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An analysis is made of the low-temperature behavior of the chemical potential µ of
a quasi-two-dimensional electron gas near the resonance point (at the bottom of the

miniband) and far from it. Low-temperature analytical formulas for µ(T ) are obtained

under the conditions of the existence of an arbitrary number of minibands. It is shown
that with the increasing temperature near the resonance point, the chemical potential

decreases linearly and exponentially slowly in the middle of the resonance points. Ana-

lytical formulas are compared to the numerical solutions.

Keywords: Heterostructures; dimensional quantization; two-dimensional electron gas;

degenerate Fermi-gas; minibands; chemical potential; fermi energy.

PACS numbers: 05.70.Ce, 64.30.+t, 71.20.Rv, 73.21.−b

1. Introduction

The study of the properties of electron gas in quantum wells of semiconductor

heterostructures is of both fundamental and applied interest. Dimensional quanti-

zation of carrier energies leads to the manifestation of a number of interesting low-

dimensional effects.1–14 In deep quantum wells, several minibands can exist.15–17

‖Corresponding author.
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The main reason for the manifestation of size-quantum effects in a gas is a

stepwise change in the density of states at the resonance points, where the chemical

potential µ is equal to the energy levels En of spatial quantization.1 A change in

the chemical potential relative to the energy levels of spatial quantization can be

observed depending on the concentration ns or the width of the quantum well L.

At present, it is well-known that in the approximation of a single miniband and

at low-temperatures (near absolute zero), the chemical potential of a quasi-two-

dimensional electron gas changes exponentially in a slow manner.8,9 The depen-

dence µ(T ) in the presence of several minibands was studied in Ref. 14; however, the

results were obtained only by a numerical method. Since almost all thermodynamic

quantities and kinetic coefficients are directly related to the chemical potential of

the gas, it is clear that determining the function µ(T ) is an urgent task.

In this paper, we study the temperature dependence of the chemical potential of

a quasi-two-dimensional ideal gas at various two-dimensional (2D) concentrations

of ns (i.e., at different values of the Fermi energy). For dependence µ(T ) near

absolute zero, temperature analytical formulas are obtained under the conditions

of the existence of an arbitrary number of minibands. The results showed that with

increasing temperature near the resonance point, the chemical potential decreases

linearly and exponentially slowly in the middle of the resonance points. Analytical

results are compared with numerical calculations µ(T ).

2. The Main Relationships

For the sake of simplification, we consider an ideal electron gas with a simple

parabolic spectrum in a single quantum well of a heterostructure. In this case,

the thermal transition of electrons from the quantum well to local levels and to the

conduction bands of wide-gap material is not taken into account. In addition, the

influence of the valence band is also neglected. Energy is measured from the bottom

of the bulk semiconductor gap.

In a quantum well, the energy of the transverse motion is quantized, and the

electron gas becomes quasi-two-dimensional. The dispersion of an electron can be

represented as1

E =
~2k2

2m
+ En, (1)

where k2 = k2x + k2y, m is the effective mass of the electron, En is the energy levels

of the transverse motion. Finding the En levels is a quantum-mechanical part of

the problem and we consider them known. The total 2D concentration is

ns = g0

M∑
n=1

∫ ∞
En

f(E)dE = g0T

M∑
n=1

ln(1 + e
µ−En
T ), (2)

where g0 = m/π~2, M is the number of minibands in a given quantum well, T is

the value kBT , the kB is Boltzmann constant, f(E) is the Fermi-Dirac distribution
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function

f(E) =
1

exp
(
E−µ
T

)
+ 1

. (3)

Solving Eq. (2), we can determine the chemical potential µ as a function of

temperature T and 2D concentration ns.

At absolute zero temperature, the chemical potential is equal to the Fermi en-

ergy, i.e., T = 0, µ = EF and the distribution function f(E) becomes stepwise

f(E) =

{
1, E < EF ,

0, E > EF .
(4)

Then, for T = 0, Eq. (2) takes the form

ns = g0

M∑
n=1

∫ EF

En

dE =g0

M∑
n=1

(EF − En)Θ(EF − En), (5)

where Θ(x) is the Heaviside step function. In Eq. (5), the terms under the sum sign

must be positive. Negative terms are excluded by the function Θ(x).

