{2}^{3}-\theta y_{2}^{2}-2 \theta y_{2}+2\right)^{2}}{2 y_{2}^{2}\left(2 \theta+y_{2}^{2}\right)^{2}}-1 .
$$

The function $U_{2}(\theta)$ only depends on θ and has no additional parameters. From its graph, one can see the region of θ where the function is negative. Thus, looking at the graph of $U_{2}(\theta)$ (see figure 5) completes the arguments.

We check extremality of TISGMs μ_{1}, μ_{3}. Thus, consider the following functions

$$
\begin{aligned}
& U_{1}(\theta)=\frac{\left(y_{1}^{3}-\theta y_{1}^{2}-2 \theta y_{1}+2\right)^{2}}{2 y_{1}^{2}\left(2 \theta+y_{1}^{2}\right)^{2}}-1, \\
& U_{3}(\theta)=\frac{\left(y_{3}^{3}-\theta y_{3}^{2}-2 \theta y_{3}+2\right)^{2}}{2 y_{3}^{2}\left(2 \theta+y_{3}^{2}\right)^{2}}-1 .
\end{aligned}
$$

The extremality interval of TISGMs μ_{1}, μ_{3} are seen from figure 6 .

Extremality of translation-invariant Gibbs measures for the Potts-SOS model on the Cayley tree

Figure 5. The graph of function $U_{2}(\theta)$.

Figure 6. The graphs of functions $U_{1}(\theta)$ (left) and $U_{3}(\theta)$ (right).

Proposition 2. Let $r=\theta^{2}$. Then the following statements hold
(a) There exists $\theta_{1}(\approx 0.1666993311)$ such that the measure μ_{1} is extreme if $\theta \in\left(\theta_{1}, \infty\right)$;

Figure 7. The graphs of functions $y_{i}(\theta), i=1,2,3$. The bold curves correspond to regions of the functions where the corresponding TISGM is extreme. The thin curves correspond to regions of the functions where the corresponding TISGM is non-extreme.
(b) There are values $\theta^{*}(\approx 7.729813675)$ and $\theta_{2}(\approx 9.706301628)$ such that the measure μ_{2} is extreme if $\theta \in\left[\theta^{*}, \theta_{2}\right)$;
(c) The measure μ_{3} is extreme (where it exists, that is $\theta \in\left[\theta^{*}, \infty\right)$).

From propositions 1 and 2, we have the following
Theorem 5. Let $r=\theta^{2}$. Then the following statements hold
(a) There exists $\theta_{1}\left(\approx 0.166699\right.$ 3311) such that the measure μ_{1} is non-extreme if $\theta \in$ $\left(0, \theta_{1}\right)$ and is extreme if $\theta \in\left(\theta_{1}, \infty\right)$;
(b) There are values $\theta^{*}(\approx 7.729813675)$ and $\theta_{2}(\approx 9.706301628)$ such that the measure μ_{2} is extreme if $\theta \in\left[\theta^{*}, \theta_{2}\right)$ and is non-extreme if $\theta \in\left(\theta_{2}, \infty\right)$;
(c) The measure μ_{3} is extreme (where it exists, that is $\theta \in\left[\theta^{*}, \infty\right)$) (see figure 7).

Acknowledgments

The authors are greatly indebted to Professor U A Rozikov for suggesting the problem and for many stimulating conversations.

References

[1] Rozikov U A 2013 Gibbs Measures on Cayley Trees (Singapore: World Scientific)
[2] Sinai Y G 1982 Theory of Phase Transitions: Rigorous Results (Oxford: Pergamon)
[3] Preston C 1974 Gibbs States on Countable Sets (Cambridge: Cambridge University Press)
[4] Georgii H O 1988 Gibbs Measures and Phase Transitions (Berlin: de Gruyter)
[5] Kurosh A G 1968 Higher Algebra Course vol 9 (Moscow: Nauka)
[6] Zachary S 1983 Ann. Probab. 11 894-903
[7] Zachary S 1985 Stoch. Process. Appl. 20 247-56
[8] Bleher P M and Ganikhodjaev N N 1990 Theor. Probab. Appl. 35 216-27
[9] Bleher P M 1990 Commun. Math. Phys. 128 411-9
[10] Bleher P M, Ruiz J and Zagrebnov V A 1995 J. Stat. Phys. 79 473-82
[11] Bleher P M, Ruiz J and Zagrebnov V A 1998 J. Stat. Phys. 93 33-78
[12] Ioffe D 1996 Lett. Math. Phys. 37 137-43
[13] Ioffe D 1995 Prog. Probab. 40 3-14
[14] Bleher P, Ruiz J, Schonmann R, Shlosman S and Zagrebnov V 2001 Moscow Math. J. 1 345-63
[15] Saygili H 2017 Asian J. Curr. Res. V 1 114-21
[16] Rahmatullaev M M 2015 Russian Math. 59 45-53
[17] Rahmatullaev M M 2009 Uzb. Mat. Zh. 2 144-52
[18] Külske C, Rozikov U A and Khakimov R M 2014 J. Stat. Phys. 156 189-200
[19] Rozikov U A and Khakimov R M 2013 Theor. Math. Phys. 175 699-709
[20] Khakimov R M 2014 Uzb. Mat. Zh. 3 134-42
[21] Rahmatullaev M M 2014 Theor. Math. Phys. 180 1019-29
[22] Rahmatullaev M M 2016 J. Math. Phys. 12 302-14
[23] Rahmatullaev M M 2016 Ukrainian Math. J. 68 598-611
[24] Rasulova M A 2019 Theor. Math. Phys. 199 586-92
[25] Rozikov U A and Suhov Y M 2006 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 09 471-88
[26] Kulske C and Rozikov U A 2015 J. Stat. Phys. 160 659-80
[27] Kesten H and Stigum B P 1966 Ann. Math. Statist. 37 1463-81
[28] Martinelli F, Sinclair A and Weitz D 2007 Random Struct. Algorithms 31 134-72

[^0]: *Author to whom any correspondence should be addressed.

