
ISSN 2070-0466, p-Adic Numbers, Ultrametric Analysis and Applications, 2021, Vol. 13, No. 4, pp. 291–307. c© Pleiades Publishing, Ltd., 2021.

RESEARCH ARTICLES

On G2-Periodic Quasi Gibbs Measures of p-Adic Potts Model on a
Cayley Tree

Akbarkhuja Tukhtabaev*

Namangan State University, P.O. Box, 160136, 316 Uychi street, Namangan, Uzbekistan
Received October 20, 2020; in final form, August 19, 2021; accepted August 27, 2021
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1. INTRODUCTION

During the last few decades ultrametric analysis has grown from a relatively small and remote area
maintained by few enthusiastic pioneers to widely recognized and mature discipline. Consequently,
various models in physics described in language of p-adic analysis (see [2, 36, 37]),and numerous
applications of such an analysis to mathematical physics have been studied in [3, 7, 8, 12, 13, 35]. These
investigations proposed to study new probability models (namely p-adic measure theory in [15, 20]),
the theories of p-adic and non-Archimedian stochastic processes have been developed. By means of p-
adic stochastic process we have constructed wide classes of process using finite dimensional probability
distributions [4, 9, 10, 15, 27]. In [4-6], [16, 42] and [21-34] it has been developed p-adic statistical
mechanics within the scheme of theory of p-adic probability and p-adic stochastic processes. Namely,
authors have studied p-adic Ising and Potts models on Cayley trees. Note that there are also several
p-adic models of complex hierarchic system [14].

In the mentioned investigations, mostly, translation-invariant p-adic Gibbs measures have been
described and studied. It is interesting to know how large is the class of p-adic Gibbs measures for
the given model. In [25-28] the existence of periodic p-adic Gibbs measures for the p-adic Potts model
on the Cayley tree has been carried our by means of chaotic behavior of the function associated with
renormalization group (see (3.3)). We point out that such kind of measures (non trivial ones) may not
exist in general. Namely, in [32] it was shown that there is no periodic p-adic Gibbs measures except
for translation-invariant ones for the Potts model. In [22, 23, 31] studied p-adic quasi Gibbs measures,
which contain p-adic Gibbs measure as a particular case. Moreover, it has been described translation-
invariant p-adic quasi Gibbs measures for the p-adic Potts model on a Cayley tree. This allows us to
establish the existence of a phase transition. It is known from [6] that any periodic p-adic Gibbs measure
is either translation-invariant or G2-periodic. These investigations lead us to the explicit construction of
periodic p-adic Gibbs measures which is highly non trivial task. Therefore, one of the main aims of this
paper is to construct and investigate G2-periodic p-adic quasi Gibbs measures for p-adic q-state Potts
model of the Cayley tree of order two. In the case q = 3, we prove the occurrence of a phase transition
and construct ART quasi Gibbs measures for p-adic Potts model of the Cayley tree of order k � 3.
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2. PRELIMINARIES

2.1. p-Adic numbers and p-adic measure.
Let Q be a field of rational numbers. For a fixed prime number p, every rational number x �= 0 can

be represented in the form x = pr n
m where, r, n ∈ Z, m is a positive integer, and n and m are relatively

prime with p. The p-adic norm of x is given by

|x|p =
{
p−r, x �= 0,

0, x = 0.

This norm is non-Archimedean, i.e. it satisfies the strong triangle inequality:

|x+ y|p ≤ max{|x|p, |y|p}, ∀x, y ∈ Q.

From this property immediately get the following facts:
1) if |x|p �= |y|p, then |x± y|p = max{|x|p, |y|p};
2) if |x|p = |y|p, then |x− y|p ≤ |x|p.
The completion of Q with respect to the p-adic norm defines the p-adic field Qp. Any p-adic number x �=
0 can be uniquely represented in the canonical form x = pγ(x)(x0 + x1p+ x2p

2 + ...), where γ(x) ∈ Z

and the integers xj satisfy: x0 > 0, 0 ≤ xj ≤ p− 1. In this case |x|p = p−γ(x). We recall that an integer
a ∈ Z is called quadratic residue modulo p if the congruent equation x2 ≡ a(mod p) has a solution
x ∈ Z.

Lemma 2.1. [35] The equation x2 = a, 0 �= a = pγ(a)(a0 + a1p+ a2p
2 + ...), 0 ≤ aj ≤ p− 1, a0 > 0

has a solution in x ∈ Qp iff hold true the following:
i) γ(a) is even;
ii) x2 ≡ a0(mod p) is solvable for p �= 2; the equality a1 = a2 = 0 hold if p = 2.

In [29] authors have introduced new symbols “O” and “o” which allowed to simplify certain
calculations. Roughly speaking, these symbols replace the notation ≡ (mod pk) without noticing about
power of k. Let us recall them. A given p-adic number x by O[x] we mean a p-adic number with the norm
p−γ(x), i.e. |x|p = |O(x)|p. By o[x], we mean a p-adic number with a norm strictly less than p−γ(x), i.e.
|o(x)|p < |x|p. For instance, if x = 1− p+ p2, we can write O[1] = x, o[1] = x− 1 or o[p] = x− 1 + p.
Therefore, the symbols O[·] and o[·] make our work easier when we need to calculate the p-adic norm of
p-adic numbers. It is easy to see that y = O[x] if and only if x = O[y].

We can see below some basic properties of O[·] and o[·], which will be used later on.

Lemma 2.2. [29] Let x, y ∈ Qp. Then the following statements hold:

1◦. O[x]O[y] = O[xy];

2◦. xO[y] = O[y]x = O[xy];

3◦. O[x]o[y] = o[xy];

4◦. o[x]o[y] = o[xy];

5◦. xo[y] = o[y]x = o[xy];

6◦. O[x]
O[y] = O

[
x
y

]
, if y �= 0;
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7◦. o[x]
O[y] = o

[
x
y

]
, if y �= 0.