From (2) and (5) also follows the equation

M∑
n=1

(EF − En)Θ(EF − En) = T

M∑
n=1

ln(1 + e
µ−En
T ). (6)

This equation defines the chemical potential of µ as a function of temperature

T and the Fermi energy EF . Since according to (5), EF is uniquely related to the

2D concentration ns, only the solution of Eq. (6) will be studied in what follows.

3. Precisely Solvable Models

In the simplest case of a single-band model M = 1, the solution of Eq. (6) has the

form1,8,9

µ = E1 + T ln(e
EF−E1

T − 1) = EF + T ln(1− e
E1−EF

T ), EF > E1. (7)

In the limit of sufficiently low-temperatures (after, near absolute zero), when

EF − E1 � T , formula (7) has a simpler form

µ ≈ EF − Te
E1−EF

T (8)

When there is only one miniband in a quantum well, model (7) is applicable

only if V − EF � T , (V is the depth of the quantum well). When the number of

minibands is more than one M > 1, the single-zone model is applicable if E2−EF �
T . Otherwise, model (7) is unfair because it does not take into account the processes

of thermal emission of electrons to overlying zones.

In the case of the two-band model M = 2, Eq. (6) reduces to a quadratic

equation and its solution has the form

µ = E1 + T ln

(√
(1− e

E2−E1
T )2 + 4e

E2−E1+S
T − (1 + e

E2−E1
T )

)
− T ln(2), (9)
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where

s =

2∑
n=1

(EF − En)Θ(EF − En). (10)

It should also be noted here that when the number of minibands is more than

two M > 2, model (9) is valid if E3 − EF � T .

4. Asymptotic Formulas for Low-Temperatures and an Arbitrary

Number of Minibands

1. Suppose that the chemical potential lies approximately in the middle of two

successive levels of EN < µ < EN+1 and the temperature is quite low T � µ −
EN , EN+1 − µ. Then, the right side of Eq. (6) can be reduced to

M∑
n=1

T ln(1 + e
µ−En
T ) ≈

N∑
n=1

(µ− En) + T ln(1 + e
EN−µ
T ) + T ln(1 + e

µ−EN+1
T ). (11)

In this representation, the second and third terms have the same degree of

smallness. In the approximation under consideration, the left side of Eq. (6) is

equal to

M∑
n=1

(EF − En)Θ(EF − En) = NEF −
N∑
n=1

En. (12)

Substituting (11) and (12) into (6), we have

µ ≈ EF −
T

N

[
ln(1 + e

EN−µ
T ) + ln(1 + e

µ−EN+1
T )

]
. (13)

If we take into account condition T � µ − EN , EN+1 − µ, then this equation

can be simplified further. For small x, we can use the expansion of ln(1 + x) ≈ x

and from (13) we obtain

µ ≈ EF −
T

N
(e

EN−µ
T + e

µ−EN+1
T ). (14)

In a first approximation, on the right-hand side of (14), we can replace µ with

EF . Then we have

µ ≈ EF −
T

N
(e

EN−EF
T + e

EF−EN+1
T ). (15)

It can be seen from (15) that near absolute zero temperatures the decrease

in the chemical potential of a 2D gas is exponentially small. This correction is

inversely proportional to the number of the subzone N . The admitted condition

T � µ − EN , EN+1 − µ does not allow applying formulas (15) in cases where the

Fermi energy is close to the EN , EN+1 levels.

In the case N = 1, it follows from (15)

µ ≈ EF − T (e
E1−EF

T + e
EF−E2

T ). (16)
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If the upper level is sufficiently far from the Fermi energy, then the second term

inside the bracket can be neglected. Then result (8) follows from (16).

2. Let the Fermi energy lie near the Nth-subband and the temperature be suffi-

ciently low T ∼ TN > 0, |µ− EN | � T � µ − EN−1, EN+1 − µ. Here, TN is the

temperature at which the chemical potential crosses the energy level of µ ∼ EN .

