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HOLLIDAY JUNCTIONS IN THE BLUME–CAPEL MODEL OF DNA

N. M. Khatamov∗

We regard a DNA molecule as a configuration of the Blume–Capel model on paths in a Cayley tree. We

study translation-invariant Gibbs measures (TIGMs) of the model on the Cayley tree of order two and

show that there is a critical temperature Tc such that there exists a unique TIGM if the temperature

T > Tc, there are two TIGMs if T = Tc, and there are three TIGMs if T < Tc. Each such measure

describes a phase of the set of DNA molecules. We use these measures to study probability distributions

of Holliday junctions in DNA molecules.
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1. Introduction and definitions

As is known, each DNA molecule is a double helix formed from two complementary strands of nu-
cleotides held together by hydrogen bonds between C+G (cytosine–guanine) and A+T (adenine–thymine)
base pairs. Molecules of DNA store genetic information and contain instructions for all the proteins that
an organism will ever synthesize [1].

A Holliday junction [2] is a cross-shaped structure that forms during the process of genetic recombina-
tion when two double-stranded DNA molecules become separated into four strands to exchange segments
of genetic information.

In [3], [4], Ising and Potts models were considered for describing DNA and studying its thermodynamics.
It was shown that depending on the temperature, the number of translation-invariant Gibbs measures
(TIGMs) can reach three. We note that nonuniqueness of the Gibbs measure corresponds to the coexistence
of different phases in a system of DNA molecules. Holliday structures and DNA branches are studied using
the theory of Markov chains (corresponding to TIGMs). Other results about the Blume–Capel model can
be found in [5]–[7].

Here, we consider a set of DNA molecules that “live” on a tree graph. Let l be an edge of this graph
and a function σ(l) take a value −1, 0, or 1 (an analogue of spin values in a physical system). If σ(l) = 0,
then we say that the edge l does not belong to DNA. If the edge l separates two DNA molecules, then the
value σ(l) = 1 or σ(l) = −1 means that these two DNA are joined by a Holliday junction.

Following [3], [4], [8], we recall some definitions.
A Cayley tree Γk of order k ≥ 1 is an infinite tree, i.e., a graph without cycles, with exactly k+1 edges

at each vertex. Let Γk = (V, L, i), where V and L are the sets of vertices and edges of the Cayley tree and i

is the incidence function assigning each edge l ∈ L its endpoints x, y ∈ V . If i(l) = {x, y}, then the vertices
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x and y are called nearest neighbors, denoted by l = 〈x, y〉. For two vertices x, y ∈ V , the distance d(x, y)
is the number of edges in the shortest path connecting x and y:

d(x, y) = min{d : ∃x = x0, x1, . . . , xd−1, xd = y ∈ V such that 〈x0, x1〉, . . . , 〈xd−1, xd〉}.

For a fixed vertex x0 ∈ V and n ≥ 1, we set

Vn = {x ∈ V : d(x0, x) ≤ n}, Wn = {y ∈ V : d(x0, y) = n},

�Ln = {l = 〈x, y〉 ∈ L : x, y ∈ Vn}.
(1)

Let Z = {. . . ,−2,−1, 0, 1, 2 . . .}. It was proved in [9] that all vertices of a Cayley tree can be partitioned
into equivalence classes labeled by integers and that through each vertex belonging to the mth equivalence
class, there passes a unique path such that the labels of the equivalence classes to which successive vertices
belong form an integer sequence . . . , m− 2, m− 1, m, m + 1, m + 2, . . . , which is infinite in both directions.
Each such path is called a Z-path.

We consider a function σ assigning each edge l ∈ L values σ(l) ∈ {−1, 0, 1} such that −1 = A+T,
1 = C+G, and σ(l) = 0 means that the edge is “free.” A function σ = {σ(l), l ∈ L} is called a configuration.
The set of all configurations on L is denoted by Ω. A configuration σ = {σ(l), l ∈ L} is said to be admissible

if σ(l) �= 0 for all l ∈ Z -path. A restriction of an admissible configuration to a Z-path is called a DNA
molecule (because a DNA molecule can be defined as a sequence of base pairs, i.e., numbers −1 and 1).
The set of admissible configurations on L or Ln is denoted by Ωa or Ωa

n.
We consider the following Blume–Capel model of the energy of a configuration σ of a set of DNA

molecules [10]:
H(σ) = J

∑

〈l,t〉∈L×L

(σ(l) − σ(t))2, (2)

where J > 0 is a coupling constant, σ(l) ∈ {−1, 0, 1}, and 〈l, t〉 denotes nearest neighbor edges, i.e., edges
with a common vertex. We set

En = {〈x, y〉 ∈ L : x ∈ Wn−1, y ∈ Wn}.