For a ∈ Qp and r > 0 we denote

B(a, r) = {x ∈ Qp : |x− a|p < r},
and the set of all p-adic integers Zp := B(0, p). The set Z∗

p = Zp\pZp is called a set of p-adic units.
p-adic logarithm is defined by the series

logp(x) = logp (1 + (x− 1)) =

∞∑
n=1

(−1)n+1 (x− 1)n

n!
,

which converges for x ∈ B(1, 1) and p-adic exponential is defined by

expp(x) =

∞∑
n=0

xn

n!
,

which converges for x ∈ B(0, 12 ) if p = 2 and x ∈ B(0, 1) if p �= 2.

Put

Ep =
{
x ∈ Qp : |x− 1|p < p−1/(p−1)

}
.

As corollary of Lemma 2.2 we have the following

Lemma 2.3. Let p be a prime. Then the set Ep has the following properties:
(a) Ep is a group under multiplication;

(b) |a− b|p <

⎧⎨
⎩

1
2 , p = 2;

1, p �= 2
for all a, b ∈ Ep;

(c) |a+ b|p =

⎧⎨
⎩

1
2 , p = 2;

1, p �= 2
for all a, b ∈ Ep;

(d) If a ∈ Ep, then there is an element h ∈ B(0, p−1/(p−1)) such that a = expp(h).

A more detailed description of p-adic calculus and p-adic mathematical physics can be found in
[17, 18].

Let (X,B) be a measurable space, where B is an algebra of subsets X. A function μ : B → Qp is said
to be a p-adic measure if for any A1, A2, ..., An ∈ B such that
Ai ∩ Aj = ∅, i �= j, the following holds:

μ

⎛
⎝ n⋃

j=1

Aj

⎞
⎠ =

n∑
j=1

μ(Aj).

A p-adic measure is called probability if μ(X) = 1. One of the important condition is boundedness,
namely a p-adic measure μ is called bounded if sup{|μ(A)|p : A ∈ B} < ∞. For more detail information
about p-adic measures we refer to [1, 11, 17].

2.2. Cayley tree.
Let Γk

+ = (V,L) be a semi-infinite Cayley tree of order k ≥ 1 with the root x0 (whose each vertex has
exactly k + 1 edges, except for the root x0, which has k edges). Here V is the set of vertices and L is
the set of edges. The vertices x and y are called nearest neighbors and they are denoted by l = 〈x, y〉
if there exists an edge connecting them. A collection of the pairs 〈x, x1〉, . . . , 〈xd−1, y〉 is called a path
from the point x to the point y. The distance d(x, y) on the Cayley tree, is the length (number of edges)
of the shortest path from x to y.
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Let us set

Wn = {x ∈ V : d(x, x0) = n}, Vn =
n⋃

m=0

Wm,

Ln = {〈x, y〉 ∈ L : x, y ∈ Vn}.

We recall a coordinate structure in Γk
+: every vertex x (except for x0) of Γk

+ has coordinates
(i1, . . . , in), here im ∈ {1, . . . , k}, 1 ≤ m ≤ n and for the vertex x0 we put (0). Namely, the symbol
(0) constitutes level 0, and the sites (i1, . . . , in) form level n (i.e. d(x0, x) = n) of the lattice. Let us
define on Γk

+ binary operation ◦ : Γk
+ × Γk

+ → Γk
+ as follows: for any two elements x = (i1, . . . , in) and

y = (j1, . . . , jm) put

x ◦ y = (i1, . . . , in) ◦ (j1, . . . , jm) = (i1, . . . , in, j1, . . . , jm) (2.1)

and

x ◦ x0 = x0 ◦ x = (i1, . . . , in) ◦ (0) = (i1, . . . , in). (2.2)

By means of the defined operation Γk
+ becomes a noncommutative semigroup with a unit. Let us denote

this group (Gk, ◦). Using this semigroup structure one defines translations τg : G
k → Gk, g ∈ Gk by

τg(x) = g ◦ x.
It is clear that τ(0) = id.

Let G ⊂ Gk be a sub-semigroup of Gk and h : Gk → Y be a Y -valued function defined on Gk. We
say that h is G- periodic if h(τg(x)) = h(x) for all g ∈ G and x ∈ Gk. Any Gk-periodic function is called
translation invariant.

Now for each m ≥ 2 we put

Gm = {x ∈ Gk : d(x, x0) ≡ 0(modm)}. (2.3)

One can check that Gm is a sub-semigroup of Gk.

2.3. p-Adic quasi Gibbs measure for the Potts model.

Let Qp be the field of p-adic numbers and Φ = {1, 2, ..., q} be a finite set. A configuration σ on
V is defined as x ∈ V �→ σ(x) ∈ Φ; in a similar fashion one defines a configuration σn and σn on Vn

and Wn, respectively. The set of all configurations on V (resp. Vn , Wn) coincides with Ω = ΦV (resp.
ΩVn = ΦV

n ,ΩWn = ΦW
n ). Using this, for given configurations ΩVn = ΩVn−1 ×ΩWn . Using this, for given

configurations σ ∈ ΩVn−1 and ω ∈ ΩWn we define their concatenations by

(σn−1 ∨ ω)(x) =

{
σn−1(x), if x ∈ Vn−1,

ω(x), if x ∈ Wn.

It is clear that σ ∨ ω ∈ ΩVn .

We consider p-adic Potts model on a Cayley tree, where the spin takes Φ := {1, 2, ..., q}.

The (formal) Hamiltonian of p-adic Potts model is

H(σ) = J
∑

<x,y>∈l
δσ(x)σ(y) (2.4)

where J ∈ B(0, p−1/(p−1)) is a coupling constant, 〈x, y〉 stands for nearest neighbor vertices and δij is
the Kronecker’s symbol, i.e.