Then, the right-hand side of (6) can be simplified as follows:

M∑
n=1

ln(1 + e
µ−En
T ) ≈ 1

T
(N − 1)µ− 1

T

N−1∑
n=1

En + ln(1 + e
µ−EN
T ). (17)

Since |µ− EN | � T , then we can use the following decompositions:

e
µ−EN
T ≈ 1 +

µ− EN
T

, ln

(
1 +

µ− EN
2T

)
≈ µ− EN

2T
.

Then, after some simplifications from (17), we have

M∑
n=1

ln(1 + e
µ−En
T ) ≈ µ

T

(
N − 1

2

)
− EN

2T
− 1

T

N−1∑
n=1

En + ln 2. (18)

In the approximation under consideration, the left side of Eq. (6) is equal to

M∑
n=1

(EF − En)Θ(EF − En) = (N − 1)EF −
N−1∑
n=1

En

+ (EF − EN )Θ(EF − EN ). (19)

Substituting (18) and (19) in (6), we have

µ =
(N − 1)EF + (EF − EN )Θ(EF − EN ) + EN

2 − T ln 2

N − 1
2

. (20)

In the case EF > EN (20), it is simplified

µ =
NEF − EN

2 − T ln 2

N − 1
2

. (21)

In the case EF < EN (20), it is simplified

µ =
(N − 1)EF + EN

2 − T ln 2

N − 1
2

. (22)

This shows that with increasing temperature, near the Nth-level (bottom of the

Nth-subzone), the chemical potential decreases linearly. With the exact resonance

µ = EN , T = TN , EF > EN , from (20) we obtain

TN = N
EF − EN

ln 2
. (23)

Thus, if the Fermi level is close enough to the Nth-level, then the assumptions

T ∼ TN > 0, |µ− EN | � T � µ − EN−1, EN+1 − µ are well satisfied. In deriving
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Table 1. Calculation results

of lnx and ln(2)/(N − 1/2).

N ln(x) ln(2)/(N − 1/2)

2 0.481 0.462
3 0.281 0.277

4 0.199 0.198

5 0.155 0.154
6 0.126 0.126

formulas (20)–(23), the upper levels of n > N were neglected and the terms with

numbers n < N were summed approximately according to condition T � µ −
EN−1, EN+1 − µ. Otherwise, the dependence µ(T ) and the temperature TN at

which the resonance µ = EN is realized must be determined numerically from (6).

3. Consider the case when the Fermi energy is exactly equal to the Nth energy

level: EF = EN . With increasing temperature, the chemical potential mixes down

from this level. If we proceed from (20)–(22), then setting EF = EN we can obtain

the following formula:

µ ≈ EN −
T ln 2

N − 1
2

. (24)

If we proceed from (6), then when condition T � µ−EN−1, EN+1−µ is satisfied,

putting EF = EN , we arrive at the following equation:

(N − 1)µ+ T ln(1 + e
µ−EN
T ) = (N − 1)EN , N > 1. (25)

Introducing the notation x = exp[(EN − µ)/T ], (25) we can reduce to

x+ 1 = xN , N > 1. (26)

Then, the chemical potential changes in temperature according to the following

law:

µ = EN − T lnx. (27)

In the derivation of (24), expansions and the logarithm in a series were used,

while in the derivation of formula (27) they refused this decomposition. For com-

parison, Table 1 shows the calculations of lnx and ln(2)/(N − 1/2).

It can be seen from the table that, for N = 2, their difference is about unity

percent, and with the growth of N it rapidly decreases.

5. Comparisons with Numerical Results and Discussion of Results

For specific quantum wells of the heterostructure, the energy levels En are de-

termined quantum mechanically. To numerically solve Eq. (6), we used a simple

spectrum of En = E1n
2, n = 1, 2, 3 . . . with a given E1 (we considered the infinite

potential well).
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(1) The effect of the number of minibands on the dependence of µ(T ).