For l ∈ En−1, we set
S(l) = {t ∈ En : 〈l, t〉)}.

It is easy to see that

S(l) ∩ Z -path =

⎧
⎨

⎩
{l0, l1} ⊂ L, l /∈ Z -path,

{l1} ⊂ L, l ∈ Z -path.

We set
S0(l) = S(l)\{l0, l1}, l /∈ Z -path,

S1(l) = S(l)\{l1}, l ∈ Z -path.
(3)

We can standardly reduce (see [3], [4]) the problem of studying Gibbs measures of the Blume–Capel
model to the problem of solving the system of functional equations

z0,l =
λzl0 + λ

λ4zl0 + 1
λzl1 + λ

λ4zl1 + 1

∏

t∈S0(l)

λz1,t + λ + z0,t

λ4z1,t + 1 + λz0,t
, l /∈ Z -path,

z1,l =
zl0 + λ4

λ4zl0 + 1
zl1 + λ4

λ4zl1 + 1

∏

t∈S0(l)

z1,t + λ4 + λz0,t

λ4z1,t + 1 + λz0,t
, l /∈ Z -path,

zl =
zl + λ4

λ4zl + 1

∏

t∈S1(l)

z1,t + λ4 + λz0,t

λ4z1,t + 1 + λz0,t
, l ∈ Z -path,

(4)
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where λ = e−Jβ .
For any set of vectors z = (z0,l, z1,l, zt), where l /∈ Z -path and t ∈ Z -path, satisfying system of

functional equations (4), there exists a unique Gibbs measure μ, and vice versa. But analyzing solutions of
system (4) is difficult. We present several solutions in the next section.

2. TIGMs of the DNA set

The TIGMs correspond to solutions z = (z0,l, z1,l, zt), where l /∈ Z -path and t ∈ Z -path, that are
independent of l and t:

z0,l = u, z1,l = v for all l /∈ Z -path, zt = w for all t ∈ Z -path. (5)

Here, u, v, and w are positive by virtue of (4) and satisfy the system of equations

u =
(

λv + λ + u

λ4v + 1 + λu

)k−2(
λw + λ

λ4w + 1

)2

,

v =
(

v + λ4 + λu

λ4v + 1 + λu

)k−2(
w + λ4

λ4w + 1

)2

,

w =
(

v + λ4 + λu

λ4v + 1 + λu

)k−1(
w + λ4

λ4w + 1

)
.

(6)

It is clear that v = w = 1 satisfies this system for any k ≥ 2 and λ < 1, and from the first equation in the
system, we then obtain

u =
(

2λ + u

λ4 + λu + 1

)k−2( 2λ

λ4 + 1

)2

. (7)

Solving this equation is difficult for k ≥ 3, and we therefore consider the case k = 2. In this case, from (7),
we obtain

u =
(

2λ

λ4 + 1

)2

=
(

eJβ

cosh(2Jβ)

)2

.

Hence, for k = 2 and any λ, the vector
(
(e−Jβ cosh(2Jβ)

)−2
, 1, 1) is a solution of system (6).

To find other solutions (with k = 2), we substitute u and v in the third equation in system (6) and
obtain

w =
w + λ4

λ4w + 1

(
(w + λ4)2 + λ4(λ4w + 1)2 + λ(λw + λ)2

λ4(w + λ4)2 + (λ4w + 1)2 + λ(λw + λ)2

)
.

Solving this equation, we obtain three solutions: w1 = 1 and

w2 = w2(λ) =
1 − λ12 + 3λ8 − 2λ7 − λ4 −

√
D

2(λ12 + λ8 + λ7)
,

w3 = w3(λ) =
1 − λ12 + 3λ8 − 2λ7 − λ4 +

√
D

2(λ12 + λ8 + λ7)
,

where
D = (1 − 3λ12 − 5λ8 − 4λ7 − λ4)(λ4 − 1)2(λ4 + 1).

The solutions w2 and w3 exist if and only if

g(λ) = 3λ12 + 5λ8 + 4λ7 + λ4 − 1 ≤ 0.
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Fig. 1. Plot of the function g(λ).

Fig. 2. Plots of the functions w2(λ) (bold curve) and w3(λ) (thin curve) for λ ∈ (0, λ∗]: the curves

meet at λ∗, where w2(λ∗) = w3(λ∗) = 1.