δi,j =

{
0, if i �= j,

1, if i = j.
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Assume that h : V \{x(0)} → QΦ
p is a mapping, i.e hx = (h1,x, h2,x, ..., hq,x), where hi,x ∈ Qp (i ∈ Φ)

and x ∈ V \{x(0)}. Given n ∈ N, we consider a p-adic probability measure μ
(n)
h,σ on ΩVn defined by

μ
(n)
h (σ) =

1

Z
(h)
n

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x. (2.5)

Here, σ ∈ ΩVn , and Z
(h)
n is the corresponding normalizing factor

Z(h)
n =

∑
σ∈ΩVn

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x. (2.6)

We say that p-adic probability distributions (2.5) are compatible if all n ≥ 1 and σn−1 ∈ ΦVn−1 :∑
ω∈ΩWn

μ
(n)
h (σn−1 ∨ ω) = μ

(n−1)
h (σn−1). (2.7)

Here σn−1 ∨ωn is the concatenation of the configurations. We note that a non-Archimedean analogue of
the Kolmogorov’s extension theorem was proved in [4]. According to this theorem there exists a unique
p-adic measure μh on Ω = ΦV for all n ≥ 1 and σ ∈ ΦVn−1 , i.e.

μ(σ ∈ Ω : σ|Vn ≡ σn) = μ
(n)
h (σn), for all σn ∈ ΩVn , n ∈ N.

Such measure is called a p-adic quasi Gibbs measure corresponding to the Hamiltonian (2.4) and
vector-valued function hx, x ∈ V. By QG(H) we denote the set of all p-adic quasi Gibbs measure
associated with function h = {hx, x ∈ V }. If all values of hx belong to the set Ep then it is called p-
adic Gibbs measure. If there are at least two distinct p-adic quasi Gibbs measures μ, ν ∈ QG(H) such
that μ is bounded and ν is unbounded, then we say that a a phase transition occurs. The following

statement describes conditions hx guaranteing compatibility of μ(n)
h (σ).

Theorem 2.4. [22] The measure μ
(n)
h (σ), n = 1, 2, ... (see (2.5)) associated with q-state Potts

model (2.4) satisfy the compatibility condition (2.7) if and only if for any n ∈ N the following
equation holds:

ĥx =
∏

y∈S(x)
F (ĥy, θ). (2.8)

Here and below a vector ĥ =
(
ĥ1, ĥ2, ..., ĥq−1

)
∈ Q

q−1
p is defined by a vector h = (h1, h1, ..., hq) ∈

Q
q
p as follows

ĥi =
hi
hq

, i = 1, 2, ..., q − 1 (2.9)

and mapping

F : Qq−1
p ×Qp → Q

q−1
p is defined by F (x; θ) = (F1(x; θ), ..., Fq−1(x; θ)) with

Fi(x; θ) =

(θ − 1)xi +
q−1∑
j=1

xj + 1

q−1∑
j=1

xj + θ

, x = {xi} ∈ Qq−1
p , i = 1, 2, ..., q − 1. (2.10)

Remark 2.5. Without loss of generality, we may assume that hq = 1. Otherwise, in (2.5) we
multiply and divide the expression on the right hand side by

∏
x∈Wn

hq,x and after replacing hi

by hi/hq we get the desired equality.
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Remark 2.6. In [23] the existence of the phase transition for the considered model was estab-
lished. In [32] it was shown that G2-periodic solution of (2.8) belonging to Ep coincides with
translation-invariant ones. Therefore, it is natural to find periodic solution of (2.8) in a general
setting, which allows to find periodic p-adic Gibbs measures.

Remark 2.7. In [26] the existence of m-periodic quasi Gibbs measures was found under certain
conditions such that p ≥ 3, k = 2, q = mpn and 0 < |θ − 1|p ≤ p−2n−1 for some m,n ∈ N and
(m, p) = 1. However, the explicit form of that measures is not given. In present paper we find the
explicit form of 2-periodic quasi Gibbs measures. Besides, 2-periodic quasi Gibbs measures we
found are not required to satisfy the aforementioned conditions in [26]. Using the explicit form
of solutions we can construct some non-periodic quasi Gibbs measures (see section 5).

Let us first observe that the set (1, ..., 1, h︸ ︷︷ ︸
m

, 1, ..., 1), (m = 1, ..., q − 1) is invariant for the equation

(2.8). Therefore, in what follows, we restrict ourselves to one of such lines, let us say (h, 1, ..., 1).

3. NON TRANSLATION-INVARIANT TWO PERIODIC QUASI GIBBS MEASURE FOR
p-ADIC POTTS MODEL

In [34] authors studied all translation-invariant p-adic Gibbs measures for the Potts model on the
Cayley tree. Recently, in [1, 27, 28] the existence of periodic p-adic Gibbs measures for the p-adic q-
state Potts model on the Cayley tree has been carried our by means of chaotic behavior of the function
associated with renormalization group (see (3.3)). However, explicit construction of such kind of p-adic
Gibbs measures is highly a non-trivial task. Therefore, in this section, we are going to construct G2-
periodic p-adic quasi Gibbs measures for the considered model.

Let G2 be a sub-semigroup of Gk (see (2.3)). Recall that hx is called G2-periodic, if for all x ∈ Gk

and y ∈ G2 it holds σ(yx) = σ(x). We denote that

hx =

{
h1, x ∈ Gk

h2, x ∈ Gk\G2.

From the equation (2.8) we can get the following system{
ĥ1 = (F (ĥ2, θ))

k

ĥ2 = (F (ĥ1, θ))
k.

(3.1)

We assume ĥi =
(
h
(1)
i , h

(2)
i , ..., h

(q−1)
i

)
. Let h(j)i = 1, j = 2, q − 1. Unless otherwise stated, we concen-

trate on the simplest case where k = 2.
In this case we can obtain following system of equations from (3.1)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ĥ
(1)
1 =

(
θĥ

(1)
2 + q − 1

ĥ
(1)
2 + θ + q − 2

)2

ĥ
(1)
2 =

(
θĥ

(1)
1 + q − 1

ĥ
(1)
1 + θ + q − 2

)2

.

(3.2)

Let

fθ(h) =

(
θh+ q − 1

h+ θ + q − 2

)2

. (3.3)

Rewriting (3.3) we have

fθ(h) =

(
θ − (θ − 1)(θ + q − 1)

h+ θ + q − 2

)2

.
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Clearly that if θ = 1 or θ = −q + 1, then fθ(h) is a constant function, i.e. fθ(h) is a periodic function of
any order.

In [25, 28] authors studied dynamics of the function fθ(h) and found translation-invariant p-adic
quasi Gibbs measures on a Cayley tree of order two. In [30, 33] several methods from Diophantine p-
adic equations were used.