Suppose that in a quantum well there are several energy levels of spatial

quantization. For example, at E1 = 0.005 eV, the following quantum levels

correspond: En = 0.005, 0.02, 0.045, 0.08, 0.125, 0.18 . . . eV. Let the 2D electron

concentration in the quantum well be such that the Fermi energy is between the

levels E2 = 0.02 eV and E3 = 0.045 eV. In the numerical solution of Eq. (6),

we limited ourselves to a finite number of minibands M = 2, 3, 5. The obtained

dependences µ(T ) for different values of the Fermi energy are presented in

Fig. 1.

The line with M = 2 obtained by the numerical method exactly coincides

with the analytical formula of the two-band model (9). With increasing temper-

ature, the role of the thermal emission of electrons to the overlying minibands

with M = 3.5 grows, which can be seen from all the graphs in Figs. 1(a)–1(c).

The two-band model works better at low-temperatures and when the Fermi

energy is close to the E2 level, Figs. 1(a) and 1(b). When the Fermi energy lies

approximately in the middle of the levels E2 and E3 and at low-temperatures

the chemical potential decreases exponentially slowly, this is clearly seen from

Fig. 1(b). As the Fermi energy approaches the level E2 or E3 and at low-

temperatures, the chemical potential decreases faster, as shown in Figs. 1(a)

and 1(c). This sign indicates that the thermal transitions of electrons of overly-

ing energy states are more intense where the density of energy states increases

sharply.

(2) Comparison of formula (15) with a numerical solution. Figure 2 presents a

comparison of the dependences µ(T ) obtained by the analytical formula (15)

with the results of the numerical solution of Eq. (6) for different values of the

Fermi energy. In the calculations, the following spectrum parameters were used:

E1 = 0.005 eV, En = 0.005, 0.02, 0.045, 0.08, 0.125, 0.18 . . . eV, and the case

where the Fermi energy is between the levels E3 = 0.045 eV and E4 = 0.08 eV

(N = 3). In the numerical solution of Eq. (6), we limited ourselves to the

maximum number of minibands M = 5.

From these graphical dependencies, we can conclude that if the Fermi energy

EF is located far from the size quantization level (in this case, from E3 and E4),

then an exponentially slow decrease in the chemical potential is clearly observed

in a wide temperature range 0 < T < 0.01 eV, Fig. 2(b) This range decreases

as the Fermi energy EF approaches the bottom edges of the minibands E3 and

E4, Figs. 2(a) and 2(c), respectively.

(3) Comparison of formula (20) with a numerical solution. Figure 3 shows the

comparisons of the dependences µ(T ) obtained by the analytical formula (20)

with the results of the numerical solution of Eq. (6) for different values of the

Fermi energy. The following spectral parameters were used in the calculations:

E1 = 0.005 eV, En = 0.005, 0.02, 0.045, 0.08, 0.125, 0.18 . . . eV, and the case

where the Fermi energy is between the levels E3 = 0.045 eV and E4 = 0.08 eV
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(a)

(b)

(c)

Fig. 1. Dependence of the chemical potential on the temperature of a quasi-two-dimensional

electron gas. In numerical modeling, the contributions of different numbers of minibands M =

2, 3, 5 are considered. The Fermi energy is (a) EF = 0.022 eV, (b) EF = 0.035 eV and (c)
EF = 0.043 eV.
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(a)

(b)

(c)

Fig. 2. Comparison of the dependence µ(T ) obtained by analytical formula (15) with the results

of numerical solutions of Eq. (6). The following parameters were used in the calculations: E1 =
0.005 eV, En = 0.005, 0.02, 0.045, 0.08, 0.125, 0.18 . . . eV. The Fermi energy is located between
the levels E3 = 0.045 eV and E4 = 0.08 eV (N = 3): (a) EF = 0.046 eV, (b) EF = 0.06 eV and

(c) EF = 0.078 eV. In the numerical solution of Eq. (6), M = 5 is adopted.
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(a)

(b)

Fig. 3. Comparison of the dependence µ(T ) obtained by analytical formula (20) with the results
of numerical solutions of Eq. (6). The following parameters were used in the calculations: E1 =

0.005 eV, En = 0.005, 0.02, 0.045, 0.08, 0.125, 0.18 . . . eV. The Fermi energy is located between

the levels E3 = 0.045 eV and E4 = 0.08 eV (N = 3): (a) EF = 0.0458 eV and (b) EF = 0.0484 eV.
In the numerical solution of Eq. (6), M = 5 is adopted.