The function g(λ), λ > 0, increases, g(0) = −1 < 0, and g(λ) > 0 for λ > 1. We hence obtain g(λ) < 0 for
all λ < λ∗, where λ∗ ≈ 0.7110460893 (see Fig. 1).

We note that the functions w2 and w3 are positive and w2w3 = 1 (see the plots of these solutions as
functions of λ ∈ (0, λ∗] in Fig. 2).

For k = 2, we have thus proved the following lemma.

Lemma 1. We have the following statements:

• If λ = e−Jβ > λ∗, then system (6) has a unique solution

z1 = (u1, v1, w1) =
(
(e−Jβ cosh(2Jβ))−2, 1, 1

)
.

• If λ = λ∗, then system (6) has two solutions

z1 = (u1, v1, w1) =
(
(e−Jβ cosh(2Jβ))−2, 1, 1

)
, z2 = (u2, v2, w2).
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• If λ < λ∗, then system (6) has three solutions

z1 = (u1, v1, w1) =
(
(e−Jβch(2Jβ))−2, 1, 1

)
, z2 = (u2, v2, w2), z3 = (u3, v3, w3).

Here,

ui =
(

λwi + λ

λ4wi + 1

)2

, vi =
(

wi + λ4

λ4wi + 1

)2

, i = 2, 3.

We let μi denote the Gibbs measure corresponding to the solution zi, i = 1, 2, 3. We define the critical
temperature

Tc =
1

log λ−1
∗

.

Summarizing the results obtained above, we formulate the following theorem.

Theorem 1. For model (2) of DNA molecules on the Cayley tree of order k = 2, we have the following

statements:

1. If the temperature T > Tc, then there is a unique TIGM μ1.

2. If T = Tc, then there are two TIGMs μ1 and μ2.

3. If T < Tc, then there are three TIGMs μ1, μ2, and μ3.

3. Markov chains corresponding to TIGMs and the Holliday
junction in a DNA molecule

For marginal distributions on the set of pairs of neighboring edges l and t, considering the boundary
function z0,l and z1,l for l /∈ Z -path and zt for t ∈ Z -path with the normalization condition z−1,l = 1 for
−1, i.e., solutions of system (4), we obtain

μ(σ(l) = a, σ(t) = b) =
1
Z

za,le
β(a−b)2zb,t, a, b = −1, 0, 1,

where Z is the normalizing factor. Using formulas (3) and (5) for solutions of system (6), we hence obtain
three-indexed transition matrices P

[l,t] = (P[l,t]
ij ) of Markov chains related to Gibbs measures [11]:

P
[l,t] = P

[l,t]
(3→3) =

⎛

⎜⎜⎜⎜⎜⎝

1
1 + λu + λ4v

λu

1 + λu + λ4v

λ4v

1 + λu + λ4v
λ

λ + u + λv

u

λ + u + λv

λv

λ + u + λv
λ4

λ4 + λu + v

λu

λ4 + λu + v

v

λ4 + λu + v

⎞

⎟⎟⎟⎟⎟⎠
, l, t /∈ Z -path,

P
[l,t] = P

[l,t]
(3→2) =

⎛

⎜⎜⎜⎜⎜⎝

1
1 + λ4w

0
λ4w

1 + λ4w
λ

λ + λw
0

λw

λ + λw
λ4

λ4 + w
0

w

λ4 + w

⎞

⎟⎟⎟⎟⎟⎠
, l /∈ Z -path, t ∈ Z -path,

P
[l,t] = P

[l,t]
(2→2) =

⎛

⎜⎝

1
1 + λ4w

λ4w

1 + λ4w
λ4

λ4 + w

w

λ4 + w

⎞

⎟⎠ , l, t ∈ Z -path.
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Here, the matrix element P
[l,t]
ij is the probability of the transition from the state i on the edge l to the

state j on the neighboring edge t. We note that each matrix P
[l,t]
n→m, n, m = 2, 3, is homogenous on the

corresponding set of neighboring edges l and t where it is defined, i.e., this matrix depends not on the pair
l, t itself but on whether it belongs to a Z-path.

For the matrix P
[l,t]
(n→m) with n = m, it is easy to find the stationary distribution

π(n→m) =
(
π(n→m),−1, π(n→m),0, π(n→m),1

)
.

Namely, we have

π(3→3) =
1
N

(
1 + λu + λ4v, (λ + u + λv)u, (λ4 + λu + v)v

)
,

where N is the normalization factor, and

π(2→2) =
(

1 + λ4w

w2 + 2λ4w + 1
,

w(λ4 + w)
w2 + 2λ4w + 1

)
.