There are three fixed points of the function fθ(h), i.e. h0 = 1,

h1 =
(θ − 1)2 − 2(q − 1) + (θ − 1)

√
(θ − 1)2 − 4(q − 1)

2
,

h2 =
(θ − 1)2 − 2(q − 1)− (θ − 1)

√
(θ − 1)2 − 4(q − 1)

2
.

(3.4)

Denote Δ(θ, q) = −8 + (θ − 1)2.

If ĥ(1)1 = ĥ
(1)
2 then we get translation-invariant Gibbs measures. Finding G2-periodic (non translation-

invariant) quasi Gibbs measures is equivalent to find h
(1)
1 �= h

(1)
2 solutions of the system (3.2). It is

equivalent to solve the following equation

fθ(fθ(h)) − h

fθ(h) − h
= 0. (3.5)

Simplifying the last equation we obtain

Ah2 +Bh+ C = 0, (3.6)

where

A(θ, q) = (θ2 + θ + q − 2)2,

B(θ, q) = θ4 + 4(q − 1)θ3 + (q2 + 6q − 12)θ2 + (10q2 − 36q + 32)θ + 2q3 − 13q2 + 26q − 17,

C(θ, q) = (θ2 + (3q − 5)θ + (q − 2)2)2.

We notice that (3.6) has solutions in Qp if and only if
√

D(θ, q) ∈ Qp where D(θ, q) = B2(θ, q)−
4A(θ, q)C(θ, q). For the sake of convenience we denote

D1(θ, q) = 4q2(1− q) + (24q − 24q2)(θ − 1) + (36 − 36q − 3q2)(θ − 1)2 − 10q(θ − 1)3 − 3(θ − 1)4.

After some calculations we can rewrite D(θ, q) as follows

D(θ, q) = (θ − 1)2(θ + q − 1)2D1(θ, q).

Thus, we can conclude that
√

D(θ, q) exists in Qp if and only if
√

D1(θ, q) ∈ Qp.

Since (3.6) is a quadratic equation we can write formal solutions of (3.6) as follows

h3,4 =
(2q2 − 2q3) + (12q − 12q2)(θ − 1) + (18− 18q − q2)(θ − 1)2 − 4q(θ − 1)3 − (θ − 1)4

2(q + 3(θ − 1) + (θ − 1)2)2
±

±(θ − 1)(θ + q − 1)
√

D1(θ, q)

2(q + 3(θ − 1) + (θ − 1)2)2
.

(3.7)

Now we show that for a given q ≥ 2 and for each θ ∈ Ep one can find prime integer p such that
h3,4 ∈ Qp.

Theorem 3.1. For every q ≥ 2 one can find a prime p such that the periodic solutions h3,4 exist in
Qp.
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Proof. Since the existence of h3,4 is equivalent to the existence of
√

D1(θ, q). Let us, we rewrite
D1(θ, q) as follows

D1(θ, q) = 122 − 288(θ − 1) + 117(θ − 1)2 + 30(θ − 1)3 − 3(θ − 1)4

−(132− 168(θ − 1) + 18(θ − 1)2 + 10(θ − 1)3)(q + 3)

+(40− 24(θ − 1)− 3(θ − 1)2)(q + 3)2 − 4(q + 3)3 (3.8)

or

D1(θ, q) = 482 − 1728(θ − 1) + 132(θ − 1)2 + 80(θ − 1)3 − 3(θ − 1)4

−(832− 408(θ − 1)− 12(θ − 1)2 + 10(θ − 1)3)(q + 8)

+(100− 24(θ − 1)− 3(θ − 1)2)(q + 8)2 − 4(q + 8)3. (3.9)

In order to establish the existence
√

D1(θ, q) we consider several cases.

Case 1. Let p be a prime divisor of q+3 such that p /∈ {2, 3}. We are going to show that
√

D1(θ, q) ∈
Qp. Since θ ∈ Ep. By (3.8), we get

D1(θ, q) = 122(1 + o[1]).

Using the last equality and due to Lemma 2.1 we have
√

D1(θ, q) ∈ Qp.

Case 2. Let q + 3 = 2a3b, where a and b are some non negative integers.

First we assume that b ≥ 2 and p = 3. Then we get q + 3 = o[3]. Due to θ − 1 = o[1], from (3.8), we
obtain

D1(θ, q) = 122(1 + o[1]).

Hence, thanks to Lemma 2.1 we have
√

D1(θ, q) ∈ Q3.

Let us suppose that b = 1. Then we have q+8 = 3 · 2a +5. One can see that q+8 has a prime divisor
p /∈ {2, 3}. Then due to (3.9), in Qp we have the following representation

D1(θ, q) = 482(1 + o[1]).

Again according to Lemma 2.1 we conclude that
√

D1(θ, q) ∈ Qp.

Now we assume that b = 0. Then keeping in mind q ≥ 2 one has a ≥ 3. It is easy to see that
2 � (q + 8). So, we have to consider two cases: either q + 8 = 3c or q + 8 has a prime divisor p > 3.

One can see that if q + 8 = 3c holds then c ≥ 3. In this case we consider D1(θ, q) in Q3. We have

1728(θ − 1) = o[32], 132(θ − 1)2 = o[32],

80(θ − 1)3 = o[32], 3(θ − 1)4 = o[34],

(832 − 408(θ − 1)− 12(θ − 1)2 + 10(θ − 1)3)(q + 8) = o[32],

(100 − 24(θ − 1)− 3(θ − 1)2)(q + 8)2 = o[35],

4(q + 8)3 = o[38].

Hence, for p = 3 from (3.9) we obtainD1(θ, q) = 482 + o[9]), which yields that D1(θ, q) = 482(1 + o[1]).
Then due to Lemma 2.1 we conclude that

√
D1(θ, q) ∈ Q3.

Suppose that q + 8 has a prime divisor p > 3. Then for this prime number from (3.9) we immediately
get D1(θ, q) = 482 + o[1] in Qp. The last equality together with 482 = O[1] implies that D1(θ, q) =

482(1 + o[1]). Again by Lemma 2.1 we conclude that
√

D1(θ, q) ∈ Qp where p > 3 is a prime divisor
of q + 8.