(N = 3), but close to the level of E3. In the numerical solution, Eq. (6) was

limited to the maximum number of minibands M = 5.

When the Fermi energy is close enough to the third level: EF = 0.0458 eV and

E3 = 0.045 eV, then as can be seen from Fig. 3(a), the analytical formulas (20,

23) and the numerical model have a common intersection point T3 = 0.00346 eV.

When the Fermi energy is removed from the E3 level: EF = 0.0484 eV and

E3 = 0.045 eV [Fig. 3(b)], the intersection point obtained by analytical formula

(23) is T3 = 0.01502 eV, while the exact numerical result is T3 = 0.0117 eV.

From these graphical dependencies, we can conclude that the closer the Fermi

energy EF to the level E3, the better the linear dependence (20) is satisfied and the

more accurate the estimate (23). Such a regularity is also clearly visible in Fig. 4,
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Fig. 4. Comparison of the dependence T3 obtained by the analytical formula (23) with the

results of numerical solutions of Eq. (6). The following parameters were used in the calculations:
E1 = 0.03 eV, En = 0.03, 0.12, 0.27, 0.48, 0.75 . . . eV, E3 = 0.27 eV (N = 3), M = 5.

where the dependences T3 (EF −E3) are shown by the analytical formula (23) and

the numerical solution (6).

6. Conclusions

Determining the law of variation of the chemical potential with respect to temper-

ature is an important task for studying the thermodynamic properties of any gas,

since almost all the observed thermodynamic parameters and kinetic coefficients

are determined by this dependence. Analytical formulas for the temperature de-

pendence of the chemical potential of a quasi-two-dimensional electron (or hole)

gas are obtained in the low-temperature approximation. Cases are considered when

the Fermi energy is located between the levels of dimensional quantization and

is close to these levels. The case of exact resonance is also analyzed. The results

show that c with increasing Fermi energy, the dependence of the chemical poten-

tial on temperature alternates from a linear (at the resonance points) law to an

exponentially small law of change (far from the resonance point).

(i) The linear dependence of the chemical potential on temperature at the res-

onance points can be interpreted as follows. Only electrons near the Fermi

level participate in the thermal excitation of the system. The number of such

electrons is approximately equal to the product of the ‘active layer’ ∼ T and

the density of states NT = Tg. Each electron has energy of the order of T

and the thermal energy gain is approximately equal to ET ∼ NTT . We rep-

resent the temperature change in the chemical potential as µ ≈ εF − δµ,

where its increment due to the change in the total number of particles is

δµ = (δET /δN)T . When any electrons is added to the systems, the Fermi
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energy changes. Since, at the resonance point, the density of state changes

abruptly, then δµ ≈ δET /δN 6= 0. Hence, it follows that δµ ≈ const · T .

(ii) In the middle of the resonance points, the density of the state does not change,

hence δµ ≈ δET /δN ∼ Tδg/δN = 0 and thus µ ≈ εF . The exponential term

(see for example (8)) is not obtained in this model. It cannot be expanded in

powers of T . Thermal transitions of electrons to the Fermi level from distant

(EF − E1) points have a low probability, which is due to the Boltzman factor

exp((E1 − EF )/T ).

The numerical results coincided with the analytical ones in the areas of accepted

assumptions. From the linear dependence (20), the quantization law of the one-

particle entropy s(N) also follows.12,18 Indeed, according to (20)

−(dµ/dT )EF = ln(2)/(N − 1/2) = s. (28)

In this work, we used the ideal gas model with a simple parabolic spectrum

in a single quantum well. Thus, a number of factors were not taken into account:

collision processes, the thermal transition of electrons from a quantum well to local

levels and into the conduction band of wide-gap material, and the effect of the

valence band was also neglected. These tasks require a separate consideration.
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