Using the ergodic theorem for stochastic matrices (see [11]) and the formulas presented above, we
obtain the following statement.

Theorem 2. In a stationary state of the DNA set for any l /∈ Z -path, a Holliday junction through

the edge l does not occur with the probability (with respect to the measure μi, i = 1, 2, 3)

π(3→3),0 = π
(i)
(3→3),0 =

1
N

(λ + ui + λvi)ui,

(consequently, a Holliday junction is formed with the probability 1−π
(i)
(3→3),0), where (ui, vi) are defined in

Lemma 1.

It can seen that π
(i)
(3→3),0 is a function of only i and the temperature.

We now find the limits of the stationary distribution vectors π
(i)
(3→3) and π

(i)
(2→2) (corresponding to the

Markov chain generated by the measure μi) as T → 0 (as β → ∞ and λ → 0) and as T → +∞ (as β → 0
and λ → 1). To find the limits, we take the dependence of ui, vi, and wi, i = 1, 2, 3 on T = 1/β into
account.

Lemma 2. We have the relations

lim
T→0

π
(1)
(3→3) =

(
1
2
, 0,

1
2

)
, lim

T→0
π

(2)
(3→3) = (1, 0, 0), lim

T→0
π

(3)
(3→3) = (0, 0, 1),

lim
T→0

π
(1)
(2→2) =

(
1
2
,
1
2

)
, lim

T→0
π

(2)
(2→2) = (1, 0), lim

T→0
π

(3)
(2→2) = (0, 1)

in the low-temperature case T → 0 and

lim
T→+∞

π
(1)
(3→3) =

(
1
3
,
1
3
,
1
3

)
,

lim
T→Tc

π
(i)
(3→3) ≈ (0.27773205, 0.4445359, 0.27773205), i = 1, 2, 3,

lim
T→+∞

π
(1)
(2→2) = lim

T→Tc
π

(i)
(2→2) =

(
1
2
,
1
2

)

in the high-temperature case T → ∞.
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By Lemma 2, we have the following structures of the DNA set. We recall that −1 = A+T and 1 = C+G
in our construction. Moreover, we assumed that A+T = T+A and similarly for G+C.

1. As T → 0, the DNA set has the following stationary states (configurations).
Case μ1. All neighboring DNA molecules are connected to each other (via Holliday junctions) with

the state σ(l) = −1 for any l /∈ Z -path. The sequence of 1 in a DNA on the Z -path is free, i.e., can be any
sequence, with independent identically distributed and equiprobable (1/2) states 1 and −1.

Case μ2. All neighboring DNA molecules are connected to each other (via Holliday junctions) with
the state σ(l) = −1 for any l /∈ Z -path. The sequence of 1 in a DNA on the Z -path is fixed, i.e., σ(l) = −1
for all l ∈ Z -path. Hence, the system contains only one multiple (countable) branched DNA (which has a
tree structure).

Case μ3. All neighboring DNA molecules are connected to each other with the state σ(l) = 1 for any
l /∈ Z -path. The DNA on the Z -path is fixed, i.e., σ(l) = 1 for all l ∈ Z -path. Hence, this case is similar
to the case μ2, but all −1 are replaced with 1.

2. In the case T = Tc, the DNA set has the following stationary states: all neighboring DNA molecules
have a Holliday junction with probability 0.5554641 (more precisely, a junction via state −1 with proba-
bility 0.27773205 and a junction via state 1 with probability 0.27773205) and no junction with probability
0.4445359. The sequence of ±1 in a DNA on the Z -path is free with independent identically distributed
and equiprobable (1/2) states 1 and −1.

3. In the case T → +∞, the DNA set has the following stationary states: all neighboring DNA
molecules have a Holliday junction with probability 2/3 (more precisely, a junction via state −1 or 1 with
equiprobable 1/3) and no junction with probability 1/3. The sequence of ±1 in a DNA on the Z -path is
free similarly to the case T = Tc.

4. Conclusions

We have obtained the following results for the Blume–Capel DNA model on a Cayley tree.
There is a critical temperature Tc (we found its approximative value) such that

for T > Tc, there is a unique TIGM,

for T = Tc, there are two TIGMs, and

for T < Tc, there are three TIGMs.

Each such measure describes a phase of the DNA set. Our results related to Gibbs measures allowed
studying the probability distributions of Holliday junctions. For very high and very low temperatures, we
found stationary distributions and typical configurations of Holliday junctions.
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