The theorem is proved.
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4. BOUNDEDNESS OF TRANSLATION-INVARIANT AND TWO PERIODIC p-ADIC
QUASI GIBBS MEASURES AND PHASE TRANSITIONS

Lemma 4.1. [21] Let h be a solution of (2.8), and μh be an associated p-adic quasi Gibbs measure.

Then for the corresponding partition function Z
(h)
n the following equality holds:

Z(h)
n = Ah,n−1Z

(h)
n−1, (4.1)

where Ah,n =
∏

x∈Wn

ah(x),
∏

y∈S(x)

q∑
j=1

exp{Jδi,j}hj,y = ah(x)hi,x, ah(x) ∈ Qp, i = 1, 2, ..., q.

Using Lemma 4.1 we get the following statements.

Lemma 4.2. Let k = 2. If h be a translation-invariant solution of (2.8) then for the corresponding

partition function Z
(h)
n the following equality holds:

Z(h)
n = (h+ θ + q − 2)2

n+1−2(h+ q − 1) (4.2)

Proof. It is easy to check that h = (h, 1, ....1) is a translation-invariant solution of (2.8), where h is a

fixed point of (3.3). Since θ = exp{J}, using (2.6) we get Z(h)
1 = (h+ θ + q − 2)2(h+ q − 1). Then by

lemma 4.1 we obtain the following equalities:

ah(x) =
(θh1,y + q − 1)2

h1,x
=

(θh+ q − 1)2

h
= (h+ θ + q − 2)2,

Ah,n = (h+ θ + q − 2)2
n+1

,

Z(h)
n = (h+ θ + q − 2)2

n+1−2(h+ q − 1),

where h = h0, h = h1, h = h2. The lemma is proved.

Lemma 4.3. Let k = 2. If h3,4 be G2-periodic (non translation-invariant) solutions of (2.8) then

for the corresponding partition function Z
(h)
n the following equalities hold:

If n is odd, then

Z(h)
n = (h3 + θ + q − 2)

2n+2−2
3 (h4 + θ + q − 2)

2n+1−4
3 (h4 + q − 1); (4.3)

If n is even, then

Z(h)
n = (h3 + θ + q − 2)

2n+1−2
3 (h4 + θ + q − 2)

2n+2−4
3 (h4 + q − 1). (4.4)

Proof. Let hσ(x),x =

{
h1,x, if σ(x) = 1;

1, if σ(x) �= 1.
, h1,x =

{
h3, if |x| is odd;
h4, if |x| is even.

Then,

h1,x =

{
h3, if n is odd;

h4, if n is even.

Due to (3.2), we have ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h3 =

(
θh4 + q − 1

h4 + θ + q − 2

)2

;

h4 =

(
θh3 + q − 1

h3 + θ + q − 2

)2

.

(4.5)
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Using (2.6) and (4.5), we get Z(h)
1 = (h3 + θ + q − 2)2(h4 + q − 1).

We consider following cases.
Case 1. Let n is odd. By Lemma 4.1 and (4.5) we get

ah(x) =
(θh1,y + q − 1)2

h1,x
=

(θh4 + q − 1)2

h3
= (h4 + θ + q − 2)2,

Ah,n−1 = (h3 + θ + q − 2)2
n
, Ah,n = (h4 + θ + q − 2)2

n+1
,

Z(h)
n = (h3 + θ + q − 2)

2n+2−2
3 (h4 + θ + q − 2)

2n+1−4
3 (h4 + q − 1).

Case 2. Let n is even. By Lemma 4.1 and (4.5) we get

ah(x) =
(θh1,y + q − 1)2

h1,x
=

(θh3 + q − 1)2

h4
= (h3 + θ + q − 2)2,

Ah,n−1 = (h4 + θ + q − 2)2
n
, Ah,n = (h3 + θ + q − 2)2

n+1
,

Z(h)
n = (h3 + θ + q − 2)

2n+1−2
3 (h4 + θ + q − 2)

2n+2−4
3 (h4 + q − 1)

The Lemma is proved.

4.1. q = 3 Case

For the convenience of studying we consider the case q = 3, i.e. spin values are 1,2,3. In this case
D1(θ) = −72− 144(θ − 1)− 99(θ − 1)2 − 30(θ − 1)3 − 3(θ − 1)4. Using (3.7) we can obtain following
solutions:

h3,4 =
−36− 72(θ − 1)− 45(θ − 1)2 − 12(θ − 1)3 − (θ − 1)4

2(3 + 3(θ − 1) + (θ − 1)2)2

±(θ − 1)(θ + 2)
√

−72− 144(θ − 1)− 99(θ − 1)2 − 30(θ − 1)3 − 3(θ − 1)4

2(3 + 3(θ − 1) + (θ − 1)2)2
.

(4.6)

Lemma 4.4. Let |Per2(fθ(h))| be number of 2-periodic points of fθ(h). Then the following
statements are true:

1) if p ≡ 1(mod 8) or p ≡ 3(mod 8), then |Per2(fθ(h))| = 5;

2) if p = 2 or p ≡ 5(mod 8) or p ≡ 7(mod 8), then |Per2(fθ(h))| = 1.

Proof.
a) Let p = 2. Due to θ ∈ E2 we have |(θ − 1)2|2 ≤ 1

16 (see (3.4)). Hence, using strong triangle
inequality one gets

| − 8 + (θ − 1)2|2 =
1

8
.

This means that |D(θ)|2 = 1
8 . Then thanks to lemma 2.1 there does not exist

√
Δ(θ) in Q2. Conse-

quently, h1, h2 /∈ Q2.
Now we will check the existence of solutions h3 and h4 in Q2. In order to check it we calculate the

norm of D1(θ). Again using |θ − 1|2 ≤ 1
4 we obtain the followings:

| − 144(θ − 1)|2 ≤ 1

26
, | − 99(θ − 1)2|2 ≤

1

24
,

| − 30(θ − 1)3|2 ≤
1

27
, | − 3(θ − 1)4|2 ≤

1

28
.
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Keeping in mind | − 72|2 = 1
23

, from the last inequalities due to strong triangle inequality one has

|D1(θ)|2 = 1
8 . Then according to Lemma 2.1 we conclude that

√
D1(θ) /∈ Q2. This means that

h3, h4 /∈ Q2. Thus in this case we have shown that |Per2(fθ(h))| = 1.

b) Let p ≥ 3. Since θ ∈ Ep we get |θ− 1|p < 1. Then thanks to Lemma 2.1 existence of
√

Δ(θ) in Qp

equivalence to the existence of
√
−2. We notice that

√
−2 ∈ Qp if −2 is a quadratic residue by modulo

p. −2 is a quadratic residue by modulo p if and only if p ≡ 1(mod 8) or p ≡ 3(mod 8) (see [40]). So, we
infer that

h1, h2 ∈ Qp ⇐⇒ p ≡ 1(mod 8) or p ≡ 3(mod 8).

Now we will check the existence of solutions h3 and h4 in Qp. Due to θ ∈ Ep we have
|(24q − 24q2)(θ − 1) + (36− 36q − 3q2)(θ − 1)2 − 10q(θ − 1)3 − 3(θ − 1)4|p ≤ p−1.
By Lemma 2.1, existence

√
D1(θ) is equivalent to existence

√
−72 = 6

√
−2 or existence

√
−2. We

notice that
√
−2 ∈ Qp if −2 is a quadratic residue by modulo p.

√
−2 exists in Qp if and only if

p ≡ 1(mod 8) or p ≡ 3(mod 8). So, we infer that

h3, h4 ∈ Qp ⇐⇒ p ≡ 1(mod 8) or p ≡ 3(mod 8).

In conclusion, we get

h1, h2, h3, h4 ∈ Qp ⇐⇒ p ≡ 1(mod 8) or p ≡ 3(mod 8). (4.7)

Thus in this case we have shown that if p ≡ 1(mod 8) or p ≡ 3(mod 8) then |Per2(fθ(h))| = 5, if
p = 2, p ≡ 5(mod 8) and p ≡ 7(mod 8), then |Per2(fθ(h))| = 1.
Finally, we have finished to prove Lemma 4.4.

Remark 4.5. Note that all prime numbers are in the forms of p = 2, p ≡ 1(mod 8), p ≡ 3(mod 8),
p ≡ 5(mod 8), p ≡ 7(mod 8). If p �≡ 1(mod 8), p �≡ 3(mod 8) then p = 2 or p ≡ 5(mod 8) or p ≡
7(mod 8).

The following theorem is immediate from 4.4.

Theorem 4.6. Let q = 3. Following statements are true for p-adic Potts model on a Cayley tree of
order two

1) if p ≡ 1(mod 8) or p ≡ 3(mod 8), then there are three translation-invariant p-adic quasi
Gibbs measures and there are two G2-periodic, non translation-invariant p-adic quasi
Gibbs measures;

2) if p = 2 or p ≡ 5(mod 8) or p ≡ 7(mod 8), then there is one translation-invariant p-adic
quasi Gibbs measure.

Lemma 4.7. The norms of the solutions hi, i = 0, 1, ..., 4 are equal to one.

Proof. From θ ∈ Qp and properties of p-adic norm we can get easily the result of Lemma 4.7.

Theorem 4.8. Let q = 3. Following statements are true for p-adic Potts model on a Cayley tree of
order two

1) if p = 2 or p ≡ 5(mod 8) or p ≡ 7(mod 8), then μh0 measure is unbounded;

2) if p ≡ 1(mod 8) or p ≡ 3(mod 8),p �= 3 then only μh0 measure is bounded, μh1 , μh2 , μh3 ,μh4

measures are unbounded;

3) if p = 3, then all μh0 , μh1 , μh2 , μh3 ,μh4 measures are unbounded.
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Proof. Case 1. If p = 2 or p ≡ 5(mod 8) or p ≡ 7(mod 8), then exists only μh0 translation-invariant
measure. Note that |h0 + θ + q − 2|p = |θ + 2|p = 1. By Lemma 4.2 we get

lim
n→∞

|μ(n)
h0

|p = lim
n→∞

∣∣∣∣∣
1

3(θ + 2)2
n+1−2

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x

∣∣∣∣∣
p

= 1.

Case 2. If p ≡ 1(mod 8) or p ≡ 3(mod 8), p �= 3 then there exist μhi
, i = 0, ..., 5 measures. For

translation-invariant solutions we have |h0 + θ + 1|p=1. Since

|θ − 1|p < 1, |h1,2 + 2|p =

∣∣∣∣∣∣
(θ − 1)2 ± (θ − 1)

√
(θ − 1)2 − 4(q − 1)

2

∣∣∣∣∣∣
p

< 1,

then we get

|h1,2 + θ + 1|p = |h1,2 + 2 + θ − 1|p ≤ max{|h1,2 + 2|p, |θ − 1|p} < 1.

By Lemma 4.2, we have

lim
n→∞

|μ(n)
h0

|p = 1,

lim
n→∞

|μ(n)
h1,2

|p = lim
n→∞

∣∣∣∣∣
1

(h1,2 + 2)(h1,2 + θ + 1)2
n+1−2

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x

∣∣∣∣∣
p

= ∞.

For two periodic non translation-invariant solutions we have |θ − 1|p < 1,

|h3,4 + 2|p =

∣∣∣∣∣
−72(θ − 1) − 45(θ − 1)2 − 12(θ − 1)3 − (θ − 1)4 ± (θ − 1)(θ + 2)

√
D1(θ)

2(3 + 3(θ − 1) + (θ − 1)2)2

∣∣∣∣∣
p

< 1.

Consequently, we get |h3,4 + θ+1|p = |h3,4 + 2+ θ− 1|p ≤ max{|h3,4 +2|p, |θ− 1|p} < 1. By Lemma
4.3 we have

lim
n→∞

|μ(n)
h3,4

|p = ∞.

Case 3. If p = 3, then there exist μhi
, i = 0, ..., 5 measures. Note that |h0 + θ + q − 2|3 = |θ + 2|3 < 1.

By Lemma 4.2 we get

lim
n→∞

|μ(n)
h0

|3 = lim
n→∞

∣∣∣∣∣
1

3(θ + 2)2
n+1−2

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x

∣∣∣∣∣
3

= ∞.

We can prove that μh1 , μh2 , μh3 ,μh4 measures are unbounded as in the case 2.

Theorem 4.9. For p-adic 3-state Potts model on a Cayley tree of order two there exist the phase
transition occurrence if and only if p �= 3, p ≡ 1(mod 8) or p ≡ 3(mod 8).

5. p-ADIC ART QUASI GIBBS MEASURES

It is always interesting to study non-periodic Gibbs measures. In [41] some non-periodic Gibbs
measures that are called ART measures were investigated. In [38, 39] p-adic ART generalized Gibbs
measures for the Ising model on the Cayley tree were studied. In this section we are going to study p-
adic ART quasi Gibbs measures for 3-state Potts model using by translation-invariant and G2-periodic
solutions on the Cayley tree of order k (k ≥ 3).

Recall that each solution of (2.8) define a p-adic quasi Gibbs measure for Potts model. One can see
that hx = 1 for all x ∈ V is a solution of (2.8) for any k ≥ 2. Now we construct new solutions of (2.8) for

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 4 2021



ON G2-PERIODIC 303

h
(2)
i

h
(2)
i

h
(2)
i h

(2)
i 1

h
(2)
i

h
(2)
i h

(2)
i 1

1

1 1 1

Fig. 1. The function h̃
(i)
x , i = 0, 2 on the Cayley tree of order three.

k ≥ 3. In the case k = 2 and q = 3 all translation-invariant solutions of (2.8) had been found in [25]. For
k ≥ 3 we set up some solutions of (2.8) using (3.4) and (4.6).

(a1). Let V k be the set of all vertices of the Cayley tree Γk
+. Since k > 2 one can consider V 2 as a

subset of V k. Define the following function

h̃(i)x =

⎧⎨
⎩

h
(2)
i , if x ∈ V 2,

1, if x ∈ V k \ V 2,
(5.1)

where i = 0, 2. This function on the Cayley tree of order k = 3 is shown in Fig.1.
Now we shall check that (5.1) satisfies (2.8) on Γk

+.
Let x ∈ V 2 ⊂ V k. For i = 0, 2 we have

h̃(i)x =
∏

y∈S(x)
F (h̃(i)y , θ) =

∏
y∈S(x)

(
θh

(i)
y + 2

h
(i)
y + θ + 1

)

=
∏

y∈S(x)∩V 2

(
θh

(i)
y + 2

h
(i)
y + θ + 1

)
×

∏
y∈S(x)∩(V k\V 2)

(
θh

(i)
y + 2

h
(i)
y + θ + 1

)

=
∏

y∈S(x)∩V 2

(
θh

(i)
y + 2

h
(i)
y + θ + 1

)
=

(
θh

(2)
i + 2

h
(2)
i + θ + 1

)2

= h
(2)
i .

Here we used

∏
y∈S(x)∩(V k\V 2)

(
θh

(i)
y + 2

h
(i)
y + θ + 1

)2

= 1.

Thus h̃(i)x , i = 0, 2 satisfies the functional equation (2.8). We denote by μ
˜h
(i)
x
, i = 0, 2 the Gibbs mea-

sures corresponding to h̃
(i)
x , i = 0, 2 and those measures we called p-adic ART quasi Gibbs measures.

(a2). Let k ≥ 3. We shall construct new p-adic (non periodic) Gibbs measures using by h0 =
1, h3 , h4. Define the following function

h(i)x =

⎧⎪⎪⎨
⎪⎪⎩

h
(1)
i , if x ∈ V 2 ∩G2,

F 2(h
(1)
i , θ), if x ∈ V 2 ∩ (Gk\G2),

1, if x ∈ V k\V 2,

(5.2)

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 4 2021



304 TUKHTABAEV

h
(i)
1

F 2(h
(i)
1 , θ)

h
(1)
i h

(1)
i 1

F 2(h
(i)
1 , θ)

h
(i)
1 h

(i)
1 1

1

1 1 1

Fig. 2. The function h̃
(i)
x , i = 0, 3, 4 on the Cayley tree of order three.

where i = 0, 3, 4. This function on the Cayley tree of order k = 3 is shown in Fig. 2.
Now we shall check that (5.2) satisfies (2.8) on Γk

+.
Let x ∈ V 2 ∩G2. For i = 0, 3, 4, we have

h
(1)
i =

∏
y∈S(x)

F (hy, θ) =
∏

y∈S(x)
F
(
F 2
(
h(1)y , θ

))
=F 2

(
F 2
(
h
(1)
i , θ

))
.

Let x ∈ V 2 ∩
(
Gk\G2

)
. F 2

(
h
(1)
i , θ

)
=

∏
y∈S(x)

F (hy, θ) =F 2 (h1, θ).

If x ∈ V k\V 2 then it is easy to see that h(i)x satisfies (2.8).
Let q = 3, k > 3. Consequently, we have the following theorem.

Theorem 5.1. If p ≡ 1(mod 8) or p ≡ 3(mod 8) then there exist at least four p-adic ART (non
periodic) quasi Gibbs measures for the Potts model on a Cayley tree.

Lemma 5.2. Let k ≥ 3. If μ
˜h

is p-adic ART quasi Gibbs measure constructed by rule (a1) then for

the corresponding partition function Z
(h)
n the following equality holds:

Z(h)
n = (θ + 2)

(k−2)(kn−k)
k−1 (h+ θ + 1)

2(kn−k)
k−1 [(θh+ 2)k + 2(h+ θ + 1)k]. (5.3)

Proof. Since θ = exp{J}, using (2.6) we get Z(h)
1 = (θh+ 2)k + 2(h + θ + 1)k. Then by lemma 4.1

we obtain the following equalities:

ah(x) =

∏
y∈S(x)

(θh1,y + 2)

h1,x
=

∏
y∈S(x)

(θh+ 2)

h
=

(θh+ 2)2(θ + 2)k−2

h
= (h+ θ + 1)2(θ + 2)k−2,

Ah,n = (h+ θ + 1)2k
n
(θ + 2)(k−2)kn ,

Z(h)
n = (θ + 2)

(k−2)(kn−k)
k−1 (h+ θ + 1)

2(kn−k)
k−1 [(θh+ 2)k + 2(h+ θ + 1)k],

where h = h0, h = h1, h = h2. The lemma is proved.

Lemma 5.3. Let k ≥ 3. If μ
˜h

is p-adic ART quasi Gibbs measure constructed by rule (a2) then for

the corresponding partition function Z
(h)
n the following equality holds:

If n is odd, then

Z(h)
n = (θ + 2)

(k−2)(kn−k)
k−1 (h3 + θ + 1)

2(kn+1−k2)

k2−1 (h4 + θ + 1)
2(kn−k)

k2−1 Z
(h)
1 ; (5.4)
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If n is even, then

Z(h)
n = (θ + 2)

(k−2)(kn−k)
k−1 (h3 + θ + 1)

2(kn−k2)

k2−1 (h4 + θ + 1)
2(kn+1−k)

k2−1 Z
(h)
1 ; (5.5)

where

Z
(h)
1 = (θh3 + 2)k + 2(h3 + θ + 1)k.

Proof. Let

h1,x =

{
h3, if n is odd;

h4, if n is even.

Due to (3.2), we have ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h3 =

(
θh4 + 2

h4 + θ + 1

)2

;

h4 =

(
θh3 + 2

h3 + θ + 1

)2

.

(5.6)

Using (2.6) and (5.6), we get Z(h)
1 = (h3 + θ + q − 2)2(h4 + q − 1).

Consider following cases
Case 1. Let n is odd. By Lemma 4.1 and (5.6) we get the following equalities:

ah(x) =

∏
y∈S(x)

(θh1,y + 2)

h1,x
=

(θh4 + 2)2(θ + 2)k−2

h3
= (h4 + θ + 1)2(θ + 2)k−2,

Ah,n−1 = (h3 + θ + 1)2k
n−1

(θ + 2)(k−2)kn−1
, Ah,n = (h4 + θ + 1)2k

n
(θ + 2)(k−2)kn ,

Z(h)
n = (θ + 2)

(k−2)(kn−k)
k−1 (h3 + θ + 1)

2(kn+1−k2)

k2−1 (h4 + θ + 1)
2(kn−k)

k2−1 Z
(h)
1 .

Case 2. Let n is even. By Lemma 4.1 and (5.6) we get the following equalities:

ah(x) =

∏
y∈S(x)

(θh1,y + 2)

h1,x
=

(θh3 + 2)2(θ + 2)k−2

h4
= (h3 + θ + 1)2(θ + 2)k−2,

Ah,n−1 = (h4 + θ + 1)2k
n−1

(θ + 2)(k−2)kn−1
, Ah,n = (h3 + θ + 1)2k

n
(θ + 2)(k−2)kn ,

Z(h)
n = (θ + 2)

(k−2)(kn−k)
k−1 (h3 + θ + 1)

2(kn−k2)

k2−1 (h4 + θ + 1)
2(kn+1−k)

k2−1 Z
(h)
1 .

Finally, the Lemma 5.3 is proved.

Remark 5.4. If k = 2 in Lemma 5.2 and Lemma 5.3 then we get Lemma 4.2 and Lemma 4.3
respectively.

Theorem 5.5. Let q = 3 and k ≥ 3. Following statements are true for p-adic Potts model on a
Cayley tree of order k

1) if p = 2 or p ≡ 5(mod 8) or p ≡ 7(mod 8), then ART quasi Gibbs measure μ
˜h0

is unbounded;

2) if p ≡ 1(mod 8) or p ≡ 3(mod 8), p �= 3 then only ART quasi Gibbs measure μ
˜h0

is bounded;

3) if p = 3, then all ART quasi Gibbs measures constructed by rules (a1) and (a2) are un-
bounded.
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Proof. Case 1. If p = 2 or p ≡ 5(mod 8) or p ≡ 7(mod 8), then exists only ART quasi Gibbs measure
μ

˜h0
. Note that |h0 + θ + q − 2|p = |θ + 2|p = 1. By Lemma 5.2 we get

lim
n→∞

|μ(n)
˜h0

|p = lim
n→∞

∣∣∣∣∣
1

3(θ + 2)
k(kn−1)

k−1

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x

∣∣∣∣∣
p

= 1.

Case 2. If p ≡ 1(mod 8) or p ≡ 3(mod 8), p �= 3 then there exist ART quasi Gibbs measures constructed
by rules (a1) and (a2). Since θ ∈ Ep, for h0, h1, h2 we have

|θ + 2|p = 1, |h0 + θ + 1|p = 1, |h1,2 + θ + 1|p < 1, 0 < |Z(h)
1 |p < 1.

By Lemma 5.2, we have

lim
n→∞

|μ(n)
˜h0

|p = 1,

lim
n→∞

|μ(n)
˜h1,2

|p = lim
n→∞

∣∣∣∣∣∣
1

(θ + 2)
(k−2)(kn−k)

k−1 (h+ θ + 1)
2(kn−k)

k−1 Z
(h)
1

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x

∣∣∣∣∣∣
p

= ∞.

For h3, h4 we have |θ + 2|p = 1, |h3,4 + θ + 1|p < 1, 0 < |Z(h)
1 |p = |(θh3 + 2)k + 2(h3 + θ + 1)k|p <

1. By Lemma 5.3 we have

lim
n→∞

|μ(n)
˜h3,4

|p = ∞.

Case 3. If p = 3, then there exist μ
˜hi

, i = 0, ..., 5 measures. Note that |h0 + θ + 1|3 = |θ + 2|3 < 1. By
Lemma 5.2 we obtain

lim
n→∞

|μ(n)
˜h0

|p = lim
n→∞

∣∣∣∣∣
1

3(θ + 2)
k(kn−1)

k−1

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x

∣∣∣∣∣
p

= ∞.

We can prove that μ
˜h1,2

, μ
˜h3,4

measures are unbounded as in the case 2.

The theorem is proved.